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Complex scattering as canonical transformation:
A semiclassical approach in Fock space

Thomas Engl1∗, Juan Diego Urbina1, Quirin Hummel1, and Klaus Richter1

We show that a theory of complex scattering between

many-body (Fock) states can be constructed such that

its classical limit is a canonical transformation thus en-

coding quantum interference in the semiclassical form

of the associated unitary operator. Based on this idea,

we study the different coherent effects expected under

different choices of the many-body states and provide

different representations of the associated transition

probabilities. In this way, we derive exact relations and

representations of the scattering process that can be

used to attack timely problems related with Boson Sam-

pling.

1 Linear scattering of photons

We consider a typical scattering scenario, where a highly
coherent many photon state of light is injected through
waveguides into a complex array of optical elements,
such as e.g. in [1–5]. We further assume that decoher-
ence and dephasing due to losses and /or coupling with
uncontrolled degrees of freedom can be neglected. The
simulation of such a scattering process between multi-
particle photonic (or in general, bosonic) input and out-
put states is a computationally hard problem because
it involves, as shown bellow, the calculation of perma-
nents of large matrices. The complexity of this problem
is expected to render the problem of sampling the space
of matrices with a distribution given by their perma-
nents, the Boson Sampling (BS) problem, also hard. Thus,
a quantum optical device that samples for us scatter-
ing probabilities between many-body states constitutes
a quantum computer that eventually beats any classical
computer [6] in the BS task, an observation that has at-
tracted enormous attention during the last years [7–11].

The physical operation of our scattering device con-
sists of mapping the incoming many-photon states |in〉
into the output states |out〉. By injecting the same incom-
ing state several times and counting the number of times

we get |out〉 as output, we will eventually obtain the tran-
sition probability

P(|in〉→ |out〉) := |A(|in〉→ |out〉)|2 = |〈out|in〉|2, (1)

and our goal is to study this quantity.
As any other quantum state of the field, the |in〉, |out〉

states belong to the Hilbert (Fock) space H of the system,
which consists of all possible linear combinations of Fock
states [12]

|n〉 := |n1,n2, . . . ,nM 〉 (2)

specifying the set of integer occupation numbers n1, . . . ,nM .
An occupation number ni specifies how many photons
(bosons) occupy the i th single-particle state. The choice
of these channels (or orbitals) is a matter of convenience,
depending on the particular features of the system. In
the scattering problem there are two preferred options
to construct the Fock space, namely, by defining occu-
pation numbers specifying how many photons occupy
a given single-particle state with either incoming or out-
going boundary conditions in the asymptotic region far
away from the scatterer. The operators that create a par-
ticle in the case of given incoming boundary conditions
are denoted by b̂†, and their action on the vacuum state
|0〉 produces Fock states in the incoming modes [12]:

|nin〉 := |nin
1 ,nin

2 , . . . ,nin
M 〉 =

∏

i

(

b̂†
i

)nin
i

√

nin
i

!
|0〉. (3)

Any operator acting in H can be written as a multilinear
combination of the creation operators and their adjoints
b̂, called annihilation operators. The operator algebra is
thus uniquely fixed by the canonical commutation rela-
tions

[b̂i , b̂ j ] = 0 and [b̂i , b̂†
j
]= δi j . (4)
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Similarly, the operators d̂† create photons in the single-
particle states defined by outgoing boundary conditions,
and representing physically photons exiting the scatter-
ing region along a given channel. A fundamental obser-
vation is that the Fock space can be equally well con-
structed out of the many-body states defined by specify-
ing occupation numbers in the single-particle outgoing
states:

|nout〉 := |nout
1 ,nout

2 , . . . ,nout
M 〉 =

∏

i

(

d̂†
i

)nout
i

√

nout
i

!
|0〉. (5)

The relation between incoming and outgoing Fock states
is fully determined by a single-particle property, namely,
the transition amplitude of the single-particle process

σi j = 〈0, . . . ,0,nout
i = 1,0, . . . ,0|0, . . . ,0,nin

j = 1,0, . . . ,0〉, (6)

which defines the single-particle scattering matrix with
entries σi , j . By comparison with Eqns. (3) and (4), we
find

d̂ j =
∑

i

σ j i b̂i (7)

which then allows us to relate the expansion coefficients
c in

n and cout
m , appearing in the "in" and "out" representa-

tions of an arbitrary many-body state,

|ψ〉 =
∑

n

c in
n |nin〉 =

∑

m

cout
m |mout〉, (8)

through the amplitude

AF(n,m) := 〈mout|nin〉. (9)

So far we have focused on the transformation proper-
ties between Fock states, but the same questions can be
addressed for other type of many-body states. Consider
for example the common eigenstates of the incoming cre-
ation operators [12] in the incoming basis,

b̂i |φ
in〉 =φin

i |φin〉, (10)

so-called coherent states, which are labeled by a continu-
ous set of complex numbers φi . Although coherent states
are not eigenstates of a commuting set of hermitian op-
erators, they can be experimentally prepared [13], and in
some sense they are the most classical states of the elec-
tromagnetic field. Again, it can also be shown that both,
in- and out-going coherent states, are an (over)complete
basis of the Fock space, and the amplitudes

AC(χ,φ) := 〈φout|χin〉 (11)

are the matrix elements of a many-body unitary transfor-
mation performing the change of representation from in-
coming to outgoing coherent states.

The third basis set that we are going to discuss is
defined by the common eigenstates |qin,out〉 of the so-
called quadrature operators [14] that correspond to the
quantum operator associated with the observable elec-
tric field [15]

q̂ in
i := b̂i + b̂†

i
, q̂out

i := d̂i + d̂†
i

. (12)

It is easy to show that quadrature eigenstates

q̂
in,out
i

|qin,out〉 = q
in,out
i

|qin,out〉 (13)

are labeled by a continuous set of real variables and that
they are normalized (to the Dirac delta), complete and
orthogonal. We can again define the corresponding trans-
mission amplitude

AQ(q,Q) := 〈Qout|qin〉. (14)

The construction of the transformations between the
different basis sets is cumbersome but straightforward
and we refer the reader to the references [12, 14] for
further details. We just note that for a given choice
of single-particle orbitals, all operators (number, cre-
ation/destruction and quadratures) commute with each
other if they correspond to different single-particle states
(or index i ). Therefore the results for a given mode [12,14]
are sufficient,

〈q |n〉 =
e−

q2

4

√

2nn!
p

2π
Hn

(

q
p

2

)

, number to quadrature,

〈q |φ〉 =
1

(2π)1/4
e−

|φ|2
2 −

( q
2 −φ

)2+φ2

2 , coherent to quadrature,

(15)

〈n|φ〉 =
1

p
n!

φne−|φ|
2/2, coherent to number,

where Hn(q) is the n-th Hermite polynomial.

2 The Boson Sampling problem

2.1 Outline of the problem

With the formalism presented in the last section, we re-
turn to our original problem, namely the explicit calcula-
tion of scattering amplitudes between Fock states. Using
Eq. (9) and the definitions in Eqns. (3) and (5) we get the

2 Copyright line will be provided by the publisher
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exact expression

AF(n,m) := 〈0|







∏

j

(

d̂ j

)mout
j

√

mout
j















∏

i

(

b̂†
j

)nin
i

√

nin
i









|0〉. (16)

Our goal is to obtain an expression for AF, and eventu-
ally for the transition probabilities |AF|2, in terms of the
single-particle scattering matrix σ. At first glance, due to
the absence of interactions this seems to be an easy task
since in the scattering process the total amplitude fac-
torizes in terms of the amplitudes of individual, single-
particle processes. However, while this is the case for
systems of non-interacting distinguishable particles, for
the case of interest here quantum effects due to indis-

tinguishability render the calculation of scattering ampli-
tudes a hard problem [6, 11], as it is apparent when try-
ing to calculate the amplitudes by substitution of Eq. (7)
into Eq. (16) and further using the commutator in Eq. (4)
that the complexity of the result is combinatorial in ori-
gin. Since the explicit calculation has been reported else-
where, we just present the final result

AF(n,m) = Perm M(σ). (17)

and refer the reader to [6, 11] for further details. Follow-
ing [6, 11], the transition amplitude obtained by this pro-
cedure is given by summing up products of entries of σ,
where each term is actually a permutation of the multi
dimensional indices labeling output channels. It can be
therefore written in terms of a new matrix M(σ) (ob-
tained by repeating the j -th row of σ n j times and the

j -th column m j times1). The key observation is that we
indeed sum all the terms obtained by permuting the sec-
ond index of this enlarged matrix, resulting in an object
known as permanent.

In this way, the physical scattering of photons pro-
vides a physical device that calculates permanents of
large matrices. One only needs to repeatedly measure the
output state and the accuracy with which the device cal-
culates (or simulates) the precise value of the associated
permanent can be made arbitrarily large by repeating the
measurement as many times as needed. In a further step,
by randomly changing σ the device can be used to sam-
ple the space of matrices with a weight given by their per-

1 The precise and primary definition of M is M j k =σd j (n)dk (m),

with d(n) being the N -dimensional vector defined by d j (n) =
min

{

k ∈ {1, . . . , M} : nk−1 < j ≤ nk

}

. By permuting columns

and rows of M one arrives at the definition above.

manent. It is this task, the BS problem, where under cer-
tain conditions it is expected that the quantum device
beats any classical computer [6].

2.2 Many-body scattering as canonical
transformation

Small scattering devices calculating permanents can be
actually realized, with several examples now available
[10], while preparation techniques that allow for coher-
ent creation of correlated photons beyond N ≃ 30, where
the sampling using the quantum device will beat any
classical computer, is presently matter of intense re-
search [6]. Realistic scenarios, however, seem to reach se-
vere complications already for N ≃ 12. Thus, it seems im-
portant to explore whether the fundamental aspects of
complex many-body scattering allow for other types of
implementation, different from the photonic ones. Here
we try to approach this question from a more abstract
perspective.

We only demand the matrix σ to be a unitary single-
particle scattering matrix,

[σ−1]i , j = [σ]∗j ,i . (18)

This means that the calculation of permanents of large
matrices is realized by a device with outcomes given by
the amplitudes

AF(n,m) := 〈m′|n〉. (19)

We call |m〉 the state specified by occupations m in the
unprimed basis and |m′〉 the state specified by m in the
primed basis. The later is constructed out of the opera-
tors

b̂′
j =

∑

i

u j ,i b̂i and
(

b̂′
j

)†
=

∑

i

u∗
j ,i

(

b̂ j

)†
(20)

for any unitary matrix u. Note that for the choice u = σ

we recover the scattering version with b̂′
j
= d̂

j
.

Finally, a straight forward calculation shows that,

[b̂′
i , b̂′

j ] = 0 and [b̂′
i ,

(

b̂′)†
j ] = δi j (21)

follows from Eq. (4). The transformations (20) are linear
and canonical, the latter because they do not change the
algebraic relations between the basic operators.

We conclude that the BS problem can be realized by
any nontrivial device where transition amplitudes are
measured between Fock states defined by two different
sets of creation operators, defined with respect two dif-
ferent single-particle basis sets. The physical implemen-
tation of BS requires then, first of all, a measurement

Copyright line will be provided by the publisher 3



T. Engl et al.: Complex scattering as canonical transformation:A semiclassical approach in Fock space

protocol that provides the many-body transformation be-
tween Fock states after a linear canonical transforma-
tion.

Note that for the BS problem, the essential property of
the scattering device is that it provides permanents, and
the possibility of connecting permanents with transition
amplitudes is entirely due to the linearity of the single-
particle transformation. Any physical system where the
mapping b̂ → b̂′ is nonlinear, as happens for general
(non-linear) unitary transformations

b̂ → b̂′ = Û †b̂Û , Û = eiG(b̂,b̂†), (22)

with a hermitian but non-quadratic generator G, defines
a quantum device that still calculates transition ampli-
tudes but not permanents.

Using this broader view, it is in principle possible to
implement other processes where the output of a mea-
surement is given by permanents and therefore can be
used as a basis for the physical implementation of BS.
The quantum optical scenario involving scattering of
photon states has some very attractive features, in par-
ticular that the many-body output states can be indeed
measured at the single-photon level by photocounting,
while its main drawback is the difficulty to prepare of
photonic Fock states with large total number of photons
(the state of the art is N = 6). Since quantum states of
indistinguishable bosonic atoms with macroscopic oc-
cupations can be prepared by cooling techniques, cold-
atoms alternative offer an interesting possibility for BS.
The drawback here is the difficulty of performing tomog-
raphy of many-body cold atom systems at the single-
particle level, but advances in this direction are under
way [16].

Assuming for the moment that the measurement
of many-body states in cold atom systems reaches the
regime of single-atom precision, we sketch a possible BS
scenario for such systems. Consider a system of ultracold
atoms in an optical lattice, where the hopping amplitude
between adjacent sites is J and the strength of the in-
terparticle interaction is V . Assume now that initially (at
time t−) we have V ≫ J , and the interaction energy is so
large that hopping gets completely suppressed [17], the
so-called Mott phase. In good approximation the ground
state of the many-body system is a Fock state where the
occupations refer to the number of atoms in each site,
namely, a Fock state constructed out of single-particle
states defined by localized (Wannier) orbitals [18]. The
"quench" scenario is defined by an abrupt change of pa-
rameters (possible by tuning the atoms through a Fesh-
bach resonance [19, 20]) at time t+, such that we have
now J ≫ V . We are interested in the transition ampli-
tudes between the initial state and the eigenstates of the

quenched Hamiltonian, where the later are again Fock
states but built from delocalized (momentum) single-
particle orbitals. The calculation of these transition am-
plitudes is strictly given by AF(n,m), with the specific
choice for u as the matrix that linearly relates the Wan-
nier and the momentum orbitals. Thus, such a device
provides permanents as its output. Furthemore, if the on-
site energies in the Mott phase are chosen to be random,
the matrix u is itself random, and BS can be fully imple-
mented.

3 Equivalent representations

We return now to the question of how a general single-
particle linear canonical transformation is reflected in
the transformation of the different (Fock, quadrature and
coherent) many-body states and how the hardness of cal-
culating permanents gets reflected in the different repre-
sentations.

3.1 Coherent states

The simplest transformation between many-body states
after a single-particle canonical transformation is the
one for the coherent states, and hence we start with this
case. Any coherent state can be constructed out of the
vacuum state |0〉 by the application of the displacement
operator [12]

D̂(φ,φ∗) = eφ
∗·b̂+φ·b̂†

(23)

as

|φ〉 = D̂(φ,φ∗)|0〉, (24)

and similarly for the primed states |ψ′〉

|ψ′〉 = eψ
∗·b̂′+ψ·b̂′†

|0〉. (25)

From this, and the defining relation between primed and
unprimed canonical operators in Eq. (20), we get

|ψ′〉 = |uψ〉. (26)

Using again well known properties of the coherent states
[12], the transition amplitude is given by

AC(φ,ψ) = e−
1
2φ

∗·φ− 1
2ψ

∗·ψ+ψ∗·σ·φ. (27)

This result implies in turn for the corresponding transi-
tion probability

PC(φ,ψ) := |AC(φ,ψ)|2 = e−|ψ−σ·φ|2 , (28)

4 Copyright line will be provided by the publisher
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admitting a straightforward interpretation, very much
consistent with the idea that quantum coherent states
are the most classical states of light: At the classical level,
the canonical transformation simply consists of a linear
transformation between the field amplitudes given by
φ→ u ·φ. The classical probability to obtain the state ψ

after a canonical transformation of the state φ is imple-
mented is nonzero only if ψ= u ·φ. In the quantum case,
this sharp peak is smoothed into a Gaussian.

In terms of the scattering scenario, the transition
probability between coherent states also agrees with in-
tuition: The probability is strongly peaked around the
output state labeled by the classical field amplitude re-
sulting from scattering of the classical input field.

3.2 Quadrature states

In the same spirit as in the case of coherent states,
the transformation rule for quadrature states can be de-
duced by the corresponding transformation for the defin-
ing canonical operators. In the coherent state case, the
canonical pair is b̂, b̂†, and therefore for the quadrature
case we must find the set of canonical conjugate partners
of the q̂ ’s. The obvious choice that turns out to do the job,
is to define [14]

q̂i := b̂i + b̂†
i

, p̂i :=−i (b̂i − b̂†
i

).

As the q-quadratures, the p-quadratures have a com-
plete, orthogonal and Dirac-normalized common set of
eigenstates,

p̂i |p〉 = pi |p〉. (29)

The analogy with the usual position and momentum op-
erators in particle (first quantized) quantum mechanics
is evident after using their definition to obtain [14]

〈q|p〉 =
e

i
2 q·p

(4π)M/2
. (30)

However, it must be stressed that quadrature states do
not represent any single-particle property at all. In fact,
it can be shown that they do not represent states with a
well defined total number of particles, thus making their
interpretation as any sort of localization property in real
space impossible.

Our goal is again to inter-relate the two quadrature
states |Q′〉 and |q〉, defined by

q̂|q〉 = q|q〉, (31)

q̂′|Q′〉 = Q|Q′〉,

using as input the canonical transformation given by

q̂+ i p̂ → q̂′+ i p̂′ = u(q̂+ i p̂). (32)

This canonical transformation can be solved for q̂′ sim-
ply by taking its hermitian part on both sides using the
decomposition

u = ur + i ui (33)

into real and imaginary parts. The eigenvalue equation
defining |Q′〉 is then found to be

[

i ui ·
∂

∂q
−

1

2

(

ur ·q−Q
)

]

〈Q′|q〉 = 0. (34)

This can be solved using a Gaussian ansatz to get

AQ(q ,Q) :=〈Q′|q〉

=

exp

{

− i
4

(

q

Q

)( (

ui
)−1

ur −
(

ui
)−1

−
[

(

ui
)T

]−1
ur

(

ui
)−1

)(

q

Q

)}

√

det
[

−4πi u
(

ui
)T

]

,

(35)

with similar expressions for the p-quadrature states.
Using Eq. (35), we obtain an interesting result for the

transition probability between quadratures,

PQ(q ,Q) := |AQ(q ,Q)|2 =
1

∣

∣

∣det4πu
(

ui
)T

∣

∣

∣

. (36)

It is fully independent of the initial and final states. In
the scattering scenario this means that the probability to
obtain a given configuration after measuring the electric
field in the output channels is the same for any input and
output configuration. As it is clearly seen in Eq. (35), how-
ever, the amplitudes themselves are very structured func-
tions of the input and output quadrature states and it is
only the associated probabilities that display a flat pro-
file.

4 Exact representations

Armed with the results of the last section we can now
construct different exact expressions for the transition
amplitudes between Fock states, AF(n,m), that, supple-
mented with an ensemble of random u matrices, provide
different representations of BS. Since the transition am-
plitudes, Eqs. (27,35), in both quadrature and coherent

Copyright line will be provided by the publisher 5
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representation are not difficult to evaluate, the complex-
ity of calculating permanents must stem from the trans-
formations between the different basis sets. In the follow-
ing we will make this connection explicit.

Using the transformation rules, Eq. (15), between co-
herent, quadrature and Fock states we obtain [12, 14],

AF(n,m) := 〈m′|n〉 =
1

π2M

∫

dψdφ〈m′|ψ′〉〈ψ′|φ〉〈φ|n〉

=
∫

dψdφ
∏

i

ψ
mi

i

(

φ∗
i

)ni e−
1
2 |ψi |2− 1

2 |φi |2

π2
p

mi !ni !
AC(φ,ψ),

(37)

and

AF(n,m) := 〈m′|n〉 =
∫

dQd q〈m′|Q ′〉〈Q ′|q〉〈q |n〉

=
∫

dQd q
∏

i

Hmi

(

Qip
2

)

Hni

(

qip
2

)

e−
Q2

i
4 −

q2
i

4

√

2ni+mi+1πni !mi !
AQ(q ,Q).

(38)

Equations (37) and(38) are two equivalent representa-
tions of the scattering amplitudes and provide a basis for
realizing BS when supplemented with a physical ensem-
ble of unitary matrices u. The first expression in terms
of the coherent state transition amplitude AC is conve-
nient for exact calculations, while the second equation in
terms of AQ will be important when we connect BS with
a three-step canonical transformation in order to under-
stand its asymptotics for large N .

5 A generating function for transition
amplitudes

It is instructive to show how one finds yet another version
of the transition amplitudes using the equivalence of the
two representations in Eqns. (37) and (38). To this end we
use the identities

φn =
∂n

∂kn
ekφ

∣

∣

∣

∣

k=0
, Hn(q) = eq2 ∂n

∂kn
e−(q−k)2

∣

∣

∣

∣

k=0
,

which allow us to perform exactly the integrals over the
intermediate variables ψ,φ in the coherent state repre-
sentation and Q , q in the quadrature case. After some
calculations we get the exact, surprisingly simple expres-

sion,

AF(n,m) =
(

∏

i

1
p

mi !ni !

∂mi

∂x
mi

i

∂ni

∂y
ni

i

)

ex·u·y
∣

∣

∣

∣

∣

x=y=0

=
(

∏

i

p
mi !ni !

(−4π2)

)

∮

(

∏

i

d xi d yi

x
mi+1
i

y
ni+1
i

)

ex·u·y

(39)

which is one of our main results. It is a generating func-
tion providing the transition amplitudes as high-order
derivatives of an multivariate exponential function and
generalizes [21]. Here it is clear that in any representa-
tion the complexity of many-body scattering comes from
the combinatorics involved in taking high-order deriva-
tives of large products of exponentials. The second ex-
pression, obtained by using the Cauchy integral formula
(the closed integration contours enclose the origin), fur-
ther transforms the problem in a way suitable for asymp-
totic analysis.

The generating function approach provides a way to
eventually address some open questions, in particular
the calculation of high order moments of the distribu-
tion of transition amplitudes (or transition probabilities)
over the ensemble of single-particle canonical transfor-
mations [6]. The particular advantage of this representa-
tion is that the average over the unitary group of matri-
ces u representing the single-particle canonical transfor-
mation can be performed exactly. In section (6) we show
how to follow this program in the simpler case of Ginibre
(complex) matrices, and provide for the first time exact,
explicit expressions for the third moments of the distri-
bution of squared permanents.

So far, all equivalent versions of the transition ampli-
tudes have been obtained by exact, identical transforma-
tions. In the rest of this section we will focus on the partic-
ular regime of high densities, i.e, when N :=

∑

i ni ≫ M ,
where we can safely assume that the majority of configu-
rations satisfy

ni ≫ 1,mi ≫ 1, (40)

and powerful methods of asymptotic analysis can be
safely applied. However, although BS involves the regime
of large N and M , it is expected to be a hard problem
only in a specific asymptotic limit given by M ≫ N 2 [6],
and the high-density limit cannot be used to make state-
ments about it. The study of the behavior of the scatter-
ing amplitudes in the appropriate dilute limit of interest
for BS is currently under progress.

If the conditions in Eq. (40) hold, we can then eval-
uate the contour integrals in Eq. (39) by the method of

6 Copyright line will be provided by the publisher
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steepest descent applied to

AF(n,m) =
(

∏

i

p
mi !ni !

−4π2

)

×
∮

(

∏

i

d xi d yi

)

e−
∑

i (ni+1)log xi−
∑

i (mi+1)log yi+x·u·y,

(41)

thus making contact with the theory developed in [22].
Here we are not interested in the technical details of the
full calculation of the large-N asymptotics, but instead in
the physical interpretation of the saddle point conditions

∂

∂xl

[

−
∑

i

ni log xi −
∑

i

mi log yi +x ·u ·y

]

= 0, (42)

∂

∂yl

[

−
∑

i

ni log xi −
∑

i

mi log yi +x ·u ·y

]

= 0 (43)

selecting the optimal values of the, so far, purely formal
complex variables x,y. Under the variable transforma-
tion

xi =
p

ni e−iθi , yi =
p

mi eiχi (44)

the resulting set of 2M complex equations can be re-
duced to find the M real angles χl satisfying the condi-
tions
∑

l ,l ′
ui l ui l ′

p
ml ml ′e

i (χl−χl ′ ) = ni . (45)

In other words, the asymptotic limit of many-body tran-
sition amplitudes for large densities is dominated by con-
figurations x, y satisfying

y = u ·x with |yl |2 =ml and |xi |2 = ni . (46)

This shows that in the limit of large densities, the calcula-
tion of transition amplitudes requires the solution of (46),
namely the calculation of the phases of the classical in-
put and output field amplitudes (linearly related through
u) required to satisfy shooting (instead of initial-value)
boundary conditions. This interpretation can be made
even more explicit by considering the quadrature repre-
sentation of the amplitudes. To this end, we consider the
chain

(n,θ) → (q,p) → (Q,P) → (N,Θ) (47)

defined by

qi + i pi =
p

ni eiθi , Qi + i Pi =
√

Ni eiΘi (48)

and

Q+ i P = u(q+ i p). (49)

The semiclassical approximation for the amplitudes that
define the unitary operators representing the first and
last canonical transformations of the chain in Eq. (47),

Aqn(n,q) = 〈q|n〉 , AQN(N,Q) = 〈Q|N〉, (50)

is given by [23, 24]

Aqn(n,q) ≃
N
∏

i=1

√

1

2πi

∂2 f (ni , qi )

∂ni∂qi
ei f (ni ,qi ),

AQN(N,Q) ≃
N
∏

i=1

√

1

2πi

∂2F (Ni ,Qi )

∂Ni∂Qi
ei F (Ni ,Qi )

(51)

in terms of generating functions f (n, q),F (N ,Q) = f (N ,Q)
satisfying

θ =
∂

∂n
f (n, q), Θ=

∂

∂N
f (N ,Q). (52)

Finding these generating functions is a standard problem
with explicit solution

f (n, q)=
q

4

√

4n −q2 −n arccos

(

q

2
p

n

)

. (53)

Interestingly, and contrary to Aqn and AQN, due to the lin-
earity of the transformation (q,p) → (Q,P) the interme-
diate step (q,p) → (Q,P) (responsible for the change in
single-particle representation) is not only approximated
but it is in fact exactly given by the semiclassical expres-
sion. The result is then identical to AQ(q,Q) in Eq. (35).

We can now construct the semiclassical approxima-
tion for the full transformation (n,θ) → (N,Θ) by operator
multiplication of the three intermediate transformations,

AF(n,N) =
∫

dqdQ
(

AQN(N,Q)
)∗

AQ(Q,q)Aqn(n,q), (54)

to get

AF(n,N) =

∫

dqdQ

exp

{

− i
4

(

q

Q

)( (

σi
)−1

σr −
(

σi
)−1

−
[

(

σi
)T

]−1
σr

(

σi
)−1

)(

q

Q

)}

√

det
[

−4πiσi
(

σi
)T

]

×
∏

j

exp

{

i

[

−Q j

4

√

4N j −Q2
j
+N j arccos

(

Q j

2
p

N j

)]}

√

2πi
√

N j −Q2
j
/4

×
∏

j

exp
{

i
[

q j

4

√

4n j −q2
j
−n j arccos

(

q j

2
p

n j

)]}

√

2πi
√

n j −q2
j
/4

.
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(55)

This is exactly the same result we obtain by considering
the large n limit of the exact representation, Eq. (38), by
using the asymptotics

Hn(q) ≃

√

√

√

√

√

2n+1nne−n+q2

√

1− q2

2n+1

×cos

[(

n +
1

2

)

arcsin

(

q
p

2n +1

)

+
q

2

√

2n +1−q2

−
π

2

(

n +
1

2

)]

.

(56)

Note that the complexity of many-body scattering is re-
flected in the coherent sums over quantum mechani-
cal amplitudes explicitly appearing in Eq. (17), namely,
quantum interference results in the highly irregular pat-
tern one obtains for the transition probabilities as a func-
tion of the incoming and output states [11]. Very much
opposite to the semiclassical method presented here,
quasiclassical approaches, based on adding probabilities
instead of amplitudes, capture only the gross features of
these patterns. To stress this point, it is important to un-
derstand where quantum interference is hidden in our
semiclassical approach. In terms of Eq. (17), by expand-
ing the permanents of M(σ) as sums over products of
single-particle scattering matrices, these coherent sums
over products of single-particle paths can be made very
explicit, as in [25].

The semiclassical interpretation of many-body scat-
tering (at least for the case of large occupations) allows
us to understand the complexity of the problem, and the
origin of massive quantum interference in terms of classi-
cal canonical transformations. To this end, consider now
the unique canonical transformation implementing the
full change of canonical variables (n,θ) → (N,Θ) without
the intermediate steps in terms of quadratures. Then the
semiclassical theory of quantum canonical transforma-
tions indicates that we must find the generating function
w(n,N) that, together with the definitions

θ =
∂

∂n
w(n,N) , Θ=

∂

∂N
w(n,N), (57)

√

Ni eiΘi =
∑

j

ui j
√

n j eiθ j , (58)

gives the explicit form of the transformation as

N = N(n,θ) , Θ=Θ(n,θ), (59)

in order to write

AF(n,N) ∝
∣

∣

∣

∣

det
∂2w(n,N)

∂n∂N

∣

∣

∣

∣

1
2

ei w(n,N). (60)

However, in this case we encounter a new issue that was
not present in the canonical transformations we have
seen before: although the initial value problem of find-
ing (N,Θ) from (n,θ) admits a unique solution (given by
the transformation equations), the boundary problem of
finding (θ,Θ) for given (n,N) admits a very large set of so-
lutions. Each of these solutions represents a branch γ of
the multi-valued generating function w , and the correct
form of the semiclassical approximation to the transition
amplitude is then,

AF(n,N) =
∑

γ

∣

∣

∣

∣

∣

det
1

2π

∂2wγ(n,N)

∂n∂N

∣

∣

∣

∣

∣

1
2

ei wγ(n,N)+iµγ
π
4 . (61)

Here the index µγ is a topological property of the particu-
lar branch that can be computed from the classical trans-
formation. As expected, this is also the solution of the
calculation of the amplitudes using the generating func-
tion (55), within the saddle point approximation. Hence
the semiclassical origin of both, the complexity of many-
body scattering and the massive quantum interference
associated with it, is the highly non-linear form (and
therefore the multi-valuedness) of the boundary prob-
lem connecting occupations.

6 Distribution of permanents

In this section we will calculate the first three moments of
the distribution of permanents over the (complex) Gini-
bre ensemble to show exemplary how the representa-
tion (39) leads to a solvable combinatorial problem. The
calculation is exact, in that it does not involve any asymp-
totics. It would be of course important to perform a simi-
lar calculation in the regime of interest for BS, and this is
work under progress.

Let σ2 denote the variance of the independent real
parts and imaginary parts of all matrix elements in A and
let N be its dimension. We start with an exact representa-
tion obtained from (39), in a slightly different form

Perm A =
(

N
∏

i=1

∂2

∂xi∂yi

)

exτAy

∣

∣

∣

∣

∣

x=y=0

, (62)

where x= (x1, . . . , xN ) (and similarly for y) is a column vec-
tor and τ is transposition. This representation allows the
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Gaussian average to be performed exactly. Define the ten-
sor

ρ(k) =
(

y(k)
)(

x(k)
)τ

(63)

such that

2n
∑

k=1

(

x(k)
)τ

A
(

y(k)
)

=Tr

[

A
2n
∑

k=1

ρ(k)

]

. (64)

The average of |Perm A|2n is evaluated by separating real
and imaginary parts of the matrix A to get

〈|Perm A|2n〉 =
(

n
∏

k=1

N
∏

i=1

∂2

∂x(2k−1)
i

∂y (2k−1)
i

∂2

∂x(2k)
i

∂y (2k)
i

)

× e
2σ2 ∑N

i , j=1

∑n
k ,l=1 x(2k−1)

i
y (2k−1)

j
x(2l )

i
y (2l )

j

∣

∣

∣

∣

x=y=0

,

(65)

which is equivalent to

〈|Perm A|2n〉 = coefficient of
2n
∏

k=1

N
∏

i=1
x(k)

i
y (k)

i
in

∏

i , j

∏

k ,l

(

1+2σ2x(2k−1)
i

y (2k−1)
j

x(l)
i

y (l)
j

)

.

(66)

The evaluation of the coefficients in (66) is related to the
following combinatorial problem. First of all we can re-
move the factor 2σ2 in (66) and in return eventually mul-
tiply the overall coefficient with (2σ2)nN . For each value
of i = 1, . . . , N all the x(k)

i
, k = 1, . . . ,2n, have to appear ex-

actly once. They come in pairs x(k ′)
i

x(l ′)
i

with k ′ odd and
l ′ even. We start by counting the number of ways to com-
bine different factors in

∏n
k ,l=1(1+x(2k−1)

i
x(2l)

i
) to get each

variable (for fixed i ) exactly once. This is equivalent to
counting pairings between n (representing the even in-
dexes) and n (representing the odd indexes), which itself
is equivalent to counting permutations of n. We write
( 1 2 ··· n

P (1) P (2) ··· P (n)

)

or abreviated ( P (1) P (2) ··· P (n) ) to adress
a specific permutation P ∈ Sn . Specific pairs shall be de-
noted by the corresponding column

(

k
l

)

=
(

k
P (k)

)

. For all x-
variables one has to count N independent permutations
of n. Writing those one below the other will be referred to
as table.

For the y-variables again N permutations of n have
to be counted. Since they come in combination with the
x-variables in (66) they are not independent from the x-
pairings. Each tuple (i ,k, l ) representing a pair in the N

x-pairings actually comes with a fourth entry as a four-
tuple (i , j ,k, l ). This means that the pairs (k, l ) building
up the y-pairings have to be taken from the x-pairings.

In other words the y-pairings have to be a rearrangement
of the x-pairings, keeping the (k, l )-indexes of all pairs.
We will refer to this as a vertical rearrangement or per-
mutation, depending on the context. In the process of
rearranging identical pairs have to be taken distinguish-
able (e.g. vertically swapping two identical pairs in the
y-table has to be counted additionally) since the set of
touples {(i1, j1,k, l ), (i2, j2,k, l )} is different from the set
{(i1, j2,k, l ), (i2, j1,k, l )} (if i1 6= i2, j1 6= j2) although the
(k, l )-indexes of the two pairs involved are the same.

(i) n = 1: There is trivially only one permutation for
each i concerning the x-variables. The same holds for the
y-variables but there are N ! ways to vertically rearrange
all the

(

1
1

)

-pairs. We get

〈|Perm A|2〉 = (2σ2)N N ! . (67)

(ii) n = 2: The two different permutations of n = 2 are
P1 =

(

1 2
1 2

)

and P2 =
(

1 2
2 1

)

, which are incompatible, mean-
ing they do not share any pair. Let N1(M1) and N2(M2) de-
note the multiplicities of P1 and P2 in the x(y)-table. The
incompatibility implies M1 = N1, M2 = N2. The number
of ways to distribute these permutations on N twice is
(

N !
N1!N2!

)2
and the number vertical permutations of pairs

is (N1!)2(N2!)2. We get

〈|Perm A|4〉 = (2σ2)2N
N
∑

N1,N2=0
δ∑

Na ,N (N !)2

= (2σ2)2N N !(N +1)! . (68)

(iii) n = 3: The 3! = 6 permutations of n = 3 are
(P1, . . . ,P6) = ((1 2 3 ) , ( 2 1 3 ) , ( 1 3 2 ) , ( 3 2 1 ), ( 2 3 1 ) , ( 3 1 2 )).
Again we let Na and Ma (a = 1, . . . ,9) denote the multi-
plicities of the permutations Pa in the x- and y-table re-
spectively. We define the 9 pair-counters pα

p1 = N1 +N3 , p2 = N2 +N5 , p3 = N4 +N6 ,

p4 = N2 +N6 , p5 = N1 +N4 , p6 = N3 +N5 , (69)

p7 = N4 +N5 , p8 = N3 +N6 , p9 = N1 +N2

for the pairs
(

1
1

)

,
(

1
2

)

,
(

1
3

)

,
(

2
1

)

,
(

2
2

)

,
(

2
3

)

,
(

3
1

)

,
(

3
2

)

,
(

3
3

)

(in that
order). Taking into account (a) the multinomials for the
distributions of the permutations among the N rows for
both x and y , (b) the restriction to y-tables that are verti-
cal rearrangements of the x-table and (c) the vertical per-
mutation of identical pairs for y yields

〈|Perm A|6〉 =

(2σ2)3N
6

∏

a=1

(

N
∑

Na=0

)

δ∑

Na ,N

6
∏

a=1

(

N
∑

Ma=0

)

δ∑

Ma ,N

×
9

∏

α=1
δpα(N),pα(M)

(N !)2

∏

a (Na !Ma !)

∏

α
pα(M)! .
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(70)

The 9×6-matrix
(

∂pα(N)
∂Na

)

α,a
has rank 5 so there are 5 in-

dependent restrictions from
∏

αδpα(N),pα(M). Also the re-
striction

∑

a Ma = N is contained when
∑

a Na = N ap-
plies. Thus (70) can also be expressed containing only
6 sums. In the following form the number of sums is re-
duced to 7, keeping one restriction and M1 independent.

〈|Perm A|6〉 = (2σ2)3N (N !)2
6

∏

a=1

(

N
∑

Na=0

)

δ∑

Na ,N

N
∑

M1=0

×
∏

α pα(N)!

M1!
∏

a Na !
∏6

a=2 Ma(N, M1)!
,

(71)

where the Ma (a > 1) are given by

M2 = N1 +N2 −M1 , M3 = N1 +N3 −M1 ,

M4 = N1 +N4 −M1 , M5 = N5 −N1 +M1 , (72)

M6 = N6 −N1 +M1

and 1
(−m)! := 0 for k ∈ N\{0}. Applying (71) we evalu-

ate the scaled third moment 〈|Perm A|6〉/(2σ2)3N /(N !)3

for the lowest N to 6, 18, 122
3 , 79, 140, 10508

45 , 13068
35 ,

579, 276442
315 , 228754

175 , 3697434
1925 , 48374363

17325 , 12084328
3003 , 55026632

9555 ,
5536562488

675675 , 290360139
25025 , 3748239326

229075 , 73954590386
3216213 , 156246017726

4849845 ,
33081258263

734825 , 95883756128092
1527701175 , 767871070556

8793675 , 750199663660
6186609 for N =

1, . . . ,23 respectively and use this to estimate an assymp-
totically exponential (as opposed to factorial) scaling of
this quantity proportional to eλN Nν(1+O ( 1

N )) with λ ∼
0.3.

7 Conclusions

We have shown that the usual many body scattering
scenario realizing the Boson Sampling problem (in the
sense of sampling over an ensemble of large matrices us-
ing as weight their permanents) is a particular case of a
much more general kind of physical situations where the
transition amplitudes between many-body Fock states
built from two different single-particle basis sets are mea-
sured. Within this general scenario, Boson Sampling re-
quires the calculation of the many-body unitary oper-
ator representing a linear, canonical transformation at
the single-particle level. We have provided different ver-
sions of the problem, obtained by expressing this tran-
sition amplitudes in different intermediate basis like co-
herent states and quadrature states of the field. Start-
ing with these exact representations, we performed an
asymptotic analysis valid in the limit of large occupa-
tions and provide their semiclassical approximation in

the spirit of coherent sums over solutions of a classical
boundary problem. Along the way, we have derived an ex-
act form of the many body transition amplitudes, equiv-
alent to the calculation of permanents, and use it to de-
rive exact results for the moments of the distribution of
permanents over the Ginibre ensemble. Work on the ex-
tension of our asymptotic analysis into the regime of low
densities, where BS is expected to be hard, is currently
under way.
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