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Abstract

We discuss Levin-type sequence transformations {sn} → {s′n} that de-
pend linearly on the sequence elements sn, and nonlinearly on an auxiliary
sequence of remainder estimates {ωn}. If the remainder estimates also de-
pend on the sequence elements, non-linear transformations are obtained.
The application of such transformations very often yields new sequences
that are more rapidly convergent in the case of linearly and logarithmi-
cally convergent sequences. Also, divergent power series can often be
summed, i.e., transformed to convergent sequences, by such transforma-
tions. The case of slowly convergent Fourier series is more difficult and
many known sequence transformations are not able to accelerate the con-
vergence of Fourier series due to the more complicated sign pattern of the
terms of the series in comparison to power series. In the present work,
the Levin-type H transformation [H.H.H. Homeier, A Levin–type algo-
rithm for accelerating the convergence of Fourier series, Numer. Algo.
3 (1992) 245–254] is studied that involves a frequency parameter α. In
particular, properties of the H transformation are derived, and its imple-
mentation is discussed. We also present some generalization of it to the
case of several frequency parameters. Finally, it is shown how to use the
H transformation properly in the vicinity of singularities of the Fourier
series.
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1 Introduction

In almost all fields of numerical computation, there are convergence problems.
In such cases, either the convergence is slow or even divergences are observed.
To overcome these problems, one may use extrapolation methods that are also
known as (nonlinear) sequence transformations as explained in the books of
Brezinski and Redivo Zaglia [13] and Wimp [52] and also the work of Weniger
[47, 48, 49, 50]. Some other important books in the field are those of Baker [1],
Baker and Graves-Morris [2, 3, 4], Brezinski [8, 9, 10, 12, 11], Graves-Morris
[16, 17], Graves-Morris, Saff und Varga [18], Khovanskii [31], Lorentzen and
Waadeland [36], Nikishin and Sorokin [37], Petrushev and Popov [39], Ross
[40], Saff and Varga [41], Wall [46], Werner and Buenger [51] and Wuytack [53].

For power series, nonlinear convergence accelerators that are derived from
model sequences or by iteration of simple transformations are very successful
[13, 21, 23, 24, 47].

Fourier series

s = s(α) = a0/2 +

∞∑
j=1

(
aj cos(jα) + bj sin(jα)

)
(1)

with partial sums

sn = sn(α) = a0/2 +

n∑
j=1

(
aj cos(jα) + bj sin(jα)

)
(2)

can be regarded as superpositions of several power series, at least in the two vari-
ables exp(+iα) and exp(−iα), possibly in more variables if the coefficients an
and bn themselves have oscillating parts. Thus, due to the resulting more com-
plicated sign pattern of the terms as compared to simple power series, the most
usual nonlinear accelerators are not efficient on direct application to Fourier
series.

In many cases, Fourier series represent functions of the argument α that are
not infinitely often differentiable. This is for instance the case if the coefficients
an and bn decay like n−γ , γ > 0 for large n [15]. Especially for small γ,
convergence of the series may be so slow that the direct summation is hopeless.
The remedy is the use of convergence acceleration or, equivalently, extrapolation
methods.

In principle, there are several possible alternatives for solving the extrap-
olation problem of Fourier series: One may try to estimate the (anti)limit by
a linear combination of the partial sums sn. This leads to linear methods as
exemplified by the method of Jones and Hardy [30] that was extended by var-
ious groups [5, 6, 42, 45], the method of Kiefer and Weiss [32], the methods of
Longman (see [35] and references therein), and also generalizations of the Euler
transformation for Fourier series as studied by Boyd [7]. Also, one may try to
reformulate the problem in such a way that the usual accelerators for power
series become applicable, for instance by rewriting real Fourier series as the real
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part of some complex power series. This approach will be discussed elsewhere
[25, 26, 28]. Alternatively, one may try to develop completely new accelerators.
This may be done by iteration of simple transformations that has been shown
to lead to very powerful algorithms for linearly and logrithmically convergent
series [21, 23, 24] and recently, also for Fourier series [24, 27]. Another method
for the construction of extrapolation methods is to based on the model sequence
approach. The aim is to find sequence transformations that allow to find the
limit (or antilimit in the case of divergence) in a finite number of operations, and
hence, are exact, for suitable model sequences. Applying these transformations
to problem sequences should be successful if the latter are in some sense close
to such model sequences. Here, we concentrate on methods that are derived
within the model sequence approach.

One of the few relatively successful nonlinear accelerators for Fourier series
is the ε algorithm of Wynn [54]. The reason is that this algorithm is exact for
model sequences sn that are finite linear combinations of powers λnj , λj ∈ C,
j ∈ M ⊂ N, with coefficients cj(n) that are polynomials in the variable n [13,
Theorem 2.18]. Rewriting these powers as λnj = |λj |n(cos(nφj) + i sin(nφj)),
φj = arg(λj) shows the relation to Fourier series.

Here, we study nonlinear transformations that are exact for model sequences
that generalize the model sequences σn given by

σn = σ + ωn(c0 + c1(n+ β)−1 + · · ·+ ck−1(n+ β)1−k) (3)

that leads to the Levin transformation [33]. Here, ωn 6= 0 are called remainder
estimates, the ci are coefficients, β > 0 is a parameter, and σ is the (anti)limit.
If the model sequences have the general form

σn = σ + ωnµn(ci, πi) (4)

the corresponding sequence transformations Tn that allow the calculation of the
(anti)limit σ according to σ = Tn({σn}, {ωn}, πi) are called Levin-type sequence
transformations. Here the ci are some coefficients and the πi are some further
parameters that specify the model µn. An example is the Levin transformation
[33] itself that may be defined as

L(n)
k (β, sn, ωn) =

k∑
j=0

(−1)j
(
k

j

)
(β + n+ j)k−1

(β + n+ k)k−1
sn+j
ωn+j

k∑
j=0

(−1)j
(
k

j

)
(β + n+ j)k−1

(β + n+ k)k−1
1

ωn+j

. (5)

Another example is the J transformation [20, 21, 22, 23, 24, 29] that is of
similar generality as the well-known E algorithm but provides a more simple
algorithm in many important cases. The Levin transformation is a special case
of the J transformation. Suitable variants of the J transformation belong to the
most powerful nonlinear accelerators for linearly and logarithmically convergent
sequences and are able to sum violently divergent power series [23].
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Also the nonlinear d(m) transformations [34] are generalizations of the Levin
transformation that are useful for the convergence acceleration of certain Fourier
series [43]. However, their recursive scheme is relatively complicated for m > 1.

We note that the Levin transformation and several other Levin-type trans-
formations are linear sequence transformations if the remainder estimates do
not depend on the problem sequence {sn}. However, in practical work, one
chooses simple remainder estimates like ωn = 4sn or ωn = (n+ β)4sn−1 that
depend on the problem sequence, and thus, nonlinear sequence transformations
result. Here and in the following, the symbol 4 denotes the forward difference
operator with respect to the variable n acting as

4f(n) = f(n+ 1)− f(n) , 4gn = gn+1 − gn . (6)

In the present work, we concentrate on a further nonlinear convergence ac-
celerator for Fourier series, the Levin-type H transformation [19]

Z(0)
n = (n+ β)−1 sn/ωn , N (0)

n = (n+ β)−1/ωn ,

Z(k)
n = (n+ β)Z(k−1)

n + (n+ 2k + β)Z(k−1)
n+2 − 2 cos(α)(n+ k + β)Z(k−1)

n+1 ,

N (k)
n = (n+ β)N (k−1)

n + (n+ 2k + β)N (k−1)
n+2 − 2 cos(α)(n+ k + β)N (k−1)

n+1 ,

Z(k)
n

N (k)
n

= H(k)
n (α, β, {sn}, {ωn}) .

(7)
that is exact for the model sequence

sn = s+ ωn

exp(iαn)

k−1∑
j=0

cj(n+ β)−j + exp(−iαn)

k−1∑
j=0

dj(n+ β)−j

 (8)

with coefficients cj and dj . Here and in the following, we assume that cos(α) 6=
±1. Such a model sequence is motivated by rewriting the tail ρn = s− sn of a
Fourier series as

ρn = cos(nα)An(α) + sin(nα)Bn(α) (9)

with

An(α) = −
∞∑
k=1

{
ak+n cos(kα) + bk+n sin(kα)

}
,

Bn(α) = −
∞∑
k=1

{
−ak+n sin(kα) + bk+n cos(kα)

}
.

(10)

Assuming Poincaré-type asymptotical expansions

An(α) ∼ ωn
∞∑
j=0

γj(n+ β)−j ,

Bn(α) ∼ ωn
∞∑
j=0

δj(n+ β)−j
(11)
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for large n, truncation to the first k terms leads to the model sequence

sn = s+ ωn

cos(αn)

k−1∑
j=0

γj(n+ β)−j + sin(αn)

k−1∑
j=0

δj(n+ β)−j

 (12)

that is equivalent to the model sequence (8).
From the above, one expects that the H transformation is applicable if the

coefficients an and bn of the Fourier series are nonoscillating functions of n.
Under this restriction, the H transformation has proven to be useful, and to
be more effective than the ε algorithm, in the context of the Dubner-Abate-
Crump approach for the inversion of the Laplace transformation [20]. The H
transformation has been criticized [43] as being numerically less stable and less
effective near singularities than the d(2) transformation. However, Oleksy [38]
has shown that an additional preprocessing transformation followed by the H
transformation improves the results near singularities considerably. Similarly,
but conceptually much simpler, it is possible to apply the H transformation
to the sequence sτn with τ ∈ N with very good results even in the vicinity
of singularities as will be shown in the following. But before, we discuss gen-
eral properties of the H transformation and derive a generalization to several
frequencies.

2 Properties of the H Transformation

Define the polynomial P (2k) of degree 2k by

P (2k)(x) = [x2 − 2 cos(α)x+ 1]k =

2k∑
m=0

p(2k)m xm . (13)

We have P (2k)(0) = 1. Its zeroes at exp(iα) and exp(−iα) are of order k. Then,
one can represent the H transformation defined in Eq. (7) in the form [19]

s(k)n = H(k)
n (α, β, {sn}, {ωn}) = Z(k)

n /N (k)
n

Z(k)
n =

2k∑
m=0

p(2k)m (n+ β +m)k−1
sn+m
ωn+m

;

N (k)
n =

2k∑
m=0

p(2k)m (n+ β +m)k−1
1

ωn+m
.

(14)

Dividing numerator and denominator by (n + β + 2k)k−1 shows that the
transformation can also be computed using the algorithm

s(k)n = H(k)
n (α, β, {sn}, {ωn}) = Ẑ(k)

n /N̂ (k)
n

Ẑ(k)
n =

2k∑
m=0

p(2k)m

(n+ β +m)k−1

(n+ β + 2k)k−1
sn+m
ωn+m

N̂ (k)
n =

2k∑
m=0

p(2k)m

(n+ β +m)k−1

(n+ β + 2k)k−1
1

ωn+m
.

(15)
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The quantities Ẑ(k)
n and N̂ (k)

n of Eq. (15) each obey the recursion relation

M̂(k)
n = M̂(k−1)

n+2 − 2 cos(α)
n+ β + k

n+ β + 2k

[
n+ β + 2k − 1

n+ β + 2k

]k−2
M̂(k−1)

n+1

+
n+ β

n+ β + 2k

[
n+ β + 2k − 2

n+ β + 2k

]k−2
M̂(k−1)

n .

(16)

This follows directly from the definitions and the defining algorithm (7) A direct
consequence of Eq. (14) are the following theorems:

Theorem 1 The H transformation is quasilinear, i.e.,

H(k)
n (α, β, {Asn +B}, {ωn}) = AH(k)

n (α, β, {sn}, {ωn}) +B (17)

for arbitrary constants A and B.

Theorem 2 The H transformation is multiplikatively invariant in ωn, i.e.,

H(k)
n (α, β, {sn}, {Cωn}) = H(k)

n (α, β, {sn}, {ωn}) (18)

for any constant C 6= 0.

In the following we regard the parameters α with cos(α) 6= ±1 and β as
arbitrary but fixed. We are interested in conditions on the remainder estimates
ωn 6= 0 that guarantee that the H transformation is well-defined.

Under these conditions, the transformationH(k)
n only depends on the (4k+2)

numbers {sn+j}2kj=0 and {ωn+j}2kj=0. Hence, one can write

H(k)
n = γ(k)n

(
sn, sn+1, . . . , sn+2k

∣∣∣ ωn, ωn+1, . . . , ωn+2k

)
(19)

and regard the transformation as a mapping

γ(k)n : C2k+1 × Y(k)
n −→ C ,

(~x, ~y) −→ γ(k)n

(
~x
∣∣∣ ~y) . (20)

Here, Y(k)
n is a suitable subset of C2k+1: Since the H transformation depends

on the inverses of the remainder estimates ωn, a necessary condition is that

no component of any vector in Y(k)
n vanishes. This implies according to the

representation (15) that H(k)
n is a continuous function of {ωn+j}2kj=0 if

2k∑
m=0

p(2k)m

(n+ β +m)k−1

(n+ β + 2k)k−1
1

ωn+m
6= 0 (21)

holds, i.e., if the denominator in Eq. (15) does not vanish. This is equivalent to

the statement that γ
(k)
n is a continuous function of (y1, . . . , y2k+1) if

2k∑
m=0

p(2k)m

(n+ β +m)k−1

(n+ β + 2k)k−1
1

ym+1
6= 0 (22)
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holds. Hence, we define

Y(k)
n =

~y ∈ C2k+1

∣∣∣∣∣∣
2k+1∏
j=1

yj 6= 0 and (22) holds.

 (23)

This is an open set. Then γ
(k)
n is defined and continuous on C2k+1 × Y(k)

n .

According to the representation (15), the quantities γ
(k)
n can be expressed

via

γ(k)n =
L
(k)
n

(
(x1/y1, . . . , x2k+1/y2k+1)

)
L
(k)
n

(
(1/y1, . . . , 1/y2k+1)

) (24)

by the linear form

L(k)
n (~v) =

2k+1∑
j=1

λ
(k)
n,j vj , ~v ∈ C2k+1 (25)

with coefficients

λ
(k)
n,j = p

(2k)
j−1

(n+ β + j − 1)k−1

(n+ β + 2k)k−1
. (26)

It follows that γ
(k)
n is linear in the first (2k + 1) variables. Further, the trans-

formation is exact for constant sequences, i.e., we have

γ(k)n

(
c, c, . . . , c

∣∣∣ y1, . . . , y2k+1

)
= c . (27)

The condition (22) can be rewritten as

L(k)
n

(
(1/y1, . . . , 1/y2k+1)

)
6= 0 . (28)

Hence, the following theorem is proved:

Theorem 3 Assume that cos(α) 6= ±1.

(H-0) H(k)
n of Eq. (14) can be regarded as a continuous mapping γ

(k)
n on C2k+1×

Y(k)
n where Y(k)

n is defined in Eq. (23).

(H-1) Theorems 1 and 2 imply that γ
(k)
n is a homogeneous function of the first

degree in the first (2k+ 1) variables and a homogeneous function of degree
zero in the last (2k + 1) variables. Thus, for all vectors ~x ∈ C2k+1 and

~y ∈ Y(k)
n and for all complex constants λ and µ 6= 0, the relations

γ(k)n (λ~x | ~y) = λγ(k)n (~x | ~y) ,

γ(k)n (~x |µ~y) = γ(k)n (~x | ~y)
(29)

hold.
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(H-2) γ
(k)
n is linear in the first (2k+1) variables. Thus, for all vectors ~x ∈ C2k+1,

~x′ ∈ C2k+1, and ~y ∈ Y(k)
n , the equation

γ(k)n (~x+ ~x′ | ~y) = γ(k)n (~x | ~y) + γ(k)n (~x′ | ~y) (30)

holds.

(H-3) For all constant vectors ~c = (c, c, . . . , c) ∈ C2k+1 and all vectors ~y ∈ Y(k)
n

the equation
γ(k)n (~c | ~y) = c (31)

holds.

Before leaving this section, we give a sufficient condition on the remainder
estimates ωn that guarantees that the H transformation is well-defined.

Theorem 4 If the point 0 is not contained in the closure of the set {ωn}∞n=0,
and if the limit r = lim

n→∞
ωn+1/ωn exists and satisfies r 6∈ {exp(iα), exp(−iα)}

then the H(k)
n transformation is well-defined for sufficiently large n.

PROOF. We estimate the quantity

N̂ (k)
n =

2k∑
m=0

p(2k)m

(n+ β +m)k−1

(n+ β + 2k)k−1
1

ωn+m
(32)

for sufficiently large n. Since

ωnN̂ (k)
n =

2k∑
m=0

p(2k)m

(n+ β +m)k−1

(n+ β + 2k)k−1
ωn

ωn+m
−→

2k∑
m=0

p(2k)m r−m = P (2k)(1/r) 6= 0

(33)

for n → ∞, the denominator N̂ (k)
n cannot vanish for sufficiently large n under

the conditions of the theorem. This ends the proof.

We note that theorems concerning the convergence of the H transformation
are given in [19].

3 Implementation of the H transformation

The algorithm (7) can be implemented with very moderate storage requirements.
It seems to require two two-dimensional arrays, one for the numerators and one

for the denominators. Calling the entries of such arrays M(k)
n , in fact we have

an M table. The recursion connects table entries according to

M(k−1)
n M(k)

n

M(k−1)
n+1

M(k−1)
n+2

. (34)
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Fortunately, it is not necessary to use two two-dimensional arrays. Two one-
dimensional arrays suffice if maximal use is made of the input data {sn, ωn}.
Only the boundary of the table has to be stored. Formally, this can be written
as

M(n− 2k)←M(k)
n−2k (35)

for 0 ≤ k ≤ [[n/2]] where M(0:NMAX) is a (Fortran) array. The sequence
transformation then is given by

{s0, . . . , sn} 7−→ s
([[n/2]])
n−2[[n/2]] . (36)

This is also explained in the following diagram where k numbers the columns
and n numbers the rows:

x x x x o0

x x x o1 c5

x x x o2

x x o3 c4

x x o4

x o5 c3

x o6

o7 c2

o8

c1

(37)

In this example, the elements of the first column correspond to M(0)
n for 0 ≤

n ≤ 9. Between calls of the implementing subroutine, the rightmost elements
of each row are stored. This means that elements of the table indicated with
x have been computed and/or stored previously, but have been overwritten by
elements indicated by oj , j = 0, . . . , 8. These elements are the ones stored
as oj = M(j) before the new call of the subroutine. During this call, the
elements c1 = M(9) (as the first one), c2 = M(7), . . ., c5 = M(1) are computed
consecutively using the relevant recursion relation. The elements o0 = M(0),
o2 = M(2), . . ., o8 = M(8) are left unchanged during the example call of the
subroutine. A FORTRAN 77 subroutine is given in Appendix A.

4 A Generalization of the H Transformation

The method for the derivation of the H transformation [19] can be generalized
to more complicated model sequences containing more than one frequency. This
will be sketched in the following. We put em = exp(iαm) for m = 1, . . . ,M . A
generalization of the model sequence (8) is

sn = s+ ωn

M∑
m=1

enm

k−1∑
j=0

cm,j(n+ β)−j . (38)
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Thus, the model sequence (8) corresponds to the special case M = 2, α1 = α,
α2 = −α. For simplicity, we assume that the model sequence (38) converges to
s.

To compute s for the model sequence (38), it is necessary to find an algorithm
that allows to eliminate the coefficients cm,j exactly. In order to do this, we
introduce a generalized characteristical polynomial P (x) of degree M · k that
has k-fold zeros at all em and, hence, is given by

P (x) =

M∏
m=1

(x− em)k =

M k∑
`=0

p`x
` . (39)

It is the characteristic polynomial to the recursion

M k∑
`=0

p` v`+n = 0 (n ≥ 0) . (40)

Since the zeros are k-fold, the M k linearly independent solution of this recursion
with (M k + 1) terms and constant coefficients are

vn,m,l = n`enm , ` = 0, . . . , k − 1 , m = 1, . . . ,M . (41)

As in the case of the H transformation [19], the recursion is applied to (n +
β)k−1(sn − s)/ωn and yields zero according to

M k∑
`=0

p` (n+ β + `)k−1(sn+` − s)/ωn+` = 0 (n ≥ 0) . (42)

Solving for the limit s of model sequence (38), it is given exactly by

s =

M k∑
m=0

pm (n+ β +m)k−1sn+m/ωn+m

M k∑
m=0

pm (n+ β +m)k−1/ωn+m

. (43)

The corresponding sequence transformation is

s(k)n =

M k∑
m=0

pm (n+ β +m)k−1sn+m/ωn+m

M k∑
m=0

pm (n+ β +m)k−1/ωn+m

. (44)

The coefficients pm depend on k, M and the frequencies αj . Proceeding as
in the case of the H transformation, one sees after some short calculation that
numerator and denominator again obey an identical recursion, that is, however,
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more complicated than in the case of the H transformation. This recursion is
given by [24]

M(k)
n =

M∑
j=0

qj (n+ β + j k)M(k−1)
n+j , (45)

where the coefficients qj are defined by

M∏
m=1

(x− em) =

M∑
j=0

qjx
j . (46)

In this way, the following algorithm is obtained for the generalized H-Transfor-
mation

Z̃(0)
n = (n+ β)−1 sn/ωn , Ñ (0)

n = (n+ β)−1/ωn ,

Z̃(k)
n =

M∑
j=0

qj (n+ β + j k)Z̃(k−1)
n+j ,

Ñ (k)
n =

M∑
j=0

qj (n+ β + j k)Ñ (k−1)
n+j ,

Z̃(k)
n

Ñ (k)
n

= H̃(k)
n ({em}, β, {sn}, {ωn}) .

(47)

The algorithm (7) is a special case of the algorithm (47). To see this, one
observes that M = 2, e1 = exp(iα) und e2 = exp(−iα) imply q0 = q2 = 1 and
q1 = −2 cos(α).

Note that the frequencies αm can also be chosen as arbitrary distinct complex
numbers. For instance, choosing M = 2, α1 = −i ln(p1) and α2 = −i ln(p2)
with 0 < pi < 1 yields e1 = p1, e2 = p2, q0 = p1 p2, q1 = −p1 − p2, q0 = 1 and
leads to the transformation

Z̃(0)
n = (n+ β)−1 sn/ωn , Ñ (0)

n = (n+ β)−1/ωn ,

Z̃(k)
n = (n+ β) p1 p2Z̃(k−1)

n + (n+ 2k + β)Z̃(k−1)
n+2

− (p1 + p2)(n+ k + β)Z̃(k−1)
n+1 ,

Ñ (k)
n = (n+ β) p1 p2Ñ (k−1)

n + (n+ 2k + β)Ñ (k−1)
n+2

− (p1 + p2)(n+ k + β)Ñ (k−1)
n+1 ,

Z̃(k)
n

Ñ (k)
n

= H̃(k)
n ({p1, p2}, β, {sn}, {ωn}) .

(48)

that is exact for the model sequence

sn = s+ ωn

pn1 k−1∑
j=0

cj(n+ β)−j + pn2

k−1∑
j=0

dj(n+ β)−j

 (49)

with coefficients cj and dj .
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5 The Application of the H Transformation
Near Singularities

Already in the first applications of the H transformation it turned out that the
otherwise good performance of the transformation deteriorated near discontinu-
ities and other singularities of the Fourier series under consideration [20]. This
undesirable behavior is also known [20, 43] for other convergence accelerators.
It was also studied by Boyd [7] who showed that in the vicinity of singulari-
ties many standard methods perform very badly (for instance Richardson ex-
trapolation or Chebyshev methods) or badly (e.g., Levin’s u transformation, ε
algorithm, Euler transformation).

This difficulty can be tackled by decomposing the Fourier series in a poly-
nomial part and a much smoother Fourier series. The polynomial part can be
determined by a local analysis of the Fourier series near the singularities in an
analytical way [6] or by numerical procedures [14].

Alternatively, one may use related Fourier series that are either generated by
considering complex Fourier series [13, 20, 43, 44] or by a somewhat complicated
pretransformation [38]. We want to use a related approach.

As an example, we study convergence acceleration for the Fourier series

ln(1− 2q cos(α) + q2) = −2

∞∑
j=1

qj

j
cos(jα); sn = −2

n+1∑
j=1

qj

j
cos(jα) (50)

with singularities at
q = exp(±iα) . (51)

For q = 1, the function represented by the Fourier series thus is singular for
α = 0. The terms of the series for q = 1 are (up to a constant factor)

Aj =
1

j
cos(j α) . (52)

They oscillate as function of the index j for α 6= 0. The first sign change is at
j0 = π/(2α). If α is very small then j0 becomes very large. The oscillations
of the terms as a function of j then are very slow. As a consequence, the first
terms of the Fourier series are difficult to distinguish numerically from the terms
of the divergent series

∞∑
j=1

1

j
(53)

for small α.
To tackle these slow oscillations, one may consider to use subsequences of

the original sequence of partial sums. In this way, the oscillations become more
pronounced making an extrapolation easier.

Thus, one aims at the acceleration of a suitable subsequence. For instance,
one may try to extrapolate the sequence {s0, sτ , s2τ , . . .} instead on the sequence
{s0, s1, s2, . . .}. This possibility clearly exists for all natural numbers τ . We will

12



concentrate below on this type of subsequences. Note that one can extrapo-
late instead of the sequence {s0, s1, s2, . . .} another sequence {sR0

, sR1
, sR2

, . . .}
where the {Rl} are a monotoneously increasing sequence of non-negative inte-
gers 0 ≤ R0 < R1 < R2 . . ., as for instance Rl = [[l τ ]] for real τ > 1.

The subsequence {s0, sτ , s2τ , . . .} can be considered as a new sequence {šn}
with

šn = sn τ , n ∈ N0 . (54)

The question arises whether the elements of this sequence can also be regarded
as partial sums of a Fourier series. This is indeed the case.

By combining τ consecutive terms of the series we obtain

s = a0/2 +

∞∑
m=1

(
ǎm cos(mτ α) + b̌m sin(mτ α)

)
,

ǎm =

τ∑
k=1

(
ak+(m−1) τ cos([k − τ ]α) + bk+(m−1) τ sin([k − τ ]α)

)
,

b̌m =
τ∑
k=1

(
−ak+(m−1) τ sin([k − τ ]α) + bk+(m−1) τ cos([k − τ ]α)

)
.

(55)

Thus, the šn are indeed the partial sums

šn = a0/2 +

n∑
m=1

(
ǎm cos(mτ α) + b̌m sin(mτ α)

)
. (56)

šn = sn τ , n ∈ N0 (57)

of a Fourier series with the τ -fold frequency τα. It is clear that the oscillations of
this τ -fold-frequency series are faster by the factor of τ , and thus, it is expected
that the difficulties related to the slow oscillations disappear. This is indeed the
case as we will see later.

The series (50) was also chosen as test case in [19, 43, 27]. In [19], it was
shown that the H transformation is superior to the ε algorithm in this test
case except in the vicinity of singularities. In [43], it was shown that the d(2)

transformation can be applied even in the vicinity of the singularity if it operates
on the partial sums sR`

of the real with R` = τ`. Thus, in the case of the d(m)

transformations similar index transformations and subsequences are used.
Sidi has shown that the d(1) transformation with R` = τ` for τ ∈ N can be

stabilized numerically by suitable choices of τ and in this way, good results are
obtained for this transformation in the vicinity of singularities [43]. But the d(1)

transformation with R` = τ` for τ ∈ N is nothing but the transformation (see
[43, Eq. 4.12])

W (n)
ν =

4ν+1
[
(n+ β/τ)ν−1sτ n/(sτ n − s(τ n)−1)

]
4ν+1

[
(n+ β/τ)ν−1/(sτ n − s(τ n)−1)

] . (58)

Note that this is identical to the Levin transformation when applied to the se-
quence {s0, sτ , s2τ , . . .} with remainder estimates ωn = (n+β/τ)(sτ n−s(τ n)−1),
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Table 1: Convergence acceleration of the Fourier series (50) for q = 1 and
α = π/6.1

n An Bn Cn Dn En

10 0.92 1.90 1.66 1.90 1.66

20 0.87 4.72 3.77 4.89 3.81

30 1.39 6.61 5.93 1.39 1.03

40 1.37 8.92 8.32 −0.56 1.62

50 1.26 10.01 9.68 0.00 −1.84

The number of exact digits is defined as the negative decadic logarithm of the

relative error. We set s′n = H([[n/2]])
n−2[[n/2]](α, 1, {sn}, {q

n+1}).
An: Number of exact digits of sn.

Bn: Number ∆n of exact digits of s′n in quadruple precision.

Cn: Predicted number δn of exact digits of s′n in quadruple precision.

Dn: Number ∆n of exact digits of s′n in double precision.

En: Predicted number δn of exact digits of s′n in double precision.

i.e.,

W
(n)
ν−1 = L(n)

ν (β/τ, sτ n, (n+ β/τ)(sτ n − sτ n−1)) . (59)

We remark that for τ 6= 1 this is not identical to the u variant of the Levin
transformation as applied to the partial sums {s0, sτ , s2τ , . . .} because in the
case of the u variant one would have to use the remainder estimates ωn =
(n+ β′)(sτ n − sτ (n−1)).

Similarly, the d(m) transformations may be assume to operate on the partial
sums {s0, sτ , s2τ , . . .} and corresponding terms of the series.

Note that this procedure can be mutatis mutandis applied to any series, i.e.,
also to series that are not Fourier series. Thus, for the series

s =

∞∑
j=0

aj (60)

with partial sums

sn =

n∑
j=0

aj (61)

collection of terms yields a new series

s =

∞∑
j=0

ǎj (62)

with terms

ǎ0 = a0 , ǎj =

τ∑
k=1

ak+(j−1)τ (j > 0) (63)
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Table 2: Convergence acceleration of the τ -fold-frequency series (55) with τ = 2
for the Fourier series (50) for q = 1 and α = π/6.1

m n An Bn Cn Dn En

20 10 0.87 3.89 3.43 3.89 3.43

40 20 1.37 8.28 7.69 8.28 7.69

50 25 1.26 10.63 10.00 10.69 10.05

60 30 1.97 12.72 12.05 9.15 8.72

80 40 1.50 17.21 16.46 7.30 6.96

100 50 1.58 21.58 20.84 4.85 4.35

The number of exact digits is defined as the negative decadic logarithm of the
relative error. Used were m + 1 terms of the Fourier series and n + 1 terms of
the τ -fold-frequency series. We set s′n = H([[n/2]])

n−2[[n/2]](τ α, 1, {šn}, {q
nτ+1}).

An: Number of exact digits of snτ .

Bn: Number ∆n of exact digits of s′n in quadruple precision.

Cn: Predicted number δn of exact digits of s′n in quadruple precision.

Dn: Number ∆n of exact digits of s′n in double precision.

En: Predicted number δn of exact digits of s′n in double precision.

and partial sums

šn =

n∑
j=0

ǎj . (64)

Also in this case, the relation šn = sτn holds. As a matter of fact, we observe
that any Levin-type transformation can be used in this way. This means that
one uses as input the sequence {š0, š1, . . .} = {s0, sτ , s2τ , . . .} and the remainder
estimates ωn = (n + β/τ)(sτ n − sτ n−1)). Most Levin-type sequence transfor-
mations are multiplicatively invariant in ωn. For these, one can equivalently use
ωn = (τ n + β)(sτ n − sτ n−1)). This simple observation will probably enlarge
the range of applicability of such Levin-type as the Weniger transformations
and the J transformation enormously.

We note that sequence transformations like the ε algorithm that do not make
use of remainder estimates can directly be applied to the τ -fold-frequency series.
It is to be expected that their performance is also improved in this way in the
vicinity of singularities.

Sidi [43] has claimed that the H transformation is useless near singularities.
He seemingly failed to notice the possibility to apply other Levin-type transfor-
mations like the H and I transformations in the way discussed above. Here, we
show that in the vicinity of singularities, the H transformation can be applied
successfully to subsequences of partial sums as discussed above, or equivalently
to τ -fold-frequency Fourier series of the form (55) and then, this transformation
performs similarly to the d(2) transformation. A corresponding result holds for
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Table 3: Convergence acceleration of the τ -fold-frequency series (55) with τ = 3
for the Fourier series (50) for q = 1 and α = π/6.1

m n An Bn Cn Dn En

30 10 1.39 5.52 4.71 5.52 4.71

51 17 1.28 10.20 8.83 10.20 8.83

60 20 1.97 12.04 10.70 12.05 10.70

90 30 3.18 17.91 18.02 13.36 13.53

105 35 1.57 22.26 20.03 13.66 13.35

114 38 2.26 23.91 21.90 13.43 13.53

120 40 2.19 24.05 22.98 13.52 13.35

150 50 2.01 30.82 29.51 14.15 13.23

The number of exact digits is defined as the negative decadic logarithm of the
relative error. Used were m + 1 terms of the Fourier series and n + 1 terms of
the τ -fold-frequency series. We set s′n = H([[n/2]])

n−2[[n/2]](τ α, 1, {šn}, {q
nτ+1}).

The column headers are defined as in Tab 2.

the I transformation [27]. The possible application to related complex series
will be discussed elsewhere [26, 28].

Now, numerical examples are presented. The calculations were done us-
ing Maple with floating-point accuracies of 32 decimal digits corresponding to
quadruple precision on most workstations and 15 decimal digits corresponding
to double precision. This reduction of accuracy allows to judge the numerical
stability of the algorithms.

We were also interested in stopping criteria and used the quantity

κn =
∣∣∣s([[n/2]])n−2[[n/2]] − s

([[(n−1)/2]])
n−1−2[[(n−1)/2]]

∣∣∣+
∣∣∣s([[n/2]])n−2[[n/2]] − s

([[n/2]])
n+1−2[[(n/2]]

∣∣∣ (65)

as (empirical, nonrigorous) estimate for the absolute error of the estimated

limit s
([[n/2]])
n−2[[n/2]]. Thus, the question to be studied numerically is whether κn is

a realistic measure of the error of the extrapolated limit. For the following, we
regard

δn = − ln
(∣∣∣(κn/s([[n/2]])n−2[[n/2]]

∣∣∣+ 10−2∗D
)
/ ln(10) (66)

as the predicted number of exact decimal digits. Here, D is the number of
decimal digits used in the calculation, i.e., D = 32 in the case of quadruple
precision and D = 15 in the case of double precision. (Thus, D is the value of
the Maple variable Digits.) The predicted number δn of exact digits is to be
compared with

∆n = − ln
(∣∣∣s([[n/2]])n−2[[n/2]]/s− 1

∣∣∣+ 10−2∗D
)
/ ln(10) , (67)
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Table 4: Convergence acceleration of the τ -fold-frequency series (55) with τ = 10
for the Fourier series (50) for q = 1 and α = π/50.1

m n An Bn Cn Dn En

100 10 2.46 3.23 2.56 3.23 2.56

200 20 3.63 5.68 5.03 5.66 5.01

300 30 4.10 8.73 8.24 3.29 2.89

400 40 4.20 12.53 11.37 −0.88 −0.27

460 46 2.13 13.50 12.80 0.78 −0.52

470 47 1.94 14.19 13.35 −0.32 0.01

480 48 1.94 13.74 13.62 −0.43 0.49

500 50 5.46 12.77 12.38 −0.44 1.10

The number of exact digits is defined as the negative decadic logarithm of the
relative error. Used were m + 1 terms of the Fourier series and n + 1 terms of
the τ -fold-frequency series. We set s′n = H([[n/2]])

n−2[[n/2]](τ α, 1, {šn}, {q
nτ+1}).

The column headers are defined as in Tab 2.

Table 5: Convergence acceleration of the τ -fold-frequency series (55) with τ = 20
for the Fourier series (50) for q = 1 and α = π/50.1

m n An Bn Cn Dn En

200 10 3.63 4.77 4.23 4.77 4.23

400 20 4.20 10.47 9.53 10.46 9.53

600 30 4.14 15.61 14.87 11.69 11.15

660 33 2.30 17.37 16.39 12.42 11.49

800 40 3.73 20.94 20.63 10.94 10.38

1000 50 3.57 26.25 25.82 8.92 8.41

The number of exact digits is defined as the negative decadic logarithm of the
relative error. Used were m + 1 terms of the Fourier series and n + 1 terms of
the τ -fold-frequency series. We set s′n = H([[n/2]])

n−2[[n/2]](τ α, 1, {šn}, {q
nτ+1}).

The column headers are defined as in Tab 2.

i.e., with the actually achieved number of exact digits. The definitions of ∆n

and δn involve essentially decadic logarithms that are shifted by a very small
quantity in order to avoid overflow even for vanishing arguments.

In Tables 1, 2, and 3, the H transformation has been applied to the Fourier
series (50) for q = 1 and α = π/6.1 and its related τ -fold-frequency series
(55) with τ = 2 and τ = 3. For this value of α, one is relatively close to the
singularity at α = 0.

It is seen in Table 1 that in quadruple precision a pronounced convergence
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Table 6: Convergence acceleration of the τ -fold-frequency series (55) with τ = 30
for the Fourier series (50) for q = 1 and α = π/50.1

m n An Bn Cn Dn En

300 10 4.10 5.95 5.41 5.95 5.41

600 20 4.14 15.34 13.33 12.96 13.30

900 30 3.63 22.30 20.66 12.93 13.60

1200 40 3.48 29.26 27.97 12.98 13.97

1500 50 3.40 29.92 30.74 12.93 14.14

The number of exact digits is defined as the negative decadic logarithm of the
relative error. Used were m + 1 terms of the Fourier series and n + 1 terms of
the τ -fold-frequency series. We set s′n = H([[n/2]])

n−2[[n/2]](τ α, 1, {šn}, {q
nτ+1}).

The column headers are defined as in Tab 2.

acceleration is observed for τ = 1, i.e., the original series, while in double
precision convergence acceleration is also observed with best results of nearly
five exact digits at n = 20 and deterioration for larger n due to rounding errors.
The prediction of the error shown in columns 4 and 6 is a realistic, and in most
cases conservative one, that is, the predicted accuracy is normally somewhat
lower than the actual accuracy.

The data in Table 2 show using the τ -fold-frequency series for τ = 2 improves
the achievable accuracy and enhances the stability of the extrapolation, as shown
by comparison of column 4 and 6 of this table. In double precision, best results
of more than ten digits are observed for n = 25 corresponding to using partial
sums up to š25 and, equivalently, up to s50. Thus, for τ = 2 machine precision
can not be reached in double precision. Again, the predicted accuracies are very
close to the actual one as seen from comparing columns 4 and 5, and columns 6
and 7, respectively. The quadruple precision data in Table 2 can be compared
directly to [43, Tab. 2]. The comparison shows that the H transformation for
the τ -fold-frequency series with τ = 2 performs rather similarly to the d(2)

transformation as applied to the real Fourier series with R` = 2`. For instance,
the relative error of the latter using 50 terms of the original Fourier series is
1.6× 10−10, and using 98 terms, it is 1.5× 10−21. [43, Tab. 2]

Choosing τ = 3 as in Table 3 produces quadruple precision results of com-
parable quality as in Table 2. In double precision, essentially full accuracy can
now be reached.

In Tables 4, 5, and 6, the H transformation has been applied to the τ -fold-
frequency series (55) with τ = 10, τ = 20 and τ = 30 corresponding to the
Fourier series (50) for q = 1 and α = π/50.1. For this value of α, one is in the
immediate vicinity of the singularity at α = 0.

Similar to Table 1, also in Table 4 a pronounced convergence acceleration is
observed for τ = 10 in quadruple precision while in double precision best results
of nearly six exact digits are obtained at n = 20 corresponding to using partial
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sums up to š20 and, equivalently, up to s200 that deteriorate for larger n due
to rounding errors. As in the previous cases the prediction of the error corre-
sponding in columns 5 and 7 is realistic and usually conservative. The quadruple
precision data in Table 4 can be compared directly to [43, Tab. 3]. Similarly
to the case treated in Table 2, the comparison shows that the H transforma-
tion for the τ -fold-frequency series with τ = 10 performs rather similarly to the
d(2) transformation as applied to the real Fourier series with R` = 10`. For
instance, the relative error of the latter using 402 terms of the original Fourier
series is 3.0× 10−10, using 482 terms, it is 1.2× 10−14, and using 562 terms, it
is 2.7× 10−13.

As in the previous example, the data in Table 5 show that using the τ -fold-
frequency series for τ = 20 improves the achievable accuracy and enhances the
stability of the extrapolation, as shown by comparison of column 4 and 6 of this
table. In double precision, best results of more than twelve digits are observed
for n = 33 corresponding to using partial sums up to š33 and, equivalently, up to
s660. Thus, for τ = 20 machine precision cannot be reached in double precision.
Again, the predicted accuracies are very close to the actual one as seen from
comparing columns 4 and 5, and columns 6 and 7, respectively.

Choosing τ = 30 in Table 6 produces quadruple precision results of compa-
rable quality as in Table 5. In double precision, full accuracy can now be nearly
be reached.

From the data presented, it is apparent that one has to choose τ the higher,
the closer one gets to the singularity. In the example (50), the numerical data
show that τ = γ/d with γ ≈ 1/(2π) yields good results, where d = α is the
distance to the singularity.

Thus, within its range of applicability, i.e., when applied to Fourier series
with nonoscillating behavior of the coefficients, the H transformation in combi-
nation with τ -fold-frequency approach provides good results even in the vicinity
of singularities. The price to pay, however, is that more terms of the original
series have to be used. The quantities κn provide realistic estimates of the error
in the examples studied, and thus they may be used in stopping criteria.

Further methods for the convergence acceleration of Fourier series, especially
those relating to transformations that involve complex Fourier series will be
treated elsewhere.
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A GTRLEV : A FORTRAN 77 Program Imple-
menting the H Transformation

The following subroutine is a FORTRAN 77 DOUBLE PRECISION imple-
mentation of the H transformation. The program is based on the algorithm
described in Sec. 3. The variable ALPHA corresponds to 2 cos(α), while SOFN
and OMOFN correspond to the new input data sn and ωn (or to c1 of the exam-
ple (37), resp.). For simplicity, we chose β = 1 in the program. The numerator
and denominator sums of Eq. (14) are computed via the recursions in (7) and
are stored in two one-dimensional arrays AN and AZ as described in Sec. 3. In
the program, no measures are taken against a vanishing of the denominators.
The program must be used in the following way: The values of sn and ωn with
n = 0, 1, 2, . . . have to be computed in a loop in the calling program. After
each calculation of a pair (sn, ωn) the subroutine GTRLEV has to be called It
computes an estimate SEST for the limit (or anti-limit) of the series by using
Eq. (36). No convergence analysis is undertaken in the subroutine GTRLEV.
This has to be done in the calling program.
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SUBROUTINE GTRLEV(ALPHA,N,SOFN,OMOFN,NMAX,AZ,AN,EVEN,SEST)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

LOGICAL EVEN

DIMENSION AZ(0:NMAX),AN(0:NMAX)

IF(N.EQ.0) THEN

EVEN = .TRUE.

ENDIF

AN(N) = 1.D0 / OMOFN / DBLE(N+1)

AZ(N) = SOFN * AN(N)

DO 100 K=1, N/2, 1

M = N - 2 * K

M1 = M + 1

M2 = M + 2

M1K = M1 + K

M1K2 = M1K + K

DM1 = DBLE(M1)

DM1K = DBLE(M1K)

DM1K2 = DBLE(M1K2)

AN(M) = DM1*AN(M) + DM1K2*AN(M2) - ALPHA*AN(M1)*DM1K

AZ(M) = DM1*AZ(M) + DM1K2*AZ(M2) - ALPHA*AZ(M1)*DM1K

100 CONTINUE

IF(EVEN) THEN

SEST = AZ(0) / AN(0)

ELSE

SEST = AZ(1) / AN(1)

END IF

EVEN = .NOT. EVEN

RETURN

END
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