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This work discusses the application of Feynman diagram sampling in 
quantum field theories. The method uses a computer simulation to 
sample the diagrammatic space obtained in a series expansion. For 
running large physical simulations powerful computers are obliga-
tory, effectively splitting the thesis in two parts.

The first part deals with the method of Feynman diagram sampling. 
Here the theoretical background of the method itself is discussed. 
Additionally, important statistical concepts and the theory of the 
strong force, quantum chromodynamics, are introduced. This sets 
the context of the simulations. We create and evaluate a variety of 
models to estimate the applicability of diagrammatic methods. The 
method is then applied to sample the perturbative expansion of the 
vertex correction. In the end we obtain the value for the anomalous 
magnetic moment of the electron.

The second part looks at the QPACE 2 supercomputer. This includes 
a short introduction to supercomputers in general, as well as a closer 
look at the architecture and the cooling system of QPACE 2. Guiding 
benchmarks of the InfiniBand network are presented. At the core 
of this part, a collection of best practices and useful programming 
concepts are outlined, which enables the development of efficient, 
yet easily portable, applications for the QPACE 2 system.
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Feynman Diagram Sampling for Quantum Field Theories
on the QPACE 2 Supercomputer

Abstract

This thesis covers the topic of applying the method of Feynman diagram sampling

to quantum field theories. The method uses a computer simulation to sample the

diagrammatic space obtained in a series expansion. For running large physical

simulations powerful computers are required. Therefore, two independent parts

are supplied.

The first part deals with the method of Feynman diagram sampling. The the-

oretical background of the method itself is discussed. Additionally, important

statistical concepts and the theory of the strong force are introduced. A variety

of models to study the applicability of diagrammatic methods are evaluated. The

method is then applied to sample the perturbative expansion of the vertex correc-

tion. In the end we estimate the value of the anomalous magnetic moment of the

electron.

The second part describes the QPACE 2 supercomputer by looking at its the

architecture and cooling system. Guiding benchmarks of the InfiniBand network

are presented. At the core of this part, a collection of best practices and useful

programming concepts are outlined, which enables the development of efficient,

yet easily portable applications for the QPACE 2 system.
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Part I

Feynman Diagram Sampling for
QFT



1
Introduction to Feynman Diagram

Sampling

The quest for knowledge is deeply connected with the elementary goals of particle
physics. In particle physics we are curious to find out more about the basic building
blocks of matter. All the recent discoveries at the Large Hadron Collider (LHC)
gained tremendous media coverage. Among others the list contains the observation
of the Higgs boson [1], the recent discovery of a pentaquark state [2], and new
baryon resonances [3].

Even though most people are not directly influenced by achievements of the
LHC, they are most certainly indirectly affected by the developments in particle
physics. The most striking example is the world wide web, which forms the basis
for the information age [16]. There are many other advancements in engineering,
computer science, and data analysis, which have been direct or indirect products
of research in particle physics.

Particle physics is a discipline that relies heavily on the progress in the IT
industry. This is true not only on the theoretical side, where we need excessive
computing power to run simulations [51], but also on the experimental side, which
has to deal with huge amounts of data. Thus communication with the field of
computational physics is definitely relevant. Computational physics is dedicated
to apply novel methods found in numerical mathematics and computer science to
solve problems in physics.
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If we would draw a diagram to illustrate the relations between computational
physics, theoretical physics, experimental physics, computer science, algorithms,
and electronics, we would probably place computational physics in the center.
Not only does computational physics touch many areas, it connects previously
disconnected or only weakly connected fields. This enables a much richer exchange
and opens the door for new collaborations.

The rich exchange between computational physics and the classical disciplines
in physics strengthens their relationship even more. Theoretical or experimental
physics have been in good contact beforehand, however, by directly discussing
ideas and implementations of simulations these fields are overlapping even more.
Usually, the overlap goes way beyond specific fields of study, which is only possible
by providing a common notation and language.

An example for a fruitful transfer of ideas is the progress of Markov chain Monte
Carlo [68] methods, which are introduced in Chapter 2. Initially developed to solve
problems in solid state physics, these methods have been adopted very successfully
to simulate particle physics using a discretization known as the lattice [150]. The
adjustments and improvements, such as including molecular dynamics [7], from
lattice improvements [44] were then again applied to solid state physics. Conse-
quently, the exchange and ongoing search for better methods is beneficial for both
fields [58].

The growing toolbox of deterministic, non-deterministic, and mixed methods
makes efficient computation of many different models possible. One of the new
challenges is to identify the ideal method for a given model. Furthermore, some
methods may be completely unsuited for a specific class of problems. We require
careful evaluations to determine properties of the available methods. The idea
is to construct a generalized mapping for models to find the right methods of
simulation.

In this thesis we investigate how diagrammatic methods can be utilized for
studying quantum field theories. A little over a decade ago diagrammatic methods
have appeared [147]. Initially, they have been limited to only a few problems, but
recent developments justify our hope to make them usable beyond their original
purposes in solid state physics. The essential method is discussed in Chapter 3.

Our goal in this work is to derive recommendations and constraints when a dia-
grammatic method can be used. Diagrammatic methods try to sample a possibly
infinite series of integrals by identifying suitable weights for state transitions. We
are especially interested in the case of applying Diagrammatic Monte Carlo or a
specialization of it to solve problems within the theory of QCD.
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2
Theory

This chapter introduces important concepts that are used extensively in the suc-
ceeding chapters. We start with a brief description of Monte Carlo methods (Sec-
tion 2.1). In Section 2.2 we walk through an introduction to the most important
statistical concepts. This will be our reference for calculating estimates and their
respective errors later on.

In the next section we look at all the physics which is relevant for this work. We
start by introducing our notation for using special relativity in Section 2.3. Special
relativity is used by the physical theory of the strong force, which is introduced
in Section 2.4.

Finally, in Section 2.5 we investigate how to discretize the theory for running
simulations, which allow the computation of observables. This section also moti-
vates the research that is presented and described in the subsequent chapters of
this thesis.

2.1 Monte Carlo Methods

Monte Carlo methods describe a class of algorithms that utilize the computational
power of modern computers by relying on repeated random sampling. In most
algorithms we repeat a set of steps in a simulations to obtain a an ensemble of
samples of a probability distribution, which can be used to estimate properties
of the distribution. In our context Monte Carlo methods represent a class of
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methods that provides efficient algorithms for simulating physical models and
finding solutions to problems that cannot be solved analytically.

The reference to the Monte Carlo Casino of Monaco in the name originated
from the resemblance of gambling. Since gambling is a statistical activity, the
name hints that algorithms from this class of methods require many runs to satisfy
statistical conditions. The most important condition to satisfy is the law of large
numbers. A large number of samples is useful, if and only if we scan over the
whole data space. Here we use random numbers.

We start our discussion of Monte Carlo methods by introducing the concept
of random numbers and random number generators (RNGs). Then we introduce
methods to handle distributions and the concept of Markov chains. Finally, generic
Monte Carlo methods are discussed.

2.1.1 Random Numbers and Random Number Generators

A sequence of numbers is said to be statistically random when it contains no
patterns or regularities. This makes the sequence at any point unpredictable.
A number in this sequence is then called a random number. Examples of such
sequences can be found in transcendental numbers such as π. They can be con-
structed, e.g., by noting the results of an ideal dice roll. The statistical randomness
is not true randomness, but sufficient for uses in statistical applications such as
Monte Carlo methods.

Random numbers arise in nature just by employing a macroscopically large
number of variables and quantum mechanics. In Monte Carlo methods we require
some source of random numbers. This source is then used for the construction of
probability distributions. Nature itself would be a great source for such random
numbers, however, most processes do not generate random numbers fast enough
for our needs. Additionally, most computer systems do not have any access to
naturally occurring random numbers.

Nevertheless, it is possible to generate artificial random numbers. Here a long
sequence of numbers is created, which does not follow any pattern. The numbers
appear to be absolutely random for all practical purposes. A random number
generator depends on its generating sequence by definition. A very simple im-
plementation of such a sequence just considers the previous state. Here the i-th
random number ri would be generated by

ri = f(ri−1). (2.1)

One problem with Equation (2.1) is that we need to supply a proper r0 as initial
condition. Otherwise, no argument for the generating function f is given. We call
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r0 the seed. Ideally, the seed is randomly determined. We might fake an ideal seed
by taking a frequently changing, arbitrary value. An example for such a value is
the current system time in, e.g., 1000-cycles.

Another problem is that since f is not random, having two equal values ri = rj,
with i 6= j, will result in ri+1 = rj+1. Since computer memory is limited we will
hit this point eventually. Thus, we have a repeated sequence after a certain period
of generated numbers. Ideally, this period should be as large as possible, however,
by just using the previous value we obtain a period that is at best 2N , where N is
the number of bits used to represent the value.

One of the oldest and best-known pseudo random number generator (PRNG)
algorithms is the linear congruential generator (LCG). Here we have

f(x) ≡ (ax+ c) mod m, (2.2)

where we call a the multiplier, c the increment and m the modulus. In case of
c = 0 the LCG is often called Lehmer RNG [86]. In practice the LCG is too
limited and therefore should only be used with great care. The period of a general
LCG is at most the modulus m with typical implementations using m = 232.

A much better choice is given by the multiply-with-carry (MWC) [93] algorithm.
It features a very fast generation of random numbers with immense periods, rang-
ing from 260 to 22000000. The reason for the improved period length lies in using
two equations instead of one. The second equation is used to describe a dynamic
increment. We have

ri = f(ri−1, ci−1), (2.3)
ci = g(ri−1, ci−1). (2.4)

The function f is defined as with the LCG, however, instead of a constant c we
use the index-dependent value ci−1. The function g is given by

g(x, c) ≡ b(ax+ c)/mc , (2.5)

i.e., we require initial conditions ci and ri for both sequences. Of course we could
couple the sequences by defining the seed of the second sequence from the first
sequence, however, this will certainly lower the period.

Alternatively, we might skip any PRNG and base our simulation directly on a
device that uses either classical chaos, e.g., atmospheric noise, or quantum me-
chanics. Currently there are only external commercial products available. In the
near futures central processing units (CPUs) will be equipped by default with a
hardware RNG [96] that can be accessed via special machine instructions.
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We assert that our RNG is sufficiently fast, while providing a long period and
being insensitive to seeds. In the ideal case the generated sequence should be non-
correlated. The latter cannot be achieved by PRNG, but we can get very close.
In our simulations we either use an implementation of the MWC or the Mersenne
Twister [94] PRNG, which has a period length of 219937 − 1.

2.1.2 Distributions

The algorithms discussed in the last section only generate uniformly distributed
random numbers. If we need to use another distribution, we have to look at the
desired probabilities first. We start with a uniform random number u ∈ [0, 1). For
obtaining a random number x distributed with p(x) in the interval [a, b) we have

P (a ≤ x < b) =
∫ b

a
dx p(x) ≡ F (b). (2.6)

Now we need to find the inverse of F (b) to get a random number x following
the given distribution: x = F−1(u). However, this method is only feasible if the
integral can be inverted easily. Therefore, it works only for some distributions,
e.g., the exponential distribution, which is given by p(x) = λ exp(−λx) for x ≥ 0,
where λ ∈ R+ is called the decay rate. In this case we are able to invert the
integral to obtain

x = −λ−1 log(1− u). (2.7)

An example that does not work as smoothly is the normal distribution. The
normal distribution is defined to be

p(x) = 1√
2πσ

exp
(

(x− µ)2

2σ2

)
, (2.8)

where σ is the standard deviation and µ is the expectation value. We cannot find
an analytic inverse in terms of elementary functions in the one-dimensional case,
but we are able to perform the inversion in two dimensions. We get

n1 =
√
−2 log(1− u1) sin(u2), (2.9)

n2 =
√
−2 log(1− u1) cos(u2). (2.10)

We should implement some buffering to use the already computed result n2 later.
Refusing to store the other solution wastes computing power by throwing away
useful numbers.

In general, we can always transform uniformly distributed random values by the
accept or reject method. We start by looking for a simple distribution h(x) that
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acts as a boundary for p(x), i.e., p(x) ≤ λh(x) for some λ > 1.
The accept or reject method then works by drawing a random number x ac-

cording to the distribution given in h(x). The value as sample of p(x) is accepted
if a second uniformly distributed random number t, with 0 ≤ t ≤ λh(x) satisfies
t ≤ p(x). If the proposed change is rejected, the procedure has to be repeated until
a random number is accepted. This requires a good guess of h(x) to be efficient.
Otherwise, a numerical inversion of the integral of p(x) might be faster.

We only looked at continuous distributions so far. The way to generate random
numbers from discrete distributions, such as the discrete uniform distribution, the
Bernoulli distribution, which is a special case of the Binomial distribution, or the
Poisson distribution, is very similar to the continuous case and does not require
additional knowledge.

2.1.3 Markov Chains

A Markov chain describes the transition from one state to another in a mathe-
matical system. It is specified by a state space S and by a transition matrix Pxy,
with x, y ∈ S such that

Pxy ≥ 0,
∑

y∈S
Pxy = 1. (2.11)

The state space is not restricted to a discrete space and the sum can be understood
as an integral. This construction yields two basic features:

• The probability to be in y at time t+1 depends only on the position at time
t. Hence we do not require to know the past, only the present.

• The probabilities are time-independent. Again, as we do not need to know
about the past, the probability is independent of any previous change and
therefore time-independent in general.

Among all Markov chains we only consider processes which satisfy the conditions
of ergodicity and aperiodicity. The condition of ergodicity states that we can
basically go from any state to any state. There are no restrictions. Therefore, for
any x and y there exists a n > 0 such that the transition matrix obeys P n

xy > 0.
Ergodic Markov chains are called irreducible.

Aperiodicity is closely related to the periodic length of randomness. It is fulfilled
if the greatest common divisor of the set of integers n satisfying P n

xx > 0 is 1. This
means that there is no recognizable pattern in the Markov chain.

If P is irreducible and aperiodic we can prove that

lim
n→∞P

n
xy = πy, (2.12)
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with 0 ≤ πy < 1. In case of πx 6= 0 for any x it actually satisfies

∑

x

πx = 1. (2.13)

Combining Equation (2.12) and Equation (2.13) results in the so-called stationary
condition, expressed as

∑

x

πxPxy = πy, (2.14)

where we call πx the equilibrium distribution.
The probability described by the equilibrium distribution is unique. We see

that π is determined by P , however, in practical applications this is usually be
turned upside down. In practice the equilibrium distribution π is known and can
be identified.

Then, we devise a transition matrix P such that π satisfies the stationary con-
dition for P . The uniqueness property guarantees that π is the equilibrium distri-
bution of the process. Finally, we can compute expectation values of observables
by calculating averages from the Markov process. This follows directly from the
ergodic theorem.

As there is an infinite number of matrices P that satisfy the stationary condition,
it is often easier to look for a matrix P which satisfies the even stronger condition

πxPxy = πyPyx, (2.15)

for any x, y. This condition is called reversibility condition, or detailed balance.
It implies the stationary condition. Hence we will always try to ensure detailed
balance, as this is an easy way to satisfy the stationary condition.

Even if all conditions are satisfied we may need further development depending
on our model, e.g., successive graphs in a Markov chain cannot be used when we
want to obtain independent draws. The realizations are usually correlated [123].
We need to optimize our drawing process to maximize the sampled phase space.
Even then autocorrelation, as discussed in Section 2.2.4, is an important issue.

2.1.4 Monte Carlo Integration

Monte Carlo integration is a non-deterministic method of estimating the value of
an integral [149]. The method is based on random numbers and averages over all
function values at independently selected points. It is very efficient for solving
multi-dimensional integrals and sums. We start with a D-dimensional integral
over a domain Γ of volume V normalized to 1,

I =
∫

Γ
dDx f(x). (2.16)
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For reasons of simplicity we assume Γ to be a D-dimensional hypercube with the
components of x chosen to satisfy 0 ≤ xk ≤ 1 for k ∈ [1, D].

We can now independently generate N random vectors xi following the uniform
distribution of Γ. Each vector is then used per iteration (called “timestep”) to
evaluate the integrand f(xi). The sum of these evaluations (“measurements”)
approximates the value of the integral,

I ≈ IN ≡ N−1
N∑

i=1
f(xi). (2.17)

The estimated error scales like

∆IN ∝ N−1/2, (2.18)

which is independent of D.
If D is small, Monte Carlo integration performs worse than standard methods

for numerical integration. However, for large D it turns out to be much better than
the standard methods. For example, the trapezoidal quadrature has an estimated
error of ∆IN ∝ N−2/D [111]. Therefore, Monte Carlo integration is a possible way
to circumvent the curse of dimensionality [71].

From a practical point of view N becomes too large very quickly for the usual
methods of numerical integration. In 10 dimensions we already require 1010 points
for 10 points in each direction. This is just not feasible.

In general, the domain Γ is of volume V 6= 1, i.e., the volume has to contribute
to the value of the integral. As the volume is related to the probability of picking
a specific point xi, we can simply transform the original integral to study how the
chosen probability distribution contributes to the Monte Carlo integration.

For a probability distribution p(x) we always assume proper normalization, i.e.,
we have ∫

Γ
dDx p(x) = 1. (2.19)

We now transform our integral by changing

I =
∫

Γ
dDx f(x) =

∫

Γ
dDx f(x) p(x)

p(x) =
∫

Γ
dDx p(x)h(x). (2.20)

We obtained an expression that gets integrated using the distribution p(x). The
general expression for computing an integral using a Monte Carlo integration can
be expressed as

IN = N−1
N∑

i=1
h(xi), (2.21)

with the values xi being chosen according to the distribution given by p(x).
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Monte Carlo integrations perform better if p(x) is chosen to be close to f(xi)
for all xi. In this case h(xi) is close to being constant. The ideal choice for the
probability distribution is given by p(x) ∝ |f(x)|. We call the method of using a
better suited distribution for generating the arguments of the integral importance
sampling.

Importance sampling plays a crucial role in Monte Carlo methods. In practice
most of the benefits from using Monte Carlo methods actually come from using
appropriate distributions, which are similar to the functions being evaluated. Im-
portance sampling effectively reduces the error by making our evaluations more
accurate within a limited number of timesteps.

2.1.5 Monte Carlo Simulations

Monte Carlo simulations have proven to be very efficient in solving statistical
problems. The general algorithm of Monte Carlo methods varies from method to
method, but they all follow a particular pattern. First we need to define a domain
of possible inputs. Now we can generate inputs randomly from a probability
distribution over the domain. Then we perform a deterministic computation using
the generated inputs. In a final step we aggregate and interpret the results using
statistical methods.

We start by demanding that an integration of a valid D-dimensional positive
scalar weight function w(x) over the phase space Γ has to yield unity. We express
this condition by ∫

Γ
dDxw(x) = 1, w(x) > 0. (2.22)

As previously derived in Monte Carlo integrations we may use a weight function
to rewrite an existing integral over a given function f(x). In effect we alter the
integrand and adjust the integral to a more suitable distribution.

We start by introducing the positive weight function, w(x), to get

I =
∫

Γ
dDxw(x) f(x)

w(x) , (2.23)

which allows us to regard the weight function as the distribution to apply in
importance sampling. At this point we specialize the formulation to a general
problem in statistical mechanics. We start with

〈A〉 = Z−1
∫

Γ
dDx exp(−βH(x))A(x), (2.24)
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where Z is the partition function expressed as

Z =
∫

Γ
dDx exp(−βH(x)). (2.25)

The energy function is given by the Hamiltonian H(x). The function we are
interested in is the observable A(x). The temperature of the system is proportional
to the inverse value of β.

Coming back to the more general problem formulation we see that we can now
consider using

w(x) = Z−1 exp(−βH(x)) (2.26)

as our weight function. This is an efficient choice for importance sampling. Now
we can approximate the solution for 〈A〉. We have

〈A〉 ≈ N−1
N∑

i=1
A(xi). (2.27)

In the limit of N → ∞ we find the exact solution as the error goes to zero. We
call xi a configuration. How do we generate a Markov chain for the required N

configurations efficiently?
The easiest way to generate a Markov chain is to use the Metropolis-Hastings

methods [68], which is a generalization to the method proposed by Metropolis et
al. [98]. The algorithm defines the transition from one element to another. A new
configuration xi+1 is proposed using a selection probability in conjunction with
the current configuration xi. The selection probability is denoted with

Pprop(xi+1 ← xi). (2.28)

We accept the new configuration with probability

Pacc = min
(

1, Pprop(xi ← xi+1)
Pprop(xi+1 ← xi)

Ω(xi+1)
Ω(xi)

)
, (2.29)

where Ω(xi) represents the distribution for the values of the i-th configuration.
If we reject the update, we continue with the current configuration, i.e., xi+1 =

xi. The update is accepted if a generated uniform random number r ∈ [0, 1]
satisfies

r ≤ Pacc. (2.30)

In general, the updates in a Monte Carlo simulation should be optimized in sev-
eral ways. There are many studies on optimal updating schemes for various mod-
els [115]. As a rule of thumb we want Pacc to be around 1/4. If Pacc is too high,
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the integration volume is explored too slowly. A smaller value wastes computer
time by rejecting too many updates. For simulations with very expensive updates
it is economical to aim for a higher value of the acceptance rate Pacc.

It can be shown that the Metropolis-Hastings algorithm satisfies detailed bal-
ance. Thus, we ensure that the limiting distribution is given by Ω(x).

2.1.6 Monte Carlo Simulation of He3-He4 Mixtures

The basic idea of a Monte Carlo simulation can be illustrated by using an exam-
ple: We simulate the behavior of the He3-He4 mixture [37]. The model in this
example is using two parameters, denoted by β and µ. The former represents the
temperature of the system, while the latter is called the anisotropy field.

He3-He4 mixtures are very important for cooling systems, which have to provide
temperatures lower than 1 K. The process where these mixtures are used is called
dilution refrigeration. The physical background is that by mixing these isotopes
of Helium thermal energy is absorbed by the system to enable a phase transition.

In more detail, energy is required to transport the He3 atoms from the He3-rich
phase into the He3-poor phase. If the atoms can be made to continuously cross this
boundary, they effectively cool the mixture. Because the He3-poor phase cannot
have less than a few percent He3 at equilibrium, even at absolute zero, dilution
refrigeration can be effective at very low temperatures. The volume in which this
takes place is known as the mixing chamber.

For our model a tricritical point has been predicted [20], which is where a line
of second-order phase transitions meets a line of first-order phase transitions. A
first-order phase transition exhibits a discontinuity at the first derivative of the free
energy, while a second-order phase transition is continuous in the first derivative
with a discontinuity in the second derivative of the free energy.

Compared to the Hamiltonian described in [20] we are only interested in the
K → 0 case. Our choice of units sets J = 1, with ∆ = µ3 − µ4. It is convenient
to set µ3 = 0 introducing µ ≡ −∆ in units of J .

The Hamiltonian to study is now given by

Ĥ = −
∑

〈i,j〉
sisj − µ

∑

i

s2
i . (2.31)

where µ is used to vary the concentration. A large value of µ results in a higher
concentration of He3 in the system. In our simulation we will bring the system
into equilibrium for any choice of β and µ. Finally, we try to find the values
representing the line of the phase transition.

We use si for the value of the spin of i-th site. The spin can take the values 0
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(He3) and ±1 (He4). The magnetization is computed via

M = N−1
N∑

i=1
〈si〉, (2.32)

where N denotes the total number of sites.
Since we have two different types of particles in the system we need a way to

distinguish them. We can obtain the number of He3 atoms, N3, and He4 atoms,
N4, by calculating

N3 =
N∑

i=1
(1− s2

i ), (2.33)

N4 =
N∑

i=1
s2
i = N −N3. (2.34)

For choosing the selection probability Pprop(φ′ ← φ) we have two options. Either
we update the sites randomly or sequentially. The latter is more straightforward
and requires less random numbers as we use a deterministic updating procedure.

In each timestep we propose a new value for a single site. This is a very simple
approach and may be replaced by cluster algorithms [121] in practice. Especially
the latter has been applied in many cases successfully. An example is the evalua-
tion of path integrals [22].

We may want to speed up our simulation by using a predefined lookup-table.
We can only use a lookup-table if we perform local updates, i.e., if the selection
probability is independent of the starting configuration φ. We have

Pprop(φ′ ← φ) ∝ exp (−S(φ′)) . (2.35)

Note that this implies that the ratio of the proposal to its inverse is only dependent
on φ and φ′, i.e.,

Pprop(φ′ ← φ)
Pprop(φ← φ′) = exp(−S(φ′))

exp(−S(φ)) . (2.36)

In our case the lookup-table is a 3 × 9 matrix. We have three possible states for
each site with the sum of the energies of the four nearest neighbors of each site
yielding discrete results between −4 and 4.

We want to reproduce the critical line (βc, µc), which gives us information about
the phase transition of the mixture. We can then compare our numerical result
with an approximation for µc(βc), given by

µc = − ln(βc − 1)
βc

. (2.37)
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Figure 2.1: Specific heat capacity in the (β, µ)-plane. The phase transition and
the tricritical point can be seen.

The solution estimate can only be evaluated for βc > 1.
For our numerical evaluation we use L2 number of sites, with L being set to

64. To obtain enough statistics we record at least 250 configurations during the
2.5× 106 timesteps per parameter value. Each configuration is obtained in equi-
librium state.

The tricritical point of the system (βc, µc) can be found by looking, e.g., at
the maximum of the specific heat capacity C(β, µ). The specific heat capacity is
defined as the variance of the energy. We can compute it via

C(β, µ) = β2
(〈
H(β, µ)2

〉
− 〈H(β, µ)〉2

)
. (2.38)

With our simulations we get an estimate of

(βc, µc) = (1.34(2),−1.89(3)). (2.39)

The plot in Figure 2.1 shows the obtained data. The rebinning scheme described
in Appendix C.2 has been applied to prepare the data for display. Using the
variance of the energy we are able to detect all the interesting regions in the
energy landscape of the underlying model.

Depending on our objective we will either use a cold start, where every site is
set to the same value, or a hot start, which randomizes the values. Independent
of our choice, we have to decide for a number of thermalization updates. Within
the thermalization we do not perform measurements. If the measurement is ex-
pensive, we should reduce the frequency of measurements. This will reduce the
autocorrelation, i.e., exclude configurations, which are too similar and therefore
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meaningless.
In the next section we discuss our set of statistical tools, which give us indi-

cators to decide for the number of thermalization updates and the measurement
frequency.

2.2 Statistical Tools

Once we leave the world of determinism, we will find our answers purely in statis-
tics. This requires an introduction to statistical methods as well as defining a
common language.

Of course, the whole topic serves material for many books. A more general and
detailed discussion can be found in various textbooks, e.g., [59]. We only define
terms and introduce quantities, which will then be used throughout this thesis.
We start by introducing the most basic quantities.

2.2.1 Basic Quantities

One of the most important quantities in statistics is the mean of a data sample.
Sometimes the mean is called the average of a given dataset. The mean can be
easily computed by dividing the aggregate of all data points in the sample by the
number of data points N .

If these N data points given by x = {xi}, where i = 1, . . . , N , are distributed
with probability density p(x), then the sample mean for a function g is

〈g(x)〉 = N−1
N∑

i=1
g(xi). (2.40)

The mean of the sample itself with g(x) ≡ x is denoted by 〈x〉.
In the statistical limit of N →∞ this converges to the so-called expected value,

which can be computed by evaluating the integral over all weighted values in the
domain Ω,

〈g(x)〉p =
∫

Ω
dx g(x) p(x). (2.41)

Of course the arithmetic mean and the expected value can be equal. This will
happen if the probability density is a constant, i.e., p(x) = ‖Ω‖−1. We call this
special probability function the uniform probability.

The deviation is the difference from the data points to their mean, i.e., g(xi)−
〈g(x)〉. This leads to the variance, which is the mean of the squared deviation
entries, i.e.

var (g(x)) = N−1∑

i

(g(xi)− 〈g(x)〉)2 . (2.42)
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We can calculate the standard deviation by taking the square root of the variance.
That way we obtain a relation between the deviation and the standard deviation1.

A very interesting quantity is the covariance. The covariance can be interpreted
as a the correlation between two datasets. This helps us to find out whether two
generated datasets are independent or follow a similar pattern. We can define the
covariance of two sets x and y as the scalar product of the deviation vectors,

cov (x,y) = N−1
N∑

i=1
(xi − 〈x〉) (yi − 〈y〉) . (2.43)

The definition is very useful to compute the variance of a single set. The variance
is obtained by applying the definition of the covariance on a single set, i.e.,

var (x) = cov (x,x) . (2.44)

Any simulation can be considered finished once the set of data points have con-
verged and fluctuations are reduced to a minimum. Therefore, the rate of con-
vergence is an important quantity, since it can be used to estimate the number of
required timesteps. We can compute the rate of convergence by calculating the
average of the square deviations.

Finally, we should introduce the term standard error (of the mean). The stan-
dard error is closely related to the variance and is interpreted as the error on the
mean. It is root of the squared deviations divided by N ,

∆x =

√√√√ 1
N2 −N

N∑

i=1
(g(xi)− 〈g(x)〉)2. (2.45)

The standard error may be given in absolute or relative terms. The absolute
error is given by Equation (2.45). In contrast the relative error is the ratio of the
absolute error to the computed average value.

In Monte Carlo simulations the standard error over all possible samples, which
are independently drawn using the same size N , scales like 1/

√
N . We can see

that by calculating the standard error of a single sample x̄. We find

∆x̄2 =
〈
(x̄− 〈x̄〉)2

〉
= ∆x2/N. (2.46)

This is the basic feature of any Monte Carlo algorithm as discussed in Section 2.1.
Monte Carlo simulations impose some bias on the data. It is required to reach

the equilibrium distribution from Equation (2.14) before performing any measure-

1 The relation is expressed by another common name for the standard deviation, namely the
root mean square deviation.
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ments. The number of timesteps to reach equilibrium is strongly related on the
model and can be estimated using the autocorrelation time from Section 2.2.4.
Additionally, data resampling techniques, such as Jackknife or Bootstrap are use-
ful.

2.2.2 Jackknife

Jackknife [144] is a method that reduces the dataset to compute several error
estimates. Jackknife is usually applied in conjunction with data binning. This
way we can get rid of unwanted fluctuations in the dataset. If it is reasonable to
assume that these fluctuations are independent we could just compute means and
standard errors. However, this assumption is usually wrong. Every Monte Carlo
simulation produces correlated fluctuations, which need to be accounted.

Jackknife itself is a generic and cheap estimator for the standard error without
having to worry about the propagation of uncertainty. The N data points of our
dataset x get reduced to N−1 resampled values. The ordinary statistical analysis
is then applied on this set of resampled values. Doing this N times results in a
set of mean values J = {J1, . . . , JN}.

Computing the standard error yields

ε2
J = (N − 1)

N

N∑

i=1
(ji − 〈x〉)2 , (2.47)

where 〈x〉 is the mean of the full sample.
The bias b of our data can be estimated by using the mean of all Jackknife

samples 〈J〉 again. We have

b = (N − 1) (〈J〉 − 〈x〉). (2.48)

We already mentioned that Jackknife is even better if the source dataset is binned.
Binning is a technique, where we block our dataset using a number of bins [152].
We can then compute any observable for each bin and estimate the error by
applying the standard error of Equation (2.45) to these values. This alone is
mostly sufficient to lower the bias significantly.

In general, we obtain more reliable numbers by using Jackknife than compared
to plain averages and variances. A reason for this is that Jackknife sample means
are distributed N − 1 times closer to the mean than the original data points. It
can be shown that the following relation is true for any Jackknife sample J,

Ji − 〈x〉 = (N − 1)−1 (〈x〉 − xi) , (2.49)
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since Ji is the mean of x\xi.

2.2.3 Boostrap

Another method that is able to reduce the bias and compute more robust means
and errors is the Bootstrap [47]. While Jackknife is a deterministic process, Boot-
strap relies on random numbers2. The idea is similar to Jackknife, however, instead
of leaving out the i-th element for computing the i-th value of the mean over the
remaining data points we select the these points randomly. We try to compute
more accurate samples by reusing our data points.

We start again with N data points x. We sample these N points with replace-
ment. The ordinary statistical analysis is then applied on this new set of resampled
values. Doing this K times results in a set of mean values B = {B1, . . . , BK}.

Computing the standard error yields

ε2
B = K−1

K∑

i=1
(Bi − 〈B〉)2 , (2.50)

where Bi itself is N−1∑N
i=1 xr(i), with a mapping function r. The mapping function

is chosen to follow a discrete uniform distribution.

2.2.4 Autocorrelation

Ideally, our sample {x} of consecutive measurements of a single observable in
a Markov chain contains data points xi that are completely uncorrelated. In
this case, the correlation between two data points factorizes to two independent
quantities, i.e.,

〈xi xj〉 = 〈xi〉 〈xj〉 . (2.51)

However, in reality we will never measure perfectly uncorrelated values. In order
to find out how strongly our data points are correlated we can introduce a function,
which measures the strength of correlation between the data points.

The function examines two points and tells us how strong the correlation is
between them. We have

C(xi, xi+t) = 〈xixi+t〉 − 〈xi〉 〈xi+t〉 = 〈(xi − 〈xi〉)(xi+t − 〈xi+t〉)〉 . (2.52)

By assuming invariance under the offset i, we find a function that only depends

2 Actually, the process of choosing points may be deterministic, e.g., by always using the same
seed for the PRNG.
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on the shift t. We call C(t) the autocovariance. We approximate

C(t) = 〈(x0 − 〈x〉)(xt − 〈x〉)〉 ≈ N−1
N∑

i=1
C(xi, xi+t), (2.53)

where we use the sum over all values to obtain a good estimate.
The autocovariance is used to express the autocorrelation function, which is a

normalized version of the autocovariance starting at 1. Ideally, the autocorrelation
function yields values in [−1, 1], where we interpret −1 as anti-correlated data, 1
as correlated data, and 0 as uncorrelated data.

The autocorrelation function Γ(t) is thus given by

Γ(t) ≡ C(t)
C(0) . (2.54)

The function is a sum of many different contributions. However, in the simplest
case an approximation using a single exponential decay exp(−λt) is sufficient. In
this case, we can compute the so-called exponential autocorrelation time τexp by
identifying

Γ(t) ∼ exp
(
− t

τexp

)
. (2.55)

As this is an approximation that might be insufficient for a particular case, we
will only use this quantity in comparison.

The property of translation invariance allows us to reduce the dataset to the
first n � N points. Even though n is much smaller than the whole dataset, it
has to be much larger than the autocorrelation time. A sufficiently good estimate
should use O (103τ) data points.

The autocorrelation time has to be taken into account when calculating (non-
binned) standard errors from the estimated variance where we have to divide by
the number of independent data points. This, however, is in general not the total
number of data points.

Adjusting the variance from Equation (2.44) to consider the correlation between
the data points, we get

var (x) = 1
N2

〈
N∑

i,j=1
(xi − 〈x〉)(xj − 〈x〉)

〉
= 1
N2

N∑

i,j=1
C(|i− j|)

= 1
N2

N∑

i=1

N∑

t=−N
C(|t|) ≈ 2

(
1
2 +

N∑

t=1
Γ(t)

)
C(0)
N
≡ 2τint

C(0)
N

,

(2.56)

where we call τint the integrated autocorrelation time. The number of data points
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N is now corrected accordingly. We obtain

Nindependent = N

2τint
. (2.57)

Here Nindependent us the number of independent data points. This replaces most
factors N in error calculations and yields much more accurate results. We will
implicitly use N ≡ Nindependent.

In practice we estimate the integrated autocorrelation time by calculating

τint = 1
2 +

W∑

t=0
Γ(t), (2.58)

where we choose W in accordance with [152]. A valid scheme is to take the smallest
W ∈ N that fulfills

W+1∑

t=0
Γ(t) <

W∑

t=0
Γ(t), (2.59)

thus implying Γ(W + 1) < 0.
The autocorrelation has a huge effect on our simulations, especially during phase

transitions, e.g., see example in Section 2.1.6. For first-order phase transitions the
exponentially large tunneling τ ∼ exp

(
Ld−1

)
[142], with L sites in d dimensions,

can be observed. The second-order phase transition shows critical slowing down
τ ∼ L2 [129].

2.3 Special Relativity

The theory of special relativity connects time and space by obeying a central axiom
that introduces the concept of an observer independent limit velocity. Thus, the
speed of light in a vacuum is the same for all observers regardless of the motion
relative to the light source. The laws of physics are invariant in all inertial systems.

We define the infinitesimal line element ds as

(ds)2 ≡ c2(dt)2 − (dx)2. (2.60)

The definition of the line element in Equation (2.60) sets the metric that has to
be used for connecting time and space components. We call the metric ηµν the
Minkowski metric. It is given by a 4× 4 matrix of the form3

η = diag (1,−1,−1,−1) , (2.61)

3 There are two conventions for the metric, which are different by a factor −1. We use the
convention found in [17].
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where we use Greek indices (within 0, . . . , 3) to access single elements. The symbol
ηµν retrieves the element from the µ-th row and ν-th column. A dot product of
two four-vectors a and b yields

a · b = aµ b
µ = ηµν a

µ bν , (2.62)

with indices as subscript being used for covariant vectors. Superscript indices mark
contravariant vectors. If we encounter a pair of co- and contravariant vectors that
use the same index, we perform an implicit scalar product. This is the Einstein
summation convention. In contrast to the ordinary Euclidean metric we need a
notation to distinguish between co- and contravariant vectors since η is not the
unit matrix.

The group of distance preserving functions in Minkowski space is called the
Poincaré group. It is a non-Abelian Lie group with 10 generators that contains
symmetries under transformations such as translations, rotations, and boosts.

Translation invariance is responsible for energy and momentum conservation.
Rotation invariance leads to angular momentum conservation and invariance under
boosts to conservation of the center of mass. These two symmetries can be found in
the Lorentz group. If a physical theory is Lorentz invariant, it is thus independent
of the orientation and velocity of the observer.

The Minkowski metric has some properties that tell us directly what kind of
element we are dealing with. There are three types of vectors. Vectors are either
called

• timelike (for ds2 > 0),

• spacelike (for ds2 < 0), or

• lightlike (for ds2 = 0).

Lightlike vectors are sometimes referred to as null vectors.
Any Lorentz transformation preserves the type of the vector. That is, a spacelike

vector cannot be transformed into a lightlike or timelike vector and likewise for
the other two.

It is possible to use the Euclidean metric δµν in the context of special rela-
tivity. By rotating the time component of x in the complex plane we transform
x0 → ix0. This is known as a Wick rotation. An illustration is sketched in Fig-
ure 2.2. This effectively changes the metric to −diag (1, 1, 1, 1), which is denoted
by −δµν . Finally, this yields the general rules for transforming any equation given
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Figure 2.2: Wick rotation in the complex x0-plane. A pole of the Feynman prop-
agator is indicated by the ⊗ symbol.

in Minkowski space to Euclidean space:

x0 → ix0, (2.63)
xj → xj, (2.64)
d4x→ id4x, (2.65)
aµ b

µ → −aµ bµ, (2.66)

where x, a, and b represent four-vectors. The index j denotes the spatial compo-
nents of a Minkowski vector. In Euclidean space we cannot distinguish between
co- and contravariant vectors. Hence there is no need to express dot products by
placing the same index in sub- and superscript on the four-vectors. Instead we
always use subscripts and apply the Einstein summation convention, i.e., we sum
over repeated indices.

For completeness we already state here the transformation rules for the γ ma-
trices, which is introduced in Section 2.4:

γ0 → γ4, (2.67)
γj → −iγj, (2.68)

γ5 ≡ iγ0γ1γ2γ3 → −γ1γ2γ3γ4. (2.69)

Our specific representation of the Euclidean γ matrices are shown in Appendix B.1.
While in Minkowski space xµxµ = 0 defines the light-cone x0 = ±|x|, xµxµ = 0

in Euclidean space implies x = 0. Hence possible singularities on the light-cone like
x−2 turn into singularities at the point where x is precisely zero. This simplification
of the singularity structure is due to the positive definite metric in Euclidean space.
It is worth noting that in the Euclidean formulation we cannot distinguish between
the three types of vectors.

In this thesis we almost exclusively work in Euclidean space. A prospective
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Name Flavor Charge Isospin Mass

Up u 2/3 1/2 ∼2 MeV
Down d −1/3 −1/2 ∼5 MeV
Charm c 2/3 0 ∼1300 MeV
Strange s −1/3 0 ∼100 MeV
Top t 2/3 0 ∼173 000 MeV
Bottom b −1/3 0 ∼4200 MeV

Table 2.1: Listing of quark flavors with some of their properties.

problem is a potential inconsistency of Minkowski space-time and Euclidean space-
time [95]. However, such problems arise only in situations involving 3 or more
reference frames, e.g., in certain particle collisions. Depending on the specific
approach, calculations may give deviating results. In the following we avoid such
cases.

2.4 Quantum Chromodynamics

QCD is the theory of the strong force, which describes how quarks interact with
each other by the exchange of gluons. Quarks are the fundamental building blocks
of hadrons, such as baryons. Baryons may appear in forms like protons and
neutrons [137]. Quarks carry the so-called color4 charge and interact via gauge
bosons named gluons.

The theory of Quantum Chromodynamics (QCD) is special due to a yet un-
proven non-perturbative phenomenon called confinement [76]. In practice this
means that independent of how much energy is used to separate two quarks from
a hadronic bound state in vacuum, instead of freeing a quark from the bound state,
the energy creates more quarks to yield a set of separated hadronic bound states.
Even though no rigorous mathematical proof for confinement has been accom-
plished yet, there is enough experimental evidence to support its existence [38].

QCD is an important part of the Standard Model of particle physics. It em-
bodies the complete knowledge about elementary particles, their cross-sections,
and a framework for computing properties of particles [15]. It can be considered
complete with the recent discovery of the Higgs boson [27], which was theoretically
proposed in the mid 1960s [70].

The known quark flavors are shown in Table 2.1. These flavors can be grouped
into three generations. The first generation contains the up and down quark, the

4 The Greek word chroma means color.
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second charm and strange, and the third generation the top and bottom quark.
All quarks have spin J = 1/2 and baryon number of B = 1/3. Three quarks form
a baryon, such as the proton or neutron. The isospin value is mostly interesting
from an historical perspective, where it has been used as a new quantum number
to explain symmetries of proton and neutron.

We start with a short derivation of the QCD action, as it can be found in
standard text books such as [112, 134, 137].

2.4.1 Derivation

We construct the theory similar to Quantum Electrodynamics (QED), which is
based on the assumption of local gauge symmetry U(1). In the case of QCD the
special unitary group SU(3) turns out to represent the observed particle spec-
trum. As a result the interaction takes place via gluons, which carry color charges
themselves. The origin of this self-interaction lies in the non-Abelian nature of
the SU(3) group.

We start by introducing the fermion fields, described by Dirac spinors

ψµ(x), (2.70)

where x is the space-time coordinate and µ is the spinor index (1, . . . , 4). The
spinor structure represents one of the two spinor representations of the Lorentz
group. We could add another index for the flavor, which would be limited by the
number of flavors Nf in the theory. We suppress these indices for most of the
discussion.

Similarly, we can represent antifermions. They are noted by

ψ̄µ(x) (2.71)

and lie in the conjugate representation, defined by ψ†γ0.
Using the previously noted considerations we can write down the fermionic part

of the QCD action:

Sferm =
∫
d4x ψ̄µ(x) (Dm(x))µν ψν(x), (2.72)

where Dm(x) is the Dirac operator. It is given by

Dm(x) = γµ∂µ +m. (2.73)

At this point the task is practically reduced to constructing an action, which is
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invariant under the following transformations of the fermionic fields:

ψ(x)→ ψ′(x) = Λ−1(x)ψ(x), (2.74)
ψ̄(x)→ ψ̄′(x) = ψ̄(x) Λ(x). (2.75)

The object Λ ∈ SU(3) is a local unitary Hermitian transformation matrix. To get
a scalar action, the fermionic fields ψ and ψ̄ obtain a color vector structure. Λ is
generated by using real coefficients θa(x) in

Λ(x) = exp (−i θa(x)T a) . (2.76)

In this case we introduce an additional color index a ∈ {1, . . . , 8}. In the ad-
joint representation we have Hermitian traceless 3× 3 matrices with 8 degrees of
freedom.

From group theory we know that the generators T a of the SU(3) Lie algebra
have to follow the general commutator

[T a, T b] = i fabc T c, (2.77)

where the coefficients fabc are real and totally antisymmetric structure constants.
Usually, these generators are normalized to satisfy

tr
(
T a T b

)
= δab/2. (2.78)

The generators T a are closely related to the Gell-Mann matrices λa. The T a can be
represented as T a ≡ λa/2. They define matrices which act on the color structure
of fermion fields ψ(x) and ψ̄(x).

The action as defined by Equation (2.72) and Equation (2.73) is not invariant
under the local gauge transformation from Equation (2.74) and Equation (2.75).
We can fix that by introducing a new bosonic vector field. We denote the bosonic
field to be

Aµa(x). (2.79)

where we use the color index a, because the gauge field is in the eight-dimensional
adjoint representation of the color group.

To complement the gauge transformation of the fermionic field, we impose a
simultaneous transformation of the new field

Aµ(x)→ A′µ(x) = Λ−1(x)Aµ(x) Λ(x) + i(∂µΛ−1(x)) Λ(x), (2.80)

with Aµ(x) ≡ Aµa(x)T a.
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To be gauge invariant the partial derivative in the Dirac operator of Equa-
tion (2.73) has to be replaced by the covariant derivative,

Dm(x) = γµDµ(x) +m, (2.81)

where the covariant derivative is defined as

Dµ(x) = ∂µ + igAµ(x). (2.82)

g is the coupling constant, which determines the strength of interaction in the
Lagrangian with respect to the kinetic part.

Taking the knowledge from QED we can derive the action for the gluonic part
as a generalization of the QED action. In QED the field strength tensor Fµν
containing the photon field Aµ(x) is given by

Fµν = ∂µAν(x)− ∂νAµ(x). (2.83)

The coupling constant of QED is the elementary charge e. However, to stay con-
sistent with Equation (2.82) we continue to express the coupling with g. Rewriting
Equation (2.83) in terms of covariant derivatives we have

Fµν = − i
g

[Dµ(x),Dν(x)] , (2.84)

which can now be generalized to QCD to form the gluon field strength tensor Gµν .
We find

Gµν(x) = − i
g

[Dµ(x),Dν(x)] = Gµνa(x)T a (2.85)

=
(
∂µAνa(x)− ∂νAµa(x)− fabc g Aµb(x)Aνc(x)

)
T a. (2.86)

Gµν(x) transforms under Equation (2.80) exactly as desired, since it has been
constructed with the commutator of two covariant derivatives. The transformation
yields

Gµν(x)→ G′µν(x) = Λ(x)Gµν(x) Λ−1(x). (2.87)

Therefore, in analogy to QED the full action of QCD is given by

SQCD =
∫
d4xLQCD, (2.88)
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(a) Three-gluon vertex (b) Four-gluon vertex (c) Quark-gluon vertex

Figure 2.3: Fundamental QCD vertices for gluon self-interaction and quark inter-
action.

with the Lagrangian LQCD summing over all flavors f ,

LQCD =
∑

f

(
ψ̄fα(x)

[
i (γµDµ(x))αβ −mf δαβ

]
ψfβ(x)− 1

4Gµνa(x)Gµνa(x)
)
.

(2.89)
With the action we can derive the Feynman rules for calculating QCD processes,
such as cross-sections of quark scatterings using multiple vertices and propagators.
The asymptotic freedom [63] of the energy dependent coupling αs(Q2) ∝ g2 allows
calculations in the Q2 → ∞ limit, where αs(Q2) → 0. The three fundamental
vertices are illustrated in Figure 2.3.

We can compute color factors [65] from these simple one-vertex diagrams. These
factors tell us the relative strength of either a quark emitting a gluon (q → q+g), a
gluon transforming to a quark-antiquark pair (g → qq̄), or to two gluons (g → gg).

Other applications of QCD can be found when considering finite temperature
and density [141]. An example is the QCD phase diagram.

2.4.2 QCD Phase Diagram

One of the aims of studying QCD is to gain more knowledge about the phase
diagram of quark matter. This is important for a number of applications, e.g.,
neutron stars or heavy ion collisions [80]. Unfortunately, the various phases and
phase transitions are mostly conjectured and not well known, neither experimen-
tally nor theoretically. The phase diagram takes two parameters, the temperature
T and the baryon chemical potential µ to categorize the different states of quark
matter.

The chemical potential can be used to portray the imbalance between quarks
and anti-quarks in a system. For instance we know that the early universe was
very hot and showed perfect quark anti-quark symmetry, i.e., T →∞ and µ→ 0.
Atomic matter as we know it is really a mixed phase, where nuclear matter is
surrounded by vacuum. This point is represented by T → 0 and µ ≈ 310 MeV in
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Figure 2.4: Sketch of the QCD phase diagram including the most important
phases, the critical point, and the crossover region. The first-order phase transition
is indicated by the solid red line.

the phase diagram [8]. Similarly, we can find representative pairs of T and µ for,
e.g., neutron stars.

A sketch of the hypothetical QCD phase diagram is shown in Figure 2.4. The
end point of the first-order phase transition is a critical point. The dashed line
is an analytic crossover region starting at a temperature of 170 MeV at µ = 0.
The diagram contains most features, which can be seen in other popular illustra-
tions [56, 126, 130].

The QCD phase diagram is subject to active research. A detailed list of all
current activities and upcoming challenges can be found in [23]. We proceed to
introduce Lattice QCD, which allows for first principles calculations of equilibrium
quantities without chemical potential, i.e., µ = 0. Under special circumstances
Lattice QCD may also deliver interesting results up to moderate values of the
chemical potential, i.e., µ ≤ 3T .

2.5 Lattice QCD

The whole idea of Lattice QCD (LQCD) is to interpret the path integral as a
partition function in the sense of statistical mechanics. It was first proposed by
Wilson in 1974 [150]. The technique for performing a LQCD simulation is based
on statistics and special properties of the underlying procedure.

Non-perturbative phenomena in QCD require numerical simulations. We hereby
follow first principles, i.e., instead of assuming some model and doing an analytical
calculation according to the assumed model, we only use the action with some
experimental input, such as the quark masses and the coupling strength [55].
The experimental input is not required for the simulation to work, but rather to
produce realistic output.
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In this section we briefly introduce the idea behind computing QCD observables
numerically by using LQCD. We outline the necessary steps to transform the
continuous theory to a consistent discrete representation. A much more extensive
introduction can be found in text books, e.g., in [36, 58].

2.5.1 Discretization

The most straightforward way to discretize the QCD action from Equation (2.88)
is to substitute the derivatives in the Lagrangian (Equation (2.89)) with finite-
difference approximations. We denote the finite-difference by the lattice spacing
a. In this scheme the integration is replaced by a sum over the lattice sites.
However, such a naive approach is unfortunately not gauge-invariant for a 6= 0.
Hence we need to pursue a different approach [64] for discretization.

The discretization of Euclidean space-time in LQCD results in hypercubic lat-
tice. In this lattice the quark fields ψ(x) are placed on the sites. SU(3) valued
gauge fields Uµ(x) represent the links between these sites. The induced spacing
a yields a proper regularization, which makes the Quantum Field Theory (QFT)
finite. The continuum theory can be recovered by taking the limit a→ 0. All the
gauge transformations of the continuum theory apply to the lattice formulation
as well.

It can be shown that every product of links along a closed loop is a gauge-
invariant quantity. We call the product of the smallest possible non-trivial closed
loop a plaquette. The plaquette is defined by

Uµν(x) ≡ Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂). (2.90)

The simplest possible gauge action (Wilson gauge action [150]) is given by the
product of gauge links around the elementary plaquettes,

SG[U ] = β

3
∑

x

∑

µ<ν

< tr (1− Uµν(x)) , (2.91)

with the inverse coupling β = 6/g2. The fermionic action is discretized to be

SF [ψ̄, ψ, U ] = a4 ∑

x,x′
ψ̄(x)Dm(x, x′)ψ(x′), (2.92)

with the naive choice for the lattice Dirac operator:

Dm(x, x′) =
(∑

µ

γµ
Uµ(x) δx+µ̂,x′ − U †µ(x′) δx−µ̂,x′ .

2a

)
+mδxx′ (2.93)

Unfortunately, the naive choice for the operator results in the so-called doubling
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problem. By introducing an artificial term we can essentially obtain the continuum
result, however, we loose one of the original properties: chiral symmetry.

Unlike most regularization techniques from continuum QCD, the lattice regu-
larization does not rely on the perturbative expansion. Therefore, we can study
non-perturbative effects by numerical evaluation of the path integral that defines
the theory. Additionally, the LQCD formulation preserves gauge invariance, which
makes gauge fixing as in perturbative calculations obsolete.

2.5.2 Simulation

Running LQCD simulations is a compute-intensive task that demands very well-
tuned algorithms and specialized machines, such as the one presented in Part II.
It should be no surprise that improved algorithms for running Monte Carlo simu-
lations of LQCD have been and are still actively researched [128]. An important
milestone has been the introduction of Hybrid Monte Carlo [44]. The idea is to
minimize the rejection of configurations while making successive configurations
rather independent by performing an integration of the classical time evolution of
some Hamiltonian.

Extrapolating to the continuum limit requires simulations with different lattice
spacings and fixed physical volume with different lattice sizes. With growing
lattices our computational efforts also increase. In the end we have a trade-off
between statistics and accuracy that needs to be overcome. Hence, LQCD results
come with both statistic and systematic errors. The former arises from the use of
Monte Carlo integration, while the latter originates, e.g., from the use of non-zero
values of a.

For a single quark flavor with an operator O[ψ̄, ψ, U ] the expectation value reads

〈O〉 = 1
Z

∫
[dψ] [dψ̄] [dU ]O[ψ̄, ψ, U ] exp

(
−SF [ψ̄, ψ, U ]− SG[U ]

)
, (2.94)

where the integration measure is defined as

[dψ] =
∏

α,a,x

dψαa(x), (2.95)

[dψ̄] =
∏

α,a,x

dψ̄αa(x), (2.96)

[dU ] =
∏

α,a,x

dUαa(x). (2.97)

We call [dψ], [ψ̄] the Grassmann measure over the quark and antiquark fields and
[dU ] the Haar measure over the gauge-field links.
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The partition function is given by

Z =
∫

[dψ] [dψ̄] [dU ] exp
(
−SF [ψ̄, ψ, U ]− SG[U ]

)
, (2.98)

which considers both, the bosonic and the fermionic part of the action.
The fermion fields in the path integral cannot be represented as ordinary com-

plex numbers. In order to follow the Fermi-Dirac distribution we need to introduce
Grassmann numbers, which are anticommuting complex numbers. The issue with
Grassmann numbers is their implementation for numerical analysis. Instead, we
manipulate the integral analytically using basic Grassmann calculus. We obtain
∫

[dψ̄] [dψ] exp
(
−SF [ψ̄, ψ, U ]

)
=
∫

[dψ̄] [dψ] exp
(
−ψ̄ Dm ψ

)
= detDm, (2.99)

the so-called fermion determinant.
The partition function can therefore be written as

Z =
∫

[dψ̄] [dψ] [dU ] exp
(
−S[ψ̄, ψ, U ]

)
=
∫

[dU ] exp (−SG[U ]) detDm. (2.100)

A more elegant version uses the matrix identity log(detM) = tr (logM) to simplify
Equation (2.100) to

Z =
∫

[dU ] exp (−Seff) , Seff = SG[U ]− tr (logDm) . (2.101)

We can now run simulations using, e.g., the basics that have been outlined in
Section 2.1.5. For the acceptance weight we rely on the Euclidean action.

The Euclidean formulation gives us a few benefits. Since the path integral
contains exponential weights, which are real and positive, it is well-suited for
numerical simulations. As desired, the classic configuration gets the largest weight.
Furthermore, we have a strong connection to statistical physics by βH ↔ S. We
can use our existing knowledge very easily.

However, the Euclidean formulation comes with severe drawbacks. One of the
disadvantages is the inability of computing nuclear reaction cross sections [108].
Hence, LQCD cannot be used to predict likelihoods of scattering events. We have
already mentioned that some symmetries are irrevocably lost, such as the chiral
symmetry. Naturally, the Poincaré invariance is broken by the hypercubic group.

2.5.3 Finite Temperature and Density

In Section 2.4.2 we already mentioned the QCD phase diagram. The basics of
running LQCD simulations at finite temperature and density are sufficiently well
understood [90]. One of the remaining issues that prevents us from using LQCD
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as the tool for obtaining the QCD phase diagram at high density is the sign
problem [136]. Understanding the sign problem and its severity [18] is ongoing
research.

A non-zero chemical potential µ breaks the γ5-hermiticity of the Dirac operator.
As a result the determinant of the latter may become complex, which cannot be
interpreted as a probability distribution. LQCD therefore does not allow investi-
gation of the interesting color-superconducting phase structure expected at high
density and low temperature [132].

Some approximations, such as quenched QCD can even be applied with finite
density [81], but have their own limitations. In contrast introducing a non-zero
temperature T is possible by compactification of the time dimension. This works
in complete analogy to the continuum. The temperature is then obtained via

T = 1
aNt

, (2.102)

where Nt is the number of sites in the temporal direction. For simulations at
T → 0 we can use lattices with a large Nt. For T →∞ we require a smaller time
dimension.

Besides the approach of Feynman diagram sampling that we is examined in
this thesis, there are several other methods that may potentially cure the sign
problem [4, 39].
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3
Diagrammatic Monte Carlo

This chapter is dedicated to explain the method of Diagrammatic Monte Carlo
(DiagMC) [120]. We start with the elementary theory behind the method, which
is then specialized quickly to compute series expressed in terms of Feynman dia-
grams. In Section 3.1 we find the mathematical background and the vocabulary
that is used throughout every model we investigate.

One of the most intuitive examples for illustrating the idea behind DiagMC
is estimating the value of a single integral. We examine an example of such an
application in Section 3.2. Besides introducing the basic concepts of the method
we are mainly focused on obtaining information about its ability to handle a mild
sign problem.

Finally, we introduce a real-world application that utilizes DiagMC to compute
physical quantities. The polaron model described in Section 3.3 is still subject of
active research. We will see that DiagMC can be a suitable tool for its analysis.
In our study we use a simplified model that already contains many interesting
aspects.

3.1 Diagrammatic Monte Carlo

DiagMC is useful for calculating quantities represented in a diagrammatic ex-
pansion [147]. The diagrammatic expansion is given in terms of (similar or re-
lated) integrals with a variable number of integration variables. The method uses
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Metropolis-Hastings [68] type Markov chain sampling as described in Section 2.1.5.
It can be applied to arbitrary Feynman diagrams in the thermodynamic limit, i.e.,
where we have N →∞ and V →∞ with N/V = const.

We start with a generalized series, which is dependent on a set of external
parameters t and a varying number of internal parameters x, expressed as

G(t) =
L∑

n=0

∑

ξn

Fξn(t), (3.1)

where we call L ≤ ∞ the highest-order. The sum over all ξn covers the different
diagrams for the nth-order. By using ξn for a fixed n we label the different diagram
topologies at order n. Different topologies share the same set of parameters, but
use a different functional representation.

The elements Fξn(t) are defined as integrals of the diagram Dξn(x1, . . . , xn, t)
over the internal parameters {x1, . . . , xn}. We have

Fξn ≡
∫
dx1 . . . dxnDξn(x1, . . . , xn, t). (3.2)

The set of diagrams F contains all diagrams, i.e.,

F = {Dξn : n ∈ [0, L], ∀ξn} . (3.3)

It contains all integrands of the series, independent of the order or topology. If
we refer to a diagram in a functional context, we always mean the integrand of
functional representation of the particular diagram.

Structures similar to Equation (3.1) appear in many perturbative expansions,
e.g., in QFTs, where we have a bijection between the integrals Fξn(t) and their
representation in form of Feynman diagrams. In addition to DiagMC specific ter-
minology we use the same terminology as known from Feynman diagrams. If, e.g.,
we talk about an arc in a diagram, we refer to a particular propagator connected
to two vertices. Additionally, in Feynman diagrams a vertex represents a point of
interaction with propagators standing for Green’s functions of particles.

In general the series G(t) does not require a finite value for L, i.e., the highest
order could be L =∞. Every order comes with its own set of integration variables.
A prerequisite is that the integration variables of the previous order always form
a subset of the integration variables of the current order.

In Figure 3.1 we see a sketch of a diagrammatic Monte Carlo simulation. We
sample the phase space consisting of the set of diagrams, i.e., diagrams of all orders
and all topologies, together with all possible parameter values. The sampling is
governed by the update procedures that we impose. Examples and specific rules
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{x1, . . . , xn, y}Topology ξn

Order n

Figure 3.1: Sketch of a few consecutive Monte Carlo timesteps in the phase space
of DiagMC. Only accepted updates are shown.

for these procedures are introduced later, e.g., see Equation (3.9).
Basically, we are free to choose any combination, as long as they maintain

ergodicity, thus sampling the whole phase space. Finally, we demand that the set
of update procedures is performed with respect to the distribution from the series
in Equation (3.1) itself.

We now start to use the assumption that there is only a single diagram per
diagram order, i.e., |ξn| = 1. We use

Dn(x1, . . . , xn, t) ≡ Dξn(x1, . . . , xn, t). (3.4)

We can use this assumption to illustrate the basic idea. We will see that the sim-
plification can be easily resolved by introducing one additional update procedure.

The function G(t) is interpreted as a distribution of the external parameters t.
A possible solution to obtain a value for G(t) of Equation (3.1) is to use a Markov
chain process for sampling the diagrams stochastically. In order to deal with a
possibly sign-alternating series, we can rewrite the diagrams Dn(x1, . . . , xn, t) as

Dn(x1, . . . , xn, t) = sn(x1, . . . , xn, t) |Dn(x1, . . . , xn, t)| , (3.5)

where sn(x1, . . . , xn, t) = ±1 for a particular configuration {n, x1, . . . , xn, t}.
At this stage we can write

G(t) = F0(t)
(

1 + F1(t)
F0(t)

(
1 + F2(t)

F1(t) (1 + . . . )
))

. (3.6)

For convergence we require Fn(t) → 0 for n → ∞. In general this is not sat-
isfied. Therefore, we have to deal with series that may be asymptotic or even
divergent. For such series DiagMC relies on resummation techniques, such as the
Borel summation [24].
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There are several arguments [147] why DiagMC is still a suitable method to
sample series suffering from the sign-problem. While the complexity C of an
extensive configuration space scales exponentially with its cluster volume, the
intensive configuration space used by DiagMC is much smaller in practice. We
have

C ∝ (L!)m , m ∼ 1, L ≤ 10. (3.7)

Since DiagMC works in the thermodynamic limit from the beginning, we do not
have to worry about the exponential scaling of the computational complexity with
the cluster volume. Instead, we only need to sample (a subset of) the diagrams
in F . Ideally, the significance of higher-order diagrams should be exponentially
suppressed. Otherwise, the formerly mentioned resummation techniques may be
helpful.

For sampling the sequence we use Markov chain Monte Carlo as introduced
in Section 2.1.5. The acceptance probability to perform an update from state
A to state B using the ratio of the transition probabilities RA→B is using the
Metropolis-Hastings criterion from Equation (2.29). It is given by

Pacc = min (1, RA→B) . (3.8)

The ratio of the transition probabilities is the ratio of the diagrams in the provided
states and the inverse ratio of the distributions of the generated values that are
used in those diagrams.

To make the transition probability positive we separate the functionDn(x1, . . . , xn, t)
representing the diagram into two parts as noted in Equation (3.5). We only use
the absolute value in the transition probability, leaving the sign to be sampled.
Sampling only the sign has some advantages and disadvantages. Most importantly,
it avoids possible round-off errors coming from individual samples.

We distinguish between two kinds of updates: Updates that change the shape
of the diagram and updates that change the values of the existing parameters.
The latter occurs if we, e.g., change the value of the i-th variable in nth- order
diagram. Using the distribution Ωi(x) for the values xi we have

Rxi→x′
i

=
∣∣∣∣∣
Dn(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn, t)

Dn(x1, . . . , xi−1, xi, xi+1, . . . , xn, t)

∣∣∣∣∣
Ωi(xi)
Ωi(x′i)

. (3.9)

This class of updates is straightforward. It is basically identical to common meth-
ods of simulating a given continuous distribution.

Updates that change the shape of a diagram occur far more often. If we, e.g.,
go from the nth-order to the mth-order diagram, with m > n, we can take the
ratios as before. This time, however, we do not need to take the ratios of the
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distributions. It is sufficient to divide by the distributions of the additional m
parameters.

The transition probability is given by

Rn→m =
∣∣∣∣∣
Dm(x1, . . . , xm, t)
Dn(x1, . . . , xn, t)

∣∣∣∣∣
1

Ωn+1(xn+1) . . .Ωm(xm) , (3.10)

where we omit potential factors from our update procedure.
It is important that updates, which change the shape of a diagram, are always

formulated with two complementary updates. Thus when we introduce an add
update we need to provide a complementary remove update. The ratio of the
transition probabilities for removing m − n diagrams, thus going from the mth-
order to the nth-order, is just the inverse of Equation (3.10). We find

Rm→n = R−1
n→m. (3.11)

There can be an arbitrary amount of potential updates. Besides satisfying all
requirements of a Markov chain (see Section 2.1.3) we have to form an ergodic
simulation, where all possible diagrams can be generated according to their weight
in Equation (3.1).

The update procedures defines our set of updates. These are the possible actions
that can be taken during a single Monte Carlo timestep in a DiagMC run. The
bare minimum consists of two updates: add and remove. Here we try to add
another arc to the current diagram or remove an existing arc from the current
diagram. Updates that alter the current diagram without changing its order or
set of parameters can be necessary, especially if we have, e.g., |ξn| 6= 1 for the
nth-order.

In the case of multiple topologies, we can introduce an update to change the
current topology. Depending on the problem this could be achieved by exchanging
propagator targets. Such an update is commonly called a swap operation.

The ratio of the transition probabilities for a swap update can be as simple as

Rξn→ξ′
n

=
∣∣∣∣∣
fξ′

n
(x1, . . . , xn, t)

fξn(x1, . . . , xn, t)

∣∣∣∣∣ , (3.12)

which does not require any change of variables and can be calculated without
knowing the values of the involved distributions. Potentially, we need to include
some factor that yields the ratio of probabilities of choosing the particular dia-
grams.

Changing the external parameters is an update procedure that could be re-
stricted to the zeroth-order only. We ensure to keep detailed balance by either
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Figure 3.2: Classification of the obtained samples according to diagram order and
bin index of the external parameter. The colored row represents Z2, the colored
column H2. The symbols represent different measurements.

introducing order-dependent coefficients to our transition probabilities or by re-
jecting proposed changes of the external parameters for diagrams with internal
variables.

Finally, we can use the measurements of sn(x1, . . . , xn, t) to perform a stochastic
summation [31] of the series G(t). It is useful to define a set of quantities to keep
track of these measurements. We use

Hi =
∑

n

sn(x1, . . . , xn, ti) (3.13)

as the aggregate of the measurements in the i-th bin corresponding to the dis-
cretized ti for all sampled diagrams. Obviously, this measurement is sensitive to
the external parameters, but insensitive to the diagram order.

Additionally, we can introduce another quantity to be sensitive to the diagram
order independent of the external parameters. We define

Zn =
∑

i

sn(x1, . . . , xn, ti), (3.14)

where we sum results independent of their corresponding bins. A derived quantity
is the full measurement of all sampled diagrams, i.e.,

ZMC ≡
∑

n

Zn =
∑

i

Hi. (3.15)

The previous two quantities are illustrated in Figure 3.2, where a row represents
Zn and a column can be identified with Hi. The cells represent measurements in
the given order and bin index. Each sign is a single measurement.

With these quantities at hand we can perform the stochastic summation, which
allows us to estimate the value of G(t). In the statistical limit N → ∞ the ratio
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of the measured values approaches the integral value, i.e.,

Z0

ZMC
→ I0

I
, (3.16)

where we use I0 ≡
∫
dt F0(t) and I ≡ ∫ dtG(t).

According to Equation (3.15) ZMC is the sum over all bins. Similarly, I can be
rewritten as

I =
∑

i

∫

bini

dtG(t). (3.17)

We estimate the value of the G(t) in the i-th bin via
∫

bini

dtG(t)← Hi
I0

Z0
. (3.18)

We note that the result and error depend crucially on the fluctuations of Z0. Hence
if F0(t) (i.e., D0(t)) is small, Z0 is consequently small as well and we have to deal
with a large error.

The interesting part is that the scheme allows us to estimate the value of the
n-th element of the series. A combination of Equation (3.16) and Equation (3.18)
yields

In ≡
∫
dt Fn(t)← Zn

I0

Z0
. (3.19)

The correctness of the estimate depends highly on the zeroth-order diagram and
the sampling mechanism. Ideally, the diagrams are sampled identical to their real
weight in the series.

DiagMC can be used in a variety of scenarios, e.g., see [82, 26]. In the following
we look at two examples that illustrate and study different aspects of the method.
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3.2 Integration using DiagMC

A very popular usage of Monte Carlo methods is the evaluation of difficult inte-
grals. Evaluating a multi-dimensional integral with Monte Carlo methods is very
efficient, since the error does not scale with the number of dimensions. In this
example we use DiagMC with a reduced set of diagrams F . We have a single
diagram, denoted by D1(x), where x is chosen to be a one-dimensional parame-
ter. In principle the problem could be easily extended to an arbitrary number of
dimensions.

3.2.1 Model and Simulation

Evaluating a single diagram directly is not possible. We have seen that we always
need to know at least two diagrams with one that is already evaluated as compar-
ison. Thus, we introduce an artificial diagram D0, which is just a constant. Our
simulation can now run to evaluate

I = D0 +
∫
dxD1(x). (3.20)

By only sampling contributions from D1(x) we are able to ignore D0 in the end.
Our goal is to find the value of

∫
dxD1(x).

We use the following two updates:

add We perform the transition from D0 to D1(x) by generating a new value for
the parameter x according to some arbitrary distribution Ω(x).

remove We perform the transition from D1(x) to D0. This is the inverse to the
previous update procedure.

The add procedure can only be invoked if we are in the state n = 0 (ground state),
while the remove procedure is only accessible for configurations with n = 1. In
this simple setup detailed balance is preserved trivially.

This example is already quite useful for understanding the applicability of the
algorithm regarding problems with sign fluctuations, potentially resulting in a sign
problem. We choose the toy model

D1(x) ≡ fα(x) = cos(x) exp(−αx) Θ(x), (3.21)

where α can be tuned in such a way that finding the correct value of the integral
becomes harder due to increased oscillations. Θ(x) denotes the Heaviside step
function, which limits the range of values to [0,∞]. The analytic solution of the
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integral fα(x) is
Iα =

∫ ∞

0
dx fα(x) = α

1 + α2 . (3.22)

The “hardness” of the sign problem can be computed by considering the ratio of
the integrals with and without the absolute value of the integrand. We obtain

H(α) =
∫∞

0 dx fα(x)
∫∞

0 dx |fα(x)| = α

α + csch(α) . (3.23)

In the limit of α→ 0 we are able to check that H(α) behaves like

lim
α→0

H(α) ≈ α

α + α−1 ≈ α2. (3.24)

This characterizes the hardness of this sign problem in the region for small α. Ap-
parently, the integral becomes quadratically harder with α approaching zero. This
is not close to the sign problem that appears in QCD with finite chemical poten-
tial, which scales exponentially, however, it already provides everything necessary
for a first study.

3.2.2 Update Procedures

In general we want to use the technique of importance sampling. In case of our toy
model the variable x could be generated efficiently by an exponential distribution.
This has the advantage that we are already quite close the real integral, thus
improving the acceptance rate.

The normalized distribution reads

Ω(x) = α exp (−αx) , (3.25)

which cancels the exponential term in the transition probability. Overall the ratios
of the transition probabilities between the two states D0 and D1(x) are

R0→1 =
∣∣∣∣∣
fα(x)
D0

∣∣∣∣∣
1

Ω(x) = | cos(x)|
αD0

, (3.26)

R1→0 =
∣∣∣∣∣
D0

fα(x)

∣∣∣∣∣Ω(x) = αD0

| cos(x)| , (3.27)

where α and D0 must be elements of R+.
In our sampling process we will not perform any measurements of the artificial

diagram. The measured quantity is the sign of the current value of D1(x). This
means that we are effectively sampling sgn(cos(x)) by using importance sampling
with a distribution that is proportional to exp(−αx). For the Metropolis-Hastings
algorithm we use the given ratios as weights for the acceptance criterion.
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Figure 3.3: The optimal choice of D0 is close to α−1. All simulations are performed
with N = 108 configurations.

There are some questions remaining. The most important question is: How to
get a suitable value for D0? We are free to choose any value in R+, but we still
have to find out what values are optimal for the simulation, if any.

Naively, we could pick an arbitrary non-zero value for D0, e.g., 1 would be
suitable candidate. This would certainly work, however, it is not very efficient in
general, since the acceptance weight depends on α. A solution that works quite
well is to choose D0 such that the weights do not depend on α any more.

By choosing D0 = α−1 we obtain

R0→1 = | cos(x)|, (3.28)
R1→0 = | cos(x)|−1. (3.29)

In Figure 3.3 some simulations with various values for α are shown. Looking only
at the computed error for the integral value, we are able to see which choice for
D0 yields the most efficient simulation. In the end, the D0 with the lowest error
was always quite close (or identical) to α−1. Simulations with lower values of α
suffered from an increased error, since the number of configurations was fixed at
N = 108. The choice of D0 = α−1 is thus confirmed by numerical evidence.

We this problem we only use a single bin H containing a sequence of samples
Hi. Each sample represents the sign of the cosine with the currently generated
value for x. The total value of all samples is

H =
∑

i

Hi, Hi = sgn (cos(xi)) = ±1, (3.30)
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Figure 3.4: Distribution of x values for N = 106 configurations with α = 0.025.
The x values have been placed in bins with ∆x = 0.1. The fit to the transition
probability uses A = 1600.

where xi is the i-th sampled configuration. It is worth remembering that the
artificial diagram D0 is not sampled and thus the picture looks slightly different
than Figure 3.2.

Using H, as well as the constant D0 and the weight of the artificial diagram,
Z0, we can estimate the value of the integral. In the statistical limit we have

I = D0
H

Z0
. (3.31)

For the edge cases we can verify that this equation represents the right behavior:

• In case of D0 being significantly larger than the integral we expect the sim-
ulation to rarely reach the diagram represented by D1(x). Therefore, H will
be close to zero, especially if divided by Z0, which is much larger than H.

• In case of D0 being much smaller than the integral we expect the opposite.
Here Z0 is close to 1 as we always start in the artificial diagram. Now the
only question is what kind of value H is. H should be close to the value of
the integral, relative to D0.

One thing we can look at is the distribution of x values among the sampled
configurations. In Figure 3.4 we see that the transition probability is reflected
completely by the chosen values of x. In the given plot we use a binning width
of ∆x = 0.1. This is remarkable, as we only use the exponential distribution
to generate x. However, since the transition implied using the absolute value of
cos(x), we accept these values with a probability proportional to | cos(x)|.

It is important to realize that the decision for a specific distribution for gener-
ating the parameters has no influence on the distribution of the accepted values of
the parameters. The distribution will always result in a histogram reflecting the
used transition probabilities.
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Figure 3.5: The first 100 values for the autocorrelation of a simulation with α =
0.025 and D0 = 40. The exponential fit is showing exp(−t/τ) with τ = 4.5.

3.2.3 Bias

Before we can consider using any estimation provided by this method, we should
investigate if autocorrelation is a problem or not. A good way to study this is
to use a sufficient number of configurations (e.g., tmax = 103) and calculate the
integrated autocorrelation time τint using Equation (2.58). We can improve the
accuracy, remove oscillations, and label the error on the calculated autocorrelation.
Here we need to consider different initial times ti in the range 0 ≤ ti ≤ tmax − ti.

The cutoff parameter W of Equation (2.58) is chosen dynamically by truncating
the summation once we encounter a negative value for the autocorrelation. The
autocorrelation for a simulation with our toy model is shown in Figure 3.5. We
see that the autocorrelation time is quite small. From the exponential fit we can
immediately infer τint ≈ 4.5. Indeed the obtained value is

τint = 4.827. (3.32)

It seems to be sufficient to set the number of runs to reach equilibrium to O (102).

3.2.4 Evaluation and Results

Running various simulations at different values of α gives us an informative com-
parison between the numerical estimate and the analytic result of the integral. In
Figure 3.6 we use D0 = 4 and N = 108 for all runs. We can see that the error
of the integral is a function of α, D0, and N . Even with D0 = α−1 we still have
the dependency on α and N . In general we obtain a scaling that is similar to the
hardness of the sign problem. For smaller α we need much more configurations.
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Figure 3.6: The numerically estimated value compared to the analytic result.
All simulations are performed with N = 108 configurations. The estimate was
obtained for D0 = 4.

The previous statements can be justified with another simulation. This time
our goal is to obtain roughly the same absolute error for different α. We could
vary the values of D0 and N , however, using the previously gained knowledge we
can immediately set D0 = α−1. This approximation works well enough to reduce
the problem to finding the value of N , giving us roughly the same absolute error
as previously.

Our procedure is outlined in Algorithm 1. We do not specify a limit for the αi
to evaluate. The choice of D0 is implicit, as noted before. The initial values of α
and N can be chosen freely.

Algorithm 1 Error Normalization
1: α0 ← α
2: ε0 ← error of run with N0 ≡ N configurations
3: for i← 1 to some limit do
4: αi ← αi−1/2
5: Ni ← Ni−1
6: repeat
7: εi ← error of run with Ni configurations
8: Ni ← 2Ni

9: until εi ≤ ε0
10: end for

Following this procedure we end up with Figure 3.7. We can observe that the
absolute error is indeed roughly constant justifying our method. The relative error
still grows as α→ 0. We are able to verify that the number of configurations has
to scale quadratically with smaller values of α to keep the absolute error constant,
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Figure 3.7: The number of configurations to obtain the same absolute error for
different choices of α. All simulations use D0 = α−1.

which is something that can only be attacked by computational power and, of
course, computing time if we do not change the algorithm fundamentally.

We could make this method much more efficient for the illustrated scenario,
e.g., by adding another update procedure, which tries to change the value of the
involved variables. Instead of optimizing this method further, we continue to apply
DiagMC to another problem.

3.3 Polaron Model

In solid state physics the polaron model is used to describe interactions between
electrons and atoms. The polaron itself is a quasiparticle, which represents the
union of a conduction electron (or hole) with its self-induced polarization. Usually,
this polarization is happening in a polar semiconductor or an ionic crystal. The
polaron itself is characterized by its self-energy, its effective mass, and its mobility.
It has different properties than non-polarized band-electrons.

The polaron model itself can be used in many situations. These situations
are not limited to solid state physics. It is still subject of active research [113].
The problem is quite interesting. The core question is what happens to particles
coupled to an environment. This raises questions about properties of the resulting
object. In this section we will restrict ourselves to a special variant of the polaron
model, the so-called Fröhlich polaron [101].

In the following we will mainly follow the original publication of this work [120].
The update scheme and the transition probabilities are derived from our formula-
tion of the problem. We are using natural units ~ = c = 1.
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3.3.1 Model and Simulation

The Hamiltonian describing the interaction in the Fröhlich model is given by

H = p2

2m +
∑

k
ω a†kak +

∑

k
(Vk ak exp(ik · r) + h.c.) , (3.33)

where r is the position operator of the electron with band mass m. The momentum
operator is represented by p. The operators a†k and ak are the creation and
annihilation operators for longitudinal optical phonons of the wave vector k. These
phonons have the energy ω.

For our simulation we consider the following set of Feynman rules outlined
in [102]. We are only interested in a single incoming and a single outgoing electron.
The tree diagram is the free electron propagator.

The Green’s function that represents the propagator of a free electron reads

G(0)(p, τ) = exp
(
−
(

p2

2m − µ
)
τ

)
, (3.34)

where µ is the chemical potential.
We also have the propagator for the phonons, which are considered dispersionless

in this simplified model. The propagator is given by

D(τ) = exp (−ω τ) . (3.35)

In order to connect the two propagators we need some kind of interaction. The
interaction is taking place in vertices, thus coupling electrons and phonons.

Each vertex connects an incoming electron with an outgoing electron and a
phonon. The momentum needs to be conserved in every vertex, which determines
the momentum of, e.g., the outgoing electron by knowing the momenta of the
incoming electron and the phonon.

For each vertex we get an additional factor of

V (k) = i
√

2
√

2απ 1
k
, (3.36)

which is dependent on the incoming momentum k. Since every phonon will always
connect two new vertices, we can write one expression that contains both, the
phonon propagator and the two vertices. We denote this propagator by D̃. We
have

D̃(k, τ) = |V (k)|2 D(τ). (3.37)

For our simulation we use the following updates:
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add We insert two new vertices with a phonon propagator connecting the two
vertices.

remove We remove two consecutive vertices that are connected by a phonon
propagator.

swap We permute the connections of two phonon propagators to obtain a new
topology.

extend We change the time variable, which tries to substitute the time tmax of
the last vertex with a new value.

The conditions are not as simple as in the previous section. In order to preserve
detailed balance we need to be careful with the overall construction. For instance,
since we cannot perform the add procedure in the highest-order we need to adjust
the probabilities for the other updates. There are several ways to exclude such
actions while still obeying detailed balance.

A strategy that is not efficient, however, less error-prone and trivial to imple-
ment is to allow every procedure in all orders. In this strategy we simply reject
updates if we encounter an invalid action, such as adding another arc to the
highest-order diagram. This generic procedure works with any set of updates.

3.3.2 Add Update

First we select a random index from the list of available vertices. We just use
a uniform distribution. The vertex associated with the selected index is called
current vertex. Then we compute the time difference between the current vertex
and the next vertex. If there are no vertices then we just use tmax, otherwise we
calculate ∆t = ti+1 − ti, where i is the chosen vertex index.

At this point we can compute the temporal positions of the proposed pair of
vertices, labeled τ1 and τ2, with τ2 > τ1. The distributions are given by

Ωτ1(τ) = 1
∆t , (3.38)

Ωτ2(τ, τ1) = ω exp (−ω(τ − τ1)) . (3.39)

We need to generate the momentum of the phonon propagator. The distribution
for the momentum is given by the probability

Ωk(k, τ1, τ2) =
√
τ2 − τ1

(2π)3m
exp

(
k2

2m(τ2 − τ1)
)
, (3.40)

which cancels the contribution of the electron propagator in our weight. The way

49



p p− k

k

pτ1 τ2

Figure 3.8: The first-order Feynman diagram. The two vertices are labeled τ1 and
τ2. The dashed line represents the phonon propagator with momentum k. The
solid line is the electron with momentum p.

we form our algorithm has to be carried over to the ratio that needs to be used in
the acceptance criterion.

The trivial way is to ignore the whole algorithm by just computing the value of
the proposed new state. Then we can divide this by the used distribution weights
and the value of the current state. The main issue is, that this will not only
be inefficient, but also numerically deficient. Performing many unnecessary com-
putations that involve floating point numbers introduces numerical inaccuracies.

Additionally, one advantage of choosing the distributions Ωτ1(τ), Ωτ2(τ, τ1), and
Ωk(k, τ1, τ2) will be omitted once we go over to compute the full expression. It
is much better to do some analytic work beforehand. This should compress the
full expression to an optimized version. In the end we save computation time and
avoid unnecessary numerical complications.

We start with

Ri−1→i = D̃(k, τ2 − τ1)G(0)(p, τ1 − ti)G(0)(p− k, τ2 − τ1)G(0)(p, ti+1 − τ2)
G(0)(p, ti+1 − ti) (na/nv) Ωτ1(τ) Ωτ2(τ, τ1) Ωk(k, τ1, τ2) ,

(3.41)
where na/nv is the number of non-crossing arcs (after the proposed change) against
the number of vertices (after adding these). The number of non-crossing arcs
is determined by counting the number of consecutive phonon connections. The
incoming momentum is denoted by p. The generated momentum is called k.

Simplifying Equation (3.41) yields

Ri−1→i =
(

m

2π∆τ

)3/2
|V |2 nv ∆t exp

(
∆τ p · k

m

)(
na ω k

2
)−1

. (3.42)

The add procedure starts with the current diagram, e.g., the first-order diagram
shown in Figure 3.8. In this case we have nv = 3 options for choosing the first
vertex. nv is equal to the number of vertices after adding a single vertex. According
to this choice the value of ∆t is calculated.

Finally, the position of the first vertex τ3 is generated by considering Equa-
tion (3.38). The second vertex τ4 is created with the exponential distribution
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Figure 3.9: A second-order Feynman diagram. Here we have four vertices
τ1, . . . , τ4. The second phonon propagator carries the momentum q.

from Equation (3.39).

3.3.3 Remove Update

The weight requires the number of non-crossing arcs after adding the new pair
of vertices to preserve detailed balance. The algorithm for the removal of an arc
is different from the add procedure. We only need to know the number of non-
crossing arcs, which may be zero. In that case we have to reject the proposed
update immediately. Otherwise, if we accept the change, we remove the arc, i.e.,
two vertices and a propagator. In Figure 3.9 we see a second-order Feynman
diagram with two non-crossing arcs.

Detailed balance is preserved between the add and the remove updates, as the
remove update transition probability ratio is the inverse of the add update ratio.
We only need to re-compute the ∆t and ∆τ , as they have not been fixed and
might be different due to intermediate changes in the diagram, e.g., by a set of
corresponding add and remove procedures or a number of swap operations.

Overall the ratio for removing an arc is given by

Ri→i−1 = R−1
i−1→i

=
(

m

2π∆τ

)−3/2
ω k2 na exp

(
−∆τ p · k

m

)(
(nv − 1) |V |2 ∆t

)−1
,

(3.43)

where p is the incoming momentum of the first vertex. The momentum k repre-
sents the phonon momentum. The number nv represents the number of vertices.
We need to exclude one vertex to satisfy detailed balance.

3.3.4 Swap Update

One scenario for rejecting a proposed removal is shown in Figure 3.10. The il-
lustrated second-order diagram cannot be created by the previously introduced
updates. However, since it is a valid and probably significant second-order di-
agram, we need to consider it in our sampling process. We can include such a
diagram by providing the ability to swap two vertices. The algorithm for the swap
procedure is as follows.

51



p p− k

k

p− k− q

q

p− q pτ1

τ2 τ3

τ4

Figure 3.10: Every second-order Feynman diagram can be updated with a swap.
Here the vertices τ2 and τ3 are swapped, resulting in another second-order diagram.

If the order of the diagram is less than two, then we immediately reject the
update. In case of a zeroth-order diagram there is no vertex to select. The
first-order diagram would remain unchanged, as the phonon propagator does not
depend on k, but only on k. Otherwise we choose two consecutive vertices by
using a uniform distribution.

We now need to take the ratio of the new (swapped) diagram against the old
(current) diagram. The resulting expression can be simplified and reduced to a
ratio that only consists of electron and phonon propagators, which use the previous
momentum p or new momentum p′. Overall we have

Ri,ξ→ξ′ = G(0)(p′,∆τ)D(δt′)
G(0)(p,∆τ)D(δt) , (3.44)

where ∆τ is τi−τi−1 with i being the second vertex to swap. δt is sum of temporal
position differences between the two arcs before the swap. The value δt′ is the
same sum after the change, i.e., if the indices 1, . . . , 4 represent the four involved
vertices, where 1→ 2 and 3→ 4 are connected beforehand, we use

δt = |τ1 − τ2|+ |τ3 − τ4|, (3.45)
δt′ = |τ1 − τ3|+ |τ2 − τ4|. (3.46)

Reaching the expression in Equation (3.44) is only possible by considering the full
equation for a swap and replacing the propagators with their functions given in
Equation (3.34) and Equation (3.37). Finally, we can reduce such equations to
propagators with different arguments.

By applying this procedure we can generate every possible diagram independent
of the order. Naturally, diagrams that are more common appear more often, thus
conveying possible symmetry factors. This is ensured by stochastic elements. For
instance, a nested diagram as illustrated in Figure 3.11 could be created in two
consecutive swap updates. The second swap update needs to handle two vertices
that are shifted ±1 relative to the first one.
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Figure 3.11: Another swap on the second-order Feynman diagram presented in
Figure 3.10 forms this structure. The inner arc is directly connected, i.e., it is
possible to remove it without further swaps.

3.3.5 Extend Update

The last update procedure is changing the time tmax. This is required as we still
have one external parameter. The function of the tree level diagram D0(tmax) is
given by the electron propagator,

D0(tmax) = G(0)(p0, tmax). (3.47)

Integration of the tree level diagram yields

N =
∫ t∞

0
dtG(0)(p0, t) = 1− exp(−E(p0, µ) t∞)

E(p0, µ) , (3.48)

where E(p0, µ) = p0
2/2m − µ is the energy at initial momentum p0. The value

of the time t∞ is supposed to be as large as possible. In practice a value of 100
is more than sufficient. This parameter is chosen once and will not change during
the simulation.

Another major difference from this application to the previous example in Sec-
tion 3.2 is given by the measured values. This simulation does not face any sign
changes as the measured values are all positive. There are several ways to con-
firm this. One way is to look at the matrix elements, which turn out to be part
of a symmetric positive definite matrix. Alternatively, we might realize that all
variables are either squared or real arguments of the exponential function. This
aspect is special for the Fröhlich polaron. In general the polaron problem is a sign
alternating series.

3.3.6 Evaluation and Results

We will now look at some of the evaluations that are possible with the data
obtained by running such a simulation. Most importantly we need to find a way
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Figure 3.12: The Green’s function of the polaron with µ = −2.2 and α = 2 for
N = 1010. The exponential fit is given by Zk exp(ε(k, µ)t) with Zk ≈ 0.32 and
ε ≈ −0.2. The error bars are smaller than the symbols.

to extract the polaron’s energy from the given data. One possibility is to use
an exponential ansatz, where we determine the parameters with a suitable fitting
scheme.

The exponential fit for Figure 3.12 is given by

y = Zk exp (−(E(k)− µ) t) , (3.49)

where y are the measured data points, i.e., the results of the various bins. The
quantity Zk shows the fraction of the bare electron state in the true eigenstate of
the polaron. This is an important physical characteristic of the polaron, usually
expressed as in terms of the free particle state Fk and the polaron Pk,

Zk = | 〈Fk|Pk〉 |2. (3.50)

Now we can apply a linear fit to the values wi ≡ ln(yi). In the end we identify
coefficients a and b for the function w(t) = at + b. Coming back to our original
problem we may calculate

Zk = exp (b) , (3.51)
E (k) = µ− a. (3.52)

This gives us an exponential fit, which allows us to extract the energy of the
polaron for the given setup. As an example the fit for the data given in Figure 3.12
yields an energy E(k = 0) ≈ −2.0.
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Figure 3.13: Fit of the polaron energy E(0) using the data from simulations with
N = 1010. The coupling strength α has been varied with a chemical potential µ,
that is fine-tuned to be close to E(k). The lower bound is determined by taking
the small α approximation.

Using the exponential fit we can evaluate the coupling dependency of the energy
E0 ≡ E(k = 0). It is advantageous to fine-tune the chemical potential µ to be close
to the energy. In the end the algorithm converges much faster if exp(−(E0−µ) τ) ≈
1, i.e., when E0− µ is close to zero. However, it is necessary to constrain µ ≤ E0,
otherwise no convergence may be achieved.

The plot in Figure 3.13 shows the dependence of E0 on the coupling strength
α. The lower bound has been determined by using the small α approximation as
calculated by Feynman [53]. It can be shown that

E0 ≤ −α−
α2

81 +O
(
α3
)
. (3.53)

Even though we are have only used a small number of configurations N and a
rough energy estimate, the results are already within an acceptable error range.
Usually, we would be required to increase N with higher values of α. In this case
we did every run with the same coupling constant α, resulting in a larger error for
larger couplings.

Another quantity that might be interesting is E(k). We are again fine-tuning
the chemical potential µ, not only to support convergence, but to have reliable
statistics with an acceptable number of configurations N .

The plot illustrated in Figure 3.14 features the dispersion relation of the polaron.
Dispersion relations describe the effect of dispersion in a medium on the properties
of a wave traveling within the medium by connecting its wavelength k to its
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Figure 3.14: Polaron energy E(k) fit to data from simulations with N = 1010 at
α = 1. The chemical potential µ is fine-tuned to be close to the energy.

frequency ω. The momentum k is proportional to the wavelength k.
The dispersion relation has been obtained for α = 1. Again we are using an

exponential fit to extract the energy of the polaron. Our results match the research
presented by others in experimental [131], numerical [119], or analytical [53] form.
We see the characteristic slope of the curve. The polaron problem has been studied
with extensions to DiagMC, such as the flat histogram method [40].
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4
Anomalous Magnetic Moment

The anomalous magnetic moment of a particle, e.g., an electron, is a contribution
that originates from quantum corrections in the contexts of the theory of Quantum
Electrodynamics [50]. The correction of the particle’s classical magnetic moment
can be computed by calculating higher-order Feynman diagrams. This makes
computing the anomalous magnetic moment a suitable candidate for studying the
diagrammatic Monte Carlo method in the context of QFT.

The anomalous magnetic moment is a great success story for QFT in general.
High precision tests with electrons or muons have resulted in an agreement between
theory and experiments that remains unmatched until today [74]. Over the years
the theoretical, as well as the experimental value have been determined to very
high precision.

A recent measurement [66] of the anomalous magnetic moment of the electron
reads

g − 2
2 = 0.00115965218073(28), (4.1)

where g is the gyromagnetic ratio. It is related to the magnetic moment µ by the
equation,

µ = g
e ~

2mc
s, (4.2)

with s denoting the spin. m is the mass of the electron.
The obtained result is slightly more accurate than previous experiments, e.g., [107,

146]. The accuracy went up from 3.7× 10−9 in 1987 to 0.66× 10−9 in 2006. Cur-
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Figure 4.1: The diagrammatic representation of the one-loop correction to the
vertex function with fermion momenta p and p′. The loop momentum is given by
k, the photon momentum is denoted by q.

rently, the error margin is 0.24× 10−9. It is the equivalent of measuring the
distance from the Earth to the Moon within the diameter of a single human hair.

Our aim in this field is not to improve current results. Since QED is a well-known
and well-tested theory, there is hardly room for improvement. Also numerical
g − 2 calculations have been performed with years of knowledge and experience
providing accurate results up to tenth-order [11]. Additionally, well-performing
general computations are available [62]. Instead, we aim for a proof of concept to
illustrate that DiagMC can be used for such calculations.

This chapter is organized as follows. In Section 4.1 we start by briefly discussing
the analytic derivation, as it can be found in textbooks [112, 134]. Then we go into
details of our numerical evaluation in Section 4.2. This prepares the presentation
of the simulation details in Section 4.3. As we generate all possibly required
diagrams beforehand, we need to have a solid diagram generation scheme. We
explain our method in Section 4.4. Finally, we discuss results that have been
obtained using DiagMC simulations in Section 4.5.

4.1 Analytical Foundation

The anomalous magnetic moment can be calculated from the vertex function. The
vertex function describes the scattering of an electron by an external electromag-
netic field. The most significant correction comes from the single one-loop, i.e.,
second-order, diagram. Precise calculations also include higher loop contributions.

For the one-loop diagram we start by simplifying

Γ(1)
µ (p′, p) = i

∫ d4k

(2π)4Dρν(k)(−ieγρ)SF (p′ + k)γµSF (p+ k) (−ieγν) , (4.3)

which is the mathematical expression represented by the Feynman diagram shown
in Figure 4.1. Here Γ(1)

µ (p′, p) is the first correction to the vertex function. Our
choice for the (Euclidean) gamma matrices γµ is specified in Appendix B.1.
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As mentioned in Section 2.3 we deal with this problem in Euclidean space.
This explains the additional i in the overall vertex function as compared to com-
mon textbook representations, such as [112]. Our choice implies the usage of the
Euclidean versions for the photon propagator,

Dρν(k) = iδρν
k2 , (4.4)

with the Euclidean metric δρν , and the fermion propagator,

SF (p) = −i
i/p+m

= − /p+ im

p2 +m2 . (4.5)

Therefore, the one-loop contribution to the vertex function can be expressed as

Γ(1)
µ (p′, p) = − ie2

(2π)4

∫ d4k

D
γν (/p′ + /k + im) γµ

(
/p+ /k + im

)
γν , (4.6)

where we label the denominator as

D ≡ k2
[
(p+ k)2 +m2

] [
(p′ + k)2 +m2

]
. (4.7)

We can solve Equation (4.6) with Feynman parameters. This technique allows us
to rewrite the integral in a simpler form, using identities such as

A−m1
1 A−m2

2 . . .A−mn
n =
∫ 1

0
dz1 . . . dznδ

(∑

i

zi − 1
) ∏

i z
mi−1
i

(∑i ziAi)
∑

i
mi

Γ(∑imi)∏
i Γ(mi)

,
(4.8)

where δ(x) is the Dirac delta function and Γ(x) is the gamma function.
Our goal is to identify the charge form factor F1(q2) and the magnetic form

factor F2(q2) from the vertex function. These form factors only depend on q2

with q ≡ p′ − p. However, such a separation is only possible if p and p′ are on-
shell momenta, i.e., they satisfy p2 = p′2 = −m2. In this case, we can rewrite
Equation (4.6) to look like

Γµ(p′, p) = F1(q2) γµ − F2(q2) σµνqν2m , (4.9)

with σµν = i
2 [γµ, γν ]. Note that this separation is valid for all orders.

At the end of the day we arrive at a formula that could be used to compute
F2(q2), which gives us the one-loop correction to the magnetic moment in the
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q2 = 0 case. Generally, the form factors correspond to

g = 2 (F1(0) + F2(0)), (4.10)

where a ≡ F2(0) and, by normalization, F1(0) = 1. For calculating the deviation
given by the magnetic form factor F2(0) in the one-loop case we use the Feynman
parametrization to change the denominator D of Equation (4.6). We get

1
D

=
∫ 1

0
dz1 dz2 dz3 δ(z1 + z2 + z3 − 1) 2

L3 , (4.11)

which includes a shift in k. With the three Feynman parameters z1, z2, and z3,
we introduce l ≡ k + z2p+ z3p

′ and ∆(q2) ≡ m2(z2 + z3)2 − z2z3q
2. The changed

denominator L is given by

L = (k + z2p+ z3p
′)2 − (z2p+ z3p

′)2 = l2 −∆(q2). (4.12)

The integration is then performed over l. For a scattering process we have q2 < 0,
resulting in ∆(q2) > 0. We can interpret ∆(q2) as an effective mass.

Now we can separate the original expression for the vertex function to identify
the magnetic form factor F2(q2). We obtain

F2(q2) = α

2π

∫ 1

0
dz1 dz2 dz3 δ(z1 + z2 + z3 − 1)

(
2m2 z3 (1− z3)

m2(1− z3)2 − q2 z1 z2

)
+O

(
α2
)
,

(4.13)
which requires the previously noted on-shell condition. Furthermore, we need to
use the Gordon identity in Euclidean space, which reads

ū(p′) (2mγµ)u(p) = ū(p′) (σµνqν − ip′ − ip)u(p). (4.14)

In the end, we find that for q2 = 0 we have F2(0) = α/2π, where α denotes the
fine-structure constant given by the electric charge e as e2/4π.

Following the outlined scheme we can compute the magnetic moment of the
electron. The result is

g =





1 Classical

2 Dirac eq.

2.002319 . . . QED

. (4.15)

In general the corrections from the QED vertex are not the only contributions to
the anomalous magnetic moment a, as used in Equation (4.10). The experimental
value aexp

e = 1 159 652 180.73(28)× 10−12 [66] of the electron’s magnetic moment
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is the sum of many contributions [75], such as

ae = ae(QED) + ∆ae(QCD) + ∆ae(EW), (4.16)

where ae(QED) can be split into four different parts,

ae(QED) = ae(e) + ∆ae(e, µ) + ∆ae(e, τ) + ∆ae(e, µ, τ). (4.17)

The most significant contribution comes from ae(e). The other parts are several
orders of magnitude smaller. Their individual contributions are calculated to
be [75]

∆ae(e, µ) = 2.71(0)× 10−12, (4.18)
∆ae(e, τ) = 0.01(0)× 10−12, (4.19)

∆ae(QCD) = 1.68(2)× 10−12, (4.20)
∆ae(EW) = 0.039(0)× 10−12. (4.21)

The contribution of ∆ae(e, µ, τ) was omitted as it represents the least significant
part with a value of 2.3× 10−21. Therefore, it makes sense for our proof of concept
study to focus purely on ae(e).

4.2 Numerical Evaluation

Before we can establish a simulation using DiagMC we do some numerical tests
to identify potential problems and come up with a generic ansatz to set up the
simulation. In this section we discuss the numerical evaluation of the first- and
second-order diagrams. The evaluation is done by integration in conjunction with
the trapezoidal rule or the Monte Carlo method.

Numerical integrations of the Feynman integrals for the anomalous magnetic
moment are not uncommon. Most of the higher-order integrals are only known
from numerical evaluations. Usually, we start by converting momentum space
Feynman integrals into Feynman-parametric integrals analytically. Then we would
evaluate these integrals using an iterative-adaptive Monte Carlo integration rou-
tine such as VEGAS [79].

Other methods to perform calculations of higher-order Feynman diagrams in-
clude transformations of the integrals, e.g., using difference equations [85]. This
method tries to cluster the integrals in such a way to obtain master integrals,
which can be calculated more efficiently.
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4.2.1 Form Factor Extraction

We have to start at Equation (4.6). This is mandatory as (automatically gen-
erated) higher-order diagrams cannot be simplified analytically as easily as the
one-loop diagram. Thus, we do not want to limit our possibilities at this point by
assuming special properties of a single diagram for all other diagrams.

Our goal is to compute the magnetic form factor F2(q2). Extracting the form
factor from the full integral is only possible with a sophisticated projection. We
start with the definition of the electromagnetic current Jµ, which is expressed
using the previously defined vertex function Γµ(p′, p) as

Jµ = −ie ū(p′) Γµ(p′, p)u(p). (4.22)

We now define r ≡ p′ + p for simplifying expressions that contain sums of the
external lepton momenta. This is useful for showing the most general structure of
an electromagnetic vertex. We have

Γµ(p′, p) = K1qµ +K2rµ +K3γµ +K4/qqµ

+K5/rqµ +K6/qrµ +K7/rrµ

+K8σµνqν +K9σµνrν +K10σνρqµqνrρ

+K11σνρrµqνrρ +K12εµνρδγ5γνqρrδ,

(4.23)

which contains the full set of information. In the following we need to find the
appropriate steps to identify the form factors.

In general the contributions from Feynman diagrams do not have the tensor
structure of Equation (4.9). To retrieve this structure and obtain the most general
version, as shown above, we have to contract each contribution Γµ with the external
legs, i.e.,

ū(p′) Γµ u(p). (4.24)

The contribution can be written in a combinatorial form, expanding all possible
contractions of p′ ± p, i.e., r and q, with γ matrices. Now we can identify the
various factors Ki, which are then required to retrieve the magnetic form factor
F2(q2). We can recombine these factors to obtain

F1(q2) = 2imK2 +K3 − 4m2K7 − 2mq2K11 − q2K12, (4.25)
F2(q2) = −2imK2 + 4m2K7 + 2mK8 + 2mq2K11 − 4m2K12. (4.26)

The decomposition into the various Ki follows directly from applying the Dirac
equation on Equation (4.24) with additional usage of the on-shell condition [19].
In Figure 4.2 the various coefficients from Equation (4.26) are illustrated in depen-
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dency of the loop momentum k. The exact method of extraction is described for
one-loop in Section 4.2.2. In principle we also have a third form factor qµF3(q2),
but this term vanishes overall.

Only a few factors Ki are actually required for computing F2(q2) using Equa-
tion (4.26). The projection for the required components reads:

K2 = 1
4r2 tr (rµΓµ) , (4.27)

K7 = 1
8r2

(
1
q2 tr (qµqνγνΓµ) + 3

r2 tr (rµrνγνΓµ)− tr (γµΓµ)
)
, (4.28)

K8 = 1
8q2r2

(
r2tr (σµνqνΓµ) + tr (σνρrρqνrµΓµ)

)
, (4.29)

K11 = 1
8q2r4

(
r2tr (σµνqνΓµ) + 3tr (σνρrρqνrµΓµ)

)
, (4.30)

K12 = −1
8q2r2 tr (εµνρδrδqργ5γνΓµ) . (4.31)

Furthermore, we require the following projections for the subtraction scheme pre-
sented later in Section 4.2.4. These components can be calculated via

K1 = 1
4q2 tr (qµΓµ) , (4.32)

K3 = 1
8

(
tr (γµΓµ)− 1

q2 tr (qµqνγνΓµ)− 1
r2 tr (rµrνγνΓµ)

)
, (4.33)

K4 = 1
8q2

(
3
q2 tr (qµqνγνΓµ) + 1

r2 tr (rµrνγνΓµ)− tr (γµΓµ)
)
, (4.34)

K5 = 1
4q2r2 tr (qµrνγνΓµ) , (4.35)

K6 = 1
4q2r2 tr (rµqνγνΓµ) , (4.36)

K9 = 1
8q2r2

(
q2tr (σµνrνΓµ)− tr (σνρrρqνqµΓµ)

)
. (4.37)

Using the antisymmetrization given by γ5 and the identity

εγνρδγδγ5 = γ[µγνγρ] (4.38)

with the fully antisymmetrized product γ[µγνγρ], we can compute K12 explicitly.
A direct evaluation yields

K12 = 1
16q2r2 (2tr (qνγνrµΓµ − rνγνqµΓµ) +

tr ((rνγνqµγµ − qνγνrµγµ) γρΓρ)) .
(4.39)

The antisymmetrized product includes a combinatorial factor of 1/3!. After ex-
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Figure 4.2: The contributing factors Ki in dependence of the loop momentum k
for the one-loop diagram. These plots have been created by applying a numerical
integration scheme that follows the midpoint rule with N = 256. The integrand
of the loop momentum contains an additional factor k from a coordinate trans-
formation k → log(k). The different lines correspond to q2 = −10−1m2 (green),
q2 = −10−2m2 (magenta), q2 = −10−3m2 (blue), q2 = −10−4m2 (orange), and
q2 = −10−5m2 (teal). 64
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Figure 4.3: Integrand of F (1)
2 (q2) after angular integration using the midpoint

rule. We use N = 512 for ψ and φ. The angle θ has been integrated analytically.
The angles ψ and φ have been evaluated numerically. The integrand contains an
additional factor k coming from the transformation k → log(k). The plot shows
the values of the integrand in dependence on the integration variable k for some
choices of q2.

panding the antisymmetrized product we obtain an expression that leads directly
to the computationally simplified version presented in Equation (4.39).

4.2.2 One-Loop Integration

For understanding how the decomposition works, we look at results for a numeri-
cal integration of the one-loop diagram as shown in Figure 4.1. We apply a simple
midpoint rule in 4 dimensions. To simplify the problem, we transform the co-
ordinate system to spherical coordinates and directly integrate the third angle.
This allows us to evaluate the integrand and the decomposition independently.
Additionally, the magnitude k is transformed to a logarithmic scale. This allows
us to tune an infrared (IR) cutoff parameter denoted by kmin, which shows up as
log(k2

min) in our evaluation.
From Figure 4.2 we can infer that the IR contributions cancel. Therefore, the

one-loop contribution F
(1)
2 (q2) to F2(q2) is not IR divergent. The imaginary part

of the component K2 is the counter term to the real parts of K7 and −K12 if we
consider the right proportionality constants as shown in Equation (4.26). However,
due to the used scale we cannot see where the contribution to the real part of K12

is arising. In the end, this is a mixture from all three coefficients. The factors K8

and K11 do not contribute at one-loop level.
None of these factors contributes to the imaginary part, which sums up to zero

65



10−11 10−9 10−7 10−5 10−3 10−1 101

0.16

0.17

0.18

0.19

−q2/m2

F
(1

)
2

(q
2 )
/α

Base
(1)
(2)

Figure 4.4: Comparison of the integration of the vertex function with the pro-
jection to obtain the form factor for different values of q2/m2 (named Base). (1)
This integration uses Equation (4.40). (2) This integration is applying the Equa-
tion (4.41). All results have been obtained using Monte Carlo integration with
N = 107 configurations by generating the data points from a spherical distribution.

after performing the integration over the angle coordinates. In the end, we can
see a finite, although very small, contribution to the imaginary part coming from
the real part of K2, as well as the imaginary parts of K7 and K12. These values,
however, cancel exactly after multiplying them with the proportionality constants
of Equation (4.26). We do not have any contributions from K11 and K12 to the
imaginary part.

If we look at the value of the integrand for different values of q2, we see a very
similar distribution as shown in Figure 4.3. This plot uses a numerical integration
with the midpoint rule. The angle coordinates are already integrated, leaving the
magnitude of the k vector for integration. The integrand contains an additional
factor k due to the logarithmic transformation. Even though all contributions seem
to vanish on the scale shown in Figure 4.2, we see a peak arising at k ∼ m2/4.
After the peak all curves seem to share the same curve.

It makes sense to integrate the vertex function using different levels of ana-
lytic transformations for comparison. The result of this comparison is shown in
Figure 4.4. We apply the projection described in Section 4.2.1) using the de-
composition of the corresponding factors from Equation (4.26). Starting with
Equation (4.6) we can use some of the identities from Appendix B.2 to obtain

F
(1)
2 (q2) = 8m2e2

(2π)4

∫
d4k

1
D

(
k2

r2 −
(q · k)2

q2r2 − 3(r · k)2

r4 − r · k
r2

)
, (4.40)
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where the denominator D remains the one from Equation (4.7). This allows us to
directly apply a four-dimensional numerical integration for obtaining the value of
the one-loop contribution to the magnetic form factor F2(q2).

Another possibility is to transform the integration variables from Cartesian
coordinates to spherical coordinates. This allows us to directly integrate over one
of the angles. The advantage is that the potential problem in the denominator
becomes less dangerous.

The result for calculating the first-order correction of the magnetic form factor
F

(1)
2 (q2) after simplifying the integral with the transformation to spherical coor-

dinates is

F
(1)
2 (q2) = 4m2α

π2

∫
dk dθ dψ

k l3 sin(ψ)
D

(
l (1− 3 cos2(ψ))− h

)
, (4.41)

where we use l ≡ k sin(θ) and h ≡ r cos(ψ).
All shown ways yield the same results for tested values of q2/m2. The difference

lies in their efficiency. To obtain an accurate result by evaluating the integral of
Equation (4.41) requires less effort than by using Equation (4.40). The denomi-
nator D depends on both angles. We have

D = k2r2 (k2 + l h− q k cos(θ)) (k2 + l h+ q k cos(θ)). (4.42)

4.2.3 Two-Loop Integration

At this point it makes sense to look at two-loop, i.e., fourth-order, diagrams.
Here it is useful to prefer Monte Carlo integration over deterministic methods as
outlined in Section 2.1.4. This time, however, we have more than a single diagram.
We should evaluate all of them to find potential problems.

In Figure 4.5 the contributing two-loop diagrams are shown. For the two-loop
level we have to deal with 9 different diagrams, where three diagrams have the
same topology, but use m ∈ {me,mµ,mτ} for the inner fermion loop. The physical
reason is that there is a likelihood of not only creating virtual electrons in the
process, but also muons or τ leptons.

We start with a discussion of the integrals representing the nine two-loop dia-
grams. For the diagrams shown in Figure 4.5a, Figure 4.5b, and Figure 4.5c we
have

Γ(2,1)
µ,me

(p′, p) = (−1) i2
∫ d4k

(2π)4
d4k′

(2π)4Dνδ(k)Dρσ(k′)(−ieγν)SF (p′ + k)

γµSF (p+ k)(−ieγρ)(−ieγδ)SF,me(k − k′)(−ieγσ)SF,me(k).
(4.43)

The different masses would be included by using different Feynman propagators
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Figure 4.5: The 9 two-loop diagrams for the QED vertex correction.

SF (p), i.e., propagators that use, e.g., m = mµ, instead of m = me. For our
purposes we will only use m = me, thus omitting the two (suppressed1) diagrams
from the evaluation.

The diagram from Figure 4.5d is represented by

Γ(2,2)
µ (p′, p) = i2

∫ d4k

(2π)4
d4k′

(2π)4Dρν(k)Dσδ(k′)(−ieγν)SF (p′ + k)

(−ieγδ)SF (p′ + k + k′)γµSF (p+ k + k′)(−ieγσ)SF (p+ k)(−ieγρ).
(4.44)

This one is the naive two-loop diagram, which just duplicates the direct photon
propagator from the one-loop diagram.

In Figure 4.5e we see another obvious two-loop diagram. By inserting a self-
energy correction diagram on the inner electron propagator we obtain

Γ(2,3)
µ (p′, p) = i2

∫ d4k

(2π)4
d4k′

(2π)4Dρν(k)Dσδ(k′)(−ieγν)SF (p′ + k)

γµSF (p+ k)(−ieγσ)SF (p+ k + k′)(−ieγδ)SF (p+ k)(−ieγρ).
(4.45)

Similarly, we have the same setup for Figure 4.5f. Here the self-energy correction

1 The two-loop diagrams for mµ and mτ have coefficients 5.197× 10−7 and 1.837× 10−9 [11].
Their contribution is roughly 1.7× 10−6 to the overall two-loop correction.
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is applied to the (inner) outgoing electron propagator. We have

Γ(2,4)
µ (p′, p) = i2

∫ d4k

(2π)4
d4k′

(2π)4Dρν(k)Dσδ(k′)(−ieγν)SF (p′ + k)

(−ieγδ)SF (p′ + k + k′)(−ieγσ)SF (p′ + k′)γµSF (p+ k)(−ieγρ).
(4.46)

Effectively, there is not much difference to the representation for Figure 4.5e as it
is time-reversal symmetric.

The vertex correction can be applied by passing an existing vertex, e.g., a vertex
that holds a photon propagator connecting the incoming and the outgoing prop-
agators. In Figure 4.5g we see this correction on the incoming propagator. We
have

Γ(2,5)
µ (p′, p) = i2

∫ d4k

(2π)4
d4k′

(2π)4Dρν(k)Dσδ(k′)(−ieγν)SF (p′ + k)

γµSF (p+ k)(−ieγσ)SF (p+ k + k′)(−ieγρ)SF (p+ k′)(−ieγδ).
(4.47)

Similarly, we see the time-reversal symmetric diagram in Figure 4.5h. In this case,
we have the correction on the outgoing side, leading to

Γ(2,6)
µ (p′, p) = i2

∫ d4k

(2π)4
d4k′

(2π)4Dρν(k)Dσδ(k′)(−ieγδ)SF (p′ + k′)

(−ieγν)SF (p′ + k + k′)(−ieγσ)SF (p′ + k)γµSF (p+ k)(−ieγρ).
(4.48)

Finally, we may cross the arcs resulting in a diagram similar to Figure 4.5d. In
Figure 4.5i we see such a process. We have

Γ(2,7)
µ (p′, p) = i2

∫ d4k

(2π)4
d4k′

(2π)4Dνδ(k)Dρσ(k′)(−ieγσ)SF (p′ + k′)

(−ieγν)SF (p′ + k + k′)γµSF (p+ k + k′)(−ieγρ)SF (p+ k)(−ieγδ).
(4.49)

From the analytical representations we can form a set of potential difficulties and
hints that are useful for further investigation.

The plots contained in Figure 4.6 show an integration over the previously de-
fined analytical representation of Figure 4.5d performed with Monte Carlo inte-
gration using N = 106 configurations. For illustration purposes we use the custom
logsgn (x) function, which is defined as

logsgn (x) =





+ log(1 + x) if x ≥ 0,

− log(1− x) otherwise.
(4.50)

This allows us to grasp as much information from the given plots as possible.
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Figure 4.6: Integration over the angles of the two-loop diagram shown in Fig-
ure 4.5d for Γ(2,2)

µ (p′, p) with q2 = −10−5m2. The horizontal axis shows the mag-
nitude of k, the vertical axis shows the magnitude of k′. The integrand con-
tains an additional factor kk′ coming from the transformations k → log(k) and
k′ → log(k′). The angles have been integrated using Monte Carlo integration
(N = 106 configurations). The logsgn (x) function is defined in Equation (4.50).
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As with the one-loop integration shown in Figure 4.2 we observe that the dia-
gram does not show a contribution of the factors K8 and K11. We do, however,
get some contributions (especially in terms of K8) from other two-loop diagrams
(Figure 4.5g and Figure 4.5i).

The sign changes are mostly noise coming from the integration scheme. The
only physical meaning can be associated to the edges, i.e., between zero and non-
zero regions. Using a combination of angles and opposite angles we would see that
only the imaginary part of K2, as well as the real parts of K7 and K12 do not
vanish. This cancellation occurs in the statistical limit naturally, however, does
not take place in our case with only 106 samples.

The arising problems can be seen by looking at the bounding box. For k →∞
and k′ →∞ we require that the function yields zero. Even though there may be
some kind of cancellation in total, we cannot deal with the shown divergences in
our simulation. We need an efficient treatment to obtain meaningful results in our
sampling scheme.

Most diagrams in the two-loop order are problematic by definition. For instance
the diagrams in Figure 4.5a, Figure 4.5b, and Figure 4.5c contain closed fermion
loops. The diagrams in Figure 4.5e and Figure 4.5f come with direct self-energy
corrections. In general, these corrections result in divergences, which would spoil
the simulation. Plots for the other diagrams are appended to Appendix D.1.

From the previously shown plots we can only conclude that we require an effi-
cient scheme for numerically calculating the values of higher-loop diagrams. We
choose to follow the methods and guidelines given in [10]. In the following we
indicate the most important steps for a regularization scheme leading to a renor-
malization of the divergent diagrams.

4.2.4 Subtraction Procedure for Higher-Order Diagrams

Analytically, the IR and UV divergences can be attacked, e.g., by introducing a
Feynman cutoff to the photon propagator, i.e., substituting

1
k2 →

1
k2 + λ2 −

1
k2 + Λ2 =

∫ Λ2

λ2

dx

(k2 + x)2 , (4.51)

where Λ represents the UV cutoff and λ the IR cutoff. This, in combination
with other diagrams, produces finite, cutoff-dependent quantities as Λ2 → ∞,
λ2 → 0. However, we want to use a numerical scheme that provides point-by-
point cancellation [28].

The origin of IR divergence in higher-order diagrams is the vanishing of the
denominator of the photon propagator k−2 in the limit k → 0 in conjunction with
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lepton propagators [87]. The photon propagator alone would give a finite result
on the integration over k. When the external momentum p is constrained by the
on-shell condition p2 = −m2, the denominator of the lepton propagator behaves
as

1
(p+ k)2 +m2 = 1

2p · k + k2 ≈
1

2p · k , (4.52)

in the limit of small k. The logarithmic IR divergence can be observed in a scenario
involving a photon propagator and two such propagators. For self-energy subdi-
agrams we find, however, three propagators. Hence, the divergence is actually
linear instead of logarithmic.

In general, we have four types of subdiagrams that are responsible for UV
divergences. These are quantified by their external electron (Ne) and photon (Nγ)
propagators. The degree of UV divergence of a Feynman diagram G, called ω(G),
can be obtained by

ω(G) = 4−
(
Nγ + 3

2Ne

)
. (4.53)

UV divergences appear if ω(G) ≥ 0. This can be verified for all problematic types
of diagrams:

• Electron self-energy (Ne = 2, Nγ = 0)

• Photon self-energy (Ne = 0, Nγ = 2)

• Vertex-like (Ne = 2, Nγ = 1)

• Photon-Photon scattering (Ne = 0, Nγ = 4)

The full implementation of a system that generates correctly renormalized inte-
grands is beyond the scope of this work. Nevertheless, the implementation should
still be good enough to provide sufficiently accurate values. We use the previously
calculated subtractions and values [148] to fine-tune our integrands. In the follow-
ing paragraphs we illustrate how to apply the scheme by discussing the formerly
evaluated two-loop diagram.

The goal of the subtraction method is to define an operator R̂G that acts on a
Feynman diagram G resulting in a new representation without divergences. This
means that we can obtain the renormalized contribution of the two-loop diagram
Γ(2,2)
µ to the anomalous magnetic moment by using

F
(2,2)
2,ren.(q2) = R̂G

(
Γ(2,2)
µ

)
, (4.54)

where G denotes the diagram illustrated in Figure 4.5d.
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In the scheme from [148] the operator R̂G is represented by a sum of operators,

R̂G =
∑

F={g1,...,gn}∈F[G],
G′∈J[G]∩F

(−1)n−1M̂F,G′

g1 · · · M̂F,G′

gn
. (4.55)

The symbol F[G] is used to indicate the family of all forests F of the diagram G,
where G ∈ F . A forest F is a nonempty subset of the set

{G,G1, . . . , Gm} , (4.56)

with UV divergent subdiagrams G1, . . . , Gm ⊂ G. While the set from Equa-
tion (4.56) contains overlapping subdiagrams, a forest is restricted to subdiagrams
that do not share a vertex or propagator.

Furthermore, we define J[G] to be the set of UV divergent vertex-like diagrams
G′ ⊆ G connecting to the external photon leg.

In case of our previously discussed two-loop diagram we find

F[G] = {{G} , {G1, G}} , (4.57)
J[G] = {G1, G} , (4.58)

where G1 denotes the inner subdiagram, which is equivalent to the one-loop di-
agram discussed in Section 4.2.2. In this case the sum of the operators from
Equation (4.55) consists of three terms, namely

R̂G = M̂
{G},G
G − M̂{G1,G},G1

G M̂
{G1,G},G1
G1 − M̂{G1,G},G

G M̂
{G1,G},G
G1 . (4.59)

At this point we need to define the operator M̂F,G′

G′′ . In the scheme from Volkov [148]
the operator is just a placeholder corresponding to

M̂F,G′

G′′ =





ÂG′′ if G′ = G′′,

ÛG′′ if G′′ /∈ J[G] or G′′ ⊂ G′,

L̂G′′ if G′′ ∈ J[G] and G′ ⊂ G′′ 6= G,

L̂G′′ − ÛG′′ if G′′ = G and G′ 6= G.

(4.60)

These operators are specified to behave as follows:

• ÂG projects the diagram G to obtain its magnetic form factor, which con-
tributes to ae, i.e.,

Â (Γµ(p′, p)) = F2(q2). (4.61)

The required operations can be read of from Equation (4.26).
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• ÛG depends on the type of diagram. It distinguishes between the following
three types of diagrams:

– Self-energy subdiagrams Σ(p), e.g., the subdiagram contained in Fig-
ure 4.5e. The operator replaces p2 by −m2. This requires identifying
the diagram, expressing it mathematically using the Feynman rules,
and performing the replacement by taking p on-shell. This is all pre-
pared by the code generator described in Section 4.4.

– Vacuum polarization subdiagrams Π(q), e.g., the subdiagram contained
in Figure 4.5a. Here we need to perform a Taylor expansion for small q
up to order ω(G). Similarly to the previous case, the subdiagrams need
to identified and transformed into expressions by the code generator.
For simplicity of the code generation it was decided to compute the
derivatives numerically using central finite differences.

– Diagrams for the vertex correction Γµ(p, 0). We have to remove parts
that are proportional to pµ. This boils down to

Û (Γµ) = a(−m2) +md(−m2). (4.62)

The diagram in Figure 4.5d contains such a subdiagram. More details
on the coefficients from Equation (4.62) follow later, see Equation (4.66)
and Equation (4.69).

• L̂G performs the on-shell renormalization of vertex-like diagrams Γµ(p, 0).
We need to replace p2 with −m2 and remove parts proportional to σµν . We
can use

L̂ (Γµ) = a(−m2) +mb(−m2) +m2 c(−m2), (4.63)

with details on these coefficients following later, see Equation (4.66), Equa-
tion (4.67), and Equation (4.68).

Using these operators in Equation (4.59) we find that our two-loop diagram G

from Figure 4.5d contains a vertex-like subdiagram G1, which leads to

R̂G = ÂG −
(
L̂G − ÛG

)
ÂG1 − ÂG ÛG1 . (4.64)

This form gives us a description of the different tasks that we need to take care of
to construct an expression representing the diagram without any divergences.

The remaining question is how the coefficients from Equation (4.62) and Equa-
tion (4.63) can be retrieved. Going back to the full vertex given in Equation (4.23)
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we can see that

Γµ(p, 0) = (K1 +K2) pµ +K3 γµ + (K4 +K5 +K6 +K7) /p pµ
+ (K8 +K9)

(
/p γµ − γµ /p

)
,

(4.65)

represents the number of contributions that may be projected using the formerly
stated coefficients Ki, which can be retrieved using the projectors given in Equa-
tion (4.27) to Equation (4.37).

To be consistent with the scheme from Volkov we need to identify

a(p2) ≡ K3, (4.66)
b(p2) ≡ K1 +K2, (4.67)
c(p2) ≡ K4 +K5 +K6 +K7, (4.68)
d(p2) ≡ K8 +K9. (4.69)

Hence we already have all the projectors to apply the operator M̂F,G′

G′′ on vertex-like
diagrams. Now we can perform the outlined procedure given in Equation (4.62)
and Equation (4.63).

The full expression for obtaining the contribution of the herein discussed two-
loop diagram may be expressed as

F
(2,2)
2,ren.(q2) = F

(2,2)
2 (q2)

(
1− aG1(−m2) +mdG1(−m2)

)

−
(
mbG(−m2) +m2 cG(−m2)−mdG(−m2)

)
F

(1)
2 (q2),

(4.70)

where the additional index denotes the type of diagram to use for the projection.
The subtraction scheme needs to be performed directly on the integrand. Details
on the application of this scheme are given in Section 4.3.2. It is required to
integrate the scheme in our diagram generation algorithm explained in Section 4.4.
In the following we will exclusively refer to F2,ren. as F2.

4.3 Simulation Details

As far as the DiagMC simulation is concerned we can apply our knowledge from
the examples in Chapter 3. We need to construct transition probabilities that
form an ergodic set of updates, such that every diagram and value can in principle
be visited.

To support our simulation we have to use distributions for the internal param-
eters that enhance the convergence of the simulation. In principle, we are free to
choose an arbitrary distribution, however, in practice we would suffer from a very
inefficient computation.
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4.3.1 Parameter Distributions

Our first task is therefore to find a set of useful distributions for generating the in-
ternal momentum k. Then we can define the update procedures for our simulation.
The trivial choice is to use a four-vector

k ≡ (k1, k2, k3, k4), (4.71)

where we generate each component ki uniformly. However, keeping in mind that
additional constraints, such as

kmin ≤ |k| ≤ kmax, (4.72)

may be useful or even required, we can estimate that the trivial choice is probably
not working well. We use the boundaries kmin and kmax to limit the parameter to
the contributing range. In the simplest scenario they can be inferred from plots
like the one shown in Figure 4.3.

A suitable choice that fulfills Equation (4.72) without much problems is to
choose spherical coordinates. This choice gives us three angles and a magnitude,
which could be generated in a way that obeys Equation (4.72) by construction.

When we transform any integral from a tesseract to a 3-sphere with parameters
{r, ϕ, θ, ψ} we need to insert the following Jacobian J , given by

J = r3 sin2(θ) sin(ψ). (4.73)

At this point we can rewrite our original distribution Ωk(k1, k2, k3, k4) to the new
parameters. We use

Ωk(k) ≡ Ωk(r, ϕ, θ, ψ) = Ωr(r) Ωϕ(ϕ) Ωθ(θ) Ωψ(ψ). (4.74)

The distribution Ωk(k) is composed of the distributions for each parameter.
As an example the distribution of Ωϕ(ϕ) is a simple uniform distribution nor-

malized to the parameter space ϕ ∈ [0, 2π]. We have

Ωϕ(ϕ) = 1
2π , (4.75)

as we expect from such a uniform distribution.
Naively, we might be tempted to use uniform distributions for all three angles.

However, there is a better choice - at least for the distributions of ψ and θ - coming
from the Jacobian of Equation (4.73).
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The distribution of ψ can then be identified as

Ωψ(ψ) = 1
2 sin(ψ), (4.76)

where the factor 1/2 has been obtained by normalization. To generate variables
according to this distribution we need to follow the techniques mentioned in Sec-
tion 2.1.2.

First we derive the cumulative distribution function. We obtain

F (ψ) = 1
2

∫ ψ

0
dψ′ sin(ψ′) = 1

2 (1− cos(ψ)), (4.77)

which allows us to write x = F (ψ). Solving this equation for ψ yields

ψ = arccos(1− 2x), x ∈ [0, 1]. (4.78)

The previous example is one of the rare situations where both, the cumulative
distribution function and its inverse, exist in an analytical form.

The same scheme can only be applied partially for θ. As previously, we can
identify the correct distribution from the Jacobian. We get

Ωθ(θ) = 2
π

sin2(θ), (4.79)

which has been normalized by a factor 2/π. Computing the cumulative distribu-
tion function is possible as well. For the distribution Ωθ(θ) we obtain

F (θ) = 2
π

∫ θ

0
dθ′ sin2(θ′) = 2

π
(θ − cos(θ) sin(θ)). (4.80)

The only remaining part is to find the inverse of F (θ). We need to solve

x
!= F (θ), x ∈ [0, 1]. (4.81)

As this cannot be solved analytically, we will use a numerical scheme to generate
θ in our simulation. One possibility is to use an accept-reject method. This, how-
ever, is quite expensive and wastes too many random values. Another possibility
is to define a lookup table {xi, θj} for Equation (4.81).

The main advantage of a lookup table is its speed. We generate N entries and
approximate the result linearly from the already computed answers for x ∈ [0, 1]
via

θ = (θj+1 − θj)
x− xj
xj+1 − xj

+ θj, j = bxNc . (4.82)

Depending on the choice of N and the function we may need a higher-order ap-
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proximation. It turns out that for the given distribution we require at least a
cubic interpolation with a lookup table containing O (103) entries. The reason for
choosing this approximation lies in the Taylor expansion of F (θ), as specified in
Equation (4.80),

F (θ) = 2
π

(2
3 θ

3 − 2
15 θ

5 + 4
315 θ

7 +O
(
θ9
))

. (4.83)

Therefore, we need to look for a better way to solve this problem.
In this case we can use Newton’s method with starting value of θ0 = πx. The

required precision can be reached within 10 iterations. This is sufficient, efficient,
and, most importantly, precise enough. Furthermore, we do not waste any memory
for the lookup table.

The distribution for the magnitude r is chosen in such a way to give us at least
another factor of r in the numerator. Together with the r3 from the Jacobian we
cancel divergences from the photon propagator immediately.

Another aspect that needs to be considered is that the constraints (or cutoffs)
from Equation (4.72) are fulfilled. We have

Ωr(r) = (r log(kmax/kmin))−1 , (4.84)

which is basically a r−1 distribution within our boundaries.
We can generate variables according to this distribution by using the exponential

function, i.e.,

r = kmin exp (−x log(kmin/kmax)) , x ∈ [0, 1]. (4.85)

This way we have all required distributions to generate values for the k four-
vector in spherical coordinates. A good distribution flattens the sampled space
and eliminates pairs from the sampling, which would cancel anyway.

For higher-order diagrams it makes sense to use the Feynman-parametric repre-
sentation of the integrands, see Equation (4.8). Instead of generating four-vectors
k we generate a scalar zi for each internal line. The zi need to sum to unity, i.e.,
∑
i zi = 1. Furthermore, we require zi > 0. A suitable distribution for z is the

Dirichlet distribution. For n internal lines we have

p(z1, . . . , zn, α1, . . . , αn) = 1
B(α)

n∏

i=1
zαi−1
i , (4.86)

where the αi define the so-called concentration. The normalization is given by

B(α) =
∏n
i=1 Γ (αi)

Γ (∑n
i=1 αi)

. (4.87)
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In our case we choose a symmetric Dirichlet distribution with αi ≡ α for all i.
Hence we obtain

Ωz(z) = Γ(nα)
(Γ(α))n

n∏

i=1
zα−1
i . (4.88)

In the simplest scenario we pick the flat distribution using α = 1. We can then
generate the values zi by using some exponential distribution exp(−yi), which
leads us to zi = yi/

∑
i yi.

Generally, numbers that obey the Dirichlet distribution can be generated using
the gamma distribution

p(x, α, β) = xα−1 exp(−x/β)
Γ(α) βα , α > 0, β > 0, (4.89)

with β being set to 1. The parameter α corresponds to the concentration pa-
rameter of the Dirichlet distribution. Finally, we obtain the values zi by using
zi = xi/

∑
i xi as before.

4.3.2 Update Procedures

For the available update procedures we follow the same routines as outlined in
Section 3.3. We implement the following updates, which form a set similar to the
one used for the polaron problem discussed in Section 3.3:

add We choose one of the diagrams from the next-loop order.

remove We choose one of the diagrams from the previous-loop order.

swap We choose another diagram from the same-loop order.

mutate We change one of the internal loop momenta.

We will always fix the value of q2/m2, such that q2/m2 = const, even though it
is possible to parameterize the simulation with a flexible value for q2. This would
allow us to gain information about the limit q2/m2 → 0 by extrapolating the
gathered data. Such an approach may be investigated in future works.

First, we look at the add procedure for going from zero-loop D0 to the single
one-loop diagram D1(k). The zero-loop is represented by an arbitrary constant,
much like in the integration example from Section 3.2. We use

R0→1 =
∣∣∣∣∣
D1(k)
D0

∣∣∣∣∣
1

Ωk(k) = |D1(r, ϕ, θ, ψ) r3 sin2(θ) sin(ψ)|
|D0|Ωr(r) Ωϕ(ϕ) Ωθ(θ) Ωψ(ψ) (4.90)

= 2π2
∣∣∣∣∣
D1(k)
D0

∣∣∣∣∣ r
4 log(kmax/kmin). (4.91)
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We may want to rewrite D1(k) to take spherical coordinates as inputs. Otherwise
we have to calculate

k1 = r cos(θ), (4.92)
k2 = r sin(θ) cos(ψ), (4.93)
k3 = r sin(θ) sin(ψ) cos(ϕ), (4.94)
k4 = r sin(θ) sin(ψ) sin(ϕ), (4.95)

to obtain the k four-vector to use with D1(k), where k ≡ (k1, k2, k3, k4).
The remove procedure for going from the one-loop diagram to zero-loop is just

the inverse of the add procedure. We find

R1→0 =
∣∣∣∣∣
D0

D1(k)

∣∣∣∣∣Ωk(k) =
∣∣∣∣∣
D0

D1(k)

∣∣∣∣∣
1

2π2 r4 log(kmax/kmin) . (4.96)

At this point it seems reasonable to define the diagram functions. The n-loop
diagram function at topology ξn is given by applying the R̂ operator on the cor-
responding diagram using the integrand of the vertex correction Γ(ξn)

µ , named
f (ξn)
µ (k1, . . . , kn). We define

Dξn(k1, . . . , kn) ≡ R̂ξn

(
f (ξn)
µ (k1, . . . , kn)

)
, (4.97)

with the projection operator R̂ from Section 4.2.4. The operator is required for the
renormalization of the diagram associated with ξn. Integration over the introduced
function Dξn using all parameters yields the form factor,

F
(ξn)
2 (q2) =

∫
d4k1 . . . d

4kn R̂ξn

(
f (ξn)
µ (k1, . . . , kn)

)
. (4.98)

In practice, values of the function Dξn(k1, . . . , kn) need to be constructed from
the Ki shown in Equation (4.23), which have been obtained using the projectors
defined in Equation (4.27) to Equation (4.37).

Removing a diagram implies taking the inverse ratio of the transition probabil-
ities for adding a diagram. We have

R1→0 =
∣∣∣∣∣
D0

D1(k)

∣∣∣∣∣ Ωk(k) =
∣∣∣∣∣
D0

D1(k)

∣∣∣∣∣
π−2

2r4 log(kmax/kmin) . (4.99)

For the generalization from the first-order corrections to arbitrary diagrams, we
need to include some more distributions and update procedures. For instance,
when dealing with more than one set of variables, it makes sense to have an
update that just mutates an arbitrary set.
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It is possible to change the topology from Dξn to Dξ′
n

using the ordinary tran-
sition probabilities introduced in Section 3.1. The selection probability for a par-
ticular diagram Dξn has to be adjusted to match the symmetry factor Sξn of the
respective diagram. The symmetry factors will be deduced in our diagram gener-
ation scheme, which is presented in the next Section 4.4.

For the swap update we have

Rξn→ξ′
n

=
∣∣∣∣∣
Dξ′

n
(k1, . . . , kn)

Dξn(k1, . . . , kn)

∣∣∣∣∣
Ωξn(ξn)
Ωξn(ξ′n) , (4.100)

where we use a uniform distribution for the selection probability of a particular
diagram. We have

Ωξn(ξ) = Sξ∑
ξn
Sξn

, (4.101)

with the symmetry factor Sξ for a given topology ξ.
A little bit less delicate is the mutate update procedure. This update is supposed

to change the value of any currently available variable. It implies the uniform
selection of a variable to change.

The ratio of transition probabilities for the mutate update looks like

Rki→k′
i

=
∣∣∣∣∣
Dξn(k1, . . . , ki−1, k

′
i, ki+1, . . . , kn)

Dξn(k1, . . . , ki−1, ki, ki+1, . . . , kn)

∣∣∣∣∣
Ωk(ki)

Ωk(k′i)Ωi(i′)
, (4.102)

where we use the composed distribution from Equation (4.74) and a uniform dis-
tribution Ωi(i) that is simply 1/n. We need this to accommodate for our random
selection of a variable to change. Since variables are not inserted on random
occasion, we only use the distribution in the denominator.

4.4 Diagram Generation

Before we apply the DiagMC method to our problem we need to have a robust
scheme for diagram generation. The formulation of QED in terms of diagrams was
first described by Feynman [52]. The series to approximate ae(QED) as specified
in Equation (4.16) can be written as

ae(QED) = c1

(
α

π

)
+ c2

(
α

π

)2
+ c3

(
α

π

)3
+ c4

(
α

π

)4
+ . . . , (4.103)

where the one-loop result c1 has been derived in Section 4.1 using Equation (4.13).
The two-loop result c2 can be expressed in analytical form as well. Even though
c3 can be calculated in analytical form using difference equations [84], the result is
already much too long for printing or human receptivity. The four-loop coefficient
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Figure 4.7: The generalized process for the anomalous magnetic moment.

c4 is only known numerically [11].
The coefficients have been determined [75] to be

c1 = 1
2 (1 diagram, Schwinger (1948)), (4.104)

c2 = −0.328478965579 (7 diagrams, Sommerfield (1958)), (4.105)
c3 = 1.181241456 (72 diagrams, Laporta (1996)), (4.106)
c4 = −1.9144(35) (891 diagrams, Kinoshita (2007)). (4.107)

The number of diagrams gives the number of topological distinct diagrams. It is
necessary to evaluate a subset of diagrams with different lepton masses in closed
fermion loops to obtain these coefficients.

Our simulation scheme needs to use the Feynman rules derived for QED pro-
cesses to generate all the possible diagrams for the current loop-order. We have
two options for implementing such a requirement. Either we follow a method
similar to the one used in Section 3.3, where we connect propagators to vertices
during the simulation, or we generate all possible diagrams beforehand.

Since the computational cost is much higher [67] than in the polaron example
we choose to generate the diagrams. Software applications to help us solving this
task are available [97, 153], however, we have to integrate the custom subtraction
scheme, which motivate us to provide our own solution. Furthermore, we want to
create a well-performing C++ code that follows our conventions.

The algorithm we describe in this section is based on permutation and deter-
mines all possible diagrams for a given loop order. A positive side effect of using
permutations is the ability to determine the symmetry factors of the generated
diagrams. Obtaining these factors otherwise has been proven difficult [110].

In a permutation scheme we can count the number of occurrences for each
diagram. The diagrams itself are compared by using a suitable hash function.
Furthermore, we have to ensure that every diagram is valid, i.e., that it represents
indeed a one particle irreducible correlation function that can be used in the
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context of the anomalous magnetic moment.
The diagram generation for the anomalous magnetic moment starts by intro-

ducing a special node, called the root vertex. The root vertex has the photon leg
and, like any other QED vertex, two lepton legs. In our scheme we will never
touch the photon line of the root vertex. Thus, it will never be connected to any
other node.

For the n-loop diagrams Gn ⊂ F we need to consider 2n additional vertices.
This gives us a total of 2n + 1 vertices, 3n propagators, and 2 legs that need
to be handled. The diagram in Figure 4.7 shows the generalized process with
the external legs and the root vertex. The blob represents the variable space for
inserting and connecting the other vertices.

Following the conventions from [31] we label the existing vertices by introducing
numbers, v ∈ {1, . . . , 2n+ 1}. Additionally, we have two “end nodes” for the
incoming (v = 0) and outgoing (v = 2n + 2) legs. It is important to distinguish
between the terms node and vertex here. While every vertex is a node, not every
node is a vertex. A vertex refers to a legitimate point of interaction in a QED
diagram. A node refers to a point of interaction in a graph. A QED diagram is a
graph with special rules.

For the lepton propagators we use a mapping w(v), where v and w(v) denote the
two connected nodes. We can define the inverse mapping w̄(v), which returns the
corresponding anti-lepton propagator, i.e., the lepton propagator with reversed
nodes. We have

v ∈ [0, 2n+ 1] 7→ w(v) ∈ [1, 2n+ 2], (4.108)
v ∈ [1, 2n+ 2] 7→ w̄(v) ∈ [0, 2n+ 1]. (4.109)

Thus, w̄ maps the image of w back to v ∈ [0, 2n + 1]. The external legs are
represented by 0 and 2n+ 2.

In our scheme we start by connecting the vertices v with 2n+2−v via a photon
propagator. An example can be seen in Figure 4.8a. Here we connect the vertices
{1, 5} and {2, 4}. As the sum of the labels of these vertices is always 2(n+ 1) we
have a very quick way to check for photon pairings. The root vertex has v = n+1.
In Table 4.1 we identify the mapping function and the inverse assignment for the
mentioned example.

To obtain all combinations it is sufficient to permute the mapping v 7→ w(v).
This way we have (2n+ 2)! possibilities, far more than diagrams. We can directly
exclude some invalid sequences, e.g., the identity function or any other sequence
where v = w(v) for any v.

Finally, we impose some restrictions on our selections. We forbid w(0) = 2n+2.
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Figure 4.8: Examples for generated diagrams with the corresponding vertex labels.
The propagators marked with the red color render the corresponding diagram
invalid for evaluation in the context of the anomalous magnetic moment.
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v w(v) w̄(v)

0 1 —
1 4 0
2 6 5
3 5 4
4 3 1
5 2 3
6 — 2

Table 4.1: Mapping of the vertices shown in Figure 4.8a.

Also w(0) = n + 1 and w(n + 1) = 2n + 2 do not represent legal diagrams
for computing the anomalous magnetic moment. Besides these trivial cases we
leave the rest to a verification algorithm. The equivalence of two diagrams is
determined by applying a suitable hash function. The permutation part is shown
in Algorithm 2.

Algorithm 2 Diagram Generation
1: function Permute(vertices W , vertices V ) . initially W = ∅
2: if |V | > 0 then
3: for each v ∈ V with v 6= |V | do
4: Permute(W ∪ {v}, V \ {v})
5: end for
6: else . at this point V = ∅
7: h← ComputeHashCode(W )
8: if hashcode h not added yet then
9: add h to known hashcodes

10: if IsValid(W ) then
11: add diagram W
12: end if
13: end if
14: end if
15: end function

To explain the algorithm in more detail it is useful to introduce the cycle nota-
tion for diagram permutations σ. We use

σ =

 0 1 . . . 2n+ 1
w(0) w(1) . . . w(2n+ 1)


 ≡ (w(0)w(w(0))w(w(w(0))) . . . ). (4.110)

We can shorten this notation, by realizing that the node v = 2n+ 2 has always to
be the last one, unless there are fermion loops. If we take, e.g., the diagram with
σ = (134625) we can express it as σ = (134)(25).

85



If we follow the vertices of Figure 4.8a from the incoming leg, we have σ =
(14352). The root vertex has the number 3. We can now identify the rules for
validating diagrams. Vertices connected by photon propagators need to be found
and checked first. In the given case there is no irreducible subdiagram, as every
connection passes at least another vertex. Both photon propagators cross the root
vertex. As a minimum requirement for all valid g − 2 diagrams we need at least
one photon propagator that crosses the root vertex.

The three-loop diagram shown in Figure 4.8b illustrates an invalid diagram.
Here we have σ = (1246735). We can immediately identify the subdiagram con-
sisting of the vertices {3, 5}. The given diagram is thus composed of a two-loop
diagram with a simple second-order diagram.

We now consider another three-loop diagram, (14235)(76), as illustrated in Fig-
ure 4.8c. Even though we have a fermion loop connected to both sides, we have
practically the same scenario as beforehand. Again, we can identify a subdiagram
that is independent from the three-loop diagram. As a rule we can identify that
once the sum of an even number of vertex indices on the left or right is 2n + 2,
the diagram is invalid.

A different case is shown in Figure 4.8d. This diagram is expressed as

σ =

0 1 2 3 4 5 6 7

1 4 8 5 3 2 7 6


 = (14352)(76). (4.111)

We can identify the subdiagram (35), however, it is not placed on the left or right
side of the main cycle. The rest can be validated like (142)(76), which is equivalent
to the three-loop diagram (132)(54). The diagram shown in Figure 4.8e is valid
as well. A validation of the expression (14325)(76) yields that no independent
subdiagrams can be found. Another negative example is given in Figure 4.8f. A
quick check of (12345)(76) shows an independent subdiagram on the left side.

There are two more cases that are worth mentioning. The first one is shown in
Figure 4.8g. Here we see a diagram with two fermion loops denoted by

σ =

0 1 2 3 4 5 6 7 8 9

1 5 10 9 3 2 8 6 7 4


 = (152)(943)(687). (4.112)

This is a legal four-loop diagram for the perturbative expansion of the anomalous
magnetic moment. It contains corrections to the original loop itself, splitting it
into two loops with three vertices each, which are connected. This diagram is
naturally generated just by permuting w(v). The validation scheme is outlined in
Algorithm 3.

The five-loop diagram shown in Figure 4.8h can be generated as well. We
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Algorithm 3 Diagram Validation
1: function IsValid(vertices D)
2: M ← {v ∈ D : v /∈ loop} . exclude v from fermion loops
3: C ← {v ∈ D : v /∈M}
4: σ ← ∑

v∈C v
5: r ← n+ 1 . n is the loop order
6: if r ∈M and σ = 0 ∨ σ 6= r|C| then
7: k ← index of r ∈M
8: ML ← {M1,M2, . . . ,Mk−1}
9: MR ←

{
M|M |,M|M |−1, . . . ,Mk+1

}
. |M | is the cardinality of M

10: i←IsConnected(ML, C)
11: o←IsConnected(MR, C)
12: if i is true and o is true then
13: return true
14: end if
15: end if
16: return false
17: end function

have 13 vertices with v = 6 being the root vertex. We can expand our notation
of Equation (4.110) to contain numbers n̄ = 10 + n for denoting the diagram
as (121̄30̄465)(978). The diagram is legal, since the photon propagator

{
1, 1̄

}

passes the start of the propagator
{

2, 0̄
}

, which passes vertex 3. This vertex is
connected to 9, which has a connection to vertex 5 via the photon propagator
{5, 7} and the fermion loop (978). As they are all connected, we have a legal
diagram for calculating five-loop corrections to the anomalous magnetic moment.
The connection is verified in the sub-algorithm shown in Algorithm 4.

After we generated all possible diagrams for a certain loop-order n we need to
extract the C++ code for our application. Going from right to left we insert alge-
braic elements for their corresponding diagrammatic representations. We follow
the standard Feynman rules for QED in Euclidean space to apply the mapping

Vertex 7→ ieγµ, (4.113)
Photon 7→ iδµν/k

2, (4.114)
Electron 7→ −(/p+ im)/(p2 +m2), (4.115)
Integral 7→ i(2π)4, (4.116)

Fermion-loop 7→ (−1). (4.117)

The code will be optimized further during compilation and uses the data structures
and conventions defined in our application. Therefore, even though our algorithm
scales worse than exponential we only have to pay the cost of diagram creation
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Algorithm 4 Diagram Connectivity
1: function IsConnected(vertices M , vertices C)
2: for each m ∈M do
3: M ←M\ {m}
4: p← 2n+ 2−m . n is the loop order
5: if p /∈M and p /∈ C then
6: return true
7: else if p ∈M then
8: k ← index of p ∈M
9: M ← {M1, . . . ,Mk−1}

10: else . leads to fermion loop
11: C∗ ← {v 6= p ∈ C : connected via ferm. prop. to p}
12: C ← C(\C∗ ∪ {p})
13: M ← C∗ ∪M
14: end if
15: end for
16: return false
17: end function

once. The generated diagrams are fixed and can be used with full optimizations.
Consequently, the runtime performance is much better than without prior gen-
eration and compilation of diagram functions. Finally, we can use some trivial
analytical tricks and convert higher-order diagrams to their Feynman-parametric
representation.

4.5 Results

Before we discuss the results for a full DiagMC simulation using multiple loops, we
should have a look at one-loop simulations. In Figure 4.9 we compare the result
of different simulations with a varying number of configurations to the analytic
result of F (1)

2 (0). For q2/m2 we choose −1× 10−4 at α = 1. We see that even for
a small number of configurations, e.g., 1× 105, we obtain the exact result within
a reasonable small error. The error determination seems to be alright, e.g., for the
smallest number of configurations we match the exact result within two standard
deviations. For the larger number of configurations the error bars become smaller
than the symbols. Hence even for values of |q2| that do not satisfy |q2| � m2 we
achieve the analytic result with quite some accuracy.

The observation from Figure 4.9 is reason enough to be confident that we can
successfully estimate the magnetic form factor at q2 = 0 by extrapolating the
result of runs with small |q2/m2|. As a first order approximation, we will quote a
very small non-zero value of q2/m2 as approximate q2 = 0 result throughout this
feasibility study instead of performing an extrapolation to q2 = 0. It was checked,
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Figure 4.9: Dependency on the number of configurations for a simulation with
α = 1 at q2/m2 = −0.0001. The DiagMC runs have been performed up to one-
loop order with two kinds of updates (add, remove). We choose D0 = 1. The
dashed line is the exact result for the one-loop diagram.

that the dependence of the results on q2/m2 is smaller than the statistical error
from the finite number of configurations.

For higher-order simulations with α ≈ 1/137 we expect the autocorrelation time
to be quite large, as most updates will be rejected. Indeed for a simulation up to
one-loop order we obtain

τint = 267(39). (4.118)

One way to lower the autocorrelation time is to use a better value for the artificial
diagram D0. At the end of this section we sketch a far better way, which omits
the artificial diagram altogether.

There is a debate whether α(q2) must be considered in our scenario and if we
could use some α that fulfills 1/137 ≤ α ≤ 1 for the full simulation. While a
constant α seems like a good approximation in this scenario2, the latter is indeed
a good question. As α is part of the transition amplitude we would immediately
gain a much higher sampling rate. Nevertheless, the higher sampling rate for
higher-order diagrams directly results in fewer samples from lower-order diagrams.
We already know that the contribution from these lower-order functions is more
significant (by a factor of α−1 per loop-order). Therefore, it makes sense to use α
in the transition amplitude, thus sampling more significant diagrams more often.

The performed one-loop simulation is similar to the simple example discussed
in Section 3.2, even though the details of computation are much more complex.

2 Even if we use α(q2) the value would be some (other) constant for a given q2.
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Figure 4.10: Comparison of a simulation with N = 106 configurations to the
numerical evaluation of Equation (4.13) with α = 1. Excellent agreement in the
valid region, where |q2| � m2. The error bars for the numerical evaluation are
smaller than the symbols.

Most importantly, we only use two complementary updates, add and remove.
Simulations that include higher orders need to contain other updates, such as
swap or a change of variables, as well.

It is interesting to compare our simulation with the analytic approach in more
detail. Starting with Equation (4.13) we can integrate over the Feynman param-
eter z1 to obtain

F
(1)
2 (q2) = α

2π

∫ 1

0
dz3

∫ 1−z3

0
dz2

2m2 z3 (1− z3)
m2 (1− z3)2 − q2 (1− z2 − z3) z2

. (4.119)

For q2/m2 = 0 this yields the famous result of α/2π. However, how does it
compare to our calculations for arbitrary q2/m2 6= 0? Are we able to produce the
same result as with Equation (4.119)?

In Figure 4.10 we observe a deviation of the results for |q2| → m2, especially
with q2 > 0. For small values of |q2|/m2 we do not see this discrepancy. Instead,
we observe an excellent agreement within our statistical error estimates. The
question now is if this disagreement influences our simulation.

Assuming that all the analytic equations for the DiagMC simulation are correct,
we can blame some of the conditions that have been mixed into the formation of
Equation (4.13). The most probable reason that may spoil the desired equivalence
is that q is spacelike, i.e., q2 < 0. In this case the effective mass is definitely
positive. For timelike scattering energy transmission the effective mass can be
negative, which renders the whole equation ill-defined. As a consequence, we
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Figure 4.11: Sampled number of the diagrams from different loop orders for N =
1010 configurations with q2/m2 = −10−6. The numbers have been normalized to
the one-loop diagram.

should restrict ourselves to evaluations with (small) spacelike momentum q, as
results seem to agree in the corresponding range.

Looking at a simulation up to arbitrary3 loop order we can observe some of the
advantages of the stochastic interpretation. In Figure 4.11 we see the frequency
of the loop orders normalized to the number of one-loop diagrams. The given plot
was created by including the artificial diagram D0 ≡ α. The sampling included
twice as many zeroth-order than one-loop diagrams. The acceptance rate was
about 15 %. As with the other evaluations in this section the projection from
Equation (4.26) was used. The calculation of the weights follows Equation (3.14).

In the simulation we generated N = 1010 configurations with q2/m2 = −10−6.
With the obtained data we are able to estimate

a = 0.001159681(14). (4.120)

This result is close to the currently known value given in Equation (4.1). Most
importantly, we can deduce information about the sampled orders. In principle
we are free to use the information from the sampling process for estimating the
value of any (sampled) order. Of course, we need to have sufficient samples from
the order of interest to provide a decent level of accuracy. This is also possible
with different topologies.

With our sampling scheme we can obtain information about the coefficients cn

3 We only generated code for evaluating diagrams up to five loops as we estimated that we will
not be able to sample (enough) diagrams to go to or beyond five-loops.
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Order n Samples Nn Weight Zn

0 6.228× 109 6.228× 109

1 3.764× 109 9.913× 108

2 1.077× 107 −1.513× 106

3 2.548× 105 1.690× 104

4 2216 −85

Table 4.2: Results for sampling the diagrams from different loop orders for N =
1010 configurations with q2/m2 = −10−6. The artificial diagram has been set to
D0 ≡ α.

as outlined in Equation (4.103). We can estimate the coefficient via

cn ← c1

(
α

π

)1−n Zn
Z1
, (4.121)

with the sum over all sampled signs for the n-order Zn and first-order Z1 diagrams.
For c1 we use the exact value, c1 = 1/2. If we look at the estimation of the two-
loop coefficient, we see that it is in a fairly good agreement with the literature,
e.g., [87]. We have

c2 = −0.3285(23). (4.122)

Other orders contain less samples and therefore cannot yield estimates with the
same agreement. As an example, we can estimate the three-loop coefficient c3 to
be

c3 = 1.158(62). (4.123)

This is still quite close to the value of 1.181 [84]. Even with the O (103) samples
for the four-loop diagrams from the evaluation shown in Figure 4.11 we may still
find

c4 = −3.4(2.4), (4.124)

which is within the range of the known value, −1.91 [11]. In Table 4.2 we see the
weights of all sampled orders for this simulation. No five-loop diagrams have been
sampled in this simulation.

Generating 1010 configurations takes about a week on an ordinary computer.
Using powerful and dedicated resources, such as the custom-made supercomputer
QPACE 2, which is described in Part II, we can obtain 104 more statistics in
the same time. As the method works in the thermodynamic limit, we are mostly
bound by statistics. Future studies may use the created computational resources
for more precise estimations.
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Figure 4.12: Sampled number of the diagrams from different three-loop topologies
for N = 1010 configurations with q2/m2 = −10−6.

Alternatively, we can start in an already estimated order to evaluate only the
next order, e.g., going from four-loop to five-loop. This way a reliable estimate can
be achieved even for higher-orders. Nevertheless, since the number of diagrams
is factorial growing, it is questionable if the desired cancellation still occurs in
the anticipated manner. For the full series the answer is easy, as higher-order
diagrams are weighted much less than lower-order diagrams. Therefore, an exact
cancellation is not really required.

Going back to our original study we see that the same evaluation can be applied
to diagrams within a given order. This way we obtain information which diagrams
are more important than others. The more important diagrams could then be
studied more carefully without having to care about the negligible or potentially
less important diagrams.

For such a study we change our simulation a bit. We exclude the artificial
zeroth-order diagram. Additionally, we do not need the add and remove update
procedures. Initially, we generate values for all required parameters and we choose
a topology randomly by using the already obtained symmetry factors. During the
simulation we can only alter the topology and the set of parameters.

In Figure 4.12 we see the histogram for sampled weights during a simulation
involving three-loop diagrams. We use the 40 topologically unique diagrams, which
potentially contain their mirror diagrams. The diagrams 1 to 28 do not contain
a closed fermion loop. Overall, the whole set of 72 diagrams is involved in this
study.

One thing that can be observed is that the diagrams with closed fermion loops
are quite suppressed compared to the ones with no closed fermion loop. Another
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Topology n Weight Zn Rel. Weight Comparison

3 514 1.0 1.0
14 479 0.93(6) 0.84
21 444 0.86(6) 0.81
18 −331 −0.64(3) −0.64
15 −279 −0.54(4) −0.60
2 −320 −0.62(8) −0.52
1 −202 −0.39(7) −0.42
7 −237 −0.46(4) −0.41
6 188 0.37(5) 0.39
11 −186 −0.36(6) −0.38

Table 4.3: Results for sampling the diagrams from different three-loop topologies
for N = 1010 configurations with q2/m2 = −10−6. The values have been normal-
ized to the largest value (diagram 3). The comparison values have been taken
from [87]. For brevity only the ten most significant diagrams are shown. The less
significant diagrams tend to have a larger error.

thing to note is that the sign of the involved diagrams is mixed. Of course, this
was quite expected, but it illustrates the point, that a variety of different diagrams
needs to be sampled to be able to estimate the weight of a diagram order correctly.
Similarly, a variety of parameters needs to be sampled to estimate the weight of a
diagram topology well enough.

The estimates for the different diagrams can be compared to some reference
calculations, e.g., in [87]. Already with a manageable number of configurations
and a runtime of far less than a day, we can obtain results that align very well
to exact results. Since the diagram space grows factorial, we do not expect to
use this method for exact calculation of arbitrary order. The region, where it
actually shines is to give us an indicator of the dominant topologies quite fast.
This behavior can be observed in all of our studies.

In order to estimate the value of a diagram in the previous study, we need to
have at least the exact value of one of the involved diagrams. Otherwise we are
not able to use our estimation as outlined in Section 3.1 by using Equation (3.18).
The values in Table 4.3 have been obtained by normalization to the largest value
(diagram 3). For comparison we also normalized the values found in [87] to their
largest value. The errors on the normalized values have been evaluated by applying
Jackknife on the binned samples.

In Figure 4.13 we see the diagrammatic representations of the three diagrams
that have been estimated to contribute most to the three-loop corrections. The

94



(a) n = 3 (b) n = 14 (c) n = 21

Figure 4.13: The estimated three most significant diagrams (including mirrors) to
the three-loop correction of the anomalous magnetic moment of the electron.

estimation included mirror images. Hence each of the diagrams includes a mirror
diagram that is obtained by time-reversal.

Finally, we may want to increase our sampling efficiency by lowering the au-
tocorrelation time. One possibility would be to adjust the value of the artificial
diagram D0 to be closer to D1(k). However, a constant is a suboptimal approxima-
tion to a function such as D0(k). A much better solution is to avoid the artificial
diagram altogether. This is possible, since we know already the value of D1(k).
Furthermore, we have studied many ways to compute partial values of the integral
on the fly.

It is possible to use the same ansatz as chosen for simulating the polaron model
in Section 3.3. This way we obtain the full integrand up to arbitrary orders. The
estimated data can then be used in further evaluations that go beyond the value
of the integral. Again, the polaron problem already illustrated the basic steps for
such evaluations.
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5
Conclusions

Observables in quantum field theories may be expressed as infinite sums of Feyn-
man diagrams. During the last decade it has been realized that stochastic methods
are very useful to estimate the value of the entire diagrammatic series. This re-
quires a diagram-generating procedure, which is ergodic, such that all diagrams
contributing to the series must be generated. Furthermore, it is necessary that
each diagram is generated with a probability proportional to its weight in the
series to be studied.

In this work we presented the method of Feynman diagram sampling using
DiagMC. We applied the method to several problems in QFT. This presentation
included the application to a simple model in condensed matter physics and the
calculation of the anomalous magnetic moment of the electron. Along the way
we developed efficient techniques for the generation and optimized evaluation of
diagrams. We gained general insights relevant for its application for other QFTs
like QCD.

From a computational perspective DiagMC can be easily parallelized and does
scale very well. This lets us utilize additional processing powers, such as GPUs [133].
The ability to run simulations in the thermodynamic limit right away is definitely
appealing. In this thesis we presented a variety of problems that can be solved
using Feynman diagram sampling.

The success of the DiagMC method for a range of applications is, to large
extent, due to small error bars we have for the sign-alternating sums of higher-
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order diagrams. In general, it is expected that the computational complexity
of getting small error bars for sign-alternating sums in the limit of large N is
exponential (or even factorial) in N since it usually scales with the configuration
space volume.

The method alone will not be a replacement for studies based on the lattice.
Nevertheless, it can be used as a useful extension or possible replacement for
related methods, such as the numerical stochastic perturbation theory [91]. As
outlined we may need to consider a combination of analytic diagrammatic tricks,
e.g., skeleton diagrams, as well as general resummation techniques to potentially
estimate quantities correctly. This introduces a model-dependency that is not
comparable to methods based on first principles, such as LQCD. Furthermore,
regularization and cancellation need to be investigated and well understood.

In non-Abelian gauge theories Schwinger-Dyson equations can be written in
terms of gauge invariant quantities. A formulation of Schwinger-Dyson equations
known as Migdal-Makeenko loop equations [92] is using gauge invariant Wilson
loops. The set of diagrams F could then contain closed sequences of links on
the lattice. However, one of the main issues with this ansatz is the stochastic
interpretation to gain physical insights.

Generally, the diagrammatic methods seem to be good fits and viable compan-
ions for certain problems, especially in the area of solid state physics. In particle
physics no new insights have been obtained by using them. This work presents
a first approach to apply DiagMC to a physically relevant QFT, not a toy model
or problem originated from condensed matter physics. We showed that using
DiagMC we could retrieve the known contributions to the anomalous magnetic
moment of the electron in a very efficient manner.

As of today, only simple theories with known results or simplified models have
been studied, e.g., φ4 theory [34] discussed in Appendix E.3. Interestingly, the sign
problem of some models, such as the O(N) sigma-model in the large-N limit [25],
becomes milder with DiagMC as the continuum limit is approached. This gives us
some hope for further applications of DiagMC algorithms to asymptotically free
field theories.

In the future, the constructed method could be used to include diagrams besides
the ones from QED. Additionally, further approaches, such as mixing a topology
dependent selection scheme with a pregenerated code may be investigated. Finally,
we have to examine is if we can also obtain these results using Schwinger-Dyson
equations.
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Part II

The QPACE 2 Supercomputer



6
Introduction to Supercomputing

The term supercomputer was coined by the CDC 6600 mainframe computer. The
CDC 6000 was introduced in the 1960s. Its outstanding ability was that it outran
all other computers at its time by a full magnitude. Since then a supercomputer is
a special computing device that is at the front-line of contemporary processing ca-
pacity. This includes the speed of calculations, memory and networking capability
in terms of latency and bandwidth.

The history of supercomputers has seen quite a few changes in the fundamental
design of such machines. In the 1970s it was particularly the instruction set and
processor design that defined a supercomputer. Twenty years later the industry
had made a dramatic shift to thousands of processors, which would not have been
possible without improved networking hardware and much lower prices for CPUs.

Today we are going towards exaflops, i.e., 1× 1018 flop per second, where a
floating point operation (flop) is usually referring to single precision arithmetic.
Such a number cannot be achieved by scaling the hardware alone. Fundamental
design changes are required again. This has been realized in the previous decade,
when the classic version of Moore’s law, stating that the chip performance will
double every 18 months [77], came to an end.

Nowadays Moore’s law is reduced to state that the number of transistors per
area will double every year. The frequency of computing devices is not increased
anymore. In the end the additional space due to smaller and more efficient pro-
duction processes is used for additional processor cores. The exponential growth
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Figure 6.1: Number of transistors, cores, and the standard frequency in a sin-
gle processor. It starts in the year 1971 with the introduction of the Intel 4004
processor. The data is taken from the microprocessor chronology [30].

of transistors per processor is illustrated in Figure 6.1.
The end of the era of increasing frequencies is confirmed by the data illus-

trated in Figure 6.1. As a major consequence we see the beginning of a new era:
Multi-core processors with highly efficient cores in terms of power consumption.
The tendency for more efficient cores, however, brings us back to a development
that started in the 1970s. Building more efficient cores is possible by including
more advanced instructions, i.e., single instructions that do the work of multiple
instructions in a single cycle.

The instrument of measuring the innovation and developments in the supercom-
puting industry is the Top 500 list [139]. It contains a ranking of the five hundred
fastest computer systems in the world. The list has been established in 1993 and
is published twice a year. It can be used to observe the growth of supercomput-
ing performance. Additionally, it gives some strong hints and impressions about
available computing performance in general. The left plot in Figure 6.2 reveals
that the exponential growth of the fastest supercomputer is roughly the same as
the one of the slowest supercomputer that made it into the Top 500.

high performance computing (HPC) is driven by the goal to come as close as
possible to the theoretical peak performance of a system. It is therefore required
to specialize the implementations of the underlying algorithms for the target ar-
chitecture. Nevertheless, even good programmers will not be able to achieve sat-
isfying performance without touching the algorithms. There is already a long
list of existing advanced parallel algorithms, that provide a minimum overhead in
synchronization.
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Figure 6.2: Growth of supercomputers performance according to the list of the
500 fastest supercomputers [139].

Recently another important list has been initiated: the Green 500 [49]. This
list also contains a ranking of supercomputers. However, while the Top 500 ranks
its entrants by their computations per second, the Green 500 ranks computers by
their efficiency. The efficiency is measured in flops per Watt, i.e., computations
per Joule. One condition to be in the Green 500 is that the machine is sufficiently
fast to enter the Top 500. As a result machines may be required to leave the
Green 500 despite being efficient enough.

The development towards better efficiency is of course driven by consumer prod-
ucts. Especially portable devices such as smartphones, tablets or laptops benefit
from more power efficient CPUs. In the end not only the hardware has to improve
for more effective computing, but also the software. The plot on the right in Fig-
ure 6.3 shows the development of the Green 500 list. An interesting quantity that
can be obtained by performing an exponential fit over the acquired data. Using the
performance data from the Top 500 and the shown efficiency from the Green 500
we can calculate the development of the power consumption per supercomputer.

The trend to very efficient supercomputers is crucial for further performance im-
provements. The exponent of the performance development of an average Top 500
system is still higher than the exponent of an average Green 500 machine. Right
now the power demand is already on the boundary to a disaster from an ecologi-
cal and an economical point of view. The rising demand will not help to alleviate
this situation. Therefore we require much more efficient systems. Active research
has to be done on more efficient cooling, network infrastructure, and processing
architecture.

In the following chapters we describe the QPACE 2 supercomputer. The project

101



2008 2010 2012 2014 2016
100

101

102

103

104

Year

Effi
ci

en
cy

[M
Fl

op
/J

]

First
Last

Average

Figure 6.3: Efficiency development of supercomputers according to the list of the
500 most efficient supercomputers [49].

aims to provide a highly efficient computing platform for LQCD. Additionally,
general purpose applications may be performed very efficiently. In Chapter 7 we
look into the architecture of the system, as well as its computing and network
units. A cooling technology that performs well was required to deal with heat
transportation with low energy costs. The discussion of our solution takes place
in Chapter 8.

While the project is very interesting on the hardware side, there are a lot of dif-
ferent software topics as well, which are discussed in Chapter 9. Most importantly,
we go through a list of best practices to use SIMD and other techniques most effi-
ciently on the QPACE 2 system. Finally, we introduce a new pattern, which tries
to decouple a necessary scaling mechanism from specific implementations without
significant performance loss.
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7
The QPACE 2 Supercomputer

7.1 The QPACE 2 Project

Performing LQCD simulations is a compute-intensive task. The computation
of sufficiently large lattices requires an enormous amount of calculations [55].
The most cost-effective systems, which are capable of finishing the computation
within a reasonable time are custom-built supercomputers. Herein we describe
the QPACE 2 supercomputer [13].

Our supercomputers have to be customized to provide all properties to be per-
fectly suited for the application of LQCD as introduced in Section 2.5. The first
QCD Parallel Computing Engine (QPACE) machine is a perfect example for a
custom architecture that is suited for QCD applications [14]. Its purpose was to
provide a maximum of computing efficiency for LQCD applications, while keeping
the required energy at a minimum. The architecture was highly optimized for
power efficiency, placing first on the Green 500 ranking [49].

The release cycle for computer hardware is very fast. The rapid development
results in the need to replace machines every few years in order to increase the
overall performance by a full magnitude. It is therefore necessary to design sys-
tems in such a way, that core components can be easily exchanged with improved
versions. A modular design tries to minimize costs in both, development and
production.

The QPACE 2 project has been established as the natural successor of the orig-
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Figure 7.1: The classic architecture for a CPU features a single core that contains
a cache hierarchy with access to main memory.

inal QPACE project [61]. Again it aims for high power efficiency. This is an
important goal, since the power bill of a supercomputer usually exceeds the price
of purchasing the product by far. Additionally, QPACE 2 tries to solve other
important problems like providing an environment that is very familiar for most
programmers and allowing even larger lattices to be simulated than its predeces-
sor [103].

7.2 Architecture

QPACE 2 uses a modular architecture based on a Von Neumann model [105]. The
system features a very modern and power efficient cooling system and the ability
to change the computational heart of the system [13]. The system’s CPUs are
minimalistic and would not be used as the workhorse of a power efficient super-
computer. Instead the QPACE 2 system uses accelerators. The trend towards
accelerator based systems also marks the end of the classical single core architec-
ture shown in Figure 7.1.

In the previous years graphics processing units (GPUs) have widely been used
as computational accelerators. However, using GPUs for ordinary computational
tasks might be problematic. First, programmers might write code, which is not
suited for the special architecture of such a GPU. To overcome this programmers
need to spend more time on little details. Second, previously written code has to
be ported, even though sometimes porting an application may be straightforward.
A requirement is a certain similarity between the key features of the used archi-
tectures. A shift from CPU to GPU based computation presents a dramatic shift.
This makes porting existing applications tedious. Third, there are applications
for which the architecture of a GPU might not be the ideal choice. Here even
experienced GPU programmers will not be able to outperform the application’s
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Figure 7.2: The MIC architecture features many weak cores that are connected
via a ring bus interface.

performance on CPUs.
The accelerator that we use is the Intel Xeon Phi, which has been codenamed

Knights Corner (KNC). The novel feature of this product is to combine the
advantages of a GPU with the benefits found in ordinary CPUs. Effectively, the
combination means that programmers can still rely on their knowledge for x86
systems, while enjoying the advantages of a Many Integrated Core (MIC) system.
The block diagram displayed in Figure 7.2 represents the essential design, which
is a series of lightweight CPUs connected via a ring bus.

QPACE 2 uses one CPU and four accelerators per node. The four Xeon Phis
communicate over the Peripheral Component Interconnect express (PCIe) bus.
This enables a very fast communication with low latency. A more detailed de-
scription of the used co-processor is given in Section 7.3.

The communication with other nodes is established over InfiniBand. Here the
layout is the topology of a hyper-crossbar. A hyper-crossbar is the ideal solution
for enabling closest neighbor communicator despite a limited wiring. The concept
is described in greater detail in Section 7.4. The section also contains basic infor-
mation on the used InfiniBand adapter card and some performance evaluations.

Parts of the architecture of QPACE 2 are inspired by its predecessors QPACE
and iDataCool (IDC). While QPACE featured a custom field-programmable gate
array (FPGA) network [61] with machines that used the IBM Cell processor,
IDC [99] presented a standard architecture that used hot water cooling. The net-
work and processing power has been replaced by an industry solution to guarantee
support and reduce the development time.

The diagram in Figure 7.3 shows the conceptual architecture of a single QPACE
2 compute node, called a brick. A brick contains a network adapter with a dual
port network processor (NWP), the four KNC cards, and a host processor card.
The host processor card is named Juno. Juno is equipped with the Intel Xeon
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Figure 7.3: The conceptual architecture of a single QPACE 2 brick. The PCIe
switch connects the four co-processors with the network processor and the CPU.
The connections are given by (1) PCIe Gen. 2 x16 with 8 GB/s, (2) PCIe Gen. 3
x16 with 16 GB/s, and (3) FDR IB with 56 Gb/s.

E3-1230L processor running at 1.8 GHz. All these cards are connected via the
PCIe bus provided by the PLX switch that exists on the midplane. The midplane
is named Mars. The PLX switch has 96 lanes with PCIe 3.0 standard. Each of
the six PCIe slots has 16 lanes.

Additionally, every brick has several additional connectors, e.g., for USB, VGA,
a single 1 Gb/s Ethernet port to the host processor card and a single 100 Mb/s
Ethernet port to the baseboard management controller (BMC). The connectors
have been placed on the brick’s front panel. The BMC of the host processor card
is discussed in Section 7.5. There are connectors for debugging and light-emitting
diodes (LEDs) for status information.

The QPACE 2 project has been proposed for a single rack installation. One
rack consists of 64 bricks, or 256 KNCs. The rack fits 8 bricks in a row with 4
bricks side by side. The idea to fill the rack from both sides leads to an even
higher compute density. Since a single brick has a height of 3 U, we need 24 U for
all bricks. The 19 in rack comes with a height of 42 U. It still has some space left
that is used for power distribution, cable management, a login node, as well as
three Ethernet switches, and four switches for the brick-to-brick communication
over InfiniBand.

The single rack of the QPACE 2 system has two power distribution units
(PDUs). They are responsible for distributing the available power to the power
supply units (PSUs), which are connected to the bricks via conductor rails, which
are made of copper. The PSUs consists of five CPR-2021 units build by Com-
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puware. Each unit can deliver up to 2000 W. Ultimately, the purpose of this
architecture is to provide 12 V to every Mars by a so-called power backplane. The
power backplane is directly connected to the conductor rails.

Such a high power consumption results in excessive energy dissipation. An
effective cooling solution is therefore a crucial requirement. The cooling solution
for QPACE 2 is discussed in Chapter 8.

7.3 The Intel Xeon Phi Co-Processor

The Intel Xeon Phi co-processor is the first x86 compatible accelerator card on the
market. It combines some of the advantages of GPUs with ordinary CPUs. One of
the features is that programming for the Xeon Phi feels like programming for an
ordinary processor, that just provides a full magnitude more cores. Nevertheless,
in order to use as much of the available computation power as possible, at least a
basic understanding of the Xeon Phi’s architecture is required.

If we look at Intel’s roadmap we find that production processes in 2015 are able
to yield 14 nm nodes with gate lengths smaller than 5 nm. Products created by
such processes are part of the Haswell and Skylake microarchitecture generation.
Each generation contains at least two product lines, based on different processes.
This is known as the Tick-Tock model. A “tick” represents a shrinking of the
process technology using the currently available microarchitecture. The following
“tock” uses the same process, but designates a new microarchitecture. Recently
an optional “refresh” cycle has been introduced, which accounts for the expanding
development time by releasing a smaller update to the current microarchitecture.

Vector instructions have evolved from 128 bit Streaming SIMD Extensions (SSE)
in the Nehalem generation to the 512 bit AVX-512 instruction set in Skylake. The
Skylake microarchitecture generation features the first 10 nm process, which is
produced under the codename Cannonlake. The Xeon Phi is based on the 22 nm
process used for the products with codename Ivy Bridge and Haswell CPUs. Be-
sides the silicon fabrication there are barely any other similarities to standard pro-
cessors from these architectures. The Xeon Phi is actually based on the Larrabee
microarchitecture [106].

There are a number of different models that have been released for the Xeon
Phi. In Figure 7.4 a model with active cooling is displayed. All numbers are given
for the Intel Xeon Phi 7120X, which is the version that has been chosen for the
QPACE 2 project. This version features more memory, a higher frequency, and
more cores than other models. Compared to the model 7120P, the 7120X comes
without any bracket or passive cooling unit. This is ideal for our purposes, as we
want to mount our own cooling solution.
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Figure 7.4: An Intel Xeon Phi with active cooling. Picture courtesy of Intel [33].

In the following we call the basic unit of computation a core. Every core has
a number of arithmetic logic units (ALUs), which perform operations given in a
program. A program is defined by its current state, the stream of instructions, and
the data to handle. A core contains fast memory to cache upcoming or reoccurring
instructions or data. A core of the Xeon Phi is much less powerful than one of
any current Xeon processor. As a rule of thumb we may need at least a factor of
three more cores on the Xeon Phi to achieve a similar performance [124].

Typically, a CPU contains more than one core. This allows running several
tasks at the same time. In operating system (OS) terms we denote these tasks as
threads in general. The OS schedules threads according to a priority list, which
might lead to threads having to wait when all cores are currently busy processing
other tasks.

The Xeon Phi 7120X has 61 cores, where each core delivers four hardware
threads. Nevertheless, execution per thread is only possible every other cycle,
which reduces the effective frequency by half. Due to the complicated execution
model threads are used most efficiently if it is ensured that two similar operations,
i.e., operations which share any part of the same execution pipeline, are not per-
formed at the same time. Since the Xeon Phi runs a customized OS, it makes
sense to dedicate a full core to the corresponding operating system. Therefore, we
should only use a maximum of 240 threads over 60 cores.

A critical aspect for every multi-core processor is the concept of sharing memory.
By considering some memory being shared with another processor, it is possible
to alleviate common communication problems. A good example would be basic
synchronization. The Xeon Phi has multiple memory layers. It does not use the
random access memory (RAM) of the host, but provides its own memory. The
memory is following the Graphics Double Data Rate (GDDR) 5 standard, which
is comparable to the memory available on GPUs. Our model ships with 16 GB of
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Figure 7.5: Core pipeline of the Xeon Phi architecture. The instruction fetcher
and branch prediction unit gets the data into the prefetch buffers of the four
contexts. The decoder bundles the data from the buffers, before the picker function
determines the execution context at a given clock cycle.

RAM. The L2 cache is shared between the two hardware threads.
To distinguish between components that are directly involved in the instruction

pipeline and those, which are only essential for the general performance, the terms
core and uncore are being used. The latter describes the functions of a CPU which
are essential for performance, without being strictly required. This includes the
QuickPath Interconnect (QPI) controllers, the snoop agent pipeline, or the on-die
memory controller as well. The core, however, contains the required components
such as the ALU, floating point unit (FPU), L1, or L2 cache. Some bus controllers
such as PCIe or Serial Peripheral Interface (SPI) are actually part of the chipset
and not in the CPU at all.

The superscalar processor core is implemented to provide a 64 bit in-order ar-
chitecture, which fetches and decodes instructions from four hardware threads.
However, it is important to know that instructions are executed only every other
cycle, resulting in four threads that use half of the frequency. Additionally, to
standard x86 and x64 instructions on 32 bit and 64 bit operands, special Intel MIC
instructions are included, which operate on 512 bit operands. However, none of
the previous single instruction, multiple data (SIMD) extensions is available. This
excludes instruction sets like Multimedia Extensions (MMX), SSE or Advanced
Vector Extensions (AVX).

Instead a new instruction set has been included, which makes use of the ded-
icated 512 bit wide registers and Vector FPU (VPU). This VPU is provided for
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Parameter L1 L2

Coherence MESI MESI
Size 32 KB + 32 KB 512 KB
Associativity 8-way 8-way
Line Size 64 B 64 B
Banks 8 8
Access Time 1 cycle 11 cycles
Policy pseudo LRU pseudo LRU
Duty Cycle 1 per clock 1 per clock
Ports Read or Write Read or Write

Table 7.1: The main properties of the Xeon Phi’s L1 and L2 caches. The LRU
cache policy discards the least recently used items first.

each core. The special instruction set features efficient support for reciprocal,
square root, power, and exponent operations. Special operations, such as scatter,
gather, or streaming store capabilities to achieve higher effective memory band-
width are included. Some special operations, such as fused multiply-add (FMA),
are executed in the VPU instead of the standard ALU pipelines. Furthermore,
the Xeon Phi introduces novel vector scatter and gather operations [88].

Even though the processor is said to be x86 compatible, it is missing full com-
patibility. For instance, binary support is excluded. Existing programs need to
be recompiled from their sources to work with the Xeon Phi. A handful x86 in-
structions are missing, including a few fairly common ones. In the end, the added
features, such as the new VPU, streaming stores and others, are considered more
important than the lack of real x86 compatibility.

There are two separate L1 caches. Each cache can contain 32 KB of information.
One is for data and the second one is specialized for instructions. Associativity
is 8-way, with a cache line-size of 64 B. On the Xeon Phi two instructions can
be issued per cycle, as long as both are split to two different pipelines, which are
called U-pipe and V-pipe [122]. The V-pipe can only be used to execute scalar
instructions. The V-pipe is responsible for prefetches, loads, and stores. All of the
VPU instructions are thus issued from the core through the U-pipe. The load-
to-use latency of the L1 cache is 1 cycle, which allows using a requested value in
the next cycle. Vector instructions follow a different pattern, which might take
longer. The block diagram in Figure 7.5 illustrates the core pipeline of the Xeon
Phi architecture.

The L2 cache is a unified cache capable of storing data and instruction informa-
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Figure 7.6: Annotated illustration of the front PCB of a Xeon Phi. The key
components have been labeled with arrows and a short description.

tion. Each core contributes 512 KB of L2 to the globally shared L2 cache storage.
The private L2 cache is kept fully coherent by a distributed tag directory. Asso-
ciativity is 8-way as with the L1 cache. The cache line-size is 64 B. An important
difference is, however, the raw latency is much higher than for the L1 cache. We
have at least 11 clock cycles load- to-use latency. The most important properties
of the two cache levels are presented in Table 7.1. The least recently used (LRU)
policy requires keeping track of what was used when, which is expensive if we want
to make sure that the algorithm always discards the least recently used item.

The GDDR memory access is implemented over a ring bus. The bandwidth of
the ring bus is 512 bit. It represents a bidirectional ring interconnect, called the
core ring interface (CRI). The CRI hosts the tag directories and is responsible
for connecting the L2 cache of every core to the memory controllers. The PCIe
communication is managed on the CRI. In total eight memory controllers are
available to every core for memory access via the ring bus. A memory controller
contains the logic necessary to load, store, and refresh dynamic RAM (DRAM).
Without constant refreshes, DRAM loses the stored data, since the capacitors leak
their charge within some time t ≥ 64 ms [43].

The Xeon Phi is an ideal system for highly parallelizable applications, e.g., an
application that makes use of the DiagMC algorithm for simulating a field theory
problem as discussed in the first part. In general, applications that seem to be
well-suited for running on GPUs may be good candidates for the running on the
Xeon Phi. The reason is that the Xeon Phi combines the advantage of an ordinary
x86 CPU with principles that have been seen in the basic architecture of GPUs.

In Figure 7.6 we get a glimpse of the front of the Xeon Phi’s printed circuit
board (PCB). The most important visually accessible components have been
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annotated with a short description. We are mostly interested in the location of
the thermal sensors. The information that can be read out from these sensors is
valuable for the design of our cooling system. We come back to the sensors shown
in the picture and the ones placed on the back of the PCB in Section 8.1.

7.4 InfiniBand Network

A crucial task for any HPC system is the connection between the various nodes.
The connection usually follows a certain technical specification and design. For
QPACE 2 we choose the InfiniBand (IB) network technology. The topology of the
network has been selected to form a hyper-crossbar. In this section we will explain
the basic reasons for our choice and outline the expected performance.

We start by introducing the selected hardware, which utilizes the latest gener-
ation PCIe standard.

7.4.1 Connect-IB

The reasons for using an IB network in an HPC system are obvious: The very high
throughput and the very low latency provide an ideal basis for fast message trans-
port. Originally developed for data centers, it is today the most used interconnect
system for HPC systems. It is used by the majority of Top 500 contestants [139].
Over half of the entries choose IB for connecting their computing nodes. Addi-
tionally, large computing centers, such as the ones from Google [6], are relying on
IB. Here the most important reason to choose IB is its efficiency, especially in
terms of power consumption per transfer unit.

Our choice is the Connect-IB adapter. This PCIe card is produced by the
company Mellanox. The maximum bandwidth is delivered across the PCIe 3.0
standard with 16 active lanes by using two ports of fourteen data rate (FDR) IB.
Here we can take full advantage of FDR. That configuration is able to supply a
sufficiently large throughput together with low latency. Furthermore, Connect-IB
could be used in conjunction with the PCIe 2.0 x16 standard.

Next to the guaranteed bandwidth and low latency services we additionally like
to have direct memory access (DMA) instead of programmed input / output (IO)
(PIO). Essentially, this moves the data directly to the IB card instead of having to
go over the CPU. This maximizes the CPU efficiency and accelerates parallel and
data-intensive performance. Connect-IB offers IO consolidation [57], which may
be used to aggregate multiple traffic types into a single switch. The Connect-IB
card itself is considered to be power efficient, which makes it an ideal device for
the QPACE 2 project.
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The ping latency is supposed to be as low as 1 µs, with over 130× 106 messages
per second. The bandwidth over IB is specified to be greater than 100 Gb/s.
Most notably DMA allows us to communicate with the card directly from the
co-processor. Even though the basic communication is mostly solved via software,
the enhanced hardware support prevents otherwise unnecessary copy operations.
Here we can directly copy data from the co-processor to the interconnect and vice
versa.

Last but not least, the adapter contains two ports. This makes it possible to
map every brick to two switches. Our topology requires this particular mapping.

7.4.2 Hyper-Crossbar

We choose a hyper-crossbar topology1, which has already been used in other sys-
tems, most notably in the Computational Physics by Parallel Array Computer
System (CP-PACS) project [104] developed by the Center for Computational Sci-
ences at the University of Tsukuba. The topology can also be used efficiently for
Ethernet networks [140].

The basic idea is to map every brick in the system to NS switches, where NS

is the dimension of the topology. Since we decided for the Connect-IB adapter,
we can use a two-dimensional topology without having to install further IB cards.
Here we have to assign every brick to two switches.

Our IB switches provide 36 ports. That allows us to connect 32 bricks to a single
switch while having 4 extra ports that can be connected to a storage system and
to a torus of switches. All in all the hyper-crossbar has a higher connectivity than
the typical torus solution. We obtain full connectivity in every single dimension
with just a single switch hop. The connectivity between each brick is given by
performing only a few hops between the switches.

In Figure 7.7 the hyper-crossbar used in QPACE 2 is shown. Each ellipse
is representing a single brick, which contains a Connect-IB adapter, providing
connection to two switches. Hence every brick is connected to a horizontal and a
vertical switch. In total there are four switches for the whole rack, connecting all
64 bricks, or all 256 Xeon Phi co-processors. It is easy to prove that the maximum
hopping distance for this scenario is 2. The maximum number of hops is only
necessary if the communication is diagonal, e.g., from a brick in the upper left
quadrant to a brick in the lower right quadrant. At least one switch has to be
used.

The hyper-crossbar topology generalizes easily to higher dimensions. In our spe-
cific scenario, however, we apply a mapping from higher dimensional applications

1 as suggested by Peter Boyle
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Figure 7.7: The hyper-crossbar topology for 8 × 8 bricks. Each of the bricks has
2 ports and is connected to one switch in the horizontal (blue) and one switch in
the vertical (orange) direction. The switches are indicated by rectangles. They
form a 2× 2 mesh.

to a lower dimensional hyper-crossbar.

7.4.3 Performance

The performance of a proposed network solution has to be evaluated intensively
before any decision should be made. For these evaluations we use a variety of
different setups, which cover different cases by emulating the future system in the
given scenario as well as possible.

In the following we look at one of these benchmarks. The purpose of the de-
scribed benchmark is to investigate the performance of the Message Passing Inter-
face (MPI) library against using plain IB verbs within a brick. The latter defines
the application programming interface (API) of the IB cards and is considered
much more low-level than using a wrapper library, such as MPI.

The setup for this benchmark looks as follows:

• A host CPU attached to the first socket of a sufficiently well equipped host.
The host is configured with the distributed OpenFabrics Enterprise Distri-
bution (OFED) stack in version 1.5.

• A single port FDR IB card (Connect-X3) attached to the first socket.

• Two KNC co-processors labeled mic0 and mic1. Both are attached to the
first socket of the host.

We are interested in two quantities: The bandwidth BW and the latency δt.
We start by evaluating the performance of communication between two points
by using the MPI library in conjunction with the default network protocol of the
KNC, which is called Symmetric Communications Interface (SCIF). For the points
we choose two unique values from the set containing the host, mic0, and mic1.
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As benchmark suite we use the MPI-based OSU benchmarks [89]. Some details
about the OSU benchmarks are outlined in Section 9.6.5.

We are not limited to SCIF. An interesting comparison is the possibility of
using the Mellanox ConnectX (MLX) adapter. Here we go over the IB network to
circumvent SCIF. We can then compare the rows of the plots in Figure 7.8 with
each other. While SCIF does not give us a decent performance for small message
sizes, we obtain lower latencies for larger messages. Additionally, SCIF reaches
the bandwidth limit in any scenario, not just in cases where we measure the host
to KNC performance.

We only show the combinations of sending from host to mic0, mic1 to host, and
mic0 to mic1. The direct communication between the co-processors can be re-
versed to send from mic1 to mic0 without observing any impact on the bandwidth
or latency measurements. In general we know that exchanging the MICs will not
change the outcome.

Since both ways of using MPI have shown issues in different cases, we need a
third option. We use the IB verbs API to directly access the device for managing
the communication. One advantage of such an approach is the flexibility. We
are free to use specialized commands that go beyond the scope of the MPI spec-
ification. The most striking benefit is the reduction of overhead due to software
abstraction. Using IB verbs for our communication excludes the previously used
OSU benchmarks. Instead we now use a set of standard benchmarks delivered
with the IB tools.

In Figure 7.8e and Figure 7.8f we see the bandwidth and latency for testing
the MLX adapter from an application in conjunction with the IB verbs API. We
observe that SCIF still seems to utilize the bandwidth better in scenarios where
the co-processor is sending the data.

In conclusion we can say that IB verbs should be preferred over ordinary MPI.
This statement can be already confirmed for intra-node communication from the
provided benchmark. The latency is slightly smaller for small message sizes and
the bandwidth indicates a much better behavior. The maximum bandwidth is
also reached earlier. Nevertheless, some of the downsides, that have been seen in
the comparison of MLX against SCIF, can be observed again. For instance, we
can detect a different behavior between sending from the host to the co-processor
and sending from the Xeon Phi to the host.

Further benchmarks revealed other interesting aspects. As an example we re-
alized that the write latency is lower than the read latency. Additionally, a write
saturates the bandwidth faster than a read. Most of these benchmarks have been
made with a single active port using a FDR switch and cables with support for
FDR connecting two suitable hosts with a single integrated KNC.
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Figure 7.8: Performance of the communication by using MPI over SCIF (Fig-
ure 7.8a, Figure 7.8b), MPI over MLX (Figure 7.8c, Figure 7.8d), and IB verbs
over MLX (Figure 7.8e, Figure 7.8f). The opposite directions yield the same result
and have been omitted.
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It has been confirmed that using the dual port effectively doubles the bandwidth
for actually sending data. Benchmarks which used the dual ports “simultaneously”
have been set up just like the single port benchmarks, however, with the two
measurement processes running in the background. Furthermore, experiments
with the maximum transmission unit (MTU) show that a large value for the MTU
is better. For us the optimum seems to be around 2048.

7.5 Baseboard Management Controller

The QPACE 2 system uses Intelligent Platform Management Interface (IPMI) for
resource management and monitoring. IPMI defines a set of interfaces that can
be used to manage computer systems and monitor their operations. We use IPMI
to control the status of a brick, monitor the brick’s activities, and gain remote
access to the brick’s hardware. An important component in the implementation
of the IPMI specification is the BMC.

The BMC is responsible for the intelligence in the IPMI architecture. It is a
special microcontroller, which is embedded on the Juno card of a QPACE 2 brick.
The BMC manages the interface between the system management software and
the CPU card. As an example there are various sensors, such as the temperature
sensors on Juno, which are being monitored on the local BMC. If a tempera-
ture sensor exceeds a given threshold over a predefined tolerance time, the BMC
can autonomously initialize the shutdown sequence. This should prevent possible
damage by overheating.

The BMC consists of several software components that make controlled board
management possible. The Das U-Boot boot-loader starts and loads our primary
OS image, which is then automatically configured. On the hardware side the BMC
uses an integrated ARMv9 processor with 128 MB RAM and a 16 MB NAND flash
drive. The flash drive stores the firmware, which is loaded during the startup. One
of the buses that is controlled from the BMC is the Inter-Integrated Circuit (I2C)
bus.

For the QPACE 2 system we need to provide a custom version of the firmware.
The custom software gives us additional management software, which is adjusted
to the capabilities of our brick. As an example we can read the values from the
custom temperature and humidity sensors mounted on the brick. The BMC can be
controlled remotely via SSH, thus allowing scenarios such as emergency shutdowns,
reboots without physical interaction, and system monitoring. The necessary power
management is possible by using the integrated hot swap controller over the I2C
bus.
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8
Hot Water Cooling

8.1 Applications for Cooling Benchmarks

The ability to compare tests across different devices requires a well defined test
setup. Next to the basic hardware configuration we also rely on the behavior of
our software. The software is used to drive the test by running a set of predefined
operations.

Our selection of adequate tests contains the High Performance Linpack (HPL)
benchmark, which is one of the standard tests for HPC systems, and the Burn-MIC
application. While the former is solving a problem with fixed size and therefore
constraint time, the latter guarantees constant usage for an arbitrary amount of
time. The implementations are listed in Appendix F.2.

8.1.1 High Performance Linpack

The Linpack benchmark provides a measurement of a system’s floating point com-
puting power. The application tries to solve a system of linear equations Ax = b

for a dense matrix A ∈ RN×N . The operation count that is associated with the
benchmark is given by 2N3/3 + 2N2. The size of the problem is determined by
the size of the machine. In case of a single co-processor the maximum size is
approximately N = 4× 104. For a whole brick N doubles. This is justified by
providing four KNCs instead of one. Hence the available memory quadruples.

We use the HPL in the most recent form [42]. The application links to any
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Figure 8.1: Power readings during the beginning of our test applications. There
is only one application running on a single KNC simultaneously.

available Basic Linear Algebra Subprograms (BLAS) and MPI implementation,
however, we favor the binaries from Intel as they are already optimized for the
Xeon Phi. Therefore we use the BLAS implementation is provided by the Math
Kernel Library (MKL). The whole HPL application comes in multiple versions,
which can be compiled for hybrid execution, offloading, host or KNC only. For
the cooling tests we exclusively use a KNC only version, which is run on a single
KNC only.

A typical Linpack run does not result in a continuous power or computation
demand. Instead we see only a spike in the power consumption during a very
short while. Most of the time is spent on the preparation of a run or the cleanup
afterwards. We use a Linpack configuration that results in multiple runs to max-
imize the stress on the co-processor. In these runs we vary the size of the matrix
N , going from rather small sizes to larger ones. Each size is run three times to
get more statistics about the KNC’s actual performance rating.

In Figure 8.1 the characteristic plot for the HPL application running on a single
co-processor is drawn. We do not observe a constant power drain, but rather a
power consumption that shows the behavior of a rectangular function that appears
during the computation with a width that is proportional to the given work-
load. The resulting temperature plots have to follow a sawtooth function. We
have an immediate rise when the computation starts and a slightly slower decline
afterwards. Before the actual computation quite a lot of time is spent on preparing
the run.

The version of HPL that is used for our cooling benchmarks is not the same ver-
sion that is deployed for benchmarking the whole system. Here we consider a more
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optimized variant [69], which runs over the whole rack with a single configuration.
The configuration has been tuned for the desired run.

8.1.2 Burn-MIC

The Burn-MIC application is a custom software that tries to stress the KNC,
maximizing its power consumption. The application uses all available threads of
a KNC. The threads are pinned to their cores via affinity flags (see Section 9.6.4).
The target core is detected by using a unique identifier for each thread. This
identifier is determined by the Open Multi-Processing (OMP) framework, which
is used for parallelization.

Each of the four threads per core are loaded with work. The first thread will
work in loading data from memory, while the second thread is assigned to load the
data from the caches. Finally, the third and the fourth thread are jointly doing
some work in floating point arithmetic. This covers many of the internal units.
The process comes with the promise of utilizing most pipelines permanently.

Every assignment uses intrinsics to fulfill its task. Additionally, intrinsics are
required to use the vectorization capabilities (see Section 9.5), which gives us
the benefit of enhanced performance and maximized pipeline usage. To have the
same runtime for all assignments we need to adjust the size of their working sets
properly. While the FPU assignment only deals with a number of cachelines, the
cache assignment uses a full L1 cache. The memory assignment has to cope with
the L2 cache respectively.

In Figure 8.1 the beginning of a typical Burn-MIC run is shown. In contrast to
the HPL application we observe a strong power demand from the start. Further-
more, there are just minimal fluctuations during the run. Overall the application
allows us to keep the stress at a very high level, which is the main advantage of
Burn-MIC compared to HPL.

Of course, we could practically achieve a similar result by just using a matrix-
matrix multiplication that is very well optimized. An example is the DGEMM
routine from an optimized BLAS implementation. However, here we would not use
the same variety of registers and instructions, which makes Burn-MIC a suitable
tool to verify most of the functionality of a Xeon Phi.

8.2 Design of the Interposer and Roll-Bond Plate

Hot water cooling is a technology that has been introduced to HPC in the recent
years. One of the first projects has been IDC [99]. The idea propagated into larger
projects, such as the 3 petaflops SuperMUC system [45]. QPACE 2 uses hot water
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Figure 8.2: Revisions of the KNC interposer with their design ancestors.

cooling in an innovative way that improves the existing concept established by
IDC.

The basic principle is similar to ordinary water cooling. However, while ordinary
water cooling requires an enormous system composed of chillers, compressors, and
more, hot water cooling only relies on a water circuit that can be regulated with
slightly cooler water. A heat exchanger makes it possible to have a constant
temperature within the cooling circuit. Usually, a temperature around 35 °C is an
efficient choice.

The idea originated from the way blood and water move through our body.
One of the benefits is the reduction in system size. Systems that rely on hot water
cooling may be up to 10 times smaller with a significantly reduced energy con-
sumption. Among the reasons for the popularity of hot water cooling is the cooling
efficiency. Overall it is O (103) times more efficient than air cooling. The expla-
nation are two-fold: Water has a higher specific heat capacity than air. Therefore
it is able to absorb more energy than air. Additionally, water has a much higher
density.

The boards are equipped with a cover that is called a roll-bond plate. The roll-
bond plate is not directly attached to the board. Instead it is connected to the
board via a so-called interposer. It is crucial that the interposer connects the two
parts, board and roll-bond plate, by using the highest thermal conductance. The
job of the roll-bond plate is to transport the heat most efficiently to the water.
Water flows through a system of tunnels that is incorporated into the roll-bond
plate.

8.2.1 Development

The original design for cooling the KNC co-processors has been created by Eu-
rotech. A set of simulations and calculations has been used to verify the availability
of desired flow and heat transport properties. However, the production process
is not ideal and impurities have the ability to spoil the design. In various revi-
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Figure 8.3: The Xeon Phi board (centered) with the interposer components (above
and below), the roll-bond plate (left), and the copper block in the bottom left
corner. The yellow pads are heat conducting spacers made from TIM.

sions we tried to work around potential flaws. The graph in Figure 8.2 shows the
revision version tree.

The initial version contained many features of the final product, but had to be
revised nonetheless. Even though the performance has been quite satisfying in
retrospect, alterations due to mechanical problems were necessary. Additionally,
we had to answer the question if the current design was already good enough, and
if small changes could be beneficial.

As an example the main reason for the modifications in the first revision was
to reduce the bending stress for the PCB. It has been observed, that the spatial
tolerance is not sufficient. Consequently, gaps have been inserted to reduce the
mechanical pressure. The gaps should not be too large, otherwise air bubbles are
created, which reduce heat conductivity.

We choose to place a block of copper instead of the bare aluminum layer inside.
The idea is to use the improved heat conductivity of copper to cover the main heat
spot above the die even better. One problem with this approach is the different
thermal expansion of copper compared to aluminum. We require some flexible
medium to act as a mediator between both components. In our case we use a
special high conductive thermal grease. The selection process for this component
is discussed in greater detail in Section 8.3.
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Figure 8.4: Temperature sensor readings in the closed cooling circuit during Burn-
MIC with a single MIC. The measurement interval has been set to 5 s.

Finally, some design and process improvements are reviewed and applied af-
ter a careful evaluation of the release candidate (RC). The back side contains a
0.5 mm thick layer with thermal interface material (TIM), which insulates the
board from the aluminum plate electrically, without disconnecting these compo-
nents thermally. The edges of the copper inset have been beveled to reduce the
block’s degrees of freedom.

In Figure 8.3 we see the final layout of the cooling components for the Xeon Phi
co-processor cards. The yellow pads in the picture are the heat conducting spacers
(TIM). The interposer shown above the Xeon Phi is placed on the back side,
which is not directly connected to the roll-bond plate. It is only used to enclose
the package. The other interposer is glued to the roll-bond. The connector on
the right of the roll-bond plate is used as water inlet, the left connector as water
outlet.

8.2.2 Cooling Performance

We use two applications to test the cooling performance. For testing extreme
performance in short time periods we use HPL. To gain insights on the cooling
performance during continuous high-load, we run the Burn-MIC application. Both
applications are described in Section 8.1.

For each application run we measure the temperature and flow of the closed
cooling circuit, the temperature on the Xeon Phi co-processor, and its power
drain. The plot in Figure 8.4 shows an example of such readings. We see the
measurements of the temperature sensors in the cooling circuit during a typical
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Figure 8.5: Temperature sensor readings in the MIC co-processor during the staged
Burn-MIC. The sensor has been read out every second.

run of Burn-MIC.
While the cooling circuit contains three different temperature sensors, that rep-

resent two points within the cooling circuit and the environment temperature, the
Xeon Phi co-processor has seven. All temperature sensors are placed on the board.
Of course, the most significant reading is usually the CPU temperature, which is
sitting right next to the die.

Usually, the CPU temperature represents the maximum temperature, as shown
in Figure 8.5. The plot illustrates the characteristic curve of a staged Burn-MIC
run. We can see two distinct phases in the application execution. The first phase
results in a peak temperature that is a higher than the peak of the second phase.
In the beginning and the end of the application the temperature readings drop to
the idle level of the Xeon Phi.

The picture looks completely different when considering HPL as a benchmark.
Here we have a high-load phase alternating with an analysis phase. The latter
yields a temperature that is slightly above the idle temperature. The peak of
the high-load phase depends on the actual problem size, which directly influences
the length of the phase. A longer lasting high-load phase results in a higher
temperature peak.

In Figure 8.6 we see the readings for the temperature sensors during a typical
HPL benchmark run. We use two Xeon Phi simultaneously. The peak temperature
and the progression of the CPU temperatures are very similar. The small deviation
between the two co-processors can be explained with side-effects of the test setup,
where other devices that radiate heat or block heat transfer may influence the
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Figure 8.6: Overview over the heat sensors of the two MIC co-processors placed
in close proximity to each other during a complete run of HPL.
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Figure 8.7: The circuit temperature during a run of HPL with two MICs. The
measurement interval has been set to 7 s.

temperature. The drop in the middle of the run has been caused by over-cooling.
Another thing we are interested in is the circuit temperature. Additionally, we

want to see the flow F during the benchmark. The flow is drawn in the plot of
Figure 8.7. Here we observe high variations of the flow. We can infer that the
source for the temperature drop around 450 s of Figure 8.6 is actually coming from
fresh water that was inserted in the cooling circuit.

Once the inlet temperature falls, cool water is inserted into the circuit. This
insertion comes with a higher flow rate. After some delay, the outlet temperature
reading starts to drop. One conclusion from the plot is that the heat exchanger
regularization has not been optimal during the illustrated run. While flow fluctu-
ations are typical, the variation registered in the inlet temperature sensor should
be minimal. Only if the outlet sensor reads approximately constant temperatures,
the regularization can be considered optimal. Nevertheless, the over-steering of
the regularization is a problem that is addressed separately.

We may look at temperature readings of the other sensors that have been taken
during the HPL benchmark. Again we observe that the plots for both MICs show
a very similar behavior. Both co-processors seem to be approximately equivalent
from the cooling perspective. It is interesting to observe that spikes with high-load
do not appear as obvious as the CPU temperature plot. The CPU is certainly one
of the best cooled components on the KNC. The larger surface to volume value for
the small object encourages the heat transport to the adjacent layers. Therefore,
the temperature drops quite fast once the load decreases.
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Run ω [min1] F [l/min] MICs Feff [l/min]

1 1850 0.6 4 0.15
2 2300 1.1 4 0.25
3 2750 1.5 4 0.40
4 3200 1.9 4 0.50
5 3700 2.2 4 0.55
6 3700 2.2 3 0.70
7 3700 2.2 2 1.10
8 3700 2.2 1 2.20

Table 8.1: Properties associated with each run. The flow is the average value of
the measurements during a run of the Burn-MIC application. The effective flow
is the flow divided by the number of connected MICs.

8.2.3 Flow Dependency

For measuring the dependency on the flow in the closed cooling circuit we use
the Burn-MIC application. We initialize a 180 s run with a single active MIC.
Additionally, we vary number of (passive) MICs in the circuit.

In Table 8.1 we see the runs that have measured by varying the frequency of
the pump. The pump is driving the closed cooling circuit. The table includes the
flow and effective flow of the water within the circuit. The effective flow is the
total flow divided by the number of connected MICs (active and passive).

It is worth noting that the run number is ordered in such a way that we start
with the lowest pump frequency and end with the highest frequency. Once we
reach the pump’s limit we start disconnecting (passive) MICs from the cooling
circuit until the active MIC is the only one remaining.

During the measurements the cooling circuit is heating up, which is an effect
that would be suppressed by an ideal regularization. Since the parameters of the
heat exchanger in the test circuit are not optimized for such measurements, we
have to take the heating of the cooling circuit into account.

In Figure 8.8 we cannot distinguish between the different levels of flow, just by
looking at the different lines. Instead we also have to consider the current circuit
temperature. We take the inlet temperature Ti and the outlet temperature To of a
measurement at a later point in time. Since water flows from the measured point
of Ti to To, with a heat source between, we have

To(t) = Ti(t) + δT (t), (8.1)
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Figure 8.8: The core CPU temperature during the different runs. Run 7 (1.1 l/min)
is spoiled due to over-steering of the heat exchanger. Here the maximum temper-
atures of the runs seem to be degenerate.

where δT ≥ 0 is the rise in temperature between the two points of measurement.
The time parameter t indicates the time of measurement.

That picture alone would not be very conclusive. Two measurements at the
same time could lead to δT ≤ 0, which is certainly wrong. The issue here is that
both, heat propagation and the velocity of the water, are too small for instant
changes. Since the heat propagation is effectively smaller than the velocity, a
good approximation is to only look the velocity of the water in closed circuit. We
can calculate it by taking the area of the hose A and the current flow F , which is
the transported volume V over time t. We have

v = F/A, (8.2)

which can be used, together with the distance d, between the two points of
measurement, to compute the time difference ∆t. Finally, we can correct Equa-
tion (8.1). We find

δT (t) = To(t)− Ti(t−∆t), ∆t ≡ (d A/F ), (8.3)

where d is the length of the hose between the two points of measurement.
Usually, we are more interested in ∆T , which is the difference of the CPU

temperature TC to the inlet temperature Ti. We only need to adjust the previously
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Figure 8.9: The difference between the inlet temperature Ti and the CPU temper-
ature TC . We can observe the effect of varying the effective flow Feff in the cooling
circuit by considering it in the calculating of ∆T .

derived equation Equation (8.3). We obtain

∆T (t) = TC(t)− Ti(t−∆t). (8.4)

Here ∆t is calculated as before, with d being adjusted to the length of the hose
between the inlet temperature measurement and the CPU measurement. Using
∆T rather than TC we obtain the plot shown in Figure 8.9. The different flow
numbers can be distinguished, which is not possible if we consider TC alone as
shown, e.g., in Figure 8.8. It is necessary to recalculate ∆t per run, as it depends
on the flow F , which may change between different runs. From the data we can
infer a linear dependency on the effective flow, which represents the volume over
time that runs through a single MIC co-processor.

Ideally, the circuit would have a constant temperature reading at the inlet sen-
sor, i.e., Ti(t) ≡ Ti, for all t. Nevertheless, it is still possible to perform a cross-
check using the data. For instance, we can measure how much power is actually
converted to heat. Burn-MIC gives us a nice plateau for the CPU temperature,
which can be used in conjunction with the current power consumption. We can
apply Equation (8.3) to calculate δT , which yields the temperature difference be-
tween inlet and outlet for a measurement of To.

However, the difference δT is only part of the story. From the plot in Figure 8.10
we can derive that the diffusion equation has to be considered as well. The rapid
changes in Ti do not represent the temperature as it would be measured shortly
before the MIC co-processor. In a simple approximation we could take the moving
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Figure 8.10: Comparison of the circuit inlet temperature (left) and the circuit
outlet temperature (right) during the runs. The inlet measurements look rough
compared to the outlet measurements. This behavior is due to the regularization
by the heat exchanger, which directly influences the inlet temperature.

average in an interval ofO (10) seconds to get a better estimate for the temperature
before the MIC. As the outlet temperature readings are quite smooth, no special
technique has to be applied here.

The dissipated power can now be calculated by considering the effective flow
Feff, the heat capacity of water CW , the density of liquid water, and the previously
derived temperature difference δT . We have

∆P = F (t) % CW δT (t). (8.5)

We find that the dissipated power is approximately equal to the measured power
consumption. Thus, nearly all energy is transformed to heat and absorbed by our
cooling mechanism.

In the end, however, the efficiency of hot water cooling is dominated by ∆T as
outlined. The dependency of ∆T on the (effective) flow Feff is quite important.
In general we save energy (and money) by lowering the pump frequency, which
reduces the flow in the cooling circuit. The critical question is: What flow is
required to reach a satisfying value of ∆T?

The plot in Figure 8.11 shows the measurements of ∆T . The calculation uses
Equation (8.4). The flow dependency can be computed with a simple linear fit,
however, this strategy is only valid within a certain range, which is why we exclude
the data point at 2.2 l/min. The main problem is that we hit a plateau at an
effective flow. Nevertheless, since we can vary the pump within specific boundaries,
the resulting fit is convincing for the potential linear region.
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Figure 8.11: The dependency of Feff on ∆T . The linear fit contains an offset
56.074 °C with a slope of 16.470 °C/(l/min). The data point at 2.2 l/min has been
excluded from the fit.

The cooling solution seems to work within our boundaries and yields satisfy-
ing performance. A related important topic is the optimization of the regulation
parameters. Optimizing these parameters to improve the output of the heat ex-
changer is critical for the overall performance. The CPU temperature of the MIC
co-processor TC is more affected than ∆T . It is desired to provide a nearly constant
temperature in the cooling circuit.

The cooling circuit itself has been designed and maintained by Stefan Solbrig.
The mechanical design for cooling the components has been created and imple-
mented by Eurotech in Italy. Fine corrections have been applied by the machine
shop of the physics department at the University of Regensburg.

8.3 Influence of the Thermal Grease

The die area of the KNC is connected to the interposer via a massive copper block.
Choosing the right thermal compound for the copper-aluminum and copper-die
connection is crucial. One of the reasons is that the thermal grease has to have
the lowest possible electrical conductance, yet very good thermal conductivity.
Even if we would choose not to use the same type of grease for the interjacent
layer between the die of the co-processor and the copper block, we demand such
properties. One reason is the liquid form of the grease in the field, which may
result in forming short circuits if electrically conductive.

We choose three different thermal compounds as suitable candidates. Initially
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PK-1 KP98 WLPK 10

Manufacturer Prolimatech Keratherm Fischer
Consistence hard pasty soft pasty pasty
Density (at 20 °C) 3.2 g/cm3 2.2 g/cm3 1.4 g/cm3

Thermal conductivity 10.2 W/m K 6 W/m K 10 W/m K
Dielectric strength 3 K V/mm 1.5 K V/mm conductive
Price (May 2015) 1e/g 0.2e/g 2e/g

Table 8.2: Comparison of three thermal compounds.

the problem with electric conductivity may not seem as severe as it actually is.
Therefore we include WLPK for comparison, even though it is too liquid to ensure
no unwanted charge transmission. The main comparison therefore takes place be-
tween KP98 and PK-1. Especially the latter has excellent values. The maximum
electric field that it can withstand under ideal conditions without experiencing
failure of its insulating properties is quite high and it has a higher thermal con-
ductivity than the other candidates.

In Table 8.2 we compare the three candidates directly. For our purposes WLPK
is definitely not the ideal choice. It is conductive, its viscosity is too low, and it
is the most expensive. Hence there are not only technical, but also economical
reasons to use a different thermal paste. Possible alternatives can be found in
two very different products. While PK-1 excels in many ways, KP98 has a more
suitable consistence combined with an economical advantage.

To get information about the impact of the thermal grease, we can use the
different greases in interposers. We can try combinations, such as placing KP98
between the copper block and the interposer, with PK-1 connecting the die of the
co-processor to the copper block thermally. We label this combination M198 to
reflect the compound.

Measuring the performance of the different thermal pastes demands fully oper-
ational units, i.e., fully assembled interposers with roll-bond plates and Xeon Phi
co-processors. Every unit is then benchmarked in our test cooling circuit. For the
test we perform a 180 s run of Burn-MIC. We measure all temperatures including,
but not limited to, the inlet and outlet temperature of the cooling circuit, and the
CPU temperature of the KNC. This allows us to compute our quantity of interest
∆T using Equation (8.4), where a small value of ∆T corresponds to good thermal
conductance.

We include WLPK and M198 for comparison only. For both the number of
samples is statistically insignificant. The focus definitely lies on a decision between
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Figure 8.12: Cumulative distributions of the different thermal compounds. We
averaged over all samples for the given heat sink pastes. The maximum value for
∆T has been computed for each sample (denoted by ∆Tmax).

KP98 and PK-1. For a number of reasons it seems that PK-1 is the ideal choice.
The gap to alternative solutions is just too large to reason about different pastes.

The cumulative distribution in Figure 8.12 yields both, the lowest and high-
est achieved temperatures. The best solution has to show the largest area, i.e.,
the integration over the cumulative distribution function within our temperature
boundaries yields a larger value. We can see that both PK-1 and KP98 seem to
be suitable candidates. Nevertheless, while the head of all samples has been suf-
ficiently good for both, the tail of PK-1 got much more stable results than KP98.
It seems that using KP98 is a very fragile process. The cumulative distribution
for PK-1 reaches 1 earlier than the cumulative distribution for KP98.

Minimizing the risk of assembling parts, which do not perform thermally as
expected is important. We conclude that some of the differences we observe can
be assigned to production differences of the roll-bond plates. Here we have a lot
of potential problems, e.g., the process of gluing the plate to the interposer has to
be done manually. This practically makes it hard to have a perfectly flat surface
with a uniform thickness. Choosing the optimal paste alleviates the problem.

8.4 Brick Assembly: Tubes and Clamps

One of the most crucial aspects in the design of components that are exposed
to water cooling is to prohibit potential leaks. The roll-bond plates are made of
aluminum, which has very good corrosion resistance. Nevertheless, we need to
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Figure 8.13: Schematics of the lower manifold. The noted points are (1) screw
thread for fixing the manifold, (2) distribution pipe, (3) connector with single
barb, (4) connection to the quick coupling (QC), (5) sealing ring, and (6) screw
thread for sealing. The red rectangle denotes the area where the design of the
lower manifold is significantly different compared to the upper manifold.

mix anti-corrosive additives into the cooling water to minimize possible corrosion
effects. Additionally to the corrosion inhibitor1, we need to mix in a biocide
substance2 acting as an antimicrobial enhancer. This is supposed to counter-act
the formation of bacteria, which may result in a decrease of water flow through
individual components or damages in the piping system. In the worst case leaks
could occur.

A brick is connected to the cooling water of the rack via so-called manifolds.
There are two manifolds: one for the water inlet (lower) and one for the wa-
ter outlet (upper). The manifolds are connected to the water circuit of the rack
via quick couplings. A schematic of the lower manifold is shown in Figure 8.13.
The main task of the lower manifold is to distribute the incoming water to all
components. The upper manifold is then aggregating the outgoing water from
all components. The two manifolds follow slightly different (mirrored) schemat-
ics. The upper manifold contains a much larger angle between the two central
connectors (see red rectangle in Figure 8.13).

The roll-bond plates are connected to the manifolds via flexible tubes. This has
the advantage of allowing tolerances in the construction, which is desired for a

1 We can use Kebocor 204N or Clariant Protectogen C Aqua.
2 We choose Clariant Nipacide BIT 20.
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prototype-like machine. We use ordinary EPDM3 tubes with an inner diameter of
6 mm and an outer diameter of 10.5 mm. The connections are sealed with special
ear clamps4.

The EPDM tube is very flexible and needs to be supported to withstand sudden
pressure rises. Normally, two layers of EPDM would be used, however, for a wall
thickness of roughly 2 mm this is not possible. Instead, we can use an external
textile fabric that covers the tube. In order to fix the fabric onto the tube we need
another layer on top. Initially, a thermo-shrinkable tube may seem like a good
idea, however, a polyamide film in form of Kapton tape is more suitable.

One of the main issues with thermo-shrinkable tubes is their long-term behavior.
In the beginning they are shrunk to completely wrap over the tube, however, while
the tube stays soft in the long run, the thermo-shrinkable tube will change its
properties over time. Thermo-shrinkable tubes will get more rigid and tend to
break if exposed to UV light.

The Kapton tape remains stable across a wide range of temperatures, from
−269 °C to 400 °C. It does not require external heat during assembly. Most
importantly it seems not to act against the soft tube, but only to support it. This
is reason enough to believe that Kapton tape is a good solution as middle layer
between the clamp and the textile fabric over the tube.

Testing the long-term behavior is not possible in our case. Instead, we require
a test that gives us immediate feedback if a solution should be considered or not.
The following procedure represents an extreme test that is useful in the evaluation
for determining the most adequate solution.

1. Fill the brick with hot water (close to 100 °C) at 2 bar.

2. Raise the pressure to 10 bar with hot water.

3. Wait 5 minutes.

4. Connect it to the cooling loop with 13 °C operating at 2 bar.

5. Disconnect it and raise the pressure to 10 bar with cool water.

Solutions with no layer over the textile fail in a similar fashion as solutions that
use the thermo-shrinkable tube. They all start leaking in the final pressure test,
i.e., before the 10 bar are reached. The Kapton tape, however, is able to reach
the 10 bar and remains stable for some time. Eventually, even bricks that use the
Kapton tape start leaking, but with very small drops. Later on the bricks with

3 Short for ethylene propylene diene monomer (M-class) rubber.
4 Our choice is Oetiker PG 167 706R.
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Figure 8.14: Comparison of the effective force on the tube with four different
clamps. The force F has been normalized with respect to the maximum force
Fmax of the respective clamp. Data acquired from [100].

Kapton tape seem to be stabilizing again. The difference is marginal, but reason
enough to prefer the Kapton tape over the other solutions.

The greatest influence on the leak probability has the choice of clamps. The
origin of this problem lies in the outer diameter of the tube. For instance, by using
12 mm reinforced PVC tubes we observe no leaks with a wide range of possible
clamps. However, replacing the 12 mm reinforced PVC tubes with soft PVC tubes
featuring smaller outer diameters leads to leaks in conjunction with most clamps.
The reason is that most clamps do not convey pressure uniformly enough to tubes
with smaller diameters. While thicker walls would solve some of these issues, they
would render the assembly procedure hard or even impossible. A thicker wall
means a less flexible, i.e., more stiff, tube, however, we require a certain bending
radius in our setup.

In Figure 8.14 we list some of the different clamps we considered. Besides the
Oetiker clamp [78] no other solution seems to be applicable. Next to the most
suitable force distribution we are able to assemble the clamp in a fast, yet reliable,
manner. This is very important as we need to install 24 × 64 clamps in total.
The open worm-drive clip has to be assembled using a screwdriver. The same is
true for the mini-clips, which have not one, but two rails. This leads to a more
balanced distribution with to a minimum efficiency of 70 %, compared to the 30 %
of the open worm-drive clips. The clip clamp is similar to the Oetiker solution,
however, does not feature such a sophisticated system to balance the force. The
weakest point gives us 50 % efficiency.

The only disadvantage of the Oetiker clamp is that the clamp will be perma-
nently deformed during the assembly procedure. However, this is only a minor
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drawback considering that the manifolds and roll-bond plates contain single barb
connectors. In contrast most professional water installations use three barb ridges.
The Oetiker clamp is designed to work well on flat surfaces. Overall it seems to
be the ideal choice for our purpose.

8.5 Thermal Performance of a Brick

Once the thermal performance of individual components, such as KNC or IB cards,
is known, we can perform integration tests. An integration test combines several
components. For us the most important integration test benchmarks a complete
brick. In addition to the four KNCs, the IB card, as well as Juno and Mars we also
have effects coming from the high density due to heat radiation. The components
are enclosed in a metal box (“housing”), which yields larger value for ∆T anyway,
since heated air is captured inside.

We are mainly interested in three things:

• What is T for single bricks in idle mode and during computation?

• What is the thermal long-term behavior of the QPACE 2 bricks?

• What is the thermal distribution over all bricks under equal load?

The distribution is particularly interesting, since it allows us to find potential
problems. Such problems may be related to differences among the bricks or may be
an indicator that the flow in the rack is not uniform. The latter has to be examined
closely, as the rack is not using the so-called Tichelmann principle [145]. In case
of QPACE 2 a quick calculation indicates that the expected effect of not following
the Tichelmann principle is small. The additional flow resistance is practically
negligible.

Each brick comes with a number of different temperature sensors. The sensors
are placed on different components, which are located in different places inside the
brick. Some sensors might be more sensitive to the ambient temperature, others
might be directly influenced by the cooling circuit’s temperature. Hence it is hard
to find a single number that represents a brick’s temperature in every scenario.
Instead, we just pick the temperature from the sensor reading the highest value.

The reasoning behind the assumption that the maximum temperature is a good
representative for the brick, is fairly straightforward: If a single brick seems to
perform worse than others, even though only a single sensor is reading higher
values, the brick still needs to be examined more closely. In the end a device is
not cooled sufficiently or the sensor is actually broken. Both scenarios demand
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Figure 8.15: Correlation of idle Tmin to stress temperatures Tmax for 58 bricks.
The temperatures of the idle benchmarks have been averaged over 1 h. The stress
test consists of a 10 min HPL run. The bricks have been running in idle mode for
at least 2 h before any measurement started.

maintenance. We will use the measured absolute temperatures exclusively for a
comparison between the bricks.

Unfortunately, a prototype production process contains many steps that may
result in decreased quality. As a result we see a fragmentation of (thermal) perfor-
mance over all bricks. The variation can be visualized by plotting the maximum
stress temperature Tmax of each brick in correlation to its maximum idle tem-
perature Tmin. In the ideal case all bricks would be placed at the same point,
or at least at the same (horizontal) line. The plot in Figure 8.15 illustrates the
fragmentation. We see a variance in both, the idle and the stress temperature.

Even though higher idle temperatures yield higher stress temperatures in gen-
eral, it does not have to indicate a problem. For instance, one of the bricks with
the highest idle temperature does not cross the 80 °C line for its maximum stress
temperature. On the other side the highest measured temperature during stress
has only been slightly above average in idle mode.

Using the fit shown in Figure 8.15 we can identify the trend of obtaining higher
stress temperatures for bricks with higher idle temperatures. Thus we already
care about low idle temperatures, even though this is by no means a guarantee for
acceptable stress temperatures. In the end we demand that bricks do not exceed
a certain threshold temperature during stress.

Measuring the thermal performance during idle mode is straightforward. We
simply measure all bricks during operation without performing actual work. In
order to measure the bricks with load we alter the measurement procedure. To

138



minimize radiation effects we only run on 1/4 of the bricks simultaneously. We
use a single brick per row per side of the rack. The brick position is the same in
every other row and shifts 2 positions in the remaining rows. The sequence for the
first run is therefore given by, e.g., 1− 3− 1− 3− . . ., where the number denotes
the position in the respective row.

Algorithm 5 Stress Measurement
1: F ← (40, 55, 38, 53, 36, 51, 34, 49) . initial values
2: B ← (16, 23, 14, 21, 12, 19, 10, 17)
3: for i← 1 to 4 do
4: for j ← 1 to 8 do
5: start job on node Fj . front of rack

6: Fj ←



Fj > 56, Fj − 24,
Fj ≤ 56, Fj + 8

7: start job on node Bj . back of rack

8: Bj ←



Bj > 24, Bj − 24,
Bj ≤ 24, Bj + 8

9: end for
10: wait for all jobs to finish
11: end for

The algorithm shown in Algorithm 5 maximizes the distance between the bricks,
while keeping it constant for each run. The outlined scheme is efficient as we can
measure the thermal performance of each brick during stress in just 4 iterations.
The initial values of 40 (front) and 16 (back) have been chosen arbitrarily with
the constraint that both values have a distance of 24.

Thermally, the ideal solution would have been to only use a single brick at a
time. The provided scheme is a good compromise between the required time for
all measurements and minimizing ambient heating.

Overall the thermal performance fulfills all of our requirements. Since the ther-
mal performance was measured during summer, we do not expect any problems
related to overheating due to design issues during the whole year.
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9
Applications on QPACE 2

9.1 Available Applications and Tools

In the previous chapter we introduced some applications for benchmarking the
thermal performance. These applications and tools come in very handy during
the development process. In general high performance computing requires more
than just programming skill. In order to get as close to the theoretical peak
performance as possible, a programmer needs tools to inspect possible bottlenecks.
The detection of such bottlenecks can be simplified with a tool like Intel vTune.
For our purposes there are two major kinds of profilers, statistical profilers and
instrumenters.

While statistical profilers work without modifying the original source code, an
instrumenter needs to modify the original source to insert instructions, which
will be used to identify the function callee and caller. The advantage is that
instrumenters can be very fine grained, however, they are more complex and they
require the original source. They do not work well with third party libraries. Some
instrumenters can work without the original source, but they usually have other
side effects.

A statistical profiler is based on sampling. It probes the application’s counter
at regular intervals using OS interrupts. Such profilers are typically less accurate
and specific, but allow the application to run at near full speed depending on the
sampling frequency. The resulting data are not exact, but a statistical approxima-
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tion. Each sample represents a copy of the application’s stack. These copies are
stored in a database, which will be evaluated in the end. The stack dump includes
information about the whole call tree at the current point in time.

A statistical profiler is able to show some statistics about the distribution of
any function calls among all measurements. It is supposed to work, since, e.g., a
measurement every ∼ 1000 cycles still results in a million measurements per sec-
ond. The information gain is highly dependent on the chosen sampling frequency.
While a high frequency leads to a more accurate result, it will severely decrease
the application’s performance. Finding a sampling frequency that represents a
good compromise between accuracy and performance is therefore crucial.

In practice, sampling profilers can often provide a more accurate picture of the
application’s execution than other approaches, as they are not as intrusive to the
application, and thus do not have as many side effects. Side effects on memory
caches or instruction pipelines may spoil the result and should be minimized.
In general there is no profiler that does not have any influence on the overall
performance.

A good profiler for the Xeon Phi is the software Intel vTune. The application
features a project based profiling process that can be evaluated on the command
line or in a graphical user interface (GUI). Only the latter makes a detailed anal-
ysis possible, since the command line interface (CLI) has some severe limitations.
The GUI offers us to investigate with the whole range of gathered data. We can
look at memory allocations, function invocations, and cache misses. Most impor-
tantly we see, how much time is spent in the different parts of the application.

Another useful set of tools is LIKWID [143]. These helpers are ideal for reading
hardware counters and investigating the performance of applications using multi-
threading. They are especially convenient to investigate the effects of pinning,
running micro-benchmarks, or receiving information about the current architec-
ture’s thread and cache topology.

9.2 Compilers and Frameworks

Writing a program for the Xeon Phi can be done like on most other x86 platforms.
There are only two requirements: We need a text editor (e.g., vi) and a compiler
for the language of choice (e.g., C ).

Even though such a setup is working with general purpose software like a com-
piler from the GNU compiler collection (GCC) (e.g., the program gcc), a more spe-
cialized tooling is definitely desired. For the Xeon Phi the Intel C compiler (ICC)
in conjunction with the icc application is considered the optimal choice.
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9.2.1 The Intel Compiler

There are many reasons for preferring the icc over the gcc program. From the
perspective of HPC it is proven that the Intel compiler is able to perform the
best optimizations, especially in combination with Intel hardware. A programmer
might argue that the Intel compiler is currently the only way to access the three
different execution modes of a Xeon Phi accelerator card.

The three different execution modes are:

Direct Executes the program is directly on the co-processor.

Offload Loads the data from the host, but splits the execution between host and
Xeon Phi [41]. This is sometimes called hybrid execution.

Native Loads the program from the host to run it on the accelerator. This re-
quires the micnativeloadex application, which is included in the Manycore
Platform Software Stack (MPSS).

Another feature of the Intel compiler is the possibility to enhance the code with
so-called compiler intrinsics. These special functions map directly onto mostly
a single instruction1. The purpose is to avoid mixing in assembly code. Addi-
tionally, the usage of intrinsics gives the compiler more information about our
code. This should make the application more portable and prevent undetectable
errors. The compiler can then insert special assembly instructions or perform fur-
ther optimizations, which would not have been possible by inserting raw assembly
code.

9.2.2 Compilation Flags

In order to compile for the MIC architecture using icc, we need to use the -mmic
flag. The resulting assembly is binary compatible with the CPU of the Xeon Phi.
For efficiency reasons, we should specify additional flags.

In most cases the highest optimization level (-O3) is the best, however, in general
it is not reliable. Therefore, a comparison of the results of an application compiled
with -O3 with results of the same application compiled with -O2, or even -O0 is
strongly recommended. The second optimization level is concerned with speed,
i.e., -O2 introduces auto vectorization, loop optimizations, intrinsic inlines, and
intra-file inter-procedural optimizations. The -O3 level adds some more aggressive
loop transformations and collapsing (if) statements on top. There is a chance
that -O3 is not only unreliable, but even slower than -O2.

There are other interesting flags. We list them briefly:

1 in some cases they are mapped onto several instructions
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-no-prec-div Division optimization, however, with loss of accuracy [32].

-ansi-alias Big performance improvements possible, if the application adheres
to ISO C standard alias ability rules.

-ipo The interprocedural optimization works between files to perform optimiza-
tions. This definitely increases the required compilation time.

Another possibility that has not been listed previously is the ability for profile-
guided optimization (PGO). PGO improves the performance by reducing branch
predictions, shrinking code size, and thus eliminating most instruction-cache prob-
lems. We start by compiling our application with the -prof-gen and the -prof-dir=p
flags, where p is the path to the profile that will be generated. After running
the application we can compile our application again with -prof-use instead of
-prof-gen.

9.2.3 Offloading Work

While the direct and native execution modes rely on the -mmic flag, the offloading
programming model is used differently. Here we want to produce an executable
that is binary compatible with the host system. Therefore, we would specify, e.g.,
-mia32, to generate OS and device specific binaries for the host.

The generated binary already includes special offloading sections, that have
been compiled for the MIC. These sections are then packaged into a separate
executable, which is contained within the real executable. The communication
with and the lifetime of the worker executable is integrated by the compiler. We
only need to care about the specific code we want to offload, and the locations of
data that are exchanged.

We require two code changes for providing the compiler with sufficient informa-
tion to create binaries with offload capabilities. We need to give the function(s)
we would like to use on the MIC a special attribute. The snippet in Listing 9.1
shows a templated method that is set up with the correct attribute.

1 template<typename T, typename... TArgs>

2 static T attribute ((target(mic))) compute(TArgs... args) {
3 /* ... */

4 }

Listing 9.1: Preparing a function for offloading.

In Listing 9.1 we use a variadic template to show a valid function that can be
compiled. In general we do not have to use templates or variadic templates for
defining functions, which allow offloading.
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The first change makes it possible to offload the function on the MIC. It does
not prevent us from using it on the host as well, even though the normal use-case
would be to execute this part on the co-processor. This is where the second code
change is required. We specify that the function call is indeed being offloaded and
how input and output should be placed.

The code in Listing 9.2 outlines how an offloaded function call might look like.
We can specify variable-specific transportation properties using the in and out
specifiers. These properties tell the compiler to introduce further calls for copying
memory from the host to the device or the other way round.

1 #pragma offload target(mic) \
2 in(arg: length(N)) out(res: length(N))

3 auto res = compute(arg, ...)

Listing 9.2: Offloading a function call.

Sometimes we might want to reuse (or overwrite) a specific chunk of memory. In
such scenarios we should include the inout specifier, which copies the data from
the host to the KNC in the beginning, and the other way round after the function
has returned. The specifiers can be thought of like references in C++, where we
can declare read, write, and read-write type of parameters.

Alternatively, we can use the offloading model presented within the most recent
OMP 4.0 standard. All in all the required code changes follow the same concept.
We need to equip the function and the call with more information. Both changes
rely on an OMP pragma statement. This is very similar to other OMP calls.

9.2.4 Frameworks for Parallelization

No matter what programming model we choose, we have to utilize as many cores as
possible to benefit from running code on the Xeon Phi. We need a good strategy
that is based on a very efficient threading model. We could either start from
scratch, e.g., by using a low-level API such as Pthreads, or we could use one of the
many available frameworks. In this section we list and discuss the most interesting
options.

We already mentioned the OMP framework, which is delivered as a compiler
extension. This has several advantages, like the ability to perform efficient compile-
time optimizations. OMP is integrated in the Fortran, C, and C++ compilers from
Intel. Every implementation follows the same standard.

Intel gives us two more mature possibilities. One is the Threading Building
Blocks (TBB) library. TBB makes heavy use of templates and is therefore only
available for C++. Even though code is expanded during compile-time, the com-
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piler’s ability for code-optimizations is limited compared with OMP. The advan-
tage of TBB is the richness of the library. We will most likely find every useful
algorithm to distribute or create tasks that can run in parallel.

The second possibility is called Cilk Plus. This is a very simple language exten-
sion, much like OMP. The extension offers three new keywords and an improved
array handling. The latter makes Cilk Plus so interesting. Automatic vectoriza-
tion can be boosted by using the new array notation. It is worth noting that the
latest OMP 4.0 standard allows us to write specialized vectorization statements
as well. Details on these concepts are discussed in Section 9.5.

A comparison of the efficiency of these frameworks seems to be useful. In
Section 9.3 we perform several benchmarks to pick the right framework for our
programming efforts. We use the chosen framework to create a proper synchro-
nization barrier. Finally, we gather a range of tips and tricks for obtaining great
performance on the KNC.

9.3 Multi-Threading

Two laws are dictating the developments in the HPC industry. The first is Moore’s
law, which states that the number of transistors grows exponentially over time [77].
We can use this to predict the number of transistors per die in the near future.
However, the end of Moore’s law is inevitable, as we are approaching the atomic
scale, where effects from quantum mechanics will become dominant. The second
law has been identified by Amdahl [9]. It yields an estimate about the scaling
behavior of applications.

9.3.1 The Need and Cost of Parallelization

A decade ago Moore’s law was a synonym for increasing CPU frequency. The main
problem with this development was the additional power requirement, mainly for
the dynamic power consumption, which is given by

P ∝ U2f, (9.1)

where U is the CPU voltage and f is the frequency. The overall power is consumed
by the short-circuit and leakage current. While the latter is dependent on the
CPU supply voltage, the other two are dependent on the clock frequency. It has
been shown that an optimal CPU frequency with minimal energy consumption
exists [35]. Further scaling in frequency is therefore unwanted.

Until this energy crisis parallel programming was mostly about using multiple
machines connected by some high speed interconnect networks. This is still im-
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Figure 9.1: Illustration of Amdahl’s law for P ∈ {0.5, 0.95, 0.999}. The maximum
speedup is always limited by the inverse sequential portion, i.e., (1 − P )−1. The
ideal line S ∼ NP for P = 1 is also shown.

portant, but by far not the only source of parallelism. Now programmers need to
be aware of at least two levels of parallelism: Multiple machines connected by a
network and multiple cores connected by the memory.

In the worst case the cores can only access data placed in the RAM. In the
best case two cores share the L1 cache, which is the closest to the CPU’s registers.
Additionally, some CPUs offer simultaneous multi-threading (SMT), which lets a
single core be used like multiple cores. This allows us to run multiple threads on
a single core without requiring the scheduler provided by the OS.

The increasing number of cores brings us directly to Amdahl’s law. We can
compute the speedup S that an application would gain by using parallelization.
For this we need to determine the parallel portion P and the number of workers
NP . We calculate

S = 1
(1− P ) + P/NP

, lim
NP→∞

S = (1− P )−1. (9.2)

The main issue is that P is usually too small. Even though NP is steadily growing
we might end up with limited speedup. For an application that consists of P =
0.95, i.e., 95 % parallel portions, we can still only achieve a maximum speedup
of 20. The plot in Figure 9.1 shows the speedup according to Equation (9.2) for
various parallel portions P .

The equation for Amdahl’s law is not very realistic, though. It neglects over-
head, which unfortunately cannot be avoided in practice [138]. Even an embar-
rassingly parallel problem needs to gather sub-results at some point. Therefore
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choices of the parallel overhead in dependency of the number of workers OP (NP ).

no application can be fully parallelized, i.e., any practical computation requires
synchronization at least once [72].

Given that parallelization is not free we should compute the speedup by using

S = 1
(1 +OS) (1− P ) + (1 +OP )P/NP

, (9.3)

where OS is the overhead in the sequential fraction, e.g., for setting up data struc-
tures or computing parameters for parallel computation and OP is the overhead in
the parallel fraction, which is usually dominated by communication cost. In gen-
eral these two parameters are dependent on the number of processes NP . Reducing
this overhead is one of the primary goals for effective parallel programming.

If we neglect the overhead in the sequential fraction, we can focus on the com-
munication and synchronization overhead instead. In Figure 9.2 we see the de-
pendency of the speedup on the parallel overhead. If the overhead would be in-
dependent of the number of workers, which is usually not the case, then we could
alleviate the situation by bringing in more workers. Otherwise we see that for con-
stant overheads OP = c we practically lose only a small fraction in performance.
Logarithmically scaling overheads can be overcome quite quickly and usually do
not interfere with the scaling behavior much. The real problem emerges with
linearly scaling overhead. We need to identify and avoid algorithms with linear
overhead or the scaling is significantly decreased.

Amdahl’s law is, however, only part of the story. John Gustafson pointed out
that the problems solved in parallel are larger than what is attempted on sequen-
tial systems. This is known as Gustafson’s law. When we increase the number of
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workers NP , the problem size increases as well. An increased problem size usually
leads to an increased parallel region P . Therefore, we also improved the scal-
ing. Consequently as problem size increases, scaling improves, as well as relative
speedup and efficiency.

Discussions that involve Gustafson’s law are usually about strong vs. weak
scaling evaluations. The strong scaling behavior always looks worse than the
weak scaling behavior. The reason is that a weak scaling evaluation adjusts the
problem size to the number of workers. The idea is to keep the amount of work
per worker nearly constant. For obtaining practical information about the scaling
of a algorithm it makes sense to use weak scaling evaluations.

A good example to illustrate a suitable weak scaling evaluation is a LU-matrix
factorization with partial pivoting. As the matrix size N increases, the amount
of memory required increases on the order of N2 but the computation required
increases on the order of N3 and this computation runs very well in parallel. As a
consequence LU-matrix factorization has become one of the most common parallel
benchmark for supercomputers.

In the KNC case we deal with O (100) workers on a single processor. Our
job is to identify which parallelization framework offers the lowest overhead, such
that we can make a reasonable decision what technology to choose for writing our
applications.

9.3.2 Evaluations for OMP, TBB, and Cilk Plus

Before we decide which technology [154] to choose, we have to get some experience
with the available options. We need to know how these technologies behave under
certain circumstances. Especially the scaling with the workload and number of
workers is essential. Even though micro-benchmarks are quite often misleading,
we are willing to take the risk in order to learn something.

The main goal of these measurements should be to identify potential perfor-
mance and programming problems. In general, we want to stay as generic as
possible, basically only running very simple, rudimentary applications, which are
easy to understand.

One of the problems we should not underestimate is the overhead of having a
slower thread in our worker ensemble. That might happen if one of the cores is
actually shared with the OS. In such a scenario the OS will take resources from
our workload, which will effectively slow all workers, since every synchronization
is only as fast as the slowest core. Additionally, since synchronization is usually
(partially) handled by the OS, we are actually hit twice. Once for using a slower
worker, and the second time for never being able to perform the two steps, checking
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Figure 9.3: Parallelization of a dot product using double precision. Comparison
of the sequential execution with available functions from OMP, Cilk Plus, and
TBB).

and continuing, in ensuing cycles.
As a valid benchmark we consider a dot product. We can make use of the

FMA ability of the KNC. The vectorization capabilities of each framework can be
included as well. This compares a truly scalar sequential execution with a fully
parallelized one. The plot for this benchmark is shown in Figure 9.3. We can see
that the scheduling is probably not very efficient for small data sizes, especially in
the case of Cilk Plus.

The upper bound is limited by the streaming capabilities of the Xeon Phi. A
bandwidth of roughly 150 GB/s is far too less for providing the dot product with
sufficient data. We need around 1.1 TB/s. The result can be explained by knowing
that the basic demand is 32 bit/cycle, which has to be multiplied by the frequency
f , the number of threads NP , and the operations per cycle O. We have

BW = ONP BR f, (9.4)

where the basic demand is denoted by BR. In our case O ≡ 2, NP ≡ 120, and
f ≡ 1.24 GHz. The FMA instruction allows us to increase O from one to two.

For Cilk Plus we do not only pay the price for worker initialization as with the
other frameworks, but we do not benefit from multi-threading within the shown
workload. The work-stealing mechanism in conjunction with the recursive divide-
and-conquer strategy [21] is not well-suited for this benchmark. A possible solution
is to change the grain size, which determines the size of the chunks to distribute.
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Figure 9.4: Parallelization of a matrix-matrix product using double precision.
Comparison of the sequential execution with reduction methods provided by OMP,
Cilk Plus, and TBB.

By default the grain size G is

G = min (2048, N/(8NP )) , (9.5)

where N is the size of the problem and NP is the number of workers.
In general, we are constrained to use a single technology exclusively. The reason

is that most threading frameworks come with their own way of managing the
lifetime and state of their workers, i.e., threads. If we use multiple frameworks
they might interfere with each other. For instance both, OMP and Cilk Plus
come with their own runtime. The runtime handles the thread affinity and starts
or stops workers according to its algorithms.

Finally, we might be interested in matrix-matrix product. The product of two
square matrices with N rows is special, as it implies more computations O (N3)
than memory consumptionO (N2). In the end we really have mostly computations
instead of a more likely measure of memory bandwidth. A quick check yields a
required bandwidth of around 70 GB/s, which is below the sustainable bandwidth.
Reusing existing cache-lines makes it possible to lower the demand by a factor 16
than in case of the dot product.

The plot in Figure 9.4 shows the behavior for a matrix-matrix product with
double precision floating point numbers. The given size is the number of rows for
the square matrices. As with the previously shown plot from Figure 9.3, we do
not limit ourselves to threading, but also use vectorization explicitly. This way we
can benefit up to a factor of 8, see Section 9.5.
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barrier implementation provided by Pthreads.

In this benchmark TBB is able to hide the initialization cost most efficiently. In
fact TBB shows great performance in the long run. Besides the efficient scheduler
mode we have a loose coupling between the used vectorization technology and the
parallelization. While the other two frameworks provide their own vectorization
mechanism, for TBB we use auto vectorization from the compiler.

Overall OMP shows very solid performance. For smaller data sizes or workloads
we will always have more overhead in a parallel execution than in a sequential
one. This is, however, not the regime we are after. Our target data size is possibly
more on the other end, where we already hit the memory bandwidth and worker
initialization is negligible. Exceeding the limiting memory bandwidth is one of
the most common reasons for insufficient parallel performance. Staying within
the possible bounds is necessary.

We did not include MPI in these benchmarks. The main reason is that we do
not want to use MPI for intra-node communication due to the increased memory
consumption. Furthermore, we would like to make efficient use of shared caches
and the ring bus. This excluded MPI as a viable option in this discussion.

9.4 Worker Synchronization

Synchronization is one of the most crucial parts in a multi-threaded or distributed
application. We need a reliable and efficient mechanism for controlling the program
flow. Naturally, every parallelization framework provides a solution that is reliable.
For our purposes we need an efficient implementation.
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We demand that our synchronization method is reliable and efficient enough to
be no real bottleneck. Most importantly the synchronization mechanism should
scale well with the number of workers. We require at least O (logN) or better,
with N being the number of workers.

First we need to evaluate the existing solutions to see if any available implemen-
tation already satisfies our requirements. In Figure 9.5 we show the performance
of the integrated solutions provided by some popular libraries and frameworks,
such as Boost or OMP.

We measure the dependency on the number of workers to get information about
the scaling behavior. We can immediately see that a tuned implementation, e.g.,
the barrier provided by OMP, is worth considering. It uses a better algorithm
than just a plain centralized barrier, which is shown for comparison. In fact most
barriers use an algorithm that scales logarithmically with the number of workers.

The benchmark uses a scattered worker distribution. Such a distribution implies
that the distance between the workers on the cores is maximized. For the Xeon
Phi we assign a single worker to each core, before we would start putting another
worker on an already occupied core. Theoretically, we could go up to four workers
per core. In most scenarios three workers per core performs better.

Testing the performance of a synchronization mechanism in a reliable, repro-
ducible manner is not trivial. We need to find a way that tries to minimize the
arrival time of the workers at the synchronization. We need to find the best way
to measure the actual synchronization time, which is the overhead introduced by
the synchronization function, called a barrier.

Algorithm 6 Barrier Measurement
1: for each worker w do
2: setup test barrier bT for w . optional
3: call general purpose barrier bG
4: t(i)w ← current time
5: call test barrier bT
6: t(f)

w ← current time
7: end for
8: τ ← maxw t(f)

w −maxw t(i)w

Our algorithm to measure the overhead of a barrier τ reliably is shown in Al-
gorithm 6. The general purpose barrier is called to fix potential delays from the
setup and to smooth the upcoming synchronization.

This approach can be used to check the synchronization for reliability. We
only need to use smallest tfw instead of the largest. The reliability requirement is
satisfied if τ ≥ 0. Of course this is only a quick check and no formal proof.
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Figure 9.6: Procedure of a tournament barrier consisting of 7 workers. The teal
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The blue line denotes the tournament winner. This worker has to trigger the
wake-up sequence illustrated by the gray edges.

Previously, we concluded that the integrated solutions satisfy our scaling de-
mands, however, not our general efficiency needs. A barrier that costs more than
O (104) cycles is too expensive for our applications. Therefore, we need to create
an improved barrier. We start by looking for better algorithms and Xeon Phi
optimized implementations, which match our demands.

The centralized barrier scales like O (N), i.e., linear, by design. It could only
be interesting for us if the Xeon Phi somehow provides cheaper all-to-all com-
munication than computation. For really small worker counts that might be the
case, however, in our case we scale beyond O (102) workers. Here we do not ex-
pect any performance advantages using a centralized barrier. Therefore, we use a
tournament barrier, which promises much better scaling.

A tournament barrier creates a tree, which scales like O (logN), i.e., logarith-
mically, by design. Each round of the tournament is set up by small centralized
barriers, which only involve two workers at a time. Hence we only need point-to-
point communication. The algorithm can be improved even further by drawing an
efficient grid instead of an arbitrary set of matches. Such a grid prefers neighbor
matches to crossing ones.

An effective grid tries to minimize the distance on the ring bus between the
workers in each round, which is supposed to minimize potential contention on the
ring bus. The basic algorithm is sketched in Figure 9.6. The illustration assumes
a total of 7 workers to show the most important concepts. For instance, as there
is no eighth worker the match between the fourth worker and the eighth worker
ends with a dropout for the fourth worker. The standard algorithm for setting
up the tournament grid is illustrated in Algorithm 7. We distinguish between the
states champion, winner, loser, and dropout.

Already a naive implementation of the tournament barrier kernel shown in
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Algorithm 7 Tournament Barrier Setup
1: for each worker w ∈ [0, N − 1] do
2: c← 2
3: p← 1
4: for each round r ∈ [1, log2(N)] do
5: if w|c = 0 and r < N and c < N then
6: role of w in r is winner
7: opponent of w in r is w + 1
8: else if w|c = 0 and r ≥ N then
9: role of w in r is bye

10: else if w|c = p then
11: role of w in r is loser
12: opponent of w in r is w − 1
13: else if w = 0 and c ≥ N then
14: role of w in r is champion
15: opponent of w in r is w + 1
16: end if
17: p← c
18: c← 2c
19: end for
20: end for

Algorithm 8 Tournament Barrier Kernel
1: r ← 0
2: while sleeping do . sleep initially
3: if role in round r is loser then
4: notify opponent
5: wait for opponent
6: stop sleeping
7: else if role in round r is winner then
8: wait for opponent
9: else if role in round r is champion then

10: wait for opponent
11: wake up opponent
12: stop sleeping
13: else
14: r ← r + 1
15: end if
16: end while
17: while r > 0 do . wake up
18: r ← r − 1
19: if role in round r is winner then
20: wake up opponent
21: else if role in round r is dropout then
22: r ← 0
23: end if
24: end while
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Figure 9.7: Different implementations of a tournament barrier with optimizations
for the Intel Xeon Phi.

Algorithm 8 is better than the default implementation provided by the OMP
framework. By incorporating a Xeon Phi optimized memory layout we can gain
even more. Another potential improvement is the usage of Xeon Phi’s streaming
stores, which omits loads. Further tricks for programming the co-processor more
efficiently can be applied as well.

In Figure 9.7 we compare some of our efforts. In the plot every barrier is
definitely faster than the default OMP barrier. All barriers are scaling similarly.
They all seem to use a tournament kind of barrier. Most interestingly, the barrier,
which uses huge pages in conjunction with a specific padding, shows the best
performance until 180 workers. For more threads the QPhiX implementation
from Chroma [29] seems to be stable, resulting in the best performance.

Finally, we might be interested in the various locking mechanisms that are
provided by all the frameworks we looked into. In general it is possible to use
the lock prefix for a subset of instructions, e.g., incl, and xchg, cmpxchg for a
sequence of instructions. As usual it is beneficial to abstract such hardware-related
features by preferring framework or language features.

We can compare standard mutex algorithms against specialized atomic opera-
tions or more general reducers. The overhead for three synchronization mecha-
nisms provided in each of the frameworks are shown in the plots of Figure 9.8.
The sync fetch-and-add (SFA) mechanism of Cilk Plus represents the fetch-and-
add atomic built-in originally coming from the GCC. It also appears in the C++11
standard. In its purest form SFA is used to implement mutual exclusion and many
concurrent algorithms in general.

Most importantly, we should avoid or limit the usage of any mutex implemen-
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Figure 9.8: Provided synchronization primitives by the different frameworks.

tation. In general we should prefer atomic operations. Interestingly, there are
huge differences among the different implementations. By using a more optimized
implementation, such as the one provided by the reducers in Cilk Plus, we can
save a magnitude in overhead as compared to a more heavyweight version, found
in, e.g., OMP.

The reducers in Cilk Plus work very efficiently by limiting the required synchro-
nization. Cilk Plus uses hyper-objects, which is a mechanism that allows different
branches of a multi-threaded program to maintain coordinated local views of the
same non-local variable [54]. Nevertheless, especially in scenarios where we need
to read the value of the atomic variable a lot, OMP is still an excellent alternative.

9.5 Vectorization

Each core of the Xeon Phi is far less powerful than ordinary computer processors.
Since massive parallelization also comes with some overhead, it is questionable if
using the co-processor may actually result in performance improvements.
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Figure 9.9: SIMD can operate on a vector of data using a single instruction.

In this section we introduce the largest possible performance impact on the Intel
MIC platform: vectorization using SIMD instructions. The Xeon Phi contains a
512 bit vector unit that supports integers, as well as single and double precision
floating point numbers. It enhances the usage of special math functions.

While classical computer systems only operate with a single instruction per data
item, a SIMD system may apply a single instruction on a vector of data items. The
maximum length of such a vector on the Xeon Phi is 16 single precision floating
point numbers. The basic concept is illustrated in Figure 9.9.

There are several ways to utilize the special vector unit of the Xeon Phi. One
is to write assembler code that matches the special operation codes directly. This
is neither portable nor robust. More intelligent compilers will not be able to op-
timize our code even further. The next level would be to use so-called compiler
intrinsics. These are special functions that map directly to their respective assem-
bler counterparts. In contrast to writing pure assembler instructions, the compiler
knows these functions and may be able to do further optimizations. Finally, it is
easier to port from one architecture or compiler to another.

We can even go further and abstract the intrinsics into our own libraries. These
libraries may induce best practices and general optimizations, which are then
compiler independent. Due to the increased level of abstraction our application
may be even more portable. Nevertheless, we also introduced another dependency
and we need to be sure that the abstraction is as transparent as possible.

The most portable approach is certainly to let the compiler decide if a certain
loop can be vectorized. While the portability is enhanced in this process, the
performance is decreased in general. The compiler does not know how to handle
any jumps inside the loop, e.g., how to incorporate function calls. Therefore, we
lose the ability to make use of so-called elemental functions [60], which can be
generated via special vector attributes. An example is illustrated in Listing 9.3.

An elemental function can be used with vector arguments. It can be used with
scalar arguments, which makes the function highly flexible. Inside the function
we are not allowed to use any jump instruction or non-elemental function call.
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Figure 9.10: Addition of two double precision vectors with the displayed length.
We compare a scalar version against a naive implementation using intrinsics, the
Vc library, OMP, and Cilk Plus.

Additionally, certain operations are not allowed. Finally, we cannot make use
of explicit SIMD inside the function body. There are more restrictions, but it
basically boils down to a simple statement: Elemental functions only represent a
computation scheme for SIMD, not a full functional unit. They are expanded to
a functional unit, either for scalar or for vector usage, by the compiler.

1 attribute ((vector)) double add(double x, double y) {
2 return x + y;

3 }

Listing 9.3: Creating an elemental function.

We have written some simple benchmarks to compare the performance of using
raw intrinsics with the performance of several libraries. As for the libraries, we
have chosen OMP, Cilk Plus, and Vc [83]. OMP seems to be a good choice due
to the integration of OMP for parallelization. Cilk Plus is a language extension
that is available in Intel’s compiler. Being a language extension it is very natural
and easy to use. The last library, Vc, is experimental and tries to standardize the
vectorization by using transparent abstraction in conjunction with C++ templating
features. It is very portable and works with other architectures, e.g., AVX, too.

Among a few other tests, the simple addition of two vectors seems to be the most
illustrative. In Figure 9.10 we show the performance of the chosen technologies
while adding two vectors of the same length. As data type we have decided to use
double precision floating point numbers. This gives us a naive speedup of 8. Indeed
we see a speedup close to O (10). We can observe that writing raw intrinsic code
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Figure 9.11: A closer look at the performance difference of the addition of two
double precision vectors from Figure 9.10. The time is relative to the scalar
execution time.

is usually not required for substantial performance gains. The chosen frameworks
are all more than competitive.

While Vc uses some interesting startup optimizations, it brings some additional
padding to the table. This padding is not well optimized for the Xeon Phi, which
consumes too much of the available cache. In effect we see a drop in performance
due to requiring data from the L2 cache much earlier than with the other frame-
works.

Writing SIMD instructions with intrinsics is a viable solution. Nevertheless, we
see that more optimizations can still be done to make the code even faster. The
startup cost can be optimized as demonstrated by Vc. The cost for operating on
cached data may be reduced further. In the end we observe that programming
naively with intrinsics leads to code that runs slightly slower than code that has
been annotated with OMP or Cilk Plus pragma instructions. Writing faster SIMD
code than OMP and Cilk Plus is certainly possible, but an effort that needs to be
justified first.

Looking closer at the region with N ∈ [102, 104] entries per vector we see some
interesting details. In Figure 9.11 we change the time axis to reflect the inverse
speedup to the scalar version. We see that the intrinsic version is really bound
by our claimed speedup of 8, which gives us a relative time of 0.125 to the scalar
version.

Nevertheless, the other options, most importantly Cilk Plus, go even beyond
a speedup of 8. The explanation lies in the prefetching instructions, which are
automatically inserted by these frameworks. Both, the scalar and the intrinsic
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version have been written without using any prefetching instruction. Using some
software prefetching is definitely faster than relying on the hardware prefetcher.

From our evaluations it seems that using OMP, or even better Cilk Plus, is
the ideal way to use SIMD on the Xeon Phi. The only reason against them is
the associated overhead that results in weak performance for small vectors. The
advantage of OMP is certainly its portability. While Cilk Plus has great support
from ICC, it does not have much support from other compilers even though there is
a special branch of GCC and a Clang fork with the Cilk Plus language extensions.

Another reason for OMP is consistency. Doing both, parallelization and vector-
ization in a single framework is definitely appealing. This way we have a greater
dependency on a single framework. This single dependency, however, may be eas-
ier to resolve than multiple dependencies. On the other hand, we can argue that
a certain distinction is definitely nice to have. Additionally, Cilk Plus offers much
finer control than OMP.

If portability really is the pressing issue then Vc does seem to be the ideal option.
It offers solid performance with unmatched cross-platform and compiler support.
The library contains very useful helpers and allows us to write lower level code.
It provides a close-to transparent abstraction with almost no overhead. Once the
Xeon Phi support has improved we can expect better performance in the long
run.

9.6 Performance and Best Practices

HPC is the art of maximizing the usage of the available computing devices. The
rules of the game do not change with the Xeon Phi, however, new rules should be
followed to obtain satisfying performance.

Following best practices for the Xeon Phi is important. A good list with very
general guidelines and tips has been published by Jeffers and Reinders [73]. An
empirical study found in [48] gives us some interesting insights. A study that is
oriented towards applications in LQCD can be found in [103].

In the following paragraphs we investigate what kind of best practices should
be applied for the Xeon Phi using frameworks like MPI and OMP. The goal is
to identify useful improvements and propose them for integration in Chroma [46,
29].

9.6.1 Memory Layout

Implementing parallel algorithms is not a very difficult task. The hard part is
optimizing these algorithms in such a way, that they outperform serial implemen-
tations and scale well. Therefore, these implementations need to be very flexible
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and quite sophisticated. They need to reduce communications and synchroniza-
tions.

Usually, it is impossible to transform a serial implementation to a good parallel
implementation without changing the data layout. The layout needs to be modified
in such a way, that dependencies are minimized or shifted to require a minimum
of communication.

An important role in the transformation is the memory structure. The cache
coherency protocol and the interaction, e.g., by offloading, with the external CPU
have to be considered as well. The KNC uses a ring bus system that connects
every core with the main memory (see Section 7.3). In total there are eight
memory controllers, with each one being responsible for a part of the memory. The
allocation algorithm prefers memory reservations taken by the closest controller.

Memory allocations require synchronization within a system call, which invokes
an expensive context switch [135]. It makes sense to reduce allocations or preallo-
cate a larger chunk of memory. The process of memory allocation has to consider
the right memory alignment. The alignment describes the specific byte boundaries
for a particular memory object.

For the Xeon Phi we need align memory to 64 B. One way to achieve this
is by using the special intrinsics provided by the Intel compiler in the header
file immintrin.h. We see an example for using the intrinsics to allocate (and
deallocate) aligned memory in Listing 9.4.

1 double* mem = mm malloc(sizeof(double) * size, 64);

2 // ...

3 mm free(mem);

Listing 9.4: Allocating and deallocating aligned memory.

Another alignment issue can be found in the actual usage of memory. At compile-
time the address of a pointer is not known. Thus the compiler cannot assume
that occurring pointers do actually represent aligned memory or not. We should
declare the corresponding data alignment before executing any operation. It is
sufficient to specify the alignment once per variable.

The codes in Listing 9.5 and Listing 9.6 illustrate two ways of declaring data
alignment information. The first function uses an array-type, which is declared
to be 64 B aligned in the beginning of the function. The second function uses
arbitrary, maybe overlapping, pointers, which are being declared as aligned before
the loop. The access to the memory’s content is vectorized with Cilk Plus. The
alignment information is important for achieving the best possible performance
with vectorization.
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1 void inc(double p[]) {
2 assume aligned(p, 64);

3 for (int i = 0; i < n; ++i) {
4 p[i]++;

5 }
6 }

Listing 9.5: Declaring the alignment of variables.

Overlapping may result in inferior performance. It is possible due to complete
freedom in pointer arithmetic and cannot be excluded in a programming language
like C/C++ when dealing with copy of pointers, such as aliases or function ar-
guments. Usually, such languages already come with a cure. For example, in
C we can use the restrict keyword to ensure that the compiler assumes non-
overlapping memory as shown in Listing 9.6. Naturally, this choice gives us more
responsibility and the compiler a lot more freedom for optimizations.

1 void mul(double restrict* a, const double restrict* b, const double

restrict* c, int n) {
2 assume aligned(a, 64);

3 assume aligned(b, 64);

4 assume aligned(c, 64);

5 for (int i = 0; i < n; i += 8) {
6 a[i:8] = b[i:8] * c[i:8];

7 }
8 }

Listing 9.6: Alignment with non-overlapping guarantee.

All this is done to increase efficiency of data loads and stores to and from the
CPU. A processor moves data more efficiently when that data can be moved to
and from memory addresses that are on specific byte boundaries. Additionally,
this prevents one potential source for so-called false sharing.

9.6.2 Sharing Data

One more item to consider is false sharing. This happens when two different
cores read and write adjacent data in the same cache line. The cache coherency
protocol has to make sure that a consistent program flow is ensured. It maintains
the consistency between all the caches in a system of distributed shared memory.
In this scenario we pay the price for demanding such a consistency.

False sharing consequently results in terrible performance, because the cache
lines are continually moving among the caches of different cores as one core after
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another tries to write in order to update their data element. Usually this is fixed
either by padding to cache line boundaries or by using private variables.

9.6.3 Prefetching

Memory bandwidth and latency are crucial for a well performing system. The
programmer has to know how to efficiently use the caches [43]. Most performance
is actually wasted by cache misses. A miss is occurring if data should be already
in a certain cache level, but in reality is not. This data then has to be requested
from a lower level of memory, which might take up to O (100) cycles. The delay
could have been avoided by issuing prefetch instructions. The compiler will then
insert such instructions starting with the second optimization level. However, in
certain cases we might be required to insert prefetch instructions by hand.

We can use a special compiler pragma directive to insert prefetches manually.
We could add prefetches with compiler intrinsics. As an example, we consider
the code shown in Listing 9.7. The code shows a simple function that takes an
array and two integers as input variables. When we loop over the elements of
the vector, we can tell the compiler about possible prefetch optimizations. In our
case we instruct a vprefetch1 for the vector with a distance of 16 vectorized
iterations ahead. Similarly, we want a vprefetch0 with a distance of 6 iterations.
If we would not have used any pragma directive, then the compiler would have
picked both distances.

1 void foo(int* vec, int m, int n) {
2 for (int i = 0; i < n; ++i) {
3 #pragma prefetch vec:1:16

4 #pragma prefetch vec:0:6

5 for (int j = 0; j < 2 * n; ++j) {
6 vec[i * m + j] = −1;
7 }
8 }
9 }

Listing 9.7: Manually prefetching data.

Prefetching is definitely important, but we need to think about implications of our
actions. It is possible that we end up with less performance than before, especially
when prefetching data that are not actually used, e.g., by blocking bandwidth to
the cache. Additionally, cache lines that are used rarely may be prefetched too
often. Hence the cache has to throw out cache lines, which are used more actively.

Code runs faster when data are reused while they are still in the processor
registers or the processor cache. It is frequently possible to block or tile operations
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such that data are reused before they are evicted from cache. The top priority
should be assigned to work on limited sets of data. This can be considered an
algorithmic optimization, which is always preferable to implementation specific
optimizations.

Last but not least, we should always prefer structure of arrays (SoA) over array
of structures (AoS). The grouping makes it much easier for the compiler to insert
the right prefetching commands. Furthermore, data is usually reused much better.
The only major drawback is the strong impact on the memory layout. It is possible
that large parts of our applications need to be rewritten to support a SoA data
layout.

9.6.4 Thread Affinity and Placement

An interesting parameter to play around is the thread affinity. The thread affinity
makes most sense on systems with socket dependent memory latency or band-
width, i.e., non-uniform memory access (NUMA) systems. Threads in a NUMA
system that share some memory should be placed on the same socket. We might
want to place IO heavy threads on the socket closer to the IO device.

On the Xeon Phi the ring bus tries to guarantee uniformity. Nevertheless, in
practice the NUMA factor is greater than zero. Hence setting thread affinity may
be beneficial. There are several (predefined) modes:

• compact tries to minimize the distance between the threads.

• scatter tries to maximize the distance between the threads.

• balanced minimizes the distance between the used cores and maximizes the
distance between the active threads.

• none, i.e., threads are not bound to any context. This setting should be
avoided in general.

Naturally, balanced is the affinity to consider. It places threads on single cores
first, while still keeping the core’s in short distance to each other. In most test cases
this is the best possible setting. It is never significantly worse than other options.
All these options are set as environment variables, e.g., KMP AFFINITY=balanced.

Even more important than the affinity is the processor binding. If we do not
set the processor binding, the host OS is free to shuffle the threads to arbitrary
cores. Such a reshuffling may be beneficial for some applications, but is destructive
for performance in general. OMP, however, has the ability to suppress shuffling
requests. We can use this by setting the environment variable OMP PROC BIND to
true.
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Figure 9.12: The effect of pinning for scaling threaded applications on the Xeon
Phi. The benchmark application performed a dot product of two vectors with the
given length.

Explicitly pinning the threads to physical cores may not only improve the scaling
behavior of our application, but the overall throughput. In Figure 9.12 we observe
a better runtime scaling for pinned threads while keeping the number of threads
constant. The provided benchmark uses a standard dot product to aggregate data
from different places. In general the number of threads seems to be less influential
than anticipated.

The optimum solution is to use a pinned program execution model with a bal-
anced thread affinity and a uniformly distributed workload. We neglect possible
influences by the host OS, minimize distance between cores on the ring bus, and
maximize distance between threads in a core. All in all this approach turns out
to be the most efficient. Our findings are backed up by similar evaluations [127].
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9.6.5 Node Communication

The inter- and intra-node communication is commonly implemented with the MPI
library. We can find many introductory materials to MPI, e.g., the book by
Pacheco [109]. For the QPACE 2 project we need to take care of two different
levels of MPI communication. From the perspective of MPI a node is defined by
a single Xeon Phi.

Therefore, on the one hand we have local MPI nodes, which consist of the Xeon
Phi co-processors within the same brick. On the other hand we have the Xeon
Phis of other bricks. Additionally, we could distinguish between the nodes within
a single-hop reach, and the nodes where communication is required to go over two
switches.

A very important benchmark is the HPL application. It is dependent on ex-
cellent point-to-point communication performance. This allows us to learn a lot
about our communication performance. In the end our goal is to come close to the
performance described in [69]. We need to minimize the latency δ and maximize
the bandwidth BW of our network operations.

One way to circumvent performance loss due to unoptimized drivers on the MIC
is to utilize the host processor for external communication. A proof of concept has
been created by Intel in form of a library called CML proxy. It is a communication
layer for the MIC that is supposed to enhance the MIC-MIC data transfer. It works
with connections on the same socket and across different sockets. We benchmark
the CML proxy in conjunction with the OSU benchmark suite [89]. The test
system consists of two nodes, which are connected via quad data rate (QDR) IB.

We are mainly interested in two quantities. Primarily, we have been interested
in the bandwidth with the CML proxy library. The OSU benchmarks include both,
the ability for a uni-directional and a bi-directional bandwidth measurement. The
uni-directional version starts several non-blocking sends via MPI. The receiving
side uses matching non-blocking receives. The window size parameter W defines
the number of concurrent sends. A single iteration ends when the sending sides
gets the receive of all messages acknowledged. The computed bandwidth BW for
sending N bytes k times is given by

B
(uni)
W = k N W

tf − ti
, (9.6)

where the first bytes have been sent at ti and the last acknowledgment has been
received at tf .

The bi-directional version works similar. Here non-blocking sends and receives
are started on each node. No acknowledgment is required, since data are received
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Figure 9.13: Latency and bandwidth of point-to-point communication using MPI
alone and in combination with the CML proxy library.

anyway. The bandwidth is computed with an additional factor of 2, which is
motivated by measuring on a single system in a symmetric setup. We have

B
(bi)
W = 2k N W

tf − ti
. (9.7)

Additionally to the bandwidth, we are interested in the latency. The latency is
measured with a blocking send from one node to another and back again. This
is known as a ping-pong test. It works, because in the regime of small messages,
latency is dominating the transfer time. For repeating k ping-pong iterations we
have a latency δt of

δt = tf − ti
2k , (9.8)

with the same definitions of tf and ti as specified for the bandwidth.
The CML proxy relays the message data from the MIC to the host CPUs, which

in turn send the data to the destination CPUs. We assign a CPU core to process
requests from each local KNC, for extracting the data from local KNC memory to
host memory via DMA and for sending the data to the destination CPU. Similarly,
at the destination, a CPU core receives the data and uses DMAs to move the data
from host memory to the co-processor’s memory.

The whole process is performed in a pipelined manner by splitting the ap-
plication data into several small chunks. The chunk sizes for a given application
message are chosen dynamically since smaller chunk sizes can amortize the startup
overheads, but at the cost of lower bandwidth. Larger chunk sizes give good band-
width, but may expose startup overheads. We use a memory mapped request and
response queue model for controlling the message handshakes between host and
KNC.
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In Figure 9.13 we observe a significant performance boost in favor of using the
CML proxy layer. We see that latency and bandwidth profit mostly for large
message sizes. The scaling of the latency is also better with the CML proxy
layer. Most interestingly, the bandwidth seems to be on par with the proxy-less
solution until the message exceeds a couple of kilobytes in size. At this point
the benchmark with the proxy scales the bandwidth to nearly 3 GB/s, while the
benchmark without the proxy stops at the 2 GB/s mark.

Using the CML proxy layer is only a temporary workaround. At some point
in the future the MPI solutions will integrate a layer similar to the CML proxy,
which is supposed to be more generic and reliable.

9.7 Scaling Architecture

So far we have discussed details of the hardware architecture, parallelization, and
vectorization frameworks, as well as best practices with everything being presented
in the context of the Xeon Phi. For the final section we look into building a
portable, well-performing, and scaling software architecture. As an example we
apply our architecture to an implementation of the GMRES algorithm [125].

A “scaling architecture” should be able to handle different levels of paralleliza-
tion. The lowest level can be found within a single core. Here we want to increase
performance by using SIMD instructions. The next level is SMT in the context
of a processor. The third level involves communication between processors. De-
pending on the underlying architecture we could distinguish between processor
communication using QPI, PCIe, or a network technology such as IB.

The lowest level can be solved by creating custom data types. Such a data type
needs to behave just like its underlying primitive type with additional features
such as a length property and integrated SIMD mapping. By using the specialized
data type instead of a primitive one, we can easily use the vectorization unit of a
particular architecture. If the architecture does not support SIMD we can always
fall back to standard loops, which take care of data operations.

We propose an architecture as outlined in the Unified Modeling Language
(UML) diagram shown in Figure 9.14. Our proposal makes a lot of demands
on the implementing language, e.g., an integrated mechanism to provide zero-cost
abstractions. This kind of abstraction is only possible in a compiled language that
includes intelligent optimizations.

Our choice for implementing the architecture is the C++ language. C++ pro-
vides enough low-level constructs to allow fine grained control. It contains a Tur-
ing complete functional meta programming language known as template metapro-
gramming (TMP). TMP gives us the freedom to write decoupled code, that is
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Datatype,Dispatcher
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ConcreteParallelizerConcreteDistributor

Figure 9.14: UML diagram of the proposed scaling architecture. A language that
supports zero-cost abstractions is mandatory for practical implementations.

only bound by functional contracts instead of specific implementations.
The scaling architecture centers around an algorithm. A practically used ap-

plication may require multiple algorithms, which can depend on different kinds of
dispatchers. A dispatcher is an aggregate of one or more distributors and paral-
lelization rules. The implementation uses templates to refine each type and various
type traits to use the provided type information. Most of the illustrated architec-
ture actually vanishes during compile-time. At runtime only a very straight chain
of instructions remains. Most instructions are tailored to the provided datatype.

The datatype is used to provide the computational base of the algorithm. It can
be templated, but this template has to be specialized for the supported data types
of a SIMD vector. The datatype exposes elementary operations, e.g., additions,
and special math functions, e.g., for computing the sine function. These operations
should help to generate the best possible performance.

The algorithm may use smaller functional blocks that appear more often and can
be reused. Such blocks should be identified and put into a template for operations.
This template should be specialized for particular datatypes. In the end the code
is supposed to be easier to reuse and port in the future.

The interplay between parallelization strategies, distribution rules, and algo-
rithms is crucial. We enforce data-oriented programming via the custom datatype.
We scale the algorithm even further by using the parallelizer in the algorithm
when applicable. We may think about going beyond the single node level, i.e.,
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distributed computing. At this level we certainly have the largest communication
delays and synchronization problems. We should choose the parts for this scaling
area carefully.

As an example implementation of the scaling architecture we implement a simple
matrix inversion by using the GMRES algorithm [125]. Inverting a matrix M ∈
CN×N is the same as solving the linear systems Mxi = bi for bi = (δi1, . . . , δiN)
for i ∈ [1, N ]. Finally, our solution M−1 has N columns, where each column i

is given by xi. We can directly see that the simplest form of parallelization is
over the generation of solution columns xi. These are N independent problems.
Since communication is reduced to an absolute minimum we could use this for
inter-node scaling, e.g., via MPI. The only things we need to communicate are
start conditions such as the matrix M and the source vector bi, as well as final
results in the form of the solution vector xi. Everything else is independent and
allows efficient scaling.

Another form of parallelization can be found in the GMRES algorithm itself.
The main iteration of the solver cannot be touched, however, the sub-algorithms
can be. We use a QR decomposition and an Arnoldi iteration [12] in the GMRES
to construct an upper Hessenberg matrix Hm ∈ Cm+1×m, where m is the maximum
number of Arnoldi iterations. Usually, m is chosen to be m ≤ N , but this is not
required. The main reason this choice is that the algorithm scales like O (m2).
Constructing Hm is a process that contains matrix-vector and dot products. Thus,
we can use multiple threads to parallelize the matrix-vector products if the matrix
is much larger than the number of available threads.

Including vectorization is trivially achieved. Any dot product is automatically
performed with a SIMD enabled datatype. For really large N we may want to use
partitioning in conjunction with parallelization, however, for N ≤ O (1000) there
is no real gain, since synchronization costs will dominate in this region.

In our example we scale the algorithm up to four MPI nodes with 120 threads
on each compute node. Thus we use a complete brick. Every node makes use
of vectorization. In the end we are able to achieve one-third of the theoretical
speedup. The theoretical speedup calculation uses a factor of 120 for the number
of threads, a factor of 4 for the number of nodes and another factor of 8 for SIMD
with a complex double precision type consuming 128 bit per entry.

For smaller problem sizes we perform definitely worse than the scalar version.
However, for larger sizes we tend to become competitive. At some point we reach
a size that practically hides the intrinsic overhead of the communication scheme.
This can be seen in Figure 9.15. Here adding MPI seems to be slightly worse for
smaller problems. The origin of this behavior is that even though no information
exchange is happening, the MPI communication still has to be established. This,
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Figure 9.15: Scaling of the sample GMRES implementation from a sequential
dispatch to distribution with parallelization and vectorization. For the distribution
4 MPI nodes (1 brick) have been used. The parallelization includes 120 threads.
Vectorization implies using the 512 bit vector unit of a Xeon Phi.

of course, could be tuned.
The scaling architecture is suitable for many different algorithms and applica-

tions. Its main purpose is to be well performing while decoupling parts of the
parallelization from the algorithm. At the end of the day, we gained flexibility
and portability.
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10
Future Developments

The success of the original QPACE project enabled interesting developments that
started with iDataCool and continued with projects such as SuperMUC. QPACE
2 is another important milestone on the road towards exascale computing powered
by hot water cooling. Such a cooling is necessary to support exascale machines on
an economic basis.

The trend towards heterogeneous architectures cannot be denied, however, the
required efforts and necessary application specializations must be taken into ac-
count. The chosen architecture for QPACE 2 follows a modular design, which
makes maintenance and software design easier. The emphasize on Intel Xeon Phi
co-processor cards is a clear statement.

In the future the design could be altered to make use of additional features that
might be available in a future Intel MIC based card. It is possible to replace the
Xeon Phi of the KNC generation with Knights Landing (KNL) or any other more
advanced co-processor card [13]. Hereby additional performance could be gained
without requiring a complete redesign of the existing midplane.

Right now there is no way around InfiniBand network cards. Nevertheless, a
future design could make use of chip integrated high-speed interconnects. As an
example Knights Hill (KNH), a future version of the Xeon Phi produced in a 10 nm
process, is supposed to integrate a technology called Omni-Path Architecture. It
will support data rates up to 100 Gb/s with higher port density and lower latency
than current IB products. It is possible that a future design could feature a novel
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PCIe based network solution.
Finally, future developments will continue to explore new cooling processes,

which could be more efficient, cheaper, and easier to maintain. Currently a wave of
new HPC machines is designed around immersion cooling solutions. The concept is
not yet fully developed, but the basic idea is to cool the devices in a dielectric fluid,
which is a good thermal conductor. A wide variety of liquids can be used, e.g.,
electrical cooling oils such as the 3M Fluorinert. These liquids have a low boiling
point (typically around 50 °C) and usually low viscosity. Most devices that are
cooled by these liquids leave the bath dry. This prevents inefficient maintenance.

The next version will not be a complete redesign, but rather an incremental
update that utilizes the existing design with state of the art computing devices. It
is easy to predict that the next version of QPACE will surpass QPACE 2 in both,
efficiency and computing power.
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A
Acronyms

In this work we make heavy use of the following acronyms:

ALU arithmetic logic unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

AoS array of structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

API application programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

AVX Advanced Vector Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

BDMC Bold DiagMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

BMC baseboard management controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

BLAS Basic Linear Algebra Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

CLI command line interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

CP-PACS Computational Physics by Parallel Array Computer System . . . . 113

CPU central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CRI core ring interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

DiagMC Diagrammatic Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

DMA direct memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

DRAM dynamic RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

FDR fourteen data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

FMA fused multiply-add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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FPGA field-programmable gate array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

FPU floating point unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

GCC GNU compiler collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

GDDR Graphics Double Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

GPU graphics processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

GUI graphical user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

HPC high performance computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

HPL High Performance Linpack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

I2C Inter-Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

IB InfiniBand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

ICC Intel C compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

IDC iDataCool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

IO input / output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

IPMI Intelligent Platform Management Interface. . . . . . . . . . . . . . . . . . . . . .117
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B
Useful Identities

B.1 Gamma Matrices

The following identities have been very useful for simplifying expressions that
involve γ matrices. Our matrices are defined to obey

{γµ, γν} = 2δµνI4, (B.1)

since we work exclusively in Euclidean space. Here δµν is the Kronecker delta.
This equation implies γµγµ = I4. We use the convention to sum over repeated
indices. In the following we imply the four-dimensional unit matrix.

It is easy to show that

γνγµγν = −2γµ, (B.2)
γνγµγσγν = 4δµν . (B.3)

Following these relations we may find that

γνγργµγσγν = −2γσγµγρ. (B.4)

Similarly, we can obtain the relation

γνγργµγβγσγν = 4 (δρµδβσ − δρβδσµ + δρσδβµ − ερµβσγ5) , (B.5)
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where we use the definition of the four-dimensional Levi-Civita symbol,

ερµβσ =





+1 if (ρ, µ, β, σ) is an even permutation of (1, 2, 3, 4)

−1 if (ρ, µ, β, σ) is an odd permutation of (1, 2, 3, 4)

0 otherwise

, (B.6)

and γ5 = −γ1γ2γ3γ4.
For the multiplication of seven γ matrices we can prove several identities. The

following two have been very handy for calculations in this thesis:

γνγαγργµγργβγν = −2γβγσγµγργα, (B.7)
γνγργαγµγβγργν = 4γαγµγβ. (B.8)

If we have contractions in certain terms we can try to find an identity, that makes
our life easier. An example would be the following equation, which simplifies a
product of nine γ matrices. We can prove that

γνγαγργβγµγσγργεγν = 4γεγσγµγβγα. (B.9)

There are many possible realizations of the four γ matrices. In this work we
have exclusively used the so-called chiral representation. In this representation
the chirality operator γ5 is diagonal.

The explicit representation of the four γ matrices read:

γ1 =




0 0 0 i

0 0 i 0
0 −i 0 0
−i 0 0 0



, γ2 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



,

γ3 =




0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0



, γ4 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



. (B.10)

B.2 Traces

γ matrices will eventually be transformed to scalars by using traces. It is trivial
to show that taking the trace of any odd number of γ matrices will result in zero.
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This means that, e.g.,

tr (γµ) = 0, (B.11)
tr (γµγνγρ) = 0, (B.12)

tr (γµγνγργαγβ) = 0. (B.13)

Additionally, we can show that the trace of γ5 vanishes. Moreover, we have

tr (γ5) = 0, (B.14)
tr (γ5γµ) = 0, (B.15)

tr (γ5γµγν) = 0, (B.16)
tr (γ5γµγνγρ) = 0. (B.17)

However, the product of four γ matrices with γ5 does not vanish under the trace.
Here we find

tr (γ5γµγνγργσ) = −4εµνρσ. (B.18)

Furthermore, the traces are useful with contracted momenta. For instance, we
find

tr
(
/a /b /c /d

)
= 4 (a · b c · d− a · c b · d+ a · d b · c) . (B.19)

There are be many more useful identities, but here we only listed the ones thst
have been used throughout this work.
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C
Evaluations

C.1 Combining Benchmarks

The results in Chapter 9 have been obtained using a custom written application.
Even though the application already performs a statistical analysis of all the data
gathered, the same run has been repeated on multiple machines using the exact
same settings. In the end we have a scenario with n results, all representing
averages Si and errors ∆Si for i ∈ [1, n].

Reducing such results to form a single number again requires us to combine
multiple averaged data points and their errors. As we’ve already discussed in
Section 2.2, the standard error expressed in Equation (2.45) can be formulated as

ε = σ√
N
, (C.1)

where N is the number of points averaged. σ denotes the standard deviation of
the points. The sample standard deviation for a single set of N data points xi has
been defined as

σ =
√

1
N − 1

N∑

i=1
(xi − 〈x〉)2. (C.2)

The mean of this dataset is represented by 〈x〉.
Before we start with looking into combining n averages, we take care about the

special case n = 2. We can denote the number of data points with Na and Nb,

180



given for the sets a and b. The averages are computed to be

〈a〉 = 1
Na

Na∑

i=1
ai, 〈b〉 = 1

Nb

Nb∑

i=1
bi. (C.3)

We can directly see that 〈S〉 is calculated from Equation (2.40) to be

〈S〉 = 1
N

N∑

i=1
Si = 1

Na +Nb



Na∑

i=1
ai +

Nb∑

i=1
bi


 . (C.4)

Expressing 〈S〉 in terms of quantities we know allows us to easily prove that

〈S〉 =
(

Na

Na +Nb

)
〈a〉+

(
Nb

Na +Nb

)
〈b〉 , (C.5)

which is just a weighted average of the points. For combining n averages we
therefore have

〈S〉 =
n∑

i=1

(
Ni∑n
j Nj

)
〈xi〉 . (C.6)

In our special case we always had Ni = Nj for all i and j. As a result we therefore
compute the final value to be

〈S〉 = 1
n

n∑

i=1
〈xi〉 . (C.7)

Similarly, we can recombine the error of the datasets ∆Si. Here our derivation
begins again by looking at the special case first. From the general equation for
the standard error (Equation (2.45)) we obtain the intermediate result

∆S2 = 1
(Na +Nb)2 − (Na +Nb)



Na∑

i=1
(ai − 〈S〉)2 +

Nb∑

i=1
(bi − 〈S〉)2


 , (C.8)

where we can substitute M ≡ (Na+Nb)2−(Na+Nb) for readability. Additionally,
the variables Mi = N2

i −Ni are quite handy for deriving the correct result.
Finally, we obtain

∆S =
√
Ma

M
∆a2 + Mb

M
∆b2 + NaNb

NM
(〈a〉 − 〈b〉)2. (C.9)

Again we can extend the given equation to be used with n data points, but in this
case it seems appropriate to make some approximation first. Most importantly we
already know that Ni = Nj for all pairs of i and j. As a consequence Mi will be
the same for all i.

Another proper assumption is that the dataset is large enough to make 1/N
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negligible. This motivates us to drop the mixed term. At this point we are just
left with

∆S = 1
2
√

(∆a2 + ∆b2), (C.10)

which makes the generalization to n points is fairly straight forward. We find that
for n such points we obtain

∆S = 1
n

√√√√
n∑

i=1
∆Si2. (C.11)

We see that the overall error decreases as compared to all individual measurements.
For the case of n measurements with the same result and error, the overall error
after combining the intermediate results with be smaller by a factor of n−1/2.

C.2 2D Rebinning

The technique of rebinning was used to produce various plots or handle data for
evaluations efficiently. Rebinning tries to use already binned data for redistribu-
tion to new bins. Usually the number of bins is reduced, but the opposite is also
possible. The algorithm that is outlined here can be generalized to N -dimensional
rebinning.

We start with data points aij ∈ R with i ∈ [1, n] and j ∈ [1,m]. Each data
point is associated with a parameter value. The parameter values are uniformly
distributed, such that xi and yj can be calculated via xi+1 = x1 + i∆x and yj+1 =
y1 + j∆y respectively, with

∆x = xn − x1

n
, (C.12)

∆y = ym − y1

m
. (C.13)

In the following we only consider rebinning to another uniform distributed param-
eter space. In general we could use any other distribution, however, then we need
to care more about the assigned parameters. For our purposes we can reduce each
parameter to two numbers, e.g., x1 and ∆x. This is possible because we know the
number of values and the distribution.

Our aim is now to transform the aij to bkl ∈ R, where k ∈ [1, n′] and l ∈
[1,m′]. As far as the parameters are concerned we see directly that the following
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transformation is sufficient:

∆′x = n

n′
∆x = xn − x1

n′
, (C.14)

∆′y = m

m′
∆y = ym − y1

m′
, (C.15)

which results in x′k+1 = x1 + ∆′x and y′l+1 = y1 + ∆′y. This covers the parameter
transformation in the special case of transforming between uniform distributions.

For the data points the following scheme holds. First we compute the ratios for
the transformation and the resulting cell volume change ∆V . We need

fx ≡
n

n′
, (C.16)

fy ≡
m

m′
, (C.17)

δV = fx · fy. (C.18)

For the mapping of each point aij to bkl we assign a weight wijkl ∈ [0, 1]. The
transformation now looks as follows,

bk+1,l+1 = (δV )−1
d(k+1)fxe−1∑

i=bkfxc

d(j+1)fye−1∑

j=blfyc
wijklaij. (C.19)

We compute the weighted average over all current bins that are (partially) covered
by the new bin. As an example we show the weights for a 3×3 to 2×2 reduction.
We have 



1 1/2 1
1/2 1/4 1/2
1 1/2 1


 . (C.20)

While the values in the corners can be taken into account fully, the other values
are shared and need to be counted only fractionally. Here wijkl is given by 1/2 for
bins, which are mapped to two bins or 1/4 for distributing them to 4 bins. Overall
each new bin expands to 9/4 of its original volume, which makes sense since we
scale down from 9 to 4 bins while preserving the original volume.

Going in the other direction may be desired as well. Using the previous example
again we may now expand from a 2 × 2 grid to a 3 × 3 binning. This time the
volume per bin shrinks to 4/9 of its original volume. The coefficient matrix looks
like 



4/9 2/9 4/9
2/9 1/9 2/9
4/9 2/9 4/9


 , (C.21)

which works similary to the previously shown one.
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How is wijkl computed? We only need to consider the overlap region from the
old bin to the new bin. If we have a more coarse grid we will have δV > 1. A
more fine grid has δV < 1. However, even transformations that may preserve
the local volume can result in information transformation. If fx = f−1

y we have
m′ = nm/n′ or m′ = fxm. Here a reduction in the horizontal direction will still
lead to an expansion in the vertical direction.

The weights wijkl are then calculated via

wi,j,k,l =Wi,k,n,n′Wj,l,m,m′ , (C.22)

where the dimensional weights Wi,k,n,n′ are given by

Wi,k,n,n′ = min
(

1,max
(

0,−
∣∣∣∣∣i−

n(2k + 1)
2n′ + 1

2

∣∣∣∣∣+
n+ n′

2n′

))
. (C.23)

The scheme can be generalized to an arbitrary amount of dimensions. It has been
sketched in two dimensions to illustrate the generalization without requiring much
formality. The closed form of the weights allows us to calculate any of the new
patches without knowledge about any of the other patches.
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D
Auxiliary Plots

D.1 Two-Loop Integration

The following plots have been obtained while studying the structure and possible
divergences of the two-loop diagrams of the anomalous magnetic moment of the
electron. They are presented to complete the full set of diagrams and to comple-
ment the already shown plot from Section 4.2.

The plots show the integration over the angles of the two-loop diagram shown
as indicated in the caption of the plot. All integrations used q2 = −10−5. The
horizontal axis of each subplot shows the magnitude of k, the vertical axis shows
the magnitude of k′. The integrand contains an additional factor kk′ coming from
the transformations k → log(k) and k′ → log(k′). The angles have been integrated
using Monte Carlo integration (N = 106 configurations). The logsgn (x) function
is defined in Equation (4.50).
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Figure D.1: Evaluation of Γ(2,1)
µ (p′, p) from Figure 4.5a.
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Figure D.2: Evaluation of Γ(2,3)
µ (p′, p) from Figure 4.5e.
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Figure D.3: Evaluation of Γ(2,5)
µ (p′, p) from Figure 4.5g.
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Figure D.4: Evaluation of Γ(2,7)
µ (p′, p) from Figure 4.5i.
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E
Bold Diagrammatic Monte Carlo

E.1 Bold Diagrammatic Monte Carlo

Sometimes DiagMC is not appropriate, especially in theories where regularization
is required or higher-order diagrams make a non-trivial contribution that only
affects certain propagators. The technique of Bold DiagMCs (BDMCs) [118] tries
to solve these kind of problems. It can be applied, e.g., to solve the Fermi polaron
problem [116, 117].

The purpose of BDMC is to reduce the set of diagrams F sampled by Monte
Carlo. This is achieved by considering only skeleton diagrams1, i.e., diagrams that
have no divergences in subdiagrams. As the sign-problem scales exponentially
with the number of diagrams, the BDMC technique becomes essential for sign-
alternating problems.

One possibility (see [118]) to investigate the technique is to start looking at an
equation that defines a vector from the Hilbert space |f〉 self-consistently, i.e., we
have an equation like

|f〉 = |b〉+ Â |f〉 , (E.1)

with some linear operator Â and an arbitrary source |b〉. The decomposition into

1 Any diagram can be expressed as a skeleton diagram by replacing every self-energy part by a
(bold) line and every vertex-correction part by a (bare) vertex.
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a basis of eigenvector |φi〉 yields

Â |φi〉 = ai |φi〉 , (E.2)
|f〉 =

∑

i

fi |φi〉 , (E.3)

|b〉 =
∑

i

bi |φi〉 . (E.4)

Using the decomposition into eigenvectors from above, we can change the initial
relation shown in Equation (E.1). We obtain

∑

i

fi |φi〉 =
∑

i

(bi + aifi) |φi〉 . (E.5)

This allows us to extract an equation that needs to be fulfilled by every coefficient.
We identify

fi = bi + aifi. (E.6)

Finding a solution to this problem can be a difficult task. A numerical scheme
that could be considered approaches the value by refinement. We iterate to obtain
a better version of fi, which is then used in the next step again. We have

f̃
(n+1)
i = bi + aif

(n)
i , (E.7)

where f (n)
i is a refined value that is computed by considering all previous estima-

tions, denoted by f̃i.
As an example we have

f
(n)
i =

∑n
j=1 j

αf̃
(n)
i∑n

j=1 j
α

, (E.8)

with the restriction of α > −1. We include this restriction to explicitly exclude the
divergent harmonic series. At this point we may raise the question how efficient
this scheme is.

First we need to derive an estimate for the error. We define the error as the
difference to the exact result, i.e.,

δ
(n)
i = fi − f (n)

i = bi
1− ai

− f (n)
i . (E.9)

Computing the ratio between the error in the n+ 1-th iteration and the n-th iter-
ation gives us an expression that makes estimating the convergence much easier.

191



By considering the large n limit we obtain

δi
(n+1)

δ
(n)
i

=
∑n
j=1 j

α + (n+ 1)αai∑n+1
j=1 j

α
= 1 + (1 + α)(ai − 1)

n+ 1 , (E.10)

where we used the relation

n∑

j=1
jα + (n+ 1)αai =

n+1∑

j=1
jα + (n+ 1)α(ai − 1). (E.11)

For n→∞ we approximate the value of the error as

δin ∝ exp ((1 + α)(ai − 1) ln(n)) . (E.12)

Obviously, for convergence the real part of every eigenvalue ai of Â needs to be
smaller than 1.

It should be noted that negative real parts of ai are desirable for convergence.
Larger absolute values correspond to faster convergence, with the previously spec-
ified constraint for positive real values. Our algorithm relies on a parameter α to
be specified. We see that the error given in Equation (E.12) scales exponentially
with the our choice of α.

The main reason for picking the described scheme is the possibility of large
negative values for the eigenvalues. As an example we might come up with a
method that uses f (j)

i ≡ f̃
(j)
i . We obtain the stronger requirement of |ai| < 1 for

all ai.
It is possible to circumvent problems arising for ai that do not fulfill our require-

ments. In this case, we need to change the operator acting on |f〉 to be hermitian.
Luckily, such a transformation is possible. The new formulation of Equation (E.1)
reads

|f〉 =
(
1− Â†

)
|b〉+

(
Â+ Â† − Â†Â

)
|f〉 . (E.13)

The same kind of modification can be done to insert a constant parameter λ into
Equation (E.1) if the operator Â is hermitian. The result looks familiar:

|f〉 =
(
1− λÂ

)
|b〉+

(
1 + λ− λÂ

)
Â |f〉 , (E.14)

where we choose λ ∈ (λ1, λ2) according to

λ−1
1 = min

ai>1
ai, λ−1

2 = max
0≤ai≤1

ai. (E.15)

It can be checked that (1 + λ)ai − λa2
i ) for λ with former restrictions is always

smaller than 1.
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Applying the BDMC technique we can sum a series even if it is formally di-
vergent. The method looks very attractive for the sign-indefinite series since it
can substantially reduce the number of leading diagrams, and thus alleviate the
sign problem. The zero convergence radius argument provided by Dyson does also
not represent an unsolvable problem as demonstrated with a zero-dimensional φ4

theory [114].

E.2 S-Wave Scattering

A simple problem that is well suited for illustrating the concept of BDMC is
low-energy S-wave scattering. The S-wave scattering problem arises in quantum
mechanics, when an incoming beam of particles is scattered by a spherically sym-
metric potential V (r). We mainly follow the work published in [118].

E.2.1 Model and Simulation

The time-independent Schrödinger equation for a spherical symmetrically poten-
tial V (r) has a general solution of the form

ψ(r, θ) =
∞∑

l=0

χl(r)
r

Pl(cos(θ)), (E.16)

where ψ(r, θ) is the desired wave-function. Pl is the Legendre polynomial of order
l and χl satisfies the differential equation

d2χl
dr2 +

(
k2 − V (r)− l (l + 1)

r2

)
χl = 0. (E.17)

with boundary condition χl(0) = 0.
If V (r) is proportional to Θ(r0 − r)V0, where Θ(r0 − r) is the Heaviside step

function, we get an asymptotic behavior such that

χl(r) ∝ sin
(
k r − π

2 l + δl

)
, (E.18)

where δl is the phase shift of the l-th partial wave. The total scattering cross
section σ is then given by

σ = 4π
k2

∞∑

l=0
sin2 (δl) . (E.19)

In the model of S-wave scattering we have only one partial wave with l = 0 that
is contributing, resulting in a single phase shift δ0. The cross section for S-wave
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scattering is given by
σ = 4π

k2 sin2 (δ0) . (E.20)

It is already known that for a finite range potential the cross section must be finite
for all energies. This means that the phase shift δ0 must vanish at least as fast as
the momentum k. As a result the expression sin(δ0)/k is finite. An example that
requires this condition is the strong interaction potential between nucleons.

In the low-energy regime k → 0 the phase shift behaves as δ0 → −ka, where a
is some constant with dimensions of length. We call a the scattering length. In
this limit we can replace the sin(δ0) with δ0, which yields

σ = 4π a2, (E.21)

the approximate cross section for low energies. This is the maximum cross section.
The constant a is called the scattering length and is useful for a description of low-
energy scattering.

The scattering amplitude can be computed via the S-matrix approach. For the
above equations we obtain the following form in momentum space,

f(q) = −u(q)− 1
π

∫ 1

−1
d cos(θ)

∫ ∞

0
dq1 u(|q − q1|) f(q1), (E.22)

where u(q) is the Fourier transform of the potential V (r). The absolute value
|q−q1| is expressed in terms of the two magnitudes q and q1, as well as the angle
θ. The argument is therefore computed as follows:

|q − q1| ≡
√
q2 + q2

1 − 2q q1 cos(θ). (E.23)

The Fourier transform of the potential V (r) is given by the equation

u(q) = 1
2π

∫
d3r V (r) exp(−iq r). (E.24)

We are mostly interested in the scattering length a. The scattering length a can
be computed by considering the low momentum limit of f(q), i.e., a = −f(0).

E.2.2 Update Procedures

Like in the previous sections we will now define orders and weights for our di-
agrammatic simulation. For this model we only include adding and removing
diagrams. There are no other update procedures. First we identify

f(q) = f1(q) +
∫ 1

−1
d cos(θ)

∫ ∞

0
dq1 f2(q, q1, θ), (E.25)
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which yields

f1(q) = −u(q), (E.26)

f2(q, q1, θ) = − 1
π
u(
√
q2 + q2

1 − 2q q1 cos(θ))f(q1). (E.27)

Hence there are at least two diagrams: a first-order and a second-order diagram.
The ratios are given by

R1→2 =
π−1

∣∣∣u
(√

q2 + q2
1 − 2q q1 cos(θ)

)
f(q1)

∣∣∣
|u(q)|

1
Ωθ(θ) Ωq1(q1) , (E.28)

and for the inverse operation

R2→1 = |u(q)|
π−1

∣∣∣u
(√

q2 + q2
1 − 2q q1 cos(θ)

)
f(q1)

∣∣∣

Ωθ(θ) Ωq1(q1)
1 . (E.29)

At this point the generation of the value for the momentum q is still missing. We
could introduce another update procedure, which would try to create a new value
for q. However, simply following the same trick as in Section 3.2 we can introduce
an artificial zeroth-order diagram, which is represented by the constant f0.

Due to the simplified construction of a proper normalization value such an
artificial diagram is advantageous for extracting the solution. As a consequence
of introducing the constant f0 to f(q) we need two more ratios, which can be
calculated to be

R0→1 = |u(q)|
f0

Ωq(q)−1, (E.30)

R1→0 = f0

|u(q)|Ωq(q). (E.31)

We limit ourselves to f0 > 0. The normalization is determined by f0 as well.
Bringing everything together an important question is how the recursion on

f(q) arising in Equation (E.25) can be resolved. We can see that f(q) not only
appears on the left hand side, but also in the part that is identified as f2(q, q1, θ).

We can resolve the recursion by relying on the data that have already been
obtained. One could say that for computing fi(q) we take fi−1(q) as a basis,
where the index denotes the Monte Carlo generated version of the value of f at q.
This seems like a natural choice, but comes with one important drawback. We are
required to supply a start value that is already close enough to the real value of
f(q). If we would provide, e.g., f(q) ≡ 0, we completely neglect the second-order
diagram. Additionally, we do not have any q dependence in our expression.

At this stage we need to introduce an approximation that is used as long as

195



we do not have sufficient data points. By going back to Equation (E.25) we see
that for f2(q, q1, θ) ≡ 0 the expression reduces to f(q) = −u(q). Finally, the i-th
version of f(q) has the form

fi(q) =




−u(q) if i < Nf ,

hq f0 qmax (Z0 ∆q)−1 otherwise,
(E.32)

where hq is the sum of the measurements in the bin that corresponds to the value
of q ∈ [0, qmax]. The value Nf sets the threshold, which marks the point when
we gathered enough data. Usually, 104 data points in the given bin are more
than sufficient. Each bin covers a range of q-values with the width ∆q. The
normalization Z0 is the number of measurements of the artificial diagram.

Now the only remaining quantity is the choice of distribution functions Ωq(q),
Ωq1(q), and Ωθ(θ). The latter is trivial, as we can simply choose a uniform dis-
tribution without loss of generality. This is a natural and efficient choice as the
dependence on the angle does not favor a specific distribution. However, instead
of choosing an angle between 0 and π we can choose a value between ±1, which
already represents the value of the cosine at a given angle.

Choosing Ωq(q) follows the same principles as discussed in the previous sections.
By identifying a distribution in the weights we are able to extract interesting
parts for the importance sampling process. We know that in the end we want a
distribution that is proportional to

Ωq(q) ∝
1

(q0 + q)2 , (E.33)

with the constant q0 to prevent the distribution from diverging. Normalizing this
distribution yields a normalization factor of q0. However, while this is certainly
a good choice for q′, it is not ideal for q itself. The reason is that q has to be
between 0 and qmax. With this solution we get q ∈ [0,∞).

Therefore we need to limit the integral for computing the normalization factor
to qmax. We can, however, still use the version with q0 as normalization factor for
Ωq1(q). The final distributions for q and q1 look as follows,

Ωq(q) = qmax + q0

qmax

q0

(q0 + q)2 , Ωq1(q) = q0

(q0 + q)2 . (E.34)

For computing such a distribution with uniform random numbers as provided by
a PRNG we need to make a transformation from the uniform distribution. We
just need to use

Ωq(q) dq = u(r) dr, (E.35)
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Figure E.1: The histogram to estimate f(q) with N = 107 iterations. We choose
50 bins for q ∈ [0, 10]. The radius of the spherical potential is fixed at r0 = 1 with
V0 = 1.

where u(r) is the uniform distribution. By using u(r) ≡ 1 we can solve

∫ w(r)

w(0)
dqΩq(q) = r. (E.36)

The constant w(0) is an additional degree of freedom. We want w(0) to be equal
to zero. This simplifies the equation, which reads

r = FΩq(w(r)), w(r) = F−1
Ωq

(r), (E.37)

where FΩq is the antiderivative of Ωq. Searching the inverse of this function is then
the main task. Actually, only a few examples exist where the inverse can be found
analytically. The usual case is to use the simple Metropolis-Hastings algorithm to
either accept or reject a numerical solution.

In our case we can find an analytic solution, which yields

w(r) = q0 r

q0/qmax + 1− r , (E.38)

for generating values according to the distribution Ωq(q). The same distribution
can be used for q1 with qmax =∞.
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Figure E.2: The numerical estimate of the function f(q) with N = 107 iterations.
The radius of the spherical potential is given by r0 = 1, with V0 = 1.

E.2.3 Evaluation and Results

The interesting quantity is the scattering length a. As an analytical check we can
use

a = −f(0) = r0 −
tanh

(√
2V0r0

)

√
2V0

, (E.39)

which is simply the analytic solution of Equation (E.22) at zero, i.e., for low-
energies. In Figure E.1 we see the histogram of a Monte Carlo simulation using
BDMC to solve the S-wave scattering problem. The histogram contains all the
information needed to estimate f(q).

In general we want a number of bins, as it helps us to be more precise for
estimating values f(q), e.g., O (10qmax) for single-digit precision. However, higher
bin counts demand more iterations, otherwise while the overall accuracy remains
constant the precision per bin is decreasing.

In the end the estimation for the scattering length is possible by looking at the
zeroth-bin of the histogram, which is the estimate for f(q) with q = 0. In our case
the value is estimated to be

a = 0.3723(18), (E.40)

which is within the error consistent with the analytic value 0.371 817. The simu-
lation used N = 107 iterations. This takes about a second of computing time on
an ordinary machine.

The significance of the histogram shown in Figure E.1 is emphasized by looking
at the estimate for the scattering wave function f(q). The plots in Figure E.2
show that the rest is just a scaling factor. Most information is already contained
in the histogram. At zero energy with V0 = 1 we obtain the data illustrated in
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green. We see that f(q) is qualitatively converging to −u(q) for q →∞.
We find that for attractive potentials with values V0 ≤ −10, good initial con-

ditions, e.g., by using results of previous runs for with slightly smaller |V0|, are
important for convergence. Repulsive potentials, i.e., positive values for V0, con-
verged much faster and provide higher accuracy. No special treatment is required.

With BDMC we can compute integral equations of any kind. A recursive term,
as it may appear by Schwinger-Dyson like series, can be handled quite efficiently.
We have seen that such models require a little bit more attention only on the
analytical side, but can then be handled with the same framework as ordinary
DiagMC.

In the next section we look at a more advanced example of simulating a three-
dimensional φ4 theory by using its formulation as a Schwinger-Dyson series.

E.3 φ4 Theory

It has been shown that regularization of a diagrammatic series with zero conver-
gence radius is possible [114]. We now look into a more complicated example of
applying BDMC. In this section we try to solve a scalar field theory using the φ4

potential [34].

E.3.1 Model and Simulation

We use the Lagrangian

L(φ) = 1
2
(
∂µφ(x) ∂µφ(x)−m2 φ2(x)

)
− 1

4!λφ
4(x), (E.41)

for a real scalar field φ(x) with quartic interaction λφ4(x)/4!.
The bare action for the φ4 theory in three dimensions reads

S =
∫
d3x

(1
2
(
−∂µφ(x) ∂µφ(x) +m2 φ2(x)

)
+ 1

4!λφ
4(x)

)
, (E.42)

where m is the bare mass and λ is the bare coupling.
In momentum space we define the disconnected field correlators to be

G(p1, . . . , pn) = 〈φ(p1) . . . φ(pn)〉 , φ(p) =
∫
d3x exp(i p · x)φ(x), (E.43)

with odd correlators evaluating to zero. Due to momentum conservation each
correlator carries a factor of (2π)3δ (∑n

i=1 pi).
The action of Equation (E.42) can be rewritten to express the relations between
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(a) Two-loop vertex (b) One-loop vertex (c) No-loop vertex

Figure E.3: Fundamental φ4 vertices for modes of interaction. The disconnected
interaction (see Figure E.3a) will be ignored. The tadpole contribution (see Fig-
ure E.3b) and the standard vertex (see Figure E.3c) have to be taken into consid-
eration.

the vertices and the propagators explicitly. We find

S = 1
2

∫

ij
G−1
ij φi φj + λ

4!

∫

ijkl
Vijkl φi φj φk φl, (E.44)

where we shorthand the notation to indicate an integration over the positions of
the involved fields. The scalar propagator, represented by the Green’s function
G−1
ij , as well as the potential Vijkl are given by

G−1
ij ≡ G−1(xi, xj) = (−∂2

xi
+m2) δ (xi − xj) , (E.45)

Vijkl ≡ δ (xi − xj) δ (xi − xk) δ (xi − xl) . (E.46)

The indices represent the vertices connected to the legs, e.g., two connected ver-
tices to the two-point function, or four connected vertices to the four-point func-
tion.

The basic action can now be used to derive the elementary Feynman rules for
this theory. In Figure E.3 we see the elementary diagrams derived from the action.
The disconnected contribution is irrelevant for our purposes. The two-point (one-
loop) and four-point functions can be used to construct a set of Schwinger-Dyson
equations.

In a Schwinger-Dyson equation we express, e.g., the propagator G(k) in terms of
a series expansion of its bare propagator G0(k), using other diagrams representing
higher-order corrections. This way we obtain, e.g.,

G(k) = G0 +G0 ΣG0 +G0 ΣG0 ΣG0 + . . . (E.47)

=
∞∑

n=0
G0 (ΣG0)n = 1

G−1
0 − Σ

, (E.48)

which yields the non-perturbative propagator G(k). The same scheme can be
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applied to other quantities as well.
We start by defining the self-energy Σij and the one-particle irreducible (1PI)

four-point function Γijkl. We hereby consider Feynman diagrams as a functional
of their elements. For the bare self-energy we find

Σij = −1
2

∫

kl
VijklGkl + 1

6

∫

klmnop
ViklmGknGloGmp Γnopj, (E.49)

where we denote the free propagator with Gij. Again we abbreviate the integrals
and propagators by using an index representing a field’s position.

The bare 1PI four-point function can be expressed as

Γijkl = Vijkl + Aijkl +Bijkl + Cijkl. (E.50)

The defining equations for Aijkl, Bijkl, and Cijkl represent a recursive scheme that
starts to look similar to the previously discussed example of S-wave scattering in
Section E.2.

By differentiating the vertex function from Equation (E.50) with respect to the
full propagator Gij, we get an expansion in terms of bold correlation functions.
For the first derivative we obtain

∂Γijkl
∂Gmn

= 1
2 (VijnoGop Γpmkl − VijmoGop Γpnkl) +O

(
G2
)
. (E.51)

It is sufficient to consider only the first-order, which contains a single bold prop-
agator.

The recursive scheme is then built upon the following equations. We have

Aijkl = aijkl + aikjl + ailjk, (E.52)
Bijkl = bijkl + bikjl + biljk, (E.53)
Cijkl = cijkl + dijkl, (E.54)

where the first two equations reference diagrams with partial permutations of
indices. For aijkl we have

aijkl = −1
2VijmnGmoGnp Γopkl. (E.55)

Similarly, for bijkl we get

bijkl = 1
6VminoGnq Gor ΓqrjsGst ΓtklpGpm. (E.56)

The terms Cijkl look different than the previous two parts. For these terms we use
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Figure E.4: Bold diagrammatic expansions for the self energy Σij and the 1PI four-
point function Γijkl in φ4 theory. The terms on the right hand side are expressed
in terms of 1PI exact propagators (indicated by the blue lines).

the bold representation of the derivative term, i.e., we have

cijkl = −1
3VimnoGmpGnq Gor

∂Γpjkl
∂Gqr

, (E.57)

dijkl = +1
6VimnoGmpGnsGotGquGrv Γstuv

∂Γpjkl
∂Gqr

, (E.58)

which concludes the full functional set required for a BDMC study.
The full set of equations can also be represented diagrammatically. In Figure E.4

the diagrammatic representations of Equation (E.49) (shown in Figure E.4a) and
Equation (E.50) (shown in Figure E.4b) are illustrated. The usage of exact prop-
agators has been indicated by blue color.

At this point we can take our knowledge about the series expansion and define
the updates for our simulation.

E.3.2 Update Procedures

We have to impose some renormalization conditions by translating the Schwinger-
Dyson equations into equations for renormalized correlation functions. We choose

G−1(p2 = 0) = m2, (E.59)
∂G−1(p2)
∂p2

∣∣∣∣∣
p2=0

= 1, (E.60)

Γ(0, 0, 0, 0) = mλR. (E.61)

We call λR the renormalized coupling. The choice for m is arbitrary. Normally, m
is expressed in units of the cutoff Λ, which is set to unity thus implying m� 1.
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As previously we use a suitable distribution for generating the momenta. In
this case we need to be close to the propagator G(p2). The distribution Ωp(p) is
thus given by

Ωp(p) = 1
p2 +m2 . (E.62)

In the beginning we need to approximate the four-point function. We use the
following set of equations. The four-point function itself can be approximated as

Γ(p1, p2, p3, p4) ≈
4∏

i=1
Z−1
R (p2

i +m2
R)G(p1, p2, p3, p4), (E.63)

where ZR is the so-called wave function renormalization constant. In our case we
define ZR over

ZR =

1 + ∂Y (p2)

∂p2

∣∣∣∣∣
p2=0



−1

, (E.64)

with Y (p2) being given by the difference of the self-energy renormalization to the
self-energy, i.e., Y (p2) = Σ(p2 = 0)− Σ(p2).

The full expression for Y (p2) is

Y (p2) = λZR
6

∫ d3k

(2π)3
d3k′

(2π)3GR(k)GR(k′)×

(GR(q) ΓR(0, k, k′, q)−GR(q) ΓR(p, k, k′, q)) .
(E.65)

We use q to ensure the conservation of momenta at the vertex, i.e., q = −∑i pi,
where pi are all (incoming) momenta for the vertex.

The renormalized Green’s function is given by

G−1
R (p2) = ZR

(
p2 + Y (p2)

)
+m2, (E.66)

which satisfies our renormalization conditions from Equation (E.59). The con-
structed system is finite at any order of perturbation.

We use two kinds of complementary updates. We either propose to create a pair
of new momenta, thus inserting a new vertex, or we remove a pair of momenta by
merging them. For the latter we will additionally increase the order of expansion.
This allows us to go beyond first-order.

For inserting a new pair of momenta we only need to generate a single value
p. The second momentum is then chosen to be −p to satisfy the conservation of
momentum. The transition probability for inserting a pair of new momenta to the
existing n momenta is now given by

Rn→n+2 = (2π)3(n+ 1) cn,l
cn+2,l

ZR
Ωp(p)

, (E.67)

203



where we define the coefficients cn,l to be

cn,l = Γ
(
n+ 1

2 + l
)
α2−nβ−l, (E.68)

with the gamma function Γ(x).
The parameters α and β are dependent on the renormalization constant. We

have
α =

(
2
√
ZR

)−1
, β = π3m2

ZR
. (E.69)

Similarly, the transition probability to merge pairs is given in dependence of these
coefficients. By merging pairs we elevate the expansion order, thus increasing l.

The transition probability for merging two momenta p1 and p2 is given by

Rn+2→n = 1
(2π)6

cn,l
cn−2,l+1

Ωp(p1) Ωp(p2)
m2 . (E.70)

For simplicity we will leave the expansion coefficients unchanged. That way we do
not have to introduce further updates or restarts. Otherwise, the set of updates
would not be fully ergodic.

E.3.3 Evaluation and Results

There are a couple of interesting evaluations for simulating the three-dimensional
φ4 theory. We will focus on finding agreements with analytical results and esti-
mates from other simulations. Most evaluations deal with the renormalized quan-
tities.

In Figure E.5 we observe the asymptotic behavior of the renormalized coupling.
This behavior is in excellent agreement with the existence of an infrared (IR)
fixed point. The IR fixed point can be calculated using the ε-expansion and RG
techniques [151]. The renormalized coupling λR(λ) tends to a fixed value λ∗R, when
the bare coupling λ becomes large, i.e., in the limit λ→∞.

With a constant number of configurations we see an increasing absolute error for
larger values of the bare coupling λ. This can be observed in the following plots.
This matches our experience from the other examples, that a larger coupling results
in more fluctuations and increases the error.

In Figure E.6 we see that our scheme indeed agrees with the analytic result
for the lowest orders of perturbation theory. Our estimate for the renormalized
mass at small couplings λ yields the same result as the one-loop of the mass
renormalization does. This one-loop result is plotted using the dashed line. We
use

m2
R(λ) = m2 + λ

2

∫ d3p

(2π)3
1

p2 +m2 . (E.71)
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Figure E.5: Estimation for the dimensionless renormalized coupling constant λR
in dependency of the bare coupling λ. The dashed line indicates the analytically
predicted IR fixed point.
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Figure E.6: Estimated renormalized mass mR as a function of the bare coupling λ
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R(λ).
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The divergent contribution can be solved by introducing a cutoff Λ. Using the
cutoff-strategy we obtain

∫ d3p

(2π)3
1

p2 +m2 ∼ Λ−m tan−1
(

Λ
m

)
, (E.72)

where we set Λ to 1 in our simulations. This way we express the bare mass m in
terms of Λ.

We can do the same evaluation with the wave function renormalization ZR. ZR
is close to unity for the chosen values of λ. This is in full agreement with other sim-
ulations. The result does not agree with two-loop perturbative calculations of the
self-energy diagrams, which indicates ZR < 1 for λ < 1. The disagreement origi-
nates probably from some systematic errors in the field correlator approximations
(zero-momentum limit).

In case of φ4 theory for going to higher-orders we need to apply an appropriate
resummation technique. It was already found that a Borel summation works for
the described model [24].

The problem can be extended to four or more dimensions allowing to study the
spectral density function of φ4 [5]. One thing to note is that the result is indeed
the non-perturbative spectral density function, as the Schwinger-Dyson equation
already results in the full theory, not some truncated series. This makes BDMC in
conjunction with resummation techniques quite appealing as a toolset for studying
non-perturbative effects.
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F
Source Codes

F.1 Diagrammatic Monte Carlo

For testing the constructed methods and algorithms novel applications had to be
created. The following applications have directly or indirectly contributed to the
results presented in this thesis. Each application is described briefly. More infor-
mation is available on the project’s website, which is given below the description.
Permission will be granted upon request.

F.1.1 Feynman Diagram Sampling Application

The main application of the thesis, containing all relevant simulations and many
other evaluations. Besides the integration example, the polaron problem, and
anomalous magnetic moment, a few examples using BDMC are available. A set of
evaluation tools is provided, as well as an implementation of the diagram generator.

• Languages: C++, JavaScript, Bash

• Target: Sequential, OMP, MPI

• Website: https://rqcd.ur.de:8443/FlorianRappl/DiagMC
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F.1.2 Monte Carlo Simulation of He3-He4 Mixtures

Example simulation using Monte Carlo methods for the He3-He4 cooling mixture.
The provided application simulates the 2D model for a given set of parameters.
It tries to find the critical lines and the tricritical point.

• Language: C++

• Target: Sequential, OMP, MPI

• Website: https://rqcd.ur.de:8443/FlorianRappl/MixingCode

F.1.3 SU(3) Hybrid Monte Carlo Simulation

A simple test code base to run an HMC simulation of a pure SU(3) gauge theory
in three dimensions on the lattice. The symmetry, which is spontaneously broken
at the deconfinement transition, is the center symmetry. The Polyakov loop is not
invariant under the center symmetry transformation.

• Language: C++

• Target: Sequential, OMP

• Website: https://rqcd.ur.de:8443/FlorianRappl/su3hmc

F.1.4 The Harmonic Oscillator on the Lattice

This is very simple HMC sample, which simulates the harmonic oscillator on the
lattice. The program follows the influential paper by Creutz and Freedman. The
paper discusses the anharmonic oscillator, which is not exactly solvable. The
anharmonic term is part of the program and can be controlled by the user.

• Language: C++

• Target: Sequential, OMP

• Website: https://rqcd.ur.de:8443/FlorianRappl/harmosc

F.2 QPACE 2

For the QPACE 2 project most time has been spent on designing, constructing,
and testing the hardware. Nevertheless, the full system would not work without
software, nor could we run sophisticated tests. The following applications have
been created to cover these areas. Each application is described briefly. More
information is available on the project’s website, which is given below the descrip-
tion.
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F.2.1 KNC Benchmarks

The KNC benchmark suite features most of the benchmarks discussed in the
previous sections. The whole application was written in such a fashion, that it
may be reused or extended for follow-up projects. Most importantly, it produces
executables for each of the available threading frameworks.

• Languages: C++, Bash

• Dependencies: MPSS, Vc, TBB

• Website: https://rqcd.ur.de:8443/FlorianRappl/kncbenchmarks

F.2.2 Linpack Benchmark

Entering the Top 500 requires running an optimized version of Linpack. Luckily,
we have been in good contact with persons that dedicated much time into imple-
menting such optimizations for the KNC. The given code is our base contains such
KNC specific optimizations, combined with improvements tuned for the QPACE
2.

• Language: C

• Dependencies: MPSS, Intel MKL

• Website: https://rqcd.ur.de:8443/qpace2/Linpack

F.2.3 Burn-MIC Utility

In order to have reproducible cooling benchmarks, we required a tool that guaran-
tees a certain load on the device delivered continuously for an arbitrary amount of
time. Burn-MIC was designed to be that tool. It was also used in our acceptance
tests for QPACE 2.

• Language: C, C++, Bash

• Dependencies: MPSS

• Website: https://rqcd.ur.de:8443/qpace2/BurnMic

F.2.4 Bricktest Runner

The QPACE 2 project was developed jointly with the company Eurotech. It was
important to establish some kind of testing procedure that is accepted from all
involved parties as an objective tool for verifying the project’s goal. The given
application runs a number of these acceptance tests.
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• Languages: C++, Bash

• Dependencies: MPSS

• Website: https://rqcd.ur.de:8443/qpace2/Bricktest

F.2.5 Hardware Status Website

The physics department sustains quite a large machinery of supercomputers. This
website aggregates useful information from all of these computers to show statistics
and valuable information to potential users. Besides current load and tempera-
tures, the website contains general (static) information.

• Languages: JavaScript, Jade

• Dependencies: Node.js, NPM

• Website: https://rqcd.ur.de:8443/qpace2/Status

F.2.6 Dual Rail Test

This code represents the sources for a performance test of using multiple rails
with Intel MPI. It is mainly based on the OSU micro benchmarks (v4.4.1). It is
possible to evaluate the (network) performance of the MICs. In this case the Intel
MPI performance benchmarks are used.

• Languages: C++, Bash

• Dependencies: Intel MPI, OFA

• Website: https://rqcd.ur.de:8443/qpace2/DualRailTest

F.2.7 QPACE 2 Info Library

The provided source code exhibits a few helper to retrieve information about
the corresponding Intel MICs, the host system, and the cooling circuit. It was
designed for the experimental setup found in the LAGER III. The information of
the cooling circuit is acquired from a small service.

• Language: C++

• Dependencies: MPSS

• Website: https://rqcd.ur.de:8443/FlorianRappl/qpaceinfo
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