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Periodic Mean-Field Solutions and the Spectra of Discrete Bosonic Fields:

Trace Formula for Bose-Hubbard Models

Thomas Engl,∗ Juan Diego Urbina, and Klaus Richter
Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

We consider the many-body spectra of interacting bosonic quantum fields on a lattice in the
semiclassical limit of large particle number N . We show that the many-body density of states can
be expressed as a coherent sum over oscillating long-wavelength contributions given by periodic, non-
perturbative solutions of the, typically non-linear, wave equation of the classical (mean-field) limit.
To this end we construct the semiclassical approximation for both the smooth and oscillatory part
of the many-body density of states in terms of a trace formula starting from the exact path integral
form of the propagator between many-body quadrature states. We therefore avoid the use of a
complexified classical limit characteristic of the coherent state representation. While quantum effects
like vacuum fluctuations and gauge invariance are exactly accounted for, our semiclassical approach
captures quantum interference and therefore is valid well beyond the Ehrenfest time where naive
quantum-classical correspondence breaks down. Remarkably, due to a special feature of harmonic
systems with incommensurable frequencies, our formulas are valid also in the free field case of
non-interacting bosons.

I. INTRODUCTION

The full quantum mechanical solution of the problem
of interacting particles gets exceedingly complicated with
increasing particle number, and even for a generic single-
particle problem in the limit of large excitations. Hence
there has been the quest for devising versions of the quan-
tum formalism where classical input can be used to pre-
dict the outcomes of observations keeping intact concepts
like superposition of states and summing amplitudes in-
stead of probabilities as embodied in the kinematical
structure of quantum mechanics. A natural benchmark
for the use of classical objects in quantum mechanics is
the ubiquitous and defining presence of interference phe-
nomena in the quantum world.
One attempt to search for quantum effects using only

classical information consists of following the time evolu-
tion of quasiclassical, coherent quantum states with the
sharpest distribution of momentum and position allowed
by quantum mechanics. The time evolution of minimal
wavepackets is then approximated for short times by a
rigid motion along the unique classical trajectory fixed
by the initial expectation values of position and momen-
tum 〈q̂(0)〉, 〈p̂(0)〉. For times shorter than a usually short
characteristic quantum scale, the Eherenfest time, ex-
pectation values are given simply by the classical val-
ues q(t), p(t) givven by the unique solution of the clas-
sical equations of motion. This approach breaks down
when the time evolved expectation values of 〈q̂(t)〉, 〈p̂(t)〉
are insufficient to recover even approximately the time
evolved wavepacket. This happens when different sectors
of the originally well localized wavepacket start superim-
posing with each other and produce interference patterns.
The failure of this approach lies in its direct use of clas-

sical concepts, as there is no simple way to modify clas-
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sical mechanics in order to account for interference phe-
nomena, particularly if the approach is fixing an unique
classical trajectory. The early realization that quantum
phenomena can be explained in terms of interfering am-
plitudes between classical paths instead of the classical
trajectories themselves marks the beginning of the semi-
classical program (see [1] for a historical review). It took,
however, almost fifty years until Gutzwiller provided a
complete and rigorous derivation of the semiclassical ap-
proximation to the quantum mechanical propagator, the
starting point of the modern semiclassical methods [2].
For first-quantized, single-particle systems,

Gutzwiller’s result for the quantum mechanical Density
Of States (DOS) [3],

ρ(E) =
∑

n

δ(E − En), (1)

where En are the eigenvalues of the Hamiltonian, has the
generic form

ρ(E) ≃ ρ̄(E) + ρ̃(E) (2)

in the formal limit ~ → 0. Here, the smooth part ρ̄(E) is
purely classical, in that it is related with the phase space
volume of the classical energy shell, also known as the
Weyl term. Remarkably, quantum fluctuations responsi-
ble for the oscillatory part ρ̃(E) are also given in terms
of classical quantities, though encoded in a subtle way in
the periodic solutions of the classical equations of motion
of the corresponding classical system. A key distinction
between these two contributions to the semiclassical den-
sity of states is that while ρ̄(E) is analytical in ~ and
therefore admits a power expansion around ~ = 0, this
is not the case for the oscillatory contribution, namely,
ρ̃(E) cannot be approximated by any finite-order expan-
sion in ~.
It is natural to ask which modifications, technical or

conceptual, are required to take the semiclassical pro-
gram into the realm of many-body systems where corre-
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lation effects due to both interactions and indistinguisha-
bility additionally appear. Here we face a unique as-
pect of many-body systems, namely, that one can choose
between two, equivalent but conceptually quite different
approaches. On the one hand, one can generalize first-
quantized techniques to many-body systems by extend-
ing the number of degrees of freedom and using projector
techniques to select the states with the appropriate sym-
metry under permutation. The associated semiclassical
approach is then based on interfering classical paths in a
multidimensional space, supplemented by boundary con-
ditions and/or extra classical paths joining initial classi-
cal configurations with the ones obtained under permuta-
tions of the particle labels. This first-quantized approach
has been successfully applied to the helium atom, a pro-
totype of a few-particle problem [4], and has been used so
far to derive formal results for the symmetry-projected
trace formula [5, 6]. Moreover, the simplifying assump-
tion of a unique mean-field potential fixing the classical
dynamics and making it essentially non-interacting has
lead to a number of celebrated shell effects [7, 8]. Further-
more, a semiclassical approach to the smooth part of the
DOS in many-body systems has shown to be surprisingly
accurate [9] and allows for going beyond the independent
particle model.

The above mentioned approaches have in common that
the semiclassical limit of high energies (~ → 0) is taken
for fixed, though possibly large total particle number N .
The second option to describe quantum many-body sys-
tems of interacting identical particles is the use of quan-
tum fields. In this approach, the quantum dynamics for
N → ∞ has as classical limit a, typically non-linear, wave
equation. This new feature is, however, compensated by
the fact that with the notion of quantum fields, indistin-
guishability is included by construction in the kinematics
of the state space, instead of by applying projectors as
in the first-quantized approach.

The use of quantum fields to describe systems of inter-
acting, identical particles has another key consequence.
It has been shown (and it will be apparent from the
calculations presented here) that for systems with fixed,
finite-dimensional Hilbert space, the classical limit is ac-
tually equivalent to N → ∞. It is then reassuring that,
as shown in [10, 11], the classical limit of the second-
quantized theory turns out to be the mean-field descrip-
tion, which is expected to correctly represent the dynam-
ics in the thermodynamic limit.

In this paper, we follow Gutzwiller’s program and de-
rive rigorously a formula providing the DOS of a second-
quantized system for large N where the classical limit in-
volves discrete field equations, the mean-field equations
of the associated discrete quantum field. We construct
both the smooth and oscillatory contributions to the
quantum many-body DOS starting with the semiclassical
approximation to the exact Feynman propagator for the
quantum field. We show that the many-body DOS arises
from interference of, in principle, infinitely many, peri-
odic solutions of the corresponding classical mean field

equations, in close analogy to the periodic orbit contri-
bution to the single-particle DOS. In the case where inter-
actions are present, our derivation relies on the existence
of chaotic behavior in the classical limit (the ubiquitous
presence of chaotic regions in the phase space of discrete
mean field equations has been addressed in [12]). In the
non-interacting case our derivation is valid for systems
where the single-particle spectrum used to construct the
many-body state space is such that the energies are non-
commensurable, as it is generically the case. Our work
for the free, non-interacting case opens a road to study in
a systematic way the combined limit N → ∞, ~ → 0 in
infinite-dimensional systems where new kinds of classical
structures become relevant [13].
A central aspect of Gutzwiller’s method [2] is a clever

choice of the representation where the semiclassical prop-
agator, the key object representing quantum evolution in
terms of solutions of the classical equations of motion,
appears as a sum of oscillatory terms given by real ac-
tions. While in the first-quantized scenario this choice is
naturally given by the position representation, this im-
portant aspect of the semiclassical program has not been
addressed in the context of quantum fields, where the
usual choice for constructing the path integral is the co-
herent state representation for which the actions enter-
ing the semiclassical propagator are complex [14]. A key
point in our approach is to generalize the concept of po-
sition eigenstates into the realm of quantum fields, and
for this reason we briefly introduce first these objects.

II. QUANTUM MECHANICAL BACKGROUND

We will restrict ourselves to quantum fields described
by a general Bose-Hubbard Hamiltonian with two-body
interactions,

Ĥ =

L
∑

l1,l2=1

Hl1l2 â
†
l1
âl2 +

1

2

L
∑

l1,l2,l3,l4=1

Ul1l2l3l4 â
†
l1
â†l2 âl3 âl4 .

(3)
Here, H = (Hl1l2)l1,l2=1,...,L is the hermitian matrix de-
scribing the single-particle motion and the four-fold sum

describes two-body interactions. Moreover, âl and â†l
are the annihilation and creation operators for the l-th
single-particle state (or site) satisfying the usual bosonic

commutation relations
[

âl, â
†
l′

]

= δll′ .

At intermediate steps, we will make use of Fock states
|n〉 determined by the (integer) occupation numbers
n1, . . . , nL. These states satisfy

|n〉 = 1
√

L
∏

l=1

nl!

(

â†L

)nL

· · ·
(

â†1

)n1

|0〉 ,

â†l âl |n〉 =nl |n〉 .

(4)

More important for the derivation of the trace formula,
however, are so-called quadrature eigenstates |q〉 and |p〉



3

defined by the eigenvalue equations [15]

1

2

(

âl + âl
†
)

|q〉 = ql |q〉 ,

− i

2

(

âl − âl
†
)

|p〉 = pl |p〉 ,
(5)

which satisfy

〈q |n〉 =
L
∏

l=1

e−q2l
√

2n−1n!
√
2π
Hnl

(√
2ql

)

, (6)

and

〈p |n〉 =
L
∏

l=1

e−p2
l +inπ

2

√

2n−1n!
√
2π
Hnl

(√
2pl

)

, (7)

whereHn denotes the n-th Hermite polynomial. We have
also the overlap

〈q |p〉 =
L
∏

l=1

e2iplql

√
π
, (8)

and the closure relations

1̂ =

∫

dLq |q〉 〈q| =
∫

dLp |p〉 〈p| . (9)

For the derivation of the smooth part of the DOS, we
will later make use of the asymptotic formula of the Her-
mite polynomials for large n [8],

〈q |n〉 =
L
∏

l=1

cos

{

ql

√

(

nl +
1
2

)

− q2l −
(

nl +
1
2

)

arccos

(

ql√
nl+

1
2

)}

√

π
2

4

√

(

nl +
1
2

)

− q2l

. (10)

III. DERIVATION OF THE MANY-BODY

DENSITY OF STATES

The DOS ρN (E) for fixed number of particles N is
given by the imaginary part of the trace of the Green
function Ĝ(E) over the subspace of the full Hilbert space

obtained by fixing N =
∑L

l=1 nl. It is given by

ρN (E) = − 1

π
lim
η→0

ℑgN (E + iη), (11)

with ℑ denoting the imaginary part and with the trace
in terms of a sum over Fock states

gN (E) = TrN Ĝ (E) =
∑

n

δ L
∑

l=1

nl,N

〈

n

∣

∣

∣ Ĝ (E)
∣

∣

∣n
〉

.

(12)
Semiclassically, the single-particle DOS is typically split
up into a smooth part, which stems from short trajecto-
ries and an oscillatory part determined by periodic orbits,
see Eq. (2). Correspondingly, for the many-body case we
will now first derive the smooth part ρ̄N (E).

A. Smooth part

To this end we first rewrite the sum over all possible
occupations and the Kronecker delta in Eq. (12) by a
sum over those occupations, which have the correct total
number of particles and insert the definition of the Green
function as a Laplace transform of the propagator K̂(t)

in Fock space,

gN(E) =
∑

n:
L
∑

l=1

nl=N

〈

n

∣

∣

∣ Ĝ (E)
∣

∣

∣n
〉

=
1

i~

∞
∫

0

dt e
i
~
Et

∑

n:
L
∑

l=1

nl=N

〈

n

∣

∣

∣ K̂ (t)
∣

∣

∣n

〉

.

(13)

The smooth part of the DOS stems from short paths,
i.e. from the short time contribution to the integral. In
order to compute this contribution, we will first evaluate
the trace and then perform the integration. To this end
we rewrite the diagonal matrix elements as
〈

n

∣

∣

∣ K̂ (t)
∣

∣

∣n
〉

= TrK̂(t) |n〉 〈n| =
∫

dLq

∫

dLp
[

K̂(t)
]

Weyl
(q,p) [|n〉 〈n|]Weyl (q,p)

(14)

with the Weyl symbols of an operator Ô being defined
by [16]

[

Ô
]

Weyl
(q,p) = (15)

∫

dLQ

〈

q+
Q

2

∣

∣

∣

∣

Ô

∣

∣

∣

∣

q− Q

2

〉〈

q− Q

2

∣

∣

∣

∣

p

〉〈

p

∣

∣

∣

∣

q+
Q

2

〉

.

Next, we use the asymptotic formula (10) for the Her-
mite polynomials for large n and rewrite the cosines as
exponentials, yielding four terms, where for two of them
the exponents from the cosines have the same sign, while
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for the remaining two these signs are different. However,
in Eq. (15) replacing Q by −Q is the same as complex
conjugation, which is only true, if the two signs of the ex-
ponential are opposite. Therefore, the terms with both

signs being the same have to cancel when performing the
integral. Thus, the resulting exponent is antisymmetric
in Ql. Expanding it up to second order in Ql and ne-
glecting the dependence of the prefactor on Ql yields

[|n〉 〈n|]Weyl (q,p) ≈
L
∏

l=1

∑

sl=±1

2

∞
∫

−∞

dQl exp
[

−2iQl

(

pl + sl

√

(

nl +
1
2

)

− q2l

)]

π2
√

(

nl +
1
2

)

− q2l

=

L
∏

l=1

∑

sl=±1

2

π

δ
(

pl + sl

√

(

nl +
1
2

)

− q2l

)

√

(

nl +
1
2

)

− q2l

=

L
∏

l=1

1

πb2
δ

(

nl +
1

2
− q2l − p2l

)

.

(16)

For the Weyl symbol of the propagator, one can use
the usual short time asymptotic form

[

K̂(t)
]

Weyl
(q,p) ≈ exp

[

− i

~
H(MF ) (p,q) t

]

. (17)

Here,

H(MF ) (p,q) =

〈

p

∣

∣

∣ Ĥ
∣

∣

∣q

〉

〈p |q〉 = (18)

L
∑

l1,l2=1

(

hl1l2 −
1

2

L
∑

l3=1

Ul1l3l3l2

)

(

ψ∗
l1
ψl2 −

1

2
δl1l2

)

+
1

2

∑

l1l2l3l4

Ul1l2l3l4

(

ψ∗
l1
ψl3 −

1

2
δl1l3

)(

ψ∗
l2
ψl4 −

1

2
δl2l4

)

is the mean field Hamiltonian H(MF ) corresponding to
the full quantum Hamiltonian (3). It can be obtained by
the simple replacement rule [10, 11]

â†l âl′ → ψ∗
l ψl′ −

1

2
δll′ , (19)

with ψl = ql + ipl.

Inserting Eqns. (16) and (17) into Eq. (14) as well as
replacing the sum over occupations in Eq. (13) by an
integral then yields for the smooth part of the resolvent

ḡN (E) =
1

i~
(

π
4

)L

∞
∫

0

dt

∫

dLq

∫

dLp exp

{

i

~

[

E −H(MF ) (p,q)
]

t

}

δ

(

q2 + p2 −N − L

2

)

, (20)

and thus for the smooth part of the many-body DOS

ρ̄N (E) =

(

4

π

)L ∫

dLq

∫

dLpδ
(

E −H(MF ) (p,q)
)

δ

(

q2 + p2 −N − L

2

)

. (21)

As in the single-particle case, the smooth part is given by
the phase space volume of the N -particle energy shell.

B. Oscillatory part

To compute the oscillatory part g̃N(E), we start again
from Eq. (12) and rewrite the Kronecker delta, to get the
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resolvent as

gN(E) =
1

2π

2π
∫

0

dα
∑

n

〈

n

∣

∣

∣

∣

∣

∣

e
−iα

(

N−
L
∑

l=1

â
†

l
âl

)

Ĝ (E)

∣

∣

∣

∣

∣

∣

n

〉

.

(22)
The oscillatory part of the DOS, which we are in-

terested in here, can be obtained from a semiclassical
approximation of the Green function by computing the
trace using a stationary phase approximation. However,
for Fock space, the stationary phase approximation is not
applicable, since the trace in Fock states is given by a sum
rather than an integral. On the other hand, in [10, 11] a
possible way to circumvent this problem has been shown.
This is by again using the quadrature eigenstates |q〉 , |p〉.
Inserting them to the left and to the right of the Green
function yields

gN (E) = (23)

1

2π

2π
∫

0

dα

∞
∫

∞

dLq

∞
∫

∞

dLp
∑

n

〈

p

∣

∣

∣ Ĝ (E)
∣

∣

∣q
〉

〈q |n〉

×
〈

n

∣

∣

∣

∣

∣

∣

e
−iα

(

N−
L
∑

l=1

â
†

l
âl

)

∣

∣

∣

∣

∣

∣

p

〉

.

Using the completeness relation of the Hermite polyno-
mials then yields

∑

n

〈q |n〉
〈

n

∣

∣

∣

∣

∣

∣

e
iα

L
∑

l=1

â
†

l
âl

∣

∣

∣

∣

∣

∣

p

〉

=

L
∏

l=1

exp
{

i
cosα

[

2qlpl +
(

q2l + p2l
)

sinα
]

− iα2
}

√
π cosα

.

(24)

Next, one has to find an expression for the Green func-
tion, which is related to the propagator by means of a
Laplace transform,

G (p,q;E) =
〈

p

∣

∣

∣ Ĝ (E)
∣

∣

∣q
〉

=
1

i~

∞
∫

0

dte
i
~
EtK (p,q, t) .

(25)
In [11], a semiclassical approximation for the propagator
has been found, which is given by

K (p,q, t) =
∑

γ

√

∣

∣

∣

∣

det
1

2π~

∂2Rγ

∂p∂q

∣

∣

∣

∣

e
i
~
Rγ−iµ̃γ

π
2 (26)

where the sum runs over all mean-field trajectories (non-
linear waves) γ given by the solutions of the equations of
motion

i~ψ̇(t) =
∂H(MF) (ψ∗(t),ψ(t))

∂ψ∗(t)
, (27)

and the boundary conditions

ℜψ(0) = q,

ℑψ(t) = p.
(28)

Moreover, the phase each trajectory contributes with is
given by its action

Rγ =

t
∫

0

dt′
[

2~ℑψ(t′) · ℜψ̇(t′)−H(MF) (ψ∗(t′),ψ(t′))
]

− 2p · ℜψ(t)
(29)

and the Morse index µ̃γ .
For later reference, we state the derivatives of the ac-

tion with respect to p, q and t:

∂Rγ

∂p
=− 2~ℜψ(0),

∂Rγ

∂q
=− 2~ℑψ(t),

∂Rγ

∂t
=−H(MF) (ψ∗(0),ψ(0)) = −Eγ .

(30)

In order to determine the oscillatory part of the many-
body DOS, the time integration in Eq. (25) can be eval-
uated using a stationary phase approximation. The sta-
tionarity condition then selects those trajectories which
have energy E,

∂

∂t
[Rγ + Et] = E − Eγ = 0 (31)

In order to compute the semiclassical prefactor of the
Green function, one can use the standard trick for Jaco-
bians, with Tγ the period of γ, [17]

det
∂ (ℑψ(0), Tγ)
∂ (p, E)

= det

(

∂ (ℑψ(0), Tγ)
∂ (p, Tγ)

∂ (p, Tγ)

∂ (p, E)

)

= det

(

∂ℑψ(0)
∂p

)

∂Tγ
∂E

.

(32)

With this, the semiclassical Green function Eq. (25) is
given by

G (p,q;E) = (33)

1

i~

1
√
2π~

L−1

∑

γ

√

√

√

√

∣

∣

∣

∣

∣

det

(

∂2Wγ

∂q∂p

∂2Wγ

∂q∂E
∂2Wγ

∂E∂p

∂2Wγ

∂E2

)∣

∣

∣

∣

∣

e
i
~
Wγ−iµγ

π
2 ,

with µγ = µ̃γ + sign(∂E/∂tγ)/2 and

Wγ = Rγ +ETγ = 2~

Tγ
∫

0

ℑψ(t) · ℜψ̇(t)dt− 2~p · ℜψ(Tγ)

(34)
satisfying

∂Wγ

∂p
=− 2~ℜψ(0),

∂Wγ

∂q
=− 2~ℑψ(Tγ),

∂Wγ

∂E
=Tγ .

(35)
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Thus, in the semiclassical limit the oscillatory contribu- tion of the resolvent (23) is given by

g̃N(E) =
1

2πi~

2π
∫

0

dαe−iαN

∫

dLq

∫

dLp
∑

γ

√

√

√

√

∣

∣

∣

∣

∣

det

(

∂2Wγ

∂q∂p

∂2Wγ

∂q∂E
∂2Wγ

∂E∂p

∂2Wγ

∂E2

)∣

∣

∣

∣

∣

e
i
~
Wγ−iL2 α−iµγ

π
2 +

i[2q·p+(q2+p
2) sinα]

cosα

√
2π~

L−1√
π cosα

L
. (36)

The integrations over p and q as well as α will again be
performed in stationary phase approximation.

The corresponding stationary phase conditions for the
integrations over p and q read

∂

∂q

{

Wγ +

[

2q · p+
(

q2 + p2
)

sinα
]

cosα

}

= −2

[

ℑψ(0)− q sinα

cosα
− p

cosα

]

= 0, (37)

∂

∂p

{

Wγ +

[

2q · p+
(

q2 + p2
)

sinα
]

cosα

}

= −2

[

ℜψ(Tγ)−
p sinα

cosα
− q

cosα

]

= 0, (38)

which can be combined into the more compact condition

ψ(Tγ) = ψ(0)e
−iα. (39)

Equation (39) implies that the resulting trace formula
will be given by a sum over pseudo-periodic orbits, for
which the associated classical nonlinear waves after a cer-
tain pseudo-period Tγ differ from their initial values by
a global phase α.
Representing the classical nonlinear wave solution in

terms of its amplitude and phase,

ψl(t) =
√

nl(t)e
iθl(t), (40)

the resulting stationary phase solution for the α-
integration in Eq. (36) is given by

S̃γ =Wγ +

[

2q · p+
(

q2 + p2
)

sinα
]

cosα

= ~

Tγ
∫

0

θ(t) · ṅ(t)dt+ ~n(0) · [θ(0)− θ(Tγ)] .
(41)

In the last term, which originates from a partial integra-
tion, n(Tγ) = n(0) has been used. Its dependence on α
is determined by

n(0) · [θ(0)− θ(Tγ)] = Nγα+ 2π

L
∑

l=1

nl(0)kl, (42)

with

Nγ =

l
∑

l=1

|ψl(0)|2 (43)

the (time independent) number of particles defined by
the trajectory and k1, . . . , kL being integers.

Taking a closer look, one recognizes that due to the
conservation of the total number of particles already
2L− 1 of the stationary phase conditions, Eqns. (37,38)
suffice to satisfy all of them. Due to the Noether theo-
rem, there is a continuous symmetry for each conserved
quantity. Here, this continuous symmetry is given by
the U(1) gauge symmetry, i.e. the freedom to chose an
arbitrary time-independent global phase θ.

Moreover, as in Gutzwiller’s original derivation [3] of
the single-particle trace formula, the starting point of the
pseudo-periodic orbit can be chosen at any point along
the orbit. Thus, there remain two integrations, which are
the integrations over all pseudo-periodic orbits belonging
to the same continuous family of trajectories, that have
to be performed exactly.

For single-particle systems, the trace formula for
chaotic systems with additional continuous symmetries
has been studied in [18]. The evaluation of the semi-
classical prefactor of the trace formula presented there
can, to a large extend, be carried over straight forwardly
with minor modifications in order to correctly account
for the fact that the orbits in the case studied here are
not strictly periodic. Therefore, here we will only show
the steps, which have to be altered and refer the reader
to Ref. [18] for more details.

After transforming in Eq. (36) the integration vari-
ables q,p locally to q‖,q⊥,p‖,p⊥, where the (two-
dimensional) parallel components run along directions of
the continuous families, i.e. along the trajectory and the
direction of the global phase θ, while the remaining ones
are perpendicular to these, the integrations over the per-
pendicular components as well as p‖ yield
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g̃N (E) =
1

2π

2π
∫

0

dα

∫

d2q‖
∑

γ

e−iα(N+L
2 )

i
√
2π~

√
cosα

L

∣

∣

∣

∣

∣

∣

det
∂ (ℑψ(0), Tγ)
∂ (p, E)

det

(

∂ℑψ⊥(0)
∂q⊥

− sinα
cosα

∂ℑψ⊥(0)
∂p

− 1
cosα

∂ℜψ(Tγ )
∂q⊥

− 1
cosα

∂ℜψ(Tγ)
∂p

− sinα
cosα

)−1
∣

∣

∣

∣

∣

∣

1
2

e
i
~
S̃γ−iπ2 (µγ+νγ ),

(44)

where νγ = (N+ − N−)/2 is the difference between
the number of positive and negative eigenvalues of the
(2L − 2) × (2L − 2) dimensional matrix appearing in
the semiclassical prefactor. Note that the sum runs over
pseudo-periodic orbits with the initial global phase and
the initial position within the orbit chosen by the integra-
tion values. Alternatively, one can also refer to the sum

over γ as a sum over families of pseudo-periodic orbits,
where one is free to choose the initial global phase of the
reference orbit, which is used to compute its contribution.

Leaving the calculation of the determinant in Eq. (44)
to Appendix A, the trace of the semiclassical Greens func-
tion is given by

g̃N (E) =
1

2π

2π
∫

0

dα

∫

d2q‖
∑

γ

e−iα(N+L
2 )

i~
√
2π

1
√

∣

∣

∣det (Mγ − 1) ∂θ
∂Nγ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ℜ
(

ψ‖ (Tγ) e
iα
)

∂ (Tγ , θ)

∣

∣

∣

∣

∣

∣

−1

e
i
~
S̃γ−iπ2 (µγ+νγ+Lη(α)). (45)

Here θ is the initial phase of the trajectory,

η(α) =

{

1 if π
2 < α < 3π

2 ,

0 else
(46)

and

Mγ =
∂
(

ℜ
(

ψ⊥(Tγ)e
iα
)

,p⊥

)

∂ (q⊥,ℑ (ψ⊥ (0) e−iα))

=
∂
(

ℜ
(

ψ⊥(Tγ)e
iα
)

,ℑ
(

ψ⊥(Tγ)e
iα
))

∂ (ℜ (ψ⊥ (0)) ,ℑ (ψ⊥ (0)))

(47)

is the stability matrix for the pseudo-periodic orbit. In
view of Eqs. (28,39), for the pseudo-periodic orbit

ℑ
(

ψ(0)e−iα
)

= p,

ℜ
(

ψ(Tγ)e
iα
)

= q
(48)

holds.
Hence, the matrix in Eq. (47) is indeed the many-body,

field-theoretic analogue to the monodromy matrix ap-
pearing in the usual Gutzwiller trace formula [3].
Now, in Eq. (45), the last determinant can be used

in order to transform the integration over q‖ into inte-
grations over the propagation time and the global phase.
Again in view of Gutzwiller’s derivation [3] one has to
correctly account for repetitions of each primitive pseudo-
periodic orbit when evaluating these integrals. These
primitive pseudo-periodic orbits are obtained by find-
ing the largest possible, but finite integer m ≥ 1 for
which ψ(Tγ/m) = ψ(0) exp(−iα/m). Then ψ(t) obvi-
ously still satisfies Eq. (39). However, after the pseudo-
period Tppo = Tγ/m the primitive orbit is repeated but
with a different global phase. Thus when naively inte-
grating the global phase from 0 to 2π and the time from
0 to Tγ , one and the same orbit is counted m times.

On the other hand, as discussed in Appendix B, for
a given pseudo-periodic orbit, the primitive phase dif-
ference α, i.e. the phase difference after the primitive
pseudo-period, is unique. That is that any time T ∗,
for which ψ(T ∗) = ψ(0) exp(−iα∗), has to satisfy T ∗ =
mTppo with m ∈ N. Thus obviously also α∗ = mα.
Therefore,

∫

d2q‖

∣

∣

∣

∣

∣

∣

∂ℜ
(

ψ‖ (tγ) e
iα
)

∂ (Tγ , θ)

∣

∣

∣

∣

∣

∣

−1

=
2πTγ
m

= 2πTppo. (49)

The last remaining integration over α can straightfor-
wardly be computed in stationary phase approximation.
The stationarity condition selects those trajectories, for
which the given number of particles Nγ is related to the
total number of particles,

Nγ = N +
L

2
, (50)

however, when evaluating the integral, one should keep
in mind that α = θ − θ(Tγ), where θ(Tγ) is the global
phase at final time.
Finally, the oscillatory part of the many-body DOS for

fixed total number of particles then reads

ρ̃N (E) =
∑

po

Tppo

π~
√

|Mpo − 1|
cos

(

1

~
Spo(E)− σpo

π

2

)

.

(51)
Here the sum runs over the families of pseudo-periodic
orbits satisfying

ψ (Tpo) = ψ (0) e−iαpo , (52)

where Tpo is the flying time of the orbit, which may be
any integer multiple of the primitive period Tppo, defined
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as the smallest time, for which Eq. (52) is satisfied, and
αpo is an arbitrary global phase depending only on the
trajectory.
The argument of the cosine is given by the classical

action

Spo(E) = ~

Tpo
∫

0

θ (t) · ṅ (t) dt+ 2π~kpo (53)

and the (integer) Maslov index

σpo = µpo + νpo + Lη (αpo)−
1

2
sign

∂Nγ

∂αpo
, (54)

We would like to give a final remark about the appear-
ance of the global phase difference αpo. When consider-
ing the orbits in the reduced space, where not only the
number of particles is fixed but also the global phase is
set constant, they would be strictly periodic. However,
as it was already remarked in [18], a trajectory, which is
periodic in reduced space may not be periodic in the full
space.
On the other hand, one might have expected this be-

haviour already in advance, since even if the nonlinear
wave at final time differs from the initial one by a global
phase factor, the following time evolution is again the
same as the initial one.

C. The Maslov index

While Eq. (54) in principle yields the correct Maslov in-
dex, it is not very helpful when calculating it in practice.
A more useful formula can be obtained by not performing
both integrations over p and q in Eq. (36) together but
one after the other. For instance, if p is integrated out
first, the intermediate result for the resolvent is given by

gN(E) =
1

2πi~ (−2πi~)
L−1

2

2π
∫

0

dαe−iα(N+L
2 )
∫

dLq

∑

γ

√

√

√

√det

(

∂2W̃γ

∂q∂q′

∂2W̃γ

∂q∂E
∂2W̃γ

∂E∂q′

∂2W̃γ

∂E2

)

∣

∣

∣

∣

∣

∣

q′=q

e
i
~
W̃γ ,

(55)

where now the trajectories satisfy the boundary condi-
tions

ℜψ(0) = q

ℜψ(Tγ)eiα = q,
(56)

and their actions are given by

W̃γ =Wγ+
~

cosα

{

ℑψ(Tγ) · q+
[

q2 + (ℑψ(Tγ))2
]

sinα
}

.

(57)
Performing the remaining integrals in stationary phase
approximation (except of those along the trajectory and

along the global phase) must finally again yield Eq. (51).
However, this way following [19], the Maslov index is
given by a sum of two terms

σpo = µ′
po + ν′po, (58)

where µpo is increased and decreased by one every time
the determinant of

(

∂ℑψ⊥(t)e
iα

∂ℑψ⊥(0)

∂ℑψ⊥(t)e
iα

∂ℜψ⊥(0)

)−1

(59)

changes sign as a function of t. In fact, µ′
po is not an

invariant property of the pseudo-periodic orbit, but de-
pends on the choice of the initial point. ν′po also depends
on this choice and is determined by the zeros of the de-

terminant of
(

∂ℑψ⊥(t)eiα

∂ℜψ⊥(0)

)−1

. This index can be deter-

mined as follows [19]: When shifting the initial point
along the orbit, a caustic, which is the point at which
(

∂ℑψ⊥(t)eiα

∂ℜψ⊥(0)

)−1

is zero, can appear or disappear. At such

a point, ν′po is incremented or decremented by one. This
way, σpo is independent of the choice of the initial point.
We conclude the presentation of the derivation of the

trace formula for second-quantized many-body systems
with a remark concerning the implementation of the
gauge symmetry responsible of the conservation of N . At
first glance one may think that our choice of using the
periodic orbits in the extended phase-space, thus render-
ing them pseudo-periodic, leads to substantial technical
complications compared with a construction based on pe-
riodic orbits in the reduced phase-space fixed by the total
number of particles. The classical mean-field equations
get, however, extremely convoluted when one explicitly
uses the conservation ofN to reduce the dimensionality of
the problem, as it can be easily seen from Eqns. (43) and
(18). Explicit use of N as an external parameter leads
then to equations of motion which are non-polynomial
in the fields, thus making both analytical and numeri-
cal calculations much more difficult already in the non-
interacting case while, with our choice, the simplicity of
the mean-field equations is preserved.

IV. THE FREE FIELD

The trace formula (51) for Bose-Hubbard systems finds
its most natural application in the case where the mean-
field equations display (discrete) field chaos going along
with isolated unstable periodic solutions. Technically,
this stems from the essential step where the integrations
involved in the calculation of the trace are performed in
stationary phase approximation. Implicitly, we are as-
suming that periodic orbits are isolated and do not come
in continuous families. The presence of continuous fam-
ilies of periodic orbits is a hallmark of classical integra-
bility [1], and therefore the trace formula cannot usually
be applied to integrable systems.
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In order to study the possible application of the trace
formula (51) in the non-interacting limit of a discrete
bosonic field we must check whether this limit corre-
sponds to a classical integrable system or not. In view
of Eqs. (3) and (19), the mean field Hamiltonian corre-
sponding to the quantum mechanical free field Hamilto-
nian,

Ĥ =
∑

ij

Hij â
†
i âj , (60)

is given by

H(MF,Free) (ψ∗,ψ) =
∑

ij

Hij

(

ψ∗
i ψj −

δij
2

)

(61)

where the term 1/2 came from the Weyl ordering of oper-
ators implicit in our derivation of the semiclassical prop-
agator.
First, we will show that H(MF,Free) admits a set of L

independent constants of motion, implying by definition
integrability. In exact analogy with the quantum case,
we consider a transformation

ψi =
∑

χ

uiχφχ (62)

which is canonical if and only if the matrix u with entries
uiχ is unitary. It is a simple exercise to show that if the
matrix u diagonalizes the matrix H, i.e,

∑

ij

u∗iχHijujχ′ = eχδχχ′ (63)

then the functions

nχ (ψ∗,ψ) :=
∑

ij

u∗iχujχψ
∗
i ψj , for χ = 1, . . . , L (64)

constitute L independent constants of motion under the
Hamiltonian flow induced by H(MF,Free). These classical
phase-space functions are the obvious classical analogues
of the quantum mechanical number operators counting
excitations in the eigenstates of the single particle Hamil-
tonian.
Since the free mean-field Hamiltonian is integrable, the

trace formula should in principle be modified to account
for the continuous families of periodic orbits typical of
integrable systems. Remarkably, it turns out that the
non-interacting limit of a quantum field theory is not
typical at all. The reason is that, as it is obvious from
the quadratic dependence of H(MF,Free) (ψ∗,ψ) on the
canonical variables ψ∗ and ψ, the free field is not only
integrable but it is actually harmonic. Harmonic systems
are not generic integrable systems. In fact, depending on
the number-theoretical relation between the energies eα
of the single particle orbitals, they share some funda-
mental properties of the chaotic case. In particular, if
the single-particle energies are not commensurable (the
generic situation for a randomly chosen matrix H), the

periodic orbits of the system are actually isolated. To
understand this we focus on the solutions of the classical
limit, which is just the single-particle, linear Schrödinger
equation

i~
d

dt
ψi(t) =

∑

j

Hijψj(t), (65)

with solution

ψ(t) = e−
i
~
Htψ(0). (66)

Note that the eigenvector v(χ) of H

Hv(χ) = eχv
(χ) (67)

with eigenvalue

eχ = ~wχ (68)

defines a family of periodic orbits with fundamental fre-
quency wχ

v(χ)(t) = e−iwχtv(χ). (69)

To show that these are the only periodic orbits of the
system and that they are indeed isolated we note that,
because of linearity, Eq. (66) can be expressed as a linear
combination,

ψ(t) =
∑

χ

cχ(ψ(0))e
−iwχtv(χ) (70)

for some constants cχ(ψ(0)) depending only on the initial
condition ψ(0). Assume now that for this initial condi-
tion there is a pseudo-periodic solution with period T ,
namely, that

ψ(T ) = ψ(0) exp(−iα). (71)

Comparing the eigenvector expansions of both sides of
this equation we get the consistency condition

cχ(ψ)e
−iα = cχ(ψ)e

−iwχT for all χ (72)

which for incommensurable frequencies wχ can be only
satisfied if T satisfies

T = Tχ̃ :=
α

wχ̃

(73)

for some χ̃ and simultaneously cχ(ψ) = δχχ̃ [20]. This
means that for a generic matrix H, the only periodic or-
bits are the ones emerging from the eigenstates of the
single-particle problem. For fixed energy they are obvi-
ously discrete, and therefore isolated.
It is important to stress that, being simply the classical

limit of the theory, there is no physical reason whatso-
ever to prefer a normalized solution of the equations of
motion. In fact, each eigenvector v(χ) defines a com-
plete, continuous family of periodic orbits with norms
that vary continuously. As it will be clear below, this
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continuous family corresponds to the expected continu-
ous dependence of the action with the energy E. For
fixed E in the trace formula, a specific value of the norm
∣

∣v(χ)
∣

∣

2
will be selected.

Note here that in this special case of zero interactons
the integration along the periodic orbit is actually the
same as the one along the initial global phase, due to
Eq. (69), namely the time evolution for a periodic orbit
is simply a change in the global phase. Thus, contrary to
Sec. III B, only one integration, namely the one along the
trajectory, has to be performed exactly. The evaluation
of the integrals in Eq. (36) is then strictly equivalent
to the standard derivation of the trace formula [3] and
yields for the oscillatory part of the many-body DOS for
non-interacting systems

ρ̃N (E) = − 1

2π
ℑ

2π
∫

0

dαe−iα(N+L
2 ) (74)

×
∑

po

Tppo

iπ~
√

|Mpo − 1|
exp

(

i

~
S̃po − iσpo

π

2

)

.

Here, the pseudo-periodic orbits and their actions are still
given by Eqns. (39) and (41), while the stability matrix
Mpo is given by Eq. (47) but with the perpendicular co-
ordinates increased by one further dimension. Also, due
to the coincidence of the integration along the orbit and
along the global phase, the primitive period Tppo is now
determined by a full cycle, i.e. the smallest (non-zero)
time for which ψ(t) = ψ(0). The Maslov index σ can
still be calculated according to Sec. III C.
Since the periodic orbits are isolated, our trace formula

can be applied directly. In the non-interacting case it is
instructive to perform the integration over α (respon-
sible for selecting orbits with fixed given total number
of particles N) exactly. The pseudo-periodic orbits are
organized in L families corresponding to the L different
eigenvectors of the matrixH. Consider first the primitive
pseudo-periodic orbit associated with the eigenvector χ,
whose time-dependence can be explicitly constructed as
in Eq. (69) and therefore has frequency wχ. As charac-
teristic of harmonic systems, the period is independent
of the energy E of the trajectory, which is given by

E =
∑

ij

(

v
(χ)
i

)∗

Hijv
(χ)
j − 1

2
Tr H

= eχ

∣

∣

∣v
(χ)
∣

∣

∣

2

− 1

2

∑

χ

eχ. (75)

Note that the energy E appearing in the trace formula
and as the argument of the many-body DOS has noth-
ing to do a priori with the eigenvalues eχ of the single-
particle problem, beyond the fact that the spectrum of H
is part of the parameters that define the many-body prob-
lem. From the point of view of semiclassics in second-
quantized systems, in the non-interacting case the single
particle energies eχ simply provide the frequencies wχ of
the harmonic problem that defines the classical limit.

Using Eqs. (41) and (43) the action of the kth repe-
tition of any member of the χ-family is easily found to
be

S̃(k)
χ = (α+ 2πk)~

∣

∣

∣
v(χ)

∣

∣

∣

2

, (76)

and therefore, using Eq. (75) we get the action

S̃(k)
χ (E) =

α+ 2πk

wχ



E +
~

2

∑

χ′

wχ′



 (77)

and the period

T (k)
χ (E) =

α+ 2πk

wχ

(78)

of the pseudo periodic orbits in terms of the energy. Fol-
lowing the discussion below Eq. (74), the period of the
primitive pseudo orbits is then given simply by 2π/wχ.
The next step is the calculation of the stability ma-

trices and Maslov indeces entering the trace formula
Eq. (74). This is a standard exercise for harmonic sys-
tems, and we present it here only to ilustrate the concep-
tual relation between eigenstates of single particle prob-
lems in first quantization and the semiclassical approach
to second-quantized many-body systems of indistinguish-
able particles.
The stability matrix is given by the local properties of

the classical evolution around a specific pseudo periodic
orbit, Eq. (66), as the linear transformation relating small

initial δv(χ)(0) and final δv(χ)(T
(k)
χ ) deviations from the

reference orbit. Using the linearity of the classical dy-
namics we easily get

δv(χ)(T (k)
χ ) = e−

i
~
HT (k)

χ δv(χ)(0) (79)

=
∑

χ′

v(χ′) · δv(χ)(0)e−i(α+2πk)
e
χ′

eχ v(χ′).

In view of Eq. (47), we then obtain for the components
of the deviations along the directions χ′ = χ⊥ perpen-
dicular to the χ-orbit

δv
(χ)
χ′ (T (k)

χ )eiα = e
−i(α+2πk)

e
χ′

eχ
+iα

δv
(χ)
χ′ (0). (80)

This equation indicates that the stability matrix is obvi-
ously block-diagonal, with the block corresponding to χ′

being simply a rotation matrix with angle

θ
χ,(k)
χ′ = (α+ 2πk)

eχ′

eχ
− α, (81)

and therefore

∣

∣

∣M (k)
χ − 1

∣

∣

∣ =
∏

χ′ 6=χ

∣

∣

∣

∣

∣

det

(

cos θ
χ,(k)
χ′ − 1 sin θ

χ,(k)
χ′

− sin θ
χ,(k)
χ′ cos θ

χ,(k)
χ′ − 1

)∣

∣

∣

∣

∣

.

(82)
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This yiealds eventually
√

∣

∣

∣M
(k)
χ − 1

∣

∣

∣ =
∏

χ′ 6=χ

2

∣

∣

∣

∣

sin

(

α+ 2πk

2

eχ′

eχ
− α

2

)∣

∣

∣

∣

. (83)

Moreover, the Maslov index for the k-th repetition of the
χ-family is given by [21]

σ(k)
χ = 2k + 2

∑

χ′ 6=χ

⌊

(

k +
α

2π

) eχ′

eχ
− α

2π

⌋

+ 1, (84)

where ⌊x⌋ denotes the integer part of x.
Substitution of the actions, stabilities and Maslov in-

deces in Eq. (74) leads to the semiclassical trace formula
for the free bosonic field with fixed total number of par-
ticles N as a sum over pseudo-periodic orbits and their
repetitions:

ρ̃N (E) = − ℜ
2π

2π
∫

0

dαe−iαN
L
∑

χ=1

1

eχ
(85)

×
∞
∑

k=1

e
i
[

α+2πk
eχ

(E+ 1
2

∑

χ′ eχ′)−σ(k)
χ

π
2

]

∏

χ′ 6=χ 2
∣

∣

∣sin
(

α+2πk
2

eχ′

eχ
− α

2

)∣

∣

∣

.

If necessary, the last integration over α can be performed
by taking α = 0 in all smooth terms, and calculating
exactly the integral involving the highly oscillatory ones,
and this may be indeed the way to proceed for specific
calculations based on the peudo-periodic orbits.
For the smooth (Weyl) contribution we left out again

the α-integration and easily get

ρ̄N (E)=
ℜ
2π

2π
∫

0

dαe−iαN (86)

(

4

π

)L∫

dLq

∫

dLpδ
[

E −H(MF )(p,q) − α(q2 + p2)
]

.

For completeness, we show below the consistency of the
trace formula, Eq. (85), with the semiclassical quantiza-
tion procedure for direct quantization of invariant man-
ifolds in phase space, so-called EBK-quantization, valid
only for integrable systems. In the following we apply it
to the case of interest here.
Within EBK quantization, the classical Hamiltonian is

first written in terms of a new set of canonical variables
(φ,J) where J = J(n) are combinations of the classi-
cal constants of motion, such that H(φ,J) = H(J). In
our case, these functions are simply given by J = ~n(ψ)
with nχ(ψ) defined in Eq. (64). In the new variables the
Hamiltonian is given by

H(J) =
∑

χ

(

Jχ − ~

2

)

wχ. (87)

In a second step, EBK quntization selects the values of
the classical actions J such that

Jχ = ~

(

nχ +
βχ
4

)

(88)

with nχ = 0, 1, 2, . . . and with indices βχ given by the
number of turning points of any classical trajectory evolv-
ing in the phase space manifold defined by the set of
quantized constants of motion, so in our case βχ = 2 for
all χ. The EBK-quantized energies are then obtained by

En = H

[

J = ~

(

nχ +
1

2

)]

, (89)

giving for our case

En =
∑

χ

nχeχ, (90)

providing a proper and physical interpretation of the
EBK quantization condition in the context of the free
bosonic field: quantization of the many-body energy lev-
els is due to quantization of the occupation numbers.
As it is well known [8], the EBK quantization of linear
(harmonic) systems is exact, and indeed this is the exact
quantum mechanical spectrum of this system.

So far, we used a well known quantization method
to derive a well known result in the framework of first-
quantized systems. What makes the second-quantized
approach rather special is the status of the phase-space
observable representing the total number of particles N .
The key point is that the conserved quantity

N(ψ) =
∑

i

|ψi(t)|2, (91)

plays a distinctive role in the field theoretic scenario,
namely, it labels subspaces of given total number of par-
ticles. Note that such a condition is never encountered
in the description of particle (instead of field) systems.
There, the function N(ψ) is simply the sum of actions,
and there does not exist a physical interpretation as an
observable.

This detail makes the semiclassical approach for fields
with conserved number of particles conceptually differ-
ent from its interpretation as a set of first-quantized har-
monic oscillators. In particular, if one wants to study the
many-body spectrum with a given, fixed N , one must
project the EBK DOS. This is again accomplished by in-
troducing a variable α, playing the role of an imaginary
chemical potential,

ρN(E) =
1

2π

2π
∫

0

dαe−iαN (92)

×
∑

n

δ

(

E −
∑

χ

nχeχ

)

eiα
∑

χ nχ .

In order to transform this sum over quantum numbers
corresponding to quantized occupations into a trace for-
mula where periodic (or pseudo-periodic) orbits appear,
we proceed in a similar way as in the semiclassical quan-
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tization of harmonic systems and introduce

Z(β, α) =

∫ ∞

0

dEe−βE
∑

n

δ

(

E −
∑

χ

nχeχ

)

eiα
∑

χ
nχ

=
∑

n

e−β
∑

χ nχeχeiα
∑

χ nχ . (93)

Performing the sums given as geometric series, we get

Z(β, α) =
∏

χ′

[

1− e−(βeχ′−iα)
]−1

(94)

which is suitable to compute the inverse Laplace trans-
form required in Eq. (92)

∑

n

δ

(

E −
∑

χ

nχeχ

)

eiα
∑

χ
nχ (95)

=
1

2πi

∫ ǫ−i∞

ǫ−i∞

dβeβEZ(β, α),

by means of the Bromwich formula where ǫ is real and
positive and chosen such that it is larger than the real
part of all the poles of Z(β, α). These poles are easily
found to be located at

β(k)
χ = i

(

α+ 2πk

eχ

)

, k = 0,±1,±2, . . . (96)

and are naturally labelled by the index χ of the single-
particle energy that, as we know, also denotes periodic
orbits. The second index k labelling the positions of the
poles is naturally interpreted within the trace formula as
the repetition of the pseudo-periodic orbits as well.
Having at hand our trace formula, Eq. (85), we are

ready to identify and give physical interpretation to the
different factors appearing in the “exact” trace formula
obtained by evaluating the contributions from the residua
of Eq. (95) at the poles given by Eq. (96). Consider first

eβE
∣

∣

β=β
(k)
χ

= e
iα+2πk

eχ
E

(97)

giving the energy-dependent term in the action of
Eq. (85). Now

(

1− e−(βeχ′−iα)
)−1

∣

∣

∣

∣

β=β
(k)
χ

=

[

1− e
−i

(

(α+2πk)
e
χ′

eχ
−α

)
]−1

=
e
i
(

α+2πk
2

e
χ′

eχ
−α

2

)

2i sin
(

α+2πk
2

eχ′

eχ
− α

2

) (98)

give the stability factors in Eq. (85). Putting all together,
we finally get

∑

n

δ

(

E −
∑

χ

nχeχ

)

eiα
∑

χ
nχ (99)

=
∑

χ

1

i~wχ

∞
∑

k=−∞

e
i
[

α+2πk
eχ

(E+ 1
2

∑

χ′ eχ′)−Lα
2 −kπ

]

∏

χ′ 6=χ 2i sin
(

α+2πk
2

eχ′

eχ
− α

2

) ,

in full agreement with our trace formula, Eq. (85). Note,
however, that the terms with k = 0 must be computed
independently, and in the limit α = 0, appropriate for
the asymptotic regime N → ∞, they precisely provide
the Weyl term, Eq. (86).

V. EXTENSIONS AND RELATION WITH

PREVIOUS APPROACHES

The semiclassical trace formula provides a fundamental
and rigorous connection between the spectrum of a quan-
tum system and the features and properties of its classi-
cal limit. As such, it should be able to cover less general
approximations that rely on classical information to ex-
plain features of the quantum mechanical DOS. Note,
however, that the trace formula does not associate di-
rectly dynamical properties of the classical system with
individual energy levels of the quantum spectrum. The
correct association is between periodic solutions of the
classical mean field equations and Fourier components of
the full many-body quantum DOS as a function of the
energy. Semiclassically, the emergence of discrete ener-
gies is an interference phenomenon due to the coherent
superposition of all these harmonics.
In this paper, we have addressed the situation where

the classical mean field dynamics, understood as a dy-
namical system, is such that all the periodic solutions are
unstable. Remarkably, while this is usually the case that
only for fully chaotic dynamics, a generic non-interacting
bosonic field falls into this category as well. This is be-
cause the periodic solutions of the corresponding classical
limit, which is harmonic, are again isolated.
As it is well known [1, 22] a generic dynamical system

is actually neither integrable, nor chaotic, and the trace
formula and more generally, semiclassical quantization
methods for first-quantized systems were correspondingly
generalized in order to describe also the integrable-to-
chaotic transition [16]. Also, extensions and general-
izations of the trace formula can be used to quantize
selected, specific non-universal features of the classical
phase space. In the following we present a brief discus-
sion of the connections between the approach presented
here and other semiclassical methods aiming to associate
features of the quantum spectrum with special classical
structures.
The first, non-generic, situation appears if the classical

mean-field equations admit a static solutionψ(fix) defined
by

i~ψ̇(t)
∣

∣

∣

ψ=ψ(fix)
=
∂H(MF) (ψ∗(t),ψ(t))

∂ψ∗(t)

∣

∣

∣

∣

ψ=ψ(fix)

= 0 (100)

such that the classical mean-field motion is strictly sta-

ble in all directions around ψ(fix). In this case, the spec-
trum of the system will contain energy levels associated
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with the quantization of the normal modes describing
small oscillations around the stable fixed point. Long-
wavelength oscillations of the DOS due to this ladder of
energy levels will be described by our trace formula for
the harmonic system obtained by the quadratic expan-

sion of H(MF) (ψ∗(t),ψ(t)) around ψ(t) = ψ(fix). In the
context of Bose-Hubbard models, this result corresponds
to the well known Bogoliubov approximation [23], and by
its very construction it is valid only for energies E such

that H(MF)
(

ψfix,∗,ψfix
)

≃ E.

Generic dynamical systems display a mixed phase
space with a mixture of regular (locally integrable) and
chaotic motion, often with complicated fractal structures
along their borders [22]. None of the versions of the
trace formula presented here are valid for this situation.
However, the whole machinery developed to incorporate
bifurcation effects characteristic of the mixed dynamics
scenario in the trace formulas for first-quantized systems
[8] can be directly imported into the many-body context.
The semiclassical quantization of regular islands in phase
space can be done equivalently by constructing local con-
stants of motion and applying the EBK quantization lo-
cally [16]. These approaches may be very important in
the field theoretical context, as numerical investigations
consistently indicate that the phase space of the dynam-
ics induced by the mean field Hamiltonian has a very
complicated structure, where hard chaos might be very
difficult to observe [12, 24].

A special situation where interactions are present, ren-
dering the classical dynamics nonlinear, but the system
is still integrable arises for the case L = 2. Here exist two
constants of motion (the total energy and number of par-
ticles), hence as many as degrees of freedom. The two-site
Bose Hubbard model has been extensively studied both
both quantum mechanically and classically, and can be
exactly mapped into the Josephson Hamiltonian describ-
ing bosonic excitations in superconducting devices [25].
Semiclassically, this system has been extensively stud-
ied by means of the EBK quantization method appropri-
ate for classically integrable systems. The construction
of the classical actions and the quantization conditions
are, however, substantially more complicated [26–28]. In
order to apply the methods presented here to this sit-
uation, it is convenient to work directly in the reduced
phase space obtained by fixing the total number of par-
ticles. The dynamics is now essentially one-dimensional,
and our trace formula can be used, as energy-conserving
one-dimensional systems possess both integrable dynam-
ics and isolated periodic orbits. The result of this calcula-
tion is just the WKB approximation to the energy levels,
which can be improved in several ways [27, 29]. This
well known equivalence between trace formulas, EBK
quantization and WKB methods for conservative one-
dimensional systems is well known in the context of first-
quantized semiclassics [8].

Furthermore, our trace formula allows to calculate the
contribution to the DOS from periodic orbits with both

stable and unstable local classical dynamics, a generic
case existing for multi-dimensional systems [4]. Note
that for the non-interacting limit of the Bose-Hubbard
model, we encountered already the situation where the
local classical flow around the isolated periodic orbits is
stable. The difference between the different situations is
fully encoded in the properties of the stability matrices
around the classical periodic orbits, and therefore the
application of the trace formula requires their explicit
calculation. The spirit of this approach is not the com-
plete enumeration of all periodic orbits, but the study
of the contribution of particular solutions to the DOS.
The study of such effects has been successfully carried
out in the first-quantized approach to the helium atom
[30] and to the semiclassical quantization of solitons in
the context of continuous quantum field theory [31].

VI. CONCLUSIONS

We have presented a rigorous derivation of the semi-
classical approximation for the quantum mechanical DOS
in many-body quantum systems described by bosonic
quantum fields on finite lattices, starting from the ex-
act path integral form of the many-body propagator.
We showed explicitly how to derive both the smooth
(Weyl) and oscillatory (Gutzwiller) contributions to the
DOS, and provide a trace formula for the later. Our
approach follows the original pioneering methods intro-
duced by Gutzwiller for chaotic single-particle systems.
We avoided the coherent state representation, with its
characteristic need to complexify the classical limit of
the theory, by using quadrature states of the field. As
a special feature of the field scenario, the classical limit
is a discrete classical field and its isolated (mean-field)
periodic solutions are the input of the trace formula.
Another special property is the existence of a contin-

uous symmetry related to the conservation of the total
number of particles in closed systems. We applied the
methods of symmetry-projected semiclassical densities
of states to get an expression for the many-body DOS
within each sector with fixed total number of particles.
Interestingly, due to the fact that the quantum problem
in the non-interacting case reduces to a harmonic system,
our trace formula is applicable since the periodic orbits
can be shown to be isolated in the generic case where the
single-particle energies are not commensurable, as in the
chaotic case.
As for the single-particle case, our trace formula shows

how the existence of discrete many-body energy levels
emerging from the continuous, smooth background given
by the Weyl law, is an interference phenomenon. The cor-
rect density of states and its characteristic profile made
up from Dirac-delta peaks is built by the coherent effect
of oscillatory contributions, one for each periodic orbit.
The study of the quantum manifestations of classical

solitons (particular solutions of the non-linear equations)
is matter of recent interest in the cold-atoms community.
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We expect that the application of our trace formula may
help to understand and quantify interference of solitons
in terms harmonics building up the many-body DOS.
This will provide a deeper, semiclassical understanding
of long-range structures in the energy spectrum of many-
body systems.

Our work paves the way to a systematic study of the
role of classical field solutions in the many-body DOS for
discrete quantum fields. The close formal analogy of the
many-body trace formula (51) with the Gutzwiller trace
formula implies, once the conservation of total number
of particles is taken care of, that the methods routinely
used in the context of single-particle semiclassics can be
used to show that the spectral fluctuations have univer-
sal correlations on the scale of the mean level spacing if
the classical field equations are chaotic. The universal
spectral correlations are linked to interference between
periodic orbits with quasi-degenerate actions and peri-
ods beyond the Ehrenfest time, given by ∼ λ−1 log ~−1

for single-particle systems with a classical limit with Lya-
punov exponent λ. In the many-body case, correspond-
ingly, quantum interference is additionally governed by
another log-time scale, the Eherenfest time Λ−1 logN .
here, Λ denotes the average Lyapunov exponent of the
assumed non-linear mean-field dynamics of the classical
field limit. Interfering quasi-degenerate periodic mean-
field solutions are expected to lead to the emergence
of universal many-body spectral fluctuations. The non-
interacting case has, however, non-generic spectral fluc-
tuations that do not correspond to the expected Pois-
sonian spectra of integrable systems, a peculiar conse-
quence of the field theoretical scenario where the free
field is actually a linear, not only integrable, system.

With our work we hope to contribute to the qualitative
and quantitative analysis of both universal and system-
specific features in the energy spectra of many-body sys-
tems by means of periodic orbit theory.

Appendix A: Derivation of the semiclassical

prefactor of the trace formula

The simplification of the product of the two determi-
nants appearing in Eq. (44) to the form in which they
appear in Eq. (45) can, to a large extent, be performed
by following Ref. [18] (see Eqs. (2.14-3.12) there). There-
fore, here only the main steps will be presented, in order
to show how to correctly account for the phase difference
α. For notational simplicity, in the following we will use
t instead of Tγ to represent the period of the pseudo-
periodic orbit γ.

First, guided by the Gutzwiller trace formula, where
the semiclassical prefactor is determined by the mon-
odromy matrix, we try to bring the second matrix in
Eq. (44) into a form, where ψ appears in such a form
that without derivatives it could be replaced by p and q.

This is achieved by

det

(

∂ℑψ⊥(0)
∂q⊥

+ sinα
cosα

∂ℑψ⊥(0)
∂p

− 1
cosα

∂ℜψ(t)
∂q⊥

− 1
cosα

∂ℜψ(t)
∂p

+ sinα
cosα

)

=

det
1

cosα

∂
(

ℑψ⊥(0)e
iα − p⊥,ℜψ(t)e−iα − q

)

∂ (q⊥,p)
.

(A1)

With this the steps in Ref. [18] can be carried over one to
one in order to obtain (compare with Eq. (3.4) therein)

det

(

∂ℑψ⊥(0)
∂q⊥

+ sinα
cosα

∂ℑψ⊥(0)
∂p

− 1
cosα

∂ℜψ(t)
∂q⊥

− 1
cosα

∂ℜψ(t)
∂p

+ sinα
cosα

)

det ∂(ℑψ(0),t)
∂(p,E)

=

(cosα)−(2L−2) det





∂
(

ℜψ‖(t)e
−iα, E,Nγ

)

∂
(

ℑψ‖ (0) , t, θ
)





× det

(

∂
(

ℑψ⊥(0)e
iα − p⊥,ℜψ⊥(t)e

−iα − q⊥, θ
)

∂ (q⊥,ℑψ⊥ (0) , Nγ)

)

,

(A2)

where θ is the initial global phase of the nonlinear wave
and Nγ is the number of particles determined by the
nonlinear wave.
Next, in the first of these two matrices, we again re-

place the derivative with respect to ℑψ⊥(0) by one with
respect to ℑ (ψ⊥(0) exp (iα)),

det
∂
(

ℑψ⊥(0)e
iα − p⊥,ℜψ⊥(t)e

−iα − q⊥, θ
)

∂ (q⊥,ℑψ⊥ (0) , Nγ)
=

(cosα)
L−2

det
∂
(

ℑψ⊥(0)e
iα − p⊥,ℜψ⊥(t)e

−iα − q⊥, θ
)

∂ (q⊥,ℑψ⊥ (0) eiα, Nγ)
.

(A3)

Thus,

det

(

∂ℑψ⊥(0)
∂q⊥

+ sinα
cosα

∂ℑψ⊥(0)
∂p

− 1
cosα

∂ℜψ(t)
∂q⊥

− 1
cosα

∂ℜψ(t)
∂p

+ sinα
cosα

)

det ∂(ℑψ(0),t)
∂(p,E)

= (cosα)
−L

(

∂θ

∂Nγ

)

det





∂ℜ
(

ψ‖ (t) e
−iα
)

∂ (t, θ)

∂ (E,Nγ)

∂ℑψ‖(0)





× det

(

∂
(

ℜψ⊥(t)e
−iα − q⊥,p⊥ −ℑψ⊥(0)e

iα
)

∂ (q⊥,ℑψ⊥ (0) eiα)

)

= − (cosα)
−L 4b4

~

(

∂θ

∂Nγ

)

det





∂ℜ
(

ψ‖ (t) e
−iα
)

∂ (t, θ)





2

× det

(

∂
(

ℜψ⊥(t)e
−iα − q⊥,p⊥ −ℑψ⊥(0)e

iα
)

∂ (q⊥,ℑψ⊥ (0) eiα)

)

.

(A4)
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The additional minus sign in the last step results from
the fact that

∂ℜ
(

ψ‖ (t) e
−iα
)

∂θ
= −ℑψ‖(0) = −1

2

(

∂Nγ

∂ℑψ‖(0)

)T

.

(A5)
The remaining prefactors stem from the special form of
the equations of motion, Eq. (27), together with the re-
lation between ψ and q,p, Eq. (48).

Appendix B: Uniqueness of the phase difference of

pseudo-periodic orbits

In this appendix, we show that if γ is quasi-periodic
with phase difference α, i.e.

ψ(Tγ) = ψ(0) exp(−iα), (B1)

with pseudo-period

Tppo = Tγ/m, m ∈ N, (B2)

then there is no β, which is not an integer multiple of
α/m, such that for some time t∗ the trajectory satisfies

ψ(T ∗) = ψ(0) exp(−iβ). (B3)

To see this, assume there would be such a phase β and
time T ∗ < Tγ . Since β is not an integer multiple of α/m,

T ∗ also is not an integer multiple of Tppo Then there is
also an integer m∗ > 0 such that

m∗T ∗ < tγ < (m∗ + 1)T ∗ (B4)

and the trajectory would have to satisfy

ψ(Tγ) = ψ(m
∗T ∗) exp(−i(α−m∗β)), (B5)

i.e. the trajectory would be pseudo-periodic with phase
difference α−m∗β and primitive period Tγ−m∗T ∗ < T ∗,
which is not an integer multiple of Tppo. Now we can
replace β by α−m∗β and repeat the argumentation again
yielding an even smaller primitive period Tγ − m∗T ∗.
Since m is supposed to be the largest possible number
such that

ψ(Tγ/m) = ψ(0) exp(−iα/m) (B6)

this procedure can be repeated infinitely often yielding
finally T ∗ = 0. However, having a pseudo-period T ∗ = 0
means, thatψ(t) is an eigenstate of the mean-field Hamil-
tonian, and therefore an orbit of zero length, which are
not included in the oscillatory part. In the same way,
one can show that the case T ∗ > Tγ leads to the same
contradiction by simply replacing the roles of α and β.
Thus, Eq. (49) is indeed the correct result.
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