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Abstract

Based on previous studies of hard exclusive leptoproduction of pions
in which the essential role of the pion pole and the transversity gener-
alized parton distributions (GPDs) has been pointed out, we present
predictions for the four partial cross sections of the exclusive Drell-Yan
process, π−p → l−l+n.

1 Introduction

In recent years hard exclusive leptoproduction of mesons and photons have
been studied intensively by both experimentalists and theoreticians. It be-
came evident in the course of time that within the handbag approach which
is based on QCD factorization in the generalized Bjorken regime of large
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photon virtuality and large photon-proton center-of-mass energy but fixed
x-Bjorken, it is possible to interpret these processes in terms of generalized
parton distributions and hard perturbatively calculable subprocesses with,
however, occasionally strong power corrections for meson production (for a
recent review see [1]). Exploiting the universality property of the GPDs,
one may use the set of GPDs extracted from meson leptoproduction, in the
calculation of other hard exclusive processes. Of particular interest are pro-
cesses with time-like virtual photons. Thus in [2] predictions for time-like
DVCS (γp → l−l+p) have been given, their experimental examination is still
pending. The high-energy pion beam at J-PARC put into operation in the
near future, offers the possibility of measuring another exclusive process with
time-like virtual photons, namely the exclusive limit of the Drell-Yan pro-
cess, π−p → l−l+n. The purpose of this letter is to present predictions for the
cross sections of this process taking into account what has been learned in
the analyses of pion leptoproduction [3, 4]. The data on the cross section for
π+ leptoproduction [5, 6] demonstrate the prominent role of the contribution
from the pion pole at small invariant momentum transfer, t, and it became
evident that it is to be calculated as an one-particle-exchange (OPE) term

rather than from the GPD Ẽ [7]. In the latter case the pion-pole contri-
bution to the π+ cross section is underestimated by order of magnitude. A
second important observation has been made in [3, 4]: The interpretation of
the transverse target spin asymmetries in π+ leptoproduction measured by
the HERMES collaboration [8] necessitates contributions from transversely
polarized photons which are to be modelled by transversity GPDs within
the handbag approach. This observation is supported by a recent CLAS
measurement of π0 leptoproduction [9].

Since for the process π−p → l−l+n. the same GPDs contribute as for pion
leptoproduction and the corresponding subprocesses are just ŝ ↔ û crossed
ones 3

Hπ−
→γ∗

(ŝ, û) = −Hγ∗
→π+

(û, ŝ) (1)

where ŝ and û denote the subprocess Mandelstam variables, one can exploit
the knowledge acquired there. One thus gains predictive power, there is
no free parameter or soft hadronic matrix element left for the Drell-Yan
process. Our analysis markedly differs from a previous study performed by
Berger et al [11] where only predictions for the longitudinal cross section at

3A detailed discussion of the space- and time-like connection of the leading-twist am-
plitudes can be found in [10]
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leading-twist accuracy has been given. It should be stressed that their and
our predictions for that cross section differ by about a factor of 40 due to
the different treatment of the pion pole contribution. Our findings may be
of help in the preparation of an Drell-Yan experiment [12]. Future data on
the exclusive pion-induced Drell-Yan process may reveal whether or not our
present understanding of hard exclusive processes in terms of convolutions
of GPDs and hard subprocesses also holds for time-like photons . This is a
non-trivial issue because the physics in the time-like region is complicated
and often not understood. Thus, for instance, there is no explanation of
the time-like electromagnetic form factors of hadrons [13]. Even the semi-
inclusive Drell-Yan process was difficult to understand. It took a long time
before the discrepancy between the theoretical predictions and experiment,
known as the K-factor, has been explained as threshold logarithms [14, 15]
representing gluon radiation resummed to next-leading-log (NLL) accuracy.

2 The handbag approach

Here, in this section, we recapitulate the handbag approach. For more details
of it we refer to our previous work [3, 4]. The process π−p → l−l+n is depicted
in Fig. 1. We work in a center-of-mass frame in which p+p′ points along the
positive 3-axis and we consider the kinematical range of large Mandelstam s
(= (p+ q)2) and large photon virtuality 4 , Q′2, but small

τ =
Q′2

s−m2
, (2)

the time-like analogue of Bjorken-x (m being the mass of the nucleon). Hence,
skewness, defined as

ξ =
p+ − p′+

p+ + p′+
≈ τ

2− τ
, (3)

is also small.
Assuming factorization we can express the helicity amplitudes for π−p →

4The Q′2-regions of quarkonia states have to be excluded.
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π−(q)

p(p) n(p′)

l−(k)

l+(k′)

Figure 1: The exclusive Drell-Yan process. The symbols in brackets denote
the momenta of the respective particles.

γ∗n in terms of convolutions of GPDs and hard subprocess amplitudes

M0+,0+ =
√
1− ξ2

e0
Q′

[
〈H̃(3)〉 − ξ2

1− ξ2
〈Ẽ(3)

n.p.〉+
2ξm

1− ξ2
̺π

t−m2
π

]
,

M0−,0+ =

√
−t′

2m

e0
Q′

[
ξ〈Ẽ(3)

n.p.〉 − 2m
̺π

t−m2
π

]
,

M−−,0+ =
√
1− ξ2

e0
Q′2

µπ〈H(3)
T 〉 ,

M±+,0+ =

√
−t′

4m

e0
Q′2

[
µπ〈Ē(3)

T 〉 ∓ 8
√
2m2ξ

̺π
t−m2

π

]
,

M+−,0+ ≈ 0 . (4)

Explicit helicities are labeled by their signs or by zero, e0 denotes the positron
charge and t′ = t − t0 where t0 = −4m2ξ2/(1 − ξ2) is the minimal value t
corresponding to forward scattering. Terms of order t/Q′2 are neglected
throughout. The amplitudes for negative helicity of the initial state proton
are obtained from the set of amplitudes (4) by parity conservation. The
residue of the pion pole is given by

̺π =
√
2gπNNFπNN(t)Q

′2Fπ(Q
′2) (5)

where gπNN (= 13.1 ± 0.3) is the familiar pion-nucleon coupling constant
and FπNN is a form factor that describes the t-dependence of the coupling
of the virtual pion to the nucleon. The pion mass, mπ, is neglected except
in the pion propagator. As we mentioned in the introduction we treat the
pion pole as an OPE term. Therefore the full time-like electromagnetic form
factor occurs in (5). Calculating the pion pole contribution from the GPD

Ẽ as it is done in [11], one obtains to same the expression for it but with the
leading-order (LO) perturbative result for the pion form factor. In (4) it is

also allowed for a possible non-pole (n.p.) part of Ẽ.
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For incident π− mesons the p → n transition GPDs are required which, as
a consequence of isospin invariance, are given by the isovector combination
of proton GPDs [7]

K(3) = Ku −Kd . (6)

The convolutions of the GPDs and the amplitudes H for the subprocess
π−q → γ∗q read [3, 4]

〈K(3)〉 =

∫
dxHµλ,0+(x, ξ, Q

′2, t ≃ 0)K(3)(x, ξ, t) . (7)

The helicity of the final state quark is λ = µ + 1/2 with the photon helic-
ity, µ, being either zero or -1. Thus, the asymptotically leading longitudinal
amplitude is related to a helicity-non-flip subprocess amplitude while, for
transverse photons, a helicity-flip amplitude is convoluted with the transver-
sity GPDs HT and the combination ĒT = 2H̃T + ET . As made explicit in
(4) the transverse amplitudes are suppressed by µπ/Q

′ as compared to the
longitudinal ones. The mass parameter µπ is related to the chiral condensate

µπ =
m2

π

mu +md
(8)

(mu, md are current quark masses). The subprocess amplitudes are calculated
to LO of perturbation theory retaining quark transverse momenta, k⊥, and
taking into account Sudakov suppressions while the emission and reabsorp-
tion of partons by the nucleon happens collinearly to the nucleon momenta.
This so-called modified perturbative approach turns into the leading-twist
result [11] for Q′2 → ∞.

Since the Sudakov factor, exp[−S], comprises gluonic radiation, resummed
to all orders of perturbation theory in NLL approximation [16] which can only
be efficiently performed in the impact parameter space, canonically conju-
gated to the k⊥-space, one is forced to work in the b-space. Hence,

Hµλ,0+ =

∫
dzd2b Ψ̂−λ+(z,−b)F̂µλ,0+(x, ξ, z, Q

′2,b)

× αs(µR) exp [−S(z,b, Q′2)] . (9)

The Fourier transforms of the hard scattering kernel and the light-cone wave
function of the pion are denoted by F̂ and Ψ̂, respectively. The momentum
fraction of the helicity +1/2 quark entering the pion is denoted by z; the
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helicity of the antiquark is −λ. For the renormalization scale we choose
µR = max(zQ′, (1 − z)Q′, 1/b) and the factorization scale is 1/b. Following
Li and Sterman [16] we only retain the most important quark transverse
momenta which appear in the denominators of the parton propagators in the
hard scattering kernels. Therefore, we can use the light-cone projector of a
qq̄ pair on an ingoing pion in collinear approximation [17]

Pπ =
fπ

2
√
2Nc

γ5√
2

{
q/ Φ(z)

−µπ

[
ΦP (z)− i

σµν

2Nc

(qµnν

q · nΦσ(z)− qµ
dΦσ(z)

dz

∂

∂k⊥ν

)]}
. (10)

and replace the distribution amplitudes by light-cone wave functions. In (10)
fπ(= 132 MeV) is the pion decay constant, Nc the number of colors and n is
a light-like vector which in a frame where the massless pion moves along the
z-direction is n = [0, 1, 0⊥]. Three-particle configurations, qq̄g, are neglected.
Dirac, flavor and color labels are omitted for convenience. The first term in
(10) is the well-known twist-2 part which is employed in the calculation of
H0±,0+. For the accompanying light-cone wave function we take

Ψ−+ =

√
2Nc

fπ
exp [−a2πk

2
⊥
/(z(1− z))] (11)

with the transverse size parameter aπ =
[√

8πfπ
]−1

fixed from π0 → γγ
decay [18]. The twist-3 part of (10) is utilized in the calculation of H−−,0+.
As the calculation reveals this subprocess amplitude is dominated by the
contribution from ΦP while the tensor term provides a correction of order
t/Q′2 which is neglected for consistency. For the wave function associated to
ΦP (≡ 1), we use 5

Ψ++ =
16π3/2

√
2Nc

fπa
3
P |k⊥| exp [−a2Pk

2
⊥
] . (12)

For the transverse size parameter, aP , we take 1.8 GeV−1.

5Since quark and antiquark forming the pion have the same helicity, it may seem
appropriate to use a lz = ±1 wave function (for a particle moving along the z-direction).
Such a wave function has been proposed in [19]. It is proportional to k±

⊥
= kx

⊥
± ik

y

⊥
. Its

collinear reduction leads to the tensor piece in (10), the important term ∼ ΦP is lacking.
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3 Predictions for the partial cross sections

Before we present our predictions for the exclusive Drell-Yan process we
specify the various parameters and soft hadronic functions we use in the
evaluation. The form factor FπNN appearing in (5), is parametrized as

FπNN =
Λ2

N −m2
π

Λ2
N − t

(13)

with ΛN = 0.44 ± 0.04 GeV. For the time-like pion electromagnetic form
factor also occuring in (5), we take the average of the data from CLEO [20]
and BaBar [21] as well as a value derived from the J/Ψ → π+π− decay [22]

Q′2|Fπ(Q
′2)| = 0.88± 0.04 GeV2 . (14)

For its phase, exp [iδ(Q′2)], we rely on a recent dispersion analysis [23] which,
for 2 GeV2 <∼Q′2 <∼ 5 GeV2, provides

δ = 1.014π + 0.195(Q′2/GeV2−2)− 0.029(Q′2/GeV2−2)2 . (15)

In the absence of any other information on this phase we use this parametriza-
tion up to ≈ 8.9 GeV2 where δ = π. For larger values of Q′2 we take δ = π,
the asymptotic phase of the time-like pion form factor obtained by analytic
continuation of the perturbative result for the space-like form factor [13].

The GPDs are constructed with the help of the familiar double distribu-
tion ansatz from the zero-skewness GPDs which are parametrized as 6

K(x, ξ = 0, t) = k(x) exp [t(b+ α′ lnx] (16)

where the forward limit, k(x), is an appropriate parton distribution (PDF)
or is parametrized like a PDF with parameters fitted to experiment. The
GPD H̃(x, ξ = 0, t) (including an error estimate) is taken from the recent
analysis of the nucleon form factors [24] which, for this GPD, is based on the

DSSV polarized PDFs [25]. A non-pole contribution to Ẽ is neglected, there
is no clear signal for it in the data on pion leptoproduction. For the zero-
skewness transversity GPDs, HT and ĒT , the actual values of the parameters
are specified in [26]. They are oriented on lattice QCD results [27, 28] and
lead to fair fits of the pion leptoproduction data [5, 8, 9] as well as of the spin

6A more complicated profile function is adopted for H̃ , see [24].
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Figure 2: Definition of the angles φ and θ. The latter angle is defined in the
rest frame of the virtual photon.

density matrix elements and transverse target spin asymmetries for vector
mesons [29, 26]. The errors of the transversity GPDs are estimated from the
p-pole fits presented in [27, 28]. For the mass parameter (8) that controls
the strength of the twist-3 amplitudes, we adopt the value 7 µπ = 2 GeV
valid at the scale 2 GeV. For its error we choose +0.55 and −0.15 [22]. The
QCD coupling constant, αs, is evaluated from the one-loop epression for four
flavors and ΛQCD = 182 MeV. The time-like Sudakov factor is unknown, the
continuation from the space-like to the time-like region is not well understood
(see [30]). The replacement of Q2 by −Q ′2 (see [30, 31]) leads to an oscillating
phase but it is unclear whether these oscillations are physical or not. We
therefore follow Gousset and Pire [30] and use the space-like Sudakov factor,
as utilized in our previous work, also in the time-like region (with Q2 → Q ′2).
As shown in [32], for Q′2 less than 10 GeV2 the Sudakov fator is always close
to unity except near b = 1/ΛQCD where it drops to zero sharply. With the
exception of this region the wave function provides the main suppression.
Therefore, the detailed behavior of the Sudakov factor is not very important.

The four-fold differential cross section for π−p → l−l+n read

dσ

dtdQ′2d cos θdφ
=

3

8π

{
sin2 θ

dσL

dtdQ′2
+

1 + cos2 θ

2

dσT

dtdQ′2

+
sin (2θ) cos φ√

2

dσLT

dtdQ′2
+ sin2 θ cos (2φ)

dσTT

dtdQ′2

}
(17)

where the angles φ and θ, specifying the directions of the leptons, are defined
in Fig. 2. The partial cross sections are related to the π−p → γ∗n helicity

7According to the recent particle data tables [22] µπ is rather 2.6 GeV. Using this
value the normalizations of HT and ĒT have to be altered accordingly since the fit to the
pion leptoproduction data fixes the product of µπ and the transversity GPDs.
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amplitudes (4) by

dσL

dtdQ′2
= κ

∑

ν′

|M0ν′,0+|2 ,

dσT

dtdQ′2
= κ

∑

µ=±1,ν′

|Mµν′,0+|2 ,

dσLT

dtdQ′2
= κ Re

∑

ν′

[
M∗

0ν′,0+(M+ν′,0+ −M−ν′,0+)
]
,

dσTT

dtdQ′2
= κ Re

∑

ν′

[
M∗

+ν′,0+M−ν′,0+

]
. (18)

The normalization factor reads (lepton masses are neglected)

κ =
αem

48π2

1

(s−m2)2Q′2
. (19)

In Fig. 3 we show our predictions for dσL/dtdQ
′2 at Q′2 = 4 GeV2 and

s = 20 GeV2 and dσL/dQ
′2 integrated over t′ from 0 to −0.5 GeV2. The

longitudinal cross section is heavily dominated by the contribution from the
pion pole, that one from H̃ , including its interference with the pion pole,
amounts only to about 10% in the kinematical range of interest. The full
result is markedly larger than our leading-twist result which is of the same
order as that one quoted in [11]. This amplification is due to the use of
the experimental value of the pion form factor (14) instead of its leading-
twist result (≈ 0.15 GeV2). We stress that the OPE contribution from the
pion pole does neither rely on QCD factorization nor on a hard scattering.
It is therefore not subject to evolution and higher-order perturbative QCD
corrections. Because of the dominant contribution from the pion-pole and
since we only consider a small range of Q′2 around 4 GeV2 the evolution of
the GPDs is insignificant and is therefore neglected. As opposed to [11] our

interference term is positive. It is generated by the imaginary parts of 〈H̃〉
and the pion-pole contribution while, in a LO leading-twist calculation, it is
evidently under control of the corresponding real parts. Constructing H̃ from
the polarized PDFs derived in [33] instead from the DSSV ones [25] alters
the predictions for the longitudinal cross section by less than the estimated
errors displayed in Fig. 3.

The transverse cross section is shown in Fig. 4. It is substantially smaller
than the longitudinal cross section but much larger than the leading-twist

9
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Figure 3: The longitudinal cross sections dσL/dtdQ
′2 (left) at Q′2 = 4 GeV2

versus t′ and dσL/dQ
′2 (right) versus Q′2. The thin solid lines with error

bands represent our full results at s = 20 GeV2, the thick dashed ones those
at 30 GeV2. The thick solid (dotted, thin dashed) line is the interference

term (contribution from |〈H̃(3)〉|2, leading twist). The latter two results are
multiplied by 10 for the ease of legibility.

result. The uncertainty of our predictions is rather large and asymmetric
due to the asymmetric error of µπ. The transverse cross section can be
decomposed as (cf. (18) and (4)) 8

dσT

dtdQ′2
= κ

[
|M−−,0+|2 + 2|M++,0+(π)|2 + 2|M++,0+(ĒT )|2

]
. (20)

The first term in (20), being related to the GPD HT , is displayed in Fig. 4
separately; it dominates this cross section. The second term, the pion-pole
contribution, is rather small; it generates the little difference between the
contribtuion from HT and the full result for dσT . The contribution from ĒT

is tiny.
The longitudinal-transverse interference cross section is also shown in Fig.

4. The width of its error band is about a half of that of the transverse cross

8The ĒT (π) term behaves as behaves as a natural (unnatural) parity exchange while
the HT has no specific parity behavior [3, 4].
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Figure 4: The transverse cross sections dσT/dtdQ
′2 (left) at Q′2 = 4 GeV2

versus t′ and dσT/dQ
′2 (right) versus Q′2. The thin solid dashed lines with

error bands represent the full result at s = 20 GeV2, the thick dashed ones
those at 30 GeV2 while the dotted line is the contribution fromHT . The thick
solid line represents the longitudinal-transverse interference cross section.

section. dσLT can be written as

dσLT

dtdQ′2
= κRe

[
2M∗

0+,0+M++0+(π)−M∗

0−,0+M−−,0+

]
. (21)

Both the terms significantly contribute to dσLT . The transverse-transverse
interference cross section is given by

dσTT

dtdQ′2
= κ

[
|M++,0+(ĒT )|2 − |M++,0+(π)|2

]
. (22)

This cross section is very small. For instance, at Q′2 = 4 GeV2 and s =
20 GeV2 it is less than ≈ 0.3 pb/GeV4.

The cross sections decrease with growing s. As an example we show re-
sults at s = 30 GeV2 in the plots. At, say, s ≈ 360 GeV2 as is available from
the pion beam at CERN, the longitudinal cross section is about 30 fb/GeV2

at Q′2 = 4 GeV2. This is likely too small to be measured.
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4 Conclusions

We calculated the partial cross sections for the exclusive Drell-Yan process,
π−p → l−l+n, within the handbag approach. In contrast to a previous
study of this process [11] we treat the pion pole as an OPE term and take

into account transversity GPDs. The parametrizations of the GPDs H̃, HT

and ĒT as well as the values of other parameters appearing in the present
calculation are taken from previous work [3, 4, 24]. The generalization of our
approach to K−p → l−l+Λ is straightforward.

Future data on π−p → l−l+n measured at J-PARC may allow for a test of
factorization of the process amplitudes in hard subprocesses and soft GPDs.
In contrast to pion leptoproduction where there is a rigorous proof for factor-
ization of the amplitudes for longitudinally polarized photons, factorization of
the exclusive Drell-Yan process is an assumption although it seems plausible
that the factorization arguments also hold for time-like photons. However,
Qiu [34] conjectured that factorization may be broken for the exclusive Drell-
Yan process. If however factorization holds to a sufficient degree of accuracy
future data on the exclusive Drell-Yan process may improve our knowledge
of the GPDs.

The exclusive Drell-Yan process also offers the opportunity to check the
dependence of the ππγ vertex on the pion virtuality by comparing data on
the time-like form factor measured in l+l− → π+π− with parametrizations
of π−π+∗ → l−l+ as part of the Drell-Yan analysis. The extraction of the
space-like form factor from lp → lπ+n data may benefit from that check.

Acknowledgements: One of us (P.K.) likes to thank Markus Diehl and
Oleg Teryaev for useful discussions and remarks. The work is supported in
part by the Heisenberg-Landau program and by the BMBF, contract number
05P12WRFTE.
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