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Abstract: We study the collision of planar shock waves in AdS5 as a function of shock

profile. In the dual field theory the shock waves describe planar sheets of energy whose

collision results in the formation of a plasma which behaves hydrodynamically at late times.

We find that the post-collision stress tensor near the light cone exhibits transient non-universal

behavior which depends on both the shock width and the precise functional form of the shock

profile. However, over a large range of shock widths, including those which yield qualitative

different behavior near the future light cone, and for different shock profiles, we find universal

behavior in the subsequent hydrodynamic evolution. Additionally, we compute the rapidity

distribution of produced particles and find it to be well described by a Gaussian.

Keywords: general relativity, gauge-gravity correspondence, quark-gluon plasma

ar
X

iv
:1

50
7.

02
54

8v
2 

 [
he

p-
th

] 
 1

3 
D

ec
 2

01
5

mailto:pchesler@physics.harvard.edu
mailto:niki.kilbertus@physik.uni-regensburg.de
mailto:wilke@mit.edu


Contents

1 Introduction and summary 1

2 Setup 3

3 Results for planar shocks 6

3.1 Early time dynamics and non-universal transient effects 6

3.2 Universal initial data for hydrodynamics 8

4 Including transverse dynamics during hydrodynamic evolution 14

5 Spectrum of produced particles 17

6 Concluding remarks 19

1 Introduction and summary

Holographic duality [18–20] has proven to be a useful tool to study the dynamics of strongly

coupled quark-gluon plasma (for a review see for example [17]). One interesting problem is

the collision of gravitational shock waves in AdS5, which can result in the formation of a black

hole. In the dual field theory, which is N = 4 supersymmetric Yang-Mills (SYM), colliding

gravitational waves are equivalent to colliding distributions of energy, which for brevity we

simply refer to as shock waves. The formation of a black hole is dual to the formation of a

quark-gluon plasma and the ring down of the black hole encodes the relaxation of the plasma

to a hydrodynamic description. The complete evolution of the field theory stress tensor

Tµν — from pre-collision dynamics to far-from-equilibrium dynamics to hydrodynamics — is

encoded in the dual classical relativity problem.

Unlike QCD, where nuclei are bound states whose energy distribution is fixed by the

theory, in conformal SYM the energy distribution of colliding shocks is not fixed; shock

energy distributions can have any desired shape and only must propagate at the speed of

light. In the dual gravitational description this reflects the fact that gravitational waveforms

are not fixed by Einstein’s equations and gravitational waves always propagate at the speed

of light. This has led to studies of a diverse range of energy profiles from planar shocks with

δ-function longitudinal profiles [9, 31, 32] to planar shocks with finite longitudinal thickness

[1, 2, 15, 25] to shocks which are also localized in the plane transverse to the collision axis

[8, 14, 21, 22] to holographic models of proton-nucleus collisions [30].

The fact that SYM doesn’t specify the energy distribution of colliding shocks begs the

question: how much do details in different energy distributions imprint themselves on the

future hydrodynamic evolution of the produced quark-gluon plasma? What features of col-

lisions in SYM are universal and what features depend on one’s chosen energy profile for

the shocks? Indeed, in [1], where the collision of planar shocks with Gaussian longitudinal



profiles was studied, it was found that some qualitative features of the debris produced by

the collision are sensitive to the thickness of the shocks. For suitably thin shocks remnants of

the initial shocks can survive the collision event and propagate on the forward light cone and

regions of negative energy density appear near the light cone. In contrast, when the shock

thickness is suitably large no obvious remnants of the initial shocks survive the collision event

and the energy density is everywhere smooth and positive in the forward light cone [1, 15].

To begin to address the above questions we focus on the simple case of planar shock

collisions in AdS5, where the shocks have no dependence on the coordinates transverse to the

collision axis. The shocks move in the ±z direction at the speed of light and have energy

density

T 00 =
N2

c

2π2
µ3δw(z ± t), (1.1)

with t time, Nc the number of colors, and µ an energy scale. We consider δw(x) which are

ostensibly smeared δ-functions localized about x = 0 with normalization and variance

∫
dx δw(x) = 1,

∫
dxx2δw(x) = w2. (1.2)

Hence, the energy per unit transverse area of the shocks is N2
c

2π2µ
3. We investigate the collision

dynamics as a function of the shock width and the functional form of δw. For simplicity we

consider profiles δw in which w is the only scale. The dimensionless measure of the shock width

is µw for which we consider µw . 1
2 . In contrast to the collisions studied in [1, 15], which

were in the background of a low temperature plasma, we study collisions at zero background

temperature. This allows us to study long time evolution without pollution due to thermal

regulators.

We find that the post-collision stress tensor near the light cone is non-universal and

depends on both the shock width w and the precise functional form of the shock profile δw.

However, we observe that the non-universal behavior is transient: irrespective of w or δw, long

after the collision event, nearly all the energy lies inside the future light cone and the evolution

of the stress tensor is governed by hydrodynamics. Over a large range of shock widths,

including those which yield qualitative different behavior near the future light cone, and for

different shock profiles δw, we find universal behavior in the initial hydrodynamic data. On a

surface of constant proper time τ = τinit & thydro, with thydro ≈ 2/µ the hydrodynamization

time, we find that the fluid velocity is well described by boost invariant flow and that the

proper energy density ε is well described by

ε(ξ, w)|τ=τinit = µ4A(µw)f
(

ξ
ξFWHM(µw)

)
, (1.3)

where ξ is spacetime rapidity and f is a w-independent function with ξFWHM its full width at

half maximum. Therefore, the only w dependence in the hydrodynamic flow is in the proper

energy’s normalization and rapidity width. Aside from this w dependence, we observe that

the hydrodynamic flow is otherwise insensitive to the precise functional form of δw.
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Choosing τinit = 3.5/µ and the normalization condition f(0) = 1, we find A(µw) and

ξFWHM(µw) are well approximated by the quadratic functions

A(µw) = 0.14 + 0.15(µw)− 0.025(µw)2, (1.4a)

ξFWHM(µw) = 2.25− 1.15(µw) + 0.31(µw)2. (1.4b)

Note dξFWHM

d(µw) ≈ −1, signifying appreciable w dependence. The function f is well described

by a Gaussian with unit full width at half maximum,

f(x) = e−
1
2
x2/σ2

, σ = [8 log 2]−1/2 ≈ 0.425. (1.5)

Given that the w → 0 limit of our collisions is that of colliding δ-functions, it is not

surprising that the hydrodynamic evolution becomes insensitive to both w and the details of

the shock profile when w is sufficiently small. Indeed, similar insensitivities were observed in

[25]. However, we find it surprising that finite w effects merely alter the normalization and

rapidity width of the proper energy, as opposed to changing its functional form altogether,

and don’t affect the fluid velocity. This is especially noteworthy given that the w-dependence

of the rapidity width ξFWHM in (1.4) is not weak.

Additionally, we construct a simple framework to extend the universal initial hydro-

dynamic data for planar shocks to initial hydrodynamic data for shocks with slowly varying

transverse profiles. Using this framework, we employ our planar shocks to study axisymmetric

collisions. We evolve our initial axisymmetric data forward in time using viscous hydrody-

namics and then compute the rapidity spectrum of produced hadrons using a Cooper-Frye

freeze out prescription [16]. We find that the rapidity distribution of massless particles is well

approximated by a Gaussian with variance 1.9 and 2.1 for
√
sNN energies of 200 GeV and

2.76 TeV respectively.

An outline of our paper is as follows. In Sec. 2 we develop the gravitational setup for

our planar shock collisions. In Sec. 3 we present our results for planar collisions, including

early time non-universal transient effects, and universal late time hydrodynamic evolution.

In Sec. 4 we develop the framework for including slowly varying transverse dynamics and

present hydrodynamic simulations for axisymmetric collisions. In Sec. 5 we present results

for the spectrum of produced hadrons. We conclude in Sec. 6.

2 Setup

We construct initial data for Einstein’s equations by superimposing the metric of gravitational

shock waves moving in the ±z directions. In Fefferman-Graham coordinates, the metric of a

single shock moving in the ±z direction is

ds2 = r2
[
−dt2 + dx2

⊥ + dz2 + dr2

r4
+ h±(x⊥, z∓, r) dz

2
∓
]
, (2.1)
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where z∓ ≡ z ∓ t, x⊥ are the two coordinates transverse to the collision axis, r is the AdS

radial coordinate, and

h±(x⊥, z∓, r) ≡
∫

d2k

(2π)2
eik·x⊥ H̃±(k, z∓)

8I2(k/r)

k2r2
. (2.2)

The AdS curvature scale has been set to unity. The boundary of the asymptotically AdS

spacetime lies at radial coordinate r =∞. The single-shock metric (2.1) is an exact solution

to Einstein’s equations for any choice of H̃± [8]. This geometry represents a state in the dual

SYM theory with stress tensor,

Tµν =
N2

c

2π2
T̂µν , (2.3)

with non-zero components

T̂ 00 = T̂ zz = ±T̂ 0z = H±(x⊥, z∓), (2.4)

where H± is the 2D transverse Fourier transform of H̃±. Note that here and in what follows

we used hats to denote quantities normalized by N2
c

2π2 . That is, for any function F we define

F̂ by F = N2
c

2π2 F̂ .

We choose

H±(x⊥, z∓) = µ3δw(z∓), (2.5)

where µ is an energy scale and δw(z∓) is a smeared δ-function which satisfies the normalization

and variance conditions in Eq. (1.2). We employ two different shock profiles

δw(z) =
1√

2πw2
e−

1
2
z2/w2

and δw(z) =
M

e
1
2
z2/W 2

+ 1
, (2.6)

with

M = 1
w

√
− (4+3

√
2)ζ( 3

2
)

4πζ( 1
2

)3
≈ 0.74

w , W = w

√
−
√

2ζ( 1
2

)

ζ( 3
2

)
≈ 0.89w. (2.7)

We refer to the first shock profile in (2.6) as the Gaussian profile and the second as the

non-Gaussian profile. These shock profiles are plotted in Fig. 1.

At early times, t � −w, the functions h± have negligible overlap and the pre-collision

geometry can be constructed from (2.1) by replacing the last term with the sum of corre-

sponding terms from left and right moving shocks. The resulting metric satisfies Einstein’s

equations, at early times, up to exponentially small errors.

To evolve the pre-collision geometry forward in time through the collision we use the char-

acteristic formulation of gravitational dynamics in asymptotically AdS spacetimes discussed

in detail in [2]. Our metric ansatz reads

ds2 = r2 gµν(x, r) dxµdxν + 2 dr dt , (2.8)
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0
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0.3

0.4
Gaussian profile
non-Gaussian profile

Figure 1. The shock profiles given in Eq. (2.6).

with Greek indices denoting spacetime boundary coordinates, xµ = (t,x⊥, z). Near the

boundary, gµν = ηµν + g
(4)
µν /r4 + O(1/r5). The sub-leading coefficients g

(4)
µν determine the

boundary stress tensor,

T̂µν = g(4)
µν + 1

4 ηµν g
(4)
00 . (2.9)

To generate initial data for our characteristic evolution, we numerically transform the

pre-collision metric in Fefferman-Graham coordinates to the metric ansatz (2.8); this requires

computing a congruence of infalling radial null geodesics and is outlined in [10]. We then

numerically solve Einstein’s equations using the methods outlined in [2]. We measure dimen-

sional quantities in units of µ. For the Gaussian profile we study collisions with shock widths

w = nwo, n = 1, 2, . . . , 7 where1

wo ≡
0.075

µ
. (2.10)

For the non-Gaussian profile we study collisions with w = wo and w = 5wo. We time evolve

all collisions µt = 14 units after the collision event. After numerically solving Einstein’s

equations we extract the boundary stress tensor via (2.9) and (2.3).
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bT 00

µ4

bT 00

µ4

Figure 2. Rescaled energy density T̂ 00 as a function of time t and longitudinal position z for Gaussian

shock profiles. Top figure: wide shocks with width w = 5wo. Bottom figure: narrow shocks with width

w = wo. In both plots, the shocks approach each other along the z axis and collide at z = 0 at time

t = 0. The collisions produce debris that fills the forward light cone. Nevertheless, there are clear

qualitative differences in the energy density near the forward light cone. For w = wo there are clear

post-collision remnants of the initial shocks propagating on the light cone. These remnants decay with

time like t−p with p ≈ 0.9.

3 Results for planar shocks

3.1 Early time dynamics and non-universal transient effects

Let us begin by focusing on the energy density produced by Gaussian shock collisions. In

Fig. 2 we plot the rescaled energy density T̂ 00, for Gaussian shock profiles with widths w = 5wo
(top) and w = wo (bottom). The shocks approach each other at the speed of light in the

1 For comparison, Ref [15] used w = 10wo and Ref [1] used w in the range 0.66wo till 25wo.
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±z direction and collide at z = 0 at time t = 0. For both cases, the debris leaving the

collision event appears dramatically different than the initial incoming shocks. Nevertheless,

comparing the two plots in Fig. 2, it is clear that there are qualitative differences in the

energy density near the light cone. To highlight these differences, in Fig. 3 we plot T̂ 00 at

times µt = 1, 3, 5, 7, again for Gaussian shock profiles with widths w = 5wo and w = wo. As

can be seen in both Figs. 2 and 3, at width w = wo there are clear post-collision remnants

of the shocks propagating outward on the light cone. In contrast, at width w = 5wo there

are no signs of any distinct remnant of the shocks on the forward light cone. Instead, the

post-collision energy density is smoothly distributed in the interior of the forward light cone.

Moreover, for w = 5wo the energy density is everywhere positive. In contrast, for w = wo
one sees from Fig. 3 the appearance of small regions of negative energy behind the receding

maxima. Clearly the behavior of the stress near the light cone is sensitive to the shock width.

µz
-5 0 5

E
µ4

0

0.2

0.4

0.6

0.8
mw = 0.375

µz
-5 0 5

E
µ4

0

1

2

3

4
mw = 0.075

µt = 1

µt = 3

µt = 5
µt = 7

bT 00

µ4

bT 00

µ4

µt = 1

µt = 3

µt = 5
µt = 7

Figure 3. Energy density T̂ 00/µ4 at times µt = 1, 3, 5, 7 for w = 5wo (left) and w = wo (right) for

Gaussian shock profiles. For w = 5wo the post-collision energy density is smooth with no distinct

remnant of the shocks remaining on the forward light cone. In contrast, for w = wo there are clear

remnants of the initial shocks propagating outward on the forward light cone. These remnants decay

with time like t−0.9. Note the brief presence of negative energy behind the remnants in the w = wo
collision.

However, both the presence of negative energy and shock remnants on the forward light

cone in the w = wo collision are transient effects. Indeed, from Fig. 3 we see that already by

time µt = 5 the regions of negative energy have disappeared. In Fig. 4 we plot the amplitude

of the outgoing energy maxima for width w = wo as a function of time. Our numerics are

consistent with a t−0.9 power law decay, which was also seen in [2]. Note that a power law

decay is natural in a conformal theory, where there is no intrinsic scale. By time µt = 14

more than 90% of the initial shock energy lies in the forward light cone. Hence, our results

suggest that irrespective of the shock width, the collision results in the complete annihilation
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of the shocks with essentially all energy lying well inside the forward light cone at late times.

µt
10-1 100 101

100

101
max(T̂ 00/µ4)
t−0.9

Figure 4. The amplitude of the receding shock remnants as a function of time for Gaussian shock

profile with width w = wo. Our numerics are consistent with a power law decay t−p with p ≈ 0.9

How sensitive is the stress near the forward light cone to perturbations in the functional

form of the shock profile? In Fig. 5 we plot the energy density at time µt = 4 with width

w = wo for both Gaussian and non-Gaussian shock profiles. Clearly, near the light cone

the stress is different for the different shock profiles. The relative magnitude of the change

should be compared to that of the different profiles shown in Fig. 1. Evidently, in addition to

being sensitive to the width of the shocks, the stress tensor near the future light cone is also

sensitive to the functional form of the shock profile. We note, however, that the amplitude of

the decaying shock remnants also scales like t−0.9 for the non-Gaussian profile.

3.2 Universal initial data for hydrodynamics

According to fluid/gravity duality [3, 4], at sufficiently late times the evolution of the stress

tensor should be governed by hydrodynamics. How do the decaying shock remnants and

negative energy density near the light cone imprint themselves on the hydrodynamic evolu-

tion? Are there qualitative differences between the hydrodynamic evolution for thick and

thin shocks? To address these questions we first identify the domain R in spacetime in which

hydrodynamics is a good description of the evolution of the stress and then study the w and

δw dependence of the hydrodynamic variables on a fixed Cauchy surface in R.

In relativistic neutral fluid hydrodynamics the hydrodynamic variables are typically taken

to be the proper energy density ε and the fluid velocity uµ. The fluid velocity is defined to

be the normalized time-like (uµu
µ = −1) future directed (u0 > 0) eigenvector of the stress

tensor,

Tµν u
ν = −ε uµ , (3.1)

– 8 –



µz
3.8 3.9 4 4.1 4.2 4.3

T̂ 00

µ4

0

0.5

1

1.5
Gaussian profile
non-Gaussian profile

Figure 5. The energy density at µt = 4 with w = wo for both Gaussian and non-Gaussian shock

profiles. The size of the difference in the energy densities should be compared to that of the different

pre-collision shock profiles shown in Fig. 1. Clearly, near the light cone the stress is sensitive to the

structure of the shock profiles.

with ε the associated eigenvalue. In terms of ε and uµ the constitutive relations of fluid/gravity

read

Tµνhydro = pgµν + (ε+ p)uµuν + Πµν , (3.2)

where p = ε
3 is the pressure and Πµν is the viscous stress. The viscous stress satisfies uµΠµν =

0 and gµνΠµν = 0 and at first order in gradients is given by Πµν = −ησµν with η the shear

viscosity and

σµν = ∂(µuν) + u(µu
ρ∂ρuν) − 1

3∂αu
α [ηµν + uµuν ] , (3.3)

the shear tensor. The shear viscosity may be expressed in terms of the proper energy via

[6, 7]

η =
1

3πT
ε, (3.4)

with the temperature T given by

T =

(
8ε

3π2N2
c

)1/4

. (3.5)

The hydrodynamic equations of motion are given by the energy-momentum conservation

equation ∂µT
µν
hydro = 0. Note that the hydrodynamic stress tensor is completely determined

by four functions. In contrast, in general the exact (traceless) stress tensor contains nine

independent function.
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Instead of solving the hydrodynamic equations of motion for the evolution of ε and uµ, a

simple way to compare the gravitational evolution to hydrodynamics is to extract the exact ε

and uµ from the eigenvalue equation (3.1) with the exact stress tensor. In the domain where

hydrodynamics is a good description this should yield the same time evolution for proper

energy density and fluid velocity as hydrodynamics. With the exact proper energy and fluid

velocity known, we can then construct Tµνhydro from Eqs. (3.2)–(3.5) and compare Tµν and

Tµνhydro. To quantify the domain in which hydrodynamics is applicable we then define the

residual measure

∆ ≡ 1

p

√
∆Tµν∆Tµν , ∆Tµν ≡ Tµν − Tµνhydro. (3.6)

The quantity ∆, evaluated in the local fluid rest frame, measures the relative difference

between the spatial stress in Tµν and Tµνhydro. Regions of spacetime with ∆� 1 are evolving

hydrodynamically.

Let us first focus on the hydrodynamic evolution produced by Gaussian shock collisions.

In Fig. 6 we plot the hydrodynamic residual ∆ for Gaussian shock profiles with widths w =

5wo (top) and w = wo (bottom). Note that we only plot ∆ in the region R defined to be the

largest connected region in spacetime where ∆ ≤ 0.15. Outside of R hydrodynamics is not a

good description and the fluid velocity need not even be well defined [5] (i.e. the stress need

not have a time-like eigenvector). The dashed line in the figure, which bounds the region R,

is given by

τ∗ =
√

(t−∆t)2 − z2, (3.7)

with µτ∗ = 1.5 and µ∆t = 0.58. We therefore conclude that the domain of applicability of

hydrodynamics is approximately the same for both shock thicknesses. Fig. 6 clearly shows

that our planar shock collisions result in the formation of an expanding volume of fluid

which is well described by hydrodynamics everywhere except near the light cone, where non-

hydrodynamic effects become important. At mid-rapidity viscous hydrodynamics becomes a

good approximation at time

µthydro ≈ 2. (3.8)

With the applicability of hydrodynamics established, we now turn to the w dependence

of the initial hydrodynamic data. We introduce proper time τ and rapidity ξ coordinates via

t = τ cosh ξ, z = τ sinh ξ, (3.9)

and study the hydrodynamic variables uµ and ε on the τ = τinit Cauchy surface with

µτinit = 3.5. (3.10)

Note that in what follows we restrict the rapidity range to that bounded by Eq. (3.7), where

∆ ≤ 0.15 and hydrodynamics is a good description.

In Fig. 7 we plot ε and the τ -component of the fluid velocity, uτ , as a function of rapidity

at τ = τinit for Gaussian shock profiles. Included in the figure are shock widths w = nwo,

n = 1, 2, . . . , 7. Recall that for boost invariant flow uτ = 1. We see from the figure that uτ ≈ 1

– 10 –



Figure 6. The hydrodynamic residual ∆ defined in Eq. (3.6) for Gaussian shock profiles with widths

w = 5wo (top) and w = wo (bottom). Regions with ∆ � 1 are well described by viscous hydrody-

namics. At time µt = 8 the minimum values of ∆ are 0.015 and 0.013 for w = 5wo and w = wo
respectively. Note that we have plotted ∆ only in the region ∆ ≤ 0.15. This region is bounded by the

dashed curves (3.7), which are the same for both collisions.

with narrower shocks having uτ closer to 1 than wider shocks. We therefore conclude that for

all shock widths shown the initial fluid velocity is very well described by boost invariant flow.

Turning to the proper energy density, we see that thinner shocks lead to a broader rapidity

profile with smaller amplitude than wider shocks. In Fig. 8 we plot the amplitude ε(ξ = 0)

and the full width at half maximum rapidity ξFWHM of ε as a function of shock thickness

w, again for Gaussian shock profiles. Also included in the plots are the quadratic fits in

Eqs. (1.4), which clearly well-describe the numerical data. Note dξFWHM

d(µw) ≈ −1, indicating

appreciable w dependence in the rapidity width.

A striking feature of the initial hydrodynamic data presented in Fig. 7 is the absence

of any distinct qualitative change in either the proper energy or fluid velocity as the shock

thickness is varied from w = 7wo to w = wo. Indeed, there is very little quantitative change

in uτ as the shock thickness is varied from w = 7wo to w = wo. This stands in stark contrast

to the behavior of the stress near the forward light cone, which changes qualitatively as the

shock width is varied. In Fig. 9 we plot the normalized proper energy ε/ε(ξ = 0) at proper

time τinit as a function of normalized rapidity ξ/ξFWHM for Gaussian shock profiles. Included
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ξ
-1 0 1

ϵ̂/
µ
4

0

0.05

0.1

0.15

0.2

0.25

ξ
-1 0 1

u
τ

0.999

1

1.001

1.002

1.003

1.004
w = 7wo

w = wo

w = 7wo

w = wo

Figure 7. The proper energy (left) and the proper time component of the fluid velocity (right) as a

function of rapidity ξ at proper time µτinit = 3.5 for Gaussian shock profiles with widths w = nwo,

n = 1, 2, . . . , 7. Note that in units of µ the range of w shown is µ is µw = 0.075 to µw = 0.525. The

fluid velocity is well described by boost invariant flow with uτ ≈ 1. Note that we restrict the rapidity

range to that bounded by Eq. (3.7), where ∆ ≤ 0.15 and hydrodynamics is a good description.

µw
0 0.2 0.4 0.6

ϵ̂(
ξ
=

0)
/µ

4

0

0.05

0.1

0.15

0.2

µw
0 0.2 0.4 0.6

ξ F
W

H
M

0

0.5

1

1.5

2

2.5

3

0.14 + 0.15µw � 0.025(µw)2

2.25 � 1.15µw + 0.31(µw)2

Figure 8. Left: the normalized proper energy at rapidity ξ = 0 as a function of shock width. Right:

the full width half max rapidity of the proper energy density as a function of shock width. Both plots

are at proper time τ = τinit and are for Gaussian shock profiles. Also included in both plots are the

quadratic fits (1.4).

in the figure are shock widths w = nwo, n = 1, 2, . . . , 7. Remarkably, when rescaled all the

proper energy curves in Fig. 9 collapse onto one single curve! Only at w = 7wo do we see

a small discrepancy between the different curves. This observation implies that the initial

hydrodynamic proper energy has the form of Eq. (1.3), with all w dependence solely in the

normalization and rapidity width of the proper energy.

Is the hydrodynamic evolution sensitive to perturbations in the shock profile? To answer

this question, in Fig. 10 we plot ε̂ and uτ again at τ = τinit with widths w = 5wo (top) and

w = wo (bottom) for both Gaussian and non-Gaussian shock profiles. As is evident from the
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figure, both ε and uτ are nearly identical for both shock profiles. This should be contrasted

with Fig. 5, where the energy density near the light cone was seen to be sensitive to the shock

profile. Evidently, the initial hydrodynamic data is insensitive to the precise functional form

of the shock profile δw.

ξ/ξFWHM

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ϵ/
ϵ(
ξ
=

0)

0

0.2

0.4

0.6

0.8

1 w = wo, 2wo, . . . , 6wo

w = 7wo

Figure 9. The rescaled proper energy density ε/ε(ξ = 0) for Gaussian shock profiles at fixed τ = τinit
as a function of the rescaled rapidity ξ/ξFWHM. Note that in units of µ the range of w shown is µ is

µw = 0.075 to µw = 0.525. When rescaled, all proper energy curves seen in Fig. 7 collapse onto each

other.

What is the function f in Eq. (1.3)? In Fig. 11 we plot ε as a function of ξ/ξFWHM

for w = 5wo together with the Gaussian (1.5), which has unit full width at half maximum.

Evidently, the initial hydrodynamic data is well described by a boost invariant fluid velocity

and a Gaussian proper energy rapidity profile.

While we have restricted our numerical analysis to wo ≤ w ≤ 7wo, we note that we

see no evidence of the above universal hydrodynamic behavior disappearing as w is further

decreased. Why? First of all, in Fig. 9 we see no sign that the functional form (1.3) of the

proper energy changes as w is decreased. Second, as shown in Fig. 8, both the width and

amplitude of the proper energy are well-described by the quadratic fits (1.4) and show no

signs of additional structure at small w. Last, as shown in Fig. 7, it appears that boost

invariant flow becomes a better and better approximation to the initial fluid velocity as w

decreases. A natural interpretation of these observations is that the produced hydrodynamic

flow has a smooth w → 0 limit, in which the incoming shocks become δ-functions, with the

initial proper energy being a Gaussian in rapidity and the initial fluid velocity given by boost

invariant flow. Using the fits (1.4), we extrapolate to w = 0 and estimate the initial width

and amplitude of the proper energy for δ-function collisions to be ξFWHM|w=0 ≈ 2.25 and

ε̂(ξ = 0)|w=0/µ
4 ≈ 0.14.
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Figure 10. The proper energy (left) and τ -component of the fluid velocity, uτ , as a function of

rapidity ξ at proper time τ = τinit for both Gaussian and non-Gaussian shock profiles with widths

w = 5wo (top) and w = wo (bottom). At both shock thicknesses we see that both the proper energy

and fluid velocity are insensitive to the choice of shock profile.

4 Including transverse dynamics during hydrodynamic evolution

Heavy ion collisions are of course not translationally invariant as our planar shock collisions

are. Let us for simplicity focus on head-on collisions with zero impact parameter. A gravita-

tional model of a heavy ion with non-trivial transverse profile is the shock metric (2.1) with

the function H± given by

H±(x⊥, z∓) =
Ê

V


1 + exp




√
x2
⊥+

1
γ2
z2∓−R

a





−1

, (4.1)

with the constant V fixed by the condition
∫
dzd2x⊥H± = Ê (so E = N2

c
2π2 Ê is the total

shock energy). The function (4.1) is simply a Woods-Saxon potential translating in the ±z
direction at the speed of light. The parameter R is the nuclear radius and the parameter a is
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Figure 11. The rescaled proper energy at τ = τinit as a function of the rescaled rapidity ξ/ξFWHM.

Also included is the Gaussian (1.5), which has unit full width at half maximum.

the nuclear surface thickness. The parameter γ mimics the effects of Lorentz contraction in

the z-direction.

In the limit where transverse gradients are small, at each x⊥ the stress tensor must be

that of planar shock collisions. This happens when the nuclear radius R is much greater

than the hydrodynamization time thydro. Therefore, when R� thydro we can construct initial

hydrodynamic data at some early time merely using planar shock collisions. The future

evolution — including transverse dynamics — can then be studied using hydrodynamics. To

this end we define the x⊥-dependent energy scale µ(x⊥) and longitudinal width w(x⊥) via

µ(x⊥)3 ≡
∫
dz H±(x⊥, z∓), w(x⊥)2 ≡

∫
dz z2H±(x⊥, z∓)∫
dz H±(x⊥, z∓)

. (4.2)

As we shall see below, for energies at RHIC and the LHC the local width µ(x⊥)w(x⊥) . 1/2

and the initial hydrodynamic data falls within the domain of universality seen above in Figs. 7

and 9. In other words, the initial hydrodynamic data at some x⊥ only depends on the local

energy scale µ(x⊥) and the local width w(x⊥) and not on the precise longitudinal structure

of the shock profile (4.1).

Let us henceforth denote the post-collision stress tensor for planar collisions by Tµνplanar.

Tµνplanar can be written

Tµνplanar(τ, ξ, w) = µ4T µνplanar(µτ, ξ, µw), (4.3)

where T µνplanar(·, ·, ·) is a dimensionless function of three dimensionless arguments and is in-

dependent of the structure of the colliding shocks. Therefore, in the limit where transverse

gradients are small we can write the stress tensor as

Tµν(τ,x⊥, ξ) = µ(x⊥)4T µνplanar(µ(x⊥)τ, ξ, µ(x⊥)w(x⊥)). (4.4)

Eq. (4.4) is valid for times τ � ` with ` the typical length scale over which µ(x⊥) varies.

Since the local hydrodynamization time is of order 1/µ, we may use (4.4) to construct initial
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Figure 12. Left: the normalized scale factor µ as a function of the transverse coordinate. Note that

the scale over which µ varies is the nuclear radius R. Right: the dimensionless local shock thickness

µw as a function of transverse coordinate for both RHIC and LHC simulations. Note that for our

simulations µw < 0.51, which is in the range of universality for the hydrodynamic initial data seen in

Figs. 7 and 9, where µw ≤ 0.525.

data for hydrodynamics when

`µ� 1. (4.5)

We choose nuclear radius R = 6.5 fm and surface thickness a = 0.66 fm. We employ two

different energies: E = ERHIC = 200 GeV × NAu
2 and E = ELHC = 2.76 TeV × NPb

2 where

NAu = 197 and NPb = 207 are the number of nucleons in gold and lead nuclei respectively.

These energies are energies of heavy ion collisions at RHIC and the LHC, where gold and lead

nuclei are collided, and as such we simply refer to the resulting hydrodynamic simulations as

“RHIC” and “LHC.” We set the number of colors Nc = 3 and γ = γRHIC = ERHIC
mNNAu

≈ 100 for

the RHIC simulation and γ = γLHC = ELHC
mNNPb

≈ 1400 for the LHC simulation. Here mN ≈ 1

GeV is the nucleon mass.

Before continuing let us first ask whether the parameters in the previous paragraph yield

collisions with small transverse gradients and with suitably small longitudinal widths as to

enjoy the universal features of the hydrodynamic flow discovered in this paper. First consider

the size of transverse gradients of µ(x⊥). Fig. 12 shows a plot of µ/µ(x⊥ = 0) as a function

of transverse coordinate. Clearly the scale ` over which µ varies is ` ∼ R. For comparison,

for the RHIC simulation µ(x⊥ = 0)R ≈ 86 and for the LHC simulation µ(x⊥ = 0)R ≈ 209.

We therefore see that the separation of scales (4.5) is satisfied for both sets of collisions,

which justifies the use of the transverse gradient expansion. Turning now to the local shock

thickness, also included in Fig. 12 are plots of µ(x⊥)w(x⊥) for both energies ERHIC and ELHC.

We see that µw takes its maximum value 0.51 for E = ERHIC. Therefore, the local widths

are in the range of universality for the hydrodynamic initial data seen in Figs. 7 and 9, where

µw ≤ 0.525. This justifies using the universal planar shock stress T µνplanar to construct initial

hydrodynamic data in (4.4).

We construct our initial hydrodynamic data at time τinit = 5/µ(x⊥ = 0) = 0.045R ≈ 0.3
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fm/c for the RHIC simulation and τinit = 7.5/µ(x⊥ = 0) = 0.028R ≈ 0.2 fm/c for the LHC

simulation. We then evolve forward in time using Israel-Stewart hydrodynamics [27] with

viscosity (3.4) and relaxation time τΠ = (2− log(2))/(2πT ) [3, 4]. For simplicity we focus on

rapidity dependent observables only and leave a detailed analysis for future work.

τ/R
10-1 100

ϵ(
x
⊥
=
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/ϵ

o

10-4

10-3

10-2

10-1

100

⌧�4/3

Figure 13. The proper energy ε at x⊥ = ξ = 0 as a function of proper time. The normalization

εo ≡ ε(τ = τinit, x⊥ = ξ = 0). Initially the proper energy falls off like τ−4/3, just like boost invariant

flow. However, as time progresses the rate of fall off increases.

Fig. 13 shows a plot of the proper energy at x⊥ = ξ = 0 as a function of τ for the LHC

simulation. Also included in the plot is the curve τ−4/3. Note that for boost invariant flow

the proper energy decays like τ−4/3. At early times we see from the figure that ε ∼ τ−4/3.

However, as time progresses the rate of fall off grows faster than τ−4/3. Fig. 14 shows plots of ε

and uτ at x⊥ = 0 for the LHC simulation. As time progresses the rapidity width of ε broadens.

Both the broadening and violation of the τ−4/3 scaling are due to the fact that ε has non-

trivial rapidity dependence. Simply put, rapidity gradients drive longitudinal expansion faster

than boost invariant flow, which results in the broadening of ε in ξ and correspondingly, less

energy at smaller rapidities than there would be in the case of boost invariant flow. Moreover,

by time τ ∼ R, transverse gradients result in significant transverse expansion, which further

enhances the violation of boost invariant flow. The late-time violation of boost invariant

flow also manifests itself in the fluid velocity. At early times uτ ≈ 1 and the fluid velocity

is approximately that of boost invariant flow. However, as time progresses deviations from

uτ = 1 grow both in amplitude and domain.

5 Spectrum of produced particles

After the quark-gluon plasma produced in heavy ion collisions cools below the QCD decon-

finement transition the system transitions from a quark-gluon liquid into a gas of hadrons.
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Figure 14. Left: the normalized proper energy ε/ε(x⊥ = ξ = 0) at x⊥ = 0 as a function of rapidity

and proper time. Right: the τ component of the fluid velocity at x⊥ = 0 as a function of rapidity and

proper time.

An interesting observable to study is the spectrum of produced hadrons. Using a Cooper-Frye

freeze-out prescription, the spectrum of produced particles can be computed from the hydro-

dynamics evolution. The spectrum of hadrons of degeneracy d, four-momentum pµ = (E ,p)

is given in terms of the hydrodynamic variables ε and uµ by [16]

E dN
d3p

=
d

(2π)3

∫
dΣµpµf(uµpµ), (5.1)

where

f(u · p) =
1

exp
(

u·p
Tfreeze

)
± 1

, (5.2)

with the + sign for Fermions and the − sign for Bosons. The integration in (5.1) is over the

hypersurface of constant temperature T = Tfreeze ≈ 150 MeV with T given in terms of the

proper energy by (3.5). In this simple study we assume all particles are massless bosons. As

such, the number of particles produced per unit rapidity is given by

dN

dy
=

d

(2π)3

∫
d2pT

∫
dΣµpµf(uµpµ), (5.3)

where the transverse component of the particle’s momentum is pT and y = tanh−1 pz
E is its

rapidity (which equals its pseudo-rapidity, as we are assuming massless particles).

Fig 15 shows a plot of the normalized rapidity distribution of particles for our RHIC

and LHC simulations together with Gaussian fits. Both distributions are well described by

Gaussians with rapidity widths σ = 1.9 for the RHIC simulation and σ = 2.1 for the LHC

simulation. Curiously, the rapidity spectrum of particles produced in 200 GeV collisions at

RHIC is also well approximated by a Gaussian with a width just 15% larger than we observe

in our holographic simulations [28].
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Figure 15. The normalized rapidity distribution of particles for RHIC (left) and LHC (right) simula-

tions together with Gaussian fits. Both distributions are well approximated by Gaussians with width

σ = 1.9 for the RHIC simulation and σ = 2.1 for the LHC simulation.

6 Concluding remarks

Our results demonstrate that the hydrodynamic flow produced in strongly coupled collisions

is insensitive to the detailed structure of the colliding shocks and has universal characteristics.

Finite w effects, which can be appreciable in size, merely alter the normalization and rapidity

width of the proper energy as opposed to changing its functional form altogether. One utility

of this observation is that numerical simulations of collisions need not have asymptotically

small shock widths in order to approach the δ-function limit. This observation is especially

valuable for simulations without any spacetime symmetry, such as the off-center shock colli-

sions of [14], where taking the shock thickness w → 0 can be computationally expensive.

We note, however, that when the width w becomes of order the microscopic relaxation

time in the produced plasma, which is thydro ≈ 2/µ, the structure of the shock can imprint

itself on the hydrodynamic evolution. Indeed, as seen in Fig. 10, when µw ∼ 1/2 the proper

energy begins to develop small deviations from the universal behavior in Eq. (1.3). Why does

this happen? When w & µ, the system cannot equilibrate until energy stops piling up in the

collision plane, which happens for an amount of time of order w. The resulting hydrodynamic

evolution must then become sensitive to the detailed structure of the shocks. Indeed, it was

demonstrated in [1] that for sufficiently wide shock collision, the dynamics are well described

by the Landau model of heavy ion collisions, where the nuclei are assumed to be thermalized

at the time they overlap completely and the initial fluid velocity is small [23, 24, 29].

The observation that the proper energy rapidity width has a finite limit as the shock

width w vanishes implies that at w = 0, the only source of rapidity broadening comes from

hydrodynamic evolution alone, where rapidity gradients drive longitudinal expansion. This

stands in contrast to asymptotically free QCD, where the longitudinal thickness of nuclei

deceases due to Lorentz contraction and the rapidity width of the produced plasma grows
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larger and larger as the energy is increased [26]. It would be interesting to study finite coupling

corrections to our strongly coupled collisions and see how they affect the initial hydrodynamic

data.
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