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Summary 
The concept of workload describes the relationship between a human operator and the 
momentary task demands. Conventionally workload is defined as a subjective state of 
the operator that can be reported with use of psychometric scales. The effects of 
workload on performance and reaction times yield important “objective” sources of 
information. Signal detection theory provides us with a useful framework within 
which we can interpret the effects of workload on discriminability (d’) and measures 
of response bias (β, corresponding to the likelihood ratios of the noise and noise plus 
signal functions at the criterion). Modern brain imaging techniques can be employed 
to determine the effects of workload on task-related neural responses in specific 
regions of the human brain. We describe a neurocognitive approach to research on the 
effects of workload in simulated (laboratory) and real (field) experiments. The 
findings suggest that functional brain imaging can provide important new insights into 
the way operators perform in challenging tasks. 

Table of Contents 
Introduction.................................................................................................................................3 

Capacity, resources and the role of attention ...............................................................4 

Neurocognitive approaches to workload research ....................................................4 

Imaging the effects of uncertainty .....................................................................................4 

Functional Imaging Results...................................................................................................7 

Effects of stimulus uncertainty............................................................................................8 

Simulated Driving Experiments..........................................................................................8 

EEG correlates of (simulated) driving..............................................................................9 

fMRI correlates of (simulated) driving ......................................................................... 10 

Effects of workload on drivers in real driving scenarios ...................................... 12 

Event related potentials ........................................................................................................... 12 

Continuous Measures of Driver Mental Load based on spontaneous EEG ........ 13 

fMRI correlates of visual working memory ................................................................ 16 

Effects of stimulus uncertainty and workload on performance and brain 
activity in attention and memory tasks........................................................................ 17 

Conclusions............................................................................................................................... 19 

Acknowledgements .................................................................................................................... 19 

References...................................................................................................................................... 20 



  3 

Introduction 
As part of the Festschrift in honour of Alf Zimmer, the present chapter reviews recent 
results on the effects of uncertainty and workload on human performance and brain 
activation arising in discrimination tasks between stimuli that only differ from each 
other. The operator (i.e., the participant in the experiment) has to decide whether a 
stimulus differs along the one or the other dimension (e.g., colour or shape), whether 
in a simulated driving scene or in real driving scenarios the car should be steered to 
the left or the right, or in a memory task whether the second of two sequentially 
presented gratings had a higher or lower relative spatial frequency compare to the first 
one. A common factor in all of these tasks is that the discriminations to be made are 
challenging and there is a correct and incorrect response in each trial. Thus we can 
combine the methods proposed by SDT to explore subjects’ brain activity related to 
making decisions under uncertainty. 

Signal Detection Theory (SDT) is a model of decision making under uncertainty.  It 
has been most widely applied to the study of perceptual detection and discrimination 
tasks.  However, it can usually be applied to any task that can be formulated as 
decision among two or more possible alternatives.  Uncertainty arises because the 
information presented to the operator on each occasion is perturbed by random 
fluctuations, characterized in the model as noise.  In the model, the operator knows 
the relative frequencies of the different possibilities and also the likelihood that the 
information presently at hand originated from each of the possibilities.  Because of 
noise, the likelihood resulting from the occurrence of a given alternative varies from 
one presentation to another, and that alternative is represented in the decision process 
by the probability distribution of likelihood values given the alternative.  The capacity 
of the observer to discriminate between two alternatives, called sensitivity in sensory 
studies, is determined by the degree to which the corresponding distributions are 
separated.  When the distributions are assumed to be equal variance Gaussians, d′ is 
widely used as the measure of separation and capacity to discriminate.   

The decision of the operator on each occasion depends both on the likelihood values, 
on the one hand, and on considerations related to the relative frequencies of the 
alternatives and on the rewards and costs associated with the possible correct and 
incorrect decisions, on the other hand.  In the model, these latter considerations are 
represented by a criterion to which the likelihoods are compared.  When there are two 
alternatives, the criterion is often a critical ratio of the two likelihoods and is termed 
Beta, β. 

SDT has multiple uses in the study of workload.  It describes a number of 
performance measures and, given some widely used assumptions, the quantitative 
relationships among the measure.  The latter facilitates comparison and integration of 
results obtained using different tasks and/or performance measures.  The model and 
the measures distinguish between capacity per se and criterion effects, i.e. decision 
parameters that reflect judgments about the pay-off structure.  The model provides a 
structure and concepts to construct an ideal operator, i.e. a worker that performs at the 
maximum level possible, given the situation.  The ideal not only provides a standard 
against which the performance of real workers can be compared, but it also identifies 
various ways in which performance can be degraded, e.g. noise, performance 
limitations, etc.  It also provides a framework for examining the effects of selective 
attention in optimizing performance under workload. 
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One application of SDT  to the study of workload has been in tasks involving stimulus 
uncertainty.  These are situations in which the decision requires monitoring multiple 
sources of information, each perturbed by independent noise.  An example is the 
radiologist examining a chest X-ray for signs of a lesion, who must assess multiple 
locations in the image (Bochud, Abbey, and Eckstein, 2004).  Or, in the laboratory, 
the observer must identify the change in the contrast or in the spatial frequency of a 
grating without knowing ahead of time which property will change.  Performance 
decreases when uncertainty exists, the drop in performance increasing with the 
number of independent sources that must be monitored.  In the grating example just 
given, judgments are less accurate when the observer does not know which property 
will change than when the observer does know, even though the observer can identify 
simultaneous, uncorrelated changes in both with the same accuracy as judging a 
change in just one property (Thomas and Olzak, 1996; Olzak and Wickens, 1997).  
The SDT explanation of these effects is that each additional source that must be 
monitored adds noise to the decision process.  If, as in the stimulus uncertainty case, 
only one source adds information, the signal-to-noise ratio and, consequently, 
performance are reduced. 

Cuing improves performance in stimulus uncertainty situations (Posner, 1980).  Best 
performance occurs when the cue identifies the target input on every occasion, i.e. 
100% validity.  Lesser improvement occurs when the cue is less often valid, the 
degree of improvement increasing with increases in the frequency that the cue is 
valid.  Models based on SDT have identified possible bases for such improvement, 
making them subject to experimental analysis (Dosher and Lu, 2000; Eckstein, 
Shimozaki, and Abbey, 2002). 

Capacity, resources and the role of attention 
Human cognition is thought to have a limited capacity to process incoming sensory 
signals (Broadbent, 1958; Kahneman, 1973; Wickens & Hollands, 2000). A limited 
capacity information-processing system implies that the total amount of information 
provided to the operator exceeds the information that can be processed at any point in 
time. In other words, the sensory information combined with prior knowledge is 
greater than the resources available to process this information. Thus human cognition 
needs to select between the inputs, depending on the task at hand. This selection 
process is referred to as attention. Several models of attention exist in the cognitive 
psychology literature, and these models differ based on their underlying assumptions 
(Broadbent, 1958; Deutsch, 1978; Treisman & Gelade, 1980). Attention can be 
defined by the process engaged (i.e., selective, focused or divided attention) or by the 
task at hand (i.e., visual search, inference, dual tasks; see Luck & Vecera, 2002).  
 

Neurocognitive approaches to workload research 

Imaging the effects of uncertainty 
Objects in the real world can be defined along numerous physical dimensions. The 
images these objects generate on the retina can also be defined along an equally large 
number of dimensions, which are processed more or less separately by the visual 
system. In the human visual cortex, visual areas are specialized in the processing of 
specific aspects of visual information, like the colour (e.g., V4; Bartels & Zeki, 2000) 
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or shape (e.g., lateral occipital complex; Malach, et al., 1995; Kourtzi & Kanwisher, 
2000; Kourtzi & Kanwisher, 2001) of an object. From these areas, the information is 
processed to higher-order association cortices, where it is semantically encoded, for 
example by combination with knowledge about previous experiences. During each 
fixation period, visual information is encoded by the retina and this information 
exceeds that which can be processed extensively by the brain. In order to make a 
selection among these different sources of information, we rely on attention to direct 
our processing resources to behaviourally relevant features of visual scenes.  
 
There is accumulating evidence in the brain-imaging literature that suggests that the 
exact pattern of cortical activation varies depending on which features subjects 
selectively attend to during a discrimination task. Where along the visual pathway 
does this stimulus selection occur? Underlying this question is the issue concerning 
the locus of attention, i.e. the stage of visual information processing modulated by 
stimulus selection. Two major theories related to this problem have evolved. The so-
called early selection theory suggests that attentional selection acts at a relatively 
early stage of visual processing and is based on simple stimulus features (Broadbent, 
1958, 1982; Kahneman & Treisman, 1984), whereas the late selection theory suggests 
that selection takes place between the semantic encoding stage and a further stage of 
visual information processing (Deutsch & Deutsch, 1963; Luck & Vercera, 2002). 
Behavioural and physiological studies related to this issue have produced conflicting 
results, some showing attentional modulations of neural activity either exclusively in 
extrastriate visual cortex (Luck & Girelli, 1998) or also in primary visual cortex 
(Luck & Vogel, 1997; Motter, 1993; Kanwisher & Wojciulik, 2000). 
 
The simultaneous discrimination of stimuli that can differ along more than one 
dimension has been used in psychophysics to explore the independence of visual 
processing. When subjects simultaneously attend to different features of the same 
object, attention will guide visual processing of these different features.  
 
Following up on the well-cited PET study (Corbetta, Miezin, Dobmeyer, Shulman, & 
Petersen, et al., 1990; 1991; Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 
1991), in which subject attended to one of three stimulus dimensions, different 
patterns of brain activation were found depending on which dimension the subjects 
attended to. (Le, Pardo, & Hu, 1998) measured BOLD responses during sustained or 
alternately shifted selective attention to the colour or shape of foveally presented 
stimuli. They found evidence for feature-specific activations in occipital and temporal 
visual areas and greater activity in the posterior superior parietal lobule, cuneus, 
precuneus and different parts of the cerebellum during shifts of attention than during 
sustained attention. The use of large stimulus differences (red vs. green, circle vs. 
square) makes interpretation of the results difficult, since the stimulus differences 
alone could evoke different patterns of brain activity.  
 
In the study by (Weerda, Vallines, Thomas, Rutschmann, & Greenlee, 2006), the 
effects of visual selective and divided attention on the discrimination of subtle 
differences in the colour and shape of ellipses were studied. In the selective attention 
or certainty condition, the subject knew which property would change on each trial 
and could selectively attend to that property.  In the divided attention or uncertainty 
condition, the subject did not know which property would change on a given trial and 
had to attend to both properties.  Resulting differences in performance were compared 
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to the cortical activation patterns evoked by these tasks. By comparing the pattern of 
BOLD responses evoked during task with uncertainty versus tasks with certainty, we 
can identify brain regions selectively responsive to the stimulus uncertainty aspect of 
these tasks. With increasing uncertainty, workload increases and performance drops. 

 
Figure 1: Sensitivity (d’) for the different subjects (each data point corresponding to the mean 
performance level of one of n = 6 subjects) during the uncertainty condition plotted against those 
during the certainty conditions. The horizontal dashed line indicates the one-tailed confidence limit of 
chance performance. The diagonal line indicates the level of uniformity between the performance 
under the certainty and the uncertainty condition. Data points falling below the diagonal indicate that 
sensitivity declines on trials with uncertainty about the stimulus dimension that would differ. Note that 
the colour data from 3 subjects fall in the chance level, suggesting the subjects were unable to perform 
the colour discriminations in the uncertainty condition. 
 
Figure 1 presents the performance on the trials where the subjects were uncertain 
along with dimension the stimuli would differ plotted against their performance when 
they knew in advance along which dimension the stimuli would differ. Performance 
in the uncertainty condition is reduced compared to that for the certainty condition in 
the same subjects. An analysis of variance (ANOVA) revealed a main effect of 
certainty-uncertainty (p < 0.01). Consistent with the accuracy results, reaction times 
were longer in the uncertainty than in the certainty conditions (p = 0.03). Although 
the stimulus differences to be discriminated were individually adjusted to make colour 
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and shape discriminations equally accurate, the scores of three of the subjects are 
markedly lower on the colour task than their scores on the shape task. The lower 
performance occurs in both certainty and uncertainty conditions and, in the latter case, 
none of the proportion correct scores exceeds the 95% confidence limit for chance 
performance.  

Functional Imaging Results 
Weerda, et al. (2006) analyzed their fMRI data by contrasting the activation during 
the color and shape discrimination to baseline and to each other. Using a regions-of-
interest approach, the authors compared activations when subjects had certainty that 
the stimuli would differ in color (compared to baseline resting levels; Fig. 2a). The 
ROI analysis revealed more pronounced activations in the ventral visual area V4 
when the subjects attended to the color of the stimuli, whereas activation was more 
pronounced in the lateral occipital area (LOC) when subjects attended to the shape of 
the stimuli (Fig. 2c). The differential contrast between activations evoked by the color 
compared to the shape discriminations (Fig. 2b) indicated somewhat more activation 
in left V4 during the color task with stimulus certainty.  

a) color certainty > rest          b) color certainty > shape certainty 

 
c) shape certainty > rest 
Fig. 2. Regions of interest (ROI) analysis of extrastriate visual areas. a) Area V4 in the contrast color-
certainty > rest; b) Area V4 in the contrast color-certainty > shape-certainty; c) Area LOC in the 
contrast shape-certainty > rest. Sagittal, coronal and axial overlays of pooled functional data of all 
subjects and a normalized mean anatomical image. Colors code t-statistic. (After Weerda et al., 2006, 
with permission). 
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Effects of stimulus uncertainty 
Analysis of the results with respect to the effects of uncertainty revealed robust 
activation in the posterior parietal cortex when the subjects were uncertain about the 
dimension along which the stimuli could differ (color or shape; Fig. 3). Increase brain 
activations were found bilaterally in the posterior parietal cortex (Fig. 3a) and in the 
left dorsolateral prefrontal cortex (Fig. 3b). This form of stimulus uncertainty 
challenges the subjects more by demanding that they attend simultaneously to both 
dimensions. Thus, the subjective workload of the subjects increased when stimulus 
uncertainty was increased. These results are based on observations made in 6 subjects 
and thus need to be confirmed in large subject samples. A recent study by (Serences, 
et al., 2009) suggest that similar differences are evident for orientation and colour 
judgments with sinewave gratings.  
 
a) posterior parietal cortex        b) prefrontal cortex 

 
 
Fig. 3. ROI analysis of the contrast uncertainty > certainty: a) Posterior parietal BAs 7 and 40; b) 
Lateral prefrontal BA 46. In the lower right corner, respectively,  ‘‘glass brains’’ are displayed with the 
Talairach grid overlay and greyscale-coded T-values. Each glass brain presents 2D projections of the 
activations onto the standard brain. (After Weerda et al., 2006, with permission). 

Simulated Driving Experiments 
Dual tasks have been developed to test for limited capacity in divided attention 
paradigms. Compared with single tasks, dual tasks can give us insights into task-
switching and limited capacity mechanisms (Wickens, 2000). Event-related potentials 
can be used to map changes in brain activation related to dual tasks (Andreassi, 2001). 
A prominent component of the ERP in cognitive tasks is the P3, which is expressed in 
a positive wave with a maximum around 300 msec poststimulus. The amplitude of 
this positive ERP component is dependent on the stimulus and task: rare stimuli 
(oddballs) evoke a prominent P3 (Andreassi, 2001), the amplitude of which varies 
with workload (Fowler, 1994; Kramer, et al., 1995). Differences for easy and hard 
dual task have been recently reported by Brisson & Jolicoeur (2007) for combined 
tone and shape discriminations. 
In experiments described by Raabe et al. (2006) volunteers perform a primary task 
(simulated driving under high and low workload demands), while an additional 
secondary task is performed (listening to intermittent sinusoidal tones of constant 
frequency). The introduction of seldom, unpredictable oddballs in the form of single 
tones (one octave above that of the “standards”) is expected to evoke a robust 
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positivity in the EEG approximately 300 ms poststimulus. The amplitude of this 
evoked response is reduced under high, compared to low, workload (Kramer, Trejo, 
& Humphrey, 1995). This neural activity should be associated with hemodynamic 
responses that can be detected in fMRI (Soltani, 2000). A further aim of this study is 
to locate this cortical activity in human cortex and see how workload effects the 
extent and distribution of the fMRI response.  
A commercially available computer game (DTM-Racedriver, Codemasters, U.K.) was 
adapted for the fMRI environment. The test driver could control the simulated speed 
and steering of the racecar through appropriate manipulation of the keyboard 
(response box in fMRI), which was practiced prior to the recording session. During 
the experiments, volunteers were instructed to “drive” a racecar in separate runs under 
low (self-paced) and high (pace determined by lead car) workloads.  While driving 
the volunteers were instructed to attend to frequent and low (80%, 1000 Hz) or 
seldom and high tones (20%, 2000 Hz), which were presented via headphones in both 
experiments. In a control condition, subjects had to manually respond after each 
oddball tone. The EEG recordings were based on 40 trials per condition. To keep the 
relative occurrences of the frequent and seldom tones constant, the position of the 
seldom tone within a given trial was variable, with the restriction that the seldom 
tones were not allowed to appear consecutively.  

EEG correlates of (simulated) driving 
Figure 4 shows the grand averages for the Pz (left) and Cz (right) electrodes and a 
topographic map of their scalp distribution. The black and red curves illustrate the 
mean ERP responses to the seldom tones during the high and the low workload 
condition, while the green curve shows the response to the seldom tones in a control 
condition, in which the subjects were instructed to manually respond after each 
oddball. The largest P3 amplitude was found at Pz in the control task that demanded a 
stimulus-dependent response to the oddballs on the part of the subject (green curve). 
For the experimental conditions (passive listening during simulated driving), P3 
amplitudes at Pz decreased from the low (red curve) to the high (black curve) 
workload condition. The difference between both conditions was significant (p<0.05; 
t=2.46).  
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Figure 4: Grand averages and topographic map (300 ms poststimulus) of the event-related potential 
recorded in three conditions: high workload (black), low workload (red), control condition (green). 
(After Raabe et al., 2006) 

fMRI correlates of (simulated) driving 
The brain activation levels shown in Figure 5 depict an overview of the hemodynamic 
response to cortical activation under the conditions of low (upper graphs) or high 
(lower graphs) workloads. In the fMRI experiment one trial consisted of 7 tones. The 
third position within one trial could either be a frequent or a seldom tone. A total of 
96 frequent and 24 seldom trials were conducted in a randomized order. Brain 
activations evoked by seldom auditory stimuli compared with frequent tones are more 
widely distributed during low workload and this activation is strongly reduced during 
high workload.  Low workload is associated with activation in the right anterior 
operculum, as well as in the right perisylvian region (Fig. 5), whereas during high 
workloads subjects exhibited a more focused activation in the right auditory and 
associated cortex (Fig. 6). 
 

 

Figure 5: Brain regions activated in the low workload condition contrasting the deviant sounds against 
the standards: a) right perisylvian area and b) right frontal operculum. 



  11 

 

Figure 6: Brain region activated in the high workload condition contrasting the responses to the deviant 
sounds against those evoked by the standards: right auditory cortex. 
 
The results of these experiments (Raabe et al., 2006) indicate that varying levels of 
workload during simulated driving have a direct and significant effect on the neural 
correlates of selective attention: Using an auditory oddball paradigm with seldom 
target tones, we could derive a P3 component in the ERP, the amplitude of which was 
reduced by a high workload. These findings are in good agreement with those of 
Brisson and Jolicoeur (2007).  Our findings further suggest that workload demands 
placed on the subjects in a dual-task situation has a significant effect on the fMRI-
BOLD response to auditory stimuli. As the P3 component in the time-resolved EEG 
was the only ERP-component that differed significantly over experimental conditions, 
we speculate that this response is related to the fMRI findings. The differences 
between responses to the seldom tones in the fMRI represent the hemodynamic 
correlate of the measured differences in P3 amplitude in response to auditory 
oddballs. 
The results indicate that low workload is associated with a more widespread 
activation of sensory and associative cortical areas. These areas are particularly 
sensitive to changes in sensory stimulation (Downar et al., 2000). The brain activation 
in the high workload condition appear to be more restricted to the primary sensory 
processing of the deviant stimulus (Müller, et al., 2003). With increasing workload a 
more focal fMRI response and a lower amplitude in the ERP response to the oddball 
stimulus were observed. Related findings have been reported for a simulated 
passenger situation in an earlier fMRI study (Walter et al. 2001).  
 
These results support a limited capacity model of attention, where an increase in the 
demands of the primary task leads to a reduced performance in secondary tasks. 
Changes in performance in dual tasks could be related to interference between the 
different sensory modalities (e.g., visual and auditory) or could be related to increased 
noise owing to more stimulus uncertainty. The combination of behavioural, EEG and 
fMRI measures could provide new insights into a driver’s mental workload. The high 
temporal resolution of the EEG can be coupled to the high spatial resolution of the 
fMRI to provide a more precise description of the neural correlates of sensory 
processing under different workloads.  
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Effects of workload on drivers in real driving scenarios 

Event related potentials 
 
The evaluation of driver psychophysiological state by analysis of dynamics in ERP 
correlates of sensory and cognitive brain functions and its coupling with driver 
assistance systems (DAS) is of great interest within the automotive section.  
The aim of these studies is to develop a tool capable of evaluating the driver’s 
workload by analysis of continuously monitored physiological parameters like scalp 
recorded event-related electrical brain activity (ERP). The implementation of the 
system is based on signal analysis of single-stimulus evoked ERP variability. This 
variability is analyzed in driving tasks with different levels of complexity and used as 
an individual template for a given driver’s cognitive state. Various states serve as 
indicators for the operator’s cognitive performance capacity limits and will also serve 
as templates for future real-time cognitive state detection algorithms. The ability to 
detect such threshold states may have implications for drive safety and driving 
ergonomics. 
Event-related potentials (Fig. 6 left) data were analyzed for topographical differences 
of amplitude or latency in an oddball paradigm while switching the advanced cruise 
control system ACC (Fig. 6 right) on or off (block design, duration: 30 min).  
 
 

                 
 
Fig. 6. a) Method of ERP-recording;  b) Functionality of ACC (Distronic). 
   
When ACC is used clear differences appear both for latencies and amplitudes during 
mid-latency information-processing stages (i.e. P3 latencies decreased while 
amplitudes increased; Fig. 7). 
 

 
 

Figure 7: Example of P3 potentials evoked by an auditory stimulus during driving in two conditions: 
with and without active ACC. 
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Results show that driver assistance supports the driver by decreasing driver’s 
workload as measured by P3 variability. As an immediate application, P3 based 
workload measures can be used as indicators for assessing the impact of DAS on 
driver’s workload. To further improve the temporal resolution of workload 
assessment, we used the P3 time series to obtain context dependent measures. For this 
purpose we calculated the moving average of three successive P3 amplitudes and 
plotted the results in a roadmap (Fig. 8). Low P3 values (lowest quintile, red circles) 
were allocated to a high workload, medium values (mean high quintile, yellow 
circles) denote medium workload, and the larger values (upper quintile, green circles) 
denote the low workload category. The results show that this analysis allows us to 
relate different workload-levels to driving situations with different levels of difficulty. 
 
 

 
 
Fig. 8: Workload estimation during normal driving (yellow), during a break (green), and while 
reentering the highway (red circles). 
 
 

Continuous Measures of Driver Mental Load based on spontaneous EEG 
 
Unlike ERPs, which offer only an indirect measure of the driver’s mental load elicited 
by external probe stimuli, correlates of mental workload can be extracted from the 
spontaneous EEG activity, thus offering a continuous measure. This promises to be a 
more sound and substantial approach, but also far more challenging. Numerous 
studies have demonstrated that with increased mental processing effort alpha waves 
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(8–13 Hz) decrease and theta (4–8 Hz) activity is enhanced, e.g. (Murata, 2006). 
However, research using EEG alpha band power to study neurophysiological 
correlates of mental workload during driving is rare. Mental workload measurements 
in real operational environments have so far been reported by Sterman and Mann 
(1995) and by Hankins and Wilson (1998). In a study presented by   we took a first 
step towards developing a continuous measure of driver mental load based on 
spontaneous EEG recordings. The study was designed such that two secondary tasks 
were presented in a controlled manner as subjects drove a predetermined course. The 
presentation of experimental stimuli and route were consistent from subject to subject, 
while the complexity introduced by traffic situations varied in an uncontrolled manner 
across experimental conditions and subjects. One secondary task was a mental 
arithmetic task (cognitive load: MAT: n-back in steps of 27), the second one an 
auditory workload task (sensory load: AWT: superimposed voices). Both tasks 
induced mental load according to a block design in which high mental workload 
phases (task on) were followed by low mental workload phases (task off).  
 

 
Fig. 9: Mitigation by scheduling; schematic representation. Left: In the Reference Session, tertiary 
stimuli (Auditory Commands, magenta dots) are continuously presented during the Mental Arithmetic 
(top) or Auditory Workload (bottom) tasks. Right: In the AugCog Session, mitigation consists in 
suppressing tertiary stimuli during the high-workload blocks (red and blue bars) and instead presenting 
them during the baseline periods (black bars). 
 
The mental workload detector consisted of two parts: feature extraction and 
classification. Feature extraction involved artifact removal, channel selection, spatial 
filtering, and power computation of an individualized alpha band. 
 

 
 
Fig. 10: Schematic representation of the vehicle’s technical architecture. Bottom: Vehicle-sensor data 
(“DaimlerChrysler”) and information about the driver’s body movements (“Univ. of Pittsburgh”) were 
directly fed onto the CAN bus. By contrast, EEG signals (“FIRST, Berlin”) were evaluated by the 
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EEG-based classifiers (“Cognitive State Assessor”) before being fed onto the CAN bus. Top: The 
context-based classifiers (“Cognitive model, Sandia”) got their inputs (vehicle-sensor and body-
movement data) from the CAN bus and wrote their outputs back onto the bus. Finally, the 
augmentation manager read all classifier outputs from the CAN bus and combined them in order to 
obtain a criterion for deciding whether mitigation measures should be triggered (After: Bruns et al. HCI 
2005). 
 
A linear model was used for classification wherein parameters were computed by 
standard linear discriminant analysis (LDA) of the feature vectors obtained from the 
high and low workload conditions of the training session. Using the cross-validation 
technique on a training set, the parameter set best discriminating and generalizing 
between high and low mental load conditions was assessed separately for each 
subject. The quality of the workload detector, which had a temporal resolution of 200 
ms was assessed by analyzing the match between calculated detector workload and 
the default workload structure of the high/low block experiment design.  
 

 
Fig. 11: Reduction of reaction times as a consequence of activating the AugCog system. Error bars 
represent averaging across the 5 subjects and reflect the large inter-individual variability of 
performance values, which makes it imperative to use a paired design. 
 
The results showed an average detection accuracy of 70 %. However, the inter-subject 
variability of the detector performance was very large, ranging between 55 % and 90 
%. Especially in an open environment like real traffic driving, the consideration of 
individual differences and careful artifact rejection are essential to obtaining a good 
signal-to-noise ratio. Wilson and Fisher (REF?) used topographical information about 
the EEG to classify fourteen different mental tasks and thus showed that the use of 
individual subject EEG patterns had a great advantage over the use of group derived 
bands. Especially the EEG alpha band has been shown to hold an individually unique 
signature that may vary with age, memory performance and attentional demands 
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[REF ? 30]. Our current research demonstrated that mental workload detection based 
on spontaneous EEG recordings is possible with a high temporal resolution; 
furthermore, it allows a differentiation between different types of mental load, i.e. 
mental calculation and auditory attention. These results represent a first step towards 
developing robust, generally applicable and reliable mental workload detectors with 
high temporal resolution. Further research in the domain of neurophysiology, signal 
analysis and machine learning is necessary. Ultimately, the effort will culminate in a 
commonly applicable approach that will enable us to detect traffic situations that 
cause high driver workload, thus improving the development of specific driver 
assistance systems to support the driver. Additionally, it will be possible to quantify 
the benefit of driver assistance systems in early development stages. 

fMRI correlates of visual working memory 
 
The findings discussed above indicate that varying workload levels affects the ability 
of an operator to adequately respond to sensory stimuli. In addition to the cognitive 
process of attention, the concept of working memory has been introduced to help us 
understand how much information can be held “on-line” to assist us to solve tasks. 
Visual working memory refers to the neural and cognitive processes related to the 
ability of individuals to hold information in memory after the sensory stimuli have 
been removed. Working memory can be assessed in delayed match-to-sample tasks, 
in n-back tasks and in delayed discrimination tasks (Luck & Vogel, 1997; Marois & 
Ivanoff, 2005; Xu & Chun, 2006). Perceptual memory is related to working memory, 
where the former is concerned with the precision of the stimulus retention  
(Magnussen, 2000; Magnussen & Greenlee, 1999; Pasternak & Greenlee, 2005). 
Brain imaging studies of visual perceptual short-term memory have revealed selective 
activation in early visual areas in occipital cortex and higher visual areas in parietal 
cortex (Cornette, et al., 2001; Greenlee, et al., 2000). Delay period activations are 
thought to be a neural correlate of perceptual memory processes, where the 
information about a reference/sample stimulus should be held on-line for a few 
seconds until the test stimulus is presented (Pasternak and Greenlee 2005). Recent 
fMRI studies have revealed that the delay-period activations contain information 
about the to-be-retained stimulus (Harrison & Tong, 2009; Serences, et al., 2009). 
 
Interestingly, psychophysical studies have shown that the accuracy of delayed spatial 
discrimination is not affected by manipulations of irrelevant stimulus dimensions. For 
example, spatial frequency discrimination thresholds were similar for parallel and 
orthogonal test and reference gratings (Bradley & Skottun, 1984; Magnussen, et al., 
1998). Choice reaction times are elevated for orthogonal as compared to parallel 
gratings in delayed discrimination tasks with reaction times increasing linearly with 
orientation difference (Magnussen et al., 1998).  A systematic effect of angular 
separation on reaction time between the gratings to be compared with respect to 
spatial frequency suggests the existence of mechanisms that access feature-specific 
stores.  
 
In the study by Baumann, et al. (2008) an fMRI experiment was designed to test the 
idea that visual memory involved a network of channels tuned to spatial frequency 
and orientation (Magnussen, 2000; Magnussen and Greenlee, 1999). In the study by 
Baumann et al. (2008) subjects performed a delay spatial-frequency discrimination 
tasks. On half of the trials, the reference and test gratings had the same orientation, 
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whereas on the other trials the orientations of the reference and test gratings were 
orthogonal. These authors asked whether the responses to these two different types of 
trial differ depending on the relative orientation of the reference and test gratings. 
 
The statistical comparison of the conditions with parallel and orthogonal test and 
reference stimuli only reached significance in the occipital ROI (Fig. 7). A correlation 
analysis was conducted to compare differences in reaction time for the two conditions 
with differences in BOLD signal in the two occipital ROI for each individual subject. 
The results indicated that the occipital BOLD activity correlated significantly with the 
differences in reaction time (r = 0.796, p ≤ 0.001). This positive correlation between 
the difference in BOLD responses in the parallel and orthogonal orientation 
conditions suggest the involvement of these brain regions in the memory task. 
 

 

Figure 7. Results of the event-related, random-effects group-analysis in n = 14 subjects. Brain areas 
showing significant activation in the contrast “different orientation > same orientation” are shown by 
color-coded overlays. Significant clusters surpassing a threshold of P ≤ 0.05 (corrected for multiple 
comparisons, cluster-defining threshold t  = 2.0) are presented. T-values are overlaid onto an a) MNI-
normalized sagittal slice (Tailairach plane x = 10), b) MNI-normalized sagittal slice (Tailairach plane x 
= -10), c) MNI-normalized rendered template. (After Baumann et al., 2008 with permission). 
 

Effects of stimulus uncertainty and workload on performance and 
brain activity in attention and memory tasks 
In the study by Weerda et al. (2006) subjects’ performance was compared on the 
certainty and uncertainty conditions. While the individual extents of the effect of 
stimulus uncertainty on performance vary from one subject to another, particularly in 
the colour task, the average effect closely agrees with the prediction of an ideal 
observer model that assumes stochastically independent processing of information on 
each dimension. In this model the accuracy of each judgement process is limited by 
Gaussian noise of internal and/or external origin. The noise arising for the judgement 
of one stimulus dimension is uncorrelated with the noise perturbing the other process. 
In the uncertainty condition, information from both dimensions is processed on each 
trial and the less ambiguous information is selected as the basis for the response. 
Accuracy is necessarily reduced in the uncertainty condition because the judgment 
process is perturbed by noise from two sources, rather than from a single source as in 
each certainty condition. For various reasons (Thomas & Olzak, 1996), the ideal 
observer may weight information from the two dimensions unequally, resulting in 
unequal uncertainty effects. However, the root-mean-square of the ratio of d' 
measures for the two dimensions is independent of any such bias. The findings 
reported by Weerda et al. (2006) indicate a root-mean squared value of 0.7058 is 
nearly identical with the model prediction of the inverse of the square root of 2.0 
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(approximately 0.71).  However, in addition to the expected drop in accuracy there 
was a reliable increase in responses times, suggesting that the effects of the 
uncertainty manipulation were more complex than the model considers. 
 
This model assumes that operators carry out the same cognitive processes in the 
uncertainty condition as in the certainty conditions, except that both sets of processes 
are carried out in parallel. If this were the case, it might be expected that any area that 
shows activity during one or both of the certainty conditions would also show activity 
in the uncertainty condition. The results reproduced in Fig. 2 and 3 (see above) fails to 
support this conclusion. Although several brain areas appear to fulfil this expectation, 
there are several areas that are either only active in one or both of the certainty 
conditions or only in the uncertainty condition. These results suggest that the subjects 
employ different cognitive processes in the uncertainty condition than those used in 
either of the certainty conditions. This would mean that observers do not simply 
perform both discriminations in parallel in the uncertainty condition, but rather 
restructure their cognitive approach. The cortical activity pattern during uncertainty 
would therefore not simply be the union of areas active during both certainty 
conditions, but would rather contain activity in entirely new areas as well as lack 
activity in other areas. 
 
The differential contrasts, which make direct statistical comparisons between 
certainty and uncertainty conditions, provide pertinent information about the 
differences in neural activity between selective and divided attention. The results of 
these contrasts suggest a link between the behavioural and functional imaging data in 
that subjects differ in their cognitive strategies in conditions with stimulus 
uncertainty. Subjects exhibiting a relatively small psychophysical uncertainty effect 
seem to have carried out the same cognitive processes during the uncertainty 
condition as during the two certainty conditions, as indicated by the very few 
differences in cortical activity between these conditions. 
 
The findings reported by Raabe et al. (2006) suggest that simulated driving scenarios 
can be used to test the effects of workload on the pattern of brain activity evoked by 
visual and auditory stimuli. High work loads lead to smaller amplitude of the P3-
component in auditory oddball detection tasks. High workload also has an impact on 
the pattern of brain activity revealed with functional MRI for these same tasks. The 
results of this study open up the area of ergonomics and engineering psychology to 
methods used in cognitive neuroscience. Applications on these findings are provided 
by studies of Schrauf & Kincses (add some ref. here) by using the neural effects of 
workload evoked by auditory stimuli in several real driving scenarios. It is now 
possible to track the brain activity of a person while they engage in fairly complex 
cognitively demanding tasks. 
 
The results reported by Baumann et al. (2008) suggest that early visual areas are 
involved in the neural mechanisms underlying visual working memory. Observers can 
discriminate between the spatial frequency of two sequentially presented gratings, 
even when these have orthogonal orientations. The brain activity evoked by these 
discrimination tasks with parallel and orthogonal gratings differs, however, and these 
differences point to more activation in the condition where spatial frequency 
information has to be shared over different orientation channels (i.e., those tuned to 
orthogonal orientations).  The task is completed and high performance levels are 
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maintained, but subjects require slightly more time to do the task and early visual 
areas are more active (Baumann et al., 2008).  

Conclusions 
Taken together, the results reported by Weerda et al. (2006) provide support for the 
idea that visual attention can be directed to select stimulus dimensions during 
discriminations tasks. Stimulus uncertainty reduced the performance on these tasks 
and the extent of these performance drops can be modelled by considering the effects 
of noise when the subject has to monitor two versus just one source of information. 
Workload can be conceptualized in terms of signal detection theory as an increase in 
noise or an increase in the number of sources that need to be monitored. In a similar 
fashion as that observed for stimulus uncertainty, changes in workload will affect 
performance and the brain activations in cortical regions involved in the underlying 
sensory and cognitive processing. The effect of workload on performance in a 
simulated driving task has been studied using fMRI. Here the effects of workload on 
the cortical response to an auditory oddball stimulus were shown to be reduced by 
increase workload (Raabe et al., 2006). The validation of this effect on drivers’ 
workload estimations was performed by using EEG in a car in real driving scenarios. 
Several field studies show a reduced cortical response to the auditory stimulus while 
the drivers demand on driving skills or secondary tasks are increased (add ref 
here).Visual working memory helps us to hold material “online” even long after the 
stimuli are no longer present. Working memory allows us to operate on sensory 
representations to perform discrimination task for stimuli no longer present. The 
neural correlated of working memory have been studied using fMRI combing with 
delayed spatial-frequency discrimination tasks. A comparison of a grating’s spatial 
frequency was made for parallel or orthogonal gratings (Baumann et al., 2008), and 
the differential contrasts between these conditions revealed additional focal activation 
in extrastriate cortex when orthogonal gratings were compared. These findings 
suggest that the neural mechanisms that underlie visual working memory act on early 
representations of simple stimulus dimensions like orientation and spatial frequency. 
 
Taken together, psychophysical studies of stimulus uncertainty, ergonomic studies of 
workload and neurocognitive studies of visual working memory all point to a 
complex network that supports information processing when the capacity of our 
sensory and cognitive systems are at their limit. 
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