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In this letter, we revise the QED gauge invariance for the hadron tensor of Drell-Yan type processes with
the transversely polarized hadron. We perform our analysis within the Feynman gauge for gluons and make a
comparison with the results obtained within the light-cone gauge. We demonstrate that QED gauge invariance
leads, first, to the need of a non-standard diagram and, second, to the absence of gluon poles in the correlators
〈ψ̄γ⊥A+ψ〉 related traditionally to dT (x, x)/dx. As a result, these terms disappear from the final QED gauge
invariant hadron tensor. We also verify the absence of such poles by analysing the corresponding light-cone
Dirac algebra.

PACS numbers: 13.40.-f,12.38.Bx,12.38.Lg
Keywords: Factorization theorem, Gauge invariance, Drell-Yan process.

I. INTRODUCTION

In the recent times, we have observed the renaissance in
the nucleon structure studies through the Drell-Yan type pro-
cesses in the existing (FermiLab, Relativistic Heavy Ion Col-
lider, see [1, 2]) and future (J-Parc, NICA) experiments. One
of the most interesting subjects of such experimental studies
in this direction is the so-called single spin asymmetry (SSA)
which is expressed with the help of the hadron tensor, see for
instance [3] or [4, 5].

Lately, we have reconsidered [6] this process in the contour
gauge. We have found that there is a contribution from the
non-standard diagram which produces the imaginary phase
required to have the SSA. This additional contribution leads
to an extra factor of 2 for the asymmetry. This conclusion
was supported by analysis of the QED gauge invariance of the
hadron tensor.

In comparison, the analysis presented in [7] which uses the
axial and Feynman gauges does not support the latter conclu-
sion. For this reason, we perform here the detailed analysis of
hadron tensor in the Feynman gauge with the particular em-
phasis on the QED gauge invariance. We find that the QED
gauge invariance can be maintained only by taking into ac-
count the non-standard diagram. Moreover, the results in the
Feynman and contour gauges coincide if the gluon poles in
the correlators 〈ψ̄γ⊥A+ψ〉 are absent. This is in agreement
with the relation between gluon poles and the Sivers function
which corresponds to the "leading twist" Dirac matrix γ+. We
confirm this important property by comparing the light-cone
dynamics for different correlators.

As a result, we derive the QED gauge invariant hadron ten-
sor which completely coincides with the expression obtained
within the light-cone contour gauge for gluons, see [6].
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II. KINEMATICS

We study the hadron tensor which contributes to the single
spin (left-right) asymmetry measured in the Drell-Yan process
with the transversely polarized nucleon (see Fig. 1):

N (↑↓)(p1) +N(p2) → γ∗(q) +X(PX)

→ `(l1) + ¯̀(l2) +X(PX). (1)

Here, the virtual photon producing the lepton pair (l1+l2 = q)
has a large mass squared (q2 = Q2) while the transverse mo-
menta are small and integrated out. The left-right asymmetry
means that the transverse momenta of the leptons are corre-
lated with the direction S×ez where Sµ implies the transverse
polarization vector of the nucleon while ez is a beam direction
[8].

Since we perform our calculations within a collinear fac-
torization, it is convenient to fix the dominant light-cone di-
rections as

p1 ≈
Q

xB
√

2
n∗ , p2 ≈

Q

yB
√

2
n, (2)

n∗µ = (1/
√

2, 0T , 1/
√

2), nµ = (1/
√

2, 0T , −1/
√

2).

So, the hadron momenta p1 and p2 have the plus and minus
dominant light-cone components, respectively. Accordingly,
the quark and gluon momenta k1 and ` lie along the plus di-
rection while the antiquark momentum k2 – along the minus
direction. The photon momentum reads (see Fig. 1)

q = l1 + l2 = k1 + k2 (3)

which, after factorization, will take the form:

q = x1p1 + yp2 + qT . (4)

III. THE DY HADRON TENSOR

We work within the Feynman gauge for gluons. The stan-
dard hadron tensor generated by the diagram depicted in
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Fig. 1(the left panel) reads

dWµν
(Stand.) =

∫
d4k1 d

4k2 δ
(4)(k1 + k2 − q)×∫

d4`Φ
(A) [γβ ]
α (k1, `) Φ̄[γ−](k2)×

tr
[
γµγβγνγ+γαS(`− k2)

]
, (5)

where

Φ
(A) [γβ ]
α (k1, `) = (6)

F2

[
〈p1, ST |ψ̄(η1)γβgAα(z)ψ(0)|ST , p1〉

]
,

Φ̄[γ−](k2) = F1

[
〈p2|ψ̄(η2)γ−ψ(0)|p2〉

]
. (7)

Throughout this paper, F1 and F2 denote the Fourier transfor-
mation with the measures

d4η2 e
ik2·η2 and d4η1 d

4z e−ik1·η1−i`·z, (8)

respectively, while F−11 and F−12 mark the inverse Fourier
transformation with the measures

dy eiyλ and dx1dx2 e
ix1λ1+i(x2−x1)λ2 . (9)

We now implement the factorization procedure (see for in-
stance [9, 11]) which contains the following steps: (a) the
decomposition of loop integration momenta around the cor-
responding dominant direction: ki = xip + (ki · p)n + kT
within the certain light cone basis formed by the vectors p
and n (in our case, n∗ and n); (b) the replacement: d4ki =⇒
d4ki dxiδ(xi − ki · n) that introduces the fractions with the
appropriated spectral properties; (c) the decomposition of the
corresponding propagator products around the dominant di-
rection. In Eqn. (5), we have (here, xij = xi − xj)

S(`− k2) = S(x21p1 − yp2) + (10)

∂S(`− k2)

∂`ρ

∣∣∣∣∣
k2=yp2

`=x21p1

`Tρ + . . . ;

(d) the use of the collinear Ward identity:

∂S(k)

∂kρ
= S(k)γρS(k), S(k) =

−/k
k2 + iε

;

(e) performing of the Fierz decomposition for ψα(z) ψ̄β(0) in
the corresponding space up to the needed projections.

After factorization, the standard tensor, see Eqn. (5), is split
into two terms: the first term includes the correlator without
the transverse derivative, while the second term contains the
correlator with the transverse derivative, see Eqns. (10) and
(16)-(18).

The non-standard contribution comes from the diagram de-
picted in Fig. 1 (the right panel). The corresponding hadron
tensor takes the form [6]:

dWµν
(Non-stand.) = (11)∫
d4k1 d

4k2 δ
(4)(k1 + k2 − q)tr

[
γµF(k1)γνΦ̄(k2)

]
,

where the function F(k1) reads

F(k1) = S(k1)γα
∫
d4η1 e

−ik1·η1 ×

〈p1, ST |ψ̄(η1) gAα(0)ψ(0)|ST , p1〉 . (12)

For convenience, we introduce the unintegrated tensorWµν

for the factorized hadron tensorWµν of the process. It reads

Wµν =

∫
d2~qT dWµν =

2

q2

∫
d2~qT δ

(2)(~qT )×

i

∫
dx1 dy

[
δ(x1/xB − 1)δ(y/yB − 1)

]
Wµν

. (13)

After calculation of all relevant traces in the factorized hadron
tensor and after some algebra, we arrive at the following con-
tributions for the unintegrated hadron tensor (which involves
all relevant contributions except the mirror ones): the standard
diagram depicted in Fig. 1, the left panel, gives us

Wµν

(Stand.) +Wµν

(Stand., ∂⊥) = q̄(y)

{
(14)

−p
µ
1

y
ενS

T−p2
∫
dx2

x1 − x2
x1 − x2 + iε

B(1)(x1, x2)

−
[pν2
x1
εµS

T−p2 +
pµ2
x1
ενS

T−p2
]
x1

∫
dx2

B(2)(x1, x2)

x1 − x2 + iε

+
pµ1
y
ενS

T−p2
∫
dx2

B(⊥)(x1, x2)

x1 − x2 + iε

}
,

while the non-standard diagram presented in Fig. 1, the right
panel, contributes as

Wµν

(Non-stand.) = q̄(y)
pµ2
x1
ενS

T−p2 ×∫
dx2

{
B(1)(x1, x2) +B(2)(x1, x2)

}
. (15)

Here we introduce the shorthand notation: εABCD =
εµ1µ2µ3µ4Aµ1

Bµ2
Cµ3

Dµ4
with ε0123 = 1. Moreover, the

parametrizing functions are associated with the following cor-
relators:

iεα+S
T−(p1p2)B(1)(x1, x2) = (16)

F2

[
〈p1, ST |ψ̄(η1) γ+ gAα⊥(z)ψ(0)|ST , p1〉

]
,

iε+βS
T−(p1p2)B(2)(x1, x2) = (17)

F2

[
〈p1, ST |ψ̄(η1) γβ⊥ gA

+(z)ψ(0)|ST , p1〉
]
,

ip+1 ε
ρ+ST−(p1p2)B(⊥)(x1, x2) = (18)

F2

[
〈p1, ST |ψ̄(η1) γ+

(
∂ρ⊥ gA

+(z)
)
ψ(0)|ST , p1〉

]
,

where η1 = λ1ñ, z = λ2ñ, and the light-cone vector ñ is a
dimensionful analog of n (ñ− = p−2 /(p1p2)).
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As known from [6], the function B(1)(x1, x2) for the DY
process can be unambiguously written as

B(1)(x1, x2) =
T (x1, x2)

x1 − x2 + iε
, (19)

where the function T (x1, x2) ∈ <e parametrizes the corre-
sponding projection of 〈ψ̄ Gαβ ψ〉, i.e.

εα+S
T− (p1p2)T (x1, x2) = (20)

F2

[
〈p1, ST |ψ̄(η1) γ+ ñνG

να
T (z)ψ(0)|ST , p1〉

]
.

Notice that we have derived (see [6]) the certain complex pre-
scription in the r.h.s. of (19) within the contour gauge. In
this letter, we assume that the same prescription takes place
in the Feynman gauge too [13]. With respect to the functions
B(2)(x1, x2) and B(⊥)(x1, x2), we demonstrate below that
these functions do not possess the gluon poles and, therefore,
cannot be presented in the form of (19).

Summing up all contributions from the standard and non-
standard diagrams, we finally obtain the expression for the
unintegrated hadron tensor as

Wµν
=Wµν

(Stand.) +Wµν

(Stand., ∂⊥) +Wµν

(Non-stand.) = q̄(y)

{[pµ2
x1
− pµ1

y

]
ενS

T−p2
∫
dx2B

(1)(x1, x2) +

pµ2
x1

ενS
T−p2

∫
dx2B

(2)(x1, x2)−
[pν2
x1
εµS

T−p2 +
pµ2
x1
ενS

T−p2
]
x1

∫
dx2

B(2)(x1, x2)

x1 − x2 + iε
+

pµ1
y
ενS

T−p2
∫
dx2

B(⊥)(x1, x2)

x1 − x2 + iε

}
, (21)

Notice that the first term in Eqn. (21) coincides with the
hadron tensor calculated within the light-cone gauge A+ = 0.

IV. QED GAUGE INVARIANCE OF HADRON TENSOR

Let us now discuss the QED gauge invariance of the hadron
tensor. From Eqn. (21), we can see that the QED gauge in-
variant combination is

T µν =
[pµ2
x1
− pµ1

y

]
ενS

T−p2 ,

with qµT µν = qνT µν = 0. (22)

We can see that there is a single term with pν2 which does not
have a counterpart to construct the gauge-invariant combina-
tion

pµ2
x1
− pµ1

y
. (23)

Therefore, the second term in Eqn. (14) should be equal to
zero. This also leads to nullification of the second term in
Eqn. (15).

Hence, the only way to get the QED gauge invariant com-
bination (see (22)) is to combine the first terms in Eqns. (14)
and (15). This combination justifies the treatment of gluon
pole in B(1)(x1, x2) using the complex prescription.

In addition, we conclude that the third term in (14) does not
contribute to SSA.

The suggested proof explores only the gauge and Lorentz
invariance. Let us consider the other reasoning to justify these

properties of correlators, starting with the correlator which
generates the function B(2)(x1, x2):∫

(dλ1 dλ2)e−ix1λ1−i(x2−x1)λ2 ×

〈p1, ST |ψ̄(λ1ñ) γβ⊥A
+(λ2ñ)ψ(0)|ST , p1〉 =

iε+βS
T− (p1p2)B(2)(x1, x2) . (24)

We are going over to the momentum representation for the
correlator from the l.h.s. of Eqn. (24). Schematically, we have[

ū(k1)γ⊥β u(k2)
]
× ....× 1

`2 + iε
, (25)

where the gluon momentum is ` = k2 − k1 and k1 =

(x1p
+
1 , k

−
1 ,
~k1⊥), k2 = (x2p

+
1 , k

−
2 ,
~k2⊥). This situation has

been illustrated in Fig. 2, see the left panel. Up to the order
of g, we are also able to write down that (see Fig. 2, the right
panel) [

ū(k1)γ⊥β S(k2)u(k1)
]
× ....× 1

`2 + iε
, (26)

where S(k2) = S(k2)γ+. From both these equations, it is
clear that to get the non-zero contribution we must have either
~k1⊥ 6= 0 or ~k2⊥ 6= 0. Indeed,[
ū(k1)γ⊥β S(k2)u(k1)

]
⇒ Sβk2+k1 = k⊥2 βk

+
1 + k⊥1 βk

+
2 .(27)

Therefore, the gluon propagator in Eqns. (25) and (26) takes
the following form (cf. [10]):

1

`2 + iε
=

1

2(x2 − x1)p+1 `
− −~l2⊥ + iε

. (28)
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One can conclude that, in the case of the substantial trans-
verse component of the momentum, there are no sources
for the gluon poles at x1 = x2. As a result, the function
B(2)(x1, x2) has no gluon poles and, due to T-invariance [11]
(B(2)(x1, x2) = −B(2)(x2, x1)), obeys B(2)(x, x) = 0.

On the other hand, if we have γ+ in the correlator (see Eqn.
(16)), the transverse components of gluon momentum are not
substantial and can be neglected. That ensures the existence
of the gluon poles for the function B(1)(x1, x2). This cor-
responds to the fact that the Sivers function, being related to
gluon poles, contains the "leading twist" projector γ+. More-
over, we may conclude that the structure γ+(∂⊥A+) does not
produce the imaginary part as well as SSA in the Feynman
gauge.

V. CONCLUSIONS AND DISCUSSIONS

Working within the Feynman gauge, we derive the QED
gauge invariant (unintegrated) hadron tensor for the polarized
DY process:

Wµν

GI =Wµν

(Non-stand.) +Wµν

(Stand.) =

q̄(y)
[pµ2
x1
− pµ1

y

]
ενS

T−p2
∫
dx2B

(1)(x1, x2). (29)

After calculating the imaginary part (or, in other words, after
adding the mirror contributions), and, then integrating over x1
and y (see Eqn. (13)), we get the QED gauge invariant hadron
tensor as

Wµν
GI = q̄(yB)

[ pµ2
xB
− pµ1
yB

]
ενS

T−p2 T (xB , xB) . (30)

This expression fully coincides with the hadron tensor which
has been derived within the light-cone gauge for gluons.

Moreover, the factor of 2 in the hadron tensor that we found
within the axial-type gauge [6] is still present in the frame of
the Feynman gauge. In order to show this factor of 2, let us
introduce the mutually orthogonal basis (see [8]) as

Zµ = p̂1µ − p̂2µ ≡ xB p1µ − yB p2µ (31)

and

Xµ = −2

s

[
(Zp2)

(
p1µ −

qµ
2xB

)
− (Zp1)

(
p2µ −

qµ
2yB

)]
,

Yµ =
2

s
εµp1p2q. (32)

Here p̂i µ are the partonic momenta (qµ = p̂1µ + p̂2µ). With
the help of (31) and (32), the lepton momenta can be written
as (this is the lepton c.m. system)

l1µ =
1

2
qµ +

Q

2
fµ(θ, ϕ; X̂, Ŷ , Ẑ) ,

l2µ =
1

2
qµ −

Q

2
fµ(θ, ϕ; X̂, Ŷ , Ẑ) , (33)

where Â = A/
√
−A2 and

fµ(θ, ϕ; X̂, Ŷ , Ẑ) = (34)

X̂µ cosϕ sin θ + Ŷµ sinϕ sin θ + Ẑµ cos θ .

Within this frame, the contraction of the lepton tensor with the
gauge invariant hadron tensor (30) reads

LµνWµν
GI = −2 cos θ εl1S

T p1p2 q̄(yB)T (xB , xB) . (35)

We want to emphasize that this expression in (35) differs by
the factor of 2 in comparison with the case where only one
diagram (presented in Fig. 1, the left panel) has been included
in the (gauge non-invariant) hadron tensor, i.e.

LµνWµν
(Stand.) =

1

2
LµνWµν

GI . (36)

Therefore, from the practical point of view, if we neglect the
diagram in Fig. 1 (right panel) or, in other words, if we use
the QED gauge non-invariant hadron tensor, it yields the error
of the factor of two.

Further, based on the light-cone dynamics we argue that
there are no gluon poles in the correlators 〈ψ̄γ⊥A+ψ〉. This
means that the function B(2)(x1, x2) does not have the repre-
sentation similar to (19). We also show that the Lorentz and
QED gauge invariances of the hadron tensor calculated within
the Feynman gauge require that the functionB(2)(x1, x2) can-
not have gluon poles.

The fact that the function B(2)(x1, x2) cannot be presented
in the form of (19) directly leads to the absence of dT/dx
in the final expression of the gauge-invariant hadron tensor.
Indeed, from (14), one can see that B(2)(x1, x2) contributes
to the standard hadron tensor as

[
pν2ε

µST−p2 + pµ2ε
νST−p2

] ∫
dx2

B(2)(x1, x2)

x1 − x2 + iε
. (37)

In order to obtain the dT/dx-contribution, we have to im-
pose the representation (19) on B(2)(x1, x2) and, then per-
form the integration over dx2 by part. However, as shown
above, B(2)(x1, x2) does not have the representation (19).

This property seems to be natural from the point of view of
gluon poles relation [12] to Sivers functions as the latter is re-
lated to the projection γ+. As for the function B(⊥)(x1, x2),
the transverse derivative of Sivers function resulting from tak-
ing its moments may act on both integrand and boundary
value. Our result suggests that only the action on the bound-
ary value related to B(1)(x1, x2) should produce SSA. It is
certainly not unnatural keeping in mind that the integrand dif-
ferentiation is present even for simple straight-line contours
which are not producing SSA.
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p2 p2

p1 p1

q q

k1

k2

k1 + ℓ

ℓ− k2

k2

ℓ

p2 p2

p1 p1

q q

k1

k2

k1 + ℓ

k2

ℓ
k1

FIG. 1: The Feynman diagrams which contribute to the polarized Drell-Yan hadron tensor.

γ⊥β

k2 k1

ℓ γ⊥β

k2 k1

ℓ

FIG. 2: The matrix element (correlator) of nonlocal twist-3 quark-gluon operator within the momentum representation. Here ` = k2 − k1 and
k1 = (x1p

+
1 , k

−
1 ,
~k1⊥), k2 = (x2p

+
1 , k

−
2 ,
~k2⊥)
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