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Abstract

Boson samplers—set-ups that generate complex many-particle output states through the transmis-
sion of elementary many-particle input states across a multitude of mutually coupled modes—
promise the efficient quantum simulation of a classically intractable computational task, and challenge
the extended Church—Turing thesis, one of the fundamental dogmas of computer science. However,
as in all experimental quantum simulations of truly complex systems, one crucial problem remains:
how to certify that a given experimental measurement record unambiguously results from enforcing
the claimed dynamics, on bosons, fermions or distinguishable particles? Here we offer a statistical
solution to the certification problem, identifying an unambiguous statistical signature of many-body
quantum interference upon transmission across a multimode, random scattering device. We show
that statistical analysis of only partial information on the output state allows to characterise the
imparted dynamics through particle type-specific features of the emerging interference patterns. The
relevant statistical quantifiers are classically computable, define a falsifiable benchmark for
BosonSampling, and reveal distinctive features of many-particle quantum dynamics, which go much
beyond mere bunching or anti-bunching effects.

1. Introduction

As the world waits for the first universal and fully operational quantum computer [1], quantum information
scientists are eager to already show the power of quantum physics to perform computational tasks which are out
of reach for a classical computer. Rather than designing devices that can perform a wide range of calculations,
machines which are specialised in specific tasks have joined the scope [2, 3]. Here, we focus on one type of such
devices, the BosonSamplers, which may hold the key to falsifying the extended Church-Turing thesis [1, 4, 5].
This conjecture, rooted in the early days of computer science, states that any efficient calculation performed by a
physical device can also be performed in polynomial time on a classical computer. It is now proposed that all that
is necessary to falsify this foundational dogma of computer science is a set of m photonic input modes, which are
connected to m output modes by a random photonic circuit [2]. This immediately indicates why
BosonSampling attracts such attention, as these systems are experimentally in reach [6—11].

Since such a device is operating on bosons, indistinguishable particles, interesting physics arises when
multiple particles are simultaneously injected into the system [12—16]. A schematic overview, indicating the
essential ingredients of a sampling device such as considered here, is provided in figure 1. BosonSampling
essentially consists in sampling an occupation vector y = (y, ,..., ,,) for the output modes, given that the initial
mode occupation was X = (X1 ,..., X,;), Where x; and y; are the number of photons found in the ith input and
output mode, respectively. In the case with at most one photon per input mode, this probability is given by

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Sketch of the system under consideration. From a set of input modes (here m = 12), four particles are injected (depicted in
red). The particles traverse the system via the depicted channels. At the crossings, different paths are interconnected such that particles
can travel in each direction, thus leading to single-particle and many-body interference. The yellow zone of the setup is described by a
unitary matrix U, which connects the input modes to the output modes. The output signal is probabilistic in nature (hence different
intensities of red), with its statistics governed by the many-body quantum state. The key object of this work, the C-dataset (see main
text), is obtained by calculating the two-point correlations between different modes as depicted in green.
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where Uy 5 isthe n X nmatrix, constructed from U, which describes how the n occupied input modes are
connected to the selected output modes [13], and ‘perm’ denotes the permanent [17]. To evaluate the many-
body output wave function, and thus the sampling statistics, we must deal with these permanents, which are
‘hard’ to compute, i.e. there is no algorithm that can do so in polynomial time [17, 18]. A priori, there may be
algorithms that sample from the probability distribution p  without explicit computation of the probabilities.
This possibility was recently refuted [2] and it is argued that it is in general not possible® to efficiently simulate
such a BosonSampling procedure on a classical computer. However, it turns out that single photons, linear optics
and photon counters are all the required building blocks to build a quantum device that performs the task. Thus,
the BosonSampler is a physical system that efficiently samples bosons according to the bosonic many-body wave
function, even though this many-body state cannot be calculated by a classical computer. Its realisation would in
this perspective invalidate the extended Church-Turing thesis in the sense that it is a concrete example of a
quantum device that performs a task efficiently where a classical computer could not.

However, this strength of BosonSampling apparently also implies a profound weakness: since it is impossible
to compute the many-body wave function, one cannot certify that a given experimental output unambiguously
stems from sampling bosons—how can we be sure that an alleged device samples events from the correct
probability distribution? Note that different scientific disciplines impose very different requirements on
certification protocols: from the perspective of theoretical computer science, which is motivated by the
scrupulous applications of cryptography, a proof for the correct functionality of a BosonSampler can only be
accepted if the possibility of a fraudulent classical device that generates a false-positive result is provably ruled
out. That is, generating a sample that passes the certification must be computationally much harder than the very
act of certifying. Setting aside this cryptographic perspective and disregarding the possibility of the wilful use of
fraudulent devices, we focus on unambiguous physical signatures of the functionality of the device. Bunching of
bosons was proposed [19] as a decisive criterion, but dismissed in [20], where a mean-field ansatz incarnated by
‘simulated bosons’ (to be defined below) was shown to precisely reproduce coarse-grained bunching. Reference
[20] furthermore offers a highly symmetric, analytically solvable test-case (recently implemented experimentally
[21, 22]), which however remains, by construction, outside the realm of a true BosonSampler. A reliable physical
benchmark for the functionality of BosonSamplers therefore is unachieved to date, yet highly desirable if one
wishes to fully exploit the computational power brought about by many-particle quantum interference. To fill
this gap, we conceive a solution based on a statistical certifier that excludes simulated bosons—even for the
original formulation [2] of the BosonSampling problem with random scattering matrices. Borrowing from the
vast set of techniques offered by statistical mechanics, we formulate the problem in terms of a transport process in
ascattering system (e.g. a photonic network), described by a random unitary matrix U. We show that, by

®Tobe precise: it was shown [2] that the realisation of an efficient classical algorithm that simulates BosonSampling implies a collapse of the
polynomial hierarchy [5] to the third order. As it is not our goal to enter the mathematical subtleties related to the theory of computational
complexity, let us stress that this is simply the complexity theorist’s way of saying that it is highly unlikely to be true.
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combining quantum optics with methods found in statistical physics and random matrix theory, it is indeed
possible to identify signatures of genuine bosonic many-particle interference with manageable overhead.

2. Statistical signatures of many-particle interference

It must be stressed that the resulting many-body wave function of a scattering process, such as manifested in a
BosonSampler, is determined by several factors. One can separate them into those which are of quantum
statistical origin and those which are dynamical in nature. The former concern all effects related to the structure
of state space (e.g., bunching for bosons, and the Pauli exclusion principle for fermions), whereas the latter
involve all sorts of interference effects. One can divide these interferences into the well-known single-particle
interference [23], encoded within the matrix U, which arises due to the wave-like nature of quantum transport
[24-26], and the far more intricate many-body interference [15, 16, 27]. Below, we shall scrutinise the
interference exhibited by various particle types—bosons, fermions, distinguishable particles and simulated
bosons.

Distinguishable particles are the simplest of the considered species, as their signals are governed only by
single-particle interference. Transport processes with bosons or fermions, in contrast, exhibit the entire range of
statistical and interference effects. As indistinguishable particles, they obey quantum statistics (as dictated by the
relevant algebra), which for two particles in two modes either leads to bunching (bosons) [12] or to anti-bunching
(fermions) [28]. Similar effects have also been observed in larger setups, with more particles, and have hence
been proposed as hallmarks for many-boson [19] or many-fermion [29] behaviour.

However, for larger setups one expects a much richer phenomenology due to many-body interference [15],
resulting from the coherent superposition of distinct many-particle transmission amplitudes [ 16]. For
BosonSampling, bunching or clouding behaviour [19] as such is therefore not a sufficient tool for certification,
as it can easily be achieved by the so-called mean-field sampler [20] which was inspired by semiclassical models
[30]. These devices are designed to replicate the bunching behaviour by approximating the many-body output
state by a macroscopically populated single-particle state with random phases added. Averaging over the
random phases successfully mimics boson-like bunching. However, all relative phases between the initially
populated many-particle transmission amplitudes are scrambled by the averaging procedure, and,
consequently, all many-body interference effects are deleted. This type of sampling [19] is easily simulated by
Monte Carlo methods [20]—hence we here refer to such sampled particles as simulated bosons—and is unable to
harness quantum granularity on the many-particle level. It is therefore conceptually decisive to set mean field
sampling apart from actual BosonSampling. We now introduce a general method which is specifically conceived
to detect quantum interference structures as induced by the coherent superposition of many-particle
transmission amplitudes. This approach thus distinguishes simulated from true bosons, and identifies many-
particle interference features which are characteristic of both—particle type and the specific scattering dynamics.

3. Random matrix methods

The scattering matrix U that describes the photonic circuit in the BosonSampling setup is randomly sampled
from the Haar measure [31-33]. Therefore it is only natural to treat this problem in a framework of statistics and
random matrix theory (RMT) [31, 34-37]. Often the lack of grasp on the statistical distribution of the full many-
body wave function is put forth as the core of the certification problem. Exhaustive statistical characterisation of
the many-body state would require the full distribution of permanents over the set of unitary matrices. To date,
only the first moment of this distribution is known [38] and it is not enough to provide certification, while
sufficiently precise higher order moments are out of reach [2]. The reason is that, in terms of the quantum state,
permanents depend on high-order correlation functions. In contrast, we will emphasise below that a gigantic
amount of information on the many-body state is within reach in the form of distributions of low-order
correlation functions.

In probability theory, the knowledge of all possible correlation functions implies full knowledge of the (joint)
probability distribution itself. Therefore, correlation functions play a central role in many probabilistic theories,
from RMT [31] to quantum statistical mechanics [39]. In practical applications of RMT, such as occur in
quantum chaos, a study of the statistics related to two-point correlations is often sufficient to certify the RMT
ensemble. Similarly, here, we do not (and, for sufficiently large systems, cannot) know all correlation functions
of the output many-body quantum state. There is, however, a large set of correlation functions which are
accessible (both theoretically and experimentally) [14, 38, 40]. Hence, the relevant question is whether this set
offers a sufficient amount of information to distinguish the many-particle dynamics undergone by simulated or
true bosons, fermions and distinguishable particles.
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4. Statistical benchmarking

As the arguably simplest accessible correlation function we propose the mode correlator
Cij = (Aify) — (i) () @

(with#i; = a ; a; the bosonic number operator) [14], which quantifies how the number of outgoing photons in
modes i and jare correlated (as indicated in figure 1). Scattering dynamics and particle type are encrypted in the
many-body output quantum state | ¢, ), which enters C;; via the expectation value (.) = (@, |-|@u0)-

Closer inspection of the expression for (#;;) in [14], for particles initially prepared in mode {g; ,..., q,,},
shows that

n
A A * Tk
<ninj> — Z Iqu,il2 I U'qul2 + t qu,i quj Uql’quk’j’ (3)
k=I=1
where t = —1, 0, +1 for fermions, distinguishable particles, and bosons, respectively (the more intricate result

for simulated bosons can be found in appendix A). With respect to p. 5 in (1), expression (3) can be interpreted
as a sum over all two-particle processes which connect a pair of input particles to the two selected output modes.
In concreto, |U,, iI*|U,, jI* gives the classical transmission probability, independent of the particle type. The second
term on the right hand side of (3) provides the interference contribution for the two particles selected from the
input state. In the definition (2) of the correlators we suppress the classical contribution to the transmission
probability by subtracting (1;) (7;), and thus focus on the interference terms (see also equations (A.4) and (A.5)).
Therefore, C;; probes all possible two-particle interference contributions to the population of modes i and ;.

A single such correlator (typically) cannot probe in sufficient detail the structure of the full output wave
function, but some characteristic feature of the interference pattern should become apparent once a sufficiently
large set of correlators is considered by variation of i and j. The resulting dataset, which we from now on refer to
as the C-dataset, is easily obtained in the experimental setup: One must consider sufficiently many choices for
output modes, i, j € {1,...,m} suchthati < j, and for each choice compute the correlation C;;between the
number of particles sampled in the two modes. Now, for a single choice of input modes and hence a singlen x m
unitary matrix Uy, the submatrix of U that describes how the input modes are coupled to all possible output
modes, we obtain a set of data on which we can do statistics.

Given Uy, it is possible to calculate the C-dataset for each particle type numerically exactly [14] (see (3) and
appendix A). Although we can explore this via histograms, moments and other statistical properties, it is far from
straightforward to get an analytical grasp of its statistics. Ideally, we would like to predict the exact shape of the
distribution, given the number of modes r and the number of incoming particles #, but this appears to be an
unrealistic goal. Nevertheless, after longwinded RMT calculations, we obtained analytical predictions for the
first three moments of the set of possible outcomes when varying Uy, for fixed i and j (rather than fixing Uy, and
varying i and j). Although the distributions are mathematically not exactly equivalent, we find good agreement
with numerics (for a more elaborate discussion, see appendix B).

For a generated C-dataset for the different particle types, considering one fixed Uy, for 120 output modes
and six particles, the left panel in figure 2 clearly shows a qualitative difference in the histograms for different
particle types. In contrast, the right panel indicates that the histograms of the true bosons (where quantum
statistical bunching and multi-particle interference do both contribute) and their simulated counterparts (which
only exhibit bunching, but no multi-particle interference) bear a strong resemblance. Consequently, a
quantitative understanding is essential to clearly distinguish the signature of bosonic many-particle interference
from the quantum dynamics of other species. The second and third moment of the obtained correlator dataset
can exactly provide us with such insight. To obtain these quantities involves averaging products of components
of unitary matrices, for which straightforward (but tedious) combinatorics are used [36, 37].

5. Particle type-specific features of interference patterns

To acquire the clearest distinction between the many-particle interference patterns generated by different
particle types, we propose the normalised mean (NM)—the first moment divided by 1n/m?, the coefficient of
variation (CV)—the standard deviation divided by the mean—and the skewness (S) [41] of the C-dataset as
benchmarks. For these quantities, we have obtained an analytical RMT prediction in terms of mode and particle
number, but as these expressions are rather longwinded, we present them in the appendix. Since the dataset is
generated for a single Uy, as explained before, we do expect slight deviations from these RMT results. In

figure 3, we show the theoretical predictions (solid lines) for NM, CV and S, for a sampler in which six particles
were injected, as a function of the number of modes. In order to quantify the deviations from the RMT
prediction, we sampled, for various numbers of modes, 500 different Uy, matrices, calculated the respective
C-dataset and its moments, and indicated the resulting average normalised mean, coefficient of variation, and
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Figure 2. Normalised histograms of the correlator data, obtained by computing C;; = (#;#;) — (#;) (#1;) for all possible mode
combinations, for a system with six particles and 100 modes. In the left panel, the histogram for bosonic correlators is compared to
data obtained with fermions or distinguishable particles inserted instead of bosons. For the right panel, the histograms for bosons is
compared to the result for simulated bosons, see main text. All histograms are obtained from one single circuit, using the same input

modes, thus implying the same Uyp,.
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Figure 3. The theoretical RMT predictions (solid lines) for the normalised mean NM (top), the coefficient of variation CV (bottom
left) and skewness S (bottom right) of the C-dataset are compared to the numerical NM, CV and S values of sampled C-datasets for six
particles, as a function of the number of modes m. For mode numbers m = 20, 40,..., 300, we sampled 500 matrices Uy, for each of
which the normalised mean, the coefficient of variation and skewness of the C-dataset were calculated. For each mode number, the
average normalised mean, coefficient of variation and skewness are indicated by a dot. Additionally, the standard deviations of the
obtained NM, CV and S results are shown by error bars around these dots.

50 100 150
m

skewness by a point. The error bars indicate the standard deviation from this mean value and thus quantify the
typical spread of possible outcomes. We show here that for these parameters, even NM is fit to effectively
distinguish the interference of bosons, fermions and distinguishable particles, the curves for simulated and true
bosons, however, collapse. CV, on the other hand, is a trustworthy quantity to distinguish truly bosonic
interference from that of distinguishable particles and even of simulated bosons. The skewness S completes the
certification that the observed many-particle interference pattern is actually generated by bosons. Similar plots
where nis varied such that m ~ O(n)and m ~ O(n?) are shown in appendix C.
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Figure 4. For six particles, in 120 modes, the coefficient of variation and skewness were calculated for C-datasets of 500 sampled Uy,
matrices, The points labeled ‘bosons’, ‘distinguishable’, ‘fermions’ and ‘simulated bosons’, each connect to one C-dataset of a sampled
Usub» the points’ position on the plot indicates the calculated coefficient of variation CV and skewness S. The black and white triangles
mark the RMT predictions for these quantities. Finally, the black and white circles indicate the mean value of each cluster of all the
points generated for each particle type. These mean values coincide with the RMT predictions, thus the black and white triangles are
hidden underneath the black and white circles.

We must emphasise that the curves of figure 3 represent the typical values for NM, CVand S, and that it
might be possible to encounter a large deviation from such quantities. Moreover, one might dwell into a
parameter regime where standard deviation bars overlap and hence it is unrealistic to certify the sampler with a
single U, measurement. Luckily, a simple change of input modes implies a change in U, and hence it is
feasible to generate several C-datasets from one circuit. Figure 4 shows the outcomes for various such Uy,
matrices as points, where the x-coordinate indicates the coefficient of variation and the y-coordinate shows the
skewness. The colour coded sets of points for different particle types are all separated from each other, showing
clearly that the associated interference structures can be distinguished. As is indicated in figure 4, upon averaging
over all the points in each cloud, one finds values (indicated by the black circles) which are very well estimated by
the RMT predictions (indicated by the red points), thus providing a strong quantitative tool for such
certification. This quality of the certification is further enhanced in large systems by noticing that the cloud is
expected to shrink with the effective number of scattering events inside the array, namely the typical number of
crossings between optical paths in figure 1 (state of the art experiments have ~ 20).

In figure 3 we have indicated that bosonic, fermionic and distinguishable particles’ interference patterns can
be distinguished by studying the averages of the lowest-order statistical moments of the C-dataset. Furthermore,
figure 4 shows that for a rather large number of modes and a large set of sampled Uy, matrices, we can classify all
types of many-particle scattering dynamics. The method presented, however, does not require such an
abundance of modes and samples since we can perform additional statistical analyses on the obtained cluster of
data points. We emphasise this in figure 5, where data points for only 20 samples of Uy, matrices for m = 20 are
shown. We focus specifically on bosons (indicated by blue points), where for each sample the average is
calculated (red dot) and the red ellipses indicate two and four standard errors of the sample mean. The RMT
prediction for bosons (a blue filled circle), with a slight bias, falls within the four standard errors, whereas the
RMT prediction for simulated bosons (purple square) is well outside this region. Thus, we can successfully
differentiate bona fide bosonic many-particle interference from the quantum dynamics of simulated bosons,
using the RMT-based techniques described here.

6. Experimental overhead to measure correlators

In arealistic setup, repeated measurements are required to evaluate the correlators which constitute the
C-dataset with sufficient accuracy. A fundamental question to be answered is therefore whether our protocol can
be performed efficiently: Does the number of required experimental runs scale polynomially in the number of
modes, m, and particles, n? The answer is positive.

Measurement of quantum observables is probabilistic by its very nature, hence one initially sets forth a target
accuracy e to which to determine the correlator. The RMT results of the previous section can be used to
determine the required ¢, since it needs to be significantly smaller than the distance between the points in
figure 4. Focusing now on one correlator Cjj, the central limit theorem dictates that the number M of
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Figure 5. Four scatter plots, each containing 20 randomly sampled U, matrices for six particles in m = 20 output modes, from
which the coefficient of variation CV and the skewness S of the bosonic C-dataset were calculated. The average of the cloud is indicated
(red dot) as are the two- and four standard error regions (small and large ellipsoid, respectively). The RMT prediction for bosons is
shown (large blue dot) to be contained within the ellipses for each of the four samples. The RMT prediction for simulated bosons
(purple square) falls well outside the four standard errors.

measurements necessary to achieve this accuracy is given by M = Var(Cj;) /€2, where
Var(Cy) = ((A; — (7))’ (; — (#;))?) = Cj. ©)

Rather than analysing the scaling behaviour thereof in full rigour, we provide a simple argument for polynomial
scaling.

For increasing numbers of particles, the difficulty of BosonSampling is hidden in the increasing size of the
matrix Uy 5 of which to calculate the permanent. However, when calculating correlation functions, the problem
simplifies considerably. The highest order term, in creation and annihilation operators, which enters Var(Cj) is
given by ((a;")(a])?(a;)*(a;)), and from [14] it is known that the calculation of this term involves the
calculation of the permanents of 4 x 4 matrices, constructed with components of U. The dimensions of the
required matrices are independent of the number of particles n and of the number of modes m. As shown in [14],
the parameter # only governs the number of permanents of different4 x 4 matrices that need to be summed to
obtain the final variance. From the general expression in [14] one sees that this number of terms scales
polynomially in n and is independent of the number of modes. Thus the variance and hence the final number of
required measurements scale polynomially with the number of particles .

The above argument holds for determining the correlator of a single choice of output modes i and j, but to
obtain the full C-dataset one considers all combinations of output modes. Even if we assume the most inefficient
scenario where one measures one correlator at a time, this still only implies alow order polynomial scaling in 1.

7. Discussion

As evident from our above discussion, our certification method can be applied in a broad variety of experimental
setups, for a wide range of particle numbers n and mode numbers m. Of course, smaller m lead to smaller
C-datasets, making it more difficult to achieve statistical significance. In our numerical studies, however, we
successfully distinguish particle type-specific interference structures for 20 modes or fewer. A nice advantage of
our method as compared to [42] is that we can certainly treat regimes where m < 1!, we even can explore
regimes in which m ~ O(n). However, as n and m grow, the curves for true and simulated bosons in figure 3 will
approach one another to a distance of the order O(1/#) (for an extended discussion, see appendix C). As the
limit1/n — 0 is the semi-classical limit, where mean-field theory is exact, this is as such not surprising. The
similarity of the two curves essentially implies that the statistics of the C-dataset is still strongly affected by the
quantum statistics of the particles and thus by bosonic bunching. In this sense, we see alot of potential in
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elaborating the methods employed here, to further distill specific signatures of many-body interference, e.g. by
filtering out the undesired bunching contributions to the statistics.

Let us emphasise yet another important advantage of our method, especially in the regime of large m and n:
every experimental measurement outcome contributes to the C-dataset. Alternative methods which only seek to
tell bosons apart from other particles, via book-keeping of bunching events [ 19], are far less favourable in this
respect, since bunching events are rare events in the statistical sense. Therefore, not only does our method detect
genuine many-particle inference as induced by the actual dynamics, much beyond mere quantum statistical
effects such as bunching or anti-bunching—in the regime where BosonSampling can be considered really hard it
is also expected to be more efficient, even when only employed to identify the particle species.

What concerns a possible confrontation of our theoretical analysis with real experiments, we have here
focussed on the conceptual ideas behind statistical certification using correlation functions, thus describing an
ideal scenario. For an actual experimental implementation, a wide range of imperfections kick in and eventually
need to be accounted for: most prominent are losses [ 10], but to a lesser extent also decoherence, i.e. mode-
mismatch leading to partial distinguishability and phase-fluctuations due to alignment instability [ 16, 43-45]. If
losses occur before the particles enter the scattering system, this effect can be modelled by a statistical mixture of
input states with different numbers of particles. Alternatively, particles lost inside the scattering system can be
dealt with by increasing the number of output modes, while assuming that these additional modes are not
observed [46]. In both cases, our RMT results have straightforward generalisations. Decoherence phenomena
are more difficult to incorporate, since they require an expansion of our formal framework by an additional
(environmental) degree of freedom [ 16]. This does fundamentally not affect the here proposed certification
strategy, but imposes some non-trivial technical overhead. Both, losses and decoherence effects, ultimately
require a careful technical treatment, which we set forth as an objective for future work. Likewise, generalisations
of our RMT approach for the scenario of multiboson correlation sampling [47, 48] appear feasible.

In summary, we demonstrated that, by measuring the mode correlators C; ; = (;1;) — (i1;) (#;) forall
possible combinations of outgoing modes, one holds the key to certifying BosonSampling. The mean, the
variance, and the skewness of such a C-dataset are sufficient to identify the multi-particle interference patterns
resulting from transmission through a multimode random scatterer, as generated by bosons, fermions or
distinguishable particles beyond reasonable doubt. By varying the chosen input channels, and thereby
generating multiple such datasets one can efficiently distinguish true bosons from simulated bosons—which
only exhibit bunching, yet no many-particle interference—through comparison of the first moments of their
respective C-datasets. From a more general perspective, since our statistical quantifiers are constructed to distill
bona fide many-particle quantum interference, beyond quantum statistical bunching or anti-bunching effects,
these results improve our understanding of the fundamental differences between the quantum many-body
dynamics of distinct particle types.

What is the consequence of our results for the extended Church—Turing thesis? Clearly, the capacity of any
classical computer will be quickly exhausted when confronted with the task of evaluating a many-body wave
function represented by a permanent, as soon as the number of bosonic constituents and modes is large enough.
However, much as in the classical theory of gases or of chaotic (classical or quantum) systems, where, e.g.,
classical single particle trajectories are computationally unaccessible, too [49], we have shown that there are
robust and selective statistical quantifiers which indeed can be handled, and which are accessible in state of the
art experiments. In this sense, we suggest that a ‘thermodynamic’ or ‘statistical’ re-interpretation of the extended
Church-Turing thesis will prevail.
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Appendix A. Correlators

Initially, let us present a short and slightly more technical introduction to the central objects that constitute the
C-dataset, the two-mode correlators. Given some pure quantum state | @), these objects are defined as

Cij = (ol #ifij |p) — (@l A; |@) (@] 1 |¢), and the main goal of studying these object is to gain insight in the
structure of states | ), which results from the scattering of a many-particle Fock state in a system (one might
think of a complicated network) which is described by a single-particle scattering matrix U (which we
numerically generate following the algorithm described in [32]). As we initially start from a Fock state for which
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modes ¢, ,..., q, are populated by a single particle, we can describe the initial state | ;) in terms of creation
operators a; (for creation in the gth mode) that act on the vacuum state |2), as

lon) = a;l ...a;” Q). (A.D)

Now, by traversing the system, the matrix Uacts by connecting an input mode a; to all possible output modes
il

4a;
m
“qT — > Uyia] (A.2)
i=1
and thus we obtain that
i 3
|SO> = Z Uql’il ai.lr b Uq,,’in ai’,, |Q> . (A.3)

For bosons (B) and fermions (F), an application of the (anti)commutation relations, [a;, a]T]i = ¢;1,andalong
but straightforward computation leads to expressions for Cj;:

n n
B_ ) TR TR ) ITRTR
Cij = Zquﬂ qu,J qu,quk,J + Z UQk»l U’M UWU%J’ (A4)
k=1 k=l=1
n n
F_ ) TR TR ) TR TR
Cij - ZU%’U%J qu,thk,J Z qu:l qu] Uql,thk,J' (A.5)
k=1 k=I=1

In the case of distinguishable particles, one can in principle treat the particles in an independent fashion, and
thus a particle starting in input mode g will be found in output mode i with a probability b =10, 4*- Asthe
particles are distinguishable, these probabilities are not influenced by the presence of other particles, and via
simple probability theory we now find that

D __ < s
Cl] == Z (quﬂlpql*?] + quﬂ]pqlﬂl) - k;lquﬁipql*}j

k<l=1

n

_ k k

ol kZqu,i Ui UgiUs (A.6)
=1

Finally, simulated bosons behave similarly to distinguishable particles, with the sole exception that the initial
state is different and that (uniformly distributed) random phases are included over which one needs to average
[20]. We essentially sample distinguishable particles, which are inserted in the form of a single-particle state that
superposes all input modes with the same amplitude, but with random phases, implying a probability

b=

. Z:l: 1e“’qr Ugi ‘ to find a particle in output mode i. Since each time we consider 7 such
indistinguishable particles, a simple calculation yields

Ci = E((n — Dpp) — E(np,)E(np)

n—1 1 2m 28
- fO d6, ...d8, | Se U,
r=1

2 2

n Qm"

n
i, ,
> el Uy, j
r=1

@m)"

1 o 0 2|1 o 0 P2
[ J; do, ... o, |;e Uy ][(277)” j; do, ..o, |§e U, |

(Tl — 1) " * % 1 27 . (A.7)
= Z UqYIqu’Zquslquszf—nf df,, ...do, exp [1(9% + 9% _ 9%1 _ 9%2)]
o nnss=1 @mmJo
S U, U fzw do, ...d6, exp(if, — i6,)
- i i~ exp (10, — 1
Pt q,t qs’l(zﬂ_)n 0 q qn P q, q,
S U, U —— [ 40, ...d0 0 _ i
X U, U, ’A—f exp (i, — i6,).
r,s=1 ! qs](27r)" 0 9 Ay q, qs
Evaluating the integrals, we eventually obtain
s 1 n 1 2
* 77k N
Gij = (1 — —) > Uil Ug,iUgj — — > UqiUy Uy iUg i (A.8)
" r=s=1 n r,s=1
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Appendix B. Random matrix theory

From expressions for the correlators of different particle types, we are able to construct the C-dataset by varying i
andj(with i < j)to obtain all different mode combinations. In order to make theoretical predictions (or at least
up to very good approximation), we use RMT methods. Rather than varying i and j, these methods keep the two
output modes under consideration fixed and formally average over all possible matrices U in the unitary group
with the Haar measure imposed on it. One might understand this as an analogue to the Bohigas-Giannoni-
Schmit conjecture [50] for unitary matrices. The averaging contains one fundamental identity foran N x N
random unitary matrix U:

By (Uay b, -+ Uayb, Uny g, U ) = 2 V(o' [T 6(ax — o) 6 (b — Bray)s (B.1)
o,TES, k=1

where Ey (.) denotes the average over the unitary group and Vare class coefficients also known as Weingarten

functions, which are determined recursively. The details of this method can be found in [34-37]. With this

formula, we efficiently average long products of coefficients of unitary matrices to compute Ey; (Cj;), Ey (C,f)

and Ey (Cg ) for each particle type. Combining these quantities we can find the coefficient of variation CVand

the skewness S for each particle type. We find, with # particles in # modes, for bosons:

nm+n—2)
B (Cp) = ——— 2 T 7 — 2) B.2
v (Cp) = D) (B.2)
2n(m*n + m?> +9mn — 1lm + n®> — 2n> + 5n — 4
Fu (Gr) = 24 : i ), (B.3)
m-(m + 2)(m + 3)(m= — 1)
5 m’n? + 15 m’n + 2m> + 3 m*n® + 6 m?*n? + 213 m*n — 222 m? — 3 mn*
By (C3) = —2n
m*(m + D(m + 2)(m + 3)(m + 4)(m + 5)(m? — 1)
n 45mn® 4 32mn® + 372mn — 464m + 3n® — 6n* + 450> + 78n* + 168n — 288) (B.4)
m?(m + 1)(m + 2)(m + 3)(m + 4)(m + 5)(m? — 1) o
for fermions
nn — m)
By (Cp) = ————, B.5
0(G = T (B.5)
2n(n + H(m — n)(m —n+ 1
m=(m + 2)(m + 3)(m* — 1)
6nin + N)(n+2)y(m —n)y(m —n+ 1)(m —n+ 2
By (C) = — 2( )( )( )( )( . ) ) (B.7)
m=(m + 1)(m + 2)(m + 3)(m + 4)(m + 5)(m= — 1)
for distinguishable particles
n
Ey(Cp) = ————, (B.8)
m(m + 1)
n(m?n + 3m?> + mn — 5m + 2n — 2
By (Gp?) = X ; 5 ) (B.9)
m*(m + 2)(m + 3)(m* — 1)
2,2 2 2 2 _ 2 _
EU(CB) _ _n(m n“ 4+ 9mn + 26m= + 5mn* + 21lmn — 62m + 12n* + 60n 72), (B.10)
m?(m + 2)(m + 3)(m + 4)(m + 5)(m? — 1)
and finally for the simulated bosons
n(m+n—2)
Ey(Cy) = ———m—r——, B.11
v (Cs) o — D) (B.11)
dmn — m — 14n*> + 8n — 2
By (Cs) = — >
m-(m + 2)(m 4 3)(m= — )n
2m?n® — mPn? + dm*n — m?* + 18mn® — 25mn? + 21 — 4n* + 1013 (B.12)

m?*(m + 2)(m + 3)(m?® — Dn
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—2m’n® — 21m’n* + 30m’n® — 41mPn® — 10m®n + 8m® — 6m?n® — 3m*n®
(m — Dm?(m + D*(m + 2)(m + 3)(m + 4)(m + 5)n?
—285m%n* + 261m*n® + 75m*n® — 66m*n + 24m* + 6mn’ — 90mn® — 55mn’
(m — Dm?(m + 1)2(m + 2)(m + 3)(m + 4)(m + 5)n?
—360mn* 4+ 591mn® + 8mn? — 128mn + 64m
(m — Dm?(m + 1)2(m + 2)(m + 3)(m + 4)(m + 5)n?
—6n® + 1217 — 90n® — 120n° — 24n* 4 396n> — 168n* — 48(n — 1))

By (Cs) =(

B.13
(m — Dm?(m + 1)2(m + 2)(m + 3)(m + 4)(m + 5)n? (B.13)
Although these formulas do not appear remarkably elegant due the lack of any form of assumption on mand n
(apartfrom m > n), they are necessary to obtain sufficiently accurate results. Once these moments are defined,
we can use them to find NM, CV and S by the following definitions:

N = Bu(©m? (B.14)
n
2y 2
cv VEu (C?) — By (C) , (B.15)
Ey (C)
s — Eu(C) — 3By (O)Ey (C?) + 2By (C)° (B.16)

(Ey (C? — Ey(C)?)*?

With these results, one can now calculate the expected coefficient of variation and the expected skewness for
each of the samplers we described, with an arbitrary number of modes and particles.

Appendix C. RMT results and the number of particles

In this appendix, we assess the lowest-order scaling properties of the RMT results of appendix B as a function of the
particle number. We consider large sets of particles which are injected into m ~ O(n) or m ~ O(n?) modes.

First,letusset m = An,with A € Nand A > 1,and consider thelimit # — oo. In this regime, we can
evaluate the leading order scaling behaviour for the normalised mean MN, the coefficient of variation CVand
the skewness S for different particle types. We now find that for bosons

NM =~ (—l — 1) + i, (C.1)
A \n
o\ 3 2 _
CV@( 2 _1) 5 X+ 9N 28 —3) C2)
A+1 A= DX+ D2
3 2 _
Gy OGN 2N —10) +5) ©3
(A= 1D*)n
for fermions,
1 1—A
NM~|——-1|+ —, C4
()\ ) n? €4
V%—#—&-i—l, (C.5)
A= Dn An
30 _6A
S A Al o (C.6)
n
for distinguishable particles,
1

NM~ — — 1, (C.7)

\n
2 /1
CVx~—|./3——]—1 C.8
(V /\\/;) (8)

203A—18) +7) [T

S~ , (C.9
JAGA =22 \Nn
and, finally, for simulated bosons
1 2
NM~|——-1|+ —, C.10
( A ) \n ( )
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Figure C1. Comparison of the theoretical RMT predictions (solid lines) for the normalised mean NM (top), the coefficient of variation
CV (bottom left) and skewness S (bottom right) of the C-dataset to the numerical NM, CV and S values of sampled C-datasets, where
the mode number is scaled up with the particle number as m = 3n. For particle numbers n = 5, 15 and 25, we sampled 50 matrices
Usup, for each of which the normalised mean, the coefficient of variation and skewness of the C-dataset were calculated. For each mode
number, the average normalised mean, coefficient of variation and skewness together with the associated standard deviations are
indicated by a dot and by error bars, respectively.

40 50

CV%(

S~2—

2

A+1

)

M — 1508 —4X + 6N+ 10

200 — DA\ + D?n

3O\ + 2)(7A — 10) + 10)
(O = 1D2\n ’

(C.11)

(C.12)

Observe that even the leading n-dependence is different when comparing particle types. This implies that, while
the RMT results for bosons and simulated bosons converge to the same point for NM, CV, and S, they dosoina
quantitatively distinct manner.

We now repeat the computation for a different type of scaling, where we set m = An?. Again, when we
evaluate the scaling behaviour as n — oo, we find for bosons:

for fermions:

NM~ ——— 1,

\n
CV@Z_)\fl,
A\n
S%Z—ﬂ,
n
NM%L—I,
A\n
CV%—l—l,
n
Sz—g—z,
n

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)
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Figure C2. Comparison of the theoretical RMT predictions (solid lines) for the normalised mean NM (top), the coefficient of variation
CV (bottom left) and skewness S (bottom right) of the C-dataset to the numerical NM, CV and S values of sampled C-datasets, where
the mode number is scaled up with the particle number as m = 3n?, For particle numbers # = 6 and 11, we sampled 50 matrices Uy,
for each of which the normalised mean, the coefficient of variation and skewness of the C-dataset were calculated. For each mode
number, the average normalised mean, coefficient of variation and skewness together with the associated standard deviations are
indicated by a dot and by error bars, respectively.

for distinguishable particles:

1
NM~ — + 1, C.19
s (C.19)
CV =~ —(ﬁ\/z), (C.20)
n
26 1
S~ ——— |—, C.21
5\ n (@20
and for simulated bosons:
NM~ -1 1, (C.22)
\n
A (C.23)
2\n
S~ 2L (C.24)

n

The first notable observation is that, again, the bosons and simulated bosons converge to the same point for NM,
CV,and S, but approach this limit in a different fashion. Moreover, it is an interesting observation that the
leading order term obtained for S are independent of \.

The physical interpretation of these results remains unclear to us at the present stage. One can understand
the similarity between bosons and simulated bosons in the thermodynamic limit by realising that this is also the
limit where mean-field theory is expected to be exact. One may even verify this through (A.4) and (A.8): the
terms which distinguish the two expressions vanish in the limit n — oo.

Finally, to visualise the behaviour of the RMT results with m ~ O(n) or m ~ O(n?), we present additional
plotsin figures C1 and C2 , which compare to figure 3. With the arbitrary choice A = 3, straightforward
numerical evaluation rapidly becomes demanding, therefore we limit ourselves to just a few data points.
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