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2 Abbreviations and Acronyms 

(v/v)   Volume/volume percent 

[M+H]+  Protonated molecule of metabolite M 

17-DMAG  17-Dimethylaminoethylamino-17-demethoxygeldanamycin 

2-HG   2-Hydroxyglutarate 

3-P-glycerate 3-Phosphoglycerate 

5-HIAA  5-Hydroxyindoleacetate 

Ala   Alanine 

AML   Acute myeloid leukemia 

ANOVA  Analysis of variance 

AP   Atmospheric pressure 

APCI   Atmospheric pressure chemical ionization 

APCI I   First-generation APCI source 

APCI II  Second generation APCI source 

APCI(+)  Atmospheric pressure chemical ionization positive mode 

APCI/+H2O  APCI with water infusion 

APCI/-H2O  APCI without water infusion 

API   Atmospheric pressure ionization 

APLI   Atmospheric pressure laser ionization 

APPI   Atmospheric pressure photo ionization 
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Asn   Asparagine 

Asp   Aspartate 

AUC   Area under the curve 

CD   Cyclodextrin 

CI   Chemical ionization 

CID   Collision-induced dissociation 

Cys   Cysteine 

D/L-2-HG  D and L enantiomers of 2-hydroxyglutarate 

Da   Dalton 

DA-APLI  Dopant-assisted atmospheric pressure laser ionization 

DA-APPI  Dopant-assisted atmospheric pressure photo ionization 

DART   Direct Analysis in Real Time 

DB   Database 

DIP   Direct Inlet Probe 

E. coli   Escherichia coli 

EI   Electron ionization 

EIC   Extracted ion chromatogram 

ESI   Electrospray ionization 

FAME   Fatty acid methyl ester 

FC   Fold change 

FDA   Food and Drug Administration 

FDR   False discovery rate 
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FID   Flame ionization detector 

FMF   Find Molecular Features 

FN   False negative 

FP   False positive 

FPR   False positive rate 

FTICR   Fourier transform ion cyclotron resonance 

G6P   Glucose-6-phosphate 

GABA   Gamma amino butyrate 

GC   Gas chromatography 

GC×GC  Comprehensive two-dimensional gas chromatography 

GLC   Gas liquid chromatography 

Gln   Glutamine 

Glu   Glutamate 

Gly   Glycine 

Glycerol-1-P  Glycerol-1-phosphate 

GSC   Gas solid chromatography 

HDA   Heptadecanoate 

His   Histidine 

HMDB   Human Metabolome Database 

HPLC   High performance liquid chromatography 

HRTOF  High-resolution time-of-flight 

Hsp90   Heat-shock protein 90 
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IAS   Ion activation stage 

IDH   Isocitrate dehydrogenase 

Ile   Isoleucine 

IPT   Isopentenyl phosphotransferase encoding gene 

IS   Internal standard 

KEGG   Kyoto Encyclopedia of Genes and Genomes 

LC   Liquid chromatography 

Leu   Leucine 

LLOQ   Lower limit of quantification 

LOD   Limit of detection 

logPoctanol/water Logarithm of partition coefficient 

LOQ   Limit of quantification 

LR   Linear range 

Lys   Lysine 

m/z   mass-to-charge ratio 

MCF   Methyl chloroformate 

Me   Methyl 

MeOx   Methoximation 

Met   Methionine 

MRM   Multiple reaction monitoring 

MS   Mass spectrometry 

MS/MS  Tandem mass spectrometry 
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MSE Simultaneous acquisition mode of high and low collision energy 

spectra 

MSn   Tandem mass spectrometry 

MSTFA  N-methyl-N-(trimethylsilyl) trifluoroacetamide 

NA   Nonanoate 

NAA   N-acetylaspartate 

NADP+/NADPH Nicotinamide adenine dinucleotide phosphate (oxidized and re-

duced form) 

NDA   Nonadecanoate 

netCDF  Network Common Data Format 

NIST   National Institute of Standards and Technology 

NMR   Nuclear magnetic resonance 

NPAH   Nitrated polycyclic aromatic hydrocarbon 

Nval   Norvaline 

OH   Hydroxy 

Orn   Ornithine 

PAH   Polycyclic aromatic hydrocarbon 

PBM   Probability-based matching 

PBS   Phosphate-buffered saline 

PCA   Principal component analysis 

PCF   Propyl chloroformate 

PDA   Pentadecanoate 

PFPP   Pentafluorophenyl propyl 
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Phe   Phenylalanine 

PLS-DA  Partial least squares discriminant analysis 

ppm   parts per million 

ppmV   parts per million by volume 

Pro   Proline 

PTV   Programmed-temperature vaporization 

PU   E. coli double-mutant (PntAB-UdhA) strain 

qMS   Quadrupole mass spectrometry 

qTOF   Quadrupole- Time-of-flight hybrid mass spectrometry 

R²   Square of the linear regression coefficient R 

RI   Linear retention index 

ROC   Receiver operator characteristic 

RSD   Relative standard deviation 

Rt-DEXsa 2,3-di-acetoxy-6-O-tert-butyl-dimethylsilyl gamma CD doped into 

14% cyanopropylphenyl/86% dimethyl polysiloxane 

S/N   Signal-to-noise ratio 

SD   Standard deviation 

Ser   Serine 

SIL-IS   Stable isotope-labeled internal standard 

SIM   Selected ion monitoring 

SP   Stationary phase 

SVM   Support vector machines 

TCA   Tricarboxylic acid 
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TDA   Tridecanoate 

Thr   Threonine 

TIC   Total ion current 

TMS   Trimethylsilyl 

TN   True negative 

TOCSY  Total correlated spectroscopy 

TOF   Time-of-flight 

TP   True positive 

TPR   True positive rate 

Trp   Tryptophan 

TSP   Trimethylsilyl propanoic acid 

Tyr   Tyrosine 

U-13C   Uniform 13C-labeled 

U-2H   Uniform 2H-labeled 

UDA   Undecanoate 

ULOQ   Upper limit of quantification 

UTI   Urinary tract infection 

Val   Valine 

VOC   Volatile organic compound 

wh   Peak width measured at half the peak height 

wt   wild type 

m   mass error 
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3 Motivation 

Metabolomics aims at the measurement of the largest possible number of metabolites in 

a single analysis. The ultimate goal is the identification and quantification of those that 

differ significantly between groups. Knowing the identity and quantity of discriminating 

metabolites allows the interpretation of metabolic changes in the context of metabolic 

pathways, which is essential for understanding the underlying biology.  

Gas chromatography – electron ionization – mass spectrometry (GC-EI-MS) in combi-

nation with a derivatization is a valuable tool in metabolomics due to high analytical 

reproducibility, low detection limits, and the availability of large mass spectral libraries 

that also include trimethylsilyl derivatives that are commonly used. Nevertheless, many 

derivatives of metabolites are not found in standard commercial libraries rendering the 

annotation of corresponding signals in the GC-MS chromatogram cumbersome. Ele-

mental formulas can be calculated from the accurate mass of molecular ions as a first 

step towards the de-novo identification of unknown metabolites, but electron ionization 

causes strong fragmentation and does not always yield the molecular ion. Hence, soft 

ionization techniques, such as chemical ionization (CI), must be applied. In the 1970s, 

Horning et al. introduced atmospheric pressure chemical ionization (APCI) as a soft 

ionization technique for coupling GC to MS [1,2], but it was not widely used at that time 

because of the required expensive instrumentation and it did not reach maturity for 

commercialization. Another 30 years later, McEwen and McKay as well as Schiewek et 

al. continued the studies on APCI and developed independently ion sources suited for 

coupling mass spectrometry with both gas and liquid chromatography [3,4]. Their work 

led in 2008 to the introduction of commercially available APCI sources for GC-MS and 

their hyphenation with high-resolution mass analyzers to exploit such powerful features 

as accurate mass measurement and tandem mass spectrometry for the identification of 

unknowns. The great potential of high-resolution time-of-flight mass spectrometry 

(HRTOF-MS) in metabolomics is not only based on accurate mass measurement for 
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structural assignment of unknown species but also on the option to perform targeted 

quantification simultaneously. The latter benefitted from the introduction of the analog-

to-digital converter, which led to a distinct increase in the dynamic range of TOFMS 

instruments [5]. This was highly needed as metabolites vary tremendously in their con-

centration levels. Since GC-APCI-TOFMS has shown high detection sensitivity in initial 

studies [6], it appeared to be promising for quantitative metabolic profiling.  

Prior to my master thesis in 2010 and this doctoral research work, there had been few 

reports on the use of GC-APCI-HRTOFMS. Reported applications included the identifi-

cation of unknown compounds in pharmaceutical research [7], analysis of foodstuff [8], 

and metabolomics [9-11]. Its performance had not been compared to established GC-

MS approaches. The technique had only been applied to study metabolite composition 

in human cerebrospinal fluid [9], but comparative metabolic fingerprinting of several 

sample classes had not been performed to that date. Furthermore, the outstanding 

quantitative capabilities of GC-APCI-HRTOFMS had only been demonstrated using 

metabolite standards [9,10] and not been used for metabolic profiling, i.e., the quantita-

tive analysis of known metabolites, in biological specimens.  

My master thesis and the research done by Carrasco et al. in 2009 [9] were the first 

GC-APCI-HRTOFMS studies that investigated the ionization behavior of a broad range 

of metabolites. In my master thesis, 43 metabolites from different compound classes, 

such as amino acids, organic acids, sugars, and alcohols, were analyzed. APCI source 

parameters were optimized and the quantitative performance of GC-APCI-HRTOFMS 

was comprehensively compared to that of GC×GC-EI-TOFMS, GC-EI-TOFMS, GC-CI-

quadrupole mass spectrometry (qMS) and GC-EI-qMS, respectively. In addition, com-

parative metabolic fingerprinting was performed in wild type and mutant Escherichia coli 

(E. coli) strains and a workflow for the identification of unknown metabolites was estab-

lished based on the accurate mass and isotopic pattern of their protonated molecules 

([M+H]+). For validation, results were compared to a previous study that had employed 

GC×GC-EI-TOFMS [12]. Although the general applicability of GC-APCI-HRTOFMS in 

metabolomics could be shown, the quantitative performance of GC-APCI-HRTOFMS 

was less than satisfying, mainly because of inconsistent ionization. Factors influencing 
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ionization efficiency and reproducibility needed to be studied in more detail, such as the 

infusion of water into the ionization source and potential matrix effects due to co-eluting 

compounds. Hence, the initial results of my master thesis formed the basis for this doc-

toral thesis. 

 

Aim #1: Investigation and optimization of factors influencing APCI 

1.1 Water infusion  

Already in the course of my master thesis it became obvious that humidity in the labora-

tory critically affects reproducibility of APCI. Therefore, the first aim of this thesis was a 

systematic assessment of the effect of water infusion into the APCI source on efficiency 

and repeatability of APCI for the two most commonly used derivatization protocols, 

namely alkylation using methyl chloroformate (MCF) and methoximation-silylation, in 

GC-MS based metabolome analysis. To that end, 20 metabolite standards and five 

different water infusion rates between 0.1-0.5 mL/h were tested. As a proof of principle, 

MCF derivatization and GC-APCI-TOFMS w/o water infusion were applied to the detec-

tion of changes in metabolite abundance in pancreatic cancer cells upon treatment with 

the heat-shock protein 90 (Hsp90) inhibitor 17-dimethylaminoethylamino-17-

demethoxygeldanamycin (17-DMAG).  

 

1.2 Matrix effects  

In liquid chromatography (LC)-MS, APCI is known to be prone to matrix effects hamper-

ing accurate quantification. Hence, the aim of this project was to study whether biologi-

cal matrices affect GC-APCI-HRTOFMS. To investigate potential interferences from 

matrix compounds, an E. coli extract as well as human serum and urine specimens 

were spiked with 15 metabolite standards and recovery rates determined. In addition, 

for three pairs of co-eluting compounds, possible interferences between the analyte of 

interest and defined amounts of its co-eluent were studied. The purpose of this experi-

ment was to reveal whether APCI might be an actual source of ion suppression or en-

hancement in the case of co-eluting analytes in the absence of a biological matrix.  
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1.3 APCI source type 

During my thesis, Bruker Daltonics (Bremen, Germany) introduced a redesigned “GC-

APCI II” source that supposedly addressed shortcomings of the original GC-APCI I 

source such as gas turbulences, cold spots, and insufficient heating, which had exerted 

a negative impact on ionization and ion transfer into the MS. The new source was there-

fore subjected to comprehensive testing to evaluate detection sensitivity, repeatability 

and suitability for metabolic fingerprinting. Initially, a commercial 37-component FAME 

mixture was used to investigate the repeatability of retention time, peak width and ioni-

zation efficiency for structurally similar compounds over a wide boiling point range. To 

assess the quantitative potential of APCI II in comparison to its predecessor, figures of 

merit for metabolic profiling were determined from calibration curves of 20 MeOx-TMS 

derivatized metabolite standards and nine ISs. Both source types were also employed 

in the analysis of three biological replicates of cell culture supernatants with the objec-

tive of comparing their performance with regard to technical variability and identification 

of metabolites. 

 

Aim #2: Application of GC-APCI-HRTOFMS to the enantioselective quantitative 

profiling of D/L-2-HG 

The goal was the development of an enantioselective, sensitive, and reliable quantifica-

tion approach for 2-hydroxyglutarate (2-HG). Analysis of 2-HG has become increasingly 

important in cancer biology due to the observed accumulation of D-2-HG in several 

types of cancer mostly as a result of neomorphic mutations in the isocitrate dehydro-

genase (IDH) 1 and 2 genes. To separate D and L enantiomers of 2-HG, MCF derivati-

zation and a chiral cyclodextrin (CD)-based Rt-DEXsa capillary column were tested 

based on previous experiences in our laboratory with the enantioselective GC analysis 

of amino acids. To prove its reliability, the method was validated by means of spike-in 

experiment in serum and cross-validation of total 2-HG levels in human urine specimens 

was carried out using HPLC-ESI(-)-MS/MS. 
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4 Background 

Parts of this chapter were published in book chapters [15] and [16]. The focus is primari-

ly on GC-MS based metabolomics.  

 

4.1 Metabolomics 

Metabolomics aims at providing an in-depth view of chemical changes in cells, tissues, 

organs or organisms evoked by cellular processes in response to genetic and environ-

mental causes [18]. It is an integral part of systems biology and provides a direct link 

between an external stimulus and the non-structural phenotype or physiology of a bio-

logical system [19,20]. Since the metabolome represents the endpoint of the “omics” 

cascade (Figure 4.1), it yields a more predictive phenotype than the genome, transcrip-

tome and proteome, respectively. It also captures the dynamic changes that occur in 

response to genetic and environmental constraints much better, with the composition of 

the metabolome having been observed to change within seconds, whereas turnover in 

the proteome and transcriptome (minutes to hours) is considerably slower [21]. 
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Figure 4.1 The metabolome represents the endpoint of the "omics" cascade. Reprinted with permission 
from [22].  

4.1.1 Challenges 

Metabolome analysis comprises both the qualitative and the quantitative assessment of 

low-molecular mass compounds (<1,000 Da), which show tremendous diversity in their 

chemical and physical properties. Moreover, metabolite concentrations range over up to 

ten orders of magnitude. The physicochemical diversity and wide range of abundance of 

metabolites in biological specimens constitute major challenges in the comprehensive 

determination of the metabolic state of biological systems, requiring the combination of 

several analytical platforms such as nuclear magnetic resonance (NMR) spectroscopy 

and direct-infusion or hyphenated mass spectrometry (MS). Proton NMR presents the 

closest to a universal nondestructive detector that provides in combination with carbon-

13 NMR an indispensable tool for the structural elucidation of unknown metabolites. 

However, it lacks the detection sensitivity of MS required for the determination of me-

tabolites in the submicromolar concentration range. For that reason, MS in combination 

with chromatographic separation techniques such as LC and GC has become a widely 

used, albeit still to be perfected tool in targeted and non-targeted metabolomics. Exist-

ing shortcomings include instrumental drift, ion suppression and the lack of comprehen-

sive mass spectral libraries for LC-MS and in case of GC-MS the frequent need for 

derivatization, which carries pitfalls such as the degradation of metabolites and the lack 
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of metabolite mass spectral libraries for derivatives other than silylated compounds. 

Moreover, reference compounds are only available for a subset of metabolites. One 

way of overcoming the lack of comprehensive mass spectral libraries is the use of soft 

ionization techniques that generate gas-phase ions without extensive fragmentation. In 

combination with high-resolution MS, measurement of the accurate mass of non-

fragmented protonated molecules allows calculation of elemental formulas that can then 

be searched against metabolite databases for putative metabolite identification. In addi-

tion to cross-platform approaches to cope with analyte diversity, various metabolite 

databases can be searched (e.g. HMDB [23], LIPID MAPS [24], and Metlin [25]). Once 

identified, metabolites may be visualized within their metabolic pathways (e.g. provided 

by KEGG database) to facilitate biological interpretation. Finally, metabolomics data can 

be incorporated with results obtained by the other –omics methods to obtain a global 

picture of the biological entity under study.  

Apart from the high diversity of metabolites, undesired variation in metabolite levels 

might be introduced at each stage of the metabolomics workflow and pose an additional 

challenge to the analytical chemist. In order to minimize variability introduced during 

sample preparation, standardized protocols for quenching, extraction and derivatization 

steps are essential and should be followed as proposed by Sumner et al. in 2007 [26]. 

Still, it is almost impossible to avoid analyte losses during sample preparation. There-

fore, stable isotopically labeled internal standards (SIL-ISs) are commonly used to ac-

count for analyte losses, and apart from that for injection variability, instrumental drift 

and ion suppression. 

4.1.2 Strategies 

Two different strategies are mostly used in metabolomics [22,27]. These are metabolite 

profiling or targeted analysis of a small number of analytes on the one hand, and meta-

bolic fingerprinting on the other hand. For metabolite profiling, i.e., the quantitative anal-

ysis of pre-selected metabolites, analytical methods are tailored for the separation and 

sensitive detection of the target analytes. Reference substances in known concentra-

tions and an appropriate set of internal standards are used to construct calibration 
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curves to quantify the target analytes in biological specimens. Alternatively, isotope 

dilution analysis can be employed for quantification. Stable isotopically labeled analogs 

of the target analytes are spiked into the samples in known concentration and quantifi-

cation is performed by comparing the peak area of the target analyte to that of the la-

beled standard. For metabolic fingerprinting, the complete GC-MS or LC-MS chromato-

gram is exported and analyzed. One can either search for signals that change 

significantly between sample groups or use the chromatograms to classily samples. 

This does not require knowledge of the identity of the signals, often referred to as fea-

tures or markers. Metabolite identification is then restricted to those features that yield-

ed significant differences in signal intensity between sample groups. Aiming at the sim-

ultaneous detection of the highest possible number of metabolites, sample preparation 

is typically kept to a minimum in metabolite fingerprinting to prevent analyte losses. In 

targeted studies, on the other hand, sample preparation is tailored to the specific ana-

lytes and, thus, typically more extensive to reduce chemical complexity of the samples 

prior to analysis. 

Apart from targeted and untargeted analyses, the analysis of metabolic flux using stable 

isotopically labeled substrates has been a valuable tool in the study of dynamic pro-

cesses in a cell. Instead of measuring only metabolite abundances, flux experiments 

can reveal the flux of carbon (or nitrogen) atoms derived from substrates such as glu-

cose, glutamine or other amino acids, through different metabolic pathways and detect 

changes in rates of metabolic reaction due to certain perturbations. The number of 

publications reporting flux experiments has increased steadily in recent years [28,29]. 

 

4.2 Established GC-MS approaches in metabolomics 

Gas chromatography coupled to mass spectrometry (GC-MS) is an indispensable tool in 

metabolomics. It is perfectly suited for the analysis of small volatile metabolites. Capil-

lary GC is capable of resolving very complex mixtures and MS provides highly selective 

and sensitive detection of metabolites along with their identification. Capillary GC can 

be easily interfaced with an MS instrument as carrier gas flow rates of about 1 mL/min 
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are compatible with modern MS vacuum systems. Moreover, analytes have already 

been transferred into the gas phase before reaching the ion source of the MS.  

4.2.1 Derivatization strategies 

Major prerequisites for GC-MS analysis include a sufficient vapor pressure and thermal 

stability of metabolites. Most metabolites, such as amino acids, organic acids, sugars 

and alcohols, possess polar functional groups, which have to be derivatized prior to GC 

analysis. Apart from increasing volatility and thermal stability, derivatization of the ana-

lytes can improve chromatographic properties. It can provide additional structural infor-

mation and improve both, lower limits of quantification and selectivity for quantitative 

measurements. However, derivatization prolongs overall analysis time and adds vari-

ance to the analysis. It can also hamper identification of metabolites, derivatives of 

which are not contained in mass spectral libraries. Overall, derivatization should be 

simple, fast, automatable, efficient, reproducible, and spectral libraries of the derivatives 

are needed. Halket and Zaikin extensively reported on derivatives for mass spectrome-

try in a series of reviews, which in each case deals with a single derivatization reaction, 

e.g., silylation [30]. Among others, silylation, acylation, alkylation/esterification, the for-

mation of cyclic derivatives and generation of mixed derivatives of polyfunctional com-

pounds has been performed for GC-MS.  

4.2.1.1 MeOx-TMS derivatization  

In 2011, Koek et al. [31] reviewed a large number of metabolomics studies with respect 

to the pursued derivatization strategy. The majority of GC(-MS) methods employed 

silylation with or without prior oximation. Figure 4.2 provides the example of a typical 

two-step derivatization strategy including methoximation followed by silylation using N-

methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA).  
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Figure 4.2 Commonly used two-step derivatization procedure for GC-MS based metabolomics. 

Oximation reagents, such as hydroxylamines or alkoxyamines, react with aldehyde and 

keto groups. They react with open-chain reducing sugars thereby preventing ring for-

mation of reducing sugars. The derivatization results in the formation of two stereoiso-

mers (syn and anti form) that can be separated chromatographically. Further, decarbox-

ylation of -ketocarboxylic acids and keto-enol tautomerism is hindered. MSTFA or 

N,O-bis-(trimethylsilyl)-trifluoroacetamide (BSTFA) are typically used reagents for silyla-

tion. They replace active hydrogen atoms in functional groups, such as -COOH, -OH,     

-NH and -SH, with a trimethylsilyl (TMS) group. In case of silylation reagents that con-

tain chlorine atoms, small amounts of a catalyst, e.g. 1% of trimethylchlorosilane, are 

added. Silyl derivatives are prone to hydrolysis in the presence of traces of water. Con-

sequently, anhydrous conditions have to be employed. Bulkier silylation reagents, such 

as N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), have been shown 

to be less susceptible to hydrolysis [32]. Moreover, tert-butyldimethylsilyl derivatives 

show characteristic [M-57]+ ions in EI-MS, which may facilitate the identification of un-

known compounds [33], but requires harsher reaction conditions.  
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Oximation followed by silylation is often employed in non-targeted metabolomics [12,17] 

because of the ready derivatization of many different functional groups and the availabil-

ity of large spectral libraries [31]. However, degradation or rearrangement reactions 

have been reported, e.g. arginine is decomposed to form ornithine [34], and glutamate 

rearranges to pyroglutamate. Partial silylation yielding multiple peaks for amino acids is 

a well-known problem, which can be addressed by either weighting correctly the multi-

ple peaks [35] or by summing up the responses of all derivatives [36].  

Modern GC instruments equipped with advanced sample robots (e.g., from CTC Analyt-

ics AG or Gerstel) enable the sequential automated derivatization of sample analytes 

immediately prior to their analysis instead of off-line en bloc derivatization, thereby min-

imizing hydrolysis and variability in the ratio of partially derivatized metabolites.  

Large numbers of derivatizable groups may lead to indefinite retention of an analyte on 

the GC column or the molecular mass of the derivative might exceed the mass range of 

the detector [30]. Native lactose, for example, has a molecular mass of 342 Da, which 

increases to 947 Da after methoximation and the introduction of 8 trimethylsilyl groups. 

Furthermore, silylation is neither simple nor fast, as it cannot be performed in aqueous 

solution or in the presence of protic solvents and usually requires heating for some time, 

especially in case of amines.  

4.2.1.2 Derivatization with alkyl chloroformates 

In 2011, Villas-Bôas et al. [37] compared silylation to derivatization with methyl chlo-

roformate. The authors concluded, that a combination of both derivatization approaches 

leads to a more comprehensive coverage of the metabolome. Alkyl chloroformates are 

used as reagents to esterify carboxylic groups to form the corresponding alkyl ester, 

while carbamates are derived from amino groups (Figure 4.3). This derivatization has 

emerged as an attractive alternative to silylation, especially for amino acids [38,39] and 

non-amino organic acids [40]. The reaction is fast and feasible in aqueous media at 

room temperature, which makes it easy to handle. Kaspar et al. [38] demonstrated its 

potential for full automation. Nevertheless, alkyl chloroformate derivatization is less 

versatile compared to silylation. Moreover, comprehensive mass spectral libraries are 
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still lacking and need to be developed, which renders methoximation/silylation overall 

the method of choice in GC-MS based metabolomics.  

Interestingly, in contrast to the study by Koek et al. in 2006 [41], Villas-Bôas et al. [37] 

described a poor analytical performance for TMS derivatives. This underscores the 

importance of strictly enforced standard operation procedures such as the regular re-

placement of GC-inlet liners and trimming of the inlet end of the capillary column, as 

well as the addition of several SIL-ISs to monitor performance of extraction and derivati-

zation [41]. More details on experimental strategies including quality control are provid-

ed in subchapter 4.4. 
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Figure 4.3 Reaction scheme for the derivatization of amino acids with methyl chloroformate. 

4.2.2 GC stationary phases  

For GC separation, analytes have to be transferred into the gas phase, which is typically 

achieved by a hot split/splitless injector or by a programmed-temperature vaporizer 

(PTV). Nowadays, GC separation is commonly performed using capillary columns. 

These are open tubular columns with an inner diameter of less than 1 mm and a length 

of 1 – 100 m. The stationary phase is coated to the inner wall of the column. The sta-

tionary phase can either be a highly viscous liquid (WCOT – wall coated open tubular 

column), with analyte separation attained by partitioning of the analytes into the liquid 

(GLC – gas liquid chromatography), or a solid adsorbent (PLOT – porous layer open 

tubular column) for adsorption-based separation (GSC – gas solid chromatography). 

GSC is mainly used for highly volatile analytes such as permanent gases. In metabo-

lomics, GLC prevails. A variety of stationary phases (SPs) are available. Non-polar SPs 

provide separation of analytes as a function of mere differences in vapor pressure, while 

polar SPs allow the exploitation of additional polar interactions. Common SPs are pol-

ysiloxanes, which are modified with both non-polar methyl groups (PDMS – polydime-
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thylsiloxane) and polar phenyl- or cyanopropyl groups to tune the polarity of the phase. 

The recently introduced ionic liquid SPs are an attractive alternative to polysiloxane 

SPs. Furthermore, direct stereoselective analyses can be carried out using chiral SPs, 

such as the widely used Chirasil-L-Val SP or CD-based SPs, which separate enantio-

mers by formation of inclusion complexes. However, due to the huge chemical diversity 

of metabolites there is no single ideal column chemistry capable of covering entire 

metabolomes. Rather, multiple SP chemistries tailored to different classes of metabo-

lites or their derivatives have to be employed sequentially to achieve comprehensive 

coverage.  

4.2.3 GC-MS with EI and CI sources 

Capillary GC lends itself to interfacing with MS, as analytes have been already trans-

ferred into the gas phase and carrier gas flow rates are compatible with modern vacuum 

systems. Hyphenation of GC and MS is typically accomplished by means of electron 

ionization (EI), which is a hard ionization technique under high vacuum. Electrons are 

emitted from a heated wire filament usually at electron energies of 70eV. In an initial 

step, radical cations are generated from gas phase molecules. Subsequent fragmenta-

tion reactions, losses of neutral groups and rearrangement of secondary ions occur 

because electron energies are by far exceeding ionization energies of organic mole-

cules. This yields predictable ion patterns, which can be interpreted by the experienced 

scientist. Moreover, EI is highly reproducible and, therefore, huge commercial spectral 

libraries containing currently up to 242,000 unique compounds (NIST 14 Mass Spectral 

Library) have been built for routine identification of analytes. However, structural iso-

mers often show similar EI spectra, thus precluding unambiguous compound identifica-

tion in the absence of additional information such as differences in chromatographic 

retention. Further, both the still incomplete coverage of natural metabolites in spectral 

libraries and the frequent absence of molecular ions in EI mass spectra continue to 

constitute major bottlenecks in the identification of group discriminating features. There-

fore, soft ionization techniques that preserve intact protonated molecules have become 

prominent in recent years, such as chemical ionization (CI) and APCI (subchapter 4.3). 

Operation in CI mode takes place under low vacuum in the presence of a reagent gas, 
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e.g. methane, isobutane or ammonia. Electrons emitted from a heated wire filament 

initially ionize the reagent gas, which is present in great excess. Subsequently, analytes 

are ionized by ion-molecule reactions (Figure 4.4). 

245

55

45

54
70,

4

][

][

][

4

HCHHMCHMH

CHMCHM

CHHMCHM

CHCHCH CHeVe







  









 

Figure 4.4 Primary reaction gas (methane) ion formation and secondary analyte (M) ion formation in 
positive chemical ionization mode. 

However, extensive soft ionization mass spectral libraries have not been built yet. In 

case of CI this is owed to the strong dependence of mass spectra on the nature and 

pressure of the reactant gas. Hence, a lot of manual effort by the user is still required 

during data analysis.  

The appropriate choice of mass analyzer depends on the aim of the study. Mainly quad-

rupole (qMS) and time-of-flight mass spectrometers (TOFMS) are applied to metabo-

lomics. Quadrupole mass analyzers enjoy widespread use. They are inexpensive, ro-

bust and easy to handle. But they are limited in mass range and scan speed and, in 

most cases, restricted to nominal mass resolution. Therefore, quadrupoles are com-

monly used in routine analysis either in full scan mode or selected ion monitoring (SIM) 

mode, with the latter achieving lower limits of quantification due to a longer dwell time 

on pre-selected masses. Even more powerful is the sequential combination of three 

quadrupoles, which offers highly specific and sensitive quantitative analysis. In addition, 

structural information on the analytes is provided as an asset by tandem mass spec-

trometry (MS/MS). TOFMS instruments provide not only low limits of quantification but 

also wide dynamic ranges over up to four orders of magnitude. Fast-acquisition TOFMS 

instruments, which acquire up to 500 spectra per second, are a prerequisite for the 

successful resolution and integration of the very narrow chromatographic peaks realized 

by fast GC or GC×GC. Typically, however, they provide only nominal mass resolution. 

On the other hand, TOFMS instruments that are operated at acquisition rates of 20 – 50 
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spectra/s provide enhanced mass spectral resolution and accuracy of ion masses, 

which facilitates the identification of unknown compounds. However, TOFMS instru-

ments are sensitive to voltage or temperature fluctuations requiring external as well as 

internal (re-)calibration of the mass scale on a regular basis. Even better suited for the 

identification of unknowns are hybrid qTOFMS instruments that combine one or more 

quadrupoles with a TOF mass analyzer. This MS type enables the determination of 

parent and fragment ions with high mass accuracy.  

4.2.4 Comprehensive two-dimensional gas chromatography – time-of-

flight mass spectrometry 

Despite high chromatographic resolution, overlapping peaks and coelutions are still 

observed in the analysis of complex samples by one-dimensional GC. Comprehensive 

two-dimensional GC (GC×GC) is a powerful analytical tool to tackle this problem and its 

application to metabolomics has been recently reviewed [42]. It uses two columns with 

orthogonal separation characteristics that are connected via a modulator. Typically, a 

nonpolar/polar column combination is employed. Hence, separation on the first column 

is essentially driven by differences in vapor pressure. Subsequent resolution of isovola-

tile sample components in the second dimension arises from the different strengths and 

types of polar interactions with the stationary phase. A number of different modulators 

are available that mostly employ thermal modulation. For example, the dual-stage four- 

jet modulator from LECO Corporation (St. Joseph, MI, USA) uses alternatingly nitrogen-

cooled cold jets for the periodic trapping of effluent from the first column in small seg-

ments that are then transferred to the very short second column upon hot jet remobiliza-

tion. Commonly, because of their high data acquisition rate, TOF mass analyzers are 

used to record the narrow peaks (peak widths of 50 – 200 ms) created by the focusing 

step and the fast separation in the second dimension. Electron ionization is used to 

generate fragment mass spectra that are then matched against available spectral librar-

ies. GC×GC-MS chromatograms are displayed as so-called 2D contour plots. The first 

and second column retention times are represented on the x-axis and y-axis, respec-

tively, and a color code depicts the detector response. An exemplary GC×GC-MS 

chromatogram of a methanolic avocado pulp extract is given in Figure 4.5. Peak anno-
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tation was based on spectral matching to the NIST 05 library using a cut-off score of 

700.  

 

Figure 4.5 GC×GC-TOFMS chromatogram of an avocado sample. Avocado pulp (40 mg) was homoge-
nized and extracted using cold methanol, extract was dried, derivatized (methoximation/silylation), and 
analyzed by GC×GC-TOFMS [12]. For peak annotation spectral matching to the NIST 05 library was 
performed using a cut-off score of 700. Signals marked in italics refer to internal standards. C16, palmi-
tate; C18, stearate; C18:1, oleate. Reprinted with permission from K. Dettmer et al, in W. Weckwerth, G. 
Kahl (Editors), The Handbook of Plant Metabolomics, Wiley-VCH, Weinheim, 2013, p. 77.  

Comprehensive two-dimensional GC separations not only offer enhanced resolution 

and a multiplicative increase in peak capacity over conventional GC methods, but also 

narrower peaks due to modulation and, hence, improved detection sensitivity. The latter 

was demonstrated for a standard mixture of 43 metabolites that was analyzed by both, 

one-dimensional and comprehensive two-dimensional GC-TOFMS [17]. For most me-

tabolites, lower limits of quantification were at least one order of magnitude lower using 

GC×GC-TOFMS. Still in need of improvement are convenient and practicable ways of 

data analysis to make full use of GC×GC-TOFMS for metabolic fingerprinting. In a first 

step, the raw data is pre-processed, for instance, in LECO’s ChromaTOF software. This 

includes background subtraction, deconvolution, picking of peaks and their integration, 

as well as combining several modulations belonging to one compound. Further, align-

ment tools must be capable of correctly aligning chromatograms within and across 

batches. This requires correction for shifts in retention time to recognize the same ana-

lyte across different samples. In addition to shifts in retention time, incorrect peak 

recognition can be caused by poor mass spectral deconvolution. These effects can 
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result in missing values in the alignment table despite the presence of the peak in the 

chromatogram, which impedes discriminate analysis. Quantitative analysis using 

GC×GC-TOFMS data can also be time-consuming. Employing peak based quantifica-

tion tools, the peaks from all modulations must be integrated to determine the response 

of an analyte. Since the software may fail in the proper integration of minor subpeaks, 

manual inspection and correction of integrated peaks may be necessary [43].  

 

4.3 Atmospheric pressure chemical ionization for GC-MS 

In this subchapter, the fundamentals of GC-APCI-MS and recent applications are de-

scribed, with an emphasis on the role of clusters in atmospheric pressure ionization.  

4.3.1 Fundamentals 

Historical outline (taken from [44]) 

APCI was first introduced by Horning et al. in 1973 [1] using 63Ni as a beta-emitter for 

ionization that was later replaced by a corona discharge ion source [2,45]. A range of 

applications were described by then, such as GC-APCI-MS in negative ion mode for 

environmental studies [46] as well as APCI-MS for gas analysis [47]. However, the 

technique was not widely used, in part because of the expensive instrumentation and 

due to already commercially available “plug and play” EI and CI GC-MS systems.  

APCI again attracted attention during the 1980s, when the introduction of electrospray 

ionization for LC-MS [48] caused a breakthrough in the development of LC-MS ion 

sources for generating ions at atmospheric pressure. Unlike previous LC-MS interfaces, 

such as particle beam or thermospray, where ions were generated under vacuum condi-

tions, molecules are ionized at atmospheric pressure in ESI and APCI. However, APCI 

was initially only used as an ionization interface for LC-MS.  

The renaissance of atmospheric pressure ionization techniques for GC-MS started just 

recently, when both McEwen and McKay [4] and Schiewek et al. [3] modified an API 

source on a commercial LC-MS instrument to enable an easy switch between various 
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ionization modes and to use both LC and GC with one certain mass spectrometer. The 

exciting potential of the latter investigations has led to the development of commercially 

available APCI sources that allow the hyphenation of GC to high-resolution TOF or 

QTOF mass spectrometers and tandem mass spectrometers that were previously only 

coupled with LC.  

Hence, distinctly lower quantification limits than previously obtained with quadrupole 

instruments can be achieved and features such as accurate mass measurements for 

chemical formula determination of unknown analytes can be exploited. A further ad-

vantage of GC-MS is the ability to observe compounds of low polarity that are not ame-

nable to LC-MS. These benefits are especially important in the study of complex mix-

tures as in the field of metabolomics. A major drawback remains the lack of convenient 

libraries [44]. 

 

GC-APCI-TOFMS instrumental setup 

One of the first successful attempts to couple GC to TOFMS was made by Erickson et 

al. in 1990 [49] by applying time array detection, which yielded data acquisition rates of 

up to 20 spectra/s and, hence, the optimization of chromatography for speed of analysis 

with no loss in chromatographic resolution or analyte detectability. Furthermore, the 

more widespread use of GC-TOFMS was fostered by the introduction of soft ionization 

techniques [4,50-53] for the determination of the elemental composition of unknown 

analytes and analog-to-digital converters distinctly increasing the dynamic range of 

TOFMS instruments [5].  

In the following, the GC-APCI I-TOFMS instrumental setup employed in this thesis is 

described (adapted from [44]).  

The first APCI source (APCI I) commercialized by Bruker Daltonics consists of a rectan-

gular aluminium chamber with five different ports A-E (compare Figure 4.6, [3]). Port A 

is mounted on the ion source mounting flange of the Bruker MS. The GC is connected 

to the ion source via a heated transfer line assembly at port B opposite to port A. The 

transfer line is fixed and heated externally by a controller to prevent compound conden-
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sation. Port E, located at the top of the ion source, contains the LC vaporizer stage, 

which is used for external hot nitrogen supply (illustrated in yellow in Figure 4.7) in case 

of GC to compensate for the relatively large pumping speed of the MS and to generate 

the heat required for the APCI process. Ports C and D are both arranged perpendicular 

to the longitudinal axis of the GC transfer line. Port C is sealed with an optical window 

and the corona needle assembly is mounted on Port D. This places the needle tip in 

close vicinity to the GC effluent and sheath gas flow. Figure 4.7 shows a general 

scheme of the GC-APCI-TOFMS setup. A sheath gas flow (nitrogen, illustrated in or-

ange in Figure 4.7) is introduced through coaxial holes around the outlet of the GC 

capillary and envelopes eluting analytes on their way through the source. Moreover, it 

directs the generated ions towards the MS. The source is purged with a clean dry gas 

(N2) to prevent reduction of ions by contaminants [3]. However, part of the dry gas is not 

directed into the APCI source but soaked into the transfer capillary (illustrated in red in 

Figure 4.7), which causes gas turbulences in front of the end plate of the capillary. 

Furthermore, the vaporizer gas is a major source of the overall extensive gas turbulenc-

es in the APCI I source, so that is was omitted for the second-generation APCI II source 

(see section 8.2.2). With regard to the ionization several APCI source parameters have 

to be optimized for a specific application namely drying gas (nitrogen) temperature and 

flow rate, vaporizer temperature and gas (nitrogen) pressure, current of corona needle 

discharge and capillary end plate voltage (compare Figure 4.7).  

 

Figure 4.6 Scheme of the APCI I source body. Reprinted with permission from [3].  
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Figure 4.7 GC-APCI-TOFMS setup and ion species present during the ionization procedure [3,4,45]. The 
flow direction of sheath gas, vaporizer gas, and dry gas is indicated by orange, yellow, and red arrows, 
respectively. Modified and reprinted from [15] with permission from Elsevier.  

In addition to the ionization in the APCI source, different stages of the ion transfer are 

crucial for the quality of the obtained APCI mass spectrum and have to be pointed out. 

Since analytes are ionization at atmospheric pressure, but ion separation in the mass 

analyzer is achieved under high vacuum conditions, pressure has to be reduced step-

wise in consecutive stages within the mass spectrometer. As discussed by Klee et al. 

[54,55] up to seven different domains can be distinguished within the overall ion genera-

tion and detection process. For the microTOF (Bruker Daltonics) employed here, this 

includes regions of primary and secondary ion generation, ion transfer to the MS, three 

different vacuum pumping stages and ion optics. The domains are characterized by 

varying chemical composition, temperature and pressure, which lead to rapid switching 

of the dynamic entity of analyte ions and surrounding matrix.  

Apart from the GC-MS approach followed in this thesis, APCI has been used for analyz-

ing compounds from solid or liquid surfaces. A detailed overview of AP surface sam-
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pling/ ionization techniques for mass spectrometry was compiled by van Berkel et al. 

[56], including Atmospheric-pressure Solids Analysis Probe (ASAP) and Direct Analysis 

in Real Time (DART), which make use of a hot nitrogen gas stream and excited helium 

atoms for vaporization and desorption of the sample, respectively, and subsequent 

ionization by APCI. Krieger et al. [57] developed a Direct Inlet Probe (DIP)-APCI ion 

source with temperature-programmed heating of the sample to separate analytes based 

on boiling point differences and, hence, reduce ion suppression. While DART and DIP-

APCI sources are used for analyzing solid samples and small amounts of liquid sam-

ples, the APCI source for LC-MS, in comparison to that of GC-MS, has an extra heated 

APCI nebulizer unit used for efficient nebulization and desolvation of the LC effluent. 

 

APCI ionization mechanism (partly taken from [44]) 

As stated above, APCI gained in importance first in LC-MS as an alternative to ESI, 

which is well suited for polar compounds and, especially, for large biomolecules. APCI, 

in comparison, is mostly used whenever small and medium-polar molecules are investi-

gated. Both ionization modes generate mainly protonated molecules with very little 

fragmentation. In case of ESI, evaporation of the eluent and ion formation from micro 

droplets through Coulomb explosions can be considered as top down processes, 

whereas APCI in the gas phase is mediated through proton-bound solvent clusters that 

are build bottom up from primary ions. “In positive-ion mode, APCI is initiated by corona 

discharge through application of a high voltage (2-6 kV) to a sharp metal electrode 

(corona-discharge electrode). The high electric field at the tip of the electrode attracts 

electrons and the surrounding nitrogen gas is ionized by electron ionization. This leads 

finally to plasma formation and together with traces of water vapour from air or nitrogen 

the following reactions (Figure 4.8) [45] occur in the plasma region.“ [44]  
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Figure 4.8 Ion molecule reactions in positive atmospheric pressure chemical ionization mode [45].  

This series of reactions leads to the formation of clusters, which are typically proton-

bound water clusters in GC-MS, whereas proton-bound LC solvent or mixed wa-

ter/solvent clusters are present in LC-MS. These clusters finally lead to the dominantly 

observed protonated molecules as described later in this section.  

It should be noted that gas-tight API interfaces have been designed in the context of 

ionization mechanism studies that favor charge exchange rather than protonation [58]. 

Furthermore, formation of molecular radical cations depends on the type of analyte. For 

instance, it was observed in the analysis of pesticides by means of GC-APCI-QTOFMS 

[59]. However, N2 transfer conditions resulting in the formation of M▪+ species [59] did 

not apply to the instrumental setup and analytes investigated in this thesis. The proto-

nated molecule, however, was always formed (termed as “proton transfer conditions” 

[59]). 

It should be mentioned that APCI in negative ion mode is also possible [6], but this was 

of no practical relevance in the context of the current thesis.  

Furthermore, among the different API techniques, both direct and dopant-assisted at-

mospheric pressure photo ionization (APPI/DA-APPI) and atmospheric pressure laser 

ionization (APLI/DA-APLI) are applied to medium- to nonpolar and aromatic nonpolar 

analytes, respectively. Both LC-MS [54] and GC-MS [3,60] applications have been 

reported. Unlike in APCI, primary reagent ions are formed from photons instead of elec-

trons, but, importantly, ionization of analytes is also based on chemical ionization by 

proton-bound cluster species [54,61]. Hence, it appears appropriate to derive universal 
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conclusions from the role of clusters in API and their fate in the ion transfer process 

from individual APCI, APPI or APLI studies.  

 

APCI conditions  

Atmospheric pressure chemical ionization takes place under completely different physi-

cal and chemical conditions than CI and especially EI. Hereinafter, given that the de-

scribed ionization conditions and processes in analyte ion generation are common to 

APCI, APPI and APLI, the expression API was used as a general term.  

Most relevant to the analytical chemist is the reduced degree in fragmentation in API 

and a concomitant increase in protonated molecules [M+H]+. The benefit of APCI for 

metabolite identification is shown in Figure 4.9 that depicts mass spectra of fructose-

1MeOx-5TMS acquired with GC-EI-qMS and GC-APCI-TOFMS, respectively. Infor-

mation on the entire molecule is only preserved in the latter case, and very few frag-

ments are observed, e.g. resulting from the loss of a neutral Si(CH3)3OH (m/z 90) 

group. Protonated molecules preferentially transfer excess energy to neutral molecules 

through collision processes lowering fragmentation (“collisional deactivation”) [62], 

whereas unimolecular decay reactions occur under vacuum conditions due to much 

lower densities of neutral molecules. Furthermore, source residence times of ions in API 

may reach up to several hundred miliseconds [55,63] and their transfer to the MS is 

dominated by gas flow instead of electric fields [64]. As opposed to that, ions formed 

under vacuum conditions are transported out of the source region within less than one 

micro-second by the applied electric fields [55]. Due to the prolonged residence time of 

ions in the APCI source, the formation of a silylation adduct was observed in my initial 

GC-APCI-TOFMS study [17], which was formed only in case of compounds with a car-

boxylic group and, thus, helped to strengthen a putative identification, e.g., nonanoate-

1TMS (Figure 4.9C) showed adduct formation as opposed to glycerol-3TMS (Figure 

4.9D), which lacks a carboxylic group. 
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Figure 4.9 GC-MS mass spectra of standards (62.5 M) using hard and soft ionization techniques as 
described elsewhere [17]. Identification of fructose-1MeOx-5TMS requires spectral libraries for GC-EI-
qMS (A) or can be achieved starting from the protonated molecule in case of GC-APCI-TOFMS (B), 
where structure-dependent adduct formation may serve as plausibility check as exemplified for (C) nona-
noate-1TMS and (D) glycerol-3TMS with the latter showing no adduct formation as it lacks a carboxylic 
group. MeOx, group introduced by methoximation; TMS, trimethylsilyl group; [M+73]+, silylation adduct of 
analyte M. [16] – Reproduced by permission of The Royal Society of Chemistry.  

Considering the long residence times of ions in the source compared to typical ion-

molecule reaction rates and the great numbers of neutral molecules as potential reac-

tants (typically nitrogen, oxygen and water molecules in GC-MS), chemical (bi- and 

termolecular) reactions inevitably occur in API sources. Under such conditions, as re-

cently pointed out by several authors [55,61], chemical processes are typically thermo-

dynamically controlled, i.e. the minimum of the Gibbs function G of the reaction system 

is reached within the dwell time of ions in the source. Hence, ionization at atmospheric 

pressure leads to thermally equilibrated ion populations, whereas ionization under vac-

uum conditions is kinetically driven [63]. However, equilibrated ion populations may 

drastically change en route to the detection system, not only because of interactions 
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with neutral molecules that reach the first ion transfer stages but also due to association 

and dissociation reactions of the ion-bound cluster systems.  

In order to establish optimum API conditions, the ion-bound clusters increasingly be-

came the focus in API mechanistic studies [54,55], because they were found to play a 

more complex role in the generation of protonated molecules than originally assumed. 

For instance, mainly [M+H]+ ions were detected in DA-APPI- and DA-APLI-MS even 

when aprotic dopants were used [54,65]. Previously, the difficulty in elucidating API 

ionization mechanisms lay in the fact that clusters are typically not observed using 

commercial API mass spectrometers, because cluster dissociation occurs due to the 

electrical voltages applied in the ion transfer.  

Water plays a major role in cluster ion chemistry. Due to its polar nature, cluster for-

mation with other reactants is energetically efficient and, furthermore, water is omni-

present in API sources above levels of 1 ppmV even if the latter sources are purged 

with ultrapure nitrogen for several days. Numerous working groups have provided kinet-

ic and thermodynamic data on the proton-bound water cluster system [66-69]. It has to 

be pointed out that LC solvents such as methanol or acetonitrile participate in clusters 

as well, but this was irrelevant in the context of the current thesis. The water cluster 

system consists of different H+(H2O)n species, with a varying number of n water mole-

cules bound to a core cluster, which reach a thermal equilibrium in the API source. The 

equilibrium cluster size distribution of the system is typically between n = 3-9 with a 

maximum between n = 4-6, depending on the temperature and water content in the 

source [70]. In fact, with an increase in the background water concentration the maxi-

mum of the latter distribution shifts towards a higher number of bound water molecules 

[54]. The water cluster system is highly dynamic and clusters undergo numerous colli-

sions in the source and also in the different stages of the ion transfer to the MS, where 

changes in pressure and ion temperature also affect cluster size and, hence, reactivity. 

This applies to the entire high or intermediate-pressure regions down to between 10-4 

and 1 mbar [54,55].  
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Analyte ion generation 

Proton-bound water clusters interact with analyte molecules to yield the dominantly 

observed protonated molecules. Previously, it was assumed that these clusters proto-

nate molecules with gas-phase basicities higher than that of water in bi-molecular reac-

tions in the API source [69]. Recently, an initial analyte capture by water ion cluster 

ligand exchange / association reactions followed by dissociation of water molecules 

further downstream yielding bare [M+H]+ ions has been proposed [54,71]. The unlikeli-

ness of direct acid-base-type protonation reactions is supported by the low gas-phase 

acidity of typically occurring water ion clusters with at least four water molecules. In fact, 

clusters of that size have been considered as essentially unreactive toward analytes 

with moderate gas-phase basicity [71]. For instance, mixed analyte-water ion clusters 

instead of the [M+H]+ ions of N,N-diisopropylethylamine were formed under thermal 

equilibrium in DA-APLI [54], demonstrating that even an amine with a high gas-phase 

basicity rather participates in ligand exchange/ association reactions than being directly 

protonated.  

Analyte molecules with suitable chemical and physical properties such as polarity/dipole 

moment can be captured as ligands in cluster equilibra [54]. All matrix components act 

as potential competitors in the cluster/ligand association reaction and the impact in-

creases with increasing matrix concentrations. Higher concentrated matrix species, 

even if less suitable in terms of polarity, may prevent analyte molecules from entering 

the cluster equilibria. Vice versa, omnipresent dopants in DA-API-MS that show a low 

tendency towards ligand exchange / association reactions (e.g., toluene) may lead to 

more efficient analyte protonation than those with a high tendency (e.g., anisole). Using 

toluene and anisole as dopants in DA-APPI-MS analysis, testosterone was ionized 

more efficiently through proton-bound water clusters in the case of toluene [72].  

As ligand exchange between clusters and background matrix is highly dynamic, analyte 

molecules may be replaced by other matrix molecules before cluster activation, i.e. the 

reduction of the number of cluster ligands to finally obtain protonated molecules. Ana-

lyte elimination from clusters may occur throughout ion generation and passage along 

the detection pathway from the ionization source to the intermediate-pressure region 
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down to between 10-4 and 1 mbar, where the number of collisions is still high enough to 

induce changes in the existing ion population. Klee et al. [54,55] distinguished up to 

seven different domains in API MS instruments, namely corona discharge region, ther-

malized region within the API source, ion sampling port and transfer to the MS, three 

consecutive pressure reduction stages and the vacuum analyzer region. The turbulent 

flow within the API source and ion transfer to the MS causes strong mixture of all sys-

tem components, followed by gas expansion and concomitant cluster growth and re-

equilibration in the first vacuum pumping stage with a sustained background pressure of 

a few mbar. Ions are further guided to the analyzer region by electrical fields, whereas 

neutral molecules are continuously removed. The applied electrical fields also lead to 

increasing kinetic energies of the ions, which in turn results in enhanced collisions and, 

hence, ion activation. Furthermore, fragmentation may occur in the case of fragile ana-

lyte ions as another consequence of the increased number of collisions. Apart from 

electrical field mediated collision-induced dissociation (CID) of analyte-water ion clus-

ters, stepwise CID of equilibrated water ion clusters may be a minor pathway leading to 

protonated molecules. In the process, smaller, more acidic water ion clusters are 

formed, which then protonate neutral analytes that reach the first pressure reducing 

stages [54,71]. The two above described mechanisms of ion activation are a favorable 

side effect of ion guiding to the mass analyzer, but the aim of ion guiding is a high ion 

transmission rather than controlled ion activation. Keeping that in mind, an ion activation 

stage (IAS) for controlled ion activation has been recently introduced [61]. In fact, the 

prevailing water-ion cluster distribution can be shifted towards reactive species for sub-

sequent analyte protonation by the IAS, which still awaits a systematic evaluation of its 

practical relevance.  

In summary, according to Klee et al. [54], critical prerequisites for efficient generation of 

[M+H]+ ions include analyte properties that favour participation in ligand exchange/ 

association reactions, e.g. polarity. This must be accompanied by the ability of the ana-

lyte molecule to be retained as a ligand in the cluster system until the very final stages 

of cluster activation to end up as a bare protonated molecule. As direct protonation of 

analytes by thermally equilibrated water ion clusters appears negligible in comparison to 

cluster mediated protonation, thermodynamic properties, such as gas-phase acidity and 
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basicity of the analyte are probably less relevant for predicting the formation of [M+H]+ 

ions than its polarity. However, several further analyte properties, e.g., steric hindrance, 

certainly play a role in the overall ionization efficiency, requiring more research and 

evaluation in the future [54].  

4.3.2 Review of GC(×GC)-APCI-MS applications  

This section focuses on applications in positive APCI mode over the last decade. Here-

inafter, metabolomics studies are discussed in detail (partly taken from [44]) and a brief 

overview on GC(×GC)-APCI-MS studies of environmental samples, foodstuffs, pharma-

ceutical impurities, pesticides, steroids and VOCs is provided in Table 12.1 in the ap-

pendix. In summary, recent publications have demonstrated the advantages of GC-

APCI-TOFMS with regards to the range of amenable compounds, detection sensitivity, 

compound identification and the provision of complementary information compared to 

conventional GC-MS approaches.  

Only few metabolomics studies employing GC-APCI-MS have been published so far. 

Ishimaru et al. in 2008 [11] used APCI for headspace GC-MS to reduce complexity of 

mass spectra of volatile metabolites in bacterial samples. Three different bacterial spe-

cies (Escherichia coli, Streptococcus pneumoniae and Staphylococcus aureus) were 

included in the study, which revealed 156 out of 163 peaks detected in total (95.7%) to 

be species specific. However, the potential of GC-APCI-MS for the rapid identification of 

pathogens might be compromised by a low repeatability of the presented approach, or 

the identified peaks might not have originated from the bacterial species. In fact, only 

54.7% to 75.3% (on average 68.0%) of detected peaks overlapped in the analyses of 

the three strains upon repeated cultivation, which was not further addressed in the pa-

per. In addition to that, the peaks that were thought to be specific to one of the bacterial 

species were selected according to visual judgement rather than statistical analysis of 

an adequate number of biological replicate samples [11].  

“In 2009, Carrasco et al. [9] tested GC-APCI coupled to a Bruker microTOF mass spec-

trometer using a standard mixture with 31 compounds from diverse chemical classes 

(amino acids, organic acids, alcohols, etc.). The complete analytical procedure, includ-
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ing source and instrument parameters, was optimized and evaluated with respect to 

characteristic analytical parameters. LODs were within 11.8 to 72.5 nM, which is con-

siderably lower than previously published for the determination of these compounds by 

GC-EI-qMS. LOQs were in the sub-micromolar range (between 0.05 and 0.24 µM) and 

the linear range extended over three orders of magnitude. Furthermore, good interday 

repeatabilities below 7% (RSD) were achieved. The developed method was applied to 

the analysis of human cerebrospinal fluid samples. Adequate values of mass error and 

sigma value (below 2 mDa and 10, respectively) made it possible to identify more than 

300 distinct features in cerebrospinal fluid (CSF) samples [9].  

Pacchiarotta et al. (2010) applied the well-known concept of parallel detection for 

metabolomics studies using APCI-TOFMS and FID [10]. Since APCI works at ambient 

pressure, parallel detection is fairly straightforward while parallel detection with conven-

tional EI-MS detectors requires restriction capillaries in order to maintain proper column 

flow to both detectors. In this study, MS combined with APCI ionization provided high 

detection sensitivity with LOQs of silylated amino acids of about 0.5 µM and additional 

structural information. In contrast to that, FID appeared to be more robust, and provided 

a wider dynamic range that is especially helpful for quantification of compounds present 

at concentrations above saturation of the MS detector. Furthermore, FID covers all 

organic peaks, some of which might be missed by GC-APCI-MS, but it ideally requires 

baseline-resolved analytes, which is often not achieved by one-dimensional GC for 

complex biological samples. Nevertheless, the authors claim that MS and FID provided 

complementary information that might be helpful to expand the set of analyzable com-

pounds in metabolic profiling studies [10].” [44] 

The results of my master thesis were compiled in the beginning of my doctoral thesis 

and published in 2011 [17]. In this work, GC-APCI-TOFMS was compared to GC×GC-

EI-TOFMS, GC-EI-TOFMS, GC-CI-qMS and GC-EI-qMS in terms of repeatability, dy-

namic range, limit of detection and quantification using a mix of 43 metabolites and 12 

internal standards. Lower limits of quantification for GC-APCI-TOFMS ranged between 

0.06 and 7.81 µM, and relative standard deviations for calibration replicates were be-

tween 0.4 and 8.7%. For all compounds and techniques, except in four cases, R square 
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values were above 0.99. With regards to limits of quantification, GC-APCI-TOFMS was 

only inferior to GC×GC-EI-TOFMS, but outperformed all other techniques tested. GC-

APCI-TOFMS was further applied to metabolic fingerprinting of E. coli wt strain MG1655 

and the double-mutant PntAB-UdhA. The latter mutant lacks two genes encoding for 

two transhydrogenase isoforms that are involved in the electron transfer from NADH to 

NADP+ and vice versa. It was reported that this leads to a substantial re-routing of the 

metabolic flux from glycolysis to the pentose-phosphate pathway to meet the cellular 

demand for NADPH [73]. Out of 45 features that differed significantly (false discovery 

rate <0.05) between the two E. coli strains, 25 metabolites, mainly from the Krebs Cycle 

and related pathways, were identified due to highly accurate and reproducible mass 

measurement (m±SD below 5mDa over m/z 190-722). Starting from the protonated 

molecule, six additional metabolites were identified that had not been found in a previ-

ous study using GC×GC-EI-TOFMS and the NIST 05 mass spectral library for identifica-

tion purposes. In fact, identification based on their EI spectra was not possible because 

the derivatives of dihydroorotate, N-acetylneuraminate and N-acetylputrescine were 

contained in neither the used NIST 05 nor the commercial Fiehn metabolite library. 

Silylation adducts formed in the APCI source helped the identification of unknown com-

pounds as its formation proved to be structure-dependent as it was not observed for 

compounds lacking a carboxylic group. It was concluded that GC-APCI-TOFMS is a 

potentially useful tool for metabolomics. However, ionization at atmospheric pressure 

was influenced by multiple factors. For example, moisture content in the source was 

highly variable and correlated to the humidity in the laboratory. This requires future 

investigations to evaluate and optimize factors influencing reproducibility during GC-

APCI-TOFMS analysis. This might benefit lower limits of quantification, as well as more 

consistent results in comparative studies in metabolic fingerprinting.  

Part of the reason why APCI has not been more widely adopted in GC-MS based 

metabolomics is the lack of commercial mass spectral libraries. Pacchiarotta et al. 

(2013) addressed this issue by building a web-based 150-component GC-APCI-QqTOF 

spectral library [74], which also proved to be useful in the current thesis (see chapter 8). 

Compounds most commonly found in biofluids and/or food specimens were initially 

included in the library, such as amino acids, fatty acids, organic acids and sugars. Chal-
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lenges in the GC analysis of above mentioned metabolite classes with their common 

fragmentation patterns are described in the article, which also provides a protocol for de 

novo identification of unknowns on a routine basis comprising the steps of (1) spectra 

calibration, (2) calculation of elemental formulas considering the isotopic distribution, (3) 

MSn experiments to reduce the number of putative candidates, and (4) verification with 

an analytical standard if available [74]. The spectral library and de novo identification 

protocol were employed in follow-up studies on avocado fruit extracts [75,76] and hu-

man urine specimens [77] by the same authors. GC-APCI-TOFMS proved as comple-

mentary tool to GC-EI-qMS in the characterization of the avocado fruit metabolome, 

with a wider range of amenable compounds in terms of polarities and molecular weights 

that could be analyzed. However, this might be partly explained by the different intrinsic 

detection capabilities of the employed mass analyzers. In fact, GC-APCI was coupled to 

an orthogonal-accelerated Qq-TOF MS, whereas a single quadrupole was used for GC-

EI-MS analysis [75]. Untargeted metabolomics by GC-APCI-TOFMS was further per-

formed in two studies to either investigate the effects of ripening degree and fruit varie-

ties on the metabolic profile of avocado fruits [76] or urinary tract infection (UTI)-induced 

changes of the human urinary metabolome [77]. Two-class PLS-DA models were built 

first using the information on the degree of avocado ripening and the infectious status of 

the E. coli UTI patients, either diseased on the day of enrolment or recovered after 30 

days, as sample class characteristic. This was followed by the allocation of peaks that 

accounted for the observed group separation in each case. Several of the identified 

metabolites could be corroborated by previous studies and information on new possibly 

relevant metabolites was gained, demonstrating, according to the authors, the useful-

ness of the applied GC-APCI-MS platform in exploratory studies for these applications. 

However, a major limitation was the incomplete annotation of important group discrimi-

nating peaks, which might improve with the future expansion of the employed GC-APCI-

MS spectral library [76,77].  

GC-APCI-MS has also been exploited as a complementary tool to GC-EI-MS for un-

known metabolites that had escaped previously identification using EI libraries. 

Strehmel et al. (2014) derived a strategy for the pair-wise assignment of GC-EI-qMS 

and GC-APCI-QTOFMS mass spectra based on 102 known components in MeOx-TMS 
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derivatized extracts of Arabidopsis thaliana [78]. GC separation was achieved under 

almost identical conditions, which facilitated establishing a prediction model for GC-

APCI-QTOFMS retention times based on GC-EI-qMS data. Furthermore, in order to 

identify the corresponding APCI spectrum of an unidentified EI spectrum in the GC-

APCI-QTOFMS data, the mass of the protonated molecule could be hypothesized for 

80% of the reference compounds. This was based on the EI molecular and/or [M-CH3]
+ 

ion, or a pair of consistent EI and APCI fragment ions. From the protonated molecule 

elemental formulas were then calculated and additional information from experiments 

with deuterated derivatization reagents and CID mass spectra was incorporated, ulti-

mately leading to 14 structural hypotheses for a total of 25 unknown compounds [78]. A 

similar strategy for the pair-wise assignment of GC-APCI-TOFMS and GC×GC-EI-

TOFMS mass spectra was applied in chapter 8 in the current thesis. Moreover, Jaeger 

et al. employed GC-APCI-TOFMS and the above-mentioned concept of retention time 

prediction / elemental formulae calculation to confirm putatively annotated metabolites 

by GC-EI-MS in the study of global metabolomic changes in Caenorhabditis elegans 

lifespan mutants [79]. The number of metabolites identified by APCI was found to be 

comparable to EI, with a total of 95% (108 of 114) primary GC-EI-MS annotations con-

firmed by the elemental sum formulas obtained from high-resolution APCI-TOFMS data. 

Importantly, this included several metabolites with a low EI spectral match factor or high 

RI deviation relative to the library reference compound. In the further course of the 

study, PCA, hierarchical clustering and ANOVA followed by post-hoc testing were per-

formed on the GC-EI-MS data, revealing a critical role of peroxisomes in aging [79].  

 

4.4 Experimental design and data analysis in metabolomics 

A metabolomics study comprises several experimental steps, subsequent data analysis, 

and, finally, biochemical interpretation of the results. Sampling, quenching, extraction of 

metabolites and derivatization have to be performed. Samples are further analyzed 

using optimized and validated analytical methods. Common data analysis steps include 

data pre-processing, (optionally) manual peak integration, statistical analysis, identifica-
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tion of metabolites, and validation of the results. Finally, the study outcome has to be 

interpreted in the particular biological context. In such a study, the observed variability 

of an acquired data set results from biological, pre-analytical and analytical sources. 

The latter two are preferably reduced to a minimum. Established protocols for quench-

ing, extraction of metabolites and derivatization were used to cope with pre-analytical 

variability as described in chapter 5 and the experimental sections of the following chap-

ters. In this subchapter, strategies are described that were applied in this thesis to elim-

inate analytical variability. Furthermore, an overview on data analysis is given, with an 

emphasis on the evaluation of high-resolution GC-APCI-TOFMS data.  

4.4.1 Setting up an analysis 

Proper priming of the analytical system is a key factor in obtaining data of high quality. 

Whenever parts of the GC system (e.g., ferrules, connectors, pre-column) are ex-

changed, the system has to be checked for leaks and the oven temperature should be 

ramped stepwise to the maximum temperature tolerated by the stationary phase to 

clean and equilibrate the system. It is also advisable to start a sequence with a blank 

sample containing, e.g., the derivatization reagents to equilibrate the system. A test 

mixture can be used to check proper and expected performance of the system. GC 

column performance should be monitored on a regular basis because contamination of 

the column or column bleeding over time may deteriorate chromatographic separation. 

Some degradation of the stationary phase, typically more pronounced for thick film 

stationary phases, is unavoidable. It is mainly visible as an elevated baseline at higher 

column temperatures, which is caused by the formation of linear and cyclic polysilox-

anes in case of siloxane-based stationary phases. In particular oxygen in the carrier gas 

in combination with higher column temperatures will increase column bleeding. This 

background noise negatively affects the quality of MS spectra and the limit of detection. 

Nowadays, most manufacturers offer low bleed column that are suitable for GC-MS.  

In case of GC-MS instruments with nominal mass resolution, tuning of the mass scale 

and ion intensities is performed with perfluorotributylamine (PFTBA) on a regular basis 

using automated routines in the MS software. For high-resolution MS, however, tuning 
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is more elaborate. Initial external calibration with a vendor standard mixture that con-

tains masses in the range of the planned application is advised. Ions monitored for 

calibration should not go into saturation, and experimental masses should not deviate 

more than 1 ppm from their theoretical values. In addition, mass spectra should be 

recalibrated after every analysis, because mass accuracy of high-resolution TOFMS 

and qTOFMS instruments suffers from slight drifts in temperatures and/or voltages 

between runs. This can be accomplished by the addition of standards to each sample 

(for details see section 5.4.3). Moreover, a lock mass that is present in every spectrum 

can be used to recalibrate the mass scale afterwards.  

Samples should be analyzed in random order. Blanks, quality control samples such as 

pools of individual samples, and calibration controls should be interspersed. The addi-

tion of blanks helps to identify contamination peaks that originate from solvents, extrac-

tion solutions, impurities from internal standards or the column. The blanks should un-

dergo the complete analytical procedure. Quality control samples are helpful especially 

in case of large sample sets that cannot be analyzed in a single batch. Between-block 

effects, also called batch effects, are most critical in metabolic fingerprinting. Quality 

control samples that are repeatedly measured may be used to correct for variance in-

troduced by instrumental drifts. Calibration controls should also be included to ensure 

proper quantitation across a batch. They may contain two to three calibration standards 

well in the linear range of the calibration curves of the target compounds and are used 

to calculate recoveries.  

An important aspect of metabolomics is the generation of quantitative data. In order to 

account for matrix effects and to achieve required levels of accuracy and precision, SIL-

ISs are commonly included in quantitative analysis. Ion suppression or enhancement in 

case of the stable isotopically labeled analogue is expected to be equal to that of the 

sample analyte given the almost identical chromatographic and ionization behavior. One 

should note that deuterated internal standards, depending on the number of deuterium 

atoms incorporated, might show a partial separation from the unlabeled analyte. Using 

unique quantification traces, the mass spectrometer is capable of distinguishing analyte 

and labeled analogue. For quantification, the response [peak area normalized by the 
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corresponding internal standard (IS) peak area and internal standard concentration: 

peak area × IS concentration/IS peak area] is plotted instead of the peak area value. At 

the initial stage of method development, it is important to evaluate matrix effects, which 

have been reported mostly for LC-MS [80,81], but also for GC-APCI-MS [82]. Spike-in 

experiments should be performed to reveal ion suppression [83]. Definite amounts of 

the studied analyte are added to the extracted samples. Plotting the response values of 

calibrators and spiked sample extract against each other should yield a linear curve with 

a slope of one and an intercept of zero. However, possible over-quantification may go 

unnoticed in spike-in experiments [39]. For that reason, absolute amounts obtained by a 

novel method should always be validated by an established technique or the analysis of 

certified reference materials.  

Furthermore, the addition of standards before extraction and injection, respectively, 

allows the detection of extraction losses and/or problems with sample injection. The 

addition of a homologous series of standards further enables the calculation of retention 

indices. In their plant metabolomics studies, Gullberg et al. [84] included 11 SIL-ISs 

representing different compound classes and optimized their extraction and derivatiza-

tion protocols using a design-of-experiments approach. Koek et al. [41] distinguished 

three performance classes of silylated metabolites and recommended the inclusion of 

representative compounds from each class, preferably labeled with stable isotopes, for 

method optimization and validation. This classification was based on derivatization 

efficiency, analytical repeatability and reproducibility, linear range and quantification 

limits. Sugars and organic acids, which showed the best performance, were classified 

as group I compounds, followed by metabolites containing amine or phosphoric func-

tional groups (group II compounds), whereas those with amide, thiol or sulfonic func-

tional groups (group III compounds) were regarded as the most critical to analyze [41].  

However, SIL-ISs are expensive and their availability is limited. In addition, they can 

complicate several data processing steps, such as deconvolution, peak picking and 

integration, especially in the case of GC×GC-MS [43]. Lien et al. [85] employed 

deuterated MSTFA as a derivatizing reagent (d9-MSTFA) for a mixture of standard 

compounds to overcome the limited number of available SIL-ISs. This deuterated 
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standard mix was then spiked into MSTFA derivatized samples prior to GC-MS/MS 

analysis. However, this strategy does not correct for metabolite losses during sample 

preparation and derivatization. Alternative approaches to overcoming the lack of com-

mercially available SIL-ISs include the use of d3-MCF/d3-MeOH to generate stable 

isotopically labeled methyl chloroformate derivatives [86] and the in vivo biosynthesis by 

feeding microorganisms stable isotopically labeled substrates [87]. However, such ap-

proaches will cover only parts of more complex metabolomes observed for example in 

plants and mammals. 

4.4.2 Data analysis workflow 

Analysis of the acquired mass spectral data depends on the intended strategy. For a 

quantitative method, mass traces (quantifier and qualifier ions) of the target compounds 

have to be specified, along with their retention time, and an internal standard has to be 

assigned for each analyte that is ideally the labeled analogue. Concentration levels of 

the standards have to be defined, further parameters may be defined (e.g. 1/x weighing 

for linear regression analysis or smoothing), and finally calibration curves can be calcu-

lated and integrated together with the samples. If SIL-ISs are used, isotope dilution 

analysis can be performed for quantification.  

For comparative analysis of multiple sample groups in an untargeted approach, data 

files are pre-processed first, e.g., baseline correction, recalibration of the mass scale, 

deconvolution and peak picking are performed, and then peaks across chromatograms 

are aligned in one data matrix that contains their m/z values, retention times and area 

integrals. In the process of data processing and alignment, one has to be aware of 

several pitfalls, such as batch effects or missing values in the data matrix. The latter can 

be imputed by dedicated software algorithms provided that they are missing completely 

at random [88]. Prior to multivariate analysis, it is important to minimize contributions 

from unwanted biases and experimental variance by using normalization methods. The 

simplest of these would be normalization to an appropriate internal standard or the sum 

of all integrals in the sample, whereas more advanced methods include quantile normal-

ization or variance stabilization approaches in the absence of significant between-group 
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differences in total signal intensity. Depending on the nature of specimens analyzed, 

further normalization may be conducted to correct for undesired biological variance, 

such as normalization to creatinine concentration in case of urine specimens as a con-

sequence of differences in fluid intake or to the number of cells or protein content in the 

analysis of cell extracts. Since the number of peaks, features, or “dimensions” that a 

given dataset represents may number in the hundreds, dimension reduction techniques 

such as principal component analysis (PCA) are commonly used to reduce data com-

plexity and, thus, facilitate visualization of differences between samples. Selection of 

differential features for subsequent assignment to metabolites using different strategies 

for identification (see subchapter 4.5) could be initially based on two-sided t-tests or 

analysis of variance (ANOVA) followed by post-hoc tests. In case of large feature num-

bers correction for multiple testing is needed, for example, by controlling the false dis-

covery rate [89]. The ultimate goal is the reliable detection of features (biomarkers) and 

corresponding pathways that distinguish a group. In recent years, a number of different 

classification algorithms, such as nearest neighbour, linear discriminant analysis and 

classification trees, have been developed and applied to the classification of samples 

based on transcriptome data [90]. Their applicability and performance for LC/MS- or 

GC/MS-based metabolite fingerprinting data still awaits systematic evaluation. Recent 

work performed in our laboratory on 1H NMR-based metabolite fingerprints of different 

physiological fluids from different species compared Elastic Net, Nearest Shrunken 

Centroids, Partial Least Squares-Discriminant Analysis (PLS-DA), Random Forests, 

Top scoring pairs, and Support Vector Machines (SVM) as classification tools [91]. 

Random Forests and SVM combined with t-score based feature filtering were found to 

be overall the best suited techniques for classification of samples [91]. 

To facilitate the biological interpretation of results, multiple databases are available. 

Major metabolite databases are the Human Metabolome Database (HMDB) [23], the 

Madison Metabolomics Consortium Database (MMCD) [92], Metlin [25], and LIPID 

MAPS [24]. They contain huge numbers of fully annotated metabolite entries tailored to 

studies on specific compound classes/pathways, e.g. lipid metabolism, or a particular 

organism. These databases incorporate many sources of information. The HMDB, for 

example, includes chemical, clinical, and molecular biology/biochemistry data for over 
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7900 fully annotated metabolites. It also contains spectra information for more than 800 

compounds. Search entries are linked to other databases, e.g. KEGG, and still more 

dedicated software and search algorithms have been added to the latest version  

(V 2.5). However, each of the mentioned databases only covers a fraction of the metab-

olome. Therefore, one should search multiple databases. Zhou et al. [93] recently im-

plemented a web-based software tool, which searches the four major metabolite data-

bases listed above, and finally combines the results for a more comprehensive 

coverage of possible candidates for mass-based metabolite identification. In addition to 

searching databases, mapping of identified metabolites to corresponding metabolic 

pathways is helpful. In a recent work by Leader et al. [94], the authors described a freely 

available tool called “Pathos”, which uses as input raw m/z values or KEGG IDs, if the 

metabolites have been already identified, to search the KEGG database. Apart from 

returning a pathway map with the identified metabolites highlighted, it can also visualize 

changes in their experimental abundance if relative quantification data under different 

experimental conditions is provided. This allows the scientist to obtain a quick survey 

over regions of metabolism of potential interest. Finally, metabolomics data can be 

combined with results from other –omics fields to yield a global picture of the biological 

entity under study.  

4.4.3 Recalibration of high-resolution GC-APCI-TOFMS data and cal-

culation of elemental formulas 

Especially in the case of GC-high-resolution MS (GC-HRMS), mass recalibration can be 

difficult. For external calibration, the APCI source can be replaced with an ESI source 

and calibration can be performed using an ESI tune mix. Alternatively, FAMEs can be 

infused from the top of the APCI source at the beginning of each analytical run. Howev-

er, post-acquisition recalibration of mass spectra is not as straightforward as in LC-MS. 

Internal standards that are added to every sample prior to analysis can be used for 

internal calibration, which was carried out in this thesis (compare section 5.4.3). 

Accurate mass measurements are especially beneficial for compounds that are not 

included in spectral libraries. In that case, soft ionization methods coupled to HRMS 
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yield protonated molecules, from which elemental formulas can be derived and data-

bases searched after elimination of groups that have been introduced by derivatization. 

This concept has been applied in the current thesis and is described in more detail in 

section 5.4.4. Nevertheless, high mass accuracy suffices rarely to achieve an unambig-

uous assignment of a single molecular formula to an unknown, especially in higher 

mass regions, where the number of elemental combinations for a given mass and the 

defined mass error is many times higher. Therefore, isotopic pattern matching is re-

quired as an orthogonal filter to remove false candidate formulas. Kind and Fiehn in 

2006 [95] demonstrated via query of over 1.6 million elemental formulas that an MS with 

3 ppm mass accuracy and 2% error for isotopic abundance patterns outperforms a 

hypothetical mass spectrometer with 0.1 ppm mass accuracy that does not take isotope 

information into account.  

Tools for calculating elemental formulas from accurate mass measurements, e.g. the 

SmartFormula tool from Bruker Daltonics, consider chemical and heuristic rules as 

proposed by Kind and Fiehn in 2007 [96] in addition to comparing the isotopic patterns, 

which is assessed by the mSigma value (between 0 in case of perfect match and 1000 

in case of no match). These rules include, among others, constraints on number and 

ratio of elements as well as LEWIS and SENIOR rules, and their application has result-

ed in correct metabolite annotations with 98% probability for 6,000 compounds in target 

databases [96]. For calculating elemental formulas, the search space can be reduced 

by assuming a lower experimental mass error. But, the correct formula may be missed, 

whereas if a larger mass error is tolerated, hit lists become more extensive and are 

more likely to include hits that are closer to the experimental data than the correct for-

mula. SmartFormula3D additionally relies on the accurate mass and isotope pattern of 

the fragments from a parent ion in MS/MS experiments. Accordingly, parent ions that 

cannot be related to the fragments are excluded, thus restricting the search space dras-

tically up to a single remaining elemental formula in some cases. In summary, in the 

identification process of unknowns from high-resolution GC-APCI-TOFMS data still a lot 

of manual intervention is required as reported in section 5.4.4. 
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4.5 Identification of metabolites 

Recent years have seen great progress in the identification of spectral features, still 

considered one of the biggest bottlenecks in metabolomics (see 

http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics-Survey-2009/). For targeted metabo-

lomics, only very few peaks are of interest, so-called “known unknowns” that have been 

either described in the literature or included in databases, but have not been reported 

for the organism and/or type of sample at hand. Their identification is typically accom-

plished by means of commercial standards. In semi-targeted or untargeted metabolom-

ics, the use of reference compounds for the identification of features becomes cumber-

some as the number of features recorded in a single run may easily run into the 

hundreds. Therefore, routines for automatic feature annotation and identification of so-

called “unknown unknowns” are required. The rapid progress in MS technologies and 

resulting improvement in detection sensitivity has revealed a vast number of such com-

pounds that still await positive identification. This holds especially true for secondary 

metabolites of plants and fungi, whose metabolomes have been estimated to contain 

tens of thousands of individual metabolites [27]. However, these numbers are only 

rough estimates [97].  

In 2007, Sumner et al. [26] proposed four levels of metabolite identification depending 

on the amount of information collected on a feature of interest. The authors distin-

guished between positively (level 1) and putatively (level 2) identified compounds, com-

pounds that are putatively assigned to a class of compounds (level 3), and unknown 

compounds (level 4). For positive identification (level 1), matching two independent 

parameters, such as retention time index and mass spectrum, relative to an authentic 

standard is required, which emphasizes the need for chromatography as an additional 

dimension to MS. Several excellent reviews have appeared in recent years on advanc-

es in metabolite identification by means of chromatography and MS [98-101]. 

4.5.1 Gas chromatography 

Separation of analytes in a time dimension constitutes added value to the identification 

process. GC-MS retention times are very stable and, therefore, of great benefit to identi-
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fication. Typically, retention time of a compound is given relative to a reference com-

pound within the chromatogram to exclude variation due to slight instrument changes in-

between consecutive analyses and make retention times more comparable to other 

laboratories. In 1958, Kováts introduced the concept of calculating retention indices 

(RIs) [102] based on a series of alkanes as reference compounds for isothermal GC. 

This concept was later modified and applied to temperature-programmed GC by Van 

den Dool and Kratz [103]. Temperature programmed RIs are often referred to linear 

retention indices. Retention indices are a normalized measure of retention time. They 

are calculated relative to compounds from a homologous series of alkanes or fatty acids 

that are added to every sample. In temperature-programmed GC, members of a homol-

ogous series show a linear increase in retention time with increasing number of carbon 

atoms for a given stationary phase. Per definition, members of the homologous series 

are assigned a retention index by multiplying the respective carbon number with 100. 

The linear retention index I of an analyte x is calculated using the following formula: 

 

t R(x)   Retention time of the analyte 

t R(n)   Retention time of the reference compound eluting before the analyte 

t R(n+1)   Retention time of the reference compound eluting after the analyte 

n  Carbon number of the reference compound eluting before the analyte 

 

Traditionally, n-alkanes have been used as RI markers [104,105], albeit fatty acid me-

thyl esters (FAMEs) [106] or any other homologous series can be used. Selection of the 

reference system depends on column polarity, e.g. n-alkanes are poorly dissolved in 

polar stationary phases, and the detector used, e.g. n-alkanes evade ionization using an 

APCI source for GC-MS. Retention indices are partly reported in MS databases, such 

Ix = 100n + 100
tR(x) –tR(n) 

tR(n+1) –tR(n) 
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as NIST, HMDB [23], Golm Database [107], and Fiehn Metabolome Database [106]. 

Physicochemical properties of not yet annotated metabolites are collected in the Golm 

DB as mass spectral tags (MSTs), which were introduced recently [108,109] in analogy 

to expressed DNA sequence tags (ESTs). MSTs now await their structural elucidation.  

For databases to be useful, they need to be updated regularly. Insufficient resources for 

database curation still limit the utility of HMDB and Golm DB. Hence, NIST is still the 

most widely used database. The latest NIST 14 version contains EI-MS spectra for over 

242,000 unique compounds, and for more than 56,000 compounds RI values are pro-

vided. However, the majority of entries do not refer to metabolites.  

In the absence of RI values for metabolites of interest, they may be predicted. In 2011, 

Kumari et al. [110] introduced a workflow for re-identifying 29 trimethylsilylated metabo-

lites from accurate mass GC-CI-TOFMS. Elemental formulas were derived from the 

protonated molecules in an initial step, followed by in-silico derivatization and prediction 

of RIs using the NIST RI algorithm with a correction factor for TMS groups [111]. In a 

subsequent step, accurate mass EI spectra were predicted for remaining structures and 

scored against experimental spectra. As a result, the correct structure was obtained in 

73% within the top-5 hits of the proposed candidates [110]. Earlier, Mihaleva et al. [112] 

made use of multiple linear regression (MLR) and support vector regression (SVR) 

models for RI prediction, which cut the hit lists obtained from matching experimental 

spectra of the NIST 05 MS library in half.  

The concept of RIs has also been transferred to GC×GC [113], but it is not used rou-

tinely. Nevertheless, GC×GC facilitates identification of compounds belonging to differ-

ent chemical classes as they occupy different regions within the 2D separation space. 

Hence, structure-retention relationships serve as plausibility check for the identification 

of unknown signals in the chromatogram. Quantitative structure-retention relationship 

(QSRR) models have also been developed to correlate molecular structures to their 

retention times [114]. In summary, retention times are essential in compound identifica-

tion, especially in case of isomers, which cannot be distinguished by their mass spec-

trum only. To check for plausibility, one should not only rely on the mass spectrum, but 

also consider chromatographic retention of a putatively identified metabolite.  
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4.5.2 Mass spectrometry 

Mass spectrometry is the method of choice in the identification of unknown metabolites. 

Matching EI fragment patterns to spectral libraries has been traditionally performed in 

MS-based metabolite identification. A second strategy involves the use of soft ionization 

techniques in conjunction with high-resolution MS. Elemental formulas are derived from 

the accurate mass and isotopic pattern of the protonated molecules in an initial step, 

groups introduced by derivatization are removed, and curated formulas can be fed into 

databases for a putative identification (compare section 5.4.4).  

Successful identification of known unknowns based on mass spectral libraries requires 

mass spectra of high quality, powerful spectral matching algorithms to reveal significant 

degrees of spectral convergence and, particularly, comprehensive and reliable refer-

ence spectra libraries. Successful library identification strongly depends on the quality of 

the input spectrum. Spectral quality suffers often from poor deconvolution, ion source 

overload and/or varying acquisition parameters. Mass spectral deconvolution has to be 

performed in case of mixed mass spectra originating from unresolved peaks. Local peak 

maxima are analyzed for all ion traces and ions that share a peak maximum (retention 

time) are combined in one mass spectrum. This process gives a “pure” mass spectrum 

that can be matched against reference spectra. Of course, deconvolution is only suc-

cessful if overlapping peaks display a slight difference in peak maxima and if enough 

data points across the peak are available to distinguish these slight differences. Un-

doubtedly, deconvolution software packages such as AMDIS supplied with the NIST 

library, ChromaTOF (LECO), or AnalyzerPro (SpectralWorks) constitute an added value 

for proper analysis of highly complex samples. However, deconvolution may generate 

outright false or impure spectra. In 2008, Lu et al. [115] evaluated the performance of 

AMDIS, ChromaTOF and AnalyzerPro using a mixture of 36 endogenous compounds, 

which exhibited varying chemical structures and concentrations. Numerous failures of 

AMDIS and ChromaTOF occurred, which resulted in incorrect identifications [115], 

emphasizing the need for further improvements or novel approaches.  

For spectral matching, several algorithms such as INCOS, probability-based matching 

(PBM) and dot-product scoring have been described [116]. In case of INCOS and PBM, 
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the number of mass/intensity pairs of library spectra considered for matching is restrict-

ed, which might result in failure to retrieve as first hit the correct library entry for a 

searched full spectrum of an unknown. The dot-product algorithm, in contrast, is first 

carried out on condensed spectra before finally considering entire spectra for definite 

metabolite identification. Stein and Scott in 1994 [117] found dot-product scoring supe-

rior (75% accuracy) to four other algorithms (Euclidean distance, absolute value dis-

tance, PBM and Hertz et al. similarity index) based on matching test spectra against the 

NIST library, which contained 12,592 spectra of about 8,000 unique compounds at that 

time.  

The library search delivers a match factor, which is a measure for the agreement be-

tween search and library spectrum. A NIST search delivers both, a match factor (direct 

match) and a reverse match factor. The reverse search algorithm compares the library 

spectra against the search spectrum and non-matching peaks in the submitted spec-

trum are ignored. Match factors above 900 indicate an excellent match with 999 being a 

perfect match. Match factors above 800 are still considered good, while match factors 

below 700 have to be considered with care. In general, top candidates from the hit list 

should be checked for plausibility by considering information on retention indices, or 

reference standards should be run for verification.  

It is also possible to create custom libraries with commercial standards as accomplished 

by Smart et al. for methyl chloroformate derivatives [118]. In silico mass spectral frag-

mentation routines can be used if reference spectra are not available. However, in 

2009, Schymanski et al. [119] tested three commercial programs for in silico generation 

of mass fragments and concluded that available software was not practical yet. 

Alternatively, efficient and sensitive identification of metabolites may be accomplished 

by soft ionization techniques, accurate mass measurement and tandem MS. GC-APCI-

MS principles and applications (subchapter 4.3) as well as data analysis strategies 

(subchapters 4.4 and 5.4) including (re-)calibration of the mass scale and calculation of 

elemental formulas are reported elsewhere. Furthermore, GC-CI-TOFMS has also been 

employed for metabolite identification [50,110]. Abate et al. [50] reported, that higher ion 

intensities improved accurate mass and isotopic abundance measurements and thus, 
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allowed the determination of elemental formulas with higher confidence. In these GC-

CI-TOFMS studies, high-mass tuning [50] as well as the careful selection of the reagent 

gas [110] proved critical in obtaining higher ion intensities.  

According to Sumner et al. [26], two independent/orthogonal parameters, e.g. retention 

index/mass spectrum or accurate mass in combination with MS/MS information, relative 

to a commercial standard are required to positively identify compounds. Whenever 

standards are not available, confidence in a putative identification can be increased by 

the use of isotope labeling to distinguish background ions from ions that originate from a 

true biological source. Furthermore, with the commercial availability of fraction collectors 

for GC, compound isolation for metabolite identification by NMR spectroscopy has be-

come feasible. However, stability of derivatized metabolites is critical while collecting 

fractions by cold trapping and a huge discrepancy exists between amounts that are 

subjected to GC-MS analysis and those required for NMR analysis. Once a single or 

several metabolites have been identified, proper biological or medical interpretation is 

promoted by metabolic pathway databases such as the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database [120].  
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5 Experimental section 

5.1 Materials  

The mixture of fatty acid methyl esters (FAMEs #CRM47885) in methylene chloride was 

purchased from Supelco (Belafonte, PA, USA). Compounds included in the metabolite 

standard mixtures used in chapters 6, 7, and 8, except for glycerol, as well as citric acid, 

aminoadipic acid, malic acid, tryptophan, lysine, threonine, cysteine, histidine, tyrosine, 

arginine, asparagine, lauric acid, myristic acid, stearic acid, serine, ornithine, glycine, 

palmitic acid, N-acetyl-L-aspartic acid, odd-numbered, saturated straight-chain fatty 

acids (C9-C19), pyridine, methyl chloroformate (MCF), methoxylamine hydrochloride, 3-

picoline, propyl chloroformate, fetal bovine serum, L-glutamine, sodium dodecyl sulfate, 

the FluoroProfile kit for determination of protein content in cell pellets, the disodium salt 

of D/L racemate of 2-hydroxyglutarate, disodium D- and L-2-hydroxyglutarate, (R)-5-

oxotetrahydro-2-furancarboxylic acid, formic acid, 3-trimethylsilyl-2,2,3,3-

tetradeuteropropionate (TSP) in D2O, ethanol (ACS reagent grade), urease type III 

(#U1500), [U-13C]glucose, [2H7]trans-cinnamic acid, norvaline, [U-13C]β-hydroxybutyric 

acid, [2,4,4,4-2H4]citric acid, and alkane standard solutions (C8-C20 and C21-C40) were 

from Sigma-Aldrich/Fluka (Taufkirchen, Germany). N-Methyl-N-(trimethylsilyl)-

trifluoroacetamide (MSTFA) was purchased from Macherey-Nagel (Dueren, Germany), 

sodium dihydrogen phosphate monohydrate, tri-sodium phosphate dodecahydrate, di-

potassium hydrogenphosphate trihydrate, potassium dihydrogen-phosphate, and chlo-

roform (analytical grade) from Merck KGaA (Darmstadt, Germany), and [U-13C, U-15N] 

cell-free amino acid mix, [U-13C]lactic acid, sodium [U-13C]pyruvate, [U-13C]fumaric acid, 

and [U-2H]succinic acid from Euriso-top (Saint-Aubin Cedex, France). [4,6,7-2H3]5-

hydroxyindole-[2H2]acetic acid, D/L-[2,3,3-2H3]malic acid, and the disodium salt of D/L-

[2,3,3-2H3]2-hydroxyglutarate were delivered from C/D/N Isotopes Inc. (Quebec, Cana-

da), and [U-13C]lactose from Omicron Biochemicals (South Bend, IN, USA). Methanol 
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(MeOH; LC-MS grade), ethyl acetate (analytical grade), methylene chloride (LC-MS 

grade) and propanol (LC-MS grade) were from Fisher Scientific GmbH (Ulm, Germany), 

and glycerol, isooctane and acetonitrile (HPLC grade) from BDH Prolabo (VWR Interna-

tional, Vienna, Austria). Purified water from a PURELAB Plus system (ELGA LabWater, 

Celle, Germany) was used in all experiments. MiaPaCa-2 pancreatic cancer cells 

(ATCC #CRL-1420) were obtained from ATCC (Manassas, VA, USA). DMEM medium, 

glucose, and phosphate-buffered saline (PBS) were purchased from PAA Laboratories 

GmbH (Coelbe, Germany), and penicillin/streptomycin from Invitrogen (Karlsruhe, Ger-

many). The Hsp90 inhibitor 17-DMAG was obtained from Invivogen (Toulouse, France).  

A surrogate solution was prepared containing the 12 internal standards [2,2,4,4-
2H4]citrate, [U-13C]fumarate, [U-13C]glucose, [U-13C]-hydroxybutyrate, [U-13C]lactate, 

[2,3,3-2H3]malate, [U-13C]pyruvate, [U-2H]succinate, [2H7]trans-cinnamate, [U-
13C]lactose, [4,6,7-2H3]5-hydroxy-indole-[2H2]acetate and norvaline at 1 mM each in 

methanol. The odd-numbered, saturated straight-chain fatty acids (C9-C19) were dis-

solved in isooctane, and combined, hereinafter referred to as fatty acid mixture (1 mM of 

each compound). 

 

5.2 Sample preparation 

5.2.1 Preparation of calibration and cell culture samples  

For the acquisition of calibration curves in chapter 8, 75 or 100 µL of a metabolite 

standard and 10 µL of the surrogate solution of ISs were combined in a 2-mL vial with a 

400-µL glass insert and evaporated, respectively, only surrogate solution or 100 µL of 

pure methanol was dried in case of blank samples. Subsequently, MeOx-TMS derivati-

zation was performed. To assess derivatization repeatability, a calibration standard at a 

concentration of 31.25 µM was derivatized in quintuplicate. 

MiaPaCa-2 pancreatic cancer cells were grown in 75 cm2 cell culture flasks (PAA La-

boratories GmbH) in 25 mL of DMEM medium supplemented with 15% (v/v) fetal bovine 
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serum and enriched with 2 mM glutamine, 25 mM glucose, and standard penicil-

lin/streptomycin solution. Cells were cultured in a humidified incubator at 37°C with 5% 

CO2. For assessing the effect of 17-DMAG on cell metabolism, 1 × 106 cells were plated 

into 10-cm Petri dishes and treated for 72 h with either medium containing 100 nM 17-

DMAG or control medium only. Cells were washed thrice with cold PBS. For quenching 

of cell metabolism as well as combined cell harvesting and extraction of metabolites, 

direct solvent scraping in MeOH/H2O (80:20, v/v) [121] was performed on ice and with 

cold solutions. The aforementioned experiments were carried out by Dr. Maria My-

cielska from the Department of Surgery/University Hospital Regensburg.  

Pellets were re-extracted twice more with 500 µL of MeOH/H2O (80:20, v/v). The super-

natants were combined and fully evaporated. Dried extracts were redissolved in 200 µL 

of MeOH/H2O (80:20, v/v), and 60 µL were taken for MCF derivatization in chapter 6 

(N=5 biological replicates per group). For the determination of cellular protein content 

according to the instructions provided with the FluoroProfile kit from Sigma-Aldrich, 

protein pellets were dissolved in 1 mL of a 20 mM sodium dihydrogen phosphate buffer, 

pH 4.5, supplemented with 1% (v/v) sodium dodecyl sulfate and diluted 1:50 (v/v) with 

water.  

Cell culture supernatants from the above-described experiment of MiaPaCa-2 pancreat-

ic cancer cells grown for 72 hrs under standard conditions (N=3 biological replicates) 

were used in chapter 8. Hundred µL of each supernatant sample were further prepared 

as follows: Ten µL of 1 mM [2H7]trans-cinnamate were added to 100 µL of supernatant. 

Proteins were precipitated with 600 µL cold methanol, centrifuged for 6 min at 4°C and 

9500 × g and the supernatant was collected. The protein pellet was washed twice with 

200 µL of methanol. The supernatants were combined and the solvent was evaporated. 

MeOx-TMS derivatized cell culture supernatant samples were diluted 50:50 (v/v) in 

pyridine prior to injection. 

5.2.2 Methoximation–trimethylsilylation 

A two-step MeOx-TMS derivatization protocol was applied to dried standards (chapters 

6, 7, and 8), spiked serum samples (chapter 6), spiked matrix samples (chapter 7), and 
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cell culture supernatants (chapter 8). Fifty µL of 20 mg/mL methoxylamine hydrochloride 

in pyridine were transferred to the dried residues and incubated at 60°C for 60 min. 

Prior to silylation, 10 µL of the fatty acid mixture were added, for internal recalibration of 

GC-APCI-TOFMS mass spectra as well as the calculation of retention indices. Silylation 

was carried out by the addition of 50 µL of MSTFA, and again incubating for 60 min at 

60°C. Derivatization was carried out manually. 

5.2.3 Methyl chloroformate/methanol derivatization 

Manual MCF derivatization was performed in chapters 6 and 9 based on a modified 

MeOH/MCF protocol published previously [39]. Depending on the experiment, water 

was added to the standard, IS, and sample or sample extract already containing the IS, 

to obtain a final volume of 275 µL of aqueous phase. For the analysis of sample ex-

tracts, the mixture was dried and reconstituted in 275 µL of water. Next the aqueous 

phase was fortified with 167 µL of MeOH, and 34 µL of pyridine, followed by adding two 

times 20 µL of MCF vortexing for 10 s after each addition. Derivatives were extracted 

with 300 µL CHCl3 under vortexing for 10 s. After 30 s, extraction was completed and an 

aliquot of the lower chloroform phase was taken for GC analysis.  

 

5.3 Instrumentation 

5.3.1 GC-APCI-TOFMS 

A model 450-GC (Bruker Daltonics GmbH, Bremen, Germany) with an autosampler 

(model PAL COMBI-xt from CTC Analytics, Zwingen, Switzerland) for sample injection 

with a 10-µL Hamilton syringe was coupled to a microTOF orthogonal acceleration TOF 

mass spectrometer (Bruker Daltonics) via an APCI source. For separation of analytes, a 

Phenomenex ZB-AAA column (15 m × 0.25 mm i.d. × 0.1 µm film thickness, Torrence, 

CA, USA) was used with a 2 m deactivated pre- and a 0.5 m post-column of matching 

inner diameter (Agilent Technologies, Palo Alto, CA, USA). The oven temperature pro-

gram was started at 50°C and held for 1 min, and temperature was ramped at 8 K/min 
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to 300°C and held for 15 min. A sample volume of 1 µL was introduced by means of an 

1177 split/splitless injector at 280°C performing hot needle splitless injection (pre-

injection dwell of 1 s) with a splitless time of 1 min. Helium served as the carrier gas at a 

constant flow rate of 1 mL/min. The transfer line to the MS instrument was maintained at 

300°C, and the protrusion of the GC capillary from the exit of the transfer line was ap-

proximately 1 mm. The APCI source was operated as follows, with deviating parameter 

settings in chapter 7 in brackets: ionization mode, positive; drying gas (nitrogen) tem-

perature, 160°C; drying gas flow rate, 2.0 L/min; APCI vaporizer temperature, 300°C 

(450°C); nebulizer gas (nitrogen) pressure, 4.0 bar (1.7 bar); current of the corona dis-

charge needle, +3000 nA; capillary voltage, -2900 V; end-plate offset, 0 V. Water was 

introduced through the top ESI inlet into the APCI source by means of a syringe pump 

(KD Scientific Inc., Holliston, MA, USA) in chapters 6 and 9 unless otherwise stated in 

the text. Mass range for acquisition of spectra with a rate of 3 spectra/s was from 50 to 

1000 m/z. Initial external mass calibration was performed with an electrospray ionization 

tuning mix (Agilent) and an ESI source, and an additional post-acquisition processing 

routine was performed for internal recalibration of each mass spectrum (see section 

5.4.3).  

Diverging from the instrumental and operational settings above, an Agilent model 6890 

GC instrument equipped with an Auto Liquid Injector (model 7683B) was used in chap-

ter 7, and data were acquired with the “GC-APCI II” source from Bruker in chapters 8 (in 

addition to measurements with the APCI I source) and 9. Chromatographic separation 

was achieved using a Rxi-5MS capillary column (30 m × 0.25 mm i. d. × 0.25 µm film 

thickness, Restek, Bad Homburg, Germany) in chapters 7 and 8, whereas an Rt-

DEXsa (2,3-di-acetoxy-6-O-tert-butyl-dimethylsilyl gamma CD doped into 14% cy-

anopropylphenyl/86% dimethyl polysiloxane) column (30 m × 0.25 mm ID, 0.25 µm film 

thickness; Restek) was used in chapter 9. The flow rate of helium as carrier gas was set 

to 2 mL/min (constant flow) and the injector was kept at 250°C in chapter 9. In the same 

chapter, except for initial experiments to optimize the temperature ramp, the oven pro-

gram started at 70°C, held for 1 min, was then ramped at 5 K/min to 190°C, and finally 

held for 7 min. 
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The APCI II transfer line to the mass spectrometer was maintained at 290°C, and the 

post-column capillary was mounted flush with the outlet of the transfer line. APCI II 

source parameters were as follows: ionization mode, positive; drying gas (nitrogen) 

temperature, 150°C; drying gas flow rate, 2.0 L/min; nebulizer gas (nitrogen) pressure, 

2.5 bar; current of the corona discharge needle, +4000 nA; capillary voltage, -3000V; 

and end-plate offset, -500V. The APCI II source was kept at 300°C. No water was in-

fused into the APCI source in projects presented in chapters 7 and 8. 

Details on the “GC-APCI II” source setup are provided in section 8.2.2. The source 

parameters for APCI I and II were individually optimized using metabolite standards as 

part of my master thesis and the bachelor thesis by Thomas Hahn, respectively. 

5.3.2 Miscellaneous 

Solvents were evaporated to complete dryness by means of a vacuum evaporator 

(CombiDancer, Hettich AG, Bäch, Switzerland). Other lab equipment used in the course 

of this doctoral research work included a model MP220 pH meter from Mettler-Toledo 

GmbH (Greifensee, Switzerland) for the preparation of buffer solutions, a vortexer (lab 

dancer, IKA-Werke GmbH, Staufen, Germany), a heater with two heating blocks (Haep 

Labor Consult, Bovenden, Germany), a model GS-15R centrifuge (Beckman Coulter 

GmbH, Krefeld, Germany), and a FLUOstar OPTIMA multi-mode microplate reader 

(BMG Labtech, Ortenberg, Germany) for the determination of cellular protein content 

based on fluorescence measurements.  

 

5.4 Data analysis 

5.4.1 Software 

Bruker DataAnalysis versions 4.0 to 4.1 (Bruker Daltonics) were employed for pro-

cessing and manual inspection of GC-APCI-MS chromatograms and mass spectra, 

compound extraction, internal recalibration of mass spectra, and calculation of accurate 
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masses, elemental formulas and mSigma values. For peak integration and generation 

of calibration curves, exported data files were loaded into MassLynx V4.1 (Waters Inc., 

Milford, MA, USA), with m/z of [M+H]+ for standard compounds and internal standards 

(see Table 12.2, Table 8.2 and Table 9.1 referring to chapters 6, 8, and 9, respective-

ly), or m/z of a particular significant feature used as quantifier mass. ChemStation ver-

sion D.02.00.275 (Agilent) was used for manual inspection of GC-EI-qMS chromato-

grams (section 9.3.1). GC×GC-EI-TOFMS raw data were processed by ChromaTOF 

software version 4.50 from LECO Corp. (St. Joseph, MI, USA) for annotating com-

pounds in cell culture supernatants (chapter 8). Compounds extracted in DataAnalysis 

along with their retention times, experimental masses, area integrals, peak widths 

measured at half the peak height (wh), and S/N ratios were further exported into Excel 

(Microsoft Corporation, Redmond, WA, USA). Generation of bucket tables, feature 

extraction by means of the FMF algorithm, and alignment were performed in ProfileA-

nalysis V2.1 (Bruker Daltonics). Bucket tables were then exported into Excel for genera-

tion of ROC curves and fold change plots (chapter 6) as well as cumulative distributions 

of RSDs (chapter 8). Excel was also used to create Bland-Altman plots and to perform 

basic statistics, e.g. the calculation of relative standard deviations (RSDs) or paired 

student’s t tests. The statistical computing package R [122] was used to perform princi-

pal component analysis (PCA), the Kolmogorov-Smirnov test, Shapiro-Wilk testing, the 

Wilcoxon signed-rank test, ANOVA followed by post hoc tests using LIMMA [123], to 

impute missing values by MISSMDA [124], and to calculate false discovery rates 

(FDRs) according to Benjamini and Hochberg [89] using MULTTEST [125]. The partition 

coefficients of the MCF and MeOx-TMS derivatives of the standard compounds and 

fatty acids analyzed in chapter 6 were estimated using ACD/Laboratories V12.01 (Ad-

vanced Chemistry Development Inc., Toronto, Canada) and expressed as the  

log Poctanol/water, i.e., the logarithm of the ratio of the concentrations of the un-ionized 

solute in octanol and water, respectively. Retention indices were calculated in Excel on 

the basis of alkanes or fatty acid derivatives according to equation (8) from a previous 

work by van den Dool and Kratz [103]. 
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5.4.2 Calibration curves 

Peak areas of standards were normalized to those of their corresponding SIL-ISs or a 

closely eluting or structural similar IS (see Table 8.2 and Table 9.1). Hence, the re-

sponse (area*IS concentration/IS area) was plotted as a function of the absolute 

amount of standard to yield the calibration curve for each standard. 1/x weighting was 

applied. In case that multiple chromatographic peaks were obtained for a metabolite, 

due to a varied extent of silylation in case of amino acids or cis-trans isomers of meth-

oximated compounds, the most intense signal was exclusively evaluated. All data points 

that spanned the linear range of the calibration curve, determined by LLOQ and ULOQ, 

exceeded a peak S/N ratio of 8:1 and did not deviate more than 20% from the curve, 

according to the FDA Guide for Bioanalytical Method Validation [126]. The correlation 

coefficient R was obtained by linear regression analysis. To assess derivatization re-

peatability, response values from derivatization replicates were exported and RSDs 

calculated in Excel, which was also used to determine the order of magnitude of the 

linear concentration range based on a log-10 scale. For quantification, calibration 

curves were exported in MassLynx and subsequently used for sample processing.  

5.4.3 Recalibration of mass spectra  

Post-acquisition recalibration of APCI mass spectra was based on SIL-ISs and fatty 

acids that had been added to every sample prior to analysis. For recalibration, a previ-

ously in-house developed Visual Basic script was employed. Briefly, an average mass 

spectrum was created from regions within each chromatogram that corresponded to the 

internal standards nonanoate, [U-13C]fumarate, [2H7]-trans-cinnamate, undecanoate, [U-
13C]glucose, and [U-13C]lactose (Figure 5.1A). The mass scale was then recalibrated 

according to the theoretical masses of fragment ions, protonated molecules and ad-

ducts that originated from the standards (Figure 5.1B). In total, ten masses over a mass 

range from m/z 138.093 to m/z 960.507 were used in chapter 8. The entire procedure is 

illustrated in Figure 5.1. Internal recalibration improved mass accuracy for cis-aconitate 

from 22.9 mDa before recalibration to 4.0 mDa after recalibration (Figure 5.1C). In 

chapter 6, mass spectra were recalibrated using solely the m/z values of the [M+H]+ 
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ions of the odd-numbered, saturated fatty acid derivatives (C9-19), which are listed 

along with the corresponding retention times in Table 12.2.  

 

Figure 5.1 Internal mass recalibration of GC-APCI-TOFMS data. An average mass spectrum is generat-
ed from defined areas of the chromatogram containing internal standards (A). The average spectrum is 
used to recalibrate the complete run (B). The improvement in mass accuracy is shown for cis-aconitate in 
(C). Macc, (calculated) accurate mass of analyte M. Reprinted from [15] with permission from Elsevier. 
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5.4.4 Calculation of elemental formulas 

For the identification of features that were significantly differently regulated between 

sample groups (chapter 6) or to annotate features extracted from cell culture superna-

tants (chapter 8), the respective protonated molecule of a recalibrated data file was 

queried using the SmartFormula tool included in DataAnalysis [9,127]. Parameters for 

calculating elemental formulas were as follows for MeOx-TMS and MCF derivatives, 

respectively: positive adducts, M+H; m ≤ ±5 mDa; charge, 1; even electron number; 

filter H/C element ratio ≤3; and check ring plus double bonds from -0.5 to 40. Apart from 

C, H, N, O atoms, which are considered automatically by the algorithm, P (0-3), S (0-3) 

and Si (at least 1) atoms were included for calculation in the case of MeOx-TMS deriva-

tives, whereas the following restrictions were applied for MCF derivatives: 0 ≤ nN ≤ 5; 0 

≤ nP ≤ 1; 0 ≤ nS ≤ 2. Calculated formulas with an mSigma value below 50 were further 

considered. From the calculated elemental formula, the proton and possible groups 

introduced by derivatization had to be eliminated, such as trimethylsilyl groups as well 

as groups introduced by methoximation in the case of MeOx-TMS derivatization. The 

sum formula of the native metabolite was then searched in the HMDB [23]. The overall 

workflow is exemplified in Figure 5.2 for N-acetylaspartate [17]. Candidate metabolites 

that were obtained by database search were only kept if they possessed the functional 

groups for forming the derivatives that had been the basis for the identification process.  



 
 57

 
 
 

 
Figure 5.2 Scheme for initial steps towards identification of unknowns by GC-APCI-TOFMS. Reprinted 
from [15] with permission from Elsevier. 
 

However, identification of unknowns required manual intervention. The corresponding 

spectrum had to be reviewed for proper selection of the protonated molecule used to 

calculate an elemental formula. Accidentally subjecting masses of fragments or adducts 

to the elemental formula calculator would have resulted in significant errors or an incon-

clusive database search. As exemplified for N-acetyl-neuraminate-1MeOx-6TMS in 

Figure 5.3, putative annotation via calculation of elemental formulas and subsequent 

database search initially failed (step 3 on the left-hand side), because feature extraction 

routine and statistical analysis (step 2) performed in comparative metabolic fingerprint-

ing of wild type and double-mutant (PntAB-UdhA) E. coli strains [17] pointed to a frag-

ment mass instead of the mass of the protonated molecule. Manual review of the corre-

sponding mass spectra finally led to positive identification (step 3 on the right-hand 

side).  
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Figure 5.3 Manual review of GC-APCI-TOFMS mass spectra in the identification procedure of unknown 
features distinguishing wt and mutant (PntAB-UdhA) E. coli strains [17]. The example of N-acetyl-
neuraminate-1MeOx-6TMS is given, as it emphasizes the need for manual intervention. Annotation based 
on the accurate mass of a fragment ion that had been extracted by the feature extraction routine yielded 
initially no database match; manual selection of the protonated molecule finally led to positive identifica-
tion. [16] – Reproduced by permission of The Royal Society of Chemistry. 

Commercial standards were run on GC-APCI-TOFMS For tentatively identified metabo-

lites, and mass spectra and linear retention indices were compared for final confirma-
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tion, which required that a relative difference of 1.0% established by Strehmel et al. 

[128] was not exceeded.  

 

5.5 Validation methods 

5.5.1 ROC curve 

Receiver operator characteristic (ROC) curves were plotted in chapter 6 to assess the 

effect of water infusion on the ability of GC-APCI-TOFMS to detect concentration fold 

changes of metabolite standards that were spiked into extracts of human serum and 

derivatized afterwards. Initially, features were extracted and aligned into a single data 

matrix for each spike-in data set, e.g. all MCF-derivatized spike-in samples that were 

acquired by GC-APCI-TOFMS in the absence of water infusion. Features were as-

signed as true positives (TPs) or true negatives (TNs). Then the different spike-in levels 

were compared by t tests between all features, and the latter were listed in ascending 

order of P values. Features corresponding to spike-in compounds should appear at the 

top of the list. After each feature, starting from top to bottom, true positive rate (TPR or 

sensitivity) and, similarly, false positive rate (FPR or 1-specificity) were determined and 

plotted against each other in receiver operating characteristic (ROC) curves. The true 

positive rate is also referred to as sensitivity, i.e., the number of detected TPs up to a 

respective row compared to total number of TPs. In the ideal case, i.e., a perfect dis-

crimination of two different abundance levels, all features corresponding to spike-in 

compounds are ranked higher than signals from matrix compounds, and an area under 

the curve (AUC) value of 1 is obtained. Figure 5.4 depicts three ROC curves as an 

example, which were obtained from six spike-in compounds and six matrix compounds 

that were compared between two arbitrary abundance levels in each case. Discrimina-

tion of the two levels gets worse from (A) to (C) as indicated by a decreasing AUC value 

(Figure 5.4).  
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Figure 5.4 Example of three ROC curves based on six spike-in compounds and six matrix compounds 
that were compared between two arbitrary abundance levels in each case. AUC values decrease from (A) 
to (C) indicating that discrimination of the two levels gets worse. In (A) three data points of the curve are 
assigned to the underlying data matrix. FN, false negative; FP, false positive. Adapted and reprinted with 
permission from Bruker Daltonics. 
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5.5.2 Bland-Altman plot 

A Bland-Altman plot is a method of data plotting to determine agreement between two 

different analytical approaches. It can be also used to assess repeatability of a single 

analytical method or to compare measurements by two operators. It was introduced by 

Bland and Altman in the 1980s [129,130] as a better alternative to correlation and dis-

plays the difference in output variable c obtained by the two approaches A and B (y = 

cA-cB) against the corresponding average (x = (cA+cB)/2) for each sample. To allow a 

quick visual inspection, mean difference (đ) as well as upper and lower limits of agree-

ment (đ ± 1.96*SD) are represented as horizontal lines in the graph. The latter limits 

refer to the 95% confidence interval of the differences assuming normal distribution, 

indicating how far measurements by the two approaches were apart for most samples. 

According to Kaspar et al. [126], six different types of Bland-Altman plots can be distin-

guished based on absolute and relative mean differences as well as whether differ-

ences scatter randomly or proportionally with x (relative mean difference corresponds to 

the mean difference divided by the averaged mean of all couples and multiplied by 100). 

Ideally, absolute and relative mean differences are almost zero and ≤15%, respectively, 

and individual differences scatter randomly (type A, compare [126]).  
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6 Investigations on the effects of continuous water 

infusion on APCI of derivatized metabolites 

6.1 Introduction 

It has been recognized as early as 1976 that water promotes the formation of protonat-

ed molecules in APCI [45]. Notable improvements in peak abundance and selectivity 

achieved by the infusion of water into the APCI source have been demonstrated recent-

ly for gas chromatography-tandem mass spectrometry of underivatized pyrethroid insec-

ticides [82] and GC-APCI-TOFMS analysis of dissolved standards of methyl stearate, 

benzophenone, methyl palmitate, and cocaine [131]. Whether such improvements also 

hold true for derivatives of metabolites, and, moreover, are associated with better re-

producibility of APCI were the objectives of the present study. To that end, water was 

continuously infused from the top into the APCI I source and the effects of water infu-

sion on APCI-TOF mass spectra of MCF and MeOx-TMS derivatives of 20 standard 

compounds and the ability of GC-APCI-TOFMS to detect differences in metabolite con-

centration levels in a human serum extract were assessed. Subsequently, MCF derivat-

ization and GC-APCI-TOFMS were applied to the comparative metabolic fingerprinting 

of extracts of pancreatic cancer cells that had been cultivated in the absence and pres-

ence, respectively, of the Hsp90 inhibitor 17-DMAG. 

This chapter was published in [14].  
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6.2 Materials and methods 

6.2.1 Materials 

For each standard compound an individual stock solution was prepared in either meth-

anol, water, or a mixture thereof, except for the even-numbered (C12-C18), saturated 

straight-chain fatty acids, which were dissolved in propanol. The compounds from the 

fatty acid mixture (C9-19, compare subchapter 5.1) were used as retention index mark-

ers and for recalibration of the mass scale according to the procedure described in 

section 5.4.3. The spike-in mixture (Table 6.1) contained 20 compounds at a concentra-

tion of 1 mM each in MeOH. 

6.2.2 Sample preparation 

For the spike-in experiment aliquots of 10 µL of human serum were extracted with 50 µL 

of MeOH, according to an established protocol in our laboratory [132]. Extraction stand-

ards, were not added. Pellets were re-extracted twice more with 50 µL of methanol.  

Extracts were pooled and then split into aliquots for the preparation of spike-in samples. 

Amounts of 960 and 160 µL each were taken from the pool for MCF and MeOx-TMS 

derivatization, respectively, which corresponded to 60 and 10 µL of extracted serum. 

Since the final volume after MCF derivatization (300 µL) is three times as high as that 

after MeOx-TMS derivatization (100 µL), a three times higher extract volume was need-

ed assuming that efficiency of both derivatization strategies was comparable. In addi-

tion, the volume was doubled to obtain two times more concentrated MCF-derivatized 

serum compounds. A two-fold higher concentration for MCF-derivatized serum com-

pounds, which was also used for MCF-derivatized spike-in compounds, was required to 

detect a sufficient number of MCF -derivatized spike-in and matrix compounds in the 

absence of water infusion into the APCI source. 

Six different spike-in levels were prepared (N=5 derivatization replicates), ranging in 

final concentrations of the spike-in compounds from 133 µM to 200 µM, 267 µM, 333 

µM, 400 µM, and 467 µM, respectively, for MCF derivatization, and 67 µM to 100 µM, 

133 µM, 167 µM, 200 µM, and 233 µM, respectively, for MeOx-TMS derivatization. 
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Prior to derivatization, on the basis of the desired final standard concentration, the re-

spective volume of standard stock solution, spike-in mixture, or an appropriate dilution 

was transferred either to a 2-mL glass vial together with 20 µL of fatty acid mixture in 

case of MCF derivatization, or to a 2-mL glass vial with a 400-µL glass insert for MeOx-

TMS derivatization. For example, 120 µL and 20 µL, respectively, of a 0.5 mM standard 

stock solution were taken for preparation of 200 µM MCF- and 100 µM MeOx-TMS-

derivatized standard samples in initial experiments and for optimizing the water infusion 

rate. Depending on the sample set, cell extract or an aliquot of the serum extract pool 

was added as well, and the entire sample was then dried using a vacuum evaporator 

followed by either MCF or MeOx-TMS derivatization according to sections 5.2.2 and 

5.2.3. In the case of cell extracts and MCF derivatization, 250 µL of the chloroform 

phase were carefully dried and reconstituted in 50 µL of chloroform. 

6.2.3 GC-APCI-TOFMS analysis 

See subchapter 5.3. Spike-in samples along with blanks and cell extracts were meas-

ured in random order to avoid systematic error. A blank sample was always run be-

tween changes in water flow rates for equilibration of APCI source conditions.  

6.2.4 Cross-validation of amino acids 

Targeted quantification of amino acids was performed by high-performance liquid chro-

matography – electrospray ionization – tandem mass spectrometry (HPLC-ESI-MS/MS) 

in positive ionization mode as previously described [133]. Briefly, 10 µL of aqueous cell 

extract together with 10 µL of SIL-IS mix in water were subjected to propyl chlorofor-

mate (PCF) derivatization. Separation of PCF derivatives was carried out on a Phe-

nomenex EZ:faast 4u AAA-MS (250 × 3 mm i.d., 4µm, Torrence, CA, USA) reversed-

phase column using gradient elution with 10 mM ammonium formate and 0.1% (v/v) 

heptafluorobutyrate in water and methanol. One selective transition each for the unla-

beled and labeled amino acid was programmed for operating the MS/MS in MRM mode. 

For quantification, calibration curves were obtained from standards by plotting nominal 

concentration ratio (analyte/internal standard) against peak area ratio (analyte/internal 

standard), whereby the corresponding labeled analogue was included for each target 
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analyte as internal standard, with the exception of ornithine, for which labeled methio-

nine was used. Acquisition and analysis of data was carried out employing Analyst 

version 1.5.1 from AB Sciex (Darmstadt, Germany). 

6.2.5 Feature extraction and alignment 

For the analysis of data from the spike-in experiment, optimized Find Molecular Fea-

tures (FMF) algorithm and bucketing parameters for feature extraction and alignment 

within ProfileAnalysis were as follows for MCF/ MeOx-TMS derivatives, with deviating 

parameters for MeOx-TMS derivatives in brackets: S/N threshold, 2 (5); correlation 

coefficient threshold, 0.6 (0.7); minimum compound length, 8 (10); smoothing width, 2 

(3); additional smoothing, enabled; proteomics, enabled; bucketing basis, M+H. Reten-

tion time range, 8-25 min (8-17 min); mass range, m/z 100-250 (m/z 100-500); ad-

vanced bucketing tolerance parameters, 0.1 min (0.4 min) and 10 mDa for retention 

time and mass, respectively; split buckets with multiple compounds, disabled; value 

count of group attribute (spike level) within bucket as bucket filter, enabled at least 

three; and other parameters, always none or disabled.  

Each of the four different bucket tables (0.0 mL/h H2O/MCF, 0.4 mL/h H2O/MCF, 0.0 

mL/h H2O/ MeOx-TMS, and 0.4 mL/h H2O/ MeOx-TMS) listed features in rows with 

accompanying information on retention time and m/z value as well as the feature inten-

sities over all spike-in samples from entire spike-in levels. To reduce the number of zero 

values within the bucket table, bucket filtering was applied: at least three out of five area 

integrals had to be available for each spike-in level; otherwise the respective feature 

was excluded. Further data analysis proceeded in Excel as described in 6.3. 

For metabolite fingerprinting in cell extracts, individual data matrices were generated 

from GC-APCI/+H2O-TOFMS and GC-APCI/-H2O-TOFMS measurements of MCF-

derivatized cell extract samples of control and 17-DMAG -treated groups, applying with 

a few exceptions the same FMF and bucketing parameters as for the MCF spike-in 

experiment. Exceptions were as follows: the mass range for bucketing was extended to 

m/z 100-300, advanced bucketing tolerance parameter for retention time was increased 

to 0.15 min, and bucket filtering criteria allowed only the inclusion of features into the 
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bucket table, for which at least 3/5 area integrals were available in at least one group. 

Further data analysis was carried out in Excel as described in 6.3. 

 

6.3 Results and discussion 

6.3.1 Effects of continuous water infusion on APCI mass spectra of 

MCF and MeOx-TMS derivatives 

Initial experiments on the effect of continuous water infusion on APCI mass spectra of 

MCF and MeOx-TMS derivatives were performed at an infusion rate of 0.4 mL/h. Table 

12.2 lists the most prominent ions observed in APCI/+H2O mass spectra of MCF and 

MeOx-TMS derivatives of 20 standard compounds as compared to spectra acquired 

without water infusion (APCI/-H2O). Compounds included in the standard mixture were 

selected as to cover a variety of chemical classes, including organic acids, amino acids, 

and analytes containing amide and thiol functional groups, according to the three per-

formance classes introduced by Koek et al. [31] for silylated derivatives.  

APCI/-H2O mass spectra of MCF derivatives were typically dominated by fragment ions. 

The [M+H]+ ion constituted only a minor component with a relative intensity of <30% for 

12 of the 20 investigated compounds. Notably, the six MCF derivatives that exhibited 

[M+H]+ as the base peak were, aside from malonate and fumarate, the four aromatic 

compounds benzoate, hippurate, nicotinate, and phenylacetate, indicating that MCF-

derivatized aromatic compounds might be less prone to in-source fragmentation. In 

contrast, APCI/+H2O mass spectra exhibited dominant [M+H]+ ions for all MCF deriva-

tives. Major fragment ions of MCF derivatives could be attributed to neutral losses in-

cluding CH3OH (32.026 Da), [CH3OH + CO] (60.021 Da), and combinations thereof. 

Besides, [2M+H]+-type adduct ions (relative intensity <5%) for several amino acids and 

[M+H+H2O]+-type adduct ions for fumarate and the fatty acids were detected. The 

strongest effect of water infusion on suppression of in-source fragmentation and, con-

sequently, the formation of abundant [M+H]+ ions was noticed for dicarboxylic acids, as 

shown exemplarily for suberate in Figure 6.1. The APCI/-H2O mass spectrum of suber-
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ate was dominated by the [M+H-CH3OH]+ fragment ion, while the relative intensity of the 

[M+H]+ ion amounted only to 8%. Upon water infusion, [M+H]+ became the dominant ion 

species. Hence, APCI/+H2O provides softer ionization than conventional APCI, possibly 

due to an increased formation of [H(H2O)n]
+ ion clusters of higher order, which exhibit a 

higher proton affinity [134,135]. However, in analogy to the use of two different reagent 

gases in GC-CI-MS metabolite profiling [136], APCI/-H2O and APCI/+H2O may com-

plement each other in the identification of unknowns. While APCI/+H2O is more likely to 

generate [M+H]+ ions of sufficient intensity for the calculation of sum formulas, fragment 

rich APCI/-H2O mass spectra will provide additional structural information and, thus, 

narrow the list of sum formulas generated from accurate mass measurements. Other 

than that, APCI/+H2O is more suited for quantification and the [M+H]+ ions may also 

serve as precursor ions for MS/MS analyses. In fact, protonated molecules have been 

preferred over EI fragment ions in terms of abundance and selectivity in previous me-

tabolite profiling studies [82,86].  

111.0815
1+

121.0664

143.1083
1+

157.0873

171.1036
1+

189.1144
1+

203.1301

14.0157

32.0265

60.0218

32.0269

32.0268

+MS, 15.15min #2698

0

1

2

3

4

5x10
Intens.

120 140 160 180 200 m/z

[M+H]+

O

O

O

O

139.0767

A

111.0826 143.1092
157.0886

189.1160

203.1318
+MS, 15.10min #2690

0

1

2

3

4

5x10
Intens.

120 140 160 180 200 m/z

[M+H]+B

 

Figure 6.1 GC-APCI-TOFMS mass spectra of the MCF derivative of suberate (conc = 200 M) acquired 
without (A) and with (B) infusion of water at 0.4 mL/h. Neutral losses yield a series of fragments in the 
case of APCI/-H2O as annotated in the left spectrum; [M+H]+ abundance is distinctly promoted by water 
infusion. Reprinted from [14]. 

Water infusion, interestingly, exerted almost no effect on MeOx-TMS derivatives, i.e., 

the [M+H]+ ions dominated for 19/20 compounds even in the APCI/-H2O mass spectra. 

Typical fragment ions were caused by neutral loss of C3H8Si [TMS] (72.040), C3H9SiOH 

[TMSOH] (90.050 Da), [TMSOH + CO] (118.045 Da), and combinations thereof. Over-

all, MeOx-TMS mass spectra were less rich in fragment ions compared to their MCF 

analogues (compare Figure 6.1, Figure 12.1 and Figure 12.2 for suberate and valine, 
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respectively). For some compounds, including benzoate, fumarate, and phenylacetate, 

a [M+H+TMS]+-type adduct was observed, as recently reported [78]. 

6.3.2 Optimization of water infusion rate 

Next the effects of different water infusion rates on the ionization behavior of both 

standard mixtures of 20 MCF- and MeOx-TMS -derivatized compounds were investigat-

ed, in 0.1 mL/h increments up to 0.5 mL/h. Details are presented in Table 12.3. The 

geometric means of fold changes in [M+H]+ peak area relative to no water infusion dif-

fered significantly (ANOVA, p <0.05) for MCF-derivatized spike-in standards (N=20) 

across water infusion rates of 0.1-0.5 mL/h. On average, peak areas increased the most 

for organic acids with increasing rates of water infusion, followed by amino acids, 

whereas (hetero) aromatic compounds yielded the smallest increases. In contrast, ge-

ometric means of RSD values were fairly similar across the water infusion rates tested, 

ranging from 16.3 % to 23.2%. Ultimately, a water infusion rate of 0.4 mL/h was chosen 

for all subsequent experiments, as it had yielded overall the highest fold change in 

[M+H]+ peak area (16.6-fold) and the lowest RSD (16.3 %), and [M+H]+ constituted the 

base peak for all 20 MCF derivatives. Figure 12.2 shows mass spectra of MCF-

derivatized suberate and valine acquired without and at five different rates of water 

infusion. The standard mixture was also spiked at 200 µM into a serum extract and 

analyzed without and with 0.4-mL/h water infusion, followed by normalization of the 

[M+H]+ area values against undecanoate. Relative standard deviations improved signifi-

cantly at 0.4 mL/h water infusion (Table 6.1), e.g. from 25.3% to 11.3% for isoleucine. In 

addition, an average 28-fold higher S/N ratio was observed for the [M+H]+ ions. 

On the other hand, in the case of MeOx-TMS derivatives only 6 of the 20 standard 

components were significantly affected over the different water infusion rates (ANOVA, 

p <0.05). Significant increases in fold changes in [M+H]+ peak area relative to no water 

infusion were limited to (hetero) aromatic compounds and adipate only. Some com-

pounds were even negatively affected as evidenced by a fold change <1 (Table 12.3). 

Overall, geometric means for fold-changes and RSDs did not differ markedly across the 
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water-infusion rates tested. Compared to MCF derivatives, RSDs for MeOx-TMS deriva-

tives were generally higher. 

Table 6.1 Impact of 0.4 mL/h water infusion on APCI of MCF derivatized spiked serum extracts. Mean 
fold changes in peak area and S/N ratio of [M+H]+ ions of the 20 standard compounds were obtained by 
comparing 0.4 mL/h water infusion to no water infusion. In addition, RSD values and average S/N ratio of 
[M+H]+ ions for APCI/-H2O and APCI/+H2O are given. For calculation of FCs and RSDs, peak areas were 
normalized to undecanoate. Water infusion increased [M+H]+ peak areas on average by 11-fold and 
significantly decreased RSD values. Standard concn = 200 µM; N=5 derivatization replicates; A=amide 
group; E=methyl ester group. Reprinted from [14]. 
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Adipate-2E 166.9 34.6 12.0 20 2955 147.7 
Ala-1A-1E 27.7 36.5 26.6 84 2257 26.9 

4-Aminobutyrate-1A-1E a a 7.3 a 259 a 

Asp-1A-2E 10.1 22.0 9.3 257 2408 9.4 
Benzoate-1E 1.3 33.9 11.2 2145 3370 1.6 
Fumarate-2E 0.6 38.8 13.3 1154 1041 0.9 
Glu-1A-2E 9.6 45.6 5.1 104 1494 14.4 
Hippurate-1E 5.1 23.6 15.3 713 5052 7.1 
Ile-1A-1E 14.5 25.3 11.3 290 4362 15.0 
Leu-1A-1E 11.0 19.8 16.5 416 5384 12.9 
Malonate-2E 44.0 17.1 10.6 28 1767 63.1 
Met-1A-1E 18.1 46.0 11.9 174 3892 22.4 
Methyl-malonate-2E 66.0 23.0 12.6 30 2387 80.1 
Nicotinate-1E 1.1 35.6 20.9 1170 1483 1.3 
Nval-1A-1E 18.6 32.5 24.3 132 2985 22.7 
Phe-1A-1E 9.3 45.9 9.8 367 5314 14.5 
Phenylacetate-1E 5.1 17.3 12.8 467 3161 6.8 
Pro-1A-1E 8.4 28.5 10.7 519 4606 8.9 
Suberate-2E 62.6 25.5 4.9 97 6868 71.0 
Val-1A-1E 17.3 24.0 21.4 254 3005 11.8 
a S/N of [M+H]+ of 4-Aminobutyrate below 20 in case of no water 
infusion. 

 

Ionization of analytes is not only due to direct protonation but also ligand switching [69], 

i.e., association of analytes with [H(H2O)n]
+ water ion clusters followed by dissociation of 

water molecules. As evident from Table 12.2, log P values are significantly lower for 

MCF derivatives compared to their MeOx-TMS analogues, indicating that MCF deriva-

tives are more polar. This might facilitate the formation of MCF derivative-water ion 
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clusters and explain the observed increase in signal intensities upon infusion of water 

into the APCI source.  

6.3.3 Method evaluation via spike-in experiment 

Metabolic fingerprinting sets high requirements on quantitative precision as well as 

extraction and alignment of features. To test whether APCI/+H2O improves the detec-

tion of differences in metabolite concentration of MCF and MeOx-TMS derivatives, a 

serum extract was spiked with the 20 standard compounds at six different concentration 

levels (N=5 derivatization replicates) ranging from 133-467 M and 67-233 M, respec-

tively, thus generating a total of 15 concentration fold changes (FCs) between 1.17- and 

3.5-fold. A 2-fold higher concentration for MCF spike-in compounds and volume of se-

rum extract was chosen in comparison to the MeOx-TMS spike-in experiment to extract 

features for an increasing number of low-abundant MCF -derivatized spike-in com-

pounds in the case of APCI/-H2O. Four data matrices were obtained in total, and fea-

tures were assigned as true positives (TPs) or true negatives (TNs), by comparing se-

rum blank and individual standard samples. All multiple features of a single spike-in 

compound, e.g.,  protonated molecule, fragments, adducts, or different derivatives, were 

further considered as true positives, and ROC curves were obtained as described in 

detail in section 5.5.1. For MCF derivatives, 91 (53 TPs, 38 TNs) and 178 (97 TPs, 81 

TNs) features were obtained for APCI/-H2O and APCI/+H2O data matrices, respectively, 

with a maximum of 3% zero values after exclusion of one run each due to technical 

problems. Figure 6.2 shows how water infusion influences accuracy of detection of 

differential features by presenting ROC curves for 6 of the 15 possible FCs. AUC values 

were noticeably improved in the case of APCI/+H2O (compare Figure 6.2A,B and Table 

12.4). Furthermore, the AUC values of APCI/-H2O and APCI/+H2O for all 15 possible 

FCs were plotted against each other (Figure 6.3A). Higher AUC values for APCI/+H2O 

were found in almost all cases. Interestingly, the AUC value for an FC of 1.2 (spike-in 

levels 4 vs 5) in the case of APCI/-H2O distinctly exceeded the corresponding value for 

APCI/+H2O. Upon pairwise leaving out one of the five replicates for spike-in levels 4 and 

5 (25 combinations in total), a mean AUC value±SD of 0.66±0.08 and 0.47±0.05 was 

obtained for APCI/-H2O and APCI/+H2O, respectively. These greater relative standard 



 
 71

 
 
 

deviations implied that AUC values for an FC of 1.2 were less stable compared to a 

higher FC of 1.67 (spike-in levels 3 vs 5), for which AUC values of 0.76±0.04 (APCI/-

H2O) and 0.84±0.01 (APCI/+H2O) were obtained. Because lower FCs are more prone to 

error due to measurement fluctuations, the FC of 1.2 was regarded as random devia-

tion. Hence, only AUC values >0.7 were considered trustworthy. Using this cutoff, AP-

CI/+H2O proved more sensitive in the detection of discriminating features, as it suc-

ceeded in distinguishing an FC of 1.33 from the background, whereas AUC values 

exceeding constantly 0.7 were obtained for FCs of 1.67 and higher in the case of APCI/-

H2O (Table 12.4). In addition to that, no [M+H]+ ions were included in the data matrix in 

the case of APCI/-H2O for 11 spike-in compounds and no features at all were extracted 

for four analytes, which might complicate or entirely prevent the detection of discriminat-

ing MCF -derivatized metabolites without water infusion.  

While assigning features as TPs or TNs, the number of TNs was distinctly higher than 

that of TPs and therefore the retention time range for generation of the bucket table was 

reduced to 8-17 min in the MeOx-TMS spike-in experiment to decrease the number of 

TNs. Otherwise, in the case of an enormous excess of TNs over TPs, small P values for 

many TNs would have occurred by chance and these TNs appeared at random on top 

of the sorted list, which would have prevented similar fold changes from being distin-

guished by means of their ROC curves. Comparable AUC values for APCI/-H2O and 

APCI/+H2O were obtained in the case of MeOx-TMS derivatives. This was in accord-

ance with the observed lack of any influence of water infusion on RSD values. Table 

12.4 lists AUC values for both APCI/-H2O and APCI/+H2O of MeOx-TMS derivatives, 

and the respective AUC vs AUC plot is depicted in Figure 6.3B. It was concluded that 

water infusion held no advantage for APCI-MS of MeOx-TMS derivatives in metabolite 

fingerprinting. 
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A B0.0 mL/h 0.4 mL/h

 

Figure 6.2 Impact of water infusion on the detection of concentration differences of MCF -derivatized 
metabolites illustrated by receiver operating characteristic (ROC) curves. Twenty known compounds were 
spiked at six different concentrations (133-467 µM) into aliquots of serum extract and analyzed by GC-
APCI-TOFMS without (A) and with water infusion (B). Water infusion increased area under the curve 
(AUC) values. Hence, it improved the ability to distinguish genuine changes in metabolite concentration 
from background signals of the serum matrix. Reprinted from [14]. 
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Figure 6.3 Impact of water infusion on the detection of differential MCF and MeOx-TMS derivatized 
features illustrated by area under the curve comparison plot. AUC values from the corresponding ROC 
curves for all pairwise fold changes are compared for MCF (A) and MeOx-TMS (B) derivatives. ROC 
curves were generated from 20 compounds spiked at six different concentrations into aliquots of a serum 
extract, followed by derivatization (N=5 derivatization replicates per spike level), and GC-APCI-TOFMS 
analysis without and with water infusion at 0.4 mL/h. AUC values were overall increased by water infusion 
in the case of MCF derivatives, whereas those corresponding to MeOx-TMS derivatives were not signifi-
cantly affected. Reprinted from [14]. 
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6.3.4 Evaluation of fold changes and mass and isotope accuracy 

Next the accuracy and repeatability of FCs detected with MCF derivatives under water 

infusion was studied. To that end, following subtraction of blank feature area integrals, 

all possible pairwise FCs from area integrals of preferentially the [M+H]+ ion of a specific 

compound within the spike-in data matrix were plotted against their expected FCs, as 

shown exemplarily for benzoate in Figure 6.4. Then univariate linear regression analy-

sis was performed. The respective slopes and intercepts of the regression equations, 

regression coefficients, and mean RSDs over all FCs are listed in Table 12.5. Upon 

water infusion, accuracy and repeatability of FCs were distinctly enhanced, with ranges 

of regression coefficients and mean RSDs improving from 0.350-0.945 (median value of 

0.774) to 0.709-0.944 (0.883) and 19.5-67.2% (34.3%) to 15.9-29.9% (22.5%), respec-

tively.  
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Figure 6.4 Linear dependency between expected and observed fold changes for the MCF derivative of 
benzoate. Blank feature area values had been subtracted as “background” from area integrals of [M+H]+ 
of benzoate (m/z 137.0597 Da) for generation of FC plots derived from analyses of spiked serum extracts 
acquired at a water infusion rate of (A) 0.0 mL/h, and (B) 0.4 mL/h. All possible fold changes are plotted, 
and the respective linear regression equation, regression coefficient, and mean RSD value over all fold 
changes are given in the graphs. Accuracy and repeatability of FCs were distinctly improved by water 
infusion. Reprinted from [14]. 

Reliability of accurate mass measurements was verified by means of retrieving ele-

mental formulas from known MCF-derivatized standards spiked into serum extracts at a 

concentration of 200 µM each. Results are listed in Table 12.6. Upon internal recalibra-

tion excellent mass accuracy over a mass range of 133-238 m/z for all spike-in com-
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pounds was obtained irrespective of water infusion, as confirmed by Wilcoxon signed-

rank test for each spike-in compound except 4-aminobutyrate, with absolute mean mass 

errors (±SD) of 0.64 (±0.72) mDa and 0.66 (±0.68) mDa, respectively, for APCI/-H2O 

and APCI/+H2O at 0.4 mL/h. In general, the absolute mass error was below 3 mDa for 

all measured ions. In contrast, isotope patterns of [M+H]+ ions were markedly enhanced 

by water infusion because of the increased signal intensities (Table 12.6). In the case of 

APCI/-H2O, mSigma values, which decrease with increasing goodness-of-fit between 

the theoretical and experimental isotope pattern, were inadequate, ranging from 33-80. 

Further, for more than half of the compounds, the first isotope of the [M+H]+ ion was not 

detectable. Upon water infusion, the mean mSigma value was 10.0±1.0. As a conse-

quence, given the relevance of isotopic patterns for the exclusion of incorrect elemental 

combinations and the selection of the correct formula among the top-hits [50,95], aver-

age rank of correct formula within all calculated formulas was 2.7 and 1.9 for APCI/-H2O 

and APCI/+H2O, respectively. APCI/+H2O yielded excellent isotope ratio accuracies for 

the first isotope with a mean error of 0.66±0.68%. According to our own results and 

those of previous studies [50,78] for MeOx-TMS derivatives that had been investigated 

by means of GC-APCI-QTOFMS [78] as well as GC-EI-TOFMS and GC-CI-TOFMS 

[50], there is a dependency of isotopic pattern accuracy on ion abundance in contrast to 

mass accuracy. Nevertheless, for both APCI/-H2O and APCI/+H2O, the correct ele-

mental formula was always derived, except for 4-aminobutyrate whose [M+H]+ ion had 

not been detected by APCI/-H2O. In conclusion, APCI/+H2O yielded a number of nota-

ble improvements in the quantification and identification of MCF derivatives that might 

benefit metabolite fingerprinting. 

6.3.5 Analysis of metabolic fingerprints of cancer cell extracts 

As a proof of principle, MCF derivatization and GC-APCI-TOFMS were applied to meta-

bolic fingerprinting of pancreatic cancer cells treated with 17-DMAG. The latter is an 

inhibitor for Hsp90, which acts as a molecular chaperone for many oncoproteins and 

thus has become a target in clinical trials. However, little is known about whether Hsp90 

has a direct impact on cancer cell metabolism. As evidenced by the overlaid total ion 

current (TIC) chromatograms in Figure 6.5, ionization efficiency was distinctly en-
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hanced by water infusion. Feature extraction and alignment yielded a total of 217 and 

211 features for APCI/-H2O and APCI/+H2O, respectively. In the latter case, one would 

expect an increase in detectable [M+H]+ ions, which should benefit metabolite identifica-

tions. For instance, this was the case for malate, which eluted at 14.9 min in the chro-

matogram depicted in Figure 6.5B (peak no. 9). Twenty of the metabolites identified in 

extracts of untreated pancreatic cancer cells are represented in Figure 6.6A, with mean 

[M+H]+ areas ± SD given in the graph. With the exception of the fatty acid derivatives, 

which formed water adducts at the expense of [M+H]+ ions under water infusion, all 

metabolites showed an increase in mean [M+H]+ area. Furthermore, SDs were lower for 

most metabolites. Importantly, of the four metabolites that could solely be identified by 

water infusion (Figure 6.6), malate, serine, and aminoadipate were found to show sig-

nificant discrimination between control and 17-DMAG treated cell extracts.  
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Figure 6.5 Impact of water infusion on ionization efficiency as exemplified by the overlay of 10 min sec-
tions of the TIC chromatograms (A) and enlarged sections deriving therefrom (B, C) acquired by GC-
APCI-TOFMS without (chromatogram in black) and with (0.4 mL/h) water infusion (chromatogram in gray) 
for an MCF-derivatized metabolite extract of untreated pancreatic cancer cells. Metabolites, whose abun-
dance was found by means of GC-APCI/+H2O-TOFMS to be significantly different in 17-DMAG -treated 
cells versus controls, are annotated, with asterisks indicating metabolites found to be discriminating 
irrespective of water infusion. Experimental details are given in chapter 5. As a result, ionization efficiency 
was distinctly enhanced by water infusion. Peak identification: 1, lactate; 2, alanine; 3, glycine; 4, valine; 
5, leucine; 6, isoleucine; 7, laurate; 8, threonine; 9, malate; 10, proline; 11, myristate; 12, serine; 13, 
methionine; 14, aminoadipate; 15, palmitate; 16, aspartate; 17, citrate; 18, N-acetyl-L-aspartate. Reprint-
ed from [14]. 
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Figure 6.6 Influence of water infusion on magnitude and repeatability of signal intensities of selected 
MCF-derivatized metabolites and on the clustering of biological replicates in principal component analy-
sis. (A) Arithmetic means ± SD of peak areas of [M+H]+ ions of selected metabolites detected in MCF-
derivatized cell extracts (N=5) from the control group without and with water infusion. (B, C) Principal 
component analysis of metabolic fingerprints of MCF-derivatized cell extracts from control and 17-DMAG 
-treated pancreatic cancer cells (N=5 biological replicates) acquired (B) without and (C) with water infu-
sion at 0.4 mL/h, respectively. [M+H]+ abundance of identified compounds was distinctly promoted by 
water infusion, except for the fatty acid derivatives, and technical variability overall reduced as indicated 
by tighter clustering of the biological groups. A, amide group; MC, methoxycarbonyl group; E, methyl 
ester group. Reprinted from [14]. 
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6.3.6 Comparative analysis of control and 17-DMAG -treated sample 

groups 

Following extraction and alignment of features for both control and 17-DMAG -treated 

cells that had been acquired by APCI/-H2O and APCI/+H2O, respectively, peak area 

integrals were normalized against protein content followed by log 2 transformation, and 

missing values were imputed. Further, FDRs according to Benjamini and Hochberg [89] 

assuming equal variances in control and treated groups were calculated. A total of 18 

and 77 significant features (FDR <0.05) that distinguished control from 17-DMAG -

treated cells were obtained by APCI/-H2O and APCI/+H2O, respectively. To minimize 

false positive features, areas of significant features were reintegrated manually using 

MassLynx to exclude incorrect feature integration by the automated data analysis rou-

tine. Furthermore, GC-MS [M+H]+ features for amino acids that were also independently 

quantified by HPLC-MS/MS (Table 6.3) as well as [M+H]+ features of metabolites dis-

played in Figure 6.6A were included in the final bucket tables, in case the features had 

not been extracted previously by the routine. Final bucket tables contained in total 218 

(APCI/-H2O) and 195 (APCI/+H2O) features after the exclusion of retention index mark-

ers at this stage. Data analysis was repeated, leaving 35 and 64 significant features, 

respectively, for APCI/-H2O and APCI/+H2O with an FDR <0.05 and an S/N ratio >20 for 

corresponding peaks across all samples of at least one group. For visualization, princi-

pal component analysis was performed based on the final bucket tables. While a group 

separation between control and 17-DMAG -treated cell extracts along PC1 was ob-

tained based on both APCI/-H2O- and APCI/+H2O-TOFMS data, variability within the 

two biological groups was distinctly reduced in the latter case, as presented in Figure 

6.6B,C. Among the top loadings of PC1, features corresponding to cysteine, threonine, 

alanine, glycine, and proline were always found, irrespective of water infusion.  

The identities of discriminating features were determined whenever possible. One has 

to keep in mind that the number of detected features does not necessarily equal that of 

metabolites, as features corresponding to isotopes, adduct and fragment ions might 

have been included as well. Eventually, 27 out of 35 (APCI/-H2O) and 41 out of 64 (AP-

CI/+H2O) significant features could be assigned to 13 and 23 metabolites, respectively. 
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Table 6.2 lists all discriminating metabolites along with figures of merit from the identifi-

cation procedure. Because, according to Sumner et al. [26], at least two independent 

and orthogonal data derived from a standard are required for the definite (level 1) identi-

fication of an unknown, van den Dool retention indices (RIs) were compared in addition 

to the mass spectra. Differences in RIs (RI) were between 0 and 6 index units corre-

sponding to relative RIs of 0-0.5%. This was below the established threshold of 1.0% 

for transferring RIs between different methods by Strehmel et al. [128], who had found 

RI to increase with retention time and, therefore, had suggested to use relative rather 

than absolute RIs values. Significant features from APCI/+H2O analysis were either not 

detectable with APCI/-H2O or not extracted by the FMF routine despite a S/N threshold 

of 2. Further reasons for the smaller number of significant features from APCI/-H2O 

analysis included missing values within group attributes of extracted features, which 

entailed exclusion of the respective features, as well as insufficient repeatability of peak 

areas. With a rapid turnover of intracellular metabolites, biological variances are in-

creased, thus putting even higher requirements on analytical precision. Water infusion 

made it possible to extract features with overall better repeatability, e.g., RSDs for peak 

areas of lysine (m/z [M+H]+: 277.1394 Da) in control and treated samples improved 

from 32% and 53% to 21% and 24%, respectively, thus enabling its identification as a 

metabolite differing in abundance between untreated and treated cells. The same held 

true for ornithine and methionine with fold changes <2, that had been missed by APCI/-

H2O. Finally, the identity of four significant metabolites could not have been revealed in 

the case of APCI/-H2O. Malate (Figure 6.7), serine, and aminoadipate only formed an 

[M+H]+ ion under water infusion, whereas for ornithine, mSigma values >50 obtained 

from APCI/-H2O mass spectra would have entailed exclusion of the correct elemental 

formula during the identification procedure.  
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Table 6.2 Figures of merit for the metabolites identified by GC-APCI/+H2O-TOFMS that showed signifi-
cant discrimination (FDR <0.05) between control and 17-DMAG treated pancreatic cancer cells (N=5 
biological replicates). Compounds marked with an asterisk (*) were revealed by GC-APCI-TOFMS irre-
spective of water infusion. Water infusion almost doubled the number of significantly regulated metabo-
lites that were identified to a total of 23. A, amide group; MC, methoxycarbonyl group; E, methyl ester 
group. Reprinted from [14]. 
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Gly-1A-1E* C5H10NO4
+ 10.87 -2 148.0610 -0.6 6.4 0.0015 3.9 

Trp-1A-1E* C14H17N2O4
+ 27.74 e 277.1173 1 12.0 0.0015 1.9 

Leu-1A-1E* C9H18NO4
+ 13.25 -3 204.1230 0.0 7.9 0.0023 2.4 

Ala-1A-1E* C6H12NO4
+ 10.51 -5 162.0764 -0.3 7.3 0.0030 3.5 

Pro-1A-1E* C8H14NO4
+ 15.00 -3 188.0913 0.4 7.4 0.0033 3.5 

Cys-1A-1MC-1E* C8H14NO6S
+ 19.17 1 252.0532 0.5 8.9 0.0033 7.5 

Phe-1A-1E* C12H16NO4
+ 19.09 -4 238.1067 0.7 10.0 0.0060 2.8 

Thr-1A-1E* C7H14NO5
+ 14.45 -1 192.0863 0.4 9.0 0.0070 3.7 

His-2A-1E* C11H16N3O6
+ 24.07 e 286.1025 0.9 14.0 0.0077 2.7 

lactate-1MC-1E* C6H11O5
+ 9.08 e 163.0600 0.1 7.8 0.0103 3.9 

laurate-1E* C13H27O2
+ 14.22 0 215.2000 0.6 15.6 0.0116 2.4 

Val-1A-1E* C8H16NO4
+ 12.13 -3 190.1067 0.7 9.8 0.0196 2.5 

Ile-1A-1E* C9H18NO4
+ 13.41 -3 204.1229 0.1 9.1 0.0214 2.0 

stearate-1E C19H39O2
+ 21.09 2 299.2938 0.6 9.2 0.0003 3.3 

Tyr-1A-1MC-1E C14H18NO7
+ 24.96 e 312.1085 -0.7 3.3 0.0018 2.6 

Lys-2A-1E C11H21N2O6
+ 23.08 e 277.1390 0.5 12.0 0.0020 2.5 

myristate-1E C15H31O2
+ 16.67 0 243.2311 0.7 9.9 0.0057 2.2 

palmitate-1E C17H35O2
+ 18.94 3 271.2624 0.7 5.1 0.0061 2.7 

Orn-2A-1E C10H19N2O6
+ 21.96 6 263.1217 2.1 15.1 0.0270 1.9 

Met-1A-1E C8H16NO4S
+ 17.65 -3 222.0777 1.7 4.1 0.0323 1.9 

Ser-1A-1MC-1E C8H14NO7
+ 16.95 -1 236.0766 -0.1 11.1 0.0128 1.3 

aminoadipate-1A-2E C10H18NO6
+ 18.80 1 248.1123 0.5 14.3 0.0334 1.7 

malate-1MC-2E C8H13O7
+ 14.90 -1 221.0643 1.3 22.2 0.0442 1.8 

a Difference between fatty acids-based RI in a standard and sample. b Difference between predict-
ed and measured mass. c False discovery rate according to Benjamini and Hochberg [89]. 
d Calculation after manual integration of respective [M+H]+ as quant mass that exhibited a peak-to-
peak S/N >20. e Not calculable. 

 



 
 82

 
 
 

221.0638
1+

371.3214
1+

+MS, 15.01min #2673

0.0

0.5

1.0

4x10
Intens.

200 400 m/z

214.0951

+MS, 15.10min #2688

0.0

0.5

1.0

4x10
Intens.

200 400 m/z

GC

APCI source

H2OH2O

a b

+
+

+
+

M

H3O+(H2O)n

N2
+ [M+H]+

MS

b

a

RI = 1179

RI = 1179

[M+H]+

MCF-derivatized Malate

[M+H]+ not present

 

Figure 6.7 Influence of water infusion on detectability of [M+H]+ of MCF-derivatized malate in a cell 
extract sample from the control group acquired by GC-APCI-TOFMS (a) without and (b) with 0.4 mL/h 
water infusion. [M+H]+ was not formed in the absence of water infusion, thus impeding positive identifica-
tion of this metabolite. Reprinted from [14]. 

6.3.7 Cross-validation of discriminating amino acids 

To confirm that amino acids identified by metabolite fingerprinting to discriminate be-

tween control and 17-DMAG -treated cells reflect true differences in abundance of those 

amino acids, targeted analysis by means of HPLC-ESI(+)-MS/MS was performed using 

SIL-ISs. Concentration levels were normalized by the protein content of the respective 

cell pellet, which was 3.1±0.2 mg and 1.5±0.4 mg for the control and the 17-DMAG 

group, respectively. As displayed in Table 6.3, significant amino acids in metabolic 

fingerprinting were confirmed in all cases by HPLC-MS/MS, except for valine and cyste-

ine, whose content could not be determined by the targeted approach. In addition to the 

discriminating amino acids already identified by the fingerprinting approach, HPLC-

MS/MS revealed arginine and asparagine as significantly regulated. In the case of argi-

nine this came as no surprise, as it is thermally instable and, therefore, not amenable to 

GC-MS. Furthermore, the 1.3-fold difference in abundance of asparagine between the 

two groups detected by the untargeted approach was too small to reach significance 

due to the lower repeatability of GC-APCI/+H2O-TOFMS in the absence of SIL-ISs. The 

FCs obtained by GC-APCI/+H2O-TOFMS deviated less than 20% from HPLC-MS/MS 

results for 15 out of 17 amino acids (Table 6.3), emphasizing that the presented GC-MS 

approach was capable of reproducing fold changes in a quantitative manner.  
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Table 6.3 Comparison of fold changes in free amino acid abundance in 17-DMAG -treated cell extracts 
relative to controls determined both by GC-APCI/+H2O-TOFMS and HPLC-ESI-MS/MS, respectively. 
Protein levels in cell pellets for normalization of concentration levels were determined by means of the 
FluoroProfile kit from Sigma-Aldrich. Amino acids marked with an asterisk (*) were found to discriminate 
control from treated cells irrespectively whether GC-APCI-TOFMS was performed without or with water 
infusion. Both approaches were well in accordance with each other. Reprinted from [14]. 

Amino acid GC-APCI/+H2O-TOFMS HPLC-ESI-MS/MS Fold GC-MS/  
Fold HPLC-

MS/MS 
 Significant (Adjusted 

p-valuea<0.05) 
Foldb Significant (Adjusted 

p-valuea<0.05) 
Fold 

      
Arg Not detected x 1.4 - 
Gln Not detected Not determinedc - 
Val* x 2.5 Not determinedc - 
Cys* x 7.5 Not determinedc - 
Gly* x 3.9 x 2.8 1.4 
Thr* x 3.7 x 3.0 1.2 
Ala* x 3.5 x 2.6 1.4 
Pro* x 3.5 x 3.0 1.2 
His* x 2.7 x 2.4 1.1 
Trp* x 1.9 x 2.1 0.9 
Leu* x 2.4 x 2.3 1.0 
Phe* x 2.8 x 2.5 1.1 
Ile* x 2.0 x 2.4 0.8 
Tyr x 2.6 x 2.5 1.0 
Ser x 1.3 x 1.4 1.1 
Met x 1.9 x 2.0 1.0 
Lys x 2.5 x 2.3 1.1 
Orn x 1.9 x 1.8 1.1 
Asn  1.3 x 1.1 1.2 
Asp  1.0  1.1 0.9 
Glu   1.0   1.1 1.1 
a False discovery rate according to Benjamini and Hochberg [89]; b Calculation after manual 
integration of respective [M+H]+ as quant mass that exhibited a peak-to-peak S/N >20 and nor-
malization of peak areas to the protein content of the respective cell pellet; c Co-eluting com-
pound present in case of Gln and Val, Cys was not detected in 17-DMAG treated samples and 
therefore a p value was not calculated. 
 
 

6.4 Conclusions 

The present study showed that the continuous infusion of water enhanced not only the 

efficiency but also the repeatability of APCI of MCF-derivatized metabolites, while exert-

ing almost no or at times even a deleterious effect on APCI of MeOx-TMS derivatives. A 

likely explanation for the different behavior of the MCF and MeOx-TMS derivatives is 

the more polar nature of the former, which facilitates the formation of analyte-water ion 
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clusters. Overall, the beneficial effect of water infusion was most pronounced for car-

boxylic acids, less so for amino acids, and the least for (hetero) aromatic compounds. 

Water infusion was also found to improve the ability of GC-APCI-TOFMS to detect, 

determine, and identify metabolites, whose abundance changed significantly upon 

treatment of cancer cells with the Hsp90-inhibitor 17-DMAG. This was due to reduced 

in-source fragmentation of MCF-derivatized metabolites and a concomitant increase in 

[M+H]+ ions, that improved not only detection sensitivity but also facilitated elucidation 

of elemental composition of discriminating metabolites, which also benefitted from the 

improved isotope patterns seen upon water infusion. Finally, the ability of metabolite 

fingerprinting based on MCF derivatization and GC-APCI/+H2O-TOFMS to detect true 

differences in metabolite abundance could be confirmed by targeted HPLC-MS/MS 

analysis employing SIL-ISs. In summary, APCI/+H2O provides softer ionization than 

conventional APCI, with reproducible formation of [M+H]+ being favored over fragment 

ions for MCF derivatives, especially in the case of organic acids, thus extending the 

range of compounds amenable to metabolic fingerprinting. 
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7 Assessment of matrix effects in GC-APCI-MS 

7.1 Introduction 

As concluded in my master thesis, GC-APCI-TOFMS can be used for the quantitative 

analysis of metabolites. However, a major obstacle in the development of accurate and 

reliable quantitative methods for complex samples is the matrix effect, i.e., “the com-

bined effect of all components of the sample other than the analyte on the measurement 

of the quantity” [137].  

Matrix effects were examined in detail for LC-MS. Although less discussed, matrix ef-

fects are also found in GC-MS, e.g. in pesticide analysis [138,139]. Either suppression 

or enhancement of the analyte signal is possible. Electrospray ionization (ESI) and 

APCI are common ionization techniques in LC-MS, and both were found to be suscepti-

ble to matrix effects, although to different degrees [80,81,140]. Different mechanisms 

are currently discussed for the occurrence of matrix effects. Ion suppression may result 

in the liquid phase due to an altered efficiency of droplet formation or droplet desolva-

tion caused by less volatile compounds or matrix co-eluting with the analyte of interest 

[141], In turn, this affects the number of ions in the gas phase that enter the MS. Fur-

thermore, other possible mechanisms are proposed that take place in the gas phase 

such as depletion of charge of the analytes by interfering species. In summary, as 

pointed out by several authors [80,141], many potential causes rather than only one 

may lead to the observed matrix effect. The effects may vary greatly among different 

sources and ionization modes [142].  

Matrix effects occurring solely during ionization have been less of a concern in GC-MS 

compared to LC-MS. Since the mobile phase is a gas, mobile phase additives and the 

analyte transfer in the gas phase during ionization are irrelevant. Furthermore, GC pro-

vides enhanced analyte resolution, and, hence, a lower number of co-eluting analytes 

and matrix compounds are expected. Nevertheless, biological samples are highly com-
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plex, and co-elution is commonly observed even in GC-MS. In addition to that, APCI for 

LC-MS and GC-MS is based on similar principles, because analyte ionization in the gas 

phase is initiated by corona discharge, which might be a source of ion suppression in 

the case of co-eluting species. So far, only few authors evaluated matrix effects in GC-

MS with EI [37,143] and APCI [8,82] sources. For instance, Portoles et al. [82] found 

decreased signals of pesticides spiked into various food matrices in comparison to pure 

standard solutions. The authors concluded that this was due to a combined effect of the 

ionization and the injection [82]. Indeed, blocking of active sites in the liner by matrix 

compounds resulting in ionization enhancement of the analyte has been already de-

scribed in the field of pesticide analysis [144].  

The aim of this project was to investigate matrix effects in GC-APCI-TOFMS. It should 

be noted that the study only aimed at revealing potential matrix effect but the underlying 

mechanisms were not further studied. Three different matrices that are typically encoun-

tered in metabolomics were spiked with a mixture of 15 metabolites and recovery rates 

were determined for these analytes. In addition to that, possible interferences between 

three pairs of co-eluting analytes in standards were studied, which not only allowed the 

evaluation of defined amounts of possibly interfering compounds but also a closer look 

into whether APCI might be an actual source of ion suppression or enhancement. 

The results of this chapter will be part of a manuscript in preparation. 

 

7.2 Materials and methods 

7.2.1 Spike-in experiment 

Preparation of E. coli, serum and urine pool samples 

The aqueous-methanolic E. coli BL21 extract was the same as described in a previous 

study by Almstetter et al. [12]. Sample volumes of 10 and 20 µL of serum and urine, 

respectively, were used according to established protocols in our laboratory [132]. Forty 

aliquots of 10 µL of human serum were precipitated with 50 µL of cold methanol and 
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then centrifuged at 3375 × g for 5 min. The supernatants were collected and pellets re-

extracted twice with 50 µL of methanol. All supernatants were combined in a pool sam-

ple. Forty aliquots of 20 µL of human urine were incubated with 20 µL of a 2U/µL solu-

tion of urease in PBS at 37°C for 15 min. The reaction was stopped with 200 µL of eth-

anol, and all aliquots were pooled.  

 

Preparation of standards and matrix samples  

Since endogenous metabolite concentrations varied among the three matrices, individ-

ual spike-in mixtures were prepared in methanol from individual aqueous or methanolic 

stock solutions of the spike-in compounds (N=15). Their composition and the respective 

concentrations of the spike-in compounds are given in Table 12.7. Aliquots of 10 and 40 

µL were taken for further preparation of spike-in standards to determine the amounts of 

spiked metabolites via the same calibration curves (see below) as for the matrix sam-

ples for calculating recovery rates. For the generation of the spiked matrix samples, 100 

µL of E. coli extract, 150 µL of pooled serum extract and 240 µL of pooled pre-treated 

urine, respectively, were used, followed by the addition of 0, 10, 20, 30, 40, 50, and 60 

µL of the respective spike-in mixture. The matrix samples contained amounts between 

0.08-24.24 nmol absolute of the spike-in metabolites. Each matrix sample and spike-in 

standard was prepared in five replicates in a 2-mL glass vial with a 400-µL glass insert. 

They were then fortified with 10 µL of internal standard surrogate solution, vortexed, 

and evaporated to complete dryness, followed by manual MeOx-TMS derivatization 

including the odd-numbered, saturated fatty acids (C9-C19) prior to silylation. To check 

accuracy of the calibration curves, two standard samples were prepared as previously 

described [17] at a concentration of 125 and 15.63 µM, respectively. 

 

Determination of endogenous and spiked levels of spike-in metabolites, and recovery 

GC-APCI-TOFMS calibration curves from an existing quantitative method [17] were 

used for quantification of spike-in metabolites in spiked and unspiked matrix samples, 

and spike-in standards. For quantification the internal standards specified in Table 12.7 

were used. Recovery rates were determined in Excel for each spiked matrix sample 
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according to the following equation, which includes absolute amounts of spiked analytes 

that were calculated from those of the spike-in standards:  

 

Values higher or lower than 100% indicate ion enhancement or suppression, respective-

ly.  

Spiked and unspiked matrix samples as well as spike-in standards were measured in 

random order by GC-APCI-TOFMS. 

7.2.2 Co-eluting analyte pairs  

Two standard mixtures were prepared from separate stock solutions. Mixture A con-

tained glycerol, glycine and phenyllactate, whereas mixture B comprised phosphate, 

succinate and phenylpyruvate at a concentration of 1 mM each in methanol. Both were 

serially diluted over a concentration range of 0.98-1000 µM.  

According to the expected linear range of the calibration curves of the six analytes, one 

set of calibrators consisted of eight and six calibration samples that were prepared in 

triplicate from dilutions of mixtures A and B, respectively. Hundred µL or 75 µL of the 

respective diluted standard were transferred into a 2-mL glass vial with a 400-µL glass 

insert. Absolute amounts of 0.195, 0.391, 0.781, 1.172, 1.563, 3.125, 4.688 and 6.25 

nmol of analytes in mixture A, respectively, and 0.098, 0.781, 1.563, 3.125, 6.25 and 

12.5 nmol of analytes in mixture B were used. To study the slopes of the analytes’ cali-

bration curves in the absence of co-eluting compounds and their presence at three 

different concentration levels, four sets of calibrators were prepared in total. Then abso-

lute amounts of 0, 1, 10, and 100 nmol of mixture B were added to the calibration sam-

ples from mixture A and vice versa. Further, all calibration samples were fortified with 20 

µL of a 0.5 mM mixture of [2H7]trans-cinnamate and [U-13C]fumarate, vortexted, evapo-

rated to complete dryness, and manual MeOx-TMS derivatization was performed, with-

out the addition of fatty acids.  
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For calibration, glycerol, phenyllactate and phenylpyruvate were normalized by 

[2H7]trans-cinnamate, whereas [U-13C]fumarate was used for normalization of glycine, 

phosphate and succinate. The [M+H]+ ion was chosen as quantifier for all analytes. 

Retention times of the analytes and internal standards are shown in Figure 7.4. 

 

7.3 Results and discussion 

7.3.1 Selection of internal standards for quantification of spike-in me-

tabolites 

At the initial stage of the evaluation of matrix effects an existing quantitative method 

including 43 analytes from different chemical classes [17] was used to determine the 

endogenous concentrations of these compounds in E. coli, serum, and urine. For the 

selection of spike-in compounds the ULOQs of the calibration curves were considered 

in addition to the determined endogenous levels. Concentration fold changes (FCs) of 

1.5- to 4-fold of the endogenous levels were thought to be suitable to be spiked into the 

matrix samples. According to Annesley [145], analyte concentrations similar to those 

under real conditions should be used to evaluate ion suppression. Therefore, for in-

stance, amino acids were not chosen because of their endogenous concentrations in 

the high micromolar range in E. coli. On the other hand, FCs lower than 1.5-fold might 

be too small for a correct evaluation. Furthermore, for analytes with endogenous con-

centrations below the LLOQ, 0.75 nmol absolute were used for spike-in level 1, and FCs 

between 2 and 6 for the higher spike-in levels. Table 12.7 lists all the compounds in-

cluded in the spike-in mixtures and their concentration levels.  

Evaluation of matrix samples initially resulted in surprisingly high recoveries of up to 

174% for glycerate and phenyllactate in E. coli extracts, and for homovanillate, phos-

phoglycerate and hydroxyphenylpyruvate both in serum and urine. This was caused by 

an internal standard recovery ([U-13C]lactate, [U-2H]succinate and [2,2,4,4-2H4]citrate) of 

less than 75% in these matrices (Figure 7.1). A decrease of 25% or more in peak area 

has been previously regarded as indicator for ion suppression [81]. The other 4 internal 
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standards deviated less than 25%, but recoveries ranged between 76.1-113.4% (Table 

12.7). Matrix pre-treatment steps are ruled out as a possible source for the observed 

analyte losses, because matrix aliquots were spiked post-extraction with internal stand-

ards. Hence, it was assumed that the poor IS recovery is due to the high endogenous 

concentrations of lactate and succinate in E. coli, and citrate in serum and urine, which 

might have suppressed their co-eluting stable isotope-labeled analogues. In fact, the 

actual concentration levels of these three endogenous metabolites could not be deter-

mined in these matrices because the ULOQ of the respective calibration curves had 

been exceeded. Another explanation in the case of labeled citrate in a urine matrix 

might be complexation of labeled citrate with bivalent calcium cations, because no pre-

cipitation step was included in urine pre-treatment. Similarly for LC-MS with ESI and 

APCI sources, Remane et al. [140] reported enhanced ion suppression for 14 ISs with 

increasing concentration levels of the native analogues, which was evaluated in the 

context of multi-analyte procedures to quantify drugs and poisons in clinical and forensic 

toxicology.  
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Figure 7.1 Mean recoveries ±SD of critical internal standards in E. coli, serum, and urine in the spike-in 
experiment. These internal standards exhibited more than 25% deviation in peak area in at least one of 
the biological matrices (N=30 spiked matrix samples each) in comparison to standard samples (N=12). 
The black solid lines indicate mean recoveries of 75% and 125%, respectively. Student’s t test was per-
formed on the area integrals of [M+H]+ in the spiked matrix samples (N=30) versus those in standards 
(N=12) *P value <0.05; **P value <0.001.  
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A decreased IS signal caused by co-eluting endogenous analytes might cause severe 

problems especially if only a limited number of ISs are available in a study. Hence, use 

of SIL-ISs for quantification of analytes other than their native analogues may result in 

inaccurate quantification.  

As a consequence of the poor recoveries of [U-13C]lactate, [U-2H]succinate and [2,2,4,4-
2H4]citrate, endogenous concentrations of glycerate, phenyllactate, homovanillate, 

phosphoglycerate and hydroxyphenylpyruvate were recalculated using calibration 

curves based on different SIL-ISs (listed in bold in Table 12.7). The recalculated values 

differed from the original data. Since the calculation of the spike-in amounts was based 

on the original data, the resulting actual fold changes are slightly different and therefore 

fold changes are not consistent for all spike-in metabolites.  

7.3.2 Recovery rates of 15 spiked metabolites in three different matri-

ces 

Mean recoveries over all spike-in levels of the 15 spike-in compounds were determined 

in the three different matrices. Results are presented in Figure 7.2. Most metabolites 

yielded recovery rates between 75-125%. One of the exceptions was methylmalonate in 

E. coli with a mean recovery of 68%. However, this was probably due to incorrect peak 

integration since valine (m/z [M+H]+: 262.1653 Da) was partially co-eluting (~ 25% peak 

overlap) with methylmalonate (m/z [M+H]+: 263.1129 Da), and an extraction width of 

±0.1 Da for the quantifier turned out as too wide to distinguish methylmalonate and the 

first isotope of valine based on their mass. High recoveries up to 142% were seen for 

phenylacetate in serum and urine in the presence of threonine as co-eluting matrix 

compound. Among the matrices no obvious differences were recognized. For most 

spike-in compounds high mean RSD values of up to 30% were obtained. This is at-

tributed to missing corresponding SIL-ISs for 13 out of 15 spike-in analytes. RSD values 

for fumarate and pyruvate, for which a corresponding SIL-IS was included, were dis-

tinctly lower (below 9% in all cases).  

Next, mean recoveries of individual spike-in levels were compared, because it has been 

pointed out in LC-MS that the degree of ion suppression can depend not only on the 
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total amount of co-eluting matrix but also the matrix/analyte ratio [145]. Even though no 

consistent fold changes had been generated for all analytes, as described in the previ-

ous section, a total of 12 spike-in metabolite – matrix combinations could be evaluated. 

Only combinations with comparable spiked FCs in the specified matrix were considered. 

As shown in Figure 7.3, no big differences were seen among the different spike-in 

levels, except for methylmalonate in E. coli and urine, and pyruvate in urine (ANOVA, p 

<0.05), which exhibited significantly decreased recoveries for the lowest spike-in level. 

In the case of pyruvate this was surprising, as no co-eluting matrix compound was rec-

ognized in the chromatogram. Hence, this might be caused more likely due to a slightly 

over-estimated endogenous pyruvate level in urine that had the largest impact on the 

calculation of recovery rates for low spike-in levels.  

Previously, Garcia-Villalba et al. [8] investigated matrix effects in GC-APCI-TOFMS for 

phenolic compounds in extra virgin olive oil. The authors compared peak areas of ana-

lytes spiked post-extraction into the oil matrix to those in a neat solution, but did not 

report any significant differences [8]. In contrast, Portoles et al. [82] studied insecticides 

in various food matrices by means of GC-APCI-MS/MS, and found a distinct decrease 

in the analyte signal in most of the investigated matrices, which was on average 55% of 

that in standard solutions. The authors concluded that such effects resulted from com-

bined effects of the ionization and the injection [82]. The latter is well known as a source 

for ion enhancement in the analysis of pesticides by GC [144]. Accordingly, the outcome 

of matrix evaluation experiments may strongly depend on the type of matrix.  
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Figure 7.2 Mean recoveries over all spike-in levels ±SD of the 15 metabolites spiked into E. coli, serum, and urine. Six spike-in levels (N=5 derivatization replicates 
each) were generated using absolute spiked amounts between 0.08-24.24 nmol. Spike-in levels were based on the endogenous concentration of the spike-in me-
tabolites determined from unspiked matrix samples and the ULOQ of the respective calibration curves. The black solid lines indicate mean recoveries of 75% and 
125%, respectively. For the majority of spike-in compounds mean recovery rates ranged between 75-125% indicating that matrix compounds hardly interfered.  
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Figure 7.3 Mean recoveries of individual spike-in levels ±SD of 12 spike-in metabolite – matrix combinations with comparable fold changes based on the endoge-
nous analyte concentration in the specified matrix. The black solid lines indicate mean recoveries of 75% and 125%, respectively. Differences among individual 
spike-in levels were small indicating that the matrix-to-analyte ratio is rather not crucial for the onset of matrix effects. EC, E. coli; S, serum; U, urine, *, ANOVA,  
p <0.05 in at least one comparison to a higher spike-in level. 
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Another explanation for the rather minor effects seen for the 15 spike-in compounds 

might be insufficient matrix amounts. Heller [146] by means of API-LC/MS studied vary-

ing amounts of co-injected matrix in the analysis of drug residues in animal tissue ex-

tracts. It was concluded that a critical matrix concentration exists for the onset of matrix 

effects [146]. This might also be valid in GC-MS. Nevertheless, typical volumes of sam-

ple were used for the experiments described above, according to established protocols 

in our laboratory. Furthermore, MeOx-TMS derivatization was used, which is considered 

as most versatile among common derivatization strategies in metabolomics; therefore, a 

comparably high number of matrix compounds was expected to be derivatized. On the 

other hand, urease pre-treatment in the case of urine removed urea, which would have 

yielded a broad peak and might have caused alterations in the ionization efficiency of 

co-eluting spike-in compounds.  

7.3.3 Slopes of calibration curves of six analytes in the presence of 

co-eluting compounds 

Apart from interferences by matrix compounds, ion suppression and enhancement tests 

should be performed for co-eluting analytes. Using calibrators that include at least two 

of the latter might hamper the quantitative determination of them in real samples in the 

absence of co-elution, and vice versa. Therefore, the effect of co-eluting analytes on the 

slopes of calibration curves of five metabolites and phosphate was studied by addition 

of defined amounts of co-eluting analytes to the calibrator samples. Figure 7.4 depicts 

the TIC chromatogram of a standard containing the six investigated compounds and two 

internal standards included in the experiment. The three co-eluting pairs, namely glyc-

erol/phosphate, glycine/succinate and phenyllactate/phenylpyruvate, gave rise to mixed 

APCI-TOFMS mass spectra as shown at the bottom of Figure 7.4. These compounds 

might co-exist in real samples as well, e.g., complete removal of phosphate in cell cul-

ture samples is virtually not possible; hence, phosphate might interfere with the quanti-

tative analysis of glycerol.  
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Figure 7.4 Gas chromatographic separation of the six analytes and two internal standards included in the 
co-elution experiment as well as APCI-TOFMS mass spectra of the three pairs of co-eluting compounds. 
Experimental details are given in chapter 5. 

According to the linear range of their calibration curves [17], analytes were combined in 

two mixtures. Calibration curves were acquired in the absence of co-eluting analytes 

and their presence at three different amounts (1, 10, and 100 nmol absolute). As exam-

ple Figure 7.5 shows a glycerol calibration without and with phosphate at 100 nmol 

absolute being present in the calibrators.  
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Figure 7.5 Calibration curves for the example of glycerol in the absence of co-eluting phosphate and its 
presence at 100 nmol absolute. The slope of the latter curve was distinctly decreased.  

Further, the slopes of all calibration curves were normalized by those obtained in the 

absence of a co-eluting compound. The data is illustrated in Figure 7.6 including aver-

aged figures of merit of the four calibration curves of each analyte. As indicated by the 

two black solid lines spanning from 75% to 125% of normalized slopes, slopes of cali-
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bration curves in the presence of 100 nmol of co-eluting analytes were distinctly de-

creased in all cases. Whereas those of glycine (80%) and phenylpyruvate (77%) were 

slightly above the established threshold of 75%, they were much lower for the other four 

analytes ranging between 29-57%. Furthermore, slopes of phosphate (81%) and suc-

cinate (76%) were remarkably decreased even in the presence of intermediate (10 

nmol) levels of co-eluting analytes. In general, due to the presence of co-eluting ana-

lytes, mean RSDs over all triplicates and calibration points were quite high (Figure 7.6 

at the bottom), especially in the case of glycine (39%).  

These results are in good accordance with those in the previous subsection on the 

suppression of stable isotopically labeled lactate, succinate, and citrate in the presence 

of high concentrations of their native analogues. The effects observed in the co-elution 

experiment, however, are more likely solely due to ion suppression because only stand-

ards were used and no biological matrix was present. Furthermore, only calibrators well 

in the linear range of the analytes were used, so that saturation of the TOFMS could be 

excluded. In summary, alterations in ionization efficiency were found within all three co-

eluting analyte pairs, emphasizing the importance of corresponding SIL-ISs for quantita-

tive analysis.  
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Figure 7.6 Normalized slopes of calibration curves of six analytes in the presence of three different levels 
of their respective co-eluting compound. Depending on the analyte, the calibration curves were based on 
calibrator levels between 0.98-125 µM (N=3 derivatization replicates per calibration level) with 0, 1, 10, or 
100 nmol absolute of respective co-eluting compound added to each calibration sample. The three co-
eluting analyte pairs are arranged adjacent to each other in the figure. Normalization was based on the 
slope obtained in the absence of co-elution. Figures of merit of the calibration curves listed at the bottom 
correspond to the averaged values from the four curves of each analyte. The black solid lines indicate 
normalized slopes of 75% and 125%, respectively. While slopes of calibration curves were distinctly 
decreased in all cases in the presence of 100 nmol of co-eluting compounds, this was also seen for 
phosphate and succinate in the presence of intermediate (10 nmol) levels of co-eluting analytes. Counts, 
number of included calibration points; OOM, order of magnitude of the linear range on the basis of a log-
10 scale; RSD, average mean relative standard deviation in peak area over all individual RSDs of calibra-
tion triplicates. 

 

7.4 Conclusions 

The experiments presented in this chapter clearly indicate the presence of matrix effects 

or interferences due to co-eluting analytes, which result at least in part from the ioniza-

tion in the APCI source. In the spike-in experiment, recovery of three out of the seven 

internal standards was below 75% in at least one of the three biological matrices in 

comparison to standard samples. This was attributed to suppression by their respective 
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unlabeled analogue that was present at a high concentration, which was reinforced by 

the fact that co-eluting analyte pairs in standards suppressed each other at concentra-

tions of 1000 µM of the co-eluting compound. It emphasizes the need for careful selec-

tion of internal standards used for several analytes with respect to possibly occurring 

ionization interferences.  

Recoveries of the 15 spike-in compounds in the three biological matrices were within 

75-125% in most cases, which does not indicate severe matrix effects. Nevertheless, 

the situation might be different if higher concentrated samples or other matrices are 

analyzed, or different derivatization strategies such as MCF derivatization are em-

ployed. Furthermore, the matrix-to-analyte ratio did not prove as critical for the onset of 

matrix effects, albeit only a small number of matrix – spike-in compound combinations 

were evaluated. A clear dependence on the concentration level of the interfering analyte 

for the onset of ion suppression was observed for three analyte pairs. In fact, depending 

on the analyte, 100 or 1000 µM of interfering compound led to at least 20% suppression 

of the slope of the analyte’s calibration curve. This points to the ionization in the APCI 

source as cause for suppression since no matrix was present in that experiment.  

In summary, during quantitative method development matrix effects should always be 

evaluated. They may be reduced by sample cleanup. Alternatively, an analyte’s altered 

ionization may be corrected by its corresponding SIL-IS, or selectivity may be tuned. 

The latter can be achieved by choosing a GC column of different polarity or modification 

of the temperature program in such a way that co-elution with the target analytes be-

comes negligible.  
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8 Performance evaluation of a redesigned APCI 

source  

8.1 Introduction 

Following APCI source commercialization for GC-MS, an increasing number of success-

ful applications has been realized in various fields, as summarized in section 4.3.2. 

Nevertheless, weaknesses such as unstable ionization conditions remained and 

spurred further development and modifications of the source design. In 2006, Östman et 

al. introduced an APCI microchip that exhibited good repeatability [135]. Klee et al. [71] 

reported the development of a novel capillary APCI (cAPCI) ionization source for GC 

making use of liquid instead of metal corona discharge point electrodes. The authors 

observed controlled and very stable conditions during source operation, which was 

partly attributed to the continuously replenished surface of the point electrode by the 

liquid flow. Recent applications with a conventional source design relied more and more 

on the addition of water as a modifier to provide a well-defined humidity inside the APCI 

source for controlled ionization [14,82,131]. Continuous infusion of water into the APCI 

source clearly enhanced efficiency as well as repeatability of APCI in the case of MCF-

derivatized metabolites, as presented in chapter 6, but this was not observed for MeOx-

TMS derivatives. Hence, the second generation “GC-APCI II” design from Bruker Dal-

tonics, which was introduced during my doctoral thesis and supposedly addressed 

shortcomings of the original GC-APCI I source, was further tested with regard to its 

performance for the latter class of derivatives.  

The improved design claims to minimize gas turbulences in the source and to better 

shield the ionization chamber against uncontrolled gas exchange with the outside air, 

thereby reducing chemical background and providing better control over humidity in the 

source. In the present study, the novel GC-APCI II source coupled to HRTOFMS analy-

sis was compared to its first-generation predecessor (“GC-APCI I”) for the application to 
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metabolomics. Its performance was initially compared over the entire chromatographic 

run using a homologous series of fatty acid methyl esters. Furthermore, calibration 

curves of 20 MeOx-TMS derivatized metabolite standards were used to compare figures 

of merit for metabolic profiling, such as linear range and derivatization repeatability. 

Finally, to comparatively assess the qualitative output, features were extracted and 

identified from APCI I and II mass spectra from analyses of cell culture supernatants.  

Preparation of calibration and cell culture supernatant samples, as well as partial evalu-

ation of calibration curves was carried out by Thomas Hahn as part of his bachelor 

thesis under my guidance. This chapter was published in [13].  

 

8.2 Materials and methods 

8.2.1 Materials 

A 1:100 (v/v) working dilution of the FAME mixture in methylene chloride was prepared, 

yielding concentrations of 5-13 µM of the 19 individual compounds that were finally 

evaluated. The metabolite mix contained 20 metabolites (compare Table 8.2) in metha-

nol at 1 mM each, prepared from separate stock solutions in water, methanol or a mix-

ture thereof. The mix was serially diluted to generate 20 calibration points from 0.002 

μM to 1000 μM. MeOx-TMS derivatized calibration standards were generated as de-

scribed in subchapter 5.2.  

8.2.2 Instrumentation 

APCI II source setup 

The “GC-APCI II” source (Bruker Daltonics GmbH, Bremen) consists of an atmospheric 

pressure chemical ionization source chamber equipped with a corona discharge needle 

assembly and a flexible heated GC transfer line. A scheme of the APCI II source is 

shown in Figure 8.1. In contrast to its predecessor, the vaporizing unit had been re-

moved because it caused excessive turbulences in the APCI I source (compare Figure 
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4.7 and section 4.3.1 on the GC-APCI-TOFMS instrumental setup). Instead, the heat for 

the APCI ionization process is now generated at the head of the GC transfer line by an 

external heating device. Further reductions in gas turbulences are accomplished by 

generating a hot laminar flow from the head of the GC transfer line, illustrated in orange 

in Figure 8.1. This laminar gas flow guides the carrier gas towards the MS inlet. Oppo-

site to the head of the GC transfer line a modified spray shield assembly is mounted at 

the entrance of the transfer capillary of the mass spectrometer. This spray shield ar-

rangement has 2 functions. It produces an optimized electrical gradient to direct the ions 

into the MS inlet capillary and it generates an optimized laminar dry gas flow, illustrated 

in red in Figure 8.1, outside of the inner guiding gas flow. According to simulations 

performed by the manufacturer, both counter-directed laminar gas flows do not disturb 

each other and do not generate turbulences (personal communication, Dr. Thomas 

Arthen-Engeland, Bruker Daltonics Bremen, Germany).  

Both gas flows shield and maintain the heat in the inner APCI ionization area. This 

prevents contamination, which reduces the chemical background and excludes uncon-

trolled gas exchange with the outside air thereby controlling the water content in the ion 

source. This is further supported by the airtight design of the source chamber. Finally, in 

contrast to the original design, the heat required for the APCI process is now generated 

in close vicinity to the ionization region and hence generates higher temperatures in the 

APCI ionization region. 
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Figure 8.1 Scheme of the GC-APCI II ion source: 1 head of the GC transfer line; 2 GC capillary outlet 
and heated nitrogen gas guiding the eluting analytes towards the MS inlet; 3 APCI electrical shield with 
outer ring cover enclosing the APCI ionization area and guiding both gas flows into and from MS; 4 inlet 
mass spectrometer; 5 dry gas flow direction; 6 corona needle. The GC effluent is delivered by a flexible 
GC transfer line into the APCI region of the ion source. Mechanical design, gas flows, heat distribution 
and electrical fields were optimized for efficient AP chemical ionization and ion transfer into the MS inlet. 
The illustration is reprinted from [13] with permission from Bruker Daltonics GmbH, Bremen. 

 

GC×GC-EI-TOFMS 

Instrumental settings for the employed LECO Pegasus 4D GC×GC-EI-TOFMS instru-

ment are described in detail elsewhere [17,147]. The first-dimension GC column was 

identical to the one used for GC-APCI-TOFMS in the current chapter and chapter 7. The 

temperature program was only slightly different with 50°C for 0.2 min, raised at 8°C/min 

to 265°C, and held for 10 min. Analyte fractions were transferred in 4-second intervals 

from the first- onto the second-dimension column by means of a dual-stage, quad-jet 

thermal modulator. An RTX-1701 (2 m × 0.1 mm i. d. × 0.1 µm film thickness, Restek) 



 
 104

 
 
 

was employed as second dimension column, and kept at a positive offset of 5°C relative 

to the first-dimension column. Splitless injection of 1.5 µL was performed by means of a 

PTV injector (set at 50°C for 0.5 min, ramped at 12°C/s to 250°C, held for 1 min). EI 

ionization under standard 70 eV electron ionization parameters at 200°C was used. 

Data were acquired 40-600 m/z at a rate of 100 spectra/s. The solvent delay was 8 min.  

8.2.3 Data analysis 

8.2.3.1 FAMEs 

For automatic peak integration, the “Find Compounds – Chromatogram” version 3.0 

peak finder in DataAnalysis was applied to the extracted ion chromatograms (EICs) of 

[M+H]+ ions of all investigated compounds (see Table 1) using an extraction width of 

±0.02 Da. Peak finder parameters were as follows: sensitivity: 90%; area threshold: off; 

intensity threshold: 1000; minimum peak valley: 30%; and mass spectrum calculation 

settings: default. Peak identification of investigated FAMEs was based on the accurate 

mass of each compound, common elution rules [148], as well as peak abundance in 

case of C18:1n9c and C18:1n9t, as the concentration of the former is twice as high in 

the FAME mixture.  

8.2.3.2 Cell culture supernatant samples 

For compound identification, the “Find Compounds – Dissect” peak-finding algorithm 

implemented in DataAnalysis was used. This deconvolution algorithm combines all ions 

with a similar chromatographic profile into one compound. Dissect compounds were 

extracted over a chromatographic range of 9-37 min of recalibrated data files using the 

following parameters: internal S/N threshold: 20; maximum number of overlapping com-

pounds: 3; mass spectrum calculation parameters: default; and advanced settings: 

enabled chromatographic resolving power of 0.3. Identification of metabolites was 

achieved in several ways: (1) m/z values of extracted dissect compounds were 

searched in the GC-APCI-HRMS online database established by Pacchiarotta et al. [74] 

and retention indices compared when available in the database. (2) Accurate masses 

and retention indices were matched against an in-house GC-APCI-HRTOFMS database 
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of 100 metabolite standards including sugars, fatty acids, organic acids, alcohols, amino 

acids and amino acid metabolites (compare Table 12.8). (3) GC×GC-EI-TOFMS raw 

data were processed using the ChromaTOF software as previously described [147] with 

a S/N threshold of 100 for peak detection in the first dimension and a S/N threshold of 

30 for second-dimension subpeaks. Peaks were combined in the second-dimension 

separation using a spectral matching factor of 500. Annotation of deconvoluted mass 

spectra was carried out by mass spectral matching to the NIST 05 library (based on a 

match >500 in forward search mode) and an attempt was made for annotated metabo-

lites to find the accurate masses of corresponding [M+H]+ ions in the APCI-HRTOFMS 

data. (4) For additional confidence in identified metabolites according to (1)-(3), ele-

mental formulas were calculated using the SmartFormula tool implemented in DataA-

nalysis (compare section 5.4.4). 

In addition to the Dissect algorithm, the FMF algorithm, which is recommended for 

quantitative analyses, was used to extract features from the chromatograms and com-

pare cumulative distributions of RSDs of peak areas. The following settings were ap-

plied for extraction and bucketing of FMF features: S/N threshold, 20; correlation coeffi-

cient threshold, 0.6; minimum compound length, 15; smoothing width, 5; additional 

smoothing, enabled; proteomics, enabled; bucketing basis, M+H. Retention time range, 

9-37 min; mass range, m/z 100-650; advanced bucketing tolerance parameters, 0.1 min 

and 10 mDa for retention time and mass, respectively; other parameters, always none 

or disabled. The bucket table was exported into Excel, features were normalized to the 

area integrals of [2H7]trans-cinnamate, and the RSDs calculated for all APCI I and II 

FMF features. 

For the qualitative assessment of technical variability, a single supernatant sample was 

injected trice and overlaid EICs were manually inspected. 
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8.3 Results and discussion 

8.3.1 GC-APCI-HRTOFMS analysis of FAMEs with the APCI I and II 

sources 

The general performance of APCI II in combination with HRTOFMS was investigated 

with a commercial 37-component FAME mixture and compared to that of APCI I-

HRTOFMS. The two data sets were acquired using identical chromatographic condi-

tions (Figure 8.2).  
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Figure 8.2 Overlaid extracted ion GC-APCI I and II-HRTOFMS chromatograms of FAMEs. A subset of 
N=19 components of a commercial FAMEs mixture were investigated in four subsequent replicate runs 
by means of GC-HRTOFMS equipped with an (a) APCI I and (b) APCI II ion source, respectively. Ex-
tracted masses of protonated molecules are listed in Table 8.1. An average 4.4-fold increase in peak 
areas was observed and peak apices aligned better in case of APCI II. (Concentration range: 5-13 µM. 
EIC = 20 mDa). Peak identification: 1, C11:0; 2, C13:0; 3, C14:1; 4, C15:1; 5, C15:0; 6, C16:1; 7, C17:1; 
8, C17:0; 9, C18:1c; 10, C18:1t; 11, C18:0; 12, C20:1; 13, C20:0; 14, C21:0; 15, C22:1; 16, C22:0; 17, 
C23:0; 18, C24:1; 19, C24:0. Reprinted from [13]. 
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The FAME mixture was used, because repeatability of retention time, peak width and 

ionization efficiency can be evaluated for compounds of widely different volatility. More-

over, FAMEs are alternative reference compounds for the calculation of retention indi-

ces instead of alkanes, which evade ionization in APCI(+) mode [78]. Keeping the use 

of FAMEs as reference compounds in mind, we opted not to use a dedicated FAME 

capillary GC column but rather the general-purpose Rxi-5MS column, though it is not 

well suited for the separation of complex FAME mixtures. Especially, unsaturated 

FAMEs with C18 and C20 backbones are not baseline resolved [148]. However, sepa-

ration of even- and odd-numbered, saturated and monounsaturated FAMEs was suffi-

cient. The FAMEs C4:0 and C6:0 eluted with the solvent and C8:0, C10:0, C12:0, 

C14:0, and C16:0 were excluded from this subset because they were in detector satura-

tion with GC-APCI II-HRTOFMS already at concentrations of 25 µM in the diluted mix-

ture. Consequently, 19 FAMEs remained that were used for comparison. Very stable 

retention times across four injection replicates were obtained with an average relative 

standard deviation of 0.01% for all 19 FAMEs. Signal intensities (peak areas) of the 

protonated molecules of the 19 FAMEs were on average 4.4-fold greater with the APCI 

II than the APCI I source, most likely due to the more efficient ion transfer to the MS 

inlet in the APCI II source (Table 8.1). This is also reflected in the S/N ratios that were 

on average 2.6-fold higher (Table 12.9). Furthermore, RSDs of peak areas obtained 

with APCI II were drastically reduced from 24.3% with APCI I to 4.6%. This low value is 

the more impressive as peak areas had not been normalized to an IS. Equally impres-

sive were the symmetric GC peaks with fairly uniform and highly repeatable (average 

RSD of 1.5%) peak widths at half height (wh) of approximately 2 s that could be ob-

served over the entire elution range with GC-APCI II-HRTOFMS (Figure 8.2, Table 

8.1). In contrast, for APCI I, values of wh increased for late-eluting FAMEs (compare 

Figure 8.3), most likely due to adsorption of the higher boiling analytes to cold spots in 

the ionization chamber, and were generally less repeatable (13.0%). The excellent 

repeatability of the peak area and wh observed with the APCI II source resulted from the 

generation of less ragged peak profiles as a consequence of the reduction in gas turbu-

lences in the APCI II source accomplished by the modified spray shield and the removal 

of the vaporizing unit.  
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Table 8.1 Statistical results for quadruplicate analyses of FAMEs (N=4) by GC-HRTOFMS with the APCI I and APCI II source, respectively. Given are the retention 
times and the m/z values of the protonated molecules of the nineteen FAMEs examined. Student’s t-tests with correction for multiple testing according to Benjamini 
and Hochberg [89] were performed on the peak areas and peak widths at half height (wh).

 The average 4.4-fold increase in peak area obtained with APCI II was 
significant for all evaluated FAMEs (p <0.05). APCI II also outperformed APCI I in terms of repeatability of peak area and wh and yielded similar peak widths over the 
entire retention time range. A paired t-test was performed to compare mean area RSDs. For comparison of the not normally distributed wh RSDs, the Wilcoxon 
signed-rank test was used. Reprinted from [13]. 

FAME GC-APCI II-

HRTOFMS  

ret.time (min) 
   

m/z APCI 

[M+H]
+ 
ion 

Fold change 

mean  

peak area 

APCI II/I

GC-APCI I-HRTOFMS GC-APCI II-HRTOFMS

 
Area RSD 

(%) 
Mean wh 

 (s) 
wh RSD  

 (%) 
Area RSD 

(%) 
Mean wh

 (s) 
wh RSD  

(%) 
 
  

C11:0 16.61 201.18 3.4 13.6 1.9 17.7 2.2 2.0 0.6

C13:0 19.50 229.22 3.8 17.4 2.1 9.7 3.5 2.0 0.8

C14:1 20.70 241.22 5.3 20.0 2.0 10.7 3.8 1.9 1.1

C15:1 22.00 255.23 5.0 21.7 2.0 6.6 4.0 2.0 2.5

C15:0 22.12 257.25 4.3 29.4 1.9 11.4 5.2 2.0 0.5

C16:1 23.13 269.25 5.0 40.9 1.9 12.9 4.5 1.9 0.7

C17:1 24.32 283.26 4.9 25.0 1.9 4.3 5.2 1.9 2.3

C17:0 24.53 285.28 3.4 22.7 1.8 15.1 4.3 1.9 1.2

C18:1c 25.39 297.28 4.3 16.6 1.8
a

5.2 4.5 2.1
a

0.6

C18:1t 25.45 297.28 4.6 43.3 2.0 31.6 4.9 2.0 2.3

C18:0 25.65 299.29 3.5 10.0 2.0 8.4 3.8 2.2 2.1

C20:1 27.54 325.31 4.8 23.0 1.9 11.4 4.5 2.0 1.6

C20:0 27.78 327.33 3.5 20.7 2.1 8.7 3.5 2.2 2.6
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Table 8.1 continued. 

FAME GC-APCI II-

HRTOFMS  

ret.time (min) 
   

m/z APCI 

[M+H]
+ 
ion 

Fold change 

mean  

peak area 

APCI II/I

GC-APCI I-HRTOFMS GC-APCI II-HRTOFMS

 
Area RSD 

(%) 
Mean wh 

 (s) 
wh RSD  

 (%) 
Area RSD 

(%) 
Mean wh

 (s) 
wh RSD  

(%) 
 
  

C21:0 28.79 341.34 4.5 18.5 2.2 8.9 5.1 1.9 1.1

C22:1 29.55 353.34 5.7 37.3 2.4
a

8.7 5.6 2.0
a

0.8

C22:0 29.77 355.36 3.9 31.1 2.1 10.3 3.7 2.2 1.0

C23:0 30.71 369.37 4.7 26.5 2.4 32.8 7.1 2.0 2.3

C24:1 31.43 381.37 5.7 22.9 2.9 19.8 7.2 2.1 2.4

C24:0 31.64 383.39 4.0 20.6 3.4
a

12.5 4.7 2.3
a

2.8

Mean   4.4 24.3
b

2.1 13.0
c

4.6
b 

2.0 1.5
c

a
 padj <0.05 (Student’s t-test, corrected for multiple testing). 

b
 p <0.05 (Students t-test). 

c
 p <0.05 (Wilcoxon) 
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Figure 8.3 Peak widths (Wh) of late-eluting FAMEs obtained from GC-APCI-TOFMS measurements with 
APCI I (left) and APCI II (right) ion sources. APCI II yielded distinctly narrower peaks in comparison to 
APCI I. 17, C23:0; 18, C24:1; 19, C24:0.  

 

8.3.2 Comparison of GC-APCI-HRTOFMS calibration curves 

The quantitative performance of GC-APCI II-HRTOFMS was assessed by comparing 

the standard calibration curves of 20 metabolites to data acquired with an APCI I 

source. The chosen set of metabolites included compounds from various chemical 

classes, including amino acids; amines; mono-, di-, tri-, and aromatic carboxylic acids; 

2-oxo-acids; and sugars. The linear range determined by the lower limit of quantification 

(LLOQ) and upper limit of quantification (ULOQ), its order of magnitude on a log-10 

scale, and the RSD of the area response for derivatization replicates (N=5) of a single 

calibration point (31.25 µM) are given in Table 8.2 together with the GC-APCI II-

HRTOFMS retention times, m/z values of [M+H]+ ions, and the ISs used for normaliza-

tion. Retention times, m/z values, and RSDs of the non-normalized peak areas of the 

ISs are listed in Table 12.10. Employing the APCI II source, the analytical performance 

for the MeOx-TMS derivatized metabolite standards was distinctly enhanced. The RSD 

of the area response of the 31.25 µM calibration point decreased more than twofold 

compared to APCI I, from 7.5 to 3.4%. The calibration point was well within the linear 

range of all compounds for both the APCI I and the APCI II source, except for GABA-

3TMS, which slightly exceeded the ULOQ of GC-APCI II-HRTOFMS. Similarly, RSD 

values determined for the non-normalized peak areas of the ISs were slightly lower for 
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the APCI II measurements (Table 12.10). LLOQs decreased on average more than 

threefold from 1.5 to 0.45 µM. Considering the median rather than the average LLOQ, a 

more than fourfold decrease from 0.61 to 0.15 µM was observed. The median LLOQ 

provides a more appropriate evaluation of the data, as the LLOQ of 4-methyl-2-

oxovalerate (3.91 µM) was much higher than the LLOQs of the other analytes, which 

ranged from 0.002 – 0.73 µM. The linear concentration range was significantly in-

creased from 2.4 to almost three orders of magnitude, with R² values above 0.99 in all 

cases. The increase was achieved through better repeatability and, thus, inclusion of 

lower calibration points with less than 20% deviation from the curve. Increased detecta-

bility also contributed to the broader linear range as indicated by a distinctly lower medi-

an LLOQ in comparison to the median limit of detection (LOD) previously obtained for 

GC-APCI I-HRTOFMS (0.15 versus 0.24 µM) [17]. A drastic improvement in LLOQ from 

1.46 µM to 0.045 µM was observed for lactose, due to the generation of narrower peaks 

for high-boiling compounds using the APCI II source. Even greater improvements in 

LLOQ were achieved for GABA and glycine, with all amino acids yielding consistently 

LLOQs in the submicromolar range and a linear range over at least three orders of 

magnitude in five out of seven cases, including the non-proteinogenic GABA. As report-

ed previously by our group [17] and others [37], amino acids are difficult to analyze by 

silylation and more suitable derivatization strategies have been recommended [37,38]. 

Using GC-APCI II-HRTOFMS, RSDs were below 5% for all amino acids except Ala-

2TMS (8.6%), but in general lower than previously reported data obtained by GC-MS 

with EI and CI sources [17]. This constitutes a major improvement especially if one 

takes into account that derivatization was performed manually in the present study. 

 

 



 
 112 

 
 
 

Table 8.2 Figures of merit for quantitative profiling of 20 metabolites after MeOx-TMS derivatization and GC-HRTOFMS analysis with the APCI I or APCI II source. 
RSDs of response values were determined for a concentration level of 31.25 µM (N = 5 derivatization replicates). APCI II outperformed APCI I in terms of lower 
LLOQs, broader linear ranges, and better repeatability. (TMS derivatization status and isomer elution number are given for metabolites yielding multiple peaks after 
derivatization). Reprinted from [13]. 

Compound GC-APCI II-
HRTOFMS 

ret.time 
(min)

m/z  

[M+H]
+

ion
Corresponding IS 

GC-APCI I-HRTOFMS GC-APCI II-HRTOFMS

  LR (µM) Order of 
Magnitude

RSD
 

(%)
LR (µM) Order of 

Magnitude
RSD

 
(%) 

        
Lactate 10.88 235.12 [U-

13
C]lactate 0.12 - 500 3.6 1.7 0.12-187.5 3.2 9.3

Ala-2TMS 11.56 234.13 Nval-2TMS 0.98 - 375 2.6 15.9 0.18-250a 3.1b 8.6

2-Hydroxybutyrate 12.02 249.13 [U-
13

C]3-hydroxybutyrate 0.24- 93.75 2.6 4.9 0.12-375 3.5b 4.5

3-Hydroxybutyrate 12.55 249.13 [U-
13

C]3-hydroxybutyrate 0.12 - 500 3.6 4.3 0.12-250 3.3 2.9

4-Me-2-oxovalerate 13.46 232.14 [U-
13

C]3-hydroxybutyrate 7.81 - 500 1.8 2.0 3.91-500 2.1 3.7

Val-2TMS 13.53 262.17 Nval-2TMS 0.37 - 125 2.5 13.5 0.73-93.75 2.1 1.2

Leu-2TMS 14.44 276.18 Nval-2TMS 0.73 - 125 2.2 15.9 0.73-187.5a 2.4b 2.3

Ile-2TMS 14.81 276.18 Nval-2TMS 1.95 - 125 1.8 15.6 0.12-187.5a 3.2b 2.0

Pro-2TMS 14.89 260.15 Nval-2TMS 3.91 - 375 2.0 3.0 0.49-500a 3.0b 1.7

Gly-3TMS 15.04 292.16 [U-
2
H

4
]succinate 0.12 - 62.5 2.7 9.0 

≤ 0.002-

46.88a 
4.4b 2.5 

Succinate 15.05 263.11 [U-
2
H

4
]succinate 0.18 - 46.88 2.4 6.3 0.09-46.88a 2.7 1.6
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Table 8.2 continued. 

Compound GC-APCI II-
HRTOFMS 

ret.time 
(min)

m/z  

[M+H]
+

ion
Corresponding IS 

GC-APCI I-HRTOFMS GC-APCI II-HRTOFMS

  LR (µM) Order of 
Magnitude

RSD
 

(%)
LR (µM) Order of 

Magnitude
RSD

 
(%) 

        
Glycerate 15.41 323.15 [U-

13
C]fumarate 0.06 - 46.88 2.9 14.7 0.12-46.88 2.6 1.5

Fumarate 15.55 261.10 [U-
13

C]fumarate 0.12 - 93.75 2.9 2.4 0.37-187.5 2.7 0.8

Adipate 17.97 291.14 [U-
2
H

4
]succinate 2.93 - 187.5 1.8 10.4 0.37-46.88 2.1 2.2

GABA-3TMS 18.43 320.19 [U-
13

C]fumarate 0.37 - 46.88 2.1 2.5 
≤ 0.002-

15.63a 
3.9b 2.8

c

 

cis-Aconitate 21.35 391.14 [
2
H

7
]trans-cinnamate 0.49 - 62.5 2.1 6.5 0.09-62.5 2.8 4.4

Homogentisate 22.52 385.17 [U-
13

C]glucose-1 5.86 - 250 1.6 4.6 0.73-31.25 1.6 2.3

Hydroxyphenylpyruvate 23.36 354.16 [U-
13

C]glucose-1 0.73 - 500 2.8 11.6 0.24-375a 3.2b 6.8 
5-HIAA-2TMS 26.79 336.15 [4,6,7-

2
H

3
]5-HI-[

2
H

2
]AA 1.46 - 500 2.5 3.0 0.49-46.88 2.0 1.1

Lactose-1 31.86 948.47 [U-
13

C]lactose-1 1.46 - 93.75 1.8 2.5 0.045-375 3.9 5.0

Arithmetic mean    1.50-230
d,e

2.4
f

7.5
g

0.45-191
d,e

2.9
f

3.4
g

a LLOQ lower than previously for GC×GC-EI-TOFMS [17]. b Broader linear range than previously for GC×GC-EI-TOFMS [17]. c Standard concen-
tration above ULOQ. d p (Wilcoxon, LLOQ) = 0.002. e p (Wilcoxon, ULOQ) = 0.365. f p (t test) = 0.014. g p (Wilcoxon) = 0.005. 
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The excellent overall quantitative performance of the APCI II source and, in particular, 

the improvements observed for analytes without a corresponding IS are striking even in 

comparison to GC×GC-EI-TOFMS, which had performed the best in a previous study 

[17]. GC-APCI II-HRTOFMS yielded lower LLOQs and broader linear ranges than 

GC×GC-EI-TOFMS [17] for eight of the investigated metabolites. The respective me-

tabolites are marked with superscript a indicating a lower LLOQ and b indicating a 

broader linear range (Table 8.2). Overall, the median LLOQ was comparable to that of 

GC×GC-EI-TOFMS (0.15 versus 0.12 µM). The average linear range was slightly less 

wide for GC-APCI II-HRTOFMS (2.9 versus 3.2 orders of magnitude) because of detec-

tor saturation for higher calibration points.  

8.3.3 Analysis of cell culture supernatants 

To assess the performance of GC-APCI II-HRTOFMS in the analysis of complex biolog-

ical matrices, we measured MeOx-TMS derivatized cell culture supernatants from three 

replicate MiaPaCa-2 pancreatic cancer cell cultures. In total, 275 peaks (dissect com-

pounds) were extracted over a chromatographic window of 9-37 min from the APCI II 

data using an S/N threshold of 20. In comparison, only 127 peaks were extracted from 

the APCI I data applying the same “Find Compounds – Dissect” peak finder parameters. 

The difference in extracted peaks is illustrated in Figure 8.4 showing the dissect com-

pounds from the same supernatant sample for both APCI sources. Particularly impres-

sive is the approximately 8-fold gain in extracted peaks for compounds eluting after 25 

minutes. The increased number of extracted peaks with the APCI II source is mainly 

attributed to the improved detection sensitivity but also to the improved, less ragged 

peak shapes that facilitate peak detection by the peak finding algorithm. This is again 

discussed at the end of this section. Furthermore, late eluting peaks are narrower, 

which enhances peak detection. In addition, the improved heating of the source reduces 

potential adsorption of late eluting high boiling analytes, which may also contribute to 

the higher number of detected late eluting analytes. 
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Figure 8.4 Features extracted from GC-APCI I-HRTOFMS (a) and GC-APCI II-HRTOFMS (b) base peak 
chromatograms of a representative supernatant sample of MiaPaCa-2 pancreatic cancer cells. The “Find 
Compounds – Dissect” peak finder was applied with an internal S/N threshold of ≥20 over the chromato-
graphic range of 9-37 min. On average 127 and 275 features were extracted from the APCI I and APCI II 
data, respectively. The gain in extracted signals was the greatest for analytes eluting after 25 minutes; it 
was approximately eightfold higher for the APCI II than the APCI I source. Reprinted from [13]. 

Eliminating signals also present in blank samples and multiple signals found within a 

retention time and mass window of 0.1 min and 10 mDa, a revised total of 96 and 251 

dissect compounds was obtained from the APCI I and APCI II data, respectively. It 

should be noted that these numbers do not equal individual metabolites. Certain metab-

olites yield multiple GC peaks such as partly silylated amino acids or cis-trans isomers 

of methoxime derivatives of carbonyl compounds (see Table 8.3).  

a 

b 



 
 116

 
 
 

For compound identification different strategies were pursued. Accurate masses were 

initially searched in the GC-APCI-HRMS online database established by Pacchiarotta et 

al. [74]. This database also contains retention indices based on n-alkanes used as ref-

erence. Further, GC×GC-EI-TOFMS data of the supernatant samples were used to 

support compound identification. Based on the mass of the [M+H]+ ions of tentatively 

annotated metabolites, m/z values corresponding to the respective EI molecular ions 

and potential [M-CH3]
+ fragment ions were calculated, searched in the GC×GC-EI-

TOFMS data and then subjected to a NIST 05 library search. The [M-CH3]
+ fragment ion 

was used, because silylated metabolites often form this fragment with EI ionization, 

while the molecular ion is low abundant or not detectable. To make use of the retention 

indices stored in the GC-APCI-HRMS online database, n-alkanes (C8-C20 and C21-

C40) were run within the same batch as the supernatant samples on the GC×GC-EI-

TOFMS, retention indices were calculated and then compared to those stored in the 

GC-APCI-HRMS online database. Based on the fatty acids, [2H7]trans-cinnamate and 

22 metabolites (marked in Table 8.3), a prediction model for GC-APCI-HRTOFMS re-

tention times based on GC×GC-EI-TOFMS data and vice versa was established. The 

22 selected metabolites were unambiguously identified by means of their accurate 

mass, retention index and NIST 05 match >800. The aim was to comprehensively ex-

ploit GC-APCI-HRTOFMS and GC×GC-EI-TOFMS data for compound identification, 

which is beneficial for metabolite annotation as previously reported by other groups 

[78,79]. Linear correlation of GC-APCI-HRTOFMS and GC×GC-EI-TOFMS retention 

times of the seven standards (fatty acids and [2H7]trans-cinnamate) and 22 metabolites 

was obtained (R²=0.999) and GC-APCI-HRTOFMS retention indices based on n-

alkanes could be deduced from the corresponding fatty acids-based indices.  

Twenty-two compounds that are not included in the online database could be assigned 

by mass spectral matching (NIST 05 match >700 in all cases) and/or by matching of 

accurate masses and retention indices with an in-house GC-APCI-HRTOFMS metabo-

lite database. In total, 63 dissect compounds were annotated corresponding to 49 indi-

vidual metabolites and phosphate (see Table 8.3).  
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Table 8.3 Figures of merit for identified features in cell culture supernatants of MiaPaCa-2 cells. Features were extracted with an internal S/N threshold of ≥20. A 
total of 63 features could be assigned to 49 individual metabolites and phosphate representing approximately 46% and 24%, respectively, of all signals detected in 
GC-APCI I and II-HRTOFMS measurements. Twelve signals annotated with asterisks were identified solely by GC-APCI II-HRTOFMS in at least two out of three 
biological replicates. RI values based on fatty acids <900 were obtained through extrapolation. MeOx, group introduced by methoximation; std, analysis of an au-
thentic reference standard; TMS, trimethylsilyl group; db, GC-APCI-HRMS metabolite database by Pacchiarotta et al. [74]. Reprinted from [13].  

No.a  Dissect compound 
Elemental 

formula [M+H]+
Ret.time 

(min) 
Ref. 
RIb,c 

RId 
(%) 

m/z expt 
(Da) 

me 
(mDa)

Identification 
basis 

1 Pyruvate+1MeOx+1TMS+H C7H16NO3Si+ 10.73 458b -0.9 190.0920 -2.6 NIST; std 

2a Lactate+2TMS+H C9H23O3Si2
+ 10.82 475b 1.2 235.1179 0.2 db; NIST; std 

3 Valine+1TMS+H C8H20NO2Si+ 11.39 514b -0.4 190.1304 -4.6 std 

4a Alanine+2TMS+H C9H24NO2Si2
+ 11.58 536b 1.0 234.1354 -1.3 db; NIST; std 

5 Leucine+1TMS+H C9H22NO2Si+ 12.49 1160c -0.5 204.1416 -0.1 db; std 

6 3-Hydroxybutyrate+2TMS+H C10H25O3Si2
+ 12.57 617b 0.7 249.1313 2.4 NIST; std 

7 Proline+1TMS+H C8H18NO2Si+ 12.85 1180c -0.6 188.1124 -2.2 db; stdg 

8 Isoleucine+1TMS+H C9H22NO2Si+ 12.88 1182c -0.5 204.1389 2.6 db; std 

9 3-Methyl-2-oxovalerate+1MeOx+1TMS+H C10H22NO3Si+ 12.92 644b 0.5 232.1360 0.3 NIST; std 

10 4-Methyl-2-oxovalerate+1MeOx+1TMS+H C10H22NO3Si+ 13.47 690b 0.6 232.1354 0.9 NIST; std 

11 Valine+2TMS+H C11H28NO2Si2
+ 13.53 694b 0.4 262.1685 -3.2 NIST; std 



 
 118 

 
 
 

Table 8.3 continued. 

No.a  Dissect compound 
Elemental 

formula [M+H]+
Ret.time 

(min) 
Ref. 
RIb,c 

RId 
(%) 

m/z expt 
(Da) 

me 
(mDa)

Identification 
basis 

12a Urea+2TMS+H C7H21N2OSi2
+ 13.78 1246c 0.3 205.1143 4.4 db; NIST 

13a Benzoate+1TMS+H C10H15O2Si+ 14.05 1254c -1.0 195.0851 -1.5 db; NIST 

14 Serine+2TMS+H C9H24NO3Si2
+ 14.19 744b -0.2 250.1292 -0.2 NIST; std 

15a Leucine+2TMS+H C12H30NO2Si2
+ 14.43 768b 0.5 276.1782 2.7 db; NIST; std 

16 Glycerol+3TMS+H C12H33O3Si3
+ 14.47 773b 0.7 309.1737 -0.5 NIST; std 

17a Phosphate+3TMS+H C9H28PO4Si3
+ 14.50 1284c -0.1 315.1006 2.1 db; NIST 

18a Isoleucine+2TMS+H C12H30NO2Si2
+ 14.79 797b 0.5 276.1786 2.4 db; NIST; stdg 

19 Threonine+2TMS+H C10H26NO3Si2
+ 14.82 795b -0.2 264.1471 -2.5 NIST; stdf 

20 Proline+2TMS+H* C11H26NO2Si2
+ 14.89 1308c -0.1 260.1492 0.4 db; NIST; stdg 

21a Glycine+3TMS+H C11H30NO2Si3
+ 15.04 815b 0.1 292.1571 0.8 db; NIST; std 

22 Glycerate+3TMS+H C12H31O4Si3
+ 15.39 847b 0.5 323.1495 2.9 NIST; std 

23 Fumarate+2TMS+H* C10H21O4Si2
+ 15.53 858b 0.4 261.0955 1.8 db; NIST; stdg 

24 Serine+3TMS+H C12H32NO3Si3
+ 15.86 910b 0.2 322.1653 3.2 NIST; std 

25 Threonine+3TMS+H C13H34NO3Si3
+ 16.30 940b 0.2 336.1826 1.5 NIST; std 

26a Thymine+2TMS+H* C11H23N2O2Si2
+ 16.50 1412c 0.0 271.1268 2.5 db; NIST; stdg 

27 Methionine+1TMS+H C8H20NO2SSi+ 16.60 1416c -0.2 222.0955 2.4 db 

28 Aspartate+2TMS+H C10H24NO4Si2
+ 16.77 1430c -0.1 278.1209 2.9 db; std 

29 Nicotinamide+1TMS+H C9H15N2OSi+ 17.63 1029b -0.3 195.0905 4.3 NIST; std 

30 Malate+3TMS+H C13H31O5Si3
+ 17.79 1044b 0.2 351.1433 4.0 NIST; std 
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Table 8.3 continued. 

No.a  Dissect compound 
Elemental 

formula [M+H]+
Ret.time 

(min) 
Ref. 
RIb,c 

RId 
(%) 

m/z expt 
(Da) 

me 
(mDa)

Identification 
basis 

31 Adipate+2TMS+H C12H27O4Si2
+ 17.95 1054b 0.1 291.1415 2.7 stdf 

32 Glutamate+2TMS+H* C11H26NO4Si2
+ 18.12 1536c 1.0 292.1371 2.4 dbg 

33 Erythritol+4TMS+H C16H43O4Si4
+ 18.15 1070b 0.3 411.2219 1.4 NIST; std 

34a Methionine+2TMS+H C11H28NO2SSi2
+ 18.26 1532c 0.0 294.1352 2.2 db; NIST 

35 Phenylalanine+1TMS+H C12H20NO2Si+ 18.66 1556c -0.3 238.1270 -1.2 db; std 

36 -ketoglutarate+1MeOx+2TMS+H C12H26NO5Si2
+ 19.01 1132b 0.3 320.1316 2.8 NIST; stdg 

37 Phenylpyruvate+1MeOx+1TMS+H* C13H20NO3Si+ 19.22 1145b 0.0 266.1178 2.9 NIST; stdg 

38a Phenylalanine+2TMS+H C15H28NO2Si2
+ 19.81 1644c 0.0 310.1660 -0.7 db; NIST; std 

39 Laurate+1TMS+H C15H33O2Si+ 19.97 1201b -0.1 273.2230 1.4 NIST; std 

40a Ribose+1MeOx+4TMS+H C18H46NO5Si4
+ 20.60 1700c -0.2 468.2409 3.9 db; NIST 

41a Xylitol+5TMS+H C20H53O5Si5
+ 21.18 1734c -0.8 513.2738 -0.4 db; NIST 

42 Ornithine+3TMS+H C14H37N2O2Si3
+ 21.46 1767c -0.2 349.2116 4.2 db; std 

43 Glycerol-1-phosphate+4TMS+H C15H42PO6Si4
+ 21.64 1333b 0.2 461.1748 4.3 std 

44a Ornithine+4TMS+H C17H45N2O2Si4
+ 22.32 1387b 0.0 421.2545 0.8 db; NIST; std 

45 Myristate+1TMS+H* C17H37O2Si+ 22.49 1838c -0.8 301.2545 1.2 db; NISTg 

46a Hippurate+1TMS+H C12H18NO3Si+ 22.51 1414b -0.9 252.1014 3.6 db; NIST; stdg 

47 Lysine+3TMS+H C15H39N2O2Si3
+ 22.70 1418b 0.0 363.2304 1.0 db; std 

48a Tyrosine+2TMS+H C15H28NO3Si2
+ 23.11 1907c 0.2 326.1592 1.1 db; NIST; std 

49 Fructose+1MeOx+5TMS+H C22H56NO6Si5
+ 23.27 1457b -0.5 570.2966 -1.8 NIST; std 
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Table 8.3 continued. 

No.a  Dissect compound 
Elemental 

formula [M+H]+
Ret.time 

(min) 
Ref. 
RIb,c 

RId 
(%) 

m/z expt 
(Da) 

me 
(mDa)

Identification 
basis 

50 Lysine+4TMS+H C18H47N2O2Si4
+ 23.60 1490b -0.1 435.2673 3.6 db; NIST; stdg 

51a Tyrosine+3TMS+H C18H36NO3Si3
+ 23.82 1509b -0.1 398.1949 4.8 db; NIST; stdg 

52 Sorbitol+6TMS+H C24H63O6Si6
+ 23.99 1974c -0.3 615.3266 -3.1 db; std 

53a Pantothenate+3TMS+H C18H42NO5Si3
+ 24.44 2016c -0.2 436.2326 3.9 db; NIST; std 

54 Palmitoleate+1TMS+H* C19H39O2Si+ 24.61 2030c -0.3 327.2702 1.2 dbg 

55a Palmitate+1TMS+H C19H41O2Si+ 24.82 2049c -0.3 329.2845 2.6 db; NIST 

56 Hippurate+2TMS+H* C15H26NO3Si2
+ 25.24 1628b -0.8 324.1402 4.4 stdg 

57a Myo-inositol+6TMS+H C24H61O6Si6
+ 25.74 1681b -0.2 613.3059 2.0 db; NIST; std 

58 Linoleate+1TMS+H* C21H41O2Si+ 26.66 2218c -0.5 353.2838 3.2 dbg 

59 Oleate+1TMS+H* C21H43O2Si+ 26.71 2222c -0.5 355.2990 3.7 dbg 

60 Cis-Vaccenate+1TMS+H* C21H43O2Si+ 26.77 2229c -0.5 355.2989 3.8 dbg 

61a Tryptophan+2TMS+H* C17H29N2O2Si2
+ 26.85 1808b 0.7 349.1753 1.0 db; NIST; stdg 

62a Stearate+1TMS+H C21H45O2Si+ 26.96 2246c -0.6 357.3154 2.9 db; NIST 

63 Tryptophan+3TMS+H C20H37N2O2Si3
+ 26.99 2250c -0.5 421.2118 4.0 db; stdg 

a Compound used for GC-APCI II-HRTOFMS and GC×GC-EI-TOFMS retention time correlation; b RI calculation based on fatty acids; c RI 
calculation based on alkanes; d Difference between RI in a standard and sample based on either fatty acids or alkanes relative to the deter-
mined RI in the sample; e Difference between predicted and measured mass; f Compound only extracted from GC-APCI I-HRTOFMS data; g 
Compound only extracted from GC-APCI II-HRTOFMS data. 
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Metabolite annotation was confirmed by the correct elemental formula using the Smart-

Formula tool and, if available, by analysis of a reference standard. Using the minimum 

reporting standards proposed by Sumner et al. for metabolomics data [26], 48 level 1 

and 15 level 2 identifications were obtained. Experimental masses deviated less than 5 

mDa from their calculated m/z values. Relative differences in retention indices did not 

exceed the threshold of 1.0% proposed by Strehmel et al. [128], except for lactate due 

to its early elution as previously reported [79]. Nevertheless, lactate identification was 

confirmed by a standard. The applied identification strategy is specified in Table 8.3 for 

all annotated compounds including information on retention time and accurate mass. 

Assigned compounds represented 46% and 24% of the total number of compounds 

extracted from APCI I and APCI II data, respectively. Twelve dissect compounds anno-

tated with asterisks in Table 8.3 were only extracted from the APCI II data of at least 

two supernatant replicates due to the improved signal-to-noise ratio obtained with the 

redesigned source. This could be confirmed by lowering the S/N threshold to 2, which 

then enabled the extraction of these twelve signals also from the APCI I data. Three 

additional low abundant compounds, namely -ketoglutarate-MeOx-2TMS, hippurate-

1TMS, and tryptophan-3TMS were only extracted from the GC-APCI II-HRTOFMS data 

of a single supernatant replicate but not found in the APCI I data set. Further, threonine-

2TMS and adipate-2TMS were exclusively extracted from APCI I data and proline-

1TMS, isoleucine-2TMS, lysine-4TMS and tyrosine-3TMS from APCI II data, although 

their respective peaks were fairly abundant. Since co-eluting compounds were present, 

this was attributed to failure of deconvolution by the dissect algorithm in these cases.  

For determination of repeatability, the “Find Molecular Feature” algorithm was used to 

extract features from the chromatograms of the three biological replicates, which were 

then aligned in a single data matrix using the Profile Analysis Tool to compare RSD 

values of the area integrals obtained with the two APCI sources. Extraction and bucket-

ing of features was performed separately for APCI I and APCI II data. Area integrals of 

a total of 412 (APCI I) and 1462 (APCI II) features were obtained and normalized to 

[2H7]trans-cinnamate. Next, RSDs were calculated for all features in both data sets. 

Cumulative distributions of RSD values for data acquired with both sources are shown 

in Figure 8.5. RSD values were distinctly (p <0.05, Wilcoxon signed rank test) lower for 
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APCI II measurements, as indicated by the steeper gradient over the first part of the 

corresponding curve. The median RSDs decreased from 33% to 24% using APCI II.  

 

 

Figure 8.5 Cumulative distributions of area RSDs of extracted GC-APCI I and II-HRTOFMS features from 
cell culture supernatant of MiaPaCa-2 cells. A total of 412 (APCI I) and 1462 (APCI II) features were 
extracted over 9-37 min using the “Find Compounds – Molecular Features” algorithm and normalized to 
[2H7]trans-cinnamate. RSD values were distinctly (p <0.05, Wilcoxon signed rank test) lower in case of 
APCI II measurements. Reprinted from [13]. 

Overall, improved peak abundances and shapes, as well as better ionization repeatabil-

ity were attained by APCI II. This is exemplified in Figure 8.6, in which the extracted ion 

chromatograms of fumarate-2TMS and nicotinamide-1TMS from three injection repli-

cates of a supernatant sample using either the APCI I or the APCI II source are over-

laid.  
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Figure 8.6 Influence of APCI source type on peak abundance and repeatability illustrated by the example 
of two metabolites identified in the supernatant of MiaPaCa-2 cells. Three injection replicates were ana-
lyzed and m/z values of [M+H]+ of fumarate-2TMS and nicotinamide-1TMS were extracted. APCI II in 
comparison to APCI I resulted in more abundant peaks and yielded better repeatability of the ionization. 
Reprinted from [13]. 

 

8.4 Conclusions 

The redesigned APCI II ion source provides lower quantification limits, broader linear 

ranges, and improved repeatability due to less ragged peak profiles in comparison to its 

predecessor. This is particularly obvious for late-eluting compounds due to an optimized 

heat distribution in the ionization chamber, which minimizes adsorption of high-boiling 

analytes to cold spots. Applied to a complex biological matrix, the APCI II source in-

creased the number of identified metabolites by one third, making GC-APCI II-

HRTOFMS a true alternative to GC×GC-EI-TOFMS, especially given easier data analy-

sis and the feasibility of coupling GC via the APCI II source to ultra-high-performance 

FTICR MS.  
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9 Development of an enantioselective quantitative 

profiling method for the oncometabolite D-2-

hydroxyglutarate 

9.1 Introduction 

Analysis of 2-hydroxyglutarate (2-HG) enantiomers has gained in importance in recent 

years. Apart from metabolic diseases such as D- or L-2-hydroxyglutaric aciduria 

[149,150], the accumulation of D-2-HG in several types of cancers harboring neo-

morphic mutations in the isocitrate dehydrogenase 1 and 2 genes has become a hot 

topic in cancer biology [151]. IDH1 and IDH2 are enzymes that catalyze the decarboxy-

lation of isocitrate to form -ketoglutarate using NADP+ and producing NAPDH. IDH1 is 

a cytosolic and peroxisomal enzyme while IDH2 is found in the mitochondria. In different 

types of human cancers, somatic point mutations have been found that result in a loss 

of normal catalytic activity and concomitantly a gain of function, which is the formation of 

D-2-HG from -ketoglutarate. Mutations in IDH1 or IDH2 are found frequently in grade 2 

– 3 gliomas and secondary glioblastomas and in 5-20% of acute myeloid leukemia 

(AML) patients, as well as other tumor types [152]. Figure 9.1 gives an overview over 

normal functions of the IDH1 and IDH2 enzymes in the cytoplasm and mitochondrion, 

respectively, together with other related cellular metabolic processes (top picture) and 

depicts reactions catalyzed by wild type and mutant IDH1 and IDH2 enzymes (lower 

picture) in the interconversion of isocitrate, 2-oxoglutarate and (R)-2-HG, respectively.  
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Figure 9.1 Normal enzymatic functions of IDH 1 and IDH2 together with related cellular metabolic pro-
cesses in the cytoplasm and mitochondrion (top picture) as well as reactions catalyzed by wild type and 
mutant IDH1 and IDH2 enzymes (lower picture) in the interconversion of isocitrate, 2-oxoglutarate and 
(R)-2-HG, respectively. Reprinted from [153]. 



 
 126

 
 
 

Several analytical methods have been used to study the role of D-2-HG in the formation 

and malignant progression of cancers, such as an enzymatic assay [154], NMR spec-

troscopy [155] as well as LC [156] or GC [155,157,158] coupled to MS. GC-MS has 

been most widely applied owing to its high robustness and ability to achieve low quanti-

fication limits. However, existing weaknesses among current procedures include unin-

tended [158,159] or poor [157] chromatographic separation of D and L enantiomers of 

2-HG, thus limiting the analysis to total 2-HG levels. Furthermore, indirect methods 

separating diastereomeric 2-HG derivatives on a non-chiral column have been reported 

[149], but inadvertent racemization and side reactions caused by contaminants in the 

derivatizing reagent may lead to erroneous quantitative results. On the other hand, 

direct enantioselective analysis of D/L-2-HG has been successfully applied [160]; how-

ever, applied derivatization strategy was neither simple nor fast and, according to the 

authors, had to be performed very carefully, which would render its automation difficult. 

Irrespectively of whether D/L-2-HG enantiomers were chromatographically resolved, 

quantitative data based on MS measurements is provided to a very limited extent [159], 

completely lacking [155], or a corresponding SIL-IS of 2-HG was not included for quanti-

fication [155,158], which may severely compromise reproducibility and accuracy. On top 

of that, determination of peak areas or concentration levels using GC-MS has been 

performed with electron ionization (EI) [157-160], which results in extensive fragmenta-

tion of molecular ions in general. Consequently, a fragment of lower mass has to be 

selected as quantification trace for the target analyte, which might be less specific and 

common to co-eluting compounds across various matrices hampering accurate quantifi-

cation or restricting general applicability of the method.  

Derivatization of 2-HG with methylchloroformate/methanol (MCF/MeOH) is simple and 

fast and lends itself to further automation as established for propyl chloroformate-

derivatized amino acids [38]. Further, in a previous study of our group, MCF/MeOH 

derivatization and separation on a chiral CD-based Rt-DEXsa capillary column yielded 

excellent resolution of amino acid enantiomers [39]. Soft ionization techniques, such as 

CI and APCI, meanwhile have a proven track record in metabolomics as an alternative 

to conventional GC-EI-MS due to higher selectivity and abundance of [M+H]+ ions over 

fragment ions [9,17,86,136].  
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In this chapter, the development of an enantioselective approach for the quantitative 

determination of D/L-2-HG using GC-APCI II coupled to a TOF-MS is presented based 

on the separation of MCF-derivatized D- and L-2-HG enantiomers on a chiral Rt-

DEXsa column. D/L-[2,3,3-2H3]2-HG was included as internal standard for accurate 

and robust quantification. The general applicability of the method was shown in different 

matrices including human serum, urine, cell extracts and cell culture supernatants.  

Sample preparation was done together with Claudia Samol and Nadine Nürnberger. 

Wolfram Gronwald and Magdalena Waldhier carried out NMR analysis and initial GC-

EI-qMS measurements, respectively. Katja Dettmer set up the quantitative HPLC-ESI-

MS/MS method for the determination of 2-HG in urine specimens.  

The results of this chapter will be part of a manuscript in preparation. 

 

9.2 Methods 

9.2.1 Sample preparation 

An aqueous stock solution of racemic D/L-2-HG at a concentration of 1 mM was pre-

pared and geometrically diluted over 17 points (0.02-1000 µM) for calibration purposes. 

Deuterium-labeled racemic D/L-2-HG was used as internal standard and an aqueous 

working solution with a concentration of 100 µM was prepared. For preparation of 

standard samples, 150 µL of stock solution or a dilution of racemic D/L-2-HG, according 

to the desired final standard concentration, were transferred with 10 µL of internal 

standard to a 2-mL glass vial for derivatization. Addition of standard and IS to superna-

tant or serum specimens was carried out prior to the precipitation step unless otherwise 

stated under Results and Discussion. To check for racemization, separate aqueous 

stock solutions of individual D and L enantiomers of 2-HG were prepared and 30 µL of a 

1 mM dilution of them were derivatized without IS.  

The entire set of biological samples analyzed in this project including serum, urine, and 

cell culture samples was provided by collaborators at the University Hospital of Re-
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gensburg. More details are provided under Results and Discussion. The samples were 

stored at -80°C until preparation. For extraction of cell pellets, 10 µL of IS (100 µM) 

were added to the pellet followed by 600 µL cold 80% MeOH (80/20 MeOH/H2O, v/v). 

The sample was vortexed and centrifuged at 4°C and 9500 × g for 5 min. The superna-

tant was collected and the pellet was washed with 200 µL cold 80% MeOH, centrifuged 

at 4°C and 9500 × g for 5 min and finally washed with 200 µL H2O and centrifuged at 

4°C and 11200 × g for 5 min. The supernatants were combined and evaporated to dry-

ness using a vacuum evaporator. For preparation of serum and cell culture superna-

tants, 150 µL of sample were spiked with 10 µL of internal standard and 600 µL of cold 

MeOH was added for protein precipitation. Then, the procedure described above for cell 

pellets was followed with the exception that the second wash of the protein pellet was 

also performed with 80% MeOH. Finally, derivatization of serum specimens with 

MCF/MeOH was performed directly in the aqueous phase using 150 µL of serum and 

10 µL of IS without prior protein precipitation. The latter protocol was also applied to 

urine samples. Manual derivatization with MCF/MeOH was carried out as described 

under 5.2.3.  

9.2.2 Analytical approaches 

GC-APCI-TOFMS 

As denoted in Results and Discussion, calibration was repeated several times in the 

course of method development using varying instrumental or operational settings. In 

fact, an APCI I source with water infusion was used, an injection volume of 2 µL was 

used, or no water was infused instead of the conventional settings described in sub-

chapter 5.3. 

D/L-2-HG calibration curves based on either one of the two derivatives for each enanti-

omer were obtained as described in more detail under 5.4.2. Method #1 in Table 9.1 

was employed in the spike-in experiment, whereas method #4 (Table 9.1) was used for 

quantification of urine and serum samples in section 9.3.4.  
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HPLC-ESI-MS/MS 

High-performance liquid chromatography – electrospray ionization – tandem mass 

spectrometry (HPLC-ESI-MS/MS) in negative ionization mode was employed as refer-

ence method for the determination of total levels of (D+L)-2-HG. The optimized method 

was capable of distinguishing 2-HG from 5-oxotetrahydro-2-furancarboxylate and also 

allowed quantification of the latter. A mixture containing 2-HG and 5-oxotetrahydro-2-

furancarboxylate at a concentration of 2 mM in water was serially diluted covering 16 

points over 0.06-2000 µM. For calibration, 90 µL of standard were transferred into a 

glass vial with a glass insert along with 10 µL of internal standard. The latter was ob-

tained from 500 µL of the original aqueous stock solution of deuterium-labeled D/L-2-

HG that was incubated with 200 µL of formic acid at 100°C for 30 min, evaporated to 

complete dryness, re-suspended in 500 µL of water, and diluted to a final concentration 

of 100 µM. To determine 2-HG levels in urine and serum, 10 µL of urine were added to 

10 µL of internal standard and 80 µL of water, and 50 µL of serum were precipitated 

with 250 µL of 100% MeOH and washed twice with 100 µL of 80% MeOH as described 

above. Dried extracts were reconstituted in 50 µL of water. 

Using an Agilent 1200 SL HPLC system (Böblingen, Germany), separation of analytes 

was achieved on a Supelco Discovery HS F5 (150 × 2.1 mm i.d., 3 µm) PFPP column. 

Elution with mobile phases A (0.1% formic acid in water, v/v) and B (acetonitrile) was 

performed as follows: 0-6.5 min, held at 100% A at a flow rate of 0.2 mL/min; 6.5-8 min, 

0-100% B at 0.35 mL/min; 8-10 min, held at 100% B at 0.35 mL/min; 10-10.1 min, 0-

100% A at 0.35 mL/min; 10.1-17 min, held at 100% A at 0.35 mL/min; 17-18 min, held 

at 100% A at 0.2 mL/min. The injection volume was 5 µL, and the column temperature 

was 30°C. MS/MS analysis was performed in MRM mode on a 4000 QTRAP from AB 

Sciex using one selective transition each for the unlabeled and labeled analytes as 

follows: m/z 147.1 (M-H)- to m/z 84.8 (product ion) for 2-HG, m/z 150.1 (M-H)-
 to m/z 

87.8 (product ion) for D3-labeled 2-HG, m/z 128.8 (M-H)-
 to m/z 100.8 (product ion) for 

5-Oxotetrahydro-2-furancarboxylate, and m/z 131.8 (M-H)-
 to m/z 88.0 (product ion) for 

D3-labeled 5-Oxotetrahydro-2-furancarboxylate. To obtain the calibration curves from 

the calibrator samples, nominal concentration ratio (analyte/internal standard) was plot-
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ted against peak area ratio (analyte/internal standard), whereby the corresponding 

labeled analogue was used for normalization for each target analyte as internal stand-

ard. Acquisition and analysis of data was carried out in Analyst version 1.5.1 from AB 

Sciex. 

Creatinine values were determined as previously described [161].  

 

NMR spectroscopy 

Serum specimens as well as aqueous and MCF derivatized standards of 2-HG and 5-

oxotetrahydro-2-furancarboxylate (1 mM each) were analyzed. Five hundred µL of se-

rum were filtered using Nanosep centrifugal devices (Pall Corporation, Port Washington, 

NY) with a 3K molecular weight cutoff. Four hundred µL of filtrate, aqueous standard, or 

derivatized standard that had been carefully evaporated and reconstituted in water, 

were transferred into an NMR tube, followed by the addition of 200 µL of potassium 

phosphate buffer, pH 7.4, and 50 µL of 29.02 mM TSP in D2O as internal standard. 

Following established protocols [162], 1D 1H and 2D 1H-13C TOCSY spectra were ac-

quired on a 600MHz Bruker Avance III (Bruker BioSpin GmbH, Rheinstetten, Germany) 

employing a triple resonance (1H, 13C 31P, 2H lock) cryogenic probe equipped with z-

gradients and an automatic cooled sample changer. Amix viewer V3.9.13 (Bruker Bio-

Spin) was used for manual inspection of spectra. Signals were assigned based on the 

predicted 1H chemical shifts by ChemDraw and assuming similar 1H intensities for me-

thyl groups of each of the three derivatives, whereas the identity of the methylchlo-

roformate signal was confirmed by comparison to a blank sample.  
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9.3 Results and discussion 

9.3.1 Selection of a specific quantifier ion trace from APCI-TOFMS 

versus EI-qMS mass spectra 

2-HG is a polar molecule that requires derivatization prior to GC analysis. Based on the 

experiences gained with the enantioselective GC analysis of amino acids in our labora-

tory, preliminary experiments were performed using derivatization with methyl chlo-

roformate/methanol (MCF/MeOH) and separation on an Rt-DEXsa column [39].  

GC-MS analysis yielded four different peaks for a derivatized 2-HG racemate, of which 

the late-eluting pair was more abundant and, hence, initially used for quantification. It 

corresponded to the D and L enantiomers of the methyl ester of 5-oxotetrahydro-2-

furancarboxylate formed as the condensation product from racemic D/L-2-HG. The 

example of a GC-APCI-TOFMS base peak chromatogram of a derivatized racemic 

standard of D/L-2-HG (100 µM each for the two enantiomers) is given in Figure 9.5, 

with structural formulas provided for the two pairs of derivatives (denoted as D/L-2-HG-

1MC-2E and D/L-2-HG-1E according to Figure 9.5). In the case of the more abundant 

methyl esters of D/L-5-oxotetrahydro-2-furancarboxylate, extensive fragmentation was 

observed in EI mass spectra, which were dominated by a fragment mass of m/z 85, 

while the relative intensity of the molecular ion with an m/z of 144 Da was <2% of the 

base peak in the absence of other ion species. However, m/z 85 as quantifier trace 

proved nonspecific for accurate D-2-HG quantification in the initial analysis of cell cul-

ture supernatants of DLD-1 colon cancer cells, as a highly abundant matrix compound 

present in cell culture media supplemented with bovine serum albumin yielded the same 

mass. Furthermore, such a low mass is probably common to several additional metabo-

lites.   

APCI as a soft ionization technique on the other hand preserved the [M+H]+ ion of the 

methyl esters of D/L-5-oxotetrahydro-2-furancarboxylate (m/z [M+H]+: 145.050 Da) by 

suppression of in-source fragmentation, while TOFMS analysis enabled the extraction 

of quantifier ions with a narrow width of ±10 mDa. With such an enhanced specificity, it 
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became clearly obvious that a matrix compound with a mass of m/z 220.086 was co-

eluting with D-2-HG in the initially analyzed cell culture supernatant sample, as shown in 

Figure 9.2B, which had not been obvious from the EI mass spectrum of the same peak 

(Figure 9.2A). Hence, further method development was solely carried out on the GC-

APCI-TOFMS instrument. Similar to these observations, such a benefit of soft ionization 

in terms of specificity has also been shown for the quantitative profiling of amino and 

nonamino organic acids by GC-MS employing CI coupled to MS/MS analysis [86] as 

well as in the case of pyrethroid insecticides by means of APCI-MS/MS [82].  

Despite the possibility to distinguish between D-2-HG-1E and the co-eluting matrix 

compound based on unique masses, the temperature ramp was modified to chromato-

graphically separate these two compounds to minimize possible matrix effects. As dis-

cussed in chapter 7, high amounts of co-eluting analytes or matrix compounds may 

suppress the signal of an analyte in APCI. Given that the signal of D-2-HG-1E that was 

spiked at a concentration of 50 µM into the supernatant sample was approximately as 

abundant as that of the co-eluting compound (Figure 9.2), comparably high amounts of 

the latter could be assumed to be present, possibly deteriorating lower quantification 

limits of the method in these samples due to suppression of the signal of D-2-HG-1E. 

Among the three different heating rates tested (4, 5, and 6°C/min), no co-elution oc-

curred solely in the case of 5°C/min for both 2-HG-1E enantiomers in the analysis of a 

randomly selected urine, serum, cell extract and supernatant samples. Hence, further 

experiments were carried out using 5°C/min as heating rate. As depicted in Figure 9.3, 

huge concentration differences of D- and L-2-HG could be initially detected in cell ex-

tracts and supernatants of dendritic cells from an IDH2 R140Q mutation transfected and 

untransfected cell line, as well as serum of an AML patient with an IDH2 R140Q muta-

tion versus healthy control. The L enantiomer was not detected. The IS of D/L-2-HG 

was poorly recovered (~30%) due to extraction losses for these biological samples. 

Hence, the corresponding peaks of D/L-[2,3,3-2H3]2-HG are small or not visible in Fig-

ure 9.3 due to the highly abundant endogenous metabolites and the resulting scaling of 

the chromatogram. It should be noted that the peaks for D/L-[2,3,3-2H3]2-HG still ex-

ceeded a S/N ratio of 10. 
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Figure 9.2 Ionization of D-2-HG-1E and a co-eluting matrix component by APCI versus EI. For illustra-
tion, a cell culture supernatant sample containing huge amounts of the co-eluting compound, from DLD-1 
colon cancer cells grown in DMEM medium supplemented with 10% fetal calf serum, was spiked with 
racemic D/L-2-HG (50 µM of each enantiomer), fortified with MeOH for protein precipitation, MCF-
derivatized and analyzed by GC-APCI-TOFMS and GC-EI-qMS. GC-EI-qMS method parameters were as 
previously described in [39] (method E) and adopted for GC-APCI-TOFMS. (B) Extracted ion chromato-
grams based on unique masses from the APCI-TOFMS mass spectrum revealed that D-2-HG-1E was co-
eluting with an unknown compound, whereas (A) the EI mass spectrum for the same chromatographic 
peak only yielded m/z 85 as base peak in the virtual absence of other characteristic ions. E, methyl ester 
group.  

Similar peak profiles in extracted ion chromatograms of D/L-2-HG-1E obtained from a 

standard and the latter biological samples demonstrate the formation of a selective 

mass trace for this compound by APCI (Figure 9.3). Furthermore, GC-APCI-TOFMS 

with MCF derivatization and separation on the chiral CD-based column provided high 

chromatographic resolution of the two enantiomers of 2-HG-1E, which were separated 

by more than 2.5 min. 
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Figure 9.3 Extracted ion chromatograms of D/L-2-HG-1E from a standard and biological samples. (A) 
Standard sample containing both unlabeled (total (D+L) concentration of 125 µM) and D3-labeled (minor 
peak, total (D+L) concentration of 6.7 µM) racemic D/L-2-HG. (B) Methanolic cell extracts of IDH2 R140Q 
mutation transfected and untransfected dendritic cells and (C) the corresponding cell culture supernatant 
samples. (D) Serum samples of an AML patient with an IDH2 R140Q mutation and a healthy control. 
Peak profiles of D-2-HG-1E (first peak) in the different biological matrices were very similar to the stand-
ard demonstrating the formation of a selective mass trace for this compound by APCI. This enabled the 
detection of huge concentration differences of D- and L-2-HG in cell culture and serum samples, respec-
tively. Experimental details and method parameters are described under 9.2.  



 
 135

 
 
 

9.3.2 Ionization behavior of D/L-2-HG in GC-APCI-TOFMS infusing 

water as modifier 

APCI requires traces of water vapor in the source for protonation of analytes [45]. As 

described in chapter 6, a tremendous effect of continuous water infusion on APCI of 

methyl chloroformate derivatives was observed, in particular for organic acids. Upon 

water infusion at 0.5 mL/h a more than 4-fold increase in abundance of the [M+H]+ ion 

of D/L-2-HG-1E was found, in comparison to no water infusion (APCI/-H2O), which 

proved optimum over the range of investigated infusion rates (0.1-0.6 mL/h in 0.1 mL/h 

increments, compare Figure 9.4). Water infusion exerted no effect on the ion species 

formed for that derivative as the [M+H]+ ion represented the base peak of the APCI 

spectrum and no fragments with a relative intensity >1% were observed. Interestingly, 

for the other pair of peaks in the chromatogram of a derivatized racemic standard of D/L 

2-HG corresponding to the D/L O-methoxycarbonyldimethyl ester of 2-HG (D/L-2-HG-

1MC-2E), a [M+H-CO2-CH3OH]+ fragment ion (m/z 159.065) dominated the APCI/-H2O 

mass spectrum of both enantiomers, while the corresponding [M+H]+ ion (m/z 235.081) 

was almost absent (relative intensity <1%). In contrast, the [M+H]+ ion represented the 

most abundant ion in the APCI/+H2O spectra. Nevertheless, its abundance was only 

one fourth of that of D/L-2-HG-1E, which was initially used for quantification of D/L-2-

HG. Figure 9.5 depicts the overlaid base peak chromatograms of a derivatized racemic 

D/L-2-HG standard acquired w/o water infusion, respectively, demonstrating that APCI 

ionization efficiency was distinctly promoted by water infusion (upper chromatogram in 

grey).  
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Figure 9.4 Impact of water infusion at different rates on APCI efficiency of D/L-2-HG-1E. Arithmetic 
means ±SD of [M+H]+ peak areas of D/L-2-HG-1E are given that were obtained by GC-APCI-TOFMS 
analysis of a 7.81 µM racemic D/L-2HG standard (N=3 derivatization replicates). Water was infused in 0.1 
mL/h increments over the range of 0.1-0.6 mL/h in consecutive runs and compared to no water infusion 
demonstrating that an infusion rate of 0.5 mL/h proved optimum yielding a more than 4-fold increase in 
peak areas. E, methyl ester group. 

 

0 5 10 15 20 25 Time [min]
0

1

2

3

4

5

5x10
Intens.

B
ac

kg
ro

un
d

D
-2

H
G

-1
M

C
-2

E
L

-2
H

G
-1

M
C

-2
E

D
-2

H
G

-1
E

L
-2

H
G

-1
E

B
ac

kg
ro

un
d

O

O

OR

O

O CH33HC

R=COOCH3

 

Figure 9.5 Impact of water infusion on APCI efficiency of an MCF-derivatized racemic D/L-2-HG stand-
ard. Water infusion distinctly increased peak abundances as demonstrated by the overlaid base peak 
chromatograms of the same standard acquired by GC-APCI-TOFMS without (chromatogram in black) 
and with (0.5 mL/h) water infusion (chromatogram in grey). The total (D+L)-2-HG concentration in the 
standard was 200 µM. MC, methoxycarbonyl group; E, methyl ester group.  
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9.3.3 Method validation 

Since D/L-2-HG-1E eluted as symmetric peaks with no interferences in the case of the 

biological samples, calibration was carried out over a concentration range of 0.02-1000 

µM. Table 9.1 presents figures of merit for the calibration curves.  

Table 9.1 Figures of merit for the quantitative profiling of D/L-2-HG by GC-APCI-TOFMS. Calibration was 
carried out over 0.02-1000 µM. Racemic D/L-[2,3,3-2H3]2-HG was added as internal standard prior to 
MCF derivatization. Several calibration curves were acquired in the course of method development that 
were based on either of the two derivatives and acquired with (0.5 mL/h) or without water infusion, with an 
APCI I or II source, and with different injection volumes. Water infusion and APCI II source yielded the 
lowest LLOQs for both enantiomers of 2-HG-1E, thus enabling quantification of 2-HG levels that are well 
below expected concentrations in physiological specimens, while higher LLOQs were obtained for D/L-2-
HG-1MC-2E in comparison to D/L-2-HG-1E. E, methyl ester group; MC, methoxycarbonyl group; IS, 
internal standard; LR, linear range; RSD, relative standard deviation.  

# Compound

1 D-2-HG-1E 0.5 APCI II 1 28.45 145.05±0.01 D3-D-2-HG-1E 0.9997 0.06-188 3.5 3.8

1 L-2-HG-1E 0.5 APCI II 1 31.20 145.05±0.01 D3-L-2-HG-1E 0.9988 0.06-188 3.5 2.2

2 D-2-HG-1E 0.0 APCI II 1 28.45 145.05±0.01 D3-D-2-HG-1E 0.9995 0.12-500 3.6 4.8

2 L-2-HG-1E 0.0 APCI II 1 31.20 145.05±0.01 D3-L-2-HG-1E 0.9972 0.49-500 3.0 6.8

3 D-2-HG-1E 0.5 APCI I 1 28.33 145.05±0.01 D3-D-2-HG-1E 0.9998 3.91-1000 2.4 10.9

3 L-2-HG-1E 0.5 APCI I 1 31.03 145.05±0.01 D3-L-2-HG-1E 0.9985 1.95-1000 2.7 2.5

4 D-2-HG-1MC-2E 0.5 APCI II 2 26.05 235.08±0.01 D3-D-2-HG-1MC-2E 0.9995 0.49-250 2.7 4.8

4 L-2-HG-1MC-2E 0.5 APCI II 2 26.36 235.08±0.01 D3-L-2-HG-1MC-2E 0.9986 0.24-250 3.0 9.5
† N=5, conc.=7.81 µM.

Water inf. 
(mL/h)

Inj. Vol. 
(µL)

R²Source RT (min)
m/z Quantifier 

ion (Da)
IS LR (µM)

Order of 
magnitude

RSD deriv. 

repl.† (%)

 

Three different calibrations were evaluated based on D/L-2-HG-1E (#1-#3 in Table 9.1). 

Calibration #1, which was performed while infusing 0.5 mL/h water infusion into the 

APCI II source, yielded the lowest LLOQ for the two enantiomers (0.06 µM), a broad 

linear concentration range over three and a half orders of magnitude, and good repeat-

ability with RSD of response of a calibration triplicate below 4%. The method benefitted 

from improvements in the APCI II source design over APCI I as well as the continuous 

infusion of water as modifier into the APCI II source, which is clearly obvious from the 

comparably poor performance of the methods that correspond to calibrations #2 and #3 

(Table 9.1). Such a low LLOQ for the quantitative determination of both enantiomers of 

2-HG in method #1 was well below expected concentration levels in human serum. In 

fact, Janin et al. [157] reported serum (D+L)-2-HG levels between 1-2 µM for controls 

and at least 10 times higher concentrations for patients with AML and an IDH mutation, 
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and suggested a diagnostic cutoff of 2 µM as a predictor of the presence of IDH muta-

tions and outcome in these patients.  

To further elaborate on the accuracy of method #1, a spike-in experiment in control 

serum was performed, using three different concentration levels of racemic D/L-2-HG (5 

µM, 50 µM, and 200 µM, N=3 derivatization replicates per spike-level). Concentrations 

in the derivatized samples were determined by means of the calibration curves, endog-

enous levels of D- and L-2-HG obtained from unspiked serum samples were subtracted, 

and recoveries then calculated. Figure 9.6 depicts arithmetic means ±SD of recovery in 

those experiments based on D/L-2HG-1E, which ranged well between 89-100% for the 

two enantiomers. 
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Figure 9.6 Arithmetic means ±SD of recovery of D/L-2HG in matrix spike-in experiments. Racemic D/L-2-
HG was spiked at three different levels (5 µM, 50 µM, and 200 µM, N=3 derivatization replicates per spike 
level) into human control serum, MCF derivatization was performed after precipitation of proteins with 
100% MeOH, and concentration levels were determined by means of the calibration curves based on 
D/L-2HG-1E (#1 in Table 9.1). Endogenous D/L-2-HG levels were obtained from three unspiked serum 
samples and subtracted from spiked ones for calculation of recovery. As a result, good recoveries be-
tween 89-100% were found for the two enantiomers. E, methyl ester group. 

Moreover, to check for racemization, individual standards of D and L enantiomers were 

analyzed (at a concentration of 200 µM, N=3 derivatization replicates each). Mean D- 

and L-2-HG-1E area ratios, i.e., the ratio of areas of D- or L-enantiomer divided by the 

sum of (D+L) enantiomers, were 0.6 and 1.8% in derivatized pure standards of L- and 
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D-2-HG, respectively. Hence, relevant falsely high concentrations of D- or L-2-HG due 

to racemization were only expected in the presence of very high concentrations of ap-

proximately 100 µM or higher of the other enantiomer.   

Although good accuracy of method #1 in matrix spike-in experiments could be demon-

strated, significant losses of 2-HG and its IS occurred during sample preparation as 

evidenced by the poor IS recovery of ~30% for serum specimens compared to stand-

ards, which entails higher LLOQ values in serum samples than in the standards. In 

addition to that, signal-to-noise of the analyte or IS may be compromised to a point 

where precision or accuracy becomes negatively affected in patient samples, which 

deteriorates a discriminant analysis between groups of them. To reveal the cause of 

analyte loss, samples containing solely IS or serum and IS were prepared in five differ-

ent ways and compared to each other in terms of IS recovery. Mean peak area ±SD of 

IS for the five different sets of samples (N=3 derivatization replicates) are presented in 

Figure 9.7, which were prepared as described below the bars. As a result, analyte loss 

could be clearly attributed to the precipitation step in the protocol, because ion suppres-

sion did not occur (fourth bar from left) and loss of IS due to evaporation was not ob-

served (second bar from left). As opposed to that, direct MCF derivatization of spiked 

serum without precipitation (fifth bar from left) yielded an almost full recovery of D3-D/L-

2-HG-1E. Hence, the latter protocol was applied for further analysis of serum, urine, and 

cell culture supernatants.  
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Figure 9.7 Arithmetic means ±SD of [M+H]+ peak areas of D3-D/L-2-HG-1E from MCF-derivatized IS and 
serum samples spiked with IS. Different sample preparation strategies were tested and compared with 
regard to increasing IS recovery in serum. Sample preparation was performed in order from left to right 
according to the labeling below the bars (N=3 derivatization replicates). Direct MCF derivatization and no 
precipitation of spiked serum yielded an almost full recovery of D3-D/L-2-HG-1E. SD, Deuterium-labeled 
standard was added (total (D+L) concentration of 6.7 µM); MCF, MCF derivatization; Dry, evaporation of 
solvent; Ser, 150 µL of control serum was added; PRC, precipitation with 100 % MeOH and two washing 
steps; E, methyl ester group.  

9.3.4 Lactonization of D/L-2-HG in derivatized standards and biologi-

cal samples 

As pointed out earlier, two peaks for each enantiomer of 2-HG were obtained in the 

analysis of an MCF-derivatized racemic D/L-2-HG standard (Figure 9.5). A constant 

area ratio of 4:1 was found for each enantiomer (peak #2/peak #1) in samples analyzed 

in the course of method validation. As the same was true for the IS, (peak #2/peak #2-

IS)-to-(peak #1/peak #1-IS) ratio of approximately 1 was obtained, e.g., 0.92±0.09 for 

the D enantiomer in 31 standards and spiked serum samples analyzed in the course of 

method validation. As further revealed by NMR, lactonization of 2-HG, which has been 

reported by others as well [149,160], occurred due to MCF derivatization. Figure 12.3 
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depicts overlaid 1H NMR spectra of 1mM MCF-derivatized standards of 2-HG and 5-

oxotetrahydro-2-furancarboxylate (B) showing that the latter yielded one signal of its 

corresponding methyl ester while 2-HG formed three different derivatives including the 

lactone species. Among these three derivatives, the two-fold derivatized 2-HG species 

did probably not elute from the GC column because of its free hydroxyl group. As op-

posed to that, aqueous standards of the same compounds were pure with no signal 

overlap of their methylene protons was observed in the corresponding 1H NMR spectra 

(Figure 12.3C).  

In contrast to the constant (peak #2/peak #2-IS)-to-(peak #1/peak #1-IS) ratio of about 1 

obtained so far, the analysis of serum of an AML patient with an IDH2 R140Q mutation 

(the same sample as in Figure 9.3D) resulted in a higher ratio of 1.2, while another 

sample of this type yielded an even higher ratio of 2.9. Therefore, it was hypothesized 

that lactone is present in these biological samples prior to derivatization, which could be 

proven by HPLC-ESI-MS/MS and NMR afterwards. Figure 12.4 shows a TIC chroma-

togram of a standard mixture of 2-HG and lactone (31.25 µM each) acquired by HPLC-

ESI-MS/MS on a Discovery HS F5 PFPP column. Both compounds were well separated 

and also present in the serum specimens. Accordingly, all signals in 2D 1H-13C TOCSY 

spectra of aqueous 2-HG and lactone standards overlapped with those from the serum 

samples (see Figure 12.3D). In addition to that, lactone was also found in urine speci-

mens that had not been subjected to derivatization. Consequently, quantification of 2-

HG by GC-APCI-TOFMS based on the lactone peak did no longer appear feasible and 

peak #1 corresponding to the three-fold derivatized open-chain 2-HG species was used 

instead.  

Peaks #1 of D and L enantiomers of 2-HG were well separated by 0.3 min and calibra-

tion was feasible. Figures of merit are given in Table 9.1 (method #4). Calibration and 

further quantification of 2-HG in biological samples was performed using 2 µL as injec-

tion volume since a 1.8-fold increase in peak area was obtained compared to previous 1 

µL, whereas peak area did not increase with a longer splitless time of 1.5 min. However, 

LLOQ values of 0.49 and 0.24 µL for D- and L-2-HG in standards were close to ex-

pected concentrations in human serum.  
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Figure 9.8 Bland-Altman plot to assess the agreement between GC-APCI-TOFMS and HPLC-ESI-
MS/MS in the quantification of total (D+L) urinary levels of 2-HG. A total of 23 urine samples from AML 
patients and 6 controls were analyzed by both methods. They were well in accordance with each other as 
indicated by an absolute and relative mean difference of -0.12 µM 2-HG/mM creatinine (represented by 
the centerline) and 6%, respectively. The outer lines correspond to mean ±1.96*SD of the differences. 

Nevertheless, cross-validation of the present GC-APCI-TOFMS approach with HPLC-

MS/MS using urine specimens from 23 wild-type IDH AML patients and 6 healthy con-

trols was possible, because normal urinary levels of 2-HG are higher than in serum. The 

two approaches yielded comparable (D+L)-2-HG levels as illustrated by the Bland-

Altman plot in Figure 9.8; in fact, absolute and relative mean difference of -0.12 µM/mM 

creatinine and 6%, respectively, were obtained over all samples. Only three out of the 

29 samples exhibited more than 30% deviation, but this was attributed to the particular 

sample or analysis rather than a general disagreement between the two methods. For 

23 samples less than 20% deviation was observed. Interestingly, an average enantio-

meric excess of 80% of the L enantiomer was found in these urine samples, which 

could solely be revealed by the GC-MS approach, but this was not significantly different 

between wild-type IDH AML patients and controls, as was the case for (D+L)-2-HG 

concentration levels normalized to creatinine. As opposed to that, large concentration 
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differences could be detected in qualitative and quantitative terms in cell extracts of 

IDH2 R140Q mutation transfected and untransfected dendritic cell lines and corre-

sponding cell culture supernatants, as well as serum specimens of a healthy control 

versus an AML patient carrying an IDH2 R140Q mutation (compare Figure 9.3). In the 

latter serum sample, (D+L)-2-HG concentration levels of 57 and 52 µM were determined 

by HPLC-MS/MS and GC-APCI-TOFMS, respectively, which were well in accordance 

with each other. However, the latter approach additionally revealed an enantiomeric 

excess of 98% of the D enantiomer. Such concentration and enantiomeric excess val-

ues for D/L-2HG are well comparable to other reports for the same type of sample 

[157,163].  

 

9.4 Conclusions 

A quantitative approach by GC-APCI-TOFMS was established for the enantioselective 

profiling of the oncometabolite D-2-HG and applied to various matrices including human 

serum, urine, cell extracts and cell culture supernatants. Both D and L enantiomers of 2-

HG were readily separable as their MCF derivatives on the employed chiral Rt-DEXsa 

column. Further, the method benefitted from highly specific quantifier ions due to soft 

ionization and high-resolution TOFMS. Moreover, the infusion of water as modifier im-

proved LLOQ and repeatability for both enantiomers, with the improved APCI II source 

yielding about 50-fold lower LLOQs than the original APCI I source. Omission of the 

protein precipitation step in the preparation of serum specimens increased recovery of 

the IS from 30% to almost 100%. 

The natural presence of the 5-membered lactone of 2-HG in biological samples repre-

sented an interesting finding, which might be of significance in the elucidation of the 

molecular mechanism, by which 2-HG potentially promotes tumor progression. Accord-

ing to this, quantification of 2-HG had to be based on its open-chain three-fold derivative 

resulting in LLOQ values of 0.49 and 0.24 µM for the D and L enantiomer, respectively, 

which are close to the expected serum concentrations. Hence, further optimization in 

terms of lower limits of quantification of the method may be required. The general ap-
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plicability of the method in distinguishing 2-HG concentration differences in serum of 

diseased and healthy individuals and the accurate quantification of urinary 2-HG levels 

could be shown, with GC-APCI-TOFMS concentration levels well in agreement with 

those determined by HPLC-MS/MS analysis. In addition to the latter approach, the 

developed GC-APCI-TOFMS method enabled the determination of the enantiomeric 

excess in the biological samples, which can be expected to be very helpful not only in 

the further elucidation of biological effects of 2-HG in tumors but also the utility of D-2-

HG as a diagnostic and/or prognostic tumor marker.  
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10 Conclusions and perspectives 

This thesis exemplifies the great potential of GC-APCI-TOFMS in metabolic fingerprint-

ing and profiling providing both the means for identification of unknown metabolites by 

accurate mass measurements and the sensitive determination of metabolites [9,10]. 

Significant gains in detection sensitivity could be realized for MCF derivatives by the 

continuous infusion of water into the APCI source. Further gains in reliability and accu-

racy were achieved by means of the recognition and minimization of matrix effects and 

a redesigned APCI source developed by Bruker Daltonics.  

The benefit of continuous water infusion during APCI of MCF-derivatized metabolites 

became particularly obvious in the comparative metabolic fingerprinting of control and 

17-DMAG treated cancer cell extracts. The doubling of identified, significantly regulated 

metabolites to a total of 23 was due to a significant increase in abundance of [M+H]+ 

ions as well as a concomitant decrease in technical variability. That the peak areas of 

significantly differentiating amino acids reflected true differences in concentration be-

tween the groups was corroborated through cross-validation by targeted HPLC-MS/MS 

analysis, yielding concordant results for 14 out of 15 amino acids that could be analyzed 

by both GC-APCI-TOFMS and HPLC-MS/MS. Further improvements in detection sensi-

tivity and repeatability for both MCF and MeOx-TMS could be realized employing a 

redesigned APCI source commercialized recently by Bruker Daltonics. Due to a tighter 

source construction, which reduces chemical background, and the minimization of gas 

turbulences, the absolute number of identified compounds increased by 33% compared 

to the original APCI source and was accompanied by a distinct decrease in RSD of area 

integrals of features extracted from the biological replicates.  

There remain areas for further improvement, such as the high level of manual interven-

tion still required in peak integration and metabolite identification, which might be facili-

tated by the introduction of comprehensive GC-APCI-MS libraries. Moreover, the lack of 

reference compounds impedes unambiguous assignment of unknowns. Recent years 
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have seen a flurry of novel computational approaches for identifying metabolites, but 

systematic evaluations of their performance are still lacking, making a definitive judg-

ment on their routine usefulness difficult. Overall, validated standard operating proce-

dures for the annotation of novel metabolites and open-access metabolite libraries have 

to be extended. The introduction of International Chemical Identifier (InChI) strings for 

consistent naming of identified metabolites as well as supporting global data exchange 

formats, e.g. the netCDF format, for sharing mass spectra and associated information 

constitute promising steps in this regard. Still, higher community efforts are necessary.  

GC-APCI-TOFMS proved to be a useful quantitative tool in metabolic profiling. The 

redesigned APCI II source, in comparison to APCI I, increased the linear range to al-

most three orders of magnitude mostly due to lower limits of quantification in the sub-

micromolar range. Hence, GC-APCI(II)-TOFMS appeared promising for the quantifica-

tion of potential biomarkers as exemplified here for the enantioselective profiling of the 

oncometabolite D-2-hydroxyglutarate, which accumulates in tumors harboring neo-

morphic mutations in IDH1 and IDH2 genes, respectively. The developed method relied 

on baseline separation of D and L enantiomers of 2-HG as their MCF derivatives on a 

chiral Rt-DEXsa column, highly specific quantifier ions due to soft ionization and high-

resolution TOFMS, and the infusion of water as modifier improved lower quantification 

limits and repeatability. During initial method development D-2HG was separated from a 

highly abundant matrix compound by modifying the temperature ramp to prevent matrix 

effects. In the further course of method development, quantification of D/L-2-HG based 

on the 5-membered lactone peak of D/L-2-HG proved unsuitable, because the lactone 

was naturally present in several of the investigated biological specimens. Quantitative 

analysis was thus based on the less abundant open-chain three-fold derivative of 2-HG 

that yielded LLOQ values of 0.49 and 0.24 µM for the D and L enantiomer, respectively, 

which are close to the expected serum concentrations. Hence, further optimization of 

the method may be needed, which might be achieved by increasing the yield of the 

three-fold derivative through modification of the derivatization protocol as well as max-

imizing ion transmission in the low mass range by specifically tuning the mass spec-

trometer. The method was successfully applied to various biological matrices including 

human serum and urine. The urinary 2-HG levels of 23 wild-type IDH AML patients and 
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6 healthy controls were well in accordance with those determined by HPLC-MS/MS. 

The natural presence of the 5-membered lactone of 2-HG in several tumor samples was 

of special interest as this finding might be helpful in elucidating the molecular mecha-

nism, by which D-2-HG potentially promotes tumor progression. Whether the D-lactone 

is biologically even more active than D-2-HG, is the focus of future investigations. 
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12 Appendix 

Table 12.1 Overview on recent GC(×GC)-APCI(+)-MS studies of environmental samples, foodstuffs, pharmaceutical impurities, pesticides, steroids and volatile 
organic compounds (Focus: 1=Ionization behavior, 2=Screening/ identification, 3=Quantification, 4=Cross-platform analysis, 5=Application).  

Authors/ Technique/ Field Samples Focus Highlights 

Ballesteroz-Gómez et al. 

(2013) [164] 

Direct probe/ GC/ GC×GC 

coupled to APCI-

HRTOFMS, LC-

ESI/APCI/APPI-

HRTOFMS  

Environmental 

Flame retardant 

standards/ elec-

tronic waste and 

car interior sam-

ples 

3, 5 Direct probe, GC, and GC×GC coupled to APCI-HRTOFMS were implement-

ed for targeted quantification of flame retardants in environmental samples 

and compared to common LC-HRTOFMS approaches. 

Targeted screening and quantification by GC-APCI-HRTOFMS exhibiting 

excellent detection capabilities revealed several previously unreported flame 

retardants in electronic waste and car interior samples.  
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Barrow et al. (2014) [165] 

GC-APCI-FTICRMS  

Environmental 

Water samples 

related to oil sands 

2, 5 GC-APCI-FTICRMS resolved nominal masses for a wide range of compounds 

in the analysis of oil sands process water. 

The resolution of isomers was seen as a huge added value given the rising 

demand for elaboration on component structure in environmental toxicity 

studies. 

Bristow et al. (2010) [7] 

GC-APCI-TOFMS, GC-

qMS with EI and CI 

sources 

Pharmaceutical 

Standards of or-

ganic compounds/ 

synthesized cy-

anoamide sample 

2, 4 High mass accuracy of GC-APCI-TOFMS (∆m: 1-2 mDa) allowed the identifi-

cation of impurities in organic reaction mixtures based on their elemental 

formulas.  

During optimization, compounds presenting a broad range of polarity could be 

detected, but RSDs were reported as fairly high.  
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Canellas et al. (2012) 

[166] 

GC-APCI-QTOFMS, GC-

EI-qMS  

Organic contaminants/ 

foodstuffs 

Acrylic adhesives/ 

standards of or-

ganic compounds/ 

Tenax® for migra-

tion studies 

2, 4 GC-APCI-QTOFMS appeared as complementary tool to GC-EI-qMS in the 

analysis of non-intentionally added substances in acrylic adhesives used in 

food packaging materials. 

The low degree of overlap between the two techniques was not further eluci-

dated; nevertheless, GC-APCI-QTOFMS revealed three new compounds of 

relevance. However, they did not diffuse into the packaged food and, hence, 

were considered as safe constituents of the packaging material.  

Canellas et al. (2014) 

[167] 

GC-APCI-QTOFMS, GC-

EI-qMS  

Organic contaminants/ 

foodstuffs 

Labels with adhe-

sive/ standards of 

organic com-

pounds/ Tenax® 

and natural pork 

intestine for migra-

tion studies 

2, 4 Unknown, toxic non-intentionally added substances from autoadhesive labels 

used for direct food contact were identified by GC-APCI-QTOFMS.  

Compared to GC-EI-qMS, calculation of elemental formulas, extensive data-

base search and acquisition of MS/MS mass spectra more than doubled the 

number of confirmed compounds, for which migration to the food simulants 

was shown in migration studies.  
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Cherta et al. (2013) [168] 

GC-APCI-QqQMS  

Pesticides/ foodstuffs 

Pesticide stand-

ards/ food samples

3 A quantitative GC-APCI-MS/MS method was developed and fully validated for 

142 pesticides followed by its application to six different food matrices.  

Highly abundant [M+H]+ ions as precursor ions favoring high selectivity and 

detection sensitivity were available in APCI as opposed to the extensive 

fragmentation in EI for these compounds.  

David et al. (2011) [169] 

GC-APCI-TOFMS  

Environmental 

Reference 

phthalate samples/ 

sediment extract  

1 Simultaneous quantification of two high-molecular-weight phthalates without 

comprising detection sensitivity was achieved by GC-APCI-TOFMS in sedi-

ments. 

Whereas EI yielded abundant, but unspecific fragment ions and only minor 

[M-CH3]
+ ions that were specific for the two co-eluting compounds, the [M+H]+ 

ion represented the base peak of the APCI spectrum in both cases.  
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Domeño et al. (2012) [170] 

GC-APCI-QTOFMS  

Environmental 

PAH and NPAH 

standards/ moss 

samples 

3 Quantification of 15 PAHs and 8 nitrated PAHs by GC-APCI-QTOFMS was 

achieved at very low concentration levels in mosses.  

Acquired data can be used for pattern recognition of pollutants pointing to the 

different locations of sampling points and likely emissions.  

García-Villalba et al. 

(2011) [8] 

GC-APCI-TOFMS  

Foodstuffs 

Phenolic standard 

compounds/ Span-

ish extra-virgin 

olive oil samples 

2, 3 The use of GC-APCI-TOFMS for screening, structural assignment and quanti-

tative determination of phenolic compounds in virgin olive oil is demonstrated. 

Optimization of chromatographic and MS conditions and a full validation of the 

method (selectivity, linear range, LOD, precision, accuracy, matrix effect) was 

carried out.  
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Garratt et al. (2005) [171] 

APCI-MS/ linked GC-

APCI/EI-MS  

Foodstuffs/ VOCs 

Transgenic lettuce 

plants and azy-

gous controls 

5 Six VOCs were studied by means of combined GC-APCI/EI-MS in the head-

space from transgenic lettuce plants expressing an IPT gene that exhibited a 

senescence-suppressing effect by autoregulated cytokinin biosynthesis.  

Significant increases in acetaldehyde, ethanol and dimethyl sulphide in trans-

genic lettuce could be related to other indices of cellular senescence, demon-

strating the general applicability of the approach.  

Gómez-Pérez et al. (2014) 

[172] 

GC-APCI-QTOFMS 

Pesticides 

Pesticide stand-

ards/ meat sam-

ples  

1, 3 A total of 71 pesticides were evaluated by GC-APCI-QTOFMS in terms of 

their ionization behavior and quantitative performance for the application to 

meat samples.  

Quantitative analysis was carried out for fifty-one analytes that had shown 

acceptable performance in the validation study including the determination of 

linear quantification range, LOD, recovery, intra- and inter-day precision, and 

matrix effect.  
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Matysik et al. (2014) [131] 

GC-APCI-TOFMS  

Steroids 

Standards for 

sterols and related 

analytes/ human 

EDTA-plasma 

5 The general applicability of GC-APCI-TOFMS for simultaneous screening and 

determination of concentration levels of sterols in human plasma was shown.  

Well-controlled humidity was established in the modified APCI source with 

regard to reproducible ionization. 

Nácher-Mestre et al. 

(2014) [173] 

GC-APCI-QTOFMS  

Pesticides/ aquacultural 

Pesticide and 

polycyclic aromatic 

hydrocarbon 

standards/ feed 

ingredients in 

aquafeeds/ aq-

uafeeds/ fish sam-

ples 

2 A reliable screening method based on GC-APCI-QTOFMS was developed 

and validated for 133 pesticides and 24 PAHs in aquacultural and fish sam-

ples. 

Screening detection limit of a compound, i.e. the threshold concentration at 

which detection becomes trustworthy, was set at the lowest spike-in concen-

tration level that yielded a positive identification hit in at least 19 out of 20 

replicate matrix samples. 

Several matches for the validated compounds were reported in fish samples. 
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Östman et al. (2006) [135] 

GC-microchip APCI-

QqQMS  

VOCs 

Standards of vola-

tile organic com-

pounds/ human 

urine 

5 The general suitability of GC-microchip APCI-MS for qualitative and quantita-

tive analysis of volatile and semi-volatile compounds was demonstrated.  

Mass spectra produced by microchip APCI in this study yielded the same type 

of information as conventional APCI.  

Portolés et al. (2010) [59] 

GC-APCI-QTOFMS, GC-

EI-TOFMS  

Pesticides/ foodstuffs 

Pesticide stand-

ards/ food samples

1, 2 GC-APCI-QTOFMS was evaluated for wide-scope pesticide screening pur-

poses in three varieties of food samples. 

Water as modifier led to the predictable presence of [M+H]+ ions for 90 out of 

100 model pesticides favoring rapid screening, whereas the EI molecular ion 

is typically absent. 

MS/MS experiments increased confidence in the identity of several detected 

compounds in real food samples.  
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Portolés et al. (2012) [82] 

GC-APCI-QqQMS, GC-EI-

QqQMS  

Pesticides/ foodstuffs 

Pyrethroid stand-

ards/ fruit and 

vegetables sam-

ples  

1, 4 The beneficial impact of APCI with water as modifier over EI was demonstrat-

ed for GC-QqQMS analysis of pyrethroids, which are highly fragmented in EI.  

More specific MRM transitions based on [M+H]+ ions as precursor ions and 

lower detection limits in food samples were obtained.  

Strong matrix effects were observed for several pyrethroid/ food matrix com-

binations.  

Portolés et al. (2014) [174] 

GC-APCI-QTOFMS/ GC-

EI-TOFMS  

Environmental 

Standards of or-

ganic contami-

nants/ groundwa-

ter samples 

2, 4 A wide-scope screening method for initially 170 organic contaminants was 

established based on GC-APCI-QTOFMS and compared to GC-EI-TOFMS.  

Detection of these compounds based on molecular-ion searching was more 

effective than matching deconvoluted EI mass spectra to reference libraries.   

Number of compounds included in GC-APCI-QTOFMS screening approach 

could be extended by 85 because of the predictable presence of [M+H]+ ions 

and the simultaneous acquisition of high and low collision energy spectra.  
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Table 12.1 continued. 

Authors/ Technique/ Field Samples Focus Highlights 

Raro et al. (2014) [175] 

GC-APCI-QTOFMS  

Steroids 

Steroid standards 1 Ionization behaviour of 60 underivatized and TMS-derivatized anabolic an-

drogenic steroids and steroid metabolites was studied.  

Water as modifier proved beneficial for the formation of dominating [M+H]+ 

ions that may serve as selective and sensitive precursor ions in tandem MS. 

Relationship between steroid structure and observed ions was established 

that might be helpful in the elucidation of unknown metabolites of steroids.  
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Table 12.2 Gas chromatographic and mass spectrometric characteristics of the MCF and MeOx-TMS derivatives of the 20 standard compounds and fatty acids 
selected for method evaluation. Retention times, quantifier ions, prominent ions (marked in bold) present in APCI(+) mass spectra acquired at water infusion rates of 
0.0 mL/h and 0.4 mL/h, respectively, and calculated logPoctanol/water values, as a measure of lipophilicity, for both MCF and MeOx-TMS derivatives, including the 
number of trimethylsilyl groups of the latter derivatives, are presented. Reprinted from [14].  
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Adipate 12.49 175.0965 0.95 2TMS 14.55 291.1442 291.1506 (100), 201.0973 (44.2) 2.74

Ala 11.08 162.0761 102.0597 (100), 162.0766 (41.3), 130.0531 (10.2) 162.0770 (100), 102.0557 (27.1), 130.0507 (25.2) -0.16 2TMS 8.50 234.1340 234.1373 (100), 144.0848 (7.0) 234.1377 (100), 144.0858 (5.6) 2.25
4-Aminobutyrate 14.65 176.0917 176.0915 (100), 144.0656 (74.9), 130.0501 (37.8) 0.12 3TMS 13.83 320.1892 320.1970 (100), - 320.1961 (100), - 3.52

Asp 16.33 220.0816 160.0613 (100), 128.0359 (23.2), 220.0818 (14.3) 220.0820 (100), 160.0612 (38.9), 188.0558 (17.2) -0.36 3TMS 14.18 350.1634 350.1712 (100), 278.1287 (5.0) 350.1698 (100), - 3.07
Benzoate 10.33 137.0597 137.0618 (100), - 137.0606 (100), - 2.12 1TMS 11.74 195.0836 195.0860 (100), 105.0350 (9.9) 2.60

Fumarate 9.03 145.0495 145.0508 (100), 113.0272 (7.6) 145.0505 (100), 163.0606 (72.7), 113.0237 (10.2) 0.43 2TMS 11.98 261.0980 261.1021 (100), 171.0489 (9.9) 261.1020 (100), 189.0605 (8.5) 1.76
Glu 17.92 234.0972 234.0970 (100), 202.0707 (34.6), 174.0758 (13.8) -0.19 3TMS 15.43 364.1790 364.1867 (100), 274.1327 (8.5) 364.1849 (100), 292.1439 (10.8) 3.20

Hippurate 19.92 194.0812 194.0814 (100), 105.0401 (52.5) 194.0822 (100), 105.0352 (9.6) 0.80 1TMS 20.67 252.1050 252.1086 (100), 162.0570 (13.9) 252.1090 (100), 162.0553 (8.3) 1.88
Ile 13.89 204.1230 144.1036 (100), 204.1229 (13.2) 204.1238 (100), 144.1025 (63.7) 1.21 2TMS 10.77 276.1810 276.1868 (100), 158.1378 (5.4) 276.1857 (100), 204.1436 (5.3) 3.62
Leu 13.73 204.1230 144.1038 (100), 204.1238 (16.2) 204.1235 (100), 144.1024 (53.2) 1.21 2TMS 10.49 276.1810 276.1864 (100), 186.1330 (5.3) 276.1857 (100), 204.1436 (6.5) 3.62
Malonate 8.18 133.0495 133.0507 (100), 101.0284 (72.9), 119.0359 (43.9) 133.0504 (100), 119.0351 (54.2) -0.12 2TMS 10.65 249.0973 1.73

Met 18.10 222.0795 0.46 2TMS 14.64 294.1374 294.1433 (100), - 294.1427 (100), 222.1008 (7.0) 2.98

Methyl-malonate 8.50 147.0652 115.0443 (100), 133.0523 (93.6), 147.0672 (54.2) 147.0662 (100), 133.0503 (73.8) 0.24 2TMS 10.56 263.1129 2.09263.1175 (100), 251.1493 (90.1), 
117.0743 (37.7), 161.1008 (14.8)

251.1540 (100), 263.1176 (67.6), 
117.0745 (10.8)

195.0865 (100), 179.0506 (88.1), 
105.0357 (35.8)

202.0712 (100), 174.0772 (65.0), 142.0527 (54.0), 
234.0983 (26.2), 114.0590 (20.9)

249.1024 (100), 178.1104 (47.2), 
303.1225 (28.8), 159.0482 (18.3)

249.1002 (100), 303.1204 (67.3), 
178.1099 (25.7)

162.0589 (100), 174.0762 (64.6), 222.0797 (20.6), 
114.0594 (14.1)

222.0803 (100), 162.0594 (44.5), 190.0552 (20.3), 
174.0770 (11.8)

MCF derivatives MeOx-TMS derivatives 

115.0796 (100), 111.0484 (92.5), 143.0719 (68.1), 
129.0577 (10.2), 175.0965 (3.3)

175.0971 (100), 161.0814 (86.7), 143.0708 (55.9), 
129.0554 (21.7), 115.0766 (18.6), 111.0448 (11.6)

201.0970 (100), 291.1492 (80.5), 
111.0450 (25.6)

144.0659 (100), 130.0526 (95.9), 112.0425 (51.0), 
176.0958 (25.8)
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Table 12.2 continued. 
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Nicotinate 11.35 138.0550 138.0567 (100), - 138.0558 (100), - 0.79 1TMS 12.65 196.0788 196.0826 (100), - 196.0827 (100), - 1.66
Nval 13.23 190.1074 130.0887 (100), 190.1074 (9.4) 190.1082 (100), 130.0874 (64.1), 158.0817 (10.5) 0.86 2TMS 10.15 262.1653 262.1697 (100), 172.1164 (6.6) 262.1703 (100), 190.1287 (5.7) 3.27
Phe 19.55 238.1074 238.1085 (100), 178.0873 (49.7), 190.0509 (27.4) 1.19 2TMS 16.04 310.1653 310.1715 (100), - 310.1698 (100), 238.1285 (5.7) 3.76

Phenylacetate 11.74 151.0754 151.0764 (100), 91.0612 (14.2) 151.0760 (100), 91.0548 (6.4) 1.91 1TMS 12.62 209.0992 209.0992 (100), 193.0701 (18.1) 209.1024 (100), - 2.54
Pro 15.45 188.0917 128.0742 (100), 188.0930 (14.7) 188.0924 (100), 128.0718 (49.0) 0.27 2TMS 11.29 260.1497 260.1540 (100), 170.1012 (6.1) 260.1543 (100), 188.1127 (11.4) 2.17
Suberate 15.13 203.1278 203.1287 (100), 189.1132 (90.7) 1.88 2TMS 16.92 319.1755 3.64

Val 12.64 190.1074 130.0889 (100), 190.1082 (8.4) 190.1083 (100), 130.0873 (70.6), 158.0816 (12.8) 0.70 2TMS 9.76 262.1653 262.1698 (100), 144.1219 (5.8) 262.1693 (100), 190.1275 (6.7) 3.11

Nonanoatec 10.90 173.1536 173.1541 (100), - 173.1548 (100), 191.1648 (17.8) 3.84 1TMS 12.01 231.1775 231.1779 (100), 215.1371 (10.2) 231.1779 (100), 141.0390 (5.4) 4.72

Undecanoatec 13.48 201.1849 201.1854 (100), - 201.1857 (100), 219.1959 (15.2) 4.86 1TMS 14.46 259.2088 259.2084 (100), 243.1745 (6.9) 259.2090 (100), - 5.74

Tridecanoatec 15.96 229.2162 229.2166 (100), - 229.2171 (100), 247.2269 (15.0) 5.88 1TMS 16.76 287.2401 287.2405 (100), - 287.2403 (100), - 6.76

Pentadecanoatec 18.34 257.2475 257.2478 (100), - 257.2481 (100), 275.2580 (13.7) 6.90 1TMS 18.98 315.2714 315.2721 (100), - 315.2719 (100), - 7.78
Heptadecanoatec 20.56 285.2788 285.2802 (100), - 285.2800 (100), 303.2909 (7.6) 7.92 1TMS 21.10 343.3027 343.3040 (100), - 343.3026 (100), 271.2628 (5.5) 8.80

Nonadecanoatec 22.81 313.3101 313.3114 (100), - 313.3105 (100), 331.3173 (5.5) 8.94 1TMS 23.15 371.3340 371.3347 (100), - 371.3350 (100), 299.2929 (7.4) 9.82
a m/z  of [M+H]+ marked in bold. Masses of fragment and adduct ions exceed a S/N of 20 and a relative intensity of 10%, except the most intensive fragment ion in a spectrum exceeds only 5%. b Calculated by ACD/Labs V12.01. c Concs. = 67 M and 100 M for MCF 
and MO-TMS derivatives, respectively. 

MCF derivatives MeOx-TMS derivatives 

178.0872 (100), 190.0506 (42.3), 238.1078 (14.7), 
146.0616 (13.1)

171.1024 (100), 189.1128 (53.9), 143.1085 (46.2), 
139.0772 (28.5), 111.0849 (27.1), 203.1283 (8.1)

319.1819 (100), 229.1287 (65.9), 
139.0763 (12.9)

319.1818 (100), 247.1398 (35.1), 
229.1244 (11.5)
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Table 12.3 Impact of different rates of continuous water infusion on APCI of MCF and MeOx-TMS derivatized standard compounds. Mean FCs in peak area of 
[M+H]+ ions in relation to no water infusion and RSDs of peak areas for N=5 derivatization replicates are given for both MCF (200 µM each) and MeOx-TMS (100 
µM each) derivatives (A=amide group, E=methyl ester group). ANOVA and post hoc tests were performed based on the [M+H]+ peak areas.a,b Reprinted from [14]. 

 MCF derivative 0.1 mL/h  0.2 mL/h  0.3 mL/h  0.4 mL/h 0.5 mL/h 

 FC RSD (%) FC RSD (%) FC RSD (%) FC RSD (%) FC RSD (%)

Adipate-2Ec 23.0j 19.3 71.8g 30.0 133.7g 17.0 163.9g 4.2 137.8g 24.7 

Ala-1A-1Ec 9.8j 25.6 30.4g 6.3 29.8g 40.0 36.7g 16.7 27.3g 9.8 

4-Aminobutyrate-1A-1Ec 5.0j 3.1 16.3i 30.1 30.8g 12.0 33.7g 30.9 32.4g 22.0 

Asp-1A-2Ec 4.7j 42.0 13.9g 32.8 17.9g 30.1 15.6g 22.6 12.0g 23.1 

Benzoate-1Ec 2.0h 34.6 2.6g 13.6 2.7g 13.1 1.8h 14.7 2.1g 17.1 

Fumarate-2Ec 1.7i 12.0 2.0g 30.4 1.8g 28.7 1.2j 15.0 1.3j 21.7 

Glu-1A-2Ec 5.3j 32.8 14.9g 27.9 14.7g 27.5 16.8g 24.9 14.4g 24.5 

Hippurate-1Ec 4.5h 17.2 9.5g 13.5 8.0g 16.3 7.1g 32.4 5.2g 13.4 

Ile-1A-1Ec 6.0i 18.6 15.1g 18.0 17.4g 24.7 15.9g 32.3 16.6g 12.7 

Leu-1A-1Ec 7.3i 22.7 15.2g 7.9 15.1g 42.7 14.6g 33.2 13.1g 33.9 

Malonate-2Ec 57.1i 33.5 93.6g 7.7 137.2g 25.7 163.9g 3.5 126.9g 12.7 

Met-1A-1Ec 6.8j 48.4 15.3g 22.7 20.9g 34.0 16.3g 32.0 13.7g 26.2 

Me-malonate-2Ec 59.8h 22.7 98.8g 14.4 125.8g 27.8 142.0g 15.7 121.3g 24.0 

Nicotinate-1Ec 1.0j 13.1 2.1g 31.2 1.7i 23.6 1.7i 10.4 1.2j 48.2 

Nval-1A-1Ec 4.3j 42.4 14.6g 7.8 15.4g 17.9 17.0g 27.3 13.3g 19.1 

Phe-1A-1Ec 4.4i 30.4 10.5g 18.0 12.0g 18.7 8.6g 28.0 10.0g 6.3 

Phenylacetate-1Ec 5.8g 31.2 9.0g 18.7 10.1g 14.4 9.7g 10.8 6.9g 9.7 

Pro-1A-1Ec 3.1i 29.2 7.0g 9.6 7.6g 9.2 10.8g 7.6 7.2g 21.4 

Suberate-2Ec 10.5j 30.7 38.4g 34.4 47.7g 14.9 60.5g 24.7 35.0g 27.5 

Val-1A-1Ed 4.4j 18.2 13.3g 39.9 18.8g 9.7 21.6g 6.9 15.4g 27.1 

Geometric mean 6.2 23.2 14.3 17.9 16.6 20.4 16.6 16.3 13.8 19.2 
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Table 12.3 continued. 
 

MeOx-TMS derivative 0.1 mL/h  0.2 mL/h  0.3 mL/h  0.4 mL/h 0.5 mL/h 

 FC RSD (%) FC RSD (%) FC RSD (%) FC RSD (%) FC RSD (%)

Adipate-2TMSd 1.2j 35.1 1.7j 54.2 2.2i 31.8 2.4h 13.6 2.2i 24.2 

Ala-2TMSf 1.1 31.9 1.0 24.4 1.2 30.2 1.3 29.5 1.0 20.6 

4-Aminobutyrate-3TMSf 1.2 19.1 1.2 25.8 1.3 36.5 1.3 21.1 1.5 19.3 

Asp-3TMSf 0.9 31.6 1.1 44.0 1.0 20.7 1.6 41.5 1.3 33.1 

Benzoate-1TMSd 1.5j 50.5 2.6h 9.7 2.4h 26.0 2.3h 31.9 1.9i 30.0 

Fumarate-2TMSf 1.3 16.1 1.4 25.4 1.1 24.5 1.3 35.6 1.5 19.9 

Glu-3TMSf 1.6 37.6 0.8 21.2 1.3 24.8 1.5 45.1 1.1 39.1 

Hippurate-1TMSc 1.1j 35.5 1.7i 13.9 1.3j 37.9 0.9j 37.9 2.4g 13.9 

Ile-2TMSf 1.2 23.4 1.3 32.7 1.2 30.9 1.6 16.1 1.0 55.2 

Leu-2TMSf 1.1 37.3 1.4 39.6 0.9 32.6 1.3 31.4 1.0 51.3 

Malonate-2TMSf 1.8 43.2 2.1 15.7 2.0 27.2 1.7 20.5 2.2 29.1 

Met-2TMSf 1.0 38.9 0.8 35.6 0.7 47.8 0.9 45.6 1.1 21.2 

Me-malonate-2TMSf 1.1 41.0 1.4 30.2 1.4 36.4 1.4 26.0 1.3 17.6 

Nicotinate-1TMSe 1.5j 12.8 1.3j 27.6 1.6i 20.1 1.7h 12.8 1.6i 20.8 

Nval-2TMSf 0.9 30.3 0.8 25.4 0.7 41.1 1.3 41.4 0.7 32.3 

Phe-2TMSf 0.9 28.6 1.3 30.6 1.2 14.6 1.6 30.3 1.3 22.0 

Phenylacetate-1TMSd 1.3j 23.1 1.8i 17.0 2.1h 28.8 2.3g 16.9 1.7i 24.4 

Pro-2TMSe 1.1j 34.4 1.1j 17.5 0.8j 13.4 1.6i 29.6 0.8j 26.2 

Suberate-2TMSf 1.1 13.9 1.3 29.3 1.5 15.8 1.6 25.0 1.4 18.1 

Val-2TMSf 0.8 17.8 0.7 26.5 0.7 31.6 1.1 40.1 0.9 29.5 

Geometric mean               1.2    28.1      1.3    25.3      1.2    27.2      1.5   27.6      1.3    25.7 
a Ranges of p values in ANOVA indicated as follows: c p <0.001; d p <0.01; e p <0.05; f p >0.05.  
b Ranges of p values in post hoc test indicated as follows: g p <0.001; h p <0.01; i p <0.05; j p >0.05.    
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Table 12.4 Area under the curve values for the corresponding ROC curves of MCF and MeOx-TMS 
derivatives for all pairwise fold changes. ROC curves were generated from 20 compounds spiked at 
six different concentrations into aliquots of a serum extract, followed by derivatization (N=5 derivatiza-
tion replicates per spike level) and GC-APCI-TOFMS analysis without and at a water infusion rate of 
0.4 mL/h. Reprinted from [14]. 

FC AUC MCF derivatives AUC MeOx-TMS derivatives 
 0.0 mL/h 0.4 mL/h 0.0 mL/h 0.4 mL/h 

1.17 0.36 0.64 0.60 0.50 
1.20 0.65 0.46 0.64 0.64 
1.25 0.57 0.67 0.58 0.66 
1.33 0.42 0.82 0.44 0.51 
1.40 0.77 0.73 0.74 0.63 
1.50 0.66 0.77 0.73 0.76 
1.50 0.77 0.77 0.81 0.77 
1.67 0.79 0.86 0.81 0.85 
1.75 0.79 0.84 0.80 0.77 
2.00 0.81 0.95 0.85 0.87 
2.00 0.84 0.92 0.92 0.84 
2.33 0.85 0.87 0.87 0.88 
2.50 0.90 0.93 0.91 0.90 
3.00 0.93 0.96 0.94 0.89 
3.50 0.95 0.94 0.94 0.90 
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Table 12.5 Figures of merits of linear regression analysis of expected and observed fold changes in the MCF spike-in experiment as a function of water infusion. 
In the spike-in bucket table, blank feature area values were subtracted as “background” from the peak areas of investigated features, i.e., features that could be 
extracted from both, APCI/-H2O and APCI/+H2O spectra. All possible fold changes were plotted and respective slopes and intercepts of linear regression equa-
tions, regression coefficients and mean RSD values over all fold changes are listed. In the absence of [M+H]+ ions, a fragment ion was monitored instead, with 
the respective mass given after the underscore character. For alanine, 4-aminobutyrate, malonate, and methylmalonate, no ions could be extracted across all 
spike-in levels in the absence of water infusion. Reprinted from [14]. 

feature  0.0 mL/h  0.4 mL/h  
  slope intercept r mean RSD/% slope intercept r mean RSD/%

Adipate_m/z 115a 1.56 -0.41 0.832 32.7 1.33 -0.26 0.922 21.0 

Asp_m/z 160a 1.14 -0.11 0.945 19.5 1.20 -0.16 0.944 20.1 
Benzoate 1.29 -0.21 0.884 25.0 1.11 -0.07 0.935 19.5 
Fumarate 1.29 -0.20 0.884 31.3 1.11 -0.06 0.877 25.0 

Glu_m/z 202a 0.29 0.73 0.498 32.1 0.52 0.49 0.709 24.2 
Hippurate 1.08 0.01 0.816 38.6 0.80 0.21 0.883 21.6 
Ile 1.04 0.13 0.655 51.4 1.30 -0.22 0.856 29.4 
Leu 1.37 0.04 0.350 67.2 0.70 0.29 0.873 22.5 

Met_m/z 162a 1.18 -0.05 0.761 44.1 1.00 0.03 0.891 25.8 
Nicotinate 1.62 -0.43 0.792 40.7 1.37 -0.26 0.883 22.5 

Nval_m/z 130a 1.90 -0.70 0.876 32.8 1.06 -0.02 0.919 17.8 
Phe 0.67 0.39 0.683 35.1 0.68 0.33 0.800 24.0 
Phenylacetate 1.77 -0.53 0.629 47.3 0.98 0.05 0.916 16.1 
Pro 1.18 -0.01 0.727 44.0 0.81 0.22 0.826 28.4 

Suberate_m/z 189a 0.37 0.61 0.735 20.4 0.53 0.45 0.887 15.9 

Val_m/z 130a 1.00 0.06 0.787 33.5 0.89 0.15 0.841 29.9 
a Mass of investigated feature corresponding to a fragment. 
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Table 12.6 Determination of elemental compositions of known MCF derivatized spike-in compounds. Compounds from the spike-in mix (concn=200 µM) were 
spiked into a serum extract (N=5 derivatization replicates), followed by MCF derivatization and GC-APCI-TOFMS analysis without and with water infusion at 0.4 
mL/h. Mass accuracy was determined after internal recalibration of mass spectra. In addition, isotope abundance accuracy (referred to as percentage error of the 
first isotope as well as mSigma value obtained from DataAnalysis, Bruker Daltonics) and average rank of correct elemental formula with total average number of 
calculated formulas are presented (A=amide group, E=methyl ester group). Reprinted from [14]. 
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Adipate-2E C8H15O4
+ 175.0965 -0.3±1.8 c 52.3±0.0 2 4 -0.6±0.1 -0.1±0.4 7.1±0.3 2 4

Ala-1A-1E C6H12NO4
+ 162.0761 -0.7±0.5 0.4±1.3 9.0±2.0 2 4 -0.2±0.5 0.4±0.5 6.8±0.7 2 4

4-Aminobutyrate-1A-1E C7H14NO4
+ 176.0917 c c c c c 0.0±0.4 0.3±1.4 9.5±2.9 2 4

Asp-1A-2E C8H14NO6
+ 220.0816 -0.6±0.5 c 55.1±0.0 4 8 -0.8±0.4 c 55.1±0.0 4 8

Benzoate-1E C8H9O2
+ 137.0597 -0.8±1.0 0.3±0.2 4.9±0.6 1 3 1.0±1.2 0.0±0.3 4.6±0.4 1 4

Fumarate-2E C6H9O4
+ 145.0495 -0.6±0.8 0.5±0.4 6.9±0.8 2 4 1.4±3.0 -0.6±0.6 15.4±3.5 1 3

Glu-1A-2E C9H16NO6
+ 234.0972 -1.1±0.9 -2.7±2.2 21.6±11.7 3 8 -0.4±0.4 0.0±0.7 9.3±2.5 2 7

Hippurate-1E C10H12NO3
+ 194.0812 -0.9±0.5 -0.3±1.0 8.5±2.1 2 5 -0.8±0.5 0.3±0.5 7.6±0.7 2 4

Ile-1A-1E C9H18NO4
+ 204.1230 -0.6±0.7 c 60.9±0.0 3 4 -0.9±0.3 0.4±0.4 8.1±0.8 2 4

Leu-1A-1E C9H18NO4
+ 204.1230 -0.5±0.3 c 60.9±0.0 3 4 -0.9±0.4 0.4±0.2 7.9±0.2 2 4
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Table 12.6 continued. 
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Malonate-2E C5H9O4
+ 133.0495 -0.4±0.8 c 33.2±0.0 2 4 1.2±1.4 0.1±0.2 5.7±0.3 2 3 

Met-1A-1E C8H16NO4S
+ 222.0795 -0.2±0.8 -2.9±1.9 28.2±13.7 5 8 -0.8±0.2 0.5±0.3 4.0±1.4 2 8 

Me-malonate-2E C6H11O4
+ 147.0652 -1.0±1.4 -3.0±2.0 28.1±12.9 2 4 0.2±0.8 0.4±0.4 6.6±0.9 2 3 

Nicotinate-1E C7H8NO2
+ 138.0550 -0.5±1.0 -0.6±0.5 5.9±1.7 1 2 1.1±1.2 0.2±0.5 4.9±1.5 1 2 

Nval-1A-1E C8H16NO4
+ 190.1074 -0.6±0.4 c 54.5±0.0 3 4 -0.4±0.3 0.5±0.2 7.7±0.5 2 4 

Phe-1A-1E C12H16NO4
+ 238.1074 -0.7±0.5 c 79.6±0.0 7 8 -1.3±0.5 0.5±0.3 10.3±0.5 2 7 

Phenylacetate-1E C9H11O2
+ 151.0754 -0.6±0.4 -0.6±1.0 7.7±2.2 1 3 0.3±0.8 0.2±0.4 5.5±0.9 1 4 

Pro-1A-1E C8H14NO4
+ 188.0917 -0.8±0.3 c 54.3±0.0 3 4 -0.6±0.2 -0.2±0.8 8.0±1.8 2 4 

Suberate-2E C10H19O4
+ 203.1278 -0.4±0.7 c 65.1±0.0 3 4 -1.1±0.6 0.0±0.5 8.4±0.5 2 4 

Val-1A-1E C8H16NO4
+ 190.1074 -1.0±0.2 c 54.5±0.0 3 4 -0.8±0.5 0.6±0.3 7.9±0.5 2 4 

a Difference between predicted and measured variable; b Sorting according to mSigma value; c Not detected. 

Calculation parameter: positive adducts, M+H; m ≤±5mDa; charge, 1; even electron number; filter H/C element ratio ≤3; check 
ring plus double bonds from -0.5 to 40; 0 ≤ nN ≤ 5; 0 ≤ nP ≤ 1; 0 ≤ nS ≤ 2.  



 
 174

 
 
 

Table 12.7 Figures of merit for the study of matrix effects via spike-in experiment in chapter 7. Concentra-
tions of spike-in compounds in spike-in mixtures for E. coli, serum and urine are given, the internal stand-
ard used for quantification of each spike-in compound is listed, and mean recoveries ±SD for the internal 
standards in the three different matrices are presented. Since endogenous metabolite concentrations 
varied among the three matrices, separate spike-in mixtures were used. Volumes of 0, 10, 20, 30, 40, 50, 
and 60 µL for spike-in levels 1-6 were added to aliquots of pre-processed matrix, which corresponded to 
absolute amounts between 0.08-24.24 nmol of the spike-in metabolites. The final volume of MeOx-TMS 
derivatized matrix sample was 110 µL. 

 

Compound E. coli 
spike-in 

mix Conc. 
(µM) 

Serum 
spike-in 

mix Conc. 
(µM) 

Urine    
spike-in 

mix Conc. 
(µM) 

Corresponding internal 
standarda 

 

  

Spike-in compound     
2-Ketobutyrate 75.0 75.0 75.0 [U-13C]pyruvate 

3-Methyl-2-oxovalerate 75.0 75.0 69.9 [U-13C]pyruvate 

Methylmalonate 138.6 9.8 47.9 [U-13C]fumarate 

Nicotinate 98.1 75.0 75.0 [2H7]trans-cinnamate 

Phenylacetate 75.0 75.0 75.0 [2H7]trans-cinnamate 

Glycerate 64.9 10.6 35.3 [U-2H]succinate/        
[U-13C]fumarate     

Fumarate 67.9 75.0 29.3 [U-13C]fumarate 

-Ketoglutarate 7.8 75.0 113.8 [2,3,3-2H3]malate 

Phenyllactate 75.0 75.0 75.0 [U-13C]lactate/          
[2H7]trans-cinnamate     

Phenylpyruvate 8.1 75.0 75.0 [U-13C]pyruvate 

Hydroxyphenylacetate 75.0 75.0 79.3 [2H7]trans-cinnamate 

Homovanillate 75.0 75.0 20.9 [2,2,4,4-2H4]citrate/ 
[2H7]trans-cinnamate     

Phosphoglycerate 24.1 75.0 36.6 [2,2,4,4-2H4]citrate/ 
[2H7]trans-cinnamate     

Hydroxyphenylpyruvate 75.0 75.0 17.2 [2,2,4,4-2H4]citrate/ 
[2H7]trans-cinnamate     

Pyruvate 410.6 75.0 194.2 [U-13C]pyruvate 
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Table 12.7 continued. 

 Mean  
recovery in 
E. colib (%)

Mean  
recovery in 
serumb (%) 

Mean  
recovery in 
urineb (%) 

 

  

Internal standard    
[U-13C]pyruvate 107.9±11.2 113.4±22.4 83.6±33.5 

[U-13C]lactate 69.3±3.9 102±9.3 96.2±25.6 

[U-2H]succinate 59.2±4.6 93.8±10.7 83.7±12.6 

[U-13C]fumarate 94.5±11.9 97±9.6 76.1±12.1 

[2,3,3-2H3]malate 99.7±6.9 99.8±8.1 80.4±11 

[2H7]trans-cinnamate 109.8±7.2 103.8±18.2 90.6±19.1 

[2,2,4,4-2H4]citrate 99.6±7.4 64.3±7.4 57.9±9.3 

a Internal standards in bold were chosen instead of those with poor re-
covery. b Calculation based on area integrals of [M+H]+ in the spiked 
matrix samples (N=30) divided by those in standards (N=12). 
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Table 12.8 List of compounds contained in our in-house GC-APCI-HRTOFMS database of 100 MeOx-
TMS derivatized metabolite standards. Mostly sugars, fatty acids, amines, organic acids, alcohols, amino 
acids and amino acid metabolites are included. Isomer elution numbers are given for metabolites yielding 
multiple peaks after derivatization. MeOx, group introduced by methoximation; TMS, trimethylsilyl group. 

No.  Metabolite 44 Lactate, 2TMS 
1 N-Acetyl-aspartate, 2TMS 45 Lactose-1, MeOx, 8TMS 
2 N-Acetyl-D-glucosamine, MeOx, 4TMS 46 Lactose-2, MeOx, 8TMS 
3 N-Acetyl-neuraminate, MeOx, 6TMS 47 Laurate, TMS 

4 Acetylputrescine, 2TMS 48 Leucine, TMS 

5 cis-Aconitate, 3TMS 49 Leucine, 2TMS 
6 Adipate, 2TMS 50 Lysine, 3TMS 
7 Alanine, 2TMS 51 Lysine, 4TMS 

8 Aspartate, 2TMS 52 Malate, 3TMS 

9 Aspartate, 3TMS 53 Malonate, 2TMS 
10 Citrate, 4TMS 54 Mandelate, 2TMS 

11 Creatinine, 3TMS 55 Mannitol, 6TMS 

12 Dihydroorotate, 3TMS 56 Methylmalonate, 2TMS 

13 Dimethylsuccinate, 2TMS 57 3-Methyl-2-oxovalerate, MeOx, TMS 

14 Erythritol, 4TMS 58 4-Methyl-2-oxovalerate, MeOx, TMS 
15 Ethanolamine, 2TMS 59 Myo-inositol, 6TMS 
16 Fructose-1, MeOx, 5TMS 60 Nicotinamide, TMS 
17 Fructose-2, MeOx, 5TMS 61 Nicotinate, TMS 
18 Fumarate, 2TMS 62 Nonadecanoate, TMS 
19 GABA, 3TMS 63 Nonanoate, TMS 
20 Glucose-1, MeOx, 5TMS 64 Norvaline, TMS 
21 Glucose-2, MeOx, 5TMS 65 Norvaline, 2TMS 
22 Glucose-6-phosphate-1, MeOx, 6TMS 66 Ornithine, 3TMS 
23 Glucose-6-phosphate-2, MeOx, 6TMS 67 Ornithine, 4TMS 
24 Glycerate, 3TMS 68 Orotate, 3TMS 
25 Glycerol, 3TMS 69 Pantothenate, 3TMS 
26 Glycerol-1-phosphate, 4TMS 70 Pentadecanoate, TMS 
27 Glycine, 3TMS 71 Phenylacetate, TMS 
28 Heptadecanoate, TMS 72 Phenylalanine, TMS 
29 Hippurate, TMS 73 Phenylalanine, 2TMS 
30 Hippurate, 2TMS 74 Phenyllactate, 2TMS 
31 Homogentisate, 3TMS 75 Phenylpyruvate, MeOx, TMS 
32 Homovanillate, 2TMS 76 Phosphoenolpyruvate, 3TMS 
33 2-Hydroxybutyrate, 2TMS 77 3-Phosphoglycerate, 4TMS 
34 3-Hydroxybutyrate, 2TMS 78 O-Phosphorylethanolamine, 4TMS 
35 5-Hydroxy-indoleacetate, 2TMS 79 Proline, TMS 
36 5-Hydroxy-indoleacetate, 3TMS 80 Proline, 2TMS 
37 Hydroxyphenylacetate, 2TMS 81 Pyruvate, MeOx, TMS 
38 Hydroxyphenylpyruvate, MeOx, 2TMS 82 Quinolinate, 2TMS 
39 Hydroxyproline, 3TMS 83 Ribitol, 5TMS 
40 Isoleucine, TMS 84 Serine, 2TMS 
41 Isoleucine, 2TMS 85 Serine, 3TMS 
42 Itaconate, 2TMS 86 Sorbitol, 6TMS 
43 -Ketoglutarate, MeOx, 2TMS 87 Suberate, 2TMS 
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Table 12.8 continued. 

No.  Metabolite 
88 Succinate, 2TMS 
89 Threonine, 2TMS 
90 Threonine, 3TMS 
91 Thymine, 2TMS 
92 Tridecanoate, TMS 
93 Tryptophan, 2TMS 
94 Tryptophan, 3TMS 
95 Tyrosine, 2TMS 
96 Tyrosine, 3TMS 
97 Undecanoate, TMS 
98 Valine, TMS 
99 Valine, 2TMS 
100 Vanillate, 2TMS 
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Table 12.9 Mean signal-to-noise ratios of FAMEs computed from four subsequent replicate runs by 
means of GC-APCI I or APCI II-HRTOFMS. The “Find Compounds – Chromatogram” peak finder was 
applied on EICs of protonated molecules (concentration range: 5-13 µM). Student’s t-tests with correction 
for multiple testing according to Benjamini and Hochberg [89] were performed on signal-to-noise ratios. 
For comparison of the not normally distributed mean S/N, the Wilcoxon signed-rank test was used. Re-
printed from [13]. 

FAME Mean S/N 

[M+H]
+
 

APCI I

Mean S/N 

[M+H]
+
 

APCI II
 
  
C11:0

 a 3100 10389
C13:0

 a 6708 20694
C14:1

 a 4718 17974
C15:1

 a 1619 6040
C15:0

 a 1268 7038
C16:1 17392 19306
C17:1

 a 3503 10269
C17:0

 a 2988 11120
C18:1c

 a 12543 22875
C18:1t

 a 6903 14504
C18:0

 a 18250 37792
C20:1

 a 5174 11573
C20:0

 a

 16589 22813
C21:0

 a 6636 15339
C22:1

 a 2387 14289
C22:0

 a 6813 29035
C23:0

 a 3455 17251
C24:1

 a 1468 11356
C24:0

 a 3164 23060
Arithmetic mean

b
6562 16985

a
 padj <0.05 (Student’s t-test, corrected for multiple testing). 

b
 p <0.05 (Wilcoxon) 
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Table 12.10 Figures of merit for ISs used in metabolite profiling by GC-HRTOFMS with either the APCI I 
or the APCI II source. Calibration curves of twenty MeOx-TMS derivatized metabolites were analyzed. 
(TMS derivatization status and isomer elution number are given for metabolites yielding multiple peaks 
after derivatization). Reprinted from [13]. 

Compound GC-APCI II-
HRTOFMS 

ret.time 
(min)

m/z  

[M+H]
+
 

ion

GC-APCI I-
HRTOFMS

GC-APCI II-
HRTOFMS

  RSD
a 
(%) RSD

a 
(%) 

[U-
13

C]lactate 10.87 238.13 2.0 5.8 
[U-

13
C]3-hydroxybutyrate 12.55 253.15 7.3 3.2 

Nval-2TMS 13.90 262.17 8.0 4.5

[U-
2
H

4
]succinate 15.00 267.14 6.0 3.7 

[U-
13

C]fumarate 15.54 265.11 2.6 2.4 
[
2
H

7
]trans-cinnamate 18.56 228.14 4.7 1.4 

[U-
13

C]glucose-1 23.50 576.32 5.8 2.4 
[4,6,7-

2
H

3
]5-HI-[

2
H

2
]AA 26.75 341.18 7.6 9.9 

[U-
13

C]lactose-1 31.86 960.51 8.1 9.5 
Arithmetic mean   5.8 4.8 
a
 Concentration = 100 µM, N = 5 derivatization replicates. 
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Figure 12.1 GC-APCI-TOFMS mass spectra of the MeOx-TMS derivatives of suberate and valine. Spec-
tra A and B were acquired without, spectra C and D at 0.4 mL/h of continuous water infusion into the 
APCI source (Standard concn=100 µM, TMS=trimethylsilyl group). Reprinted from [14]. 
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Figure 12.2 GC-APCI-TOFMS mass spectra of the MCF-derivatives of suberate and valine acquired 
without and at five different rates of water infusion. (A-F) refer to suberate-2E and (G-L) to valine-1E-1A, 
respectively. Water-infusion rate was increased in 0.1 mL/h increments from 0.1 to 0.5 mL/h (standard 
concn=200 µM, E=methyl ester group, A=amide group). Reprinted from [14]. 
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Figure 12.2 continued. 
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Figure 12.3 NMR analysis of aqueous and MCF derivatized standards of 2-HG and 5-Oxotetrahydro-2-
furancarboxylate as well as serum of an AML patient with an IDH2 R140Q mutation. (A) Predicted 1H-
NMR chemical shifts in ppm (blue numbers) of the investigated derivatives of standard analytes by 
ChemDraw. (B, C) Overlaid 1D 1H spectra of (B) MCF derivatized and (C) aqueous standards of 2-HG 
(green in (B), yellow in (C)) and 5-oxotetrahydro-2-furancarboxylate (orange in (B), green in (C)) at a 
concentration of 1 mM each. (D) Overlaid 2D 1H-13C TOCSY spectra of serum of an AML patient with an 
IDH2 R140Q mutation (green) and aqueous standards of 2-HG (red) and 5-oxotetrahydro-2-
furancarboxylate (orange). Experimental details are given in the experimental section of chapter 9. NMR 
peak assignments in (B) were based on predicted 1H chemical shifts and similar 1H intensities for methyl 
groups of each of the three derivatives (numbering is shown in (A)). Lac, 5-Oxotetrahydro-2-
furancarboxylate; Metderiv, methyl ester.   
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Figure 12.3 continued. 
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Figure 12.4 HPLC-ESI-MS/MS analysis of a standard mixture of 2-HG and 5-oxotetrahydro-2-
furancarboxylate (31.25 µM each) on a Discovery HS F5 PFPP column. 150 × 2.1 mm, 3 μm, 120 Å, 
Discovery HS F5 (Supelco), P=134 bar. Elution with mobile phases A (0.1% formic acid in water, v/v) and 
B (acetonitrile) was performed using the following linear gradient: 0-6.5 min, hold at 100% A at a flow rate 
of 0.2 mL/min; 6.5-8 min, 0-100% B at 0.35 mL/min; 8-10 min, hold at 100% B at 0.35 mL/min; 10-10.1 
min, 0-100% A at 0.35 mL/min; 10.1-17 min, hold at 100% A at 0.35 mL/min; 17-18 min, hold at 100% A 
at 0.2 mL/min. Detection was carried out using electrospray ionization in negative mode and multiple 
reaction monitoring on a 4000 QTRAP from AB Sciex. Further details are given in the experimental sec-
tion of chapter 9. 
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15 Summary 

With the commercial introduction of atmospheric pressure chemical ionization for gas 

chromatography in 2008, GC-APCI coupled to high-resolution time-of-flight mass spec-

trometry (GC-APCI-HRTOFMS) became an interesting addition to the metabolomics 

toolbox. APCI is a soft ionization technique and its application to hyphenate GC to high 

resolution MS opens up promising new means for the identification of unknown signals 

in complex matrices. The actual utility of GC-APCI-HRTOFMS in metabolic fingerprint-

ing and profiling applications to biological matrices is the topic of this doctoral thesis.  

During comparison of GC-APCI-HRTOFMS with GC×GC-EI-TOFMS, GC-EI-TOFMS, 

GC-CI-qMS, and GC-EI-qMS in my master thesis, it was noticed that reproducibility of 

APCI was affected greatly by differences in humidity in the laboratory. Therefore, the 

impact of humidity in the APCI source on ionization efficiency and repeatability was 

systematically studied in the initial project of this doctoral thesis. Water was continuous-

ly infused to ensure a constant humidity during APCI in the analysis of methylchlorofor-

mate (MCF)- and methoxime-trimethylsilyl (MeOx-TMS) derivatized metabolites. These 

two different derivatization strategies are most commonly pursued in GC-MS based 

metabolome analyses. Several infusion rates were tested and a rate of 0.4 mL/h yielded 

an average 16.6-fold increase in intensity of the protonated molecules ([M+H]+) of 20 

MCF-derivatized metabolites through suppression of in-source fragmentation. Water 

infusion, however, did not improve efficiency and repeatability of APCI of methoxime-

trimethylsilyl (MeOx-TMS) derivatives of metabolite standards. Then, the impact of 

water infusion on metabolic fingerprinting of biological specimens was investigated. 

Water infusion led to a marked increase in the number of metabolites identified in MCF-

derivatized cancer cell extracts via their [M+H]+ ions and improved repeatability of peak 

areas, almost doubling the number (N=23) of identified, significantly regulated metabo-

lites (false discovery rate <0.05) between controls and cancer cells treated with the 

heat-shock protein 90 (Hsp90) inhibitor 17-DMAG.  
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Next, matrix effects caused by co-eluting compounds were investigated that might influ-

ence ionization. Strikingly, recovery of three out of seven internal standards used in a 

spike-in experiment was below 75% in one or several of the three biological matrices 

tested, namely Escherichia coli extract, serum, and urine. This was due to suppression 

by their respective endogenous metabolite that was present at a high concentration. Ion 

suppression caused by a co-eluting compound was further shown for three pairs of co-

eluting standards employing standard mixtures with increasing concentrations of the co-

eluting compounds. Overall these experiments demonstrated that matrix effects have to 

be taken into consideration in GC-APCI-MS.  

In the course of my doctoral thesis, Bruker Daltonics (Bremen, Germany) introduced a 

redesigned APCI source. To test the capabilities of this source, MeOx-TMS derivatized 

supernatants of untreated cancer cells were analyzed by GC-APCI-HRTOFMS using 

both the original APCI I and the redesigned APCI II source. The latter source almost 

doubled the number of spectral features with signal-to-noise ratios greater than 20 that 

could be extracted from metabolite fingerprints and increased the absolute number of 

identified metabolites by 33% from 36 to 48. In addition, the median area RSDs of ex-

tracted features decreased from 33% to 24%. These improvements further resulted in a 

more than fourfold median decrease in lower limits of quantification to 0.002 - 3.91 µM 

as evidenced for 20 MeOx-TMS derivatized metabolite standards and a concomitant 

increase in the linear range by 0.5 to almost three orders of magnitude.  

Finally, GC-APCI(II)-HRTOFMS was applied to the enantioselective quantitative profil-

ing of the oncometabolite D-2-hydroxyglutarate (D-2-HG). MCF derivatization and GC 

analysis on a chiral -cyclodextrin (Rt-DEXsa) column were used to separate the D 

from the L enantiomer of 2-HG. Separation was optimized to avoid co-elution of D-2-HG 

with a highly abundant matrix compound present in cell culture media supplemented 

with bovine serum albumin. The use of APCI-HRTOFMS yielded highly specific quanti-

fier ions and the infusion of water enhanced lower limits of quantification and repeatabil-

ity by factors of ten and two, respectively. Analysis of a racemic 2-HG standard after 

MCF derivatization yielded a total of four peaks instead of the expected two signals for 

the D- and L-enantiomer. It was then shown that in addition to an open-chain three-fold 
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derivative of 2-HG the methyl ester of the D/L-2-HG lactone is formed during derivatiza-

tion. Since lactone of D/L-2-HG was found to be naturally present in biological speci-

mens, the developed method was eventually based on the open-chain three-fold deriva-

tive of 2-HG yielding LLOQ values of 0.49 µM (D-2-HG) and 0.24 µM (L-2-HG). The 

GC-APCI(II)-HRTOFMS approach was successfully applied to the determination of D/L-

2-HG concentration levels in urine specimens of 23 acute myeloid leukemia (AML) 

patients and 6 healthy controls, which were validated by HPLC-MS/MS. The yet to be 

discovered source of 2-HG lactone in sera of AML patients carrying neomorphic iso-

citrate dehydrogenase mutations promises to shed new light on the pathogenesis and 

progression of AML. 

In summary this doctoral thesis demonstrates that GC-APCI-HRTOFMS is a useful 

addition to the established GC-MS approaches in metabolomics. Studies on factors 

potentially influencing the ionization, namely water infusion, matrix effects and source 

type, distinctly widened the applicability of GC-APCI-HRTOFMS for qualitative and 

quantitative analysis of MeOx-TMS and MCF derivatized metabolites. The ability of 

APCI along with water infusion to efficiently ionize a broad range of MCF metabolites 

was proven and in the following applied to comparative metabolic fingerprinting in ex-

tracts of treated cancer cells. Finally, the outstanding quantitative capabilities of GC-

APCI(II)-HRTOFMS were used in a first enantioselective profiling application for quanti-

tative determination of the oncometabolite D-2-HG. Altogether, this doctoral thesis con-

tributed significantly to the excellent progress GC-APCI-MS has made towards becom-

ing a routine tool in metabolomics. 
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16 Zusammenfassung 

Mit der kommerziellen Einführung der chemischen Ionisation bei Atmosphärendruck für 

die Gaschromatographie im Jahr 2008 wurde GC-APCI in Kombination mit hochauflö-

sender Massenspektrometrie (GC-APCI-HRTOFMS) als zusätzliches Verfahren für das 

Methodenspektrum in der Metabolomik interessant. Bei der APCI handelt es sich um 

eine weiche Ionisationstechnik. In Kombination mit GC und hochauflösender MS eröff-

net APCI neue erfolgversprechende Möglichkeiten zur Identifizierung von unbekannten 

Signalen in komplexen Matrices. Diese Doktorarbeit behandelt die Frage, inwiefern GC-

APCI-HRTOFMS in „Metabolic Fingerprinting“ und „Metabolic Profiling“-

Untersuchungen in biologischen Matrices nützlich ist.    

Im Laufe des Vergleichs von GC-APCI-HRTOFMS mit GC×GC-EI-TOFMS, GC-EI-

TOFMS, GC-CI-qMS und GC-EI-qMS wurde festgestellt, dass sich Schwankungen in 

der Luftfeuchtigkeit im Labor sehr stark auf die Reproduzierbarkeit der APCI auswirkten. 

Deshalb wurde im anfänglichen Projekt dieser Doktorarbeit systematisch untersucht, ob 

die Feuchtigkeit in der APCI-Quelle die Ausbeute und Wiederholbarkeit der Ionisierung 

beeinflusst. Die Zugabe von Wasser erfolgte kontinuierlich während der Analyse von 

mittels Chlorameisensäuremethylester (MCF)/MeOH und sequenzieller Methoximie-

rung/Silylierung derivatisierten Metaboliten, um einen konstanten Feuchtigkeitsgehalt 

bei der APCI zu gewährleisten. Diese beiden unterschiedlichen Derivatisierungsstrate-

gien werden in Metabolomics-Untersuchungen mittels GC-MS am häufigsten gebraucht. 

Verschiedene Infusionsraten von Wasser wurden getestet. Durch Zugabe von 0.4 mL 

Wasser pro Stunde konnten die Intensitäten der protonierten Moleküle ([M+H]+) der 

verwendeten 20 MCF derivatisierten Metabolitenstandards durchschnittlich um das 

16.6-fache erhöht werden. Dies wurde aufgrund der resultierenden geringeren Frag-

mentierung in der APCI Quelle erreicht. Die Zugabe von Wasser führte hingegen im Fall 

von mittels sequenzieller Methoximierung/Silylierung (MeOx-TMS) derivatisierten Meta-

bolitenstandards zu keiner Verbesserung bezüglich Ausbeute und Wiederholbarkeit der 
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APCI. Anschließend wurde überprüft, inwiefern sich die Zugabe von Wasser bei der 

Untersuchung von biologischen Proben mittels „Metabolic Fingerprinting“ auswirkt. Die 

Zugabe von Wasser erhöhte dabei die Anzahl der über das jeweilige protonierte Mole-

kül identifizierten Metabolite in MCF-derivatisierten Extrakten von Krebszellen deutlich 

und verbesserte die Wiederholpräzision der Peakflächen, was die Zahl der identifizier-

ten und signifikant regulierten Metabolite (False Discovery Rate <0.05) zwischen Kon-

trollen und den mit dem Hitzeschockprotein 90 (Hsp90) Inhibitor 17-DMAG behandelten 

Krebszellen auf insgesamt 23 fast verdoppelt hat. 

Des Weiteren wurden mögliche Ionisierungseffekte aufgrund von ko-eluierenden Mat-

rixbestandteilen untersucht. Insbesondere lag die Wiederfindungsrate von drei der sie-

ben verwendeten internen Standards im Spike-in Experiment unterhalb von 75% in 

einer oder mehreren der drei untersuchten biologischen Matrices (Escherichia coli Ex-

trakt, Serum und Urin). Dies war auf Ionensuppression durch den jeweiligen endogenen 

Metaboliten zurückzuführen, der hochkonzentriert vorlag. Durch eine ko-eluierende 

Standardverbindung hervorgerufene Ionisierungseffekte konnten ferner experimentell 

für drei solcher Paare aufgezeigt werden. Dabei wurden die mit den Analyten ko-

eluierenden Standardverbindungen in steigenden Konzentrationen eingesetzt. Insge-

samt hat sich in allen Experimenten zu Matrixeffekten herausgestellt, dass diese in der 

GC-APCI-MS berücksichtigt werden müssen. 

Im Verlauf meiner Doktorarbeit wurde eine neu entworfene APCI-Quelle von Bruker 

Daltonics (Bremen, Deutschland) vorgestellt. Um die Leistungsfähigkeit dieser Quelle 

zu überprüfen. wurden MeOx-TMS derivatisierte Zellkulturüberstände unbehandelter 

Krebszellen mittels GC-APCI-HR-TOFMS analysiert. Dies erfolgte sowohl unter Ver-

wendung der ursprünglichen APCI I Quelle als auch der neu entworfenen APCI II Quel-

le. Letztere Quelle konnte die Zahl der aus den metabolischen Fingerabdrücken ge-

wonnenen Signale mit Signal-zu-Rausch-Verhältnis >20 fast verdoppeln. Darüber 

hinaus gelang es, die absolute Anzahl identifizierter Metabolite in diesen Proben um 

33% von 36 auf 48 zu steigern und die mediane relative Standardabweichung der Peak-

flächen obiger gewonnener Signale von 33% auf 24% zu verringern. Außerdem war es 

unter Verwendung der verbesserten APCI II Quelle möglich, die mediane untere Quanti-
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fizierungsgrenze für 20 MeOx-TMS derivatisierte Metabolitenstandards um mehr als 

das Vierfache auf 0.002-3.91 µM zu erniedrigen und gleichzeitig den linearen Bereich 

um eine halbe Größenordnung auf insgesamt drei Konzentrationsgrößenordnungen zu 

erhöhen.  

Schließlich wurde GC-APCI(II)-HRTOFMS zur enantioselektiven, quantitativen Bestim-

mung des Onko-Metaboliten D-2-Hydroxyglutarat (D-2-HG) verwendet. MCF Derivati-

sierung mit nachfolgender gaschromatographischer Analyse mittels einer chiralen -

Cyclodextrin (Rt-DEXsa) Kapillarsäule wurden eingesetzt, um das D- vom L-

Enantiomer des 2-HGs abzutrennen. Die Trennung wurde optimiert, um die Koelution 

von D-2-HG und einer hochabundanten Matrixkomponente in Zellkulturmedien mit zu-

gegebenem Rinderserumalbumin zu vermeiden. APCI und TOFMS ergaben Ionen von 

hoher Spezifität für die Quantifizierung. Die Zugabe von Wasser verbesserte die unte-

ren Quantifizierungsgrenzen und die Reproduzierbarkeit der Methode um das Zehn- 

bzw. Zweifache. Bei der Analyse eines racemischen 2-HG Standards nach MCF Deriva-

tisierung konnten anders als vermutet insgesamt vier statt zwei Signale für das D- und 

L-Enantiomer detektiert werden. Daraufhin wurde gezeigt, dass zusätzlich zum offen-

kettigen Dreifachderivat der Methylester des Lactons von 2-HG während der Derivati-

sierung gebildet wird. Dadurch, dass das fünfgliedrige Lacton von D/L-2-HG natürlich in 

biologischen Proben vorkommt, wurde in der entwickelten Methode schließlich das 

offenkettige Dreifachderivat von 2-HG zur Quantifizierung herangezogen. Daraus resul-

tierten untere Quantifizierungsgrenzen von 0.49 µM (D-2-HG) und 0.24 µM (L-2-HG). 

GC-APCI(II)-HRTOFMS konnte erfolgreich zur Bestimmung von D/L-2-HG Spiegeln in 

Urinproben von 23 Patienten mit akuter myeloischer Leukämie (AML) und 6 gesunden 

Probanden angewandt und die erzielten Ergebnisse mittels HPLC-MS/MS validiert 

werden. Die Aufklärung des Ursprungs des 2-HG-Lactons in Serumproben von AML 

Patienten mit mutierter Isocitrat-Dehydrogenase verspricht neue Einblicke in Entstehen 

und Fortschreiten von AML zu geben. 

Zusammengefasst konnte in dieser Doktorarbeit aufgezeigt werden, dass GC-APCI-

HRTOFMS ein nützliches zusätzliches Verfahren zu den etablierten GC-MS Methoden 

in der Metabolomik ist. Studien zu Faktoren, welche die Ionisierung möglicherweise 
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beeinflussen – nämlich die Zugabe von Wasser, Matrixeffekte und Quellentyp – konnten 

die Anwendbarkeit von GC-APCI-HRTOFMS für die qualitative und quantitative Analyse 

von MeOx-TMS und MCF derivatisierten Metaboliten erheblich steigern. Dabei konnte 

nachgewiesen werden, dass mittels APCI und Wasserzugabe eine große Bandbreite an 

MCF derivatisierten Metaboliten ionisiert werden kann. Dies wurde nachfolgend bei der 

vergleichenden Analyse metabolischer Fingerabdrücke von Extrakten behandelter 

Krebszellen angewandt. Schlussendlich wurde die ausgezeichnete quantitative Leis-

tungsfähigkeit von GC-APCI(II)-HRTOFMS in einer ersten enantioselektiven „Metabolic 

Profiling“-Anwendung für die Quantifizierung des Onko-Metaboliten D-2-HG genutzt. 

Summa summarum hat diese Doktorarbeit einen wichtigen Beitrag zur zukünftigen, 

routinemäßigen Anwendung der GC-APCI-MS in der Metabolomik geleistet.  
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