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Abstract
Boson samplers—set-ups that generate complexmany-particle output states through the transmis-
sion of elementarymany-particle input states across amultitude ofmutually coupledmodes—
promise the efficient quantum simulation of a classically intractable computational task, and challenge
the extendedChurch–Turing thesis, one of the fundamental dogmas of computer science. However,
as in all experimental quantum simulations of truly complex systems, one crucial problem remains:
how to certify that a given experimentalmeasurement record unambiguously results from enforcing
the claimed dynamics, on bosons, fermions or distinguishable particles?Herewe offer a statistical
solution to the certification problem, identifying an unambiguous statistical signature ofmany-body
quantum interference upon transmission across amultimode, random scattering device.We show
that statistical analysis of only partial information on the output state allows to characterise the
imparted dynamics through particle type-specific features of the emerging interference patterns. The
relevant statistical quantifiers are classically computable, define a falsifiable benchmark for
BosonSampling, and reveal distinctive features ofmany-particle quantumdynamics, which gomuch
beyondmere bunching or anti-bunching effects.

1. Introduction

As theworldwaits for thefirst universal and fully operational quantum computer [1], quantum information
scientists are eager to already show the power of quantumphysics to perform computational tasks which are out
of reach for a classical computer. Rather than designing devices that can perform awide range of calculations,
machineswhich are specialised in specific tasks have joined the scope [2, 3]. Here, we focus on one type of such
devices, the BosonSamplers, whichmay hold the key to falsifying the extendedChurch–Turing thesis [1, 4, 5].
This conjecture, rooted in the early days of computer science, states that any efficient calculation performed by a
physical device can also be performed in polynomial time on a classical computer. It is nowproposed that all that
is necessary to falsify this foundational dogma of computer science is a set ofm photonic inputmodes, which are
connected tom outputmodes by a randomphotonic circuit [2]. This immediately indicates why
BosonSampling attracts such attention, as these systems are experimentally in reach [6–11].

Since such a device is operating on bosons, indistinguishable particles, interesting physics arises when
multiple particles are simultaneously injected into the system [12–16]. A schematic overview, indicating the
essential ingredients of a sampling device such as considered here, is provided infigure 1. BosonSampling
essentially consists in sampling an occupation vector y y y,..., m1( )=


for the outputmodes, given that the initial

mode occupationwas x x x,..., m1( )=


, where xi and yi are the number of photons found in the ith input and
outputmode, respectively. In the case with atmost one photon per inputmode, this probability is given by
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whereUx y,
  is the n×nmatrix, constructed fromU, which describes how the n occupied inputmodes are

connected to the selected outputmodes [13], and ‘perm’ denotes the permanent [17]. To evaluate themany-
body outputwave function, and thus the sampling statistics, wemust deal with these permanents, which are
‘hard’ to compute, i.e.there is no algorithm that can do so in polynomial time [17, 18].Apriori, theremay be
algorithms that sample from the probability distribution px y

  without explicit computation of the probabilities.
This possibility was recently refuted [2] and it is argued that it is in general not possible6 to efficiently simulate
such a BosonSampling procedure on a classical computer. However, it turns out that single photons, linear optics
and photon counters are all the required building blocks to build a quantum device that performs the task. Thus,
the BosonSampler is a physical system that efficiently samples bosons according to the bosonicmany-bodywave
function, even though thismany-body state cannot be calculated by a classical computer. Its realisationwould in
this perspective invalidate the extendedChurch-Turing thesis in the sense that it is a concrete example of a
quantumdevice that performs a task efficiently where a classical computer could not.

However, this strength of BosonSampling apparently also implies a profoundweakness: since it is impossible
to compute themany-bodywave function, one cannot certify that a given experimental output unambiguously
stems from sampling bosons–how canwe be sure that an alleged device samples events from the correct
probability distribution?Note that different scientific disciplines impose very different requirements on
certification protocols: from the perspective of theoretical computer science, which ismotivated by the
scrupulous applications of cryptography, a proof for the correct functionality of a BosonSampler can only be
accepted if the possibility of a fraudulent classical device that generates a false-positive result is provably ruled
out. That is, generating a sample that passes the certificationmust be computationallymuch harder than the very
act of certifying. Setting aside this cryptographic perspective and disregarding the possibility of thewilful use of
fraudulent devices, we focus on unambiguous physical signatures of the functionality of the device. Bunching of
bosonswas proposed [19] as a decisive criterion, but dismissed in [20], where amean-field ansatz incarnated by
‘simulated bosons’ (to be defined below)was shown to precisely reproduce coarse-grained bunching. Reference
[20] furthermore offers a highly symmetric, analytically solvable test-case (recently implemented experimentally
[21, 22]), which however remains, by construction, outside the realmof a true BosonSampler. A reliable physical
benchmark for the functionality of BosonSamplers therefore is unachieved to date, yet highly desirable if one
wishes to fully exploit the computational power brought about bymany-particle quantum interference. Tofill
this gap, we conceive a solution based on a statistical certifier that excludes simulated bosons—even for the
original formulation [2] of the BosonSampling problemwith random scatteringmatrices. Borrowing from the
vast set of techniques offered by statisticalmechanics, we formulate the problem in terms of a transport process in
a scattering system (e.g. a photonic network), described by a randomunitarymatrixU.We show that, by

Figure 1. Sketch of the systemunder consideration. From a set of inputmodes (herem = 12), four particles are injected (depicted in
red). The particles traverse the system via the depicted channels. At the crossings, different paths are interconnected such that particles
can travel in each direction, thus leading to single-particle andmany-body interference. The yellow zone of the setup is described by a
unitarymatrixU, which connects the inputmodes to the outputmodes. The output signal is probabilistic in nature (hence different
intensities of red), with its statistics governed by themany-body quantum state. The key object of this work, theC-dataset (seemain
text), is obtained by calculating the two-point correlations between differentmodes as depicted in green.

6
To be precise: it was shown [2] that the realisation of an efficient classical algorithm that simulates BosonSampling implies a collapse of the

polynomial hierarchy [5] to the third order. As it is not our goal to enter themathematical subtleties related to the theory of computational
complexity, let us stress that this is simply the complexity theorist’s way of saying that it is highly unlikely to be true.
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combining quantumoptics withmethods found in statistical physics and randommatrix theory, it is indeed
possible to identify signatures of genuine bosonicmany-particle interference withmanageable overhead.

2. Statistical signatures ofmany-particle interference

Itmust be stressed that the resultingmany-bodywave function of a scattering process, such asmanifested in a
BosonSampler, is determined by several factors. One can separate them into thosewhich are of quantum
statistical origin and thosewhich are dynamical in nature. The former concern all effects related to the structure
of state space (e.g., bunching for bosons, and the Pauli exclusion principle for fermions), whereas the latter
involve all sorts of interference effects. One can divide these interferences into thewell-known single-particle
interference [23], encodedwithin thematrixU, which arises due to thewave-like nature of quantum transport
[24–26], and the farmore intricatemany-body interference [15, 16, 27]. Below, we shall scrutinise the
interference exhibited by various particle types—bosons, fermions, distinguishable particles and simulated
bosons.

Distinguishable particles are the simplest of the considered species, as their signals are governed only by
single-particle interference. Transport processes with bosons or fermions, in contrast, exhibit the entire range of
statistical and interference effects. As indistinguishable particles, they obey quantum statistics (as dictated by the
relevant algebra), which for two particles in twomodes either leads to bunching (bosons) [12] or to anti-bunching
(fermions) [28]. Similar effects have also been observed in larger setups, withmore particles, and have hence
been proposed as hallmarks formany-boson [19] ormany-fermion [29] behaviour.

However, for larger setups one expects amuch richer phenomenology due tomany-body interference [15],
resulting from the coherent superposition of distinctmany-particle transmission amplitudes [16]. For
BosonSampling, bunching or clouding behaviour [19] as such is therefore not a sufficient tool for certification,
as it can easily be achieved by the so-calledmean-field sampler [20]whichwas inspired by semiclassicalmodels
[30]. These devices are designed to replicate the bunching behaviour by approximating themany-body output
state by amacroscopically populated single-particle state with randomphases added. Averaging over the
randomphases successfullymimics boson-like bunching. However, all relative phases between the initially
populatedmany-particle transmission amplitudes are scrambled by the averaging procedure, and,
consequently, allmany-body interference effects are deleted. This type of sampling [19] is easily simulated by
Monte Carlomethods [20]—hencewe here refer to such sampled particles as simulated bosons—and is unable to
harness quantum granularity on themany-particle level. It is therefore conceptually decisive to setmeanfield
sampling apart from actual BosonSampling.We now introduce a generalmethodwhich is specifically conceived
to detect quantum interference structures as induced by the coherent superposition ofmany-particle
transmission amplitudes. This approach thus distinguishes simulated from true bosons, and identifiesmany-
particle interference features which are characteristic of both—particle type and the specific scattering dynamics.

3. Randommatrixmethods

The scatteringmatrixU that describes the photonic circuit in the BosonSampling setup is randomly sampled
from theHaarmeasure [31–33]. Therefore it is only natural to treat this problem in a framework of statistics and
randommatrix theory (RMT) [31, 34–37]. Often the lack of grasp on the statistical distribution of the fullmany-
bodywave function is put forth as the core of the certification problem. Exhaustive statistical characterisation of
themany-body state would require the full distribution of permanents over the set of unitarymatrices. To date,
only thefirstmoment of this distribution is known [38] and it is not enough to provide certification, while
sufficiently precise higher ordermoments are out of reach [2]. The reason is that, in terms of the quantum state,
permanents depend on high-order correlation functions. In contrast, wewill emphasise below that a gigantic
amount of information on themany-body state iswithin reach in the formof distributions of low-order
correlation functions.

In probability theory, the knowledge of all possible correlation functions implies full knowledge of the (joint)
probability distribution itself. Therefore, correlation functions play a central role inmany probabilistic theories,
fromRMT [31] to quantum statisticalmechanics [39]. In practical applications of RMT, such as occur in
quantum chaos, a study of the statistics related to two-point correlations is often sufficient to certify the RMT
ensemble. Similarly, here, we do not (and, for sufficiently large systems, cannot) know all correlation functions
of the outputmany-body quantum state. There is, however, a large set of correlation functionswhich are
accessible (both theoretically and experimentally) [14, 38, 40]. Hence, the relevant question is whether this set
offers a sufficient amount of information to distinguish themany-particle dynamics undergone by simulated or
true bosons, fermions and distinguishable particles.

3
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4. Statistical benchmarking

As the arguably simplest accessible correlation functionwe propose themode correlator

C n n n n 2ij i j i jˆ ˆ ˆ ˆ ( )= á ñ - á ñá ñ

(with n a ai i iˆ †= the bosonic number operator) [14], which quantifies how the number of outgoing photons in
modes i and j are correlated (as indicated infigure 1). Scattering dynamics and particle type are encrypted in the
many-body output quantum state out∣j ñ, which entersCij via the expectation value . .out out∣ ∣j já ñ = á ñ.

Closer inspection of the expression for n ni jˆ ˆá ñ in [14], for particles initially prepared inmode q q,..., n1{ },
shows that

n n U U t U U U U , 3i j
k l

n

q i q j q i q j q i q j
1

,
2

,
2

, , , ,k l k l l k
ˆ ˆ ∣ ∣ ∣ ∣ ( )* *åá ñ = +

¹ =

where t 1, 0, 1= - + for fermions, distinguishable particles, and bosons, respectively (themore intricate result
for simulated bosons can be found in appendix A).With respect to px y

  in (1), expression (3) can be interpreted
as a sumover all two-particle processes which connect a pair of input particles to the two selected outputmodes.
In concreto, U Uq i q j,

2
,

2
k l

∣ ∣ ∣ ∣ gives the classical transmission probability, independent of the particle type. The second
termon the right hand side of (3) provides the interference contribution for the two particles selected from the
input state. In the definition (2) of the correlators we suppress the classical contribution to the transmission
probability by subtracting n ni jˆ ˆá ñá ñ, and thus focus on the interference terms (see also equations (A.4) and (A.5)).
Therefore,Cij probes all possible two-particle interference contributions to the population ofmodes i and j.

A single such correlator (typically) cannot probe in sufficient detail the structure of the full outputwave
function, but some characteristic feature of the interference pattern should become apparent once a sufficiently
large set of correlators is considered by variation of i and j. The resulting dataset, whichwe fromnowon refer to
as theC-dataset, is easily obtained in the experimental setup:Onemust consider sufficientlymany choices for
outputmodes, i j m, 1,...,{ }Î such that i j< , and for each choice compute the correlationCij between the
number of particles sampled in the twomodes. Now, for a single choice of inputmodes and hence a single n×m
unitarymatrixUsub, the submatrix ofU that describes how the inputmodes are coupled to all possible output
modes, we obtain a set of data onwhichwe can do statistics.

GivenUsub, it is possible to calculate theC-dataset for each particle type numerically exactly [14] (see (3) and
appendix A). Althoughwe can explore this via histograms,moments and other statistical properties, it is far from
straightforward to get an analytical grasp of its statistics. Ideally, wewould like to predict the exact shape of the
distribution, given the number ofmodesm and the number of incoming particles n, but this appears to be an
unrealistic goal. Nevertheless, after longwinded RMT calculations, we obtained analytical predictions for the
first threemoments of the set of possible outcomeswhen varyingUsub forfixed i and j (rather than fixingUsub and
varying i and j). Although the distributions aremathematically not exactly equivalent, we find good agreement
with numerics (for amore elaborate discussion, see appendix B).

For a generatedC-dataset for the different particle types, considering onefixedUsub for 120 outputmodes
and six particles, the left panel infigure 2 clearly shows a qualitative difference in the histograms for different
particle types. In contrast, the right panel indicates that the histograms of the true bosons (where quantum
statistical bunching andmulti-particle interference do both contribute) and their simulated counterparts (which
only exhibit bunching, but nomulti-particle interference) bear a strong resemblance. Consequently, a
quantitative understanding is essential to clearly distinguish the signature of bosonicmany-particle interference
from the quantumdynamics of other species. The second and thirdmoment of the obtained correlator dataset
can exactly provide uswith such insight. To obtain these quantities involves averaging products of components
of unitarymatrices, for which straightforward (but tedious) combinatorics are used [36, 37].

5. Particle type-specific features of interference patterns

To acquire the clearest distinction between themany-particle interference patterns generated by different
particle types, we propose the normalisedmean (NM)—thefirstmoment divided by n m2, the coefficient of
variation (CV)—the standard deviation divided by themean—and the skewness (S) [41] of theC-dataset as
benchmarks. For these quantities, we have obtained an analytical RMTprediction in terms ofmode and particle
number, but as these expressions are rather longwinded, we present them in the appendix. Since the dataset is
generated for a singleUsub, as explained before, we do expect slight deviations from these RMT results. In
figure 3, we show the theoretical predictions (solid lines) forNM,CV and S, for a sampler inwhich six particles
were injected, as a function of the number ofmodes. In order to quantify the deviations from theRMT
prediction, we sampled, for various numbers ofmodes, 500 differentUsub matrices, calculated the respective
C-dataset and itsmoments, and indicated the resulting average normalisedmean, coefficient of variation, and
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skewness by a point. The error bars indicate the standard deviation from thismean value and thus quantify the
typical spread of possible outcomes.We showhere that for these parameters, evenNM isfit to effectively
distinguish the interference of bosons, fermions and distinguishable particles, the curves for simulated and true
bosons, however, collapse.CV, on the other hand, is a trustworthy quantity to distinguish truly bosonic
interference from that of distinguishable particles and even of simulated bosons. The skewness S completes the
certification that the observedmany-particle interference pattern is actually generated by bosons. Similar plots
where n is varied such that m n( )~ and m n2( )~ are shown in appendix C.

Figure 2.Normalised histograms of the correlator data, obtained by computing C n n n nij i j i jˆ ˆ ˆ ˆ= á ñ - á ñá ñ for all possiblemode
combinations, for a systemwith six particles and 100modes. In the left panel, the histogram for bosonic correlators is compared to
data obtainedwith fermions or distinguishable particles inserted instead of bosons. For the right panel, the histograms for bosons is
compared to the result for simulated bosons, seemain text. All histograms are obtained fromone single circuit, using the same input
modes, thus implying the sameUsub.

Figure 3.The theoretical RMTpredictions (solid lines) for the normalisedmeanNM (top), the coefficient of variationCV (bottom
left) and skewness S (bottom right) of theC-dataset are compared to the numericalNM,CV and S values of sampledC-datasets for six
particles, as a function of the number ofmodesm. Formode numbers m 20, 40 ,..., 300= , we sampled 500matricesUsub, for each of
which the normalisedmean, the coefficient of variation and skewness of the C-dataset were calculated. For eachmode number, the
average normalisedmean, coefficient of variation and skewness are indicated by a dot. Additionally, the standard deviations of the
obtainedNM,CV and S results are shown by error bars around these dots.
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Wemust emphasise that the curves offigure 3 represent the typical values forNM,CV and S, and that it
might be possible to encounter a large deviation from such quantities.Moreover, onemight dwell into a
parameter regimewhere standard deviation bars overlap and hence it is unrealistic to certify the sampler with a
singleUsub measurement. Luckily, a simple change of inputmodes implies a change inUsub and hence it is
feasible to generate several C-datasets fromone circuit. Figure 4 shows the outcomes for various suchUsub

matrices as points, where the x-coordinate indicates the coefficient of variation and the y-coordinate shows the
skewness. The colour coded sets of points for different particle types are all separated from each other, showing
clearly that the associated interference structures can be distinguished. As is indicated infigure 4, upon averaging
over all the points in each cloud, onefinds values (indicated by the black circles)which are verywell estimated by
the RMTpredictions (indicated by the red points), thus providing a strong quantitative tool for such
certification. This quality of the certification is further enhanced in large systems by noticing that the cloud is
expected to shrinkwith the effective number of scattering events inside the array, namely the typical number of
crossings between optical paths infigure 1 (state of the art experiments have 20 ).

Infigure 3we have indicated that bosonic, fermionic and distinguishable particles’ interference patterns can
be distinguished by studying the averages of the lowest-order statisticalmoments of theC-dataset. Furthermore,
figure 4 shows that for a rather large number ofmodes and a large set of sampledUsub matrices, we can classify all
types ofmany-particle scattering dynamics. Themethod presented, however, does not require such an
abundance ofmodes and samples sincewe can perform additional statistical analyses on the obtained cluster of
data points.We emphasise this infigure 5, where data points for only 20 samples ofUsub matrices form=20 are
shown.We focus specifically on bosons (indicated by blue points), where for each sample the average is
calculated (red dot) and the red ellipses indicate two and four standard errors of the samplemean. The RMT
prediction for bosons (a bluefilled circle), with a slight bias, falls within the four standard errors, whereas the
RMTprediction for simulated bosons (purple square) is well outside this region. Thus, we can successfully
differentiate bonafide bosonicmany-particle interference from the quantumdynamics of simulated bosons,
using the RMT-based techniques described here.

6. Experimental overhead tomeasure correlators

In a realistic setup, repeatedmeasurements are required to evaluate the correlators which constitute the
C-dataset with sufficient accuracy. A fundamental question to be answered is therefore whether our protocol can
be performed efficiently: Does the number of required experimental runs scale polynomially in the number of
modes,m, and particles, n? The answer is positive.

Measurement of quantumobservables is probabilistic by its very nature, hence one initially sets forth a target
accuracy ò towhich to determine the correlator. The RMT results of the previous section can be used to
determine the required ò, since it needs to be significantly smaller than the distance between the points in
figure 4. Focusing nowon one correlatorCij, the central limit theoremdictates that the numberM of

Figure 4. For six particles, in 120modes, the coefficient of variation and skewness were calculated for C-datasets of 500 sampledUsub

matrices, The points labeled ‘bosons’, ‘distinguishable’, ‘fermions’ and ‘simulated bosons’, each connect to oneC-dataset of a sampled
Usub, the points’ position on the plot indicates the calculated coefficient of variationCV and skewness S. The black andwhite triangles
mark the RMTpredictions for these quantities. Finally, the black andwhite circles indicate themean value of each cluster of all the
points generated for each particle type. Thesemean values coincide with the RMTpredictions, thus the black andwhite triangles are
hidden underneath the black andwhite circles.
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measurements necessary to achieve this accuracy is given by M CVar ij
2( ) = , where

C n n n n CVar . 4ij i i j j ij
2 2 2( ) ( ˆ ˆ ) ( ˆ ˆ ) ( )= á - á ñ - á ñ ñ -

Rather than analysing the scaling behaviour thereof in full rigour, we provide a simple argument for polynomial
scaling.

For increasing numbers of particles, the difficulty of BosonSampling is hidden in the increasing size of the
matrixUx y,

  ofwhich to calculate the permanent. However, when calculating correlation functions, the problem
simplifies considerably. The highest order term, in creation and annihilation operators, which enters CVar ij( ) is
given by a a a ai j j i

2 2 2 2( ) ( ) ( ) ( )† †á ñ, and from [14] it is known that the calculation of this term involves the
calculation of the permanents of 4×4matrices, constructedwith components ofU. The dimensions of the
requiredmatrices are independent of the number of particles n and of the number ofmodesm. As shown in [14],
the parameter n only governs the number of permanents of different 4×4matrices that need to be summed to
obtain the final variance. From the general expression in [14] one sees that this number of terms scales
polynomially in n and is independent of the number ofmodes. Thus the variance and hence thefinal number of
requiredmeasurements scale polynomially with the number of particles n.

The above argument holds for determining the correlator of a single choice of outputmodes i and j, but to
obtain the full C-dataset one considers all combinations of outputmodes. Even if we assume themost inefficient
scenariowhere onemeasures one correlator at a time, this still only implies a low order polynomial scaling inm.

7.Discussion

As evident fromour above discussion, our certificationmethod can be applied in a broad variety of experimental
setups, for awide range of particle numbers n andmode numbersm. Of course, smallerm lead to smaller
C-datasets,making itmore difficult to achieve statistical significance. In our numerical studies, however, we
successfully distinguish particle type-specific interference structures for 20modes or fewer. A nice advantage of
ourmethod as compared to [42] is that we can certainly treat regimeswhere m n5.1< , we even can explore
regimes inwhich m n( )~ . However, as n andm grow, the curves for true and simulated bosons infigure 3will
approach one another to a distance of the order n1( ) (for an extended discussion, see appendix C). As the
limit n1 0 is the semi-classical limit, wheremean-field theory is exact, this is as such not surprising. The
similarity of the two curves essentially implies that the statistics of the C-dataset is still strongly affected by the
quantum statistics of the particles and thus by bosonic bunching. In this sense, we see a lot of potential in

Figure 5. Four scatter plots, each containing 20 randomly sampledUsub matrices for six particles inm=20 outputmodes, from
which the coefficient of variationCV and the skewness S of the bosonic C-dataset were calculated. The average of the cloud is indicated
(red dot) as are the two- and four standard error regions (small and large ellipsoid, respectively). The RMTprediction for bosons is
shown (large blue dot) to be containedwithin the ellipses for each of the four samples. TheRMTprediction for simulated bosons
(purple square) falls well outside the four standard errors.
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elaborating themethods employed here, to further distill specific signatures ofmany-body interference, e.g. by
filtering out the undesired bunching contributions to the statistics.

Let us emphasise yet another important advantage of ourmethod, especially in the regime of largem and n:
every experimentalmeasurement outcome contributes to theC-dataset. Alternativemethodswhich only seek to
tell bosons apart fromother particles, via book-keeping of bunching events [19], are far less favourable in this
respect, since bunching events are rare events in the statistical sense. Therefore, not only does ourmethod detect
genuinemany-particle inference as induced by the actual dynamics,much beyondmere quantum statistical
effects such as bunching or anti-bunching—in the regimewhere BosonSampling can be considered really hard it
is also expected to bemore efficient, evenwhen only employed to identify the particle species.

What concerns a possible confrontation of our theoretical analysis with real experiments, we have here
focussed on the conceptual ideas behind statistical certification using correlation functions, thus describing an
ideal scenario. For an actual experimental implementation, awide range of imperfections kick in and eventually
need to be accounted for:most prominent are losses [10], but to a lesser extent also decoherence, i.e.mode-
mismatch leading to partial distinguishability and phase-fluctuations due to alignment instability [16, 43–45]. If
losses occur before the particles enter the scattering system, this effect can bemodelled by a statisticalmixture of
input states with different numbers of particles. Alternatively, particles lost inside the scattering system can be
dealt with by increasing the number of outputmodes, while assuming that these additionalmodes are not
observed [46]. In both cases, our RMT results have straightforward generalisations. Decoherence phenomena
aremore difficult to incorporate, since they require an expansion of our formal framework by an additional
(environmental) degree of freedom [16]. This does fundamentally not affect the here proposed certification
strategy, but imposes some non-trivial technical overhead. Both, losses and decoherence effects, ultimately
require a careful technical treatment, whichwe set forth as an objective for futurework. Likewise, generalisations
of our RMTapproach for the scenario ofmultiboson correlation sampling [47, 48] appear feasible.

In summary, we demonstrated that, bymeasuring themode correlators C n n n ni j i j i j, ˆ ˆ ˆ ˆ= á ñ - á ñá ñ for all
possible combinations of outgoingmodes, one holds the key to certifying BosonSampling. Themean, the
variance, and the skewness of such aC-dataset are sufficient to identify themulti-particle interference patterns
resulting from transmission through amultimode random scatterer, as generated by bosons, fermions or
distinguishable particles beyond reasonable doubt. By varying the chosen input channels, and thereby
generatingmultiple such datasets one can efficiently distinguish true bosons from simulated bosons—which
only exhibit bunching, yet nomany-particle interference—through comparison of the firstmoments of their
respective C-datasets. From amore general perspective, since our statistical quantifiers are constructed to distill
bonafidemany-particle quantum interference, beyond quantum statistical bunching or anti-bunching effects,
these results improve our understanding of the fundamental differences between the quantummany-body
dynamics of distinct particle types.

What is the consequence of our results for the extendedChurch–Turing thesis? Clearly, the capacity of any
classical computerwill be quickly exhaustedwhen confrontedwith the task of evaluating amany-bodywave
function represented by a permanent, as soon as the number of bosonic constituents andmodes is large enough.
However,much as in the classical theory of gases or of chaotic (classical or quantum) systems, where, e.g.,
classical single particle trajectories are computationally unaccessible, too [49], we have shown that there are
robust and selective statistical quantifiers which indeed can be handled, andwhich are accessible in state of the
art experiments. In this sense, we suggest that a ‘thermodynamic’ or ‘statistical’ re-interpretation of the extended
Church–Turing thesis will prevail.
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AppendixA. Correlators

Initially, let us present a short and slightlymore technical introduction to the central objects that constitute the
C-dataset, the two-mode correlators. Given somepure quantum state ∣jñ, these objects are defined as
C n n n nij i j i j∣ ˆ ˆ ∣ ∣ ˆ ∣ ∣ ˆ ∣j j j j j j= á ñ - á ñá ñ, and themain goal of studying these object is to gain insight in the
structure of states ∣jñ, which results from the scattering of amany-particle Fock state in a system (onemight
think of a complicated network)which is described by a single-particle scatteringmatrixU (whichwe
numerically generate following the algorithmdescribed in [32]). Aswe initially start from a Fock state for which
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modes q q,..., n1 are populated by a single particle, we can describe the initial state in∣j ñ in terms of creation

operators aq
† (for creation in the qthmode) that act on the vacuum state ∣Wñ, as

a a... . A.1q qin n1
∣ ∣ ( )† †j ñ = Wñ

Now, by traversing the system, thematrixU acts by connecting an inputmode aq
† to all possible outputmodes

ai
†

a U a A.2q
i

m

q i i
1

, ( )† †å
=

and thuswe obtain that

U a U a... . A.3
i i

m

q i i q i i
,..., 1

, ,

n

n n n

1

1 1 1
∣ ∣ ( )† †åjñ = Wñ

=

For bosons (B) and fermions (F), an application of the (anti)commutation relations, a a 1,i j ij[ ]† d= , and a long
but straightforward computation leads to expressions forCij:

C U U U U U U U U , A.4ij
B

k

n

q i q j q i q j
k l

n

q i q j q i q j
1

, , , ,
1

, , ,k k k k k l l k
( )* * * *å å= - +

= ¹ =

C U U U U U U U U . A.5ij
F

k

n

q i q j q i q j
k l

n

q i q j q i q j
1

, , , ,
1

, , , ,k k k k k l l k
( )* * * *å å= - -

= ¹ =

In the case of distinguishable particles, one can in principle treat the particles in an independent fashion, and
thus a particle starting in inputmode qwill be found in outputmode iwith a probability p Uq i i q,

2∣ ∣= . As the
particles are distinguishable, these probabilities are not influenced by the presence of other particles, and via
simple probability theory we nowfind that

C p p p p p p

U U U U . A.6

ij
D

k l

n

q i q j q j q i
k l

n

q i q j

k

n

q i q j q i q j

1 , 1

1
, , , ,

k l k l k l

k k k k

( )

( )* *

å å

å

= + -

=-

< =
   

=
 

=

Finally, simulated bosons behave similarly to distinguishable particles, with the sole exception that the initial
state is different and that (uniformly distributed) randomphases are included over which one needs to average
[20].We essentially sample distinguishable particles, which are inserted in the formof a single-particle state that
superposes all inputmodes with the same amplitude, butwith randomphases, implying a probability

p Ue
n r

n
qi

1

1
i

,i
2

qr
rå= q

=
tofind a particle in outputmode i. Since each timewe consider n such

indistinguishable particles, a simple calculation yields

C n n p p np np

n

n
U U

U U

n

n
U U U U

U U

U U

1

1 1

2
d ... d e e

1

2
d ... d e

1

2
d ... d e

1 1

2
d ... d exp i

1

2
d ... d exp i i

1

2
d ... d exp i i .

A.7
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n q q
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2

, 1
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2

, 1
, ,

0

2

n
qr

r
qr

r

n
qr

r n
qr

r

r r s s n r r s s

r s n r s

r s n r s

1

1 1

1 2 1 2

1 2 1 2 1 1 2 1 2

1

1

( ( ) ) ( ) ( )

( )

( )
∣ ∣

( )
∣ ∣

( )
( )

[ ( )]

( )
( )

( )
( )

( )
* *

*

*

  

ò

ò ò

ò

ò

ò

å å

å å

å

å

å

p
q q

p
q q

p
q q

p
q q q q q q

p
q q q q

p
q q q q

= - -

=
-

-

=
-

+ - -

- -

´ -

p
q q

p
q

p
q

p

p

p

= =

= =

=

=

=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Evaluating the integrals, we eventually obtain

C
n

U U U U
n

U U U U1
1 1

. A.8ij
S

r s

n

q i q j q i q j
r s

n

q i q j q i q j
1

, , , ,
, 1

, , , ,s r r s r s r s
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¹ = =

⎜ ⎟⎛
⎝

⎞
⎠
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Appendix B. Randommatrix theory

From expressions for the correlators of different particle types, we are able to construct the C-dataset by varying i
and j (with i j< ) to obtain all differentmode combinations. In order tomake theoretical predictions (or at least
up to very good approximation), we use RMTmethods. Rather than varying i and j, thesemethods keep the two
outputmodes under consideration fixed and formally average over all possiblematricesU in the unitary group
with theHaarmeasure imposed on it. Onemight understand this as an analogue to the Bohigas-Giannoni-
Schmit conjecture [50] for unitarymatrices. The averaging contains one fundamental identity for anN×N
randomunitarymatrixU:

U U U U V a b... ... , B.1U a b a b
S

N
k

n

k k k k, , , ,
,

1

1
n n n n

n

1 1 1 1
( ) ( ) ( ) ( ) ( )( ) ( )* * å s p d a d b= - -a b a b

s p
s p

Î

-

=

where .U ( ) denotes the average over the unitary group andV are class coefficients also known asWeingarten
functions, which are determined recursively. The details of thismethod can be found in [34–37].With this
formula, we efficiently average long products of coefficients of unitarymatrices to compute CU ij( ) , CU ij

2( )
and CU ij

3( ) for each particle type. Combining these quantities we can find the coefficient of variationCV and
the skewness S for each particle type.We find, with n particles inmmodes, for bosons:

C
n m n

m m

2

1
, B.2U B 2

( ) ( )
( )

( ) = -
+ -

-

C
n m n m mn m n n n

m m m m

2 9 11 2 5 4

2 3 1
, B.3U B

2
2 2 3 2

2 2
( ) ( )

( )( )( )
( ) =

+ + - + - + -
+ + -

C n
m n m n m m n m n m n m mn

m m m m m m m

mn mn mn m n n n n n

m m m m m m m

2
15 2 3 6 213 222 3

1 2 3 4 5 1
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1 2 3 4 5 1
, B.4

U B
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3 2 3 3 2 3 2 2 2 2 4

2 2

3 2 5 4 3 2

2 2

( )
( )( )( )( )( )( )

( )( )( )( )( )( )
( )

 =-
+ + + + + - -

+ + + + + -

+
+ + - + - + + + -

+ + + + + -

⎛
⎝⎜

⎞
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for fermions

C
n n m

m m 1
, B.5U F 2

( ) ( )
( )

( ) =
-
-

C
n n m n m n

m m m m

2 1 1

2 3 1
, B.6U F

2
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3
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for distinguishable particles

C
n

m m 1
, B.8U D( )
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( ) = -

+

C
n m n m mn m n

m m m m

3 5 2 2

2 3 1
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2
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C
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andfinally for the simulated bosons

C
n m n

m m

2

1
, B.11U S 2

( ) ( )
( )
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+ -

-

C
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U S
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( )
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+
- + - + - + - +

+ + -
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C
m n m n m n m n m n m m n m n

m m m m m m m n

m n m n m n m n m mn mn mn

m m m m m m m n

mn mn mn mn m

m m m m m m m n

n n n n n n n n

m m m m m m m n
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1 1 2 3 4 5
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. B.13

U S
3

3 5 3 4 3 3 3 2 3 3 2 6 2 5

2 2 2
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Although these formulas do not appear remarkably elegant due the lack of any formof assumption onm and n
(apart from m n> ), they are necessary to obtain sufficiently accurate results. Once thesemoments are defined,
we can use them tofindNM,CV and S by the following definitions:

NM
C m

n
B.14U

2( ) ( )
=

CV
C C

C
, B.15U U

U

2 2( ) ( )
( )

( )
 


=

-

S
C C C C

C C

3 2
. B.16U U U U

U U

3 2 3

2 2 3 2

( ) ( ) ( ) ( )
( ( ) ( ) )

( )   
 

=
- +

-

With these results, one can now calculate the expected coefficient of variation and the expected skewness for
each of the samplers we described, with an arbitrary number ofmodes and particles.

AppendixC. RMT results and the number of particles

In this appendix,we assess the lowest-order scaling properties of theRMTresults of appendixB as a functionof the
particle number.We consider large sets of particleswhich are injected into m n( )~ or m n2( )~ modes.

First, let us set m nl= , with l Î and 1l > , and consider the limit n  ¥. In this regime, we can
evaluate the leading order scaling behaviour for the normalisedmeanMN, the coefficient of variationCV and
the skewness S for different particle types.We nowfind that for bosons
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2
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⎠
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1
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-

for fermions,
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for distinguishable particles,
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1
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and,finally, for simulated bosons
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Observe that even the leading n-dependence is different when comparing particle types. This implies that, while
the RMT results for bosons and simulated bosons converge to the same point forNM,CV, and S, they do so in a
quantitatively distinctmanner.

We now repeat the computation for a different type of scaling, wherewe set m n2l= . Again, whenwe
evaluate the scaling behaviour as n  ¥, we find for bosons:

NM
n

1
1, C.13( )

l
» - -

CV
n

2
1, C.14( )l

l
»

-
-

S
n

2
30

, C.15( )» -

for fermions:

NM
n

1
1, C.16( )

l
» -

CV
n

1
1, C.17( )» - -

S
n

6
2, C.18( )» - -

FigureC1.Comparison of the theoretical RMTpredictions (solid lines) for the normalisedmeanNM (top), the coefficient of variation
CV (bottom left) and skewness S (bottom right) of the C-dataset to the numericalNM,CV and S values of sampled C-datasets, where
themode number is scaled upwith the particle number as m n3= . For particle numbers n 5, 15= and 25, we sampled 50matrices
Usub, for each ofwhich the normalisedmean, the coefficient of variation and skewness of theC-dataset were calculated. For eachmode
number, the average normalisedmean, coefficient of variation and skewness together with the associated standard deviations are
indicated by a dot and by error bars, respectively.
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for distinguishable particles:

NM
n

1
1, C.19

2
( )

l
» +

CV
n

3
1

, C.20( )» -
⎛
⎝⎜

⎞
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S
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3 3

1
, C.21( )» -

and for simulated bosons:

NM
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1
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l
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CV
n

4

2
1, C.23( )l

l
»

+
-

S
n

2
21

. C.24( )» -

Thefirst notable observation is that, again, the bosons and simulated bosons converge to the same point forNM,
CV, and S, but approach this limit in a different fashion.Moreover, it is an interesting observation that the
leading order termobtained for S are independent ofλ.

The physical interpretation of these results remains unclear to us at the present stage.One can understand
the similarity between bosons and simulated bosons in the thermodynamic limit by realising that this is also the
limit wheremean-field theory is expected to be exact. Onemay even verify this through (A.4) and (A.8): the
termswhich distinguish the two expressions vanish in the limit n  ¥.

Finally, to visualise the behaviour of the RMT results with m n( )~ or m n2( )~ , we present additional
plots infigures C1 andC2 ,which compare tofigure 3.With the arbitrary choice 3l = , straightforward
numerical evaluation rapidly becomes demanding, therefore we limit ourselves to just a few data points.

FigureC2.Comparison of the theoretical RMTpredictions (solid lines) for the normalisedmeanNM (top), the coefficient of variation
CV (bottom left) and skewness S (bottom right) of the C-dataset to the numericalNM,CV and S values of sampled C-datasets, where
themode number is scaled upwith the particle number as m n3 2= . For particle numbers n=6 and 11, we sampled 50matricesUsub,
for each of which the normalisedmean, the coefficient of variation and skewness of theC-dataset were calculated. For eachmode
number, the average normalisedmean, coefficient of variation and skewness together with the associated standard deviations are
indicated by a dot and by error bars, respectively.

13

New J. Phys. 18 (2016) 032001



References

[1] NielsenMAandChuang I L 2010QuantumComputation andQuantum Information (Cambridge: CambridgeUniversity Press)
[2] Aaronson S andArkhipovA 2013The computational complexity of linear opticsTheory of Computing 9 143–252
[3] Lanting T et al 2014 Entanglement in a quantum annealing processorPhys. Rev.X 4 021041
[4] DeutschD 1985Quantum theory, the church-turing principle and the universal quantum computer Proc. R. Soc. Lond.A 400 97–117
[5] MooreC andMertens S 2011TheNature of Computation (OxfordUniversity Press)
[6] BroomeMA, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, RalphTC andWhite AG2013 Photonic boson sampling in a tunable

circuit Science 339 794–8
[7] Crespi A,OsellameR, Ramponi R, BrodD J, Galvão E F, SpagnoloN,Vitelli C,Maiorino E,Mataloni P and Sciarrino F 2013 Integrated

multimode interferometers with arbitrary designs for photonic boson samplingNat. Photon. 7 545–9
[8] RalphTC2013Quantum computation: Boson sampling on a chipNat. Photon. 7 514–5
[9] SpagnoloN et al 2014 Experimental validation of photonic boson samplingNat. Photon. 8 615–20
[10] Spring J B et al 2013 Boson sampling on a photonic chip Science 339 798–801
[11] TillmannM,DakićB,HeilmannR,Nolte S, Szameit A andWalther P 2013 Experimental boson samplingNat. Photon. 7 540–4
[12] HongCK,OuZY andMandel L 1987Measurement of subpicosecond time intervals between two photons by interference Phys. Rev.

Lett. 59 2044–6
[13] TichyMC,TierschM, deMelo F,Mintert F andBuchleitner A 2010Zero-transmission law formultiport beam splitters Phys. Rev. Lett.

104 220405
[14] MayerK, TichyMC,Mintert F, KonradT andBuchleitner A 2011Counting statistics ofmany-particle quantumwalksPhys. Rev.A 83

062307
[15] TichyMC,TierschM,Mintert F andBuchleitner A 2012Many-particle interference beyondmany-boson andmany-fermion statistics

New J. Phys. 14 093015
[16] RaY-S, TichyMC, LimH-T, KwonO,Mintert F, Buchleitner A andKimY-H2013Nonmonotonic quantum-to-classical transition in

multiparticle interference Proc. Natl Acad. Sci. USA 110 1227–31
[17] MincH1978Permanents, Encyclopedia ofMathematics and its Applications. vol 16 (Boston,MA: Addison-Wesley)
[18] Troyansky L andTishbyN 1996On the quantum evaluation of the determinant and the permanent of amatrix Proc. FourthWorkshop

on Physics andComputation (PhysComp 96) (Boston, 22–24November 1996) 96
[19] Carolan J et al 2014On the experimental verification of quantum complexity in linear opticsNat. Photon. 8 621–6
[20] TichyMC,MayerK, Buchleitner A andMølmerK 2014 Stringent and efficient assessment of boson-sampling devices Phys. Rev. Lett.

113 020502
[21] Carolan J et al 2015 universal linear optics Science 349 711–6
[22] Crespi A,OsellameR, Ramponi R, BentivegnaM, Flamini F, SpagnoloN,ViggianielloN, Innocenti L,Mataloni P and Sciarrino F 2015

Quantum suppression law in a 3-Dphotonic chip implementing the fast fourier transform (arXiv: 1508.00782)
[23] Akkermans E andMontambauxG 2007Mesoscopic Physics of Electrons and Photons (Cambridge: CambridgeUniversity Press)
[24] Bloch F 1929Über die quantenmechanik der elektronen in kristallgitternZ. Physik. 52 555–600
[25] AharonovY,Davidovich L andZaguryN1993Quantum randomwalks Phys. Rev.A 48 1687–90
[26] Scholak T,Wellens T andBuchleitner A 2014 Spectral backbone of excitation transport in ultracold rydberg gasesPhys. Rev.A 90

063415
[27] Engl T,Dujardin J, Argüelles A, Schlagheck P, Richter K andUrbina JD 2014Coherent backscattering in fock space: a signature of

quantummany-body interference in interacting bosonic systems Phys. Rev. Lett. 112 140403
[28] Jeltes T et al 2007Comparison of the hanbury brown-twiss effect for bosons and fermionsNature 445 402–5 01
[29] RomT, Best Th, vanOostenD, SchneiderU, Folling S, Paredes B andBloch I 2006 Free fermion antibunching in a degenerate atomic

fermi gas released from anoptical latticeNature 444 733–6 12
[30] ChuchemM, Smith-Mannschott K,HillerM, Kottos T, Vardi A andCohenD 2010Quantumdynamics in the bosonic josephson

junction Phys. Rev.A 82 053617
[31] MehtaML 2004RandomMatrices (Amsterdam: Elsevier)
[32] Mezzadri F 2007How to generate randommatrices from the classical compact groupsNotices AMS 54 592–604 (www.ams.org/

notices/200705/fea-mezzadri-web.pdf)
[33] Zyczkowski K andKusM1994Randomunitarymatrices J. Phys. A:Math. Gen. 27 4235
[34] Samuel S 1980U(N) integrals, 1/N, and theDeWit-’t Hooft anomalies J.Math. Phys. 21 2695–703
[35] Mello PA 1990Averages on the unitary group and applications to the problemof disordered conductors J. Phys.A 23 4061–80
[36] Brouwer PWandBeenakker CW J 1996Diagrammaticmethod of integration over the unitary group, with applications to quantum

transport inmesoscopic systems J.Math. Phys. 37 4904–34
[37] BerkolaikoG andKuipers J 2013Combinatorial theory of the semiclassical evaluation of transportmoments. I. equivalencewith the

randommatrix approach J.Math. Phys. 54 112103
[38] Urbina J-D, Kuipers J,HummelQ andRichter K 2014Multiparticle correlations in complex scattering and themesoscopic boson

sampling problem (arXiv:1409.1558)
[39] Bratteli O andRobinsonDW1997Operator Algebras andQuantum StatisticalMechanics: Equilibrium States.Models inQuantum

StatisticalMechanics (Berlin: Springer)
[40] PeruzzoA et al 2010Quantumwalks of correlated photons Science 329 1500–3
[41] MacGillivrayHL 1986 Skewness and asymmetry:Measures and orderingsAnn. Stat. 14 994–1011
[42] Aaronson S andArkhipovA 2014 Bosonsampling is far fromuniformQuantum Info. Comput. 14 1383–423 (www.rintonpress.com/

journals/qiconline.htm)
[43] ShchesnovichV S 2014 Sufficient condition for themodemismatch of single photons for scalability of the boson-sampling computer

Phys. Rev.A 89 022333
[44] TichyMC2015 Sampling of partially distinguishable bosons and the relation to themultidimensional permanent Phys. Rev.A 91

022316
[45] ShchesnovichV S 2015 Partial indistinguishability theory formultiphoton experiments inmultiport devices Phys. Rev.A 91 013844
[46] MayerK 2012Many-particle quantumwalksMaster’s ThesisAlbert-LudwigsUniversität Freiburg, Freiburg
[47] TammaVandLaibacher S 2015Multibosoncorrelation interferometrywith arbitrary single-photonpure statesPhys. Rev. Lett.114243601

14

New J. Phys. 18 (2016) 032001

http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.1103/PhysRevX.4.021041
http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1038/nphoton.2013.112
http://dx.doi.org/10.1038/nphoton.2013.112
http://dx.doi.org/10.1038/nphoton.2013.112
http://dx.doi.org/10.1038/nphoton.2013.175
http://dx.doi.org/10.1038/nphoton.2013.175
http://dx.doi.org/10.1038/nphoton.2013.175
http://dx.doi.org/10.1038/nphoton.2014.135
http://dx.doi.org/10.1038/nphoton.2014.135
http://dx.doi.org/10.1038/nphoton.2014.135
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.104.220405
http://dx.doi.org/10.1103/PhysRevA.83.062307
http://dx.doi.org/10.1103/PhysRevA.83.062307
http://dx.doi.org/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1073/pnas.1206910110
http://dx.doi.org/10.1073/pnas.1206910110
http://dx.doi.org/10.1073/pnas.1206910110
http://dx.doi.org/10.1038/nphoton.2014.152
http://dx.doi.org/10.1038/nphoton.2014.152
http://dx.doi.org/10.1038/nphoton.2014.152
http://dx.doi.org/10.1103/PhysRevLett.113.020502
http://dx.doi.org/10.1126/science.aab3642
http://dx.doi.org/10.1126/science.aab3642
http://dx.doi.org/10.1126/science.aab3642
http://arXiv.org/abs/1508.00782
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.90.063415
http://dx.doi.org/10.1103/PhysRevA.90.063415
http://dx.doi.org/10.1103/PhysRevLett.112.140403
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05319
http://dx.doi.org/10.1038/nature05319
http://dx.doi.org/10.1038/nature05319
http://dx.doi.org/10.1103/PhysRevA.82.053617
http://www.ams.org/notices/200705/fea-mezzadri-web.pdf
http://www.ams.org/notices/200705/fea-mezzadri-web.pdf
http://dx.doi.org/10.1088/0305-4470/27/12/028
http://dx.doi.org/10.1063/1.524386
http://dx.doi.org/10.1063/1.524386
http://dx.doi.org/10.1063/1.524386
http://dx.doi.org/10.1088/0305-4470/23/18/013
http://dx.doi.org/10.1088/0305-4470/23/18/013
http://dx.doi.org/10.1088/0305-4470/23/18/013
http://dx.doi.org/10.1063/1.531667
http://dx.doi.org/10.1063/1.531667
http://dx.doi.org/10.1063/1.531667
http://dx.doi.org/10.1063/1.4826442
http://arXiv.org/abs/1409.1558
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1214/aos/1176350046
http://dx.doi.org/10.1214/aos/1176350046
http://dx.doi.org/10.1214/aos/1176350046
http://www.rintonpress.com/journals/qiconline.htm
http://www.rintonpress.com/journals/qiconline.htm
http://dx.doi.org/10.1103/PhysRevA.89.022333
http://dx.doi.org/10.1103/PhysRevA.91.022316
http://dx.doi.org/10.1103/PhysRevA.91.022316
http://dx.doi.org/10.1103/PhysRevA.91.013844
http://dx.doi.org/10.1103/PhysRevLett.114.243601


[48] Laibacher S andTammaV2015 From the physics to the computational complexity ofmultiboson correlation interference Phys. Rev.
Lett. 115 243605

[49] SchusterHG1989Deterministic Chaos: An Introduction (Weinheim: VCH) 1st reprint of 2nd ed
[50] BohigasO,GiannoniM J and Schmit C 1984Characterization of chaotic quantum spectra and universality of level fluctuation laws

Phys. Rev. Lett. 52 1–4

15

New J. Phys. 18 (2016) 032001

http://dx.doi.org/10.1103/PhysRevLett.115.243605
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevLett.52.1

	1. Introduction
	2. Statistical signatures of many-particle interference
	3. Random matrix methods
	4. Statistical benchmarking
	5. Particle type-specific features of interference patterns
	6. Experimental overhead to measure correlators
	7. Discussion
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	References



