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Quadrupolar and anisotropy effects on dephasing
in two-electron spin qubits in GaAs
Tim Botzem1, Robert P. G. McNeil1, Jan-Michael Mol1, Dieter Schuh2, Dominique Bougeard2 & Hendrik Bluhm1

Understanding the decoherence of electron spins in semiconductors due to their interaction

with nuclear spins is of fundamental interest as they realize the central spin model and of

practical importance for using them as qubits. Interesting effects arise from the quadrupolar

interaction of nuclear spins with electric field gradients, which have been shown to suppress

diffusive nuclear spin dynamics and might thus enhance electron spin coherence. Here we

show experimentally that for gate-defined GaAs quantum dots, quadrupolar broadening of

the nuclear Larmor precession reduces electron spin coherence by causing faster decorr-

elation of transverse nuclear fields. However, this effect disappears for appropriate field

directions. Furthermore, we observe an additional modulation of coherence attributed to an

anisotropic electronic g-tensor. These results complete our understanding of dephasing in

gated quantum dots and point to mitigation strategies. They may also help to unravel

unexplained behaviour in self-assembled quantum dots and III–V nanowires.
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E
lectron spin qubits in GaAs quantum dots have played a
central role in demonstrating the key operations of
semiconductor spin qubits1–4. A prominent and often

dominant dephasing mechanism in these devices as well as
other semiconductor spin qubits5,6 is the interaction of the
electron spin with 104–106 nuclear spins of the host lattice. While
the fundamentals of this interaction have been studied quite
extensively7–11, and theory and experiments are in reasonable
agreement12,13, the theory predicts a potential for much longer
dephasing times14 than observed so far and it remains an open
question as to what ultimately limits electron spin coherence.
Remarkable progress has also been made in eliminating
dephasing from nuclear spins using Si-based systems15 that can
be isotopically purified, but this route is not open for III–V
semiconductor systems, where all isotopes carry nuclear spin.
Nevertheless, the latter remain of practical interest because of
their lower effective mass, single conduction band valley and
potential for optical coupling.

The role of quadrupolar coupling of nuclear spins with electric
field gradients (EFGs) from charged impurities or strain has been
investigated, both experimentally and theoretically16–21, mostly in
self-assembled quantum dots, which exhibit large quadrupolar
splittings due to strain intrinsic to their epitaxial growth. But its
influence on electron spin coherence was unclear and it was first
thought to enhance coherence due to quadrupolar suppression of
nuclear spin flip-flops.

In contrast to this prediction, we find that Hahn echo
coherence of our gate-defined quantum dots deteriorates when
the magnetic field is rotated to maximize quadrupolar broadening
of nuclear levels. This degradation of coherence is similar to very
recent findings in self-assembled quantum dots22,23, although in
our case, quadrupolar splittings arise from local electric fields
rather than strain and are orders of magnitude weaker. In
addition, we find a complex pattern of collapses and revivals of
the echo signal unless the magnetic field is aligned with specific
crystal axes, which we explain with an anisotropic g-tensor
causing a coupling of the nuclear Larmor precession with the
electron spin.

Results
S–T0 qubit. The qubit studied here is a two-electron spin
qubit1,24, using the mz¼ 0 subspace of the spin singlet S and spin
triplet T0 of two-electron spins. These electrons are confined in a
GaAs double quantum dot formed by electrostatic gating (Fig. 1a)
of a two-dimensional electron gas (2DEG). The effects explored
in this work apply equally to single electron spins.

A random configuration of the nuclear spins introduces an
effective magnetic field of a few mT, the Overhauser field, whose
dynamics cause qubit dephasing. Hahn echo measurements that
eliminate dephasing from slow fluctuations allow studying these
dynamics, as they become the dominant dephasing mechanism.

We follow the experimental procedure from ref. 12 (see also
Methods), implementing the required p-pulse to invert the state
of the qubit halfway through the evolution time t, using the
exchange interaction between the two spins. Figure 1e shows the
spin echo signals as a function of separation time for magnetic
fields aligned along the [110] crystal axis. (Note that we
experimentally cannot distinguish between the [110] and 1�10½ �
axes, but refer to the direction parallel to the dot connection line
as the 1�10½ � axis throughout the paper for ease of reading.) Similar
results to refs 12,25 are obtained, but with approximately a factor
two shorter coherence times (Supplementary Note 1). At fields
o500 mT, a second-order coupling with the oscillating, trans-
verse nuclear field (that is, its component perpendicular to the
external field) leads to periodic collapses and revivals of the echo

amplitude10–13. Revivals occur at times corresponding to the
periods of the relative Larmor precession of the three species
69Ga, 71Ga and 75As. The overall envelope decay can be modelled
by assuming a phenomenological broadening dB of the nuclear
Larmor frequencies. Because of this variation of the precession
rates, the total transverse hyperfine field of each species
decorrelates on the timescale of 1/dB. Due to the above-
mentioned quadratic contribution of the transverse hyperfine
field to the electronic Zeeman splitting, these fluctuations
contribute to the dephasing of the electrons.

Quadrupolar interaction. While such a broadening is expected
from dipolar interaction between the nuclei, fitting the current
and earlier12 data requires a value of dB¼ 1.4 and 0.3 mT,
respectively, at least a factor three larger than the intrinsic dipolar
nuclear linewidth of 0.1 mT obtained from NMR measurements
in pure GaAs (ref. 26). More direct measurements of the
nuclear dynamics based on correlation of rapid single-shot
measurements27 are consistent with these values.

NMR experiments on GaAs samples with impurities as well as
studies in single self-assembled quantum dots21,28 revealed a
similar excess line broadening, which was found to depend on the
field direction and explained by quadrupolar effects26,29. Strain as
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Figure 1 | Device layout and quadrupole broadening. (a) Gates used for

pulsed qubit control are depicted in blue; the energy of the conduction band

edge ECB is shown on the left. (b) Nuclear spins 3/2 with magnetic moment

m in the proximity of the quantum dot experience quadrupolar coupling with

electric field gradients Vx0x0 induced by crystal distortion due to the electric

field of the triangular quantum well. (c) While the centre transition, with

splitting o0, stays unchanged, the satellite transitions, distorted by the

electron’s own charge, exhibit a quadrupolar shift by oQ. (d) The resulting

frequency distribution F(o) consists of two Gaussians with different

variances, one showing an excess quadrupolar broadening of doQ. (e) Echo

amplitude for magnetic fields along the [110] axis, showing oscillations with

the relative Larmor frequencies of the three nuclear spins. A semi-classical

model (solid line) is used to fit the data (dots, offset for clarity).
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well as electric fields from charged impurities or the triangular
quantum well, used here to confine electrons (Fig. 1a), distort the
valence orbitals and crystal lattice, thus creating EFGs at the
nuclear sites (Fig. 1b). These EFGs couple with the quadrupolar
momentum of the nuclei with spin I¼ 3/2 and (to lowest order)
modify the splitting of the Iz¼±3/22±1/2 satellite Larmor
transitions by26

oQ;a ¼
eQa

2
Vx0x0 ; ð1Þ

where Qa is the quadrupolar moment of nuclear species a, e the
elementary charge and Vx0x0 denotes the component of the EFG
tensor in the direction of the external field (Fig. 1b,c). For in-
plane fields as considered here, the relevant longitudinal local
field gradient induced by an electric field is given by26

(Supplementary Note 2)

Vx0x0 ¼ R14;aEz cos 2yð Þ: ð2Þ
R14,a is the species-dependent response tensor component
relating electric fields to EFGs at the nuclear site due to lattice
and orbital distortions, y is the angle between the magnetic field
and the [110] axis and Ez is the electric field component in
the z-direction. The angular dependence and the fact that only
the z-component of the electric field contributes, arise from the
crystal symmetry of the host material. Hence, the local electric
field Ez and its variation across the electronic wavefunction due to
the electron’s own charge density introduce a broadening of the
precession frequencies. The dependence of oQ,a on y, implies a
suppression of the effect for a field along the [100] and [010] axis.

The Hahn echo amplitude as a function of separation time is
shown in Fig. 2 for different in-plane field directions y between
the [110] and the 1�10½ � axes (Methods). Indeed, a factor two
longer coherence is seen for y¼ 45�, parallel to the [100] (or
[010]) direction. Apart from this enhancement, another oscilla-
tory modulation appears, reaching a maximum at the same angle.

g-factor anisotropy. To further investigate the origin of these
oscillations, we aligned Bext along the [100]-axis and varied its
magnitude in Fig. 3. With decreasing Bext, the frequency of the
modulation decreases, until at 100 mT only a very fast decay of
the echo amplitude followed by a revival at tE13 ms occurs. This
envelope modulation can be explained by an electronic g-factor
anisotropy, arising from an asymmetric confinement of the

electron in the 2DEG and spin–orbit coupling30–32. The main
axes of the g-tensor are expected to be the [110] and 1�10½ � crystal
axis, consistent with the absence of a fast echo modulation with B
along these directions. For other field directions, the quantization
axis of the electron differs from the external field around which
the nuclear spins precess. A linear coupling with the transverse
nuclear magnetic field B?nuc thus appears in the effective magnetic
field determining the electronic Zeeman splitting (Fig. 4a;
Supplementary Fig. 1; Supplementary Note 3):

Beff ¼ g jj Bextþ g?B?nuc tð Þ; ð3Þ

where g jj g?ð Þ denotes the (off-)diagonal entries of the g-tensor.
During the free evolution part of the spin echo, the qubit acquires
a phase arising from B?nuc tð Þ. Due to the dynamics of B?nuc tð Þ that
phase is not eliminated by the echo pulse and hence leads to
dephasing. But whenever the evolution time t=2 is a multiple of
all three Larmor frequencies, the net phase accumulated vanishes
and the echo amplitude recovers. Partial recovery occurs if the
evolution time only matches a multiple of the Larmor period of
two or one species.

Semi-classical fit model. To obtain a quantitative description of
quadrupolar and anisotropy effects, we adapt the semi-classical
model of ref. 12, based on computing the total electronic phase
accumulated due to the precessing nuclear spins and averaging13

over the initial nuclear state. The transverse hyperfine field is
modelled as the vector sum of Gaussian distributed contributions
arising from the three nuclear species and the spread of
quadrupolar shifts. The distribution of nuclear precession
frequencies F(o) is chosen such that the correlation function of
the transverse field is that obtained from an ensemble of
independent nuclear spins 3/2 subjected to a Gaussian
distribution of quadrupolar shifts (Supplementary Note 4). F(o)
is taken as the weighted sum of two Gaussians centred on the
Larmor frequency, reflecting the contributions from the
unperturbed centre transition and the quadrupole broadened
satellite transitions as schematically depicted in Fig. 1d. The root
mean squared width of the quadrupolar broadened distribution is
given by the variation of electric fields via equations (1) and (2).

Using this model, we fit the data (Figs 1–3) with most free
parameters being independent of the magnetic field
(Supplementary Note 4).
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Figure 2 | B-field direction dependence. Echo amplitude at 300 mT as a

function of separation time for different in-plane magnetic field directions y,

with 0� corresponding to the [110] direction. Curves are offset for clarity. At

45�, parallel to the crystallographic [100] axis, the coherence time is

enhanced as quadrupolar couplings are suppressed. When rotating the

field, a g-factor anisotropy leads to oscillations, associated with the three

different nuclear Larmor frequencies. A semi-classical model (solid line) is

used to fit the data (dots).
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Figure 3 | B-field magnitude dependence. Echo amplitude for magnetic

field magnitudes along the [100] axis. A g-factor anisotropy causing

different quantization axes for electron and nuclei spins leads to oscillations

with the three nuclear Larmor frequencies. For small magnetic fields, the

echo signal is strongly suppressed in the first hundreds of nanoseconds, but

revives at later times. A semi-classical model (solid line) is used to fit the

data (dots).
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Most relevant for this work are the quadrupolar broadenings of
nuclear transition and the linear coupling with transverse
hyperfine fields g> (both depending on field direction only)
shown in Fig. 4b,c. As predicted, the quadrupolar broadening
approximately vanishes at y¼ 45� and is maximal at y¼ 0� and
y¼ 90�. The maximum magnitude of dBa is consistent with the
electric field variation generated by the electron in the dot
(Supplementary Note 4). The off-diagonal g-tensor element g>
shows the predicted sin(2y) dependence, and its maximum
anisotropy of 5% is comparable with that found in quantum
wells31.

Discussion
One of our key results is that quadrupole broadening of nuclear
spins can contribute to electronic dephasing by increasing the
nuclear linewidth and hence leading to faster decorrelation of the
transverse nuclear polarization, which contributes to the electro-
nic Zeeman splitting to second order. While in principle another
source of anisotropy with the same angular dependence could
explain the observed variation of the coherence time, we are not
aware of any other plausible mechanism. Anisotropic diffusion33

shows a different angular dependence with the longest coherence
times along the [110] direction. Our interpretation is further
supported by the good quantitative agreement with the model
and NMR measurements26,29. This result does not contradict the
reported suppression of nuclear spin diffusion20 by quadrupole
effects19 as spin diffusion mostly affects electron coherence via
the longitudinal polarization, whereas in our case the transverse
coupling is dominant. An isotropic g-factor in combination with
an anisotropic hyperfine interaction would lead to the same echo
modulation when rotating Bext, but the anisotropy of the
hyperfine interaction is usually assumed to be negligible as the
conduction band wavefunction of GaAs is predominantly s-type.

While in the present sample g-factor anisotropy and quad-
rupolar effects cannot be eliminated simultaneously, symmetric,
possibly back-gated quantum wells31 should allow the elimination
of any g-factor anisotropy. The back gate could also be used to
tune quadrupolar interaction, as it depends on the electric field,
thus allowing further studies.

Given that the strain-induced quadrupole broadening in self-
assembled dots was found to be three to four orders of
magnitudes larger19,21,28, it likely also has pronounced effects
on the coherence22 of this type of quantum dot, which is
currently less well understood than that of gated dots. In addition
to the above-mentioned second-order coupling with the
transverse Overhauser fields, a linear coupling of the parallel
field components with the effective spin splitting due to the very
large and non-uniformly distributed quadrupole splitting in these
systems results in a similar, but more complex echo envelope
modulation23.

Furthermore, the echo modulation due to an anisotropic g-
factor may also play an important role in III–V nanowire qubits,
where strong g-factor anisotropies and short coherence times
have been measured34,35.

Methods
Qubit system and experimental set-up. The quantum dots used in this work
were fabricated on a GaAs/Al0.69Ga0.31As heterostructure with Si-d doping 50 nm
below the surface and a spacer thickness of 40 nm, leaving the 2DEG at 90-nm
depth, as shown in Fig. 1a.

Using fast voltage pulses provided by an arbitrary waveform generator (AWG)
Tektronix AWG5014C to detune the qubit for manipulation requires thoughtful
radio frequency (RF) engineering of the experimental set-up. To avoid any excess
pulse distortion, apart from attenuation and skin effect of coaxial cables, we
abandon the bias tee and use separate d.c.-coupled static and control gates. Static
voltages of order 1 V are applied to the heavily filtered static gates to define and
tune the quantum dots. The control gates are used exclusively to apply the mV-
scale signals for qubit manipulation. This separation eliminates the need for bias
tees and thus provides a nearly flat frequency response of the control gates from
d.c. to a few hundred MHz (discussed in Supplementary Note 5 and shown in
Supplementary Fig. 2). The control gates are d.c. coupled with the AWG outputs,
although heavily attenuated by � 33 dBm to reduce thermal noise from room
temperature.

Echo sequence. Following the experimental procedure for Hahn spin echo
measurements from ref. 12, we first initialize the qubit system in the spin singlet
groundstate S by pulsing both electrons into one dot. Rapidly separating the
electrons into both dots lets them evolve in different Zeeman fields arising from the
external magnetic field Bext and the fluctuating local Overhauser field BL(R) of the
left (right) dot for a time t. A gradient DBz¼ |BL�BR|/2 in the hyperfine field of
the two dots leads to coherent rotations between S and T0 and fluctuations in DBz

cause dephasing. An exchange splitting between the spin singlet S and triplet state
T0 arises from inter-dot tunnel coupling. This exchange allows electric control of
the qubit by varying the difference in electrostatic potential between the two dots,
on the nanosecond timescale with an AWG. Using this exchange interaction to
perform a p-pulse by driving rotations between the eigenstates "#j i and #"j i, we
swap the two electrons halfway through the evolution time t. Last, we read out the
final qubit state by pulsing the electrons into one dot. Using Pauli spin blockade, we
distinguish between the singlet and triplet states by measuring the resistance of a
nearby sensing dot via RF reflectometry36. Such a pulse cycle with varying
evolution times is repeated several million times and the average echo amplitude is
recorded. Simultaneous histogramming of individual measurement outcomes is
used for normalization2 (see Supplementary Figs 2, 3 and 4 and Supplementary
Note 6 for details). The fine tuning of the pulses that was necessary in ref. 12 to
avoid artefacts from shifts of the wavefunction has been eliminated due to
improved RF engineering.
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