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QCD in non-integer d = 4 − 2ε space–time dimensions possesses a nontrivial critical point and enjoys 
exact scale and conformal invariance. This symmetry imposes nontrivial restrictions on the form of the 
renormalization group equations for composite operators in physical (integer) dimensions and allows to 
reconstruct full kernels from their eigenvalues (anomalous dimensions). We use this technique to derive 
two-loop evolution equations for flavor-nonsinglet quark–antiquark light-ray operators that encode the 
scale dependence of generalized hadron parton distributions and light-cone distribution amplitudes in 
the most compact form.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Studies of hard exclusive reactions contribute significantly 
to the research program at all major existing and planned accel-
erator facilities. The relevant nonperturbative input in such pro-
cesses involves operator matrix elements between states with dif-
ferent momenta, dubbed generalized parton distributions (GPDs), 
or vacuum-to-hadron matrix elements related to light-front hadron 
wave functions at small transverse separations, the distribution 
amplitudes (DAs). Scale dependence of these distributions is gov-
erned by the renormalization group (RG) equations for the corre-
sponding (nonlocal) operators and has to be calculated to a suffi-
ciently high order in perturbation theory in order to make the QCD 
description of exclusive reactions fully quantitative. At present, the 
evolution equations for GPDs (and DAs) are known to the two-
loop accuracy [1–3], one order less compared to the corresponding 
“inclusive” distributions that involve forward matrix elements [4,5]
and closing this gap is desirable. The direct calculation is very chal-
lenging, and also finding a suitable representation for the results 
may become a problem as the two-loop evolution equations for 
GPDs are already very cumbersome.

It has been known for some time [6] that conformal symme-
try of the QCD Lagrangian allows one to restore full evolution 
kernels at given order of perturbation theory from the spectrum 
of anomalous dimensions at the same order, and the calculation 
of the special conformal anomaly at one order less. This result 
was used to calculate the complete two-loop mixing matrix for 
twist-two operators in QCD [7–9], and derive the two-loop evolu-
tion kernels in momentum space for the GPDs [1–3]. In Ref. [10]
we have suggested an alternative technique, the difference being 
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that instead of studying conformal symmetry breaking in the phys-
ical theory [7–9] we make use of the exact conformal symmetry 
of a modified theory – QCD in d = 4 − 2ε dimensions at critical 
coupling. Exact conformal symmetry allows one to use algebraic 
group-theory methods to resolve the constraints on the operator 
mixing and also suggests the optimal representation for the results 
in terms of light-ray operators. In this way a delicate procedure of 
the restoration of the evolution kernels from the results for local 
operators is completely avoided. We expect that these features will 
become increasingly advantageous in higher orders.

This modified approach was illustrated in [10] on several ex-
amples to the two- and three-loop accuracy for scalar theories. 
Application to gauge theories, in particular QCD, involves several 
subtleties that are considered in this work. The main new result 
are the two-loop evolution equations for flavor-nonsinglet quark–
antiquark light-ray operators that encode the scale dependence of 
generalized hadron parton distributions and light-cone distribution 
amplitudes in the most compact form.

2. Before going over to technical details, let us first describe the 
general structure of the approach and the results on a more qual-
itative level. In order to make use of the (approximate) conformal 
symmetry of QCD it is natural to use a coordinate-space repre-
sentation in which the symmetry transformations have a simple 
form [11]. The relevant objects are light-ray operators that can be 
understood as generating functions for the renormalized leading-
twist local operators:

[O](x; z1, z2) ≡ [
q̄(x + z1n)/nq(x + z2n)

]
≡

∑ zm
1 zk

2

m!k!
[(

Dm
n q̄

)
(x)/n

(
Dk

nq
)
(x)

]
. (1)
m,k
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Here q(x) is a quark field, the Wilson line is implied between the 
quark fields on the light-cone, Dn = nμDμ is a covariant deriva-
tive, nμ is an auxiliary light-like vector, n2 = 0, that ensures sym-
metrization and subtraction of traces of local operators. The square 
brackets [. . .] stand for the renormalization using dimensional reg-
ularization and MS subtraction. We will tacitly assume that the 
quark and antiquark have different flavor so that there is no mix-
ing with gluon operators. In most situations the overall coordinate 
xμ is irrelevant and can be put to zero; we will often abbreviate 
O(z1, z2) ≡O(0; z1, z2).

Light-ray operators satisfy a renormalization-group equation of 
the form [12](
M∂M + β(g)∂g +H

)[
O(z1, z2)

] = 0, (2)

where H is an integral operator acting on the light-cone coordi-
nates of the fields. It can be written as

H[O](z1, z2) =
1∫

0

dα

1∫
0

dβ h(α,β)[O](zα
12, zβ

21

)
, (3)

where

zα
12 ≡ z1ᾱ + z2α, ᾱ = 1 − α, (4)

and h(α, β) is a certain weight function (kernel).
One can show, see e.g. [10], that the powers [O](z1, z2) �→

(z1 − z2)
N are eigenfunctions of the evolution operator H, and the 

corresponding eigenvalues

γN =
∫

dαdβ h(α,β)(1 − α − β)N−1 (5)

are nothing else as the anomalous dimensions of local operators of 
spin N (with N − 1 derivatives).

In general the function h(α, β) is a function of two variables 
and therefore the knowledge of the anomalous dimensions γN is 
not sufficient to fix it. However, if the theory is conformally in-
variant then to the one loop accuracy H must commute with the 
generators of the SL(2) transformations [H, S(0)

α ] = 0, where

S(0)
+ = z2

1∂z1 + z2
2∂z2 + 2(z1 + z2),

S(0)
0 = z1∂z1 + z2∂z2 + 2, S(0)

− = −∂z1 − ∂z2 . (6)

In this case it can be shown that the function h(α, β) (up to trivial 
terms ∼δ(α)δ(β) that correspond to the unit operator) takes the 
form [13]

h(α,β) = h̄(τ ), τ = αβ

ᾱβ̄
(7)

and is effectively a function of one variable τ called the conformal 
ratio. This function can easily be reconstructed from its moments 
(5), alias from the anomalous dimensions.

Conformal symmetry of QCD is broken by quantum corrections 
which implies that the symmetry of the evolution equations is lost 
at the two-loop level. In other words, writing the evolution kernel 
as an expansion in the coupling constant

H = asH
(1) + a2

sH
(2) + . . .

�→ h(α,β) = ash(1)(α,β) + a2
s h(2)(α,β) + . . . , (8)

where as = αs/(4π), we expect that h(1)(α, β) only depends on 
the conformal ratio whereas higher-order contributions remain to 
be nontrivial functions of two variables α and β .
This prediction is confirmed by the explicit calculation [12]:

H
(1) f (z1, z2)

= 4C F

{ 1∫
0

dα
ᾱ

α

[
2 f (z1, z2) − f

(
zα

12, z2
) − f

(
z1, zβ

21

)]

−
1∫

0

dα

ᾱ∫
0

dβ f
(
zα

12, zβ

21

) + 1

2
f (z1, z2)

}
. (9)

The corresponding one-loop kernel h(1)(α, β) can be written in the 
following, remarkably simple form [13]

h(1)(α,β) = −4C F

[
δ+(τ ) + θ(1 − τ ) − 1

2
δ(α)δ(β)

]
, (10)

where the regularized δ-function, δ+(τ ), is defined as∫
dαdβ δ+(τ ) f

(
zα

12, zβ

21

)
≡

1∫
0

dα

1∫
0

dβ δ(τ )
[

f
(
zα

12, zβ

21

) − f (z1, z2)
]

= −
1∫

0

dα
ᾱ

α

[
2 f (z1, z2) − f

(
zα

12, z2
) − f

(
z1, zα

21

)]
. (11)

Taking appropriate matrix elements and making a Fourier transfor-
mation to the momentum fraction space one can check that the 
expression in Eq. (10) reproduces all classical leading-order (LO) 
QCD evolution equations: DGLAP equation for parton distributions, 
ERBL equation for the meson light-cone DAs, and the general evo-
lution equation for GPDs.

The two-loop kernel h(2)(α, β) contains contributions of two 
color structures and a term proportional to the QCD beta function,

h(2)(α,β) = 8C2
F h(2)

1 (α,β) + 4C F C Ah(2)
2 (α,β)

+ 4b0C F h(2)
3 (α,β). (12)

Let us explain how it can be calculated. The idea of Ref. [10]
is to consider a modified theory, QCD in non-integer d = 4 − 2ε
dimensions. In this theory the β-function has the form

β(a) = M∂Ma = 2a
(−ε − b0a +O

(
a2)),

b0 = 11

3
Nc − 2

3
n f , (13)

and for a large number of flavors n f there exists a critical coupling 
a∗

s = α∗
s /(4π) ∼ ε such that β(a∗

s ) = 0. The theory thus enjoys ex-
act scale invariance [14,15] and one can argue (see below) that full 
conformal invariance is also present.1 As a consequence, the renor-
malization group equations are exactly conformally invariant: the 
evolution kernels commute with the generators of the conformal 
group. The generators are, however, modified by quantum correc-
tions as compared to their canonical expressions (6):

Sα = S(0)
α + a∗

s �S(1)
α + (

a∗
s

)2
�S(2)

α + . . . (14)

1 Formally the gauge-fixed QCD Lagrangian contains two charges, the coupling 
and the gauge parameter. The corresponding β-function, βξ = M∂Mξ , vanishes in 
the Landau gauge, ξ = 0, so that all Green functions are scale-invariant at the crit-
ical point in this gauge; βξ also drops out of the RG equations for the correlation 
functions of gauge-invariant operators.
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One can show that

S− = S(0)
− ,

S0 = S(0)
0 − ε + 1

2
H

(
a∗

s

)
, H

(
a∗

s

) = a∗
s H

(1) + . . .

S+ = S(0)
+ + (z1 + z2)

(
−ε + 1

2
a∗

sH
(1)

)
+ a∗

s (z1 − z2)Δ+

+O
(
ε2), (15)

where

Δ+[O](z1, z2)

= −2C F

1∫
0

dα

(
ᾱ

α
+ lnα

)[[O](zα
12, z2

) − [O](z1, zα
21

)]
(16)

i.e. the generator S− is not modified, the deformation of S0 can 
be calculated exactly in terms of the evolution operator (to all 
orders in perturbation theory) [10], whereas the deformation of 
S+ is nontrivial and has to be calculated explicitly order by order, 
to the required accuracy. The one-loop expression shown in (15), 
(16) is derived below, it is a new result. From the pure technical 
point of view, this calculation replaces evaluation of the conformal 
anomaly in the theory with broken symmetry in integer dimen-
sions via the conformal Ward identities (CWI) in the approach due 
to D. Müller [6].

Conformal symmetry of the modified QCD at the critical cou-
pling implies that the generators (15) satisfy the usual SL(2) com-
mutation relations

[S0, S±] = ±S±, [S+, S−] = 2S0. (17)

Expanding them in powers of the coupling a∗
s one obtains a nested 

set of commutator relations [10][
S(0)

+ ,H(1)
] = 0,[

S(0)
+ ,H(2)

] = [
H

(1),ΔS(1)
+

]
,[

S(0)
+ ,H(3)

] = [
H

(1),ΔS(2)
+

] + [
H

(2),ΔS(1)
+

]
, (18)

etc. Note that the commutator of the canonical generator S(0)
+ with 

the evolution kernel at order k on the l.h.s. of each equation is 
given in terms of the evolution kernels H(k) and the corrections 
to the generators ΔS(m)

+ at one order less, m ≤ k − 1. The com-
mutation relations Eq. (18) can be viewed as, essentially, inhomo-
geneous first-order differential equations on the evolution kernels. 
Their solution determines H(k) up to an SL(2)-invariant term (solu-
tion of a homogeneous equation [H(k)

inv , S(0)
α ] = 0), which can, again, 

be restored from the spectrum of the anomalous dimensions. This 
procedure is described in detail for scalar theories in Ref. [10].

Last but not least, in MS-like schemes the evolution kernels 
(anomalous dimensions) do not depend on the space–time dimen-
sion by construction. Indeed, the renormalization Z factors relat-
ing the renormalized and bare light-ray operators [O](z1, z2) =
Z O(z1, z2) are given by the expansion

Z= 1 +
∞∑
j=1

ε− j
∞∑

k= j

ak
s Z jk, (19)

where Z jk have the integral representation similar to (3) in terms 
of functions of two variables, Z jk(α, β) that do not depend on ε . 
Thus, eliminating the ε-dependence of the expressions derived in 
the d-dimensional (conformal) theory for the critical coupling by 
the expansion ε = −b0a∗

s + O(a∗2
s ) allows one to restore the evo-

lution kernels for the theory in integer dimensions for arbitrary 
coupling a∗

s → as; this rewriting is simple and exact to all orders.
3. The statement of conformal invariance of QCD in d dimen-
sions at the critical coupling is not trivial. It is believed that “phys-
ically reasonable” scale-invariant theories are also conformally in-
variant, see Ref. [16] for a discussion, however, to the best of our 
knowledge there is no proof of this statement for d > 2 dimensions 
(but there are no counterexamples as well). In non-gauge theories 
conformal invariance for the Green functions of basic fields can be 
checked in perturbative expansions [17]. In gauge theories confor-
mal invariance does not hold for the correlators of basic fields and 
can be expected only for the Green functions of gauge-invariant 
operators. For local composite operators a proof of conformal in-
variance is based on the analysis of pair counterterms for the 
product of the trace of energy-momentum tensor and local op-
erators [18]. This analysis is beyond the scope of this Letter; it 
becomes rather complicated in gauge theories due to mixing of 
gauge invariant operators with BRST variations and equation of 
motion (EOM) operators [19].

A short comment may, nevertheless, be relevant. Let ON be a 
gauge-invariant multiplicatively renormalizable operator(
M∂M + β(a)∂a + γN(a)

)[ON ] = 0, (20)

where γN (a) is the anomalous dimension. As a consequence, it 
possesses a certain (critical) dimension for the fine-tuned value of 
the coupling (critical point) a = a∗ , β(a∗) = 0:

i
[
D, [ON ](x)

] = (
x∂x + Δ∗

N

) [ON ](x), (21)

where D is the operator of dilatations, ΔN is the canonical di-
mension of the operator ON , and Δ∗

N = ΔN + γ ∗
N is the scaling 

dimension, γ ∗
N = γN (a∗).

The statement that [ON ](x) becomes a conformal operator at 
the critical point, as widely expected, means that action of the gen-
erator of special conformal transformations on this operator takes 
the form

i
[
Kμ, [ON ](x)

] =
[

2xμ(x∂) − x2∂μ + 2Δ∗
N xμ

+ 2xν

(
nμ ∂

∂nν
− nν

∂

∂nμ

)]
[ON ](x). (22)

Equivalently, a correlation function of such operators at the critical 
point must satisfy the Ward identity(

K μ
x1 + . . . + K μ

xn

)〈[O1](x1) . . . [On](xn)
〉 = 0, (23)

where it is assumed that all space–time points xi are different. Cal-
culating the l.h.s. in perturbation theory (see Ref. [18]) and making 
use of the dilatation Ward identity produces the expression of the 
form(

K μ
x1 + . . . + K μ

xn

)〈[O1](x1) . . . [On](xn)
〉

=
N∑

i=1

〈[O1](x1) . . . Õμ
i (xi) . . . [On](xn)

〉
, (24)

where Õi(xi) are local operator insertions that involve several con-
tributions: EOM operators, operators representing a BRST variation 
of another operator, and gauge-invariant operators. The first two 
can be neglected as they do not contribute to the correlation func-
tion (assuming x j 	= xk , for all j 	= k). The last ones can further be 
expanded in terms of gauge invariant operators [Oμ

iq](xi) with a 
certain critical dimension,

Õμ
i (xi) =

∑
cq(a)

[
Oμ

iq

]
(xi).
q
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Dilatation invariance implies that the both sides of Eq. (24) must 
have the same scaling dimension at the critical point. Note that 
application of K μ lowers the scaling dimension of an operator by 
one. As a consequence, for each contribution on the r.h.s., either 
cq(a∗) vanishes, or the scaling dimensions of [Oμ

iq] and [Oi] must 
differ by one, dimOμ

iq = dimOi − 1, to all orders of perturbation 
theory. If such operators do not exist, then all coefficient cq(a)

have to vanish at the critical point that implies conformal invari-
ance Eq. (23). For the leading-twist operators that are subject of 
this Letter, absence of operators with the same anomalous dimen-
sion and the canonical dimension less by one is easy to verify. For 
the general case, it would be quite unexpected that two different 
operators have the same anomalous dimension if they are not re-
lated by some exact symmetry, although existence of such pairs 
cannot be excluded.

4. The correction ΔS+ , S+ = S(0)
+ + ΔS+ , to the generator of 

special conformal transformations at the critical point in QCD in 
d dimensions (in the light-ray operator representation) can be de-
rived from the analysis of CWIs for suitable correlation functions. 
The standard procedure is to consider the Green functions of twist-
two operators with quark fields, see Refs. [3,7] (for d = 4), which 
are not gauge invariant that complicates the analysis. This difficulty 
can be avoided by considering, instead, the correlator of two light-
ray operators that depend on different auxiliary vectors n and n̄:

G(x, z, w) = 〈[
O(n)

]
(0, z)

[
O(n̄)

]
(x, w)

〉
= N−1

∫
DΦe−S R (Φ)

[
O(n)

]
(0, z)

[
O(n̄)

]
(x, w), (25)

where Φ ≡ {A, q, ̄q, c, ̄c} is the set of fundamental fields, z ≡
{z1, z2}, w ≡ {w1, w2} and we assume that the auxiliary light-like 
vectors are normalized as (n · n̄) = 1.

The QCD Lagrangian in d = 4 −2ε dimensional Euclidean space–
time in covariant gauge has the form2

L = q̄(/∂ − ig/A)q + 1

4
F a
μν F a,μν + ∂μc̄a(Dμc

)a + 1

2ξ

(
∂ Aa)2

. (26)

The renormalized action S R is obtained from (26) by the replace-
ment

Φ → Φ0 = ZΦΦ, g → g0 = Mε Z g g,

ξ → ξ0 = Zξ ξ, (27)

i.e. S R(Φ, g, ξ) = S(Φ0, g0, ξ0). Note that we do not send ε → 0
in the renormalized correlation functions so that they explicitly 
depend on ε .

The form of the CWI is simpler for the special choice (n · x) =
(n̄ · x) = 0 that we accept for this calculation. For the local confor-
mal operators defined with respect to the n̄ vector, O(n̄)

N (x), cf. [11], 
it follows from Eq. (22) that

i
[
(n̄K),O(n̄)

N (x)
] = −x2(n̄∂x)O(n̄)

N (x). (28)

Going over to the light-ray operators one obtains, therefore

i
[
(n̄K),O(n̄)(x, w)

] = −x2(n̄∂x)O(n̄)(x, w). (29)

Thus conformal invariance of the correlation function (25) at the 
critical point implies the constraint

2 Our notation follows closely Ref. [20]
i

2

〈[
(n̄K),O(n)(0, z)

]
O(n̄)(x, w) +O(n)(0, z)

[
(n̄K),O(n̄)(x, w)

]〉
=

(
S(z)

+ − 1

2
x2(n̄∂x)

)
G(x, z, w) = 0, (30)

where the superscript S(z)
+ reminds that it is a differential operator 

acting on z1, z2 coordinates.
Explicit expression for S(z)

+ can be derived from the CWI

0 = −〈
δ+ S R

[
O(n)

]
(z)

[
O(n̄)

]
(x, w)

〉 + 〈
δ+

[
O(n)

]
(z)

[
O(n̄)

]
(x, w)

〉
+ 〈[

O(n)
]
(z) δ+

[
O(n̄)

]
(x, w)

〉
, (31)

where [O](z1, z2) ≡ [O](x = 0; z1, z2), that follows from invariance 
of the correlation function (25) under a change of variables Φ �→
Φ + δ+Φ in the path integral,

δ+q(x) = n̄μ

((
2xμ(x∂) − x2∂μ + 2Δq xμ

)
q(x) + 1

2
[γμ, /x]q(x)

)
,

δ+ Aρ(x) = n̄μ
((

2xμ(x∂) − x2∂μ + 2ΔA xμ

)
Aρ(x)

+ 2gμρ(xA) − 2xρ Aμ(x)
)
,

δ+c(x) = n̄μ
(
2xμ(x∂) − x2∂μ + 2Δc xμ

)
c(x),

δ+c̄(x) = n̄μ
(
2xμ(x∂) − x2∂μ + 2Δc̄ xμ

)
c̄(x). (32)

The choice of the parameters ΔΦ is a matter of convenience. They 
can be taken, e.g., equal to the canonical dimensions of the fields 
in d space–time dimensions, as in [10]. For QCD a different choice 
proves to be more convenient: Δq = 3/2 − ε , ΔA = 1, Δc̄ = 2 and 
Δc = 0. In this case the quark part of the Lagrangian is invariant 
and variation of the action takes the form

δ+ S R = 4ε

∫
ddx (xn̄)(LA +Lξ +Lghost)

+ 2(d − 2)n̄μ

∫
ddx

(
Z 2

c c̄Dμc − 1

ξ
Aμ(∂ A)

)
. (33)

The reason for choosing different scaling dimensions for the ghost 
and anti-ghost fields is that in this case the last term ∼(d −2) that 
does not vanish in four dimensions is a BRST variation [1](

Z 2
c c̄a Dμca − 1

ξ
Aa

μ

(
∂ Aa)) = δBRST

(
c̄a Aa

μ

)
. (34)

Hence, it does not contribute to the variation of (25).
In this work we are interested in the one-loop correction to 

the generator S+ . To this accuracy, obviously, the ghost Lagrangian 
Lghost and gluon self-interaction do not contribute i.e. we have to 
keep terms quadratic in gluon fields only. One obtains after some 
algebra

δ+ S R = −2ε

∫
ddx

[
(xn̄)Aa

α K αβ Aa
β +

(
1 + 1

ξ

)(
n̄Aa)(∂ Aa)]

+ . . . , (35)

where the ellipses stands for the terms that are irrelevant at one 
loop order and

K αβ = gαβ∂2 − ∂α∂β

(
1 − 1

ξ

)
(36)

is nothing but the inverse gluon propagator (with a minus sign). 
Moreover, as follows from Eq. (34), the last term ∼(n̄A)(∂ A) can 
be written as a combination of the BRST variation and the ghost 
term, so that it does not contribute to the one-loop accuracy as 
well. Thus, to our accuracy, the insertion of δ+ S R generates an 
effective vertex insertion −2ε (n̄x) Aa

α(x) K αβ Aa
β(x) in a gluon line 

in one loop diagrams:
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Fig. 1. One-loop diagrams contributing to the correlation function of two light-ray operators with an insertion of δ+S R (grey blobs). Wilson lines between the quark fields 
are shown by the dashed double lines.
= 2εn̄ · (x + y) (37)

Feynman diagrams contributing to the correlation function 
〈δ+ S R [O(n)](z)[O(n̄)](x, w)〉 on the r.h.s. of the CWI (31) are shown 
in Fig. 1. Since the δ+ S R insertion brings the factor εg2, we only 
need the divergent parts. The calculation is very easy. For definite-
ness let us choose the Feynman gauge, ξ = 1, and consider the 
first diagram in Fig. 1 as an example. This diagram, potentially, 
has two divergent subgraphs — left and right — but the right one 
does not contribute due to our choice (n̄, x) = 0, taking into ac-
count that the operator O(n̄)(x, w) only involves quark fields along 
the line n̄μ . Thanks to (37) the divergent part of the left subgraph 
coincides up to a prefactor 2ε(n̄, y + y′), with the corresponding 
counterterm for the operator O(n)(z1, z2), which is known from 
Ref. [12]. One obtains for this contribution

(nn̄)
αs

π
C FH(+)(z1 + z2) G(0)(x, z, w), (38)

where G(0)(x, z, w) is the tree-level correlation function (25) and 
the integral operator H(+) is defined as follows:

H(+) f (z1, z2) =
1∫

0

dα

ᾱ∫
0

dβ f
(
zα

12, zβ

21

)
. (39)

The other diagrams in Fig. 1, similarly, are written in terms of con-
tributions of the corresponding counterterms to O(n)(z1, z2) deco-
rated by multiplicative factors. For the sum of all terms one obtains〈
δ+S R

[
O(n)

]
(0, z)

[
O(n̄)

]
(x, w)

〉
= (nn̄)

αs

π
C F

[
−{Ĥ1, z1} − {Ĥ2, z2}

+
(
H(+) − 1

2

)
(z1 + z2) + z12 Ĥ′

]
G(0)(x, z, w)

+O(ε), (40)

where {∗, ∗} stands for an anticommutator and

Ĥ1 f (z1, z2) =
1∫

0

dα
ᾱ

α

[
f (z1, z2) − f

(
zα

12, z2
)]

,

Ĥ2 f (z1, z2) =
1∫

0

dα
ᾱ

α

[
f (z1, z2) − f

(
z1, zα

21

)]
,

Ĥ′ f (z1, z2) =
1∫

0

dα lnα
[

f
(
zα

12, z2
) − f

(
z1, zα

21

)]
. (41)

The one-loop evolution operator H(1) in Eq. (8) is written in terms 
of these kernels as

H
(1) = 4C F

[
Ĥ1 + Ĥ2 −H(+) + 1

]
. (42)
2

This representation is equivalent to the one in Eq. (10) and, as it is 
easy to show, H(1) commutes with S(0)

+ .
Next, we have to consider the second contribution on the 

r.h.s. of the CWI (31), which involves the conformal variation of 
[O(n̄)](x, w),

δ+
[
O(n̄)

]
(x, w) = Zδ+O(n̄)(x, w)

= Z
(−x2(n̄∂x)

)
O(n̄)(x, w)

= −x2(n̄∂x)
[
O(n̄)

]
(x, w), (43)

and, finally, the third contribution

δ+
[
O(n)

]
(z) = 2(nn̄)Zδ+

[
O(n)

]
(z)

= 2(nn̄)Z
(

S(0)
+ − ε(z1 + z2)

)
Z

−1[O(n)
]
(z)

= 2(nn̄)

(
S(0)

+ − ε(z1 + z2)

− as

2

[
H

(1), z1 + z2
])[

O(n)
]
(z). (44)

This last contribution is discussed in detail in Ref. [10] where the 
chain of equations in (44) is explained. Collecting all terms we 
obtain the result quoted in Eq. (15). Note that this expression is 
different from the corresponding result in scalar field theories,

S+ = S(0)
+ + (z1 + z2)

(
−ε + 1

2
a∗H(1)

)
,

see Ref. [10].

5. We proceed to calculate the NLO evolution kernels (12) mak-
ing use of the commutator relation [S(0)

+ , H(2)] = [H(1), �S(1)
+ ], 

Eq. (18). Note that �S(1)
+ (15) contains terms in b0 and C F .3 Hence 

the commutator [�S(1)
+ , H(1)] contains two color structures, b0C F

and C2
F , respectively. It follows that the kernel C F C Ah(2)

2 (α, β) (12)

satisfies the homogeneous equation [S(0)
+ , H(2)

2 ] = 0, alias it is 
SL(2)-invariant and can be written as a function of the conformal 
ratio, h(2)

2 (α, β) = h(2)
2 (τ ).

Calculating the commutator we obtain after some algebra[
�S(1)

+ ,H(1)
] = 8C2

F A1 + 4C F b0A3, (45)

where A1 and A3 are integral operators of the form

Ai f (z1, z2) = z12

1∫
0

dα Ai(α)
[

f
(
zα

12, z2
) − f

(
z1, zα

21

)]

+ z12

1∫
0

dα

ᾱ∫
0

dβ Bi(α,β) f
(
zα

12, zβ

21

)
,

with

3 To the one-loop accuracy one can replace ε = (4 − d/2) by −b0a∗
s .
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A1(α) = lnα ln ᾱ − 3

2
ᾱ − (2 − α) lnα + 2 + α

α
ᾱ ln ᾱ,

B1(α,β) = (β − α)

[
3

2
− ln(1 − α − β)

]
− α lnα + β lnβ + 1

α
ln ᾱ − 1

β
ln β̄,

A3(α) = ᾱ, B3(α,β) = α − β. (46)

The simplest way to calculate the evolution kernels h(2)
1 , h(2)

3 is to 
try the following ansatz:

h(2)

k (α,β) = −δ+(τ )
[
φk(α) + φk(β)

]
+ ϕk(α,β) + ckδ(α)δ(β). (47)

Calculating the commutator [S(0)
+ , H(2)] one obtains first-order dif-

ferential equations on the functions φk, ϕk (the terms in ck drop 
out from the commutator)

ᾱ2∂αφk(α) = −Ak(α),

(αᾱ∂α − ββ̄∂β)ϕk(α,β) = Bk(α,β), (48)

where ∂α = d/dα, etc. The solutions can be chosen as

φ1(α) = − ln ᾱ

[
3

2
− ln ᾱ + 1 + ᾱ

ᾱ
lnα

]
, φ3(α) = ln ᾱ,

ϕ1(α,β) = −θ(1 − τ )

[
1

2
ln2(1 − α − β)

+ 1

2
ln2 ᾱ + 1

2
ln2 β̄ − lnα ln ᾱ − lnβ ln β̄

− 1

2
lnα − 1

2
lnβ + ᾱ

α
ln ᾱ + β̄

β
ln β̄

]
,

ϕ3(α,β) = − ln(1 − α − β)θ(1 − τ ). (49)

They are defined up to arbitrary solutions of the corresponding 
homogeneous equations: a constant for φ1,3(α) and a function of 
the conformal ratio for ϕ1,3(α, β). These missing pieces and also 
the complete kernel h(2)

2 (τ ) can be fixed from the known spectrum 
of the two-loop anomalous dimensions.

The well-known decomposition

γ
(2)
N = m+

N + (−1)N−1m−
N , (50)

where m±
N can be extended to analytic functions m±(N) with poles 

at negative real axis, corresponds for light-ray operators to the 
decomposition in integration regions where the quark and the an-
tiquark retain their ordering on the light cone or are interchanged

h(τ ) = θ(1 − τ )h+(τ ) + θ(τ − 1)h−(
τ−1), (51)

corresponding to α + β < 1 and α + β > 1, respectively. The equa-
tions

m±(N) =
1∫

0

dα

ᾱ∫
0

dβ h±(τ ) (1 − α − β)N−1 (52)

can be inverted as

h±(τ ) = 1

2π i

+i∞∫
−i∞

dN(2N + 1)m±(N) P N

(
1 + τ

1 − τ

)
, (53)

where P N is the Legendre function. The integration goes along the 
imaginary axis such that all poles of m±(N) lie to the left of the 
integration contour. In practice it turns out to be more efficient to 
start from a certain “educated guess” for the kernels, calculate the 
moments and find the coefficients.

The final result reads

h(2)
1 (α,β) = −δ+(τ )

(
φ1(α) + φ1(β)

) + ϕ1(α,β)

+ θ(τ̄ )

[
2 Li2(τ ) + ln2 τ̄ + lnτ − 1 + τ̄

τ
ln τ̄

]
+ θ(−τ̄ )

[
ln2(−τ̄ /τ ) − 2

τ
ln(−τ̄ /τ )

]
+

(
−6ζ(3) + 1

3
π2 + 21

8

)
δ(α)δ(β),

h(2)
2 (α,β) = 1

3

(
π2 − 4

)
δ+(τ ) − 2θ(τ̄ )

×
[

Li2(τ ) − Li2(1) + 1

2
ln2 τ̄ − 1

τ
ln τ̄ + 5

3

]
− θ(−τ̄ )

[
ln2(−τ̄ /τ ) − 2

τ
ln(−τ̄ /τ )

]
+

(
6ζ(3) − 2

3
π2 + 13

6

)
δ(α)δ(β),

h(2)
3 (α,β) = −δ+(τ )

[
ln ᾱ + ln β̄ + 5

3

]
− θ(τ̄ )

[
ln(1 − α − β) + 11

3

]
+ 13

12
δ(α)δ(β), (54)

where τ̄ = 1 − τ , and the functions φ1(α) and ϕ1(α, β) are given 
in Eq. (49).

6. Our result for the two-loop evolution of flavor-nonsinglet 
light-ray operators in Eqs. (12), (54) is equivalent to the corre-
sponding evolution equation for GPDs obtained in Ref. [1] but 
is more compact and has manifest SL(2) symmetry properties. 
The latter feature presents the crucial advantage of the light-ray 
operator (alias position space) representation which makes this 
technique attractive for higher-order calculations. Exact conformal 
symmetry of QCD at the critical point proves to be very helpful as 
it provides one with algebraic group-theory methods to calculate 
the commutators of integral operators that appear in Eq. (18). Evo-
lution equations for GPDs can be obtained from our expressions by 
a Fourier transformation which is rather straightforward, cf. [21].

Apart from the evolution kernels, another new result is the cal-
culation of the generator of special conformal transformations S+
to the one-loop accuracy, see Eq. (15). The QCD expression differs 
from the corresponding result in the scalar theory [10] but remains 
simple. As we have demonstrated, this result can be obtained from 
the gauge-invariant correlation function of two light-ray opera-
tors, thus bypassing the complications due to non-gauge-invariant 
contributions in the usual approach dealing with Green functions 
involving fundamental fields. We expect that the same technique 
can be used for the flavor-singlet light-ray operators and for the 
calculation of S+ to the two-loop accuracy, which is the first step 
towards the NNLO evolution equations. This task, obviously, goes 
beyond the scope of this Letter.
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