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Abstract

Background

The effects of anesthetics on the injured brain continue to be the subject of controversial dis-

cussion. Since isoflurane has recently been shown to induce apoptosis of cerebral endothe-

lial cells, this study compared different anesthetic compounds regarding their potential to

induce cerebro-vascular apoptosis.

Methods

The in vitromodel of the blood-brain barrier used in this study consisted of astrocyte-condi-

tioned human umbilical vein endothelial cells (AC-HUVEC) has been used. After 24 h of

deep hypoxia and reoxygenation or control treatment, AC-HUVEC were exposed to 0, 0.5,

1.0, or 2.0 times the minimum alveolar concentration of isoflurane or sevoflurane, or 0, 75,

150, or 300 nM of midazolam for 2 h. After 24 h, AC-HUVEC were harvested, and the de-

gree of apoptosis was assessed by means of Western blots for the Bax and Bcl-2 ratio and,

for controls and the highest concentration groups, terminal deoxynucleotidyl-mediated

dUTP-biotin nick end labeling (TUNEL).

Results

Without hypoxic pretreatment, 2.0 MAC of isoflurane slightly increased TUNEL intensity

compared to control and sevoflurane, but without any significant changes in the Bax and Bcl-

2 ratio. After hypoxic pretreatment, exposure to isoflurane led to a multifold increase in the

Bax and Bcl-2 ratio in a dose dependent manner, which was also significantly higher than

the ratio observed in the 2 MAC sevoflurane group. TUNEL intensity in the post-hypoxic 2

MAC isoflurane group was increased by a factor of 11 vs. control and by 40 vs. sevoflurane.

Sevoflurane and midazolam did not significantly alter thesemarkers of apoptosis, when com-

pared to the control group.
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Conclusions

Isoflurane administered after hypoxia elevates markers of apoptosis in endothelial cells

transdifferentiated to the cerebro-vascular endothelium. Endothelial apoptosis may be a

previously underestimated mechanism of anesthetic neurotoxicity. Administration of high

concentrations of isoflurane in experimental settings may have negative effects on the

blood-brain barrier.

Introduction
Reports on the effect of volatile anesthetics on the healthy and the injured brain are contradic-
tory. Some authors have described neuroprotective properties via several mechanisms [1–9],
whereas other publications suggest toxic effects of anesthetics on developing [10–15] or injured
[16,17] neurons.

Since the pathophysiological focus on CNS damage has widened from a narrow neuro-
centric view towards a more holistic understanding of the complex interactions within the neu-
rovascular unit, the cerebral endothelium has again become a target for research and therapy.
Disruption of the blood-brain barrier (BBB), subsequent cerebral edema and the entry of po-
tentially toxic blood serum ingredients, as well as the translocation of inflammatory cells are
typical consequences related to cerebral endothelial dysfunction in several brain diseases such
as trauma, stroke, and global cerebral hypoxia or ischemia.

Recently, we have been able to show that isoflurane has the potential to induce endothelial
apoptosis in an in vitromodel of the post-hypoxic BBB [18]. Yet, the question if different anes-
thetics have a different apoptogenic potential remains unanswered. In the current study, we in-
vestigated the influence of different concentrations of isoflurane, sevoflurane and midazolam
with regard to their risk of inducing endothelial apoptosis, either with or without previous hyp-
oxia. Unlike isoflurane, sevoflurane and midazolam were not associated with increased
endothelial apoptosis.

Materials and Methods

In vitromodel of the BBB
Human umbilical vein endothelial cells (HUVEC) were derived from the STEMMAT project
[19] and were provided by the department of cardiac surgery at the Regensburg University
Medical Center. The umbilical cords were obtained with approval of the ethics committee (eth-
ics committee at the University of Regensburg No. 03/046MZ and ethics committee at the
Technical University of Munich No. 797/03) and written informed consent of the patients.

The methods used in our study have been previously described in detail elsewhere [18]. In
brief, primary human umbilical vein endothelial cells (HUVEC) were provided by the depart-
ment of cardiac surgery at the Regensburg University Medical Center. Harvested cells were fro-
zen in liquid nitrogen until use. Prior to the study, HUVEC were thawed and cultured up to
passage five. To achieve transdifferentiation into cerebral endothelium—like cells, HUVEC
were grown in 50% (vol/vol) modified endothelial cell growth medium (ECGM Provitro, Ber-
lin, Germany) and 50% astrocyte-conditioned medium (ACM). ACM was harvested from cul-
tures of the U-87 line (ATCC, Wesel, Germany), a glioblastoma (astrocytoma IV°) cell line. No
co-culture of HUVEC and astrocytes was used, and all experiments were done with HUVEC-
only cultures.
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Transdifferentiation of HUVEC into cerebral endothelium-like cells was verified by measur-
ing the transendothelial electrical resistance (TEER). Experiments were started after four days
of ACM conditioning at which specific TEER values peaked above 600 Ocm².

Hypoxia
For hypoxia, confluent astrocyte-conditioned HUVEC (AC-HUVEC) were transferred into a
BBD 6220 humidified hypoxia chamber (Thermo Scientific Heraeus, Langenselbold, Germany)
at 3% O2 and 5% CO2. After 24 h of hypoxia, the flasks were placed in the normoxic incubator
to allow a reoxygenation period of 2 h. The AC-HUVEC were then subjected to anesthesia or
control treatment. Non-hypoxic groups were kept in the standard incubator for the same peri-
od of time.

Anesthesia treatment
The AC-HUVEC were either treated with isoflurane, sevoflurane, or midazolam. Cells in the
control group did not have any contact with either substance. Volatile anesthetic delivery was
achieved by means of a modified anesthesia unit Trajan 808 (Draeger, Lübeck, Germany) in air
(95%) and CO2 (5%). Anesthesia gas vapors for either isoflurane (Forane, Abbott India, Verna
Salcette, India) or sevoflurane (Baxter Healthcare, Halle / Westfalen, Germany) were installed
to add the anesthetic. The gas mixture was introduced into cell culture flasks, which were main-
tained at 37°C. For continuous monitoring of the gas composition, a Capnomak Ultima moni-
tor (Datex Engstrom, Fairfield, CT, United States) was used. During midazolam and control
treatment, cells were aerated by the same mode of gas supply, without adding any volatile
anesthetic.

The AC-HUVEC were treated with either isoflurane or sevoflurane at concentrations of
minimal alveolar concentrations (MAC) of 0.5, 1 or 2 for 2 h, or by adding midazolam (Ratio-
pharm GmbH, Ulm, Germany) to the culture medium at concentrations of 75, 150, or 300 nM
for 2 h. One MAC was considered 1.3 vol% for isoflurane and 2.4 vol% for sevoflurane. After 2
h of treatment, the volatile anesthetic was washed out with 95% air and 5% CO2 for 0.5 h in the
isoflurane and sevoflurane group, or removed by three washing cycles with fresh medium in
the midazolam group. Subsequently, the cells were returned to the standard incubator for 24 h
of recovery before we proceeded with harvest and analysis.

Western blot analysis
The expression of the apoptosis marker Bcl-2–associated X protein (Bax) and the anti-apoptotic
B-cell lymphoma protein 2 (Bcl-2) was analyzed byWestern blotting (n = 3 independent experi-
ments per group) [20,21]. The cells were harvested, lysed, and centrifuged at 8,400 g before the
supernatant was removed and frozen at −80°C until analysis.

For gel electrophoresis, protein samples were diluted 3:1, and 40 μg of protein were loaded
per lane onto 10% acrylamide SDS separating gels (Sigma Aldrich). We used RAW 264.7 (IP)
Cell Lysate (SC- 2211, Santa Cruz Biotechnology, Heidelberg, Germany) for Bax and WEHI
231 Cell Lysate (SC- 2213, Santa Cruz) for Bcl-2 for positive control. Following electrophoresis,
the separated proteins were blotted on Membrane Hybond-CExtra nitrocellulose (Amersham,
Bucks, UK) at 300 mA for 60 min. The blots were then rinsed and blocked with milk powder.
We used a 1:5,000 dilution of the primary antibody anti-ß-actin from mice (A5316, Sigma Al-
drich), and a dilution of 1:1,000 of the primary antibody anti-Bax or anti-Bcl-2 from rabbits
(Cell Signaling, Frankfurt am Main, Germany). After over-night incubation at 4°C, we added a
1:15,000 dilution of the fluorescence-labeled secondary antibodies anti-mouse and anti-rabbit,
produced in donkey (700/800 IRDye, LI-COR Biosciences GmbH, Bad Homburg, Germany).
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The blots were incubated at room temperature in darkness for 1 h. Bax and Bcl-2 levels were
normalized against ß-actin, and the Bax and Bcl-2 ratio was calculated.

TUNEL staining and microscopy
To assess the degree of apoptosis, the terminal deoxynucleotidyl-mediated dUTP-biotin nick
end labeling (TUNEL) technique was applied. AC-HUVEC were grown on cover glasses and
subjected to the anesthetic treatment procedure described above (2 MAC or 300 nM only,
n = 2 independent experiments per group). After the recovery period, the cells were fixed with
4% paraformaldehyde solution (Carl Roth, Karlsruhe, Germany) and stained with an In-situ
Cell Death Detection Kit (Fluorescein 116847959–10 kit, Roche, Mannheim, Germany). For
read-out, we took three pictures by a fluorescence microscope, allocated in a pre-defined man-
ner, and used the mean of overall image fluorescence for further calculations.

Statistical analysis
Repeated measurements of individual cases were averaged and were analyzed as one case to
avoid inappropriate case number duplication. All values are expressed as means and ranges.
Statistical analysis was done with SPSS Statistics 21.0 (IBM Corporation).

The effect of each concentration of the anesthetics on the Bax and Bcl-2 ratio was compared
against control and the remaining concentration groups of the same agent by a single factor
analysis of variances (ANOVA) with Dunnett-T3 post-hoc testing. Further, isoflurane and
sevoflurane were compared against each other within the corresponding MAC group using the
Student T test. The results were corrected for an assumed inequity of variances. Midazolam
groups were not directly compared against the volatile anesthetics, since equipotency of the
concentrations chosen is not warranted. Differences were considered statistically significant at
P< 0.01.

TUNEL intensity of the 2.0 MAC / 300 nM groups was compared against control and be-
tween isoflurane and sevoflurane using the ANOVA with Dunnett-T3 post hoc test. For
TUNEL experiments, differences were assumed to be significant at P< 0.05.

Results

Increased Bax and Bcl-2 ratio after hypoxia and isoflurane treatment
Without previous hypoxia, no significant differences in the Bax and Bcl-2 ratio could be de-
tected in relation to the tested compounds (Fig 1).

After 24 h of hypoxia, exposure to 2 MAC of isoflurane for 2 h followed by 24 h of reoxygen-
ation increased the Bax and Bcl-2 ratio by a factor of 5 compared to control (P = 0.001), by a
factor of 24 compared to 0.5 MAC (P = 0.005), and by a factor of 2.5 compared to 1 MAC of
the same agent (P = 0.006) (Fig 1, Table 1). In addition, when compared to 2.0 MAC of sevo-
flurane, there was a significant 18-fold increase in the Bax and Bcl-2 ratio (P = 0.001) (Fig 1,
Table 1). Representative Western blot clippings for the 2 MAC and 300 nM groups are shown
in Fig 2.

Increased TUNEL intensity after isoflurane treatment
Cells treated with isoflurane but not hypoxia showed a significant increase in TUNEL intensity
with values exceeding those of control and sevoflurane by a factor of 2.6 (P = 0.001) and 6.6 re-
spectively (P = 0.043) (Fig 3a, Table 1).

The TUNEL response was heavily augmented in post-hypoxic cells. In this case, HUVEC
treated with isoflurane showed increased fluorescence levels by a factor of 10.6 vs. control
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(P = 0.026) and 40.3 vs. sevoflurane (P = 0.036) (Fig 3b, Table 1). Sevoflurane and midazolam
did not significantly alter TUNEL intensity when compared to control values.

Representative fluorescence microscopy images with TUNEL labeling are shown in Fig 4.

Discussion
In this study we showed that post-hypoxic exposure to high concentrations of isoflurane—but
not sevoflurane or midazolam—increases the Bax and Bcl-2 ratio as well as TUNEL intensity,
which represent markers of endothelial apoptosis, of the post-hypoxic blood-brain barrier in

Fig 1. Influence of anesthetics on pro- and anti-apoptotic proteins. Bax and Bcl-2 ratio of normoxic (a)
and post-hypoxic (b) AC-HUVEC after post-treatment with various concentrations of midazolam, isoflurane,
and sevoflurane for 2 h, and recovery of 24 h. N = 3. * P < 0.01 (ANOVA).

doi:10.1371/journal.pone.0130408.g001
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an in vitro primary endothelial cell culture model. Further, TUNEL intensity was increased
after treatment with high concentrations of isoflurane without previous hypoxia.

Evidence on anesthesia induced brain damage is conflicting
Numerous studies have addressed the influence of anesthetics on brain damage after cerebral
ischemia [1–18,22,23]. However, the heterogeneity of study protocols, experimental models
used, treatment regimens, and study endpoints led to inconsistent conclusions on whether an-
esthetics exert a beneficial or a detrimental effect in the context of acute stroke.

BBB opening is a part of stroke pathology
In animal models of experimental transient focal cerebral ischemia, the BBB undergoes a bi-
phasic opening with an early peak after 4 to 6 h, an intermittent partial closure of the barrier
after approximately 24 h, and a second, long-lasting peak beginning approximately 48 h after
the incident [24–26]. These findings have been recently confirmed in a combined in vitro and
in vivo study [27]. In humans, BBB opening can be observed from 3 h to 7 d after the incident
[28] and is a key factor for death due to malignant brain infarction.

Anesthetics are associated with further BBB opening
Several recent studies have reported a disruption of the BBB or increase in brain edema, or
both, after the administration of isoflurane in an in vitromodel of the BBB [18], in healthy cats
[29], in rats after transient focal cerebral ischemia [16,26], and in a mouse model of traumatic
brain injury [30]. In contrast, isoflurane also has been described to prevent BBB opening in a
mouse model of subarachnoid hemorrhage [2] and cerebral edema in rats subjected to middle
cerebral artery occlusion (MCAO) [7].

The disruption of tight junctions has been proposed as an underlying mechanism for BBB
opening after administration of isoflurane [30]. Isoflurane may therefore enhance disease-

Table 1. Summary of results.

Anesthetic
compound

Concentration No hypoxia Hypoxia

Bax and Bcl-2 ratio
(range)

TUNEL intensity
(range)

Bax and Bcl-2 ratio
(range)

TUNEL intensity
(range)

Control - 5.80 (2.03–9.15) 4,322 (4,237–4,407) 8.98 (6.20–11.38) 3,632 (3,213–4,052)

Midazolam 75 nM 3.97 (2.02–6.90) - 3.52 (2.95–4.36) -

150 nM 16.45 (6.31–24.12) - 2.69 (1.66–3.52) -

300 nM 13.76 (7.76–24.15) 1,117 (882–1,353) 3.99 (2.71–5.16) 3,007 (2,902–3,111)

Isoflurane 0.5 MAC 4.08 (3.60–4.84) - 1.86 (1.54–2.48) -

1.0 MAC 0.85 (0.55–1.06) - 18.37 (13.68–22.43) -

2.0 MAC 1.02 (0.91–1.16) 11,059 * (10,957–
11,160)

45.31 ** (43.27–49.07) 38,592 * (37,378–
39,805)

Sevoflurane 0.5 MAC 2.54 (0.99–3.64) - 0.62 (0.41–0.74) -

1.0 MAC 0.58 (0.38–0.69) - 3.42 (0.74–5.05) -

2.0 MAC 10.89 (8.52–12.65) 1,665 (1,261–2,069) 2.51 (1.84–3.30) 959 (733–1,184)

Results for markers of apoptosis (Bax and Bcl-2 ratio, TUNEL intensity) in the treatment groups with and without previous hypoxia. Values are means and

range. Midazolam groups have not been compared against isoflurane and sevoflurane groups.

* P < 0.05 vs. control and sevoflurane.

** P < 0.01 vs. control, isoflurane 0.5 MAC, isoflurane 1 MAC, and sevoflurane 2 MAC.

doi:10.1371/journal.pone.0130408.t001

Anesthetics and Apoptosis of the Cerebrovascular Endothelium

PLOSONE | DOI:10.1371/journal.pone.0130408 June 19, 2015 6 / 13



specific tight junction disturbances that are known to play a role in cerebral ischemia [31]. Oxi-
dative stress is also of importance in this respect [16,29].

In animal models, surgery under general anesthesia with isoflurane has led to an inflamma-
tion-mediated opening of the BBB [32,33]. Sevoflurane has been associated with post-surgical

Fig 2. Bax and Bcl-2 Western blots.Representative Western blot clippings for Bax and Bcl-2 from normoxic
(Fig 2a and 2b) and post-hypoxic (Fig 2c and 2d) AC-HUVEC harvested 24 h after treatment with 300 nM of
Midazolam, 2 MAC Isoflurane, 2 MAC Sevoflurane or no anesthetic compound (control). Positive:
positive control.

doi:10.1371/journal.pone.0130408.g002
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BBB disruption [34], but also with a reduction of cerebral edema in combination with upregu-
lation of Bcl-2 and downregulation of Bax in a rat model of MCAO [8]. Propofol might exert a
beneficial post-conditioning effect on the post-hypoxic BBB [35]. Halothane, on the other
hand, has been associated with a higher degree of late BBB opening than isoflurane in an em-
bolic stroke model in rats [36].

Recently, Krueger and coworkers have found a BBB breakdown without any evidence for
tight junction impairment in an embolic model of focal cerebral ischemia in rats [37]. Instead,
trans-endothelial trafficking of tracer substances combined with endothelial degradation was
seen. Notably, these animals were anesthetized with isoflurane. Thus, other mechanisms than
changes of the tight junction complex may be involved in anesthesia-associated BBB opening.

Fig 3. Anesthetics and endothelial apoptosis measured by TUNEL. TUNEL intensity of AC-HUVEC
without (a) and with hypoxia (b) 24 h after post-treatment with 300 nM of midazolam, 2 MAC of isoflurane, or 2
MAC of sevoflurane. * P < 0.05 (N = 2, ANOVA).

doi:10.1371/journal.pone.0130408.g003
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Isoflurane may cause endothelial apoptosis
In our present study, exposure to 2.0 MAC of isoflurane markedly increased TUNEL intensity,
particularly after previous sustained hypoxia. Additionally, after hypoxic pretreatment, expo-
sure to isoflurane increased the Bax and Bcl-2 ratio in a dose dependent fashion. These findings
are consistent with the induction of endothelial apoptosis due to isoflurane treatment of the
post-hypoxic endothelium. In a previous study, these findings were associated with morpho-
logical disintegration of the endothelial cells [18]. These findings support the thesis, that endo-
thelial apoptosis might be a previously unrecognized mechanism of isoflurane neurotoxicity.

The adverse effects of isoflurane on endothelial cells were not present after treatment with
equipotent concentrations of sevoflurane. Midazolam, applied in concentrations capable of

Fig 4. TUNEL fluorescencemicroscopy. Representative TUNEL fluorescence labeled light microscopy
images of AC-HUVEC. Images were taken after the experimental sequence of 24 h of hypoxia, 2 h of
reoxygenation, treatment with 300 nMmidazolam (a), 2 MAC isoflurane (b), 2 MAC sevoflurane (c), or no
anesthetic treatment (d) for 2 h, and a 24 h recovery period. Part (d) shows the positive control.

doi:10.1371/journal.pone.0130408.g004
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inducing neuronal apoptosis in a hippocampal cell culture model [15], did also not negatively
affect endothelial cells. Thus, endothelial toxicity may be a specific effect of isoflurane.

Instead, sevoflurane and midazolam treatment led to small decreases in the Bax and Bcl-2
ratio or TUNEL intensity, which were not statistically significant due to the relatively stringent
levels of significance applied in this study. However, these study results do not contradict the
possibility that midazolam, sevoflurane, or low doses of isoflurane might have protective effects
on the blood-brain barrier as suggested elsewhere [2,7,8].

Isoflurane has been shown to induce neuronal apoptosis by activating the mitochondrial
pathway of apoptosis via reactive oxygen species and by decreasing Bcl-2 protein expression
[38,39]. This decrease was associated with an increase in Bax [38], as seen in our study. Desflur-
ane, on the other hand, did not lead to apoptosis of neuronal cells.

Limitations of the study
The main drawback of this study is its rather small case number. We chose a case number of
n = 3 for Western blot and n = 2 for TUNEL experiments because we expected only changes by
a multiple of the control value to be relevant for the conclusion of the study. Such large changes
can be reliably detected with the small case number used here. Notably, the experiments for
Western blotting and the TUNEL part of the study were conducted independently whereas the
results are in agreement with each other. This notion further supports the validity of the
results.

Isoflurane affected the BBB predominantly at a concentration of 2.0 MAC, which is a dose
exerting that usually used in clinical combination anesthesia. Thus, the experimental findings
of this study cannot be transferred directly to clinical patient care situations. However, if in ani-
mal experiments isoflurane is used as a single anesthetic for small surgical procedures, doses
exceeding 1 MAC are often necessary.

The study’s conclusion is further limited by the restrictions of the single cell, trans-
differentiated endothelial model of the BBB used for these observations. Experimental results
of anesthetic effects on the BBB may differ according to the in vitromodel used [30]. Endothe-
lial injury can be further augmented by combined oxygen and glucose deprivation [27]. Addi-
tionally, factors derived from dying glia and neuronal cells as well as degradation of the basal
membrane can further augment anesthetic effects on the neurovascular unit. Thus, further in
vivo studies are necessary to verify the findings.

Conclusions
According to the results of this study, treatment with isoflurane may exert a negative effect on
the BBB in animal models of CNS pathologies, which might lead to artifacts. Although the use
of isoflurane has still been advocated in recent publications [40]—at least in studies focusing
on the BBB-, replacing isoflurane by sevoflurane or desflurane may seem preferable. Further,
our findings might be interpreted as preliminary hints that patients at risk of brain edema, par-
ticularly after focal or global cerebral ischemia, might be adversely affected be the treatment
with high concentrations of isoflurane. Thus, the safety profile of isoflurane should be clinically
reassessed in this patient population.

In summary, the presented study provides additional evidence that the administration of
isoflurane at high concentrations may exert adverse effects on the blood-brain barrier in acute
brain injury. The study also shows that this effect is obviously not imminent to the same extent
to all (volatile) anesthetics. Endothelial damage might be a previously unrecognized mecha-
nism of neurotoxicity in anesthesiological pharmacology. Such damage should be considered
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when deciding on the use of anesthetic compounds in experimental brain research as well as in
clinical neuroanesthesia.
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