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1 Introduction

Let us consider a knot K ⊂ S3, i.e. a smooth embedded 1-manifold diffeomorphic
to the circle S1. We can choose an open tubular neighbourhood ν (K) of K and
look at the complement N(K) := S3 \ ν (K), which is a 3-manifold with a torus as
boundary. Recall that every knot admits a Seifert surface, which is an embedded
oriented connected surface bounded by the knot. There are many Seifert surfaces for
a given knot and we define the genus g(K) of a knot K to be the minimal genus among
all Seifert surfaces. The genus of a knot K exerts a subtle influence on the topology
of the knot. For example, if K bounds a disc, so g(K) = 0, then K is the unknot.

We will review the considerations above in order to make sense of them in a general
3-manifold. By Alexander duality the homology group H2(N(K), ∂N(K);Z) is iso-
morphic to Z. Furthermore, the fundamental class of a Seifert surface is a generator
of the above group. Conversely, given any embedded oriented surface whose funda-
mental class is a generator, then we can transform the surface to a Seifert surface
without increasing its genus. Therefore, asking about the genus of a knot K is the
same as the following representability question: What is the minimal genus of all the
oriented embedded surfaces whose fundamental class is a given class, say a generator
of H2(N(K), ∂N(K);Z)?

In a general 3-manifold M there is no preferred class in H2(M,∂M ;Z) so we consider
every class in H2(M,∂M ;Z). For technical reasons we use the following invariant to
measure the complexity of a surface Σ instead of the genus g(Σ). Denote the compo-
nents of Σ by Σi. Furthermore, we denote the Euler characteristic of the component
Σi by χ(Σi). Then we associate to Σ the complexity χ− (Σ) :=

∑
i max (0,−χ(Σi)).

Thurston [Thu86] considered for each class σ ∈ H2(M,∂M ;Z) the number

‖σ‖T := min{χ− (Σ) : Σ surface representing σ}

and noticed that this function defines a semi-norm on H2(M,∂M ;Z), i.e. the rela-
tions ‖kσ‖T = |k|‖σ‖T and ‖α + β‖T ≤ ‖α‖T + ‖β‖T hold for k ∈ Z and homology
classes α, β ∈ H2(M,∂M ;Z). Further details are explained in Chapter 3.

Let us have a closer look at the inequality ‖kσ‖T ≤ |k|‖σ‖T in an orientable 3-
manifold M . This inequality can be obtained by considering push-offs. Let Σ be
a surface which represents its fundamental class while having minimal χ− (Σ). The
normal bundle of Σ will be trivial and thus a neighbourhood of Σ is diffeomorphic to
Σ× [0, 1] mapping Σ× {0} to Σ. Now consider k parallel copies of Σ in Σ× [0, 1] and
obtain a surface in M representing k[Σ] with complexity kχ− (Σ).

One would like to find an effective way to compute the Thurston norm or at least
find good lower bounds. A method for this will be described in Section 1.2.
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In contrast to the Thurston norm in 3-manifolds the related invariant in 4-manifolds,
which we describe in the next section, is much more mysterious. For example the
inequality above will not hold in general.

1.1 Circle bundles over 3-manifolds

Consider a closed 4-manifold W . Completely analogously to the 3-dimensional case,
we assign to every class σ ∈ H2(W ;Z) the number

x(σ) := min{χ− (Σ) : Σ surface representing σ},

using the same measure of complexity χ− (Σ) for an embedded surface Σ ⊂ W as
above. In W such a surface Σ has codimension 2. In contrast to the case where
the ambient manifold has dimension 3, the normal bundle of Σ can be non-trivial.
Therefore we cannot construct multiples of Σ by push-offs. This is more than just an
inconvenience. In general the function x(σ) will fail to be linear in σ, which is witnessed
by the adjunction inequality [KM94] and also reflected in the theorem below.

The determination of x(σ) for general 4-manifolds is not just an interesting chal-
lenge on its own, it has implications for our understanding of smooth structures in
dimension 4 [GS99, Section 2]. Furthermore, questions, which seem on the first view
unrelated, can be rephrased as minimal genus questions. On example for this is the
Milnor conjecture, which claims that the (p, q)-torus knot has unknotting number
1
2(p− 1)(q− 1). The conjecture was confirmed by Kronheimer-Mrowka [KM93, Corol-
lary 1.3] by considerations of the minimal genus in the K3-surface.

We restrict ourselves to the cases where W is a circle bundle over a 3-manifold M .
Due to the fact that the topology of W is to a great extent controlled by M , the hope
of relating the complexity x(σ) to the Thurston norm ‖σ‖T is not unreasonable. In
Chapter 5 we obtain the theorem:

Theorem 1.1. Let M be an irreducible 3-manifold which is neither covered by S3 nor
a torus bundle. Let p : W →M be a circle bundle over M .

Then the complexity x(σ) of every class σ ∈ H2(W ;Z) satisfies the inequality

x(σ) ≥ |σ · σ|+ ‖p∗σ‖T .

In the theorem above the expression σ·σ denotes the self-intersection number. Recall
that using Poincaré duality map PD and the cap product, it can be defined as follows:

σ · σ = σ _ PDσ ∈ H0(W ;Z) = Z.

For many 3-manifolds M and every circle bundle p : W → M over M and every
class σ ∈ H2(W ;Z), Friedl-Vidussi [FV14, Corollary 1.3] have constructed a surface Σ
with [Σ] = σ which realises the above lower bound

χ− (Σ) = |σ · σ|+ ‖p∗σ‖T .
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Usually one certifies the minimality of χ− (Σ) for the surface Σ with the help of the
adjunction inequality, see Theorem 5.9. Here a problem arises. There is often a gap
between χ− (Σ) and the lower bound obtained by the adjunction inequality. This is
remedied in the above theorem by also taking finite covers into account. Now in many
cases there is no gap between the constructed surfaces and the lower bounds and so
the complexity x(σ) is determined exactly for all classes σ ∈ H2(W ;Z).

First results in this direction were obtained by Kronheimer [Kro99]. He proved the
estimate for the trivial circle bundle W = M × S1 and also gave the construction for
realising the lower bound in this case.

Later Friedl-Vidussi [FV14, Theorem 1.1] generalised Kronheimer’s result. They
obtained the inequality for all but finitely many circle bundles over irreducible 3-
manifolds with virtual RFRS fundamental group. The theorem above improves the
result of Friedl-Vidussi in two ways.

Friedl-Vidussi rely on Agol’s result [Ago08, Theorem 5.1] that a 3-manifold with a
virtually RFRS fundamental group fibres over S1 in many ways. By results due to
Wise [Wis11], Przytycki-Wise [PW12] and Agol [Ago13] this holds for a large class of
3-manifolds. However, there are closed graph manifolds which do not virtually fibre,
i.e. they have no finite cover which fibres. We refer to Example 2.20 for such a graph
manifold. So for these cases a different approach is needed.

Secondly, our result holds for all circle bundles over M . This makes the theorem
much stronger. To check whether a given circle bundle is among the finitely many
circle bundles, which Friedl-Vidussi excluded, one has to know the Seiberg-Witten
invariants of M . Nevertheless, the estimate holds for all circle bundles as they have
conjectured.

1.2 Estimating the Thurston norm

Let us go back to the example of a knot K. Upper bounds for the genus of a knot
can be found by constructing Seifert surfaces. Lower bounds are harder to come up
with. Alexander [Ale28] introduced the Alexander polynomial which is an algebraic
invariant of the knot. We call the difference between the highest and the lowest
power the width of a polynomial. Seifert [Sei35, Satz 3] realised that the width of the
Alexander polynomial gives a way to bound the genus from below:

Theorem 1.2 (Seifert). Suppose ∆K ∈ Z[t±1] is an Alexander polynomial of a knot
K and Σ a Seifert surface. Then the Euler characteristic of Σ satisfies the inequality

−χ(Σ) ≥ width ∆K − 1 = width

(
∆K

t− 1

)
.

How can we make sense of this theorem for a 3-manifold which is not a knot comple-
ment? Milnor [Mil62a, Theorem 4] expressed the Alexander polynomial of a knot K
in terms of Reidemeister torsion: He calculated that the Reidemeister torsion of the
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knot complement N(K) is exactly

τ(N(K);Q(t)) =
∆K

t− 1
,

see Theorem 4.16. Kitano [Kit96] realised that also the twisted Alexander polynomial
introduced by Lin [Lin01] and Wada [Wad94] can be phrased in terms of Reidemeister
torsion. The benefit of the twisted Alexander polynomial is that we have the freedom
to twist with a representation V of the fundamental group, see Definition 4.8. As a
result it also contains information about the finite covers.

So is there also a result analogue to the theorem of Seifert above? Indeed there
is. To a representation V over a field K and a class σ ∈ H2(M,∂M ;Z), we can
associate a representation Vσ over K(t), see Definition 4.27. Now the twisted Reide-
meister torsion τ(M ;Vσ) is represented by elements in the quotient field Quot

(
K[t±1]

)
and in fact width τ(M ;Vσ) is well-defined. An estimate similar to the one given by
Seifert’s theorem for 1-dimensional representations restricted from the free quotient
of H2(M,∂M ;Z) has been obtained by McMullen [McM02]. This was generalised
to all 1-dimensional representations by Turaev [Tur02, Theorem 2.2]. For a general
representation Friedl-Kim [FK06, Theorem 1.1] obtained the following theorem:

Theorem 1.3 (Friedl-Kim). Let M be an irreducible 3-manifold and suppose M is not
D2 × S1. Assume that V is a representation of π1(M). Then all σ ∈ H2(M,∂M ;Z)
fulfil the inequality

(dimV ) ‖σ‖T ≥ width τ(M ;Vσ).

A natural question arising from the above theorem is whether there is always a
representation V such that equality holds in the inequality above. This would im-
ply that one can recover the Thurston norm from twisted Reidemeister torsion. In
Chapter 6 we obtain the theorem below. The definition of the various properties of
representations can be found in that chapter as well.

Theorem 1.4. Let M be an irreducible 3-manifold which is not D2 × S1. For every
homology class σ ∈ H2(M,∂M ;Z) both statements hold:

1. There exists an integral representation V over the complex numbers, factoring
through a finite group, such that

(dimV ) ‖σ‖T = width τ(M ;Vσ).

2. For all but finitely many primes p ∈ N, there exists a representation V over Fp
of π1(M) such that

(dimV ) ‖σ‖T = width τ(M ;Vσ).
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We say a 3-manifold M fibres if there exists a map π : M → S1 turning M into
the total space of a fibre bundle. With this structure in mind we consider the class
[F ] ∈ H2(M ;Z) of an arbitrary fibre F . Friedl-Kim [FK06, Theorem 1.2] noted that
for the class [F ] the inequality will be sharp for any representation. Using this fact
Friedl-Vidussi [FV12, Theorem 1.2] showed that for 3-manifolds with virtually RFRS
fundamental group, there always exists a representation V making the inequality strict
as in the theorem above. Again Agol’s theorem [Ago08, Theorem 5.1] was key to ensure
that there are enough finite covers which fibre in the right ways. We extend this result
to all irreducible 3-manifolds by including graph manifolds.

One benefit of the result above is that it shows that we have the freedom to do the
computations of twisted Reidemeister torsion over finite fields. This is important for
determining the Thurston norm computationally, see [FV12, Section 6].

Beside this practical benefit, the theorem also has implications of theoretical nature:
The fact that one can detect the Thurston norm with representations over finite fields
has been used by Boileau-Friedl [FB15] to show that the knot genus is determined by
the profinite completion of the knot group.

In the discussion of twisted Reidemeister torsion so far we have suppressed that the
invariant τ(M ;V ) exists only if the representation V has the property that the chain
complex V ⊗Z[π1(M)] C(M) is acyclic, where C(M) is the cellular chain complex of the
universal cover of M . If this chain complex is acyclic we say that the representation V
is M -acyclic. Another result we cover in this thesis is the following characterisation
of 3-manifolds M which admit an M -acyclic representation:

Theorem 1.5. Let M be a 3-manifold not diffeomorphic to S3. Let M ∼= P1# . . .#Pk
be its prime decomposition. The following statements are equivalent:

1. There is a non-trivial unitary representation which is M -acyclic.

2. The boundary of M is toroidal (possibly empty). Furthermore, at most one of
the Pi is not a rational homology sphere.

1.3 Organisation of the thesis

In Chapter 2 we recall the definition of graph manifolds and introduce various con-
structions. We show how they can be simplified by taking finite covers. The key
result, which is Theorem 2.24, shows the existence of a finite cover M and a character
π1(M)→ Z/pZ which does not vanish on any Seifert fibre.

We introduce the Thurston norm and collect its relevant properties for the rest of
this thesis in Chapter 3. We then proceed with the calculation of the norm in the
3-manifolds which are relevant to us. The results will be used to see that the lower
bounds obtained from twisted Reidemeister torsion are sharp.

In Chapter 4 we proceed by describing the theory of Reidemeister torsion. We define
Turaev’s maximal Abelian torsion and use the character of Theorem 2.24 to calculate
the twisted Reidemeister torsion for graph manifolds.

9



In Chapter 5 the relation with Seiberg-Witten theory is explored and we prove the
advertised theorem on the complexity in circle bundles in Theorem 5.1.

We proceed by introducing various properties of representations in Chapter 6. After
that we explain how Theorem 1.4 follows from the results obtained so far.

We conclude with Chapter 7 in which we characterise the 3-manifolds M which
admit a non-trivial M -acyclic representation.

The discussion in Chapter 2, 4 and 5 is based on the article [Nag14]. The content
of Chapter 6 and 7 is based on joint work with Stefan Friedl [FN15a,FN15b].

1.4 Conventions

We only consider smooth manifolds with boundary. A surface is a compact oriented
2-manifold with boundary. An irreducible 3-manifold is also connected, compact,
oriented and has toroidal boundary.

By circle bundle we refer to an S1-fibre bundle with oriented fibres.

1.5 Acknowledgements

I am most grateful to my advisor Stefan Friedl. He introduced me to the wonderful
world of 3-manifolds and I owe much of my insights to his splendid explanations. He
gave me the freedom to pursue my ideas and always encouraged me to travel and
exchange mathematics.

I thank Raphael Zentner for the many enlightening discussions mathematical and
non-mathematical alike.

I also would like to thank Hansjörg Geiges for teaching me all I know about contact
topology and the guidance he provided during my first year in Cologne.

I thank Brendan Owens and the University of Glasgow for the two splendid visits.
Thanks to Michael Völkl for the many lively discussions in his office and all his

preachings. Furthermore, I would like to thank Peter Arndt, Kilian Barth, Matthias
Blank, Stephan Gareis, Dominic Jänichen, Mark Powell, Martin Ruderer and Jo-
hannes Sprang for many stimulating mathematical discussions. All of them and many
unmentioned friends made my graduate time as enjoyable as it was.

I thank Matthias Blank, Corinna Lange and Michael Völkl for taking the time to
read my drafts.

I am grateful to Corinna Lange for all the love, support and still bearing with me.
I thank my parents for their unconditional and continuous support.

I was funded by GK 1269 of the University of Cologne, employed by the University
of Regensburg and funded by the SFB 1085 of the University of Regensburg. Both
the GK and the SFB were funded by the Deutsche Forschungsgemeinschaft.

10



2 Graph manifolds

First we introduce language for working with graph manifolds. Then we describe how
graph manifolds can be simplified by taking finite covers. More precisely, Theorem 2.19
describes three classes of 3-manifolds such that every graph manifold is finitely covered
by a manifold in one of the classes. This is of great help if we are allowed to reduce the
situation to finite covers to prove a theorem. Then we proceed to prove Theorem 2.24,
which is the key result of this chapter and allows us to calculate the Reidemeister
torsion of graph manifolds by splitting it into blocks.

The chapter is based on the article [Nag14].

2.1 Seifert fibred spaces

We review the notion of a Seifert fibred manifold. Much of the content of this section
goes back to investigations due to Seifert [Sei33]. The main purpose of this section is
to fix notations and collect results we will use at a later point.

We construct multiple decompositions of the solid torus into circles. They will be
prototypes for neighbourhoods of Seifert fibres.

Example 2.1 (Fibred solid torus). Let p, q ≥ 1 be coprime integers. We consider the
quotient Tp,q of R×D2 by the relation

(t+ 1, z) ∼ (t, exp (2πip/q)z) for t ∈ R, z ∈ D2.

The map z 7→ exp (2πip/q)z is isotopic to the identity and thus Tp,q is diffeomorphic
to a solid torus. For z ∈ D2 the image Cz of the line R× {z} under the quotient map
is a circle and the collection {Cz}z∈D2 is a decomposition of Tp,q in the sense below.

Definition 2.2. For a 3-manifold M we define the following notions:

1. A collection of embedded circles CM forms a decomposition of M if each point
x ∈ M is contained in exactly one circle. Given such a decomposition CM , a
subset of M is saturated if it is a union of elements of CM .

2. A Seifert fibred structure on M is a decomposition CM of M =
⋃
CM such that

each circle C ∈ CM has a saturated neighbourhood UC which is diffeomorphic
to a fibred torus Tp,q preserving the decomposition.

3. A Seifert manifold is a 3-manifold which admits a Seifert fibred structure.
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Remark 2.3. From the definition it follows that the boundary ∂M will have the struc-
ture of an S1-fibre bundle over a compact 1-manifold with fibres the circles of the
decomposition. Thus ∂M will be a union of tori with the decomposition coming from
a choice of trivialisation ∂M ∼=

⋃
S1 × S1.

Example 2.4. Let p : M → B be a circle bundle, i.e. a fibre bundle over a surface B
with circles as fibres. The collection {p−1(b)}b∈B defines a Seifert fibred structure on
the total space M .

The example above is central as every Seifert manifold is finitely covered by a circle
bundle. As we need additional control on the covering of the boundary to work with
graph manifolds later, we cover this fact in more detail in Theorem 2.6 below.

We call a surface toroidal if every component is diffeomorphic to a torus. Note that
a finite cover of a toroidal surface is again a toroidal surface.

Definition 2.5. 1. A cover π : T̃ → T of a toroidal surface is called k-characteristic
if the cover restricted to any component C is a cover induced by the subgroup

{gk : g ∈ π1(C)} ⊂ π1(C).

2. A cover π : M → N of a 3-manifold N with toroidal boundary is k-characteristic
if the induced cover on the boundary π∂ : ∂M → ∂N is k-characteristic.

The theorem below will be deduced by considering the orbifolds which are associated
to Seifert fibred manifolds. This will be the only place, where orbifolds are used and
we refer to Thurston’s lecture notes for an introduction [Thu80, Chapter 13].

Theorem 2.6 (Thurston). Let N be a Seifert manifold. For each k ≥ 2, there exists
a circle bundle M and a finite k-characteristic cover π : M → N .

Proof. To every Seifert fibred space N , we can associate a 2-dimensional orbifold S
such that N is diffeomorphic to the total space of an S1-bundle over S. As we only
allow fibred solid tori as a local model, we only have elliptic points as singularities.

Suppose S is finitely covered by a surface F , i.e. the orbifold S is good. Then we
can pull back the bundle and obtain a finite cover M of N . The 3-manifold M will be
a circle bundle as F is a surface and therefore has no orbifold singularities.

In the case where N has boundary, we have to ensure that the resulting cover
will be k-characteristic. This is done by attaching disc orbifolds with a 1/k elliptic
singularity to the boundary of S. In the cases were this operation results in a good
orbifold, we proceed as described above. After that we remove the preimage of the
disc orbifolds. As the circle bundle M has non-empty boundary, we can choose a
trivialisation M ∼= F × S1. The cover M → N is not yet k-characteristic. However,
with a further cover induced from the k-fold cover along the S1-factor, this can be
arranged.

Now consider the cases where we end up with bad orbifolds. Thurston [Thu80,
Theorem 13.3.6] classified all 2-orbifolds including a list of the bad ones. The closed
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bad 2-orbifolds with only elliptic points have underlying surface S2 and at most two
elliptic points. If N is closed, then the orbifold S can only be bad if N is a lens
space. Therefore N is covered by S3 which is the total space of the Hopf bundle.
If the manifold N has boundary and after attaching a disc orbifold the associated
orbifold is still bad, then N has to be a solid fibred tori. Here we used that for k ≥ 2
adding the disc orbifolds adds at least an extra elliptic point. We conclude that as
a Seifert manifold N is diffeomorphic to D2 × S1 which is itself the total space of a
circle bundle.

A circle bundle over a surface with non-empty boundary is a trivial circle bundle.
From this fact together with the theorem above, we immediately deduce the corollary:

Corollary 2.7. A Seifert manifold with non-empty boundary has a finite connected
k-characteristic cover which is diffeomorphic to the product Σ× S1 for a surface Σ.

2.2 Graph manifolds

Now we will make the transition to graph manifolds, which have been introduced by
Waldhausen [Wal67]. Roughly speaking, they are 3-manifolds which are obtained by
gluing together Seifert fibred spaces along tori. We have seen that Seifert fibred spaces
have very simple finite covers and this fact can also be used to greatly simplify graph
manifolds.

Definition 2.8. An embedded surface Σ ⊂M in a 3-manifold is incompressible if for
every component C of Σ the induced homomorphism π1(C)→ π1(M) is injective.

We describe the process of cutting a 3-manifold M along an embedded surface Σ
in more detail. Choose a map f : M → S1 such that −1 ∈ S1 is a regular value and
the property that f−1(−1) = Σ. Such a map can for example be defined in a tubular
neighbourhood of Σ so that it is constant to 1 in a neighbourhood of the boundary
and then we can extend it by the constant map to all of M . Now we define M |Σ as
the fibre product of the diagram below.

M |Σ [−π, π]

M S1

glΣ

f

exp

fΣ

This fibre product exists in manifolds as exp: [−π, π] → S1 and f are transverse.
Conversely, the map glΣ identifies the boundary components f−1

Σ (−π) ⊂M |Σ with the
preimage f−1

Σ (π). Gluing together with this identification, we obtain again a manifold
naturally diffeomorphic to M , see [BJ73, Section 13].

13



Definition 2.9. For an irreducible 3-manifold M a graph structure consists of an
incompressible embedded toroidal surface S ⊂ M and a Seifert fibred structure on
M |S. An irreducible 3-manifold M admitting a graph structure is called a graph
manifold.

Consider a graph structure on M with toroidal surface S. To each component C
of S correspond two boundary components C± of M |S. Let C+ denote the boundary
component whose orientation agrees with the boundary orientation. Furthermore, the
component of M |S which contains C+ is said to fill C on the negative side. In the
opposite case we say that the component C− fills C on the positive side.

Definition 2.10. Let M be an irreducible 3-manifold with a graph structure with
toroidal surface S. The Bass-Serre graph is the following graph (V (M), E(M), s, t):

V (M) := {components of M |S}
E(M) := {components of S}.

The map s : E(M) → V (M) associates to a component T of S the component in
M |S which fills T on the negative side. The map t : E(M) → V (M) associates the
component which fills T on the positive side. The components of M |S are called blocks.
We refer to the components of S as graph tori.

We construct an invariant of graph structures describing how the Seifert fibres sit
in the toroidal surface. Each component T of S is part of the boundary of two Seifert
fibred pieces, namely t(T ) and s(T ). The Seifert fibred structures on these pieces give
rise to two embedded loops in T : one loop γt(T ) is the Seifert fibre coming from the
Seifert fibred structure of t(T ) and one loop γs(T ) is the one coming from the fibred
structure of s(T ). Orient the loops arbitrarily. Denote their intersection number in T
by c(T ) := |γt(T ) · γs(T )|.

Definition 2.11. The number c(T ) defined above is called the fibre-intersection num-
ber in the torus T . A graph structure whose fibre-intersection numbers are all non-zero
is called reduced.

Lemma 2.12. Given a graph structure on M with toroidal surface T , there exists a
reduced graph structure which has a subset of the components of T as graph tori.

Proof. Denote by S the surface consisting of the components C of T with c(C) 6= 0.
The surface S is toroidal and again incompressible.

Two embedded loops which have the same homology class in a torus are isotopic,
see e.g. [Rol90, Theorem 2.C.16]. So for all components C with c(C) = 0, we can make
the Seifert structure on M |T locally near the boundaries C± compatible and glue them
together along the tori C. This gives us a Seifert fibred structure on M |S.
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2.3 Simplifying graph manifolds

Before addressing how to construct finite covers of a graph manifold. We make a
detour and collect results on the covering theory of surfaces.

Definition 2.13. A cover π : Σ′ → Σ of a surface Σ is called a k-characteristic cover
if π restricted to each boundary component is a k-fold cover of the circle.

Lemma 2.14. Let Σ be a connected surface of negative Euler characteristic χ(Σ) < 0.
Then for every natural number d ≥ 3 there is a connected d-characteristic finite cover
π : Σ′ → Σ such that Σ′ has positive genus.

Proof. If Σ is closed, then we can choose π to be the identity. This follows from the
equality below, which is relating the genus g(Σ) and number of boundary components
b0(∂Σ) to the Euler characteristic χ(Σ):

χ(Σ) = 2− 2g(Σ)− b0(∂Σ).

In the case where Σ has only one boundary component, the cover q : Σb → Σ induced
by the Hurewicz homomorphism π1(Σ) → H1(Σ, ∂Σ;Z/2Z) is 1-characteristic. It is
at least of degree 2 as Σ has negative Euler characteristic. Thus Σb has at least two
boundary components and we compose the cover q with the cover described below for
the surface Σb.

If Σ has two or more boundary components, consider the cover π : Σ′ → Σ induced
by the Hurewicz homomorphism

π1(Σ)→ H1(Σ;Z/dZ).

This cover is d-characteristic. Let n denote the degree of the cover. Note that n has to
be larger than 3. Using that the Euler characteristic is multiplicative, we check that
the genus g(Σ′) is indeed positive:

2− 2g(Σ′)− b0(∂Σ′) = n (2− 2g(Σ)− b0(∂Σ))

⇒ 2− 2g(Σ′)− (n/d) b0(∂Σ) = n (2− 2g(Σ)− b0(∂Σ))

⇒ 2− 2g(Σ′) = n

(
2− 2g(Σ)− d− 1

d
· b0(∂Σ)

)
.

If Σ has positive genus, then we have the inequality g(Σ′) ≥ g(Σ) and the lemma holds.
If g(Σ) = 0, then Σ has at least 3 boundary components. Thus we again deduce the
estimate g(Σ′) > 0.

We describe ways to simplify graph manifolds by going up to finite covers. The first
procedure targets the Bass-Serre graph. As we see later, having a bipartite Bass-Serre
graph facilitates arguments involving Mayer-Vietoris sequences. This will be helpful
in the calculation of twisted Reidemeister torsions. In the next lemma we show that
this condition can always be achieved by a finite cover.
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Lemma 2.15. Let N be a manifold with a graph structure with toroidal surface S.
Denote the components of S by C1, . . . , Ck. Let π : M → N be the cover induced by
the kernel of the map

π1(N)→ Z/2Z

γ 7→
k∑
i=1

γ · [Ci].

The surface π−1(S) ⊂ M is an embedded toroidal surface and the induced Seifert
fibred structure on M |π−1(S) defines a graph structure on M which has a bipartite
Bass-Serre graph.

Proof. We can construct the cover M by cutting along S and gluing together Z/2Z-
labelled copies of the components [Rol90, Section 5.C]. On the level of Bass-Serre
graphs this yields exactly the bipartite double cover.

Remark 2.16. 1. Having a bipartite Bass-Serre graph implies no self-pastings, i.e.
each graph torus bounds two different blocks.

2. A finite cover of a manifold with a graph structure which has a bipartite Bass-
Serre graph will again have a bipartite Bass-Serre graph.

We describe a way to construct a cover of a manifold with graph structure from finite
covers of its blocks. This allows us to apply Theorem 2.6 to simplify the manifold via
a finite cover. This was used by Hempel [Hem87, Section 4] to show that 3-manifolds
with a geometric decomposition have a residually finite fundamental group. Usually
these covers will not be normal. The next theorem describes how a k-characteristic
cover of N |S can be glued together to a cover of N .

Theorem 2.17 (Hempel). Let N be a manifold with a graph structure with toroidal
surface S. Let πX : X → N |S be a finite cover which is k-characteristic and of degree
d.

Then there is a finite cover π : M → N of degree d such that there a diffeomorphism
g : M |π−1(S)→ X making the diagram below commutative:

M |π−1(S) X

N |S

π πX

g

.

Sketch. Recall the construction of N |S in Section 2.2. With this construction, we
obtain a map fΣ : N |Σ→ [−π, π] and an identification F : f−1

Σ (−π)→ f−1
Σ (π). As the

cover πX is characteristic, we can lift F to an identification

FX : (πX ◦ f)−1(−π)→ (πX ◦ f)−1(π).
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There is no canonical choice for the lift. We pick collars and glue with FX the corre-
sponding boundary components together. This gives rise to the manifold M .

Definition 2.18. A composite graph structure of an irreducible 3-manifold M is a
graph structure on M with toroidal surface T and a Seifert fibre preserving diffeomor-
phism M |T ∼=

⋃
v∈V (M) Σv × S1 where all the surfaces Σv have positive genus.

We proceed by describing a collection of 3-manifolds such that every graph manifold
is finitely covered by a manifold in the collection.

Theorem 2.19. Let N be a connected graph manifold. Then there exists a finite cover
π : M → N such that at least one of the statements below holds.

1. M is a Seifert manifold.

2. M is a torus bundle.

3. M admits a composite graph structure.

Proof. Equip N with a graph structure with toroidal surface S such that the number
of components of S is minimal. If S is empty, then N itself is a Seifert manifold.

So we assume that S is non-empty. By Theorem 2.7, we can find a 2-characteristic
cover X → N |S such that each component of X is a trivial circle bundle. By taking
copies of each component, we can arrange that X → N |S is globally of degree d. Using
Theorem 2.17 we obtain a cover N ′ of N . As every component of X was a trivial circle
bundle, there is a graph structure on N ′ with toroidal surface S′ and a diffeomorphism
N ′|S′ ∼=

⋃
v∈V (N ′) Σv × S1.

As S′ is incompressible no surface Σv is a disc. We show that we can also remove
the Σv which are annuli. Let Σv be an annulus. Assume that the corresponding
block Bv ∼= Σv ×S1 bounds two different components of S′. Let C be a component of
the surface S′ bounding the block Σv × S1. By changing the Seifert fibred structure
on this block I × T 2 ∼= Σv × S1 we can arrange that the Seifert fibres on C coming
from C± agree. Therefore we can remove the component C from S′. Now there are
two possibilities: either we can remove all annuli or there is a block Σv × S1 which is
glued together along its two boundaries. In latter case N ′ is a torus bundle.

So we may assume that N ′ has a graph structure such that the Euler characteristic
of each Σv is negative. Using Lemma 2.14 and Theorem 2.17 we find a cover M → N
and a graph structure on M such that all blocks Bv are diffeomorphic to Σv×S1 with
Σv a surface of positive genus. This is a composite graph structure for M .

It follows from combining works of Wise [Wis11], Przytycki-Wise [PW12] and Agol
[Ago13], that the fundamental group π1(M) of an irreducible 3-manifold which is not
a graph manifold is virtually special. By Agol [Ago08, Corollary 2.3] and Haglund-
Wise [HW08] these fundamental groups are virtually RFRS. Agol [Ago08, Theorem
5.1] proved that aspherical 3-manifolds with virtually RFRS fundamental group admit
a finite cover which fibres. In contrast to this there are graph manifolds which do not
virtually fibre. Neumann [Neu97, Theorem E] characterised these graph manifolds.
We give concrete examples of two such graph manifolds below.
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Example 2.20. 1. Let p : M → Σ be a circle bundle with Euler number e(M) 6= 0
and whose base surface Σ has negative Euler characteristic χ(Σ) < 0. The
manifold M is not the total space of a surface bundle over the circle S1 [Gab86,
Theorem 1.2]. Any finite cover of M will inherit the structure of a circle bundle
and the Euler number will remain non-zero. We deduce thatM does not virtually
fibre.

2. The above example is a Seifert fibred manifold. We also want to mention the
following example which is a graph manifoldM with a composite graph structure.
Let Σ be a torus with an open disc removed. The product structure of Σ × S1

also induces a product structure on the boundary ∂Σ × S1 = S1 × S1. Denote
by φ the following orientation reversing diffeomorphism:

φ : S1 × S1 → S1 × S1

(m, l) 7→ (2m+ 5l,m+ 2l)

Consider the manifold M = Σ × S1 ∪φ Σ × S1. This manifold does not fibre in
any finite cover, see [LW97, Section 3 - Examples].

2.4 Composite graph manifolds

Let N be a graph manifold with a composite graph structure with toroidal surface S.
Recall that we have fixed a diffeomorphism N |S ∼=

⋃
B∈V (N) ΣB×S1 where all surfaces

ΣB have positive genus and are connected. The class {x} × [S1] ∈ H1(Σ × S1;Z) is
independent of x ∈ Σ. We denote this class by tB ∈ H1(N |S;Z). We also refer by the
same name to the corresponding class in H1(N ;Z). The main result of this chapter is
to show the existence of the following characters in a finite cover of N .

Definition 2.21. A character α : π1(N) → Z/kZ is called Seifert non-vanishing if
〈α, tB〉 6= 0 for every B ∈ V (N).

In the case where a surface Σ has positive genus, the following lemma shows that by
pulling back a cohomology class in H1(∂Σ;Z/kZ) along a suitable finite cover, we can
extend it to all of the cover. This is not possible for classes defined over the integers.

Lemma 2.22. Let Σ be a connected surface of positive genus. For every k ≥ 2 and
β ∈ H1(∂Σ;Z/kZ) there exists a finite 1-characteristic connected cover π : Σ′ → Σ and
a class β′ ∈ H1(Σ′;Z/kZ) such that

(π∂)∗β = i∗β′ ∈ H1(∂Σ′;Z/kZ),

where π∂ is the restriction of π to the boundary ∂Σ′ and i : ∂Σ′ → Σ′ the inclusion.

Proof. Pick a non-zero element in γ ∈ H1(Σ;Z) and consider the cover π : Σ′ → Σ
given by the kernel of the homomorphism

π1(Σ)→ Z/kZ
g 7→ g ·Σ γ
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This is a 1-characteristic cover of Σ of degree k. Note that 〈(π∂)∗β, ∂[Σ′]〉 ∈ Z/kZ
vanishes by the equality:

〈(π∂)∗β, ∂[Σ′]〉 = k · 〈β, ∂[Σ]〉 = 0.

Consider the long exact sequence of the pair (Σ′, ∂Σ′), i.e.

H2(Σ′, ∂Σ′;Z/kZ)
δ←− H1(∂Σ′;Z/kZ)

i∗←− H1(Σ′;Z/kZ).

As 〈(π∂)∗β, ∂[Σ′]〉 = 0 holds, we have the equality δ(π∗∂β) = 0. Thus there exists a
class β′ ∈ H1(Σ′,Z/kZ) with i∗β′ = (π∂)∗β.

Lemma 2.23. Let Σ be a connected positive genus surface. For every k ≥ 2 and
every class α ∈ H1(∂Σ × S1;Z/kZ) defined on the boundary ∂Σ × S1 of Σ × S1,
there exists a finite 1-characteristic connected cover π : Σ′ × S1 → Σ× S1 and a class
α′ ∈ H1(Σ′ × S1;Z/kZ) such that

(π∂)∗α = i∗α′,

where π∂ is the restriction of π to the boundary ∂Σ′ and i : ∂Σ′ → Σ′ the inclusion.

Proof. We can express the homology group H1(Σ× S1;Z/kZ) with the Künneth iso-
morphism as a direct sum:

H1(Σ× S1;Z/kZ) ∼= H1(Σ;Z/kZ)⊕H1(S1;Z/kZ)

α 7→ β + θ.

Now apply Lemma 2.22 above to obtain a cover πΣ : Σ′ → Σ and a class β′ ∈
H1(Σ;Z/kZ). Applying the Künneth isomorphism in the reverse direction, we ob-
tain an element α′ ∈ H1(Σ × S1;Z/kZ) corresponding to β′ + θ. The element α′

together with the 1-characteristic cover π := πΣ × IdS1 fulfils the assertions.

Now we can state the key result of this chapter on the existence of a Seifert non-
vanishing character. These characters will play an important role in Chapter 4. There
in Theorem 4.34 we will see that if we twist with such a character, then the twisted
Reidemeister of a composite graph manifold is of a simple form.

Theorem 2.24. Let N be a graph manifold with a reduced composite graph struc-
ture with toroidal surface S. Let k ≥ 2 be a natural number coprime to every fibre-
intersection number c(T ) of every component T of S.

Then there exists a finite cover π : M → N such that M admits a Seifert non-
vanishing character α : M → Z/kZ.

Proof. By going up to a finite cover we may assume that N has a bipartite Bass-Serre
graph, see Lemma 2.15. By the cutting and pasting constructing we see that this cover
preserves the fibre-intersection numbers.
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We define a class αS ∈ H1(S;Z/kZ) as follows. A component T bounds two distinct
blocks B+ := t(T ) and B− := s(T ). We trivialise the component T ∼= S1 × S1 by the
product structure of its positive side T ⊂ ∂ΣB+ × S1. Consequently, we obtain an
identification H1(T ;Z/kZ) = Z/kZ〈e1, tB+〉. Note that we can express the class tB−
in terms of e1 and tB+ :

tB− = −c(T )e1 +mtB+ ,

for a suitable element m ∈ Z/kZ. Knowing that k is coprime to c(T ) and thus c(T )
is invertible in Z/kZ, we see that the two classes tB± span a basis of H1(T ;Z/kZ).
Define a class αT ∈ H1(T ;Z/kZ) by declaring αT (tB±) = 1. Their sum defines an
element αS ∈ H1(S;Z/kZ).

Using Lemma 2.23 we find a 1-characteristic cover πX : X → N |S and a cohomology
class αX ∈ H1(X;Z/kZ) such that (πX |∂)∗αS = i∗αX holds for the inclusion i : ∂X →
X and πX |∂ the restriction of the cover πX to the boundary. With Theorem 2.17 we
can glue the components of X together to a cover π : M → N .

The manifold M inherits a composite graph structure with toroidal surface π−1(S).
Also the Bass-Serre graph will stay bipartite. This means that there is a decomposition
V (M) = V+ ∪ V− of the set of blocks such that each torus of the toroidal surface sits
between a block in V+ and a block in V−. Pick such a decomposition. Denote the
inclusion

∐
B∈V± B ⊂M by φ±. The diagram below is a push-out diagram:

∐
B∈V+ B M

∐
T∈E(M) T

∐
B∈V− B

φ+

i+

i−

φ−

.

The maps i± are inclusions of subcomplexes and so cofibrations. As a consequence,
we obtain the Mayer-Vietoris sequence⊕

T∈E(M)

H1(T ;Z/kZ)
i∗+−i∗−←−−−−

⊕
B∈V (M)

H1(B;Z/kZ)← H1(M ;Z/kZ).

Note that
⊕

B∈V (M) H1(B;Z/kZ) = H1(X;Z/kZ). Thus there exists a cohomology

class α ∈ H1(M ;Z/kZ) which restricts to αX if
(
i∗+ − i∗−

)
αX = 0. This can be checked

as follows: (
i∗+ − i∗−

)
αX = (πX |∂)∗αS − (πX |∂)∗αS = 0.

As the cover πX : X → N |S is 1-characteristic, we get for every block B′ covering B
that πX∗tB′ = tB. Thus for each block B′ of M , we have

〈α, tB′〉 = 〈αX , tB′〉 = 〈i∗αX , tB′〉 = 〈(πX |∂)∗αS , tB′〉 = 〈αS , tB〉 = 1.

Therefore M with toroidal surface π−1(S) and the character α : M → Z/kZ fulfils the
assertions.
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Remark 2.25. Depending on the manifold N it might be that no Seifert non-vanishing
character α in any finite cover M of N lifts to the integers Z:

π1(M) Z

Z/kZ

α

.

First note that we have the isomorphism H1(M ;Z) ∼= Hom (π1(M),Z) given by the
universal coefficient theorem, which associates a cohomology class β ∈ H1(M ;Z) to
such a lift π1(M) → Z. We can pull back the cohomology class β to a class βB in
every block B.

Recall that by definition the class β ∈ H1(M ;Z) fibres if M admits a fibre bundle
structure f : M → S1 such that the class is a pull-back of a class in S1. The class βB
fibres: Tischler [Tis70, Theorem 1] proved that a class fibres if we can represent it by
a nowhere-vanishing 1-form. Pick a 1-form representing βB. As the class βB comes
from a Seifert non-vanishing character, it evaluates to non-zero on each Seifert fibre.
Averaging over the Seifert fibres gives a non-vanishing 1-form proving that the class
βB fibres.

The class β fibres if and only if each class βB fibres [EN85, Theorem 4.2]. This
implies that M is the total space of a fibre bundle.

Nevertheless there are graph manifolds N which do not virtually fibre. We gave
a construction of such a manifold in Example 2.20. In these manifolds any Seifert
non-vanishing character cannot lift as we have seen above.
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3 The Thurston norm

In this chapter we define the Thurston norm. We describe various properties of it: it is
a semi-norm on H2(M,∂M ;Z), it is multiplicative with respect to taking finite covers
and additive under gluing along incompressible tori. In the second part, we compute
it in some examples. In the later sections we will be able to reduce arguments to these
cases.

3.1 Definition and properties

Similar to the Euler characteristic the following complexity is multiplicative under
finite covers.

Definition 3.1. Let Σ be a surface with components Σi. Define the complexity χ− (Σ)
in terms of the Euler characteristic χ(Σi) of the components by

χ− (Σ) :=
∑
i

max(−χ(Σi), 0).

Using the complexity above, Thurston [Thu86] introduced the following semi-norm.
Recall that with our convention a surface Σ is not just orientable but oriented and we
denote its fundamental class by [Σ].

Definition 3.2 (Thurston). Let M an irreducible 3-manifold. The Thurston norm of
a homology class σ ∈ H2(M,∂M ;Z) is

‖σ‖T := min{χ−(Σ) : Σ an embedded surface with [Σ] = σ}.

Using Poincaré duality this semi-norm is extended to a semi-norm on H1(M ;Z), i.e.
we define ‖θ‖T := ‖PD θ‖T for all θ ∈ H1(M ;Z).

Remark 3.3. 1. Let Σ ⊂M be an embedded surface. We can always add a fillable
2-sphere or a boundary compressible disc to Σ without changing its fundamental
class. Because of this, we use χ− (Σ) instead of the negative Euler characteristic
−χ(Σ) in the definition above. The genus has the drawbacks that it is not
multiplicative under finite covers and does not behave well with cut-and-paste
operations.

2. Every class θ ∈ H1(M ;Z) is Poincaré dual to an embedded surface. Indeed,
denote by τ ∈ H1(S1;Z) the class associated to the orientation of S1 as the
boundary of the disc in the complex plane. As S1 is an Eilenberg-Mac Lane
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space, there exists a continuous map f : M → S1 with f∗τ = θ. We pick a
smooth map F which is transverse to 1 ∈ S1 and homotopic to f . The surface
F−1(1) is an embedded surface representing the Poincaré dual of θ.

Theorem 3.4 (Thurston). The Thurston norm is a semi-norm, i.e. for every k ∈ Z
and for every α, β ∈ H2(M,∂M ;Z) the Thurston norm fulfils the relations

‖kα‖T = |k|‖α‖T
‖α+ β‖T ≤ ‖α‖T + ‖β‖T .

Proof. See [Thu86, Theorem 1].

Let Σ ⊂ N be an embedded surface and π : M → N be a finite cover. We can con-
sider the preimage of Σ and obtain a surface π−1(Σ) ⊂M which has the fundamental
class π![Σ], where π! denotes the umkehr map PD ◦(π∗) ◦ PD. It is a natural ques-
tion whether a minimal representative of the class π![Σ] can always be realised by the
preimage of an embedded surface. Surprisingly, there is an affirmative answers. The
theorem below is rather involved and uses Gabai’s deep insights in sutured manifolds.

Theorem 3.5 (Gabai). Let π : M → N be a k-fold cover of an irreducible 3-manifold
N . Then ‖π∗θ‖T = k‖θ‖T holds for every θ ∈ H1(N ;Z).

Proof. See [Gab83, Corollary 6.13].

Many 3-manifolds can be obtained by gluing other 3-manifolds together along in-
compressible boundary tori, e.g. the composite graph manifolds we have discussed
in Chapter 2. Eisenbud-Neumann used cut and paste arguments to calculate the
Thurston norm for these gluings.

Theorem 3.6 (Eisenbud-Neumann). Let M be a 3-manifold and S an incompressible
embedded toroidal surface. For the inclusion i : M |S →M of M cut along S and every
class θ ∈ H1(M), the equality

‖θ‖T = ‖i∗θ‖T

holds.

Proof. Note that the argument stated in the article [EN85, Proposition 3.5] uses merely
that the tori are incompressible and not tori of a JSJ-decomposition.

3.2 Examples

We calculate the Thurston norm in the key situations, which we need later. A more
complete list can be found in the article [McM02, Section 7].

First we consider fibre bundles. In this case Thurston [Thu86, Section 3] noted the
following minimality property of the fibre:
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Lemma 3.7 (Thurston). Let p : M → S1 be a fibre bundle with connected fibre F .
Any inclusion of a fibre F gives a Thurston norm minimising surface of class [F ], i.e.
the equality ‖[F ]‖T = χ− (F ) holds.

We give a more expanded version of Thurston’s original argument.

Proof. Let Σ be an embedded surface such that its fundamental class [Σ] agrees with
the class [F ] of a fibre. We prove that χ− (Σ) ≥ χ− (F ).

We pull back the bundle along the universal cover R→ S1 obtaining a trivial bundle
M with fibre F . We pick a trivialisation M ∼= R× F and denote the projection onto
the fibre by πF : M → F .

We first prove that the embedding i : Σ→M lifts, i.e. there is map i such that the
diagram below is commutative:

M

Σ M
i

i

.

The map M →M is the cover which is induced by the kernel of the map

π1(M)→ Z
g 7→ g · [F ].

Recall that g · [F ] denotes the intersection product between classes in H1(M ;Z) and in
H2(M ;Z). So let γ be a loop in Σ. As the normal bundle of Σ in M is orientable, we
have γ · [Σ] = 0 and so γ · [F ] = 0. Thus the obstruction for lifting [Bre93, Theorem
4.1] vanishes and we obtain an embedding i : Σ → M . Now the equality [Σ] = [F ]
holds in the cover M as well. Therefore the map πF ◦ i : Σ→ F is of degree 1.

As a degree 1 map cannot factor through a cover, we deduce that the map above
induces a surjection of π1(Σ) onto π1(F ). By the classification of surfaces we know
that χ−(Σ) ≥ χ−(F ).

Lemma 3.8. Let p : M → S1 be a torus bundle. Then the Thurston norm vanishes.

Proof. The 3-manifold M is diffeomorphic to a mapping torus M(T 2, φ) with mono-
dromy φ : T 2 → T 2 a diffeomorphism of the 2-torus. The mapping torus is obtained
by the following quotient

M(T 2, φ) := T 2 × R
/

(φ(x), t) ∼ (x, t+ 1) .

An application of the Mayer-Vietoris sequence [Hat02, Example 2.48] gives the short
exact sequence

. . .→ Hk+1(M(T 2, φ);Z)
∂−→ Hk(T

2;Z)
Id−f∗−−−−→ Hk(T

2;Z)→ Hk(M(T 2, φ);Z)→ . . . .
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Now let σ ∈ H2(M(T 2, φ);Z) be an arbitrary class. Consequently, we have the equality
(Id−f∗)∂σ = 0. There exists an embedded loop c ⊂ T 2 such that ∂σ = a[c] for an
a ∈ Z. As (Id−f∗)[c] = 0 we can even arrange that c is fixed by the diffeomorphism f ,
see [Rol90, Chapter 2.D Theorem 4]. Thus the image of c× R ⊂ T 2 × R in M(T 2, φ)
gives rise to an embedded torus S ⊂ M(T 2, φ) with ∂[S] = [c].

We claim that ‖σ − a[S]‖T = 0. First note that the boundary ∂ (σ − a[S]) is the
zero class. By the exact sequence above we know that σ− a[S] is a multiple of a fibre.
As the fibres are all tori, we obtain ‖σ − a[S]‖T = 0.

The Thurston norm satisfies the triangle inequality and so we obtain the estimate

‖σ‖T ≤ ‖σ − a[S]‖T + ‖a[S]‖T = 0.

We have seen that many Seifert fibred spaces are covered by circle bundles. The
next lemma computes the Thurston norm for these cases. Again, it is also contained
in the article [Nag14, Proposition 3.4].

Lemma 3.9. Let π : M → Σ be a circle bundle over a connected surface Σ.

1. If the circle bundle is non-trivial, then the Thurston norm vanishes.

2. If the circle bundle is trivialised M = Σ×S1, then for all θ ∈ H1(M ;Z) we have
the equality

‖θ‖T := χ− (Σ) |〈θ, t〉|,

where t := [{x} × S1] is the class of a fibre.

Proof. In the case of a non-trivial circle bundle, the Euler class of the circle bundle
π : M → Σ is a non-zero element e ∈ H2(Σ;Z) ∼= Z. Recall the Gysin sequence [Bre93,
Theorem 13.2]:

. . .→ Hk(Σ;Q)
π∗−→ Hk(M ;Q)

π∗−→ Hk−1(Σ;Q)
∪e−→ Hk+1(Σ;Q)→ . . . .

As the Euler class e is non-zero, the map ∪e : H0(Σ;Q) → H2(Σ;Q) is injective.
Therefore the induced homomorphism π∗ : H1(Σ;Q)→ H1(M ;Q) has to be surjective.
To show that the Thurston norm on M vanishes, it will enough to prove the equality
‖π∗θ‖T = 0 for an arbitrary class θ ∈ H1(Σ;Q). Represent the Poincaré dual of
the class θ by embedded loops in Σ. The preimage of these loops under π will be a
collection of tori, which represent π∗θ. Therefore we obtain the equality ‖π∗θ‖T = 0.

Note that in the case of a trivial circle bundle Σ×S1, we can make the identifications
below using the Künneth isomorphism:

H1(Σ× S1) ∼= H1(Σ)⊕H1(S1) = H1(Σ)⊕ Z〈θ〉.

The inclusion H1(Σ;Z) ⊂ H1(Σ× S1;Z) is just the map π∗, where π is the projection
π : Σ× S1 → Σ. As above one shows that each class α ∈ H1(Σ;Z) ⊂ H1(Σ× S1;Z) is
Poincaré dual to embedded tori. Consequently, the Thurston norm ‖α‖T = 0 vanishes.
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The class θ is Poincaré dual to the class of a fibre [Σ]. By Lemma 3.7, we get the
equality ‖θ‖T = χ−(Σ). Using the reverse triangle inequality we deduce

‖mθ + α‖T = |m|‖θ‖T ,

for every m ∈ Z and every class α ∈ H1(Σ) ⊂ H1(Σ×S1). Let t ∈ H1(Σ×S1;Z) denote
the class of a fibre {x} × [S1]. By the considerations above we obtain the equality

‖mθ + α‖T = |m| · χ− (Σ) = |〈mθ + α, t〉|.
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4 Twisted Reidemeister torsion

We define twisted Reidemeister torsion and review the necessary foundation of CW-
structures and cellular chain complexes. Then we recall the relation of Reidemeister
torsion with the Alexander polynomial and introduce Turaev’s maximal Abelian tor-
sion [Tur76]. After that we focus on the calculation of twisted Reidemeister torsion
of graph manifolds. For completeness sake we conclude with a quick overview of the
situation of fibred 3-manifolds.

The discussion of the key results of this chapter follows the article [Nag14].

4.1 CW-structures and cellular complexes

We recall the notion of a CW-complex due to Whitehead [Whi49, Section 5] and the
associated cell complex, see e.g. [Tur01, II.5.6-7].

Definition 4.1. 1. A topological space X ⊃ Y is obtained from a subspace Y by
attaching k-cells, if there exists an index set Z and a push-out diagram:

∐
Z D

k X

∐
Z S

k−1 Y
.

2. A CW-structure for a space X is a filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xk ⊂ . . .

such that X =
⋃
kX

k, and Xk−1 ⊂ Xk is obtained by attaching k-cells, and X
carries the colimit topology.

3. A path component of Xk \Xk−1 is called a k-cell and a closed subset A which
is a union of cells is called a subcomplex.

4. A map Φe : Dk → X which identifies the interior IntDk with a k-cell e is called
a characteristic map for the cell e.

Fix a connected finite CW-complex X. Denote the set of k-cells with Zk. Pick
a characteristic map Φe : Dk → Xk for each cell e ∈ Zk. With the help of the

27



characteristic maps, the k-cells define a basis for the homology group Hk(X
k, Xk−1;Z)

by the following isomorphism [tD08, Proposition 12.1.1]⊕
e∈Zk

Z〈e〉 → Hk(X
k, Xk−1;Z)

Φe 7→ Φe∗[D
k, Sk].

Furthermore, we fix a universal cover π : X̃ → X. The filtration X̃ = π−1(X) defines
a CW-structure on X̃. The filtration is invariant under the deck transformations and
so Hk(X̃

k, X̃k−1;Z) is a left Z[π1(X)]-module. The deck transformations also act on
the cells by permutation.

Definition 4.2. Let X be a finite connected CW-complex and a fixed universal
cover π : X̃ → X. Let A ⊂ X be subcomplex.

1. A fundamental family e consists of the following datum:

a) an ordering on the set of k-cells Zk,

b) for every cell e of X a cell ẽ of X̃ covering e, and

c) a characteristic map Φẽ for these lifted cells ẽ of X̃.

2. The cellular chain complex C(A ⊂ X) of the CW-subcomplex A ⊂ X is the
chain complex of Z[π1(X)]-modules having chain modules

Ck(A ⊂ X) := Hk(π
−1(Ak), π−1(Ak−1);Z)

with the boundary morphisms being induced from the exact sequence of the
triple (π−1(Ak), π−1(Ak−1), π−1(Ak−2)). We abbreviate C(X ⊂ X) with C(X).

The cellular complex C(A ⊂ X) is a finite free chain complex of left Z[π1(X)]-
modules. Let Zk denote the cells of X and let e be a fundamental family of X. We
write Zk(A) for the subset of Zk consisting of the k-cells shared with A. As above,
the following is an isomorphism of Z[π1(X)]-modules:⊕

e∈Zk(A)

Z[π1(X)] 〈ẽ〉 → Ck(A ⊂ X)

ẽ 7→ Φẽ∗[D
k, Sk−1].

We see that having a fundamental family, defines a basis in each of the chain modules
Ck(A ⊂ X).

Definition 4.3. A based chain complex C is a chain complex together with a basis of
each chain module Ck. The cellular chain complex inherits from a fundamental family
the structure of a based chain complex as above.
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4.2 Reidemeister torsion

We recall the notion of Reidemeister torsion following Milnor [Mil62a] and Turaev
[Tur01]. For this section fix a field K and let C be a finite chain complex over K
having a preferred (ordered) finite basis ck for each chain-module Ck. Furthermore,
assume that C is acyclic.

Definition 4.4. Let a = {a1, . . . , an} and b = {b1, . . . , bn} be two bases of the vector
space V . Define [a/b] ∈ GL (n,K) to be the matrix mij fulfilling

ai =
∑
j

mijbj .

For each k we fix a basis bk of the image Im ∂k of the k-th boundary operator of C.
As C is acyclic we have for every natural number k a short exact sequence

0→ Im ∂k+1 → Ck
∂k−→ Im ∂k → 0.

Pick a collection of lifts b̃k under ∂k of bk. The concatenated collection bk+1b̃k is again
a basis of Ck and the determinant det [bk+1b̃k/c] is independent of the choice of lifts.

Definition 4.5. The Reidemeister torsion of C is the unit

τ(C) :=
∏
k

det [bk+1b̃k/c]
(−1)k

∈ K∗

Remark 4.6. The Reidemeister torsion is independent of the choice of basis for the
Im ∂k, but depends on the choice of basis for each chain module Ck.

Definition 4.7. A representation of a group G is a (K,Z[G])-bimodule. For a rep-
resentation V , the K-linear map corresponding to right multiplication with a group
element g ∈ G is denoted by gV : V → V .

For an irreducible 3-manifold M with a CW-structure and a fundamental family
e, the chain complex C(M) will not be acyclic. This can be remedied by tensoring
C(M) with a suitable representation. So let V be such a bimodule. We then proceed
by picking a basis v := {v1, . . . , vn} of the K-vector space V . The chain complex
V ⊗ C(M, e) has chain modules V ⊗Z[π1(M)] Ck(M) with basis

v1 ⊗ c1, v2 ⊗ c1, . . . , vn ⊗ c1, v1 ⊗ c2, . . . , . . . .

Definition 4.8. 1. A representation V is called M -acyclic if the twisted cellular
chain complex V ⊗ C(M) is acyclic.

2. For a M -acyclic representation V , define the twisted Reidemeister torsion of M
by

τ(M, e;V ) := τ(V ⊗ C(M, e)) ∈ K∗.

Its image in the quotient Wh(V ) := K∗/〈±det gV : g ∈ π1(M)〉 is denoted by
τ(M ;V ) ∈Wh(V ).
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Remark 4.9. 1. Changing from one fundamental family into another multiplies
the twisted Reidemeister torsion by a group element of the form ±det gV for
g ∈ π1(M). Thus τ(M ;V ) ∈ Wh(V ) is really independent of the choice of
fundamental family.

2. The twisted Reidemeister torsion τ(M ;V ) ∈ Wh(V ) also does not depend on
the choice of CW-structure. This follows from a result due to Kirby-Siebenmann
[KS69, Theorem IV] or more generally by Chapman [Cha74, Theorem 1].

The following lemmas are helpful for calculating Reidemeister torsion. Let A,B,C
be based cell complexes with bases a, b, c, respectively. Suppose that there is an exact
sequence in chain complexes

0→ A
f−→ B

g−→ C → 0.

Let c̃ be a lift of the basis c under the chain map g.

Definition 4.10. The short exact sequence above is called based compatibly if the
base change matrix has determinant det[ak c̃k/bk] = ±1 for every k ∈ Z.

Example 4.11. Let Z be a finite set. Let {Zi}i∈I be a collection of subsets Zi ⊂ Z
with I a finite ordered index set. Suppose that all triple intersections are empty, i.e.
Zi ∩Zj ∩Zk = ∅ for all distinct i, j, k ∈ I. We abbreviate Zi ∩Zj with Zij . We denote
the free vector space over a set A by K[A]. We obtain induced maps qi : K[Zi]→ K[Z].
The inclusion Zij ⊂ Zj induces a map K[Zij ] → K[Zi]. In the case i < j we refer to
this map by q+. For j < i the map is called q−. The following sequence is short exact:

0→
⊕
i<j

K[Zij ]
q+−q−−−−−→

⊕
i∈I

K[Zi]→ K[Z]→ 0,

where the second map is induced by the inclusions Zi ⊂ Z. Additionally, it is also
based compatibly with regards to their natural basis.

Lemma 4.12. In the situation above, the following statements hold.

1. If two of the chain complexes A,B,C are acyclic, then so is the third.

2. If all three chain complexes are acyclic and they are based compatibly, then

τ(B) = τ(A) · τ(C).

Proof. See Turaev [Tur01, Theorem 3.4].

Often the topological setting suggest a splitting Ck = Ak ⊕ Bk of the chain mod-
ules. The lemma below facilitates the calculation of the torsion. We denote the
inclusion Bk ⊂ Ck by ik and the projection Ck → Ak by pk. Define the map sk by

sk : Bk → Ak−1

sk := pk−1 ◦ ∂k ◦ ik.
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Lemma 4.13. Let C be a chain complex over K. Suppose a splitting of each chain
module Ck = Ak⊕Bk as based K-vector spaces is given. Let sk denote the map defined
above. Suppose that sk is invertible for every k.

Then C is acyclic and the Reidemeister torsion of C is

τ(C) = ±
∏
i∈N

(det si)
(−1)i .

Proof. See [Tur01, Theorem 2.2].

4.3 Alexander polynomial

We motivate the constructions made so far by an observation due to Milnor [Mil62a,
Theorem 4] relating the Alexander polynomial of a knot to the Reidemeister torsion
of the knot complement. We follow the treatment of Turaev [Tur86].

Let K be a knot in S3. Pick an orientation of K and an open tubular neighbour-
hood ν (K). Abbreviate the knot complement of K with N(K) := S3 \ ν (K). A
maximal Abelian cover N(K) is a connected cover of N(K) induced by the kernel
of the Hurewicz map π1(N(K)) → H1(N(K);Z) = Z. The last equality is obtained
by sending 1 ∈ Z to a positive meridian. We identify the group ring Z[Z] with the
ring of Laurent polynomials Z[t±1]. Recall that Z[t±1] is not principal but a unique
factorisation domain.

For a commutative ring R and a finitely presented R-module M , we define the order
ideal E0M as follows: pick a presentation

0→ Rs
A−→ Rr →M → 0.

Now E0M is the ideal which is generated by all determinants of r × r-minors of A.
We denote a greatest common divisor of the elements of E0M by ordM . The element
ordM only depends on the module M , see e.g. [CF63, Theorem VII.4.5]. The Z[t±1]-
module H1(N(K);Z) has a square presentation and therefore the ideal E0 H1(N(K);Z)
is principal [Rol90, Corollary 8.C.4].

Definition 4.14. The Alexander module A(K) is the Z[t±1]-module H1(N(K);Z).
An element ∆K := ordA(K) as defined above is called an Alexander polynomial of
the knot K.

The next lemma allows us to express the Reidemeister torsion in terms of orders.
We denote the quotient field of the polynomial ring Q[t] by Q(t).

Lemma 4.15 (Turaev). Let C be a based chain complex of Z[t±1]-modules. If Q(t)⊗C
is acyclic, then its Reidemeister torsion is

τ(Q(t)⊗ C) =
∏
i∈N

ord Hi(C)(−1)i+1
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Proof. See [Tur86, Lemma 2.1.1]

Using the description above, we proceed with calculating the Reidemeister torsion
of a knot complement. We only need to determine the orders of Hk(N(K);Z) for
k = 0, 2, which is straight forward:

Theorem 4.16 (Milnor). Let K be a knot with complement N(K). Let ∆K be an
Alexander polynomial for K. Then the twisted Reidemeister torsion of N(K) is

τ(N(K);Q(t)) =
∆(K)

t− 1
.

The argument is sketched below. We refer to Turaev [Tur01, SectionII.11.4] for more
details.

Sketch. We pick a triangulation of N(K), which has boundary. We can remove all 3-
cells by elementary collapses [Tur01, Section II.8]. This procedure leaves the homotopy
type and Reidemeister torsions invariant. As there are no 3-cells, we immediately
obtain that ord Hk(Z[t±1]⊗ C(N(K))) = 1 for k ≥ 3.

The group H2(Z[t±1]⊗C(N(K))) is a subgroup of C2(N(K)) which is free. There-
fore, we have ord H2(Z[t±1]⊗ C(N(K))) = 1 as well.

By Lemma 4.15 we are left to compute ord H0(Z[t±1] ⊗ C(N(K))) = t − 1. The
complex N(K) consist of a single component. Therefore, the deck transformations
leave this component invariant and we have H0(Z[t±1] ⊗ C(N(K))) ∼= Z[t±1]/〈t − 1〉.
We obtain the following equation

τ(N(K);Q(t)) =
∏
i∈N

ord Hi(Z[t±1]⊗ C)(−1)i+1
= ord H1(Z[t±1]⊗ C)/t− 1 =

∆K

t− 1
.

4.4 Maximal Abelian torsion

We proceed by introducing the maximal Abelian torsion due to Turaev [Tur76]. Our
approach follows [Tur01, Section II.13].

Fix an irreducible 3-manifoldM with b1(M) ≥ 2. The maximal Abelian torsion ofM
encodes the twisted Reidemeister torsion over all 1-dimensional representations in an
element of Z[H1(M ;Z)]. First we describe the group ring Q[T ] of a finite Abelian group
T in terms of cyclotomic fields. Associated to a group homomorphism σ : T → C∗,
also called a character, is the ring homomorphism

φσ : Q[T ]→ C
agg 7→ agσ(g).

There is a unique smallest cyclotomic field Cσ containing the image of φσ.
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Lemma 4.17. Let T be a finite Abelian group. There exists a finite set S of characters
such that the map below is an isomorphism:∏

σ∈S
φσ : Q[T ]→

∏
σ∈S

Cσ.

Proof. [Tur01, Lemma II.12.6]

Let M̃ be an universal cover for the manifold M and a fundamental family e. We
can pick a splitting of H1(M ;Z) = T⊕F into the torsion part T and a free complement
F . Additionally, we pick a set of characters S for T as in the lemma above. We obtain
the following description of the ring of quotients Quot (Z[H1(M ;Z)]):

Quot (Z[H1(M ;Z)]) = Quot (Q[T ]⊗Q Q[F ]) =
∏
σ∈S

Cσ(F ).

Denote the set of characters σ ∈ S for which Cσ is M -acyclic by Sacy. Summing over
Sacy we obtain the element

∆ :=
∑

σ∈Sacy

τ(M, e;Cσ(F )) ∈
∏
σ∈S

Cσ(F ).

By the above identification this defines an element ∆ ∈ Quot (Z[H1(M ;Z)]). For
manifolds M with b1(M) ≥ 2, the element ∆ lies in fact in Z[H1(M ;Z)], see [Tur02,
Corollary II.1.4, Corollary II.4.3].

Definition 4.18 (Turaev). The element ∆ ∈ Z[H1(M ;Z)] constructed above is called
the maximal Abelian torsion.

In the next lemma, we see that the maximal Abelian torsion is universal for all the
Reidemeister torsions of 1-dimensional representations. Let K be a field of characteris-
tic 0 and φ : Q[H1(M ;Z)]→ K a ring homomorphism. We turn K into a representation
of π1(M) by defining the right action to be

K× π1(M)→ K
(z, g) 7→ zφ(g)

Lemma 4.19. Let K be as above. The maximal Abelian torsion has the following
properties:

1. If K is M -acyclic, then the equality τ(M, e;K) = φ(∆) holds.

2. If φ(∆) 6= 0, then K is M -acyclic and consequently τ(M, e;K) = φ(∆).

Proof. For the first property see [Tur01, Theorem 13.3]. The second property follows
from functoriality of twisted Reidemeister torsion [Tur01, Proposition 3.6].

Corollary 4.20. The maximal Abelian torsion is independent of the choice of splitting
H1(M ;Z) = T ⊕ F and the choice of characters S.
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Having constructed the maximal Abelian torsion ∆, we introduce a new semi-norm
on H1(M ;Z). Denote the torsion subgroup of H1(M ;Z) by T . For the construction
expand the maximal Abelian torsion as follows:

∆ =
∑

h∈H1(M ;Z)

ahh ∈ Z[H1(M ;Z)] with ah ∈ Z.

We also define the Alexander norm introduced by McMullen [McM02]. For this we
consider the image ∆fr of ∆ in Z[H1(M ;Z)/T ], which we call free Abelian torsion.
Again we introduce names for the coefficients:

∆fr =
∑

h∈H1(M ;Z)/T

bhh ∈ Z[H1(M ;Z)/T ] with bh ∈ Z.

Definition 4.21 (McMullen, Turaev). Let M be an irreducible 3-manifold such that
b1(M) ≥ 2. Let θ ∈ H1(M ;Z) be a cohomology class.

1. The torsion norm of θ is defined by

‖θ‖tr := max{θ(h)− θ(h′) : h, h′ ∈ H1(M ;Z) with ah 6= 0 and ah′ 6= 0},

where the ah ∈ Z are the coefficients of the maximal Abelian torsion of M as
above.

2. The Alexander norm of a class θ is defined by

‖θ‖A := max{θ(h)− θ(h′) : h, h′ ∈ H1(M ;Z)/T with bh 6= 0 and bh′ 6= 0},

where the bh ∈ Z are the coefficients of ∆fr as above.

Here, in both cases we adopt the convention that the maximum over the empty set is
zero.

Remark 4.22. 1. Although the maximal Abelian torsion depends on the choice of
fundamental family, the torsion norm itself does not.

2. Clearly, the inequality ‖θ‖tr ≥ ‖θ‖A holds for all classes θ ∈ H1(M ;Z).

The following inequality will play a key part in estimating the Thurston norm. We
will focus on these estimates in more detail in Chapter 6.

Theorem 4.23. Let M be an irreducible 3-manifold with b1(M) ≥ 2. Then every
class θ ∈ H1(M ;Z) satisfies the inequality ‖θ‖T ≥ ‖θ‖tr.

Proof. See [Tur02, Theorem 2.2].

The next theorem will be the heart of this chapter.

Theorem 4.24. Let N be a graph manifold with b1(N) ≥ 2. Then there is a finite
cover π : M → N such that for every class θ ∈ H1(M ;Z) the equality ‖θ‖T = ‖θ‖tr
holds.
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Proof. By Lemma 2.19 we can pick a cover π : M → N such that M is either a
torus bundle, or a Seifert fibred space, or a manifold which admits a composite graph
structure. We consider the cases one by one.

IfM is a torus bundle, then we know that the Thurston norm vanishes by Lemma 3.8.
By Theorem 4.23 we immediately get the equality.

If M is a Seifert fibred space, we may assume that M is circle bundle by taking a
further cover, see Theorem 2.6. If the circle bundle is non-trivial, then the Thurston
norm vanishes, see Lemma 3.9. As above we obtain equality. So let M be a trivial
circle bundle, i.e. M ∼= Σ × S1 with Σ a surface with χ(Σ) < 0. In this case the
equality is shown by the calculation in Proposition 4.25 below.

The case where M admits a composite graph structure is dealt with in Theorem 4.36
below.

4.5 Torsion of composite graph manifolds

First we illustrate the calculation of Reidemeister torsion for the product Σ×S1 with
Σ being a surface. Then we proceed with the computation of Reidemeister torsion for
general composite graph manifolds. We conclude with the calculation for arbitrary
circle bundles.

The product structure of Σ× S1 gives an identification π1(Σ× S1) ∼= π1(Σ)× Z〈t〉,
where t ∈ π1(S1) is the generator traversing S1 in positive direction.

Proposition 4.25. Let V be a representation of Z[π1(Σ×S1)] and suppose the endo-
morphism (t− 1)V : V → V is invertible. Then V is (Σ× S1)-acyclic and the twisted
Reidemeister torsion is

τ(Σ× S1;V ) = (det (t− 1)V )−χ(Σ) ∈Wh(V ).

Proof. 1. First we set up the fundamental cover and a CW-structure. By Remark
4.9 the result will be independent of this choice. The cover exp: R → S1 is
a universal cover. We equip S1 with the CW-structure ∅ ⊂ {1} ⊂ S1. As a
fundamental family we pick the cells e0 := {0} ⊂ R and e1 := (0, 1) ⊂ R.

The characteristic map of the 1-cell gives rise to an element t ∈ π1(S1). We
choose an arbitrary CW-structure on Σ and give Σ × S1 the product CW-
structure. Let Σ̃ be the universal cover of Σ and {bkλ} the k-cells of a fundamental
family. We denote by nk the number of k-cells of Σ. The Euler characteristic of
Σ can be expressed in terms of the numbers nk by χ(Σ) =

∑
k(−1)knk.

We pick Σ̃×R as the universal cover of Σ× S1. We take the k-cells bkλ × e0 and

bk−1
λ × e1 as a fundamental family for Σ̃× R.

2. Note that the k-cells of the fundamental family above are already divided into
two classes. Namely, the ones made out of k-cells of Σ̃ and the ones obtained
by crossing a k − 1-cell of Σ̃ with the 1-cell e1. We calculate the torsion using
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Lemma 4.13. We split Ck(Σ× S1) as a based Z[π1(Σ× S1)]-module

Ck(Σ× S1) =
⊕
λ

Z[π1(Σ× S1)]〈bkλ × e0〉︸ ︷︷ ︸
=:Ak

⊕
⊕
λ

Z[π1(Σ× S1)]〈bk−1
λ × e1〉︸ ︷︷ ︸

=:Bk

.

The boundary operator is of the following form:

∂
(
bk−1
λ × e1

)
= (−1)k−1(t− 1)

(
bk−1
λ × e0

)
+ (−1)k−1∂bk−1 × e1.

After tensoring let denote sk the induced map sk : V ⊗Bk → V ⊗Ak. From the
formula above we calculate det sk = ± (det(t− 1)V )nk−1 . By Lemma 4.13, the
twisted Reidemeister torsion of Σ× S1 is

τ(Σ× S1;V ) =

3∏
k=0

(det(t− 1)V )−(−1)knk = (det(t− 1)V )−χ(Σ) ∈Wh(V ).

Remark 4.26. The proposition above also holds for the torus S1 × S1 [Tur01, Lemma
11.11]. The twisted Reidemeister torsion is τ(S1 × S1;V ) = 1.

We make a small excursion into representations, the ring of Laurent polynomials
and how to recover information from Reidemeister torsion defined over this ring. This
will be further expanded in Chapter 6.

Definition 4.27. Let M be a 3-manifold and K a field.

1. For each class θ ∈ H1(M ;Z) the representation Kθ of π1(M) over K(t) has
underlying K(t)-vector space K(t). The right action of π1(M) is given by

Kθ × π1(M)→ Kθ

(v, g) 7→ vt〈θ,g〉,

where 〈θ, g〉 is the evaluation of θ on the class corresponding to g in H1(M ;Z) .

2. Let V be a representation of π1(M) over K. Define Vθ to be the representation

Vθ := Kθ ⊗K V,

where the fundamental group acts diagonally from the right on the factors.

As hinted in the introduction, the function width will be our main tool to extract
information from the twisted Reidemeister torsion. It is defined as follows:

Definition 4.28. Let K be a field.
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1. The function width: K[t±1]→ N is defined by

width

(
b∑
i=a

cit
i

)
= b− a,

where ca, cb 6= 0 and a ≤ b.

2. It is extended to a function width: K(t)→ Z by

width (f/g) = width f − width g,

for f, g ∈ K[t±1] with g 6= 0.

Remark 4.29. Note that for f, g 6= 0, the equality width (fg) = width f+width g holds
and so width: K(t)→ Z is well-defined.

Let k ≥ 2 be a natural number. The Abelian group Z/kZ acts on the complex
numbers C by multiplication with exp (2πi/k). Given a character α : π1(M)→ Z/kZ,
we denote by Cα the representation with right action

Cα × π1(M)→ Cα

(v, g) 7→ vα(g).

These representations will be analysed in more detail in Chapter 6. The following
lemma connects the Thurston norm and twisted Reidemeister torsion.

Lemma 4.30. Let M be an irreducible 3-manifold with b1(M) ≥ 2 and a character
α : M → Z/kZ with k ≥ 2. Denote the maximal Abelian torsion by ∆ ∈ Z[H1(M ;Z)].

Then every class θ ∈ H1(M ;Z) such that Cαθ is M -acyclic satisfies the inequality

‖θ‖T ≥ width τ(M ;Cαθ ).

Proof. Note that the representation Cαθ is obtained from the ring homomorphism

φ : Q[H1(M ;Z)]→ C(t)

qh 7→ qα(h)t〈θ,h〉 for h ∈ H1(M ;Z), q ∈ Q

as in Lemma 4.19. Therefore, we have widthφ(∆) = width τ(M ;Cαθ ). From the
definitions, we deduce:

‖θ‖tr ≥ widthφ(∆) = width τ(M ;Cαθ ).

The claim follows from the inequality ‖θ‖T ≥ ‖θ‖tr, see Theorem 4.23.

Lemma 4.31. Let Σ be a connected surface with χ(Σ) < 0. Let α denote the character

α : π1(Σ× S1)→ π1(S1) = Z〈s〉 → Z/kZ.
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for a natural number k ≥ 2. For every class θ ∈ H1(Σ×S1;Z), the twisted Reidemeister
torsion with respect to the representation Cαθ is

τ(Σ× S1;Cαθ ) =
(
α(s)tθ(s) − 1

)−χ(Σ)
.

Consequently, the equality width τ(Σ× S1;Cαθ ) = −χ(Σ)|〈θ, s〉| holds and so

‖θ‖T = ‖θ‖tr.

Proof. Note that (s− 1) acts as follows: z · (s− 1) =
(
α(s)tθ(s) − 1

)
z for all z ∈ C(t).

Therefore det(s− 1)V =
(
α(s)tθ(s) − 1

)
and by Proposition 4.25 we know the equality

τ(Σ× S1;Cαθ ) =
(
α(s)tθ(s) − 1

)−χ(Σ)
.

Using the multiplicativity of the function width, we obtain the equalities

width τ(Σ× S1;Cαθ ) = −χ(Σ)|〈θ, s〉| = χ− (Σ) |〈θ, s〉|.

Recall the calculation of the Thurston norm of a product from Lemma 3.9. We obtain
‖θ‖tr ≥ width τ(Σ× S1;Cαθ ) = ‖θ‖T and by the estimate from Lemma 4.30 it is an
equality.

Now we want to calculate the twisted Reidemeister torsion for a composite graph
manifold. Fix a composite graph manifold M with toroidal surface S. Suppose that
M admits a Seifert non-vanishing character α : M → Z/kZ and has a bipartite Bass-
Serre graph. Recall the construction of M |S. We equip each block B, a component
of M |S, with the the CW-structure induced by the inclusion glS : B → M . Now the
restriction glS : B → M is the inclusion of a subcomplex. Pick a bipartition of the
blocks V (M) = V+(M) ∪ V−(M). First we consider the chain complex C(B ⊂M) for
a block B.

Lemma 4.32. Let B be a connected subcomplex of the connected CW-complex M . Let
π : M̃ →M a universal cover and B̃ a universal cover of B. For every lift φ : B̃ → M̃
of B̃ to the universal cover π : M̃ →M , the following map is an isomorphism

φ : Z[π1(M)]⊗Z[π1(B)] C(B)→ C(B ⊂M)

g ⊗ e 7→ g · φ∗e.

Proof. Pick a component B of π−1(B) and a covering B̃ → B. Furthermore, we fix
lifts ẽ ⊂ B̃ for every cell e ⊂ B. We define an inverse on the cells of B and extend it
equivariantly:

ψ : C(B ⊂M)→ Z[π1(M)]⊗Z[π1(B)] C(B)

g · e 7→ g · ẽ.
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This is well-defined: if a cell can be translated to both e1 ∈ B and e2 ∈ B, then there
is a h ∈ π1(B) such that h · e1 = e2. For the two choices the image of ψ is either

gh⊗ ẽ1 or g⊗ h̃ · e2. As h̃ · e2 and h · ẽ2 cover the same cell in B, there is an element k

in the kernel of π1(B)→ π1(M) such that h̃ · e2 = kh · ẽ2. As a result we obtain that

the two constructed images are equal gh⊗ ẽ1 = g ⊗ h̃ · e2.

Now one can check that ψ ◦ φ and φ ◦ ψ are the corresponding identities.

We have already seen that a fundamental family for M gives rise to a preferred basis
of C(B ⊂ M). Via the above isomorphism we obtain a preferred basis for C(B) as
well.

Recall that M is obtained by gluing the blocks along S as described in the diagram
below:

∐
B∈V+ B M

S
∐
B∈V− B

φ+

i+

i−

φ−

.

Consequently, there is a short exact sequence:

0→ C(S ⊂M)
i+−i−−−−−→

∑
B∈V (M)

C(B ⊂M)→ C(M)→ 0.

Lemma 4.33. The short exact sequence above is based compatibly.

Proof. Note that S ⊂ M and B ⊂ M are inclusions of subcomplexes for the toroidal
surface S and every block B of M . Recall the way how we based the chain complexes
C(S ⊂ M) and C(B ⊂ M) with a fundamental family in Definition 4.3. The cellular
chain modules are freely generated by the cells. Note that the k-cells of a component
T ⊂ S are exactly the k-cells shared by the blocks B± filling T on the positive and
negative side, i.e. Z(T ) = Z(B+) ∩ Z(B−). Now we see that we have already studied
the situation in Example 4.11.

Let B be a block of M . The identification B ∼= ΣB×S1 is part of a composite graph
structure. The class [{x} × S1] ∈ H1(B;Z) is independent of the point x ∈ ΣB and is
denoted by sB. We have already calculated the twisted Reidemeister torsion for B in
Proposition 4.25. In the theorem below we combine these calculations.

Theorem 4.34. Let V be a representation of π1(M) such that (1− sB)V is invertible
for all blocks B ∈ V (M) of M . Then the following statements hold:

1. The representation V is M -acyclic.
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2. The twisted Reidemeister torsion is

τ(M ;V ) =
∏

B∈V (M)

(det(sB − 1)V )−χ(ΣB) .

Proof. The following sequence of chain complexes is short exact

0→ V ⊗ C(S ⊂M)
i+−i−−−−−→

∑
B∈V (M)

V ⊗ C(B ⊂M)→ V ⊗ C(M)→ 0.

and also based compatibly by Lemma 4.33. Recall that we constructed an isomorphism
V ⊗ C(B ⊂ M) ∼= V ⊗ C(B) in Lemma 4.32. In Proposition 4.25 we have seen that
the chain complex V ⊗C(B) is acyclic. By Remark 4.26 the same holds for the chain
complex V ⊗ C(S ⊂M). With Lemma 4.12 we conclude that V ⊗ C(M) is acyclic.

Using the same lemma, we obtain the equality

τ(S;V ) · τ(M ;V ) =
∏

B∈V (M)

τ(B;V ) ∈Wh(V ).

As τ(S;V ) = 1 the claim follows.

Specialising the theorem above to the representation Cαθ we obtain the following
corollary.

Corollary 4.35. For every class θ ∈ H1(M ;Z) the statements below hold.

1. Cαθ is M -acyclic.

2. The maximal Abelian torsion of M is non-zero.

3. The twisted Reidemeister torsion of M is

τ(M ;Cαθ ) =
∏

B∈V (M)

(
ζkt
〈θ,sB〉 − 1

)−χ(ΣB)
∈Wh(Cαθ ),

where ζk is the complex number exp (2πi/k) ∈ C.

Theorem 4.36. Let M be a composite graph manifold with a Seifert non-vanishing
character. Suppose b1(M) ≥ 2. Then the Thurston norm and the torsion norm agree
on M .

Proof. Let θ ∈ H1(M ;Z) be a cohomology class. In Corollary 4.35, we saw that the
representation Cαθ is M -acyclic and the twisted Reidemeister torsion is

τ(M ;Cαθ ) =
∏

B∈V (M)

(
ζkt
〈θ,sB〉 − 1

)−χ(ΣB)
∈Wh(Cαθ ).
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Using Lemma 4.30, we see that the torsion norm ‖θ‖tr fulfils the inequality

‖θ‖tr ≥ width τ(M ;Cαθ ) =
∑

B∈V (M)

width
(
ζkt
〈θ,sB〉 − 1

)−χ(ΣB)

=
∑

B∈V (M)

χ−(ΣB)|〈θ, sB〉| =
∑

B∈V (M)

‖i∗Bθ‖T ,

where the last equality follows from the calculation of the Thurston norm in Lemma 3.9.
Theorem 3.6 tells us that the last sum is ‖θ‖T . With Theorem 4.23 we conclude that
‖θ‖T = ‖θ‖tr holds.

We conclude this section with an application to circle bundles.

Lemma 4.37. Let p : M → Σ be a non-trivial circle bundle over a closed surface Σ
with non-positive Euler characteristic χ(Σ) ≤ 0. Let e ∈ Z be the Euler number of the
bundle M . Suppose the Euler number |e| > 1. Then the maximal Abelian torsion of
M is non-zero.

Proof. Let Σ be the surface Σ with an open disc removed. Note that we construct a
manifold diffeomorphic to M by gluing Σ× S1 ∪φ D2 × S1 along the map

φ : ∂Σ× S1 → ∂D2 × S1

(a, b) 7→ (a, b+ e · a)

We consider the Mayer-Vietoris sequence associated to this decomposition

H1(S1 × S1;Z/eZ)← H1(Σ× S1;Z/eZ)⊕H1(D2 × S1;Z/eZ)← H1(M ;Z/eZ).

We conclude that there exists an element β ∈ H1(M) which maps the class of a fibre
to 1 ∈ Z/eZ. We claim that the representation Cβ is M -acyclic.

As above we have the exact sequence of chain complexes, which is based compatibly,

0→ C(S1 × S1 ⊂M ;Cβ)→ C(Σ× S1 ⊂M ;Cβ)⊕ C(D2 × S1 ⊂M ;Cβ)

→ C(M ;Cβ)→ 0

Using Lemma 4.32 and the calculations in this section, we obtain that Cβ is M -acyclic.
We abbreviate exp (2πi/e) ∈ C with ζe. We obtain

τ(M ;Cβ) = (1− ζe)−χ(Σ).

By Lemma 4.19 the maximal Abelian torsion is non-zero.

Remark 4.38. For a non-trivial circle bundle, we can arrange that the condition |e| > 1
holds by taking a finite cover.
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4.6 Fibred 3-manifolds

Recall that a 3-manifold M fibres if there exists a map p : M → S1 turning M into
a surface bundle. This implies that M is diffeomorphic to the mapping torus of a
surface.

Definition 4.39. Let Σ be a surface and φ : Σ→ Σ an orientation preserving diffeo-
morphism. The mapping torus M(Σ, φ) is the quotient

M(Σ, φ) := Σ× R/(φ(x), t) ∼ (x, t+ 1) .

Definition 4.40. A class θ ∈ H1(M ;Q) is fibred if there exists a map p : M → S1

giving M the structure of a fibre bundle and a class τ ∈ H1(S1;Q) such that p∗τ = θ.

Agol realised that being able to approximate classes by fibred classes in finite covers
is related to the following property of the fundamental group. We use the formulation
of the survey article [AFW12, Section 6 E.4].

Definition 4.41 (Agol). A group G is called RFRS if there exists a filtration

G = G0 ⊃ G1 ⊃ G2 ⊃ . . .

by normal finite-index subgroups Gi ⊂ G such that

1. their intersection
⋂
i∈NGi is trivial, and

2. for each i ∈ N and Hi := H1(Gi;Z)/torsion the quotient map Gi → Gi/Gi+1

factors through the quotient map Gi → Hi:

Gi Gi/Gi+1

Hi
.

Theorem 4.42 (Agol). Let N be an aspherical 3-manifold with virtually RFRS fun-
damental group. Let θ ∈ H1(N ;Q) be a non-zero cohomology class. Then there exists
a finite cover π : M → N and fibred classes θn converging to π∗θ.

Proof. [Ago08, Theorem 5.1]

Remark 4.43. A possible first impression that having a virtually RFRS fundamental
group is rare condition is deceptive. By results due to Wise [Wis11], Przytycki-Wise
[PW12] and Agol [Ago13] an irreducible 3-manifold M whose JSJ decomposition has
at least one hyperbolic piece has a virtually RFRS fundamental group π1(M). As a
consequence the manifolds which do not have such a fundamental group are all graph
manifolds.
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A version of Theorem 4.24 has also been proven for aspherical 3-manifolds with
virtually RFRS fundamental group.

Theorem 4.44 (Friedl-Vidussi). Let N be an aspherical 3-manifold with virtually
RFRS fundamental group and b1(N) ≥ 2. Let θ ∈ H1(N ;Z) be a cohomology class.
There exists a finite cover π : M → N such that both statements hold:

1. the maximal Abelian torsion of M is non-zero, and

2. the torsion norm satisfies the equality ‖π∗θ‖A = ‖π∗θ‖tr = ‖π∗θ‖T .

We refer to the article [FV12, Theorem 5.9] and sketch a proof.

Sketch. Let M(Σ, φ) be a mapping torus with Σ not diffeomorphic to S2 or D2. Denote
the torsion subgroup of H1(M(Σ, φ);Z) by T . A calculation using an explicit CW-
structure establishes the following: for a fibred class θ the representation Cθ is M(Σ, φ)-
acyclic [FK06, Theorem 1.2]. This implies that the maximal Abelian torsion is non-
zero. Furthermore, the twisted Reidemeister torsion fulfils the equation

width τ(M ;Cθ) = ‖α‖T .

If b1(M(Σ, φ)) ≥ 2, then this implies that ‖α‖A = ‖α‖tr = ‖α‖T for fibred classes α
by Lemma 4.19 and the commutative diagram

Z[H1(M(Σ, φ);Z)] Z[H1(M(Σ, φ);Z)/T ]

Cθ
.

As all three semi-norms are continuous the equality also holds for classes in the closure
of fibred classes.

By Agol’s virtual fibring theorem, which is Theorem 4.42, there is a finite cover
π : M → N such that M fibres and π∗θ is in the closure of fibred classes. As M fibres
we have that the maximal Abelian torsion is non-zero. By the argument above, we
obtain the equalities

‖π∗θ‖A = ‖π∗θ‖tr = ‖π∗θ‖T .
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5 Circle bundles over 3-manifolds

The main result of this chapter is the theorem below. The discussion follows along the
lines of the author’s article [Nag14]. Recall that by convention circle bundles have a
orientation of the fibres and so are principal S1-bundles.

Theorem 5.1. Let M be a closed irreducible 3-manifold neither covered by S3 nor a
torus bundle. Let p : W →M be a circle bundle over M .

Then the complexity x(σ) of every class σ ∈ H2(W ;Z) satisfies the inequality

x(σ) ≥ |σ · σ|+ ‖p∗σ‖T .

Proof. See Proposition 5.15 and Corollary 5.20.

Let us first review the notions which are used in the theorem. On a 4-manifold, one
defines the complexity x(σ) of a class σ ∈ H2(W ;Z) similar to the definition of the
Thurston norm on a 3-manifold, see Definition 5.2.

As we have discussed in the introduction, the complexity x(σ) is in general not
linear in the class σ. This is reflected in the above lower bound by the term |σ · σ|,
the self-intersection of the class σ in the manifold W . Let Σ ⊂ W be an embedded
surface with fundamental class σ. The normal bundle ν(Σ) of Σ has this number as
its Euler number 〈e(ν(Σ)), [Σ]〉 = σ · σ. Then the self-intersection has the following
topological interpretation. By the tubular neighbourhood theorem ν(Σ) describes a
neighbourhood of Σ. This implies that if σ · σ is non-zero, then we cannot realise
multiples of σ by push-offs of Σ.

For the case of circle bundles over irreducible 3-manifolds where the 3-manifolds have
virtually RFRS fundamental group, we rely on prior work of Friedl-Vidussi [FV14].
We sketch some of their arguments to give the reader a complete picture. The theorem
above supersedes their result in two ways: we include all graph manifolds apart from
the mentioned exceptions and we do not have to exclude any circle bundle.

5.1 The genus function in 4-manifolds

Similar to the Thurston norm for 3-manifolds, defined in Definition 3.2, one can define
a corresponding invariant for 4-manifolds:

Definition 5.2. Let W be a closed 4-manifold and σ ∈ H2(W ;Z) a class. The
complexity of σ is the number

x(σ) := min{χ− (Σ) : Σ an embedded surface with [Σ] = σ},

where χ− (Σ) is the invariant defined in Definition 3.1.
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Remark 5.3. 1. We have seen in Remark 3.3 that in a 3-manifold M every class
in H2(M ;Z) is the fundamental class of an embedded surface. This also holds
in dimension 4. We consider a cohomology class θ ∈ H2(W ;Z). To this class
corresponds a map into CP∞, the Eilenberg-Mac Lane space K(Z, 2). Any such
map can be perturbed to a smooth map into a CPN . Furthermore, we isotope it
to a map f : W → CPN transverse to CPN−1 ⊂ CPN . The preimage f−1(CPN−1)
will be a surface Poincaré dual to the class θ.

2. We use χ− (Σ) to measure the complexity of an embedded surface Σ. Tradition-
ally the genus g(Σ) is used. Analogously to the definition above, one also obtains
an invariant for each class σ ∈ H2(W ;Z). This invariant is called the genus func-
tion. Note that the genus directly translates into the Euler characteristic by
χ(Σ) = 2−2g(Σ). If W has the property that every embedding f : S2 →W of a
2-sphere extends to a map of D3 →W , then we are free to remove the spherical
components of Σ and obtain the equality χ− (Σ) = 2g(Σ) − 2. This is the case
for the circle bundles we consider in Theorem 5.1.

The genus function in a 4-manifold depends on its smooth structure. This can

be seen as follows: Denote the K3-surface by S4. The smooth 4-manifolds S4#CP2

and #3CP2#20CP2 are homeomorphic, but not diffeomorphic [GS99, Exercise 2.4.13].
This is also reflected in the genus functions which are different. To calculate these and
to see that they are not diffeomorphic one relies on Seiberg-Witten invariants.

5.2 Tangential structures

The Lie group SO (n) admits a two-fold connected cover called Spin (n) for n ≥ 2.
The Lie group Spinc (n) is then defined to be the quotient

Spinc (n) := Spin (n)×Z/2Z S
1.

This Lie group Spinc (n) comes with maps det : Spinc (n) → S1 and µ : Spinc (n) →
SO (n) induced by the projection on the factors.

Given a smooth oriented n-manifold X with a Riemannian metric, we can form its
orthonormal frame bundle Fr(TX), which is an SO (n)-principal bundle.

Recall that given a principal G-bundle P over X and a Lie group homomorphism
f : G→ S1, we can construct a complex line bundle by clamping C to the fibres:

P ×f C := P × C/(pg, z) ∼ (p, f(g)z) for all p ∈ P, g ∈ G, z ∈ C.

Definition 5.4. A Spinc-structure ξ = (P, κ) on a smooth oriented n-manifold X is a
Spinc (n)-principal bundle P together with a two-fold covering map κ : P → Fr(TX)
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such that the following diagram is commutative:

P × Spinc (n) P

Fr(TX)× SO (n) Fr(TX)

κ× µ κ

.

The horizontal maps are the right actions of the respective principal bundle structures.
The determinant line bundle Lξ is the complex line bundle P ×det C. Its Chern class
is denoted by c1(ξ) ∈ H2(X;Z).

Remark 5.5. Orientable 3-manifolds are parallelizable [Sti35, Satz F] and so they admit
a Spinc-structure. Also orientable 4-manifolds admit a Spinc-structure [HH58, Section
4.1 iv)] .

If π : X̃ → X is a covering map, then the differential Tπ induces a bundle iso-
morphism TX̃ ∼= π∗TX. Given a Spinc-structure ξ := (P, κ) on X, we can pull the
principal bundle P back to a bundle π∗P over π∗ Fr(TX) ∼= Fr(TX̃). The bundle π∗P
together with the map π∗κ is again a Spinc-structure on X̃, which we denote by π∗ξ.
Its Chern class is c1(π∗ξ) = π∗c1(ξ).

The set of Spinc-structures on X is an H2(X;Z)-torsor, i.e. it has a transitive free
action of the group H2(X;Z) [Mor96, Chapter 3.1]. Under this action the Chern class
changes by c1(ξ + e) = c1(ξ) + 2e for every e ∈ H2(X;Z).

For the rest of the chapter we will consider a circle bundle p : W →M over a closed
irreducible 3-manifold M . A connection on this fibre bundle gives a splitting of the
bundle TW = p∗TM ⊕ R. Note that we used here that the fibres of W are oriented.
Via this splitting we can add to a frame of TM the positive unit vector in R and
obtain a frame in TW . This exposes the pull-back of the frame bundle p∗ Fr(TM)
as a reduction of the structure group to SO (3) of the bundle Fr(TW ), i.e. we have
p∗ Fr(TM) ×SO(3) SO (4) = Fr(TW ). Consequently, if ξ := (P, κ) is a Spinc-structure
on M , then the bundle p∗P×Spinc(3)Spinc (4) and the map κ×µ form a Spinc-structure
on W . We denote this Spinc-structure by p∗ξ. Its Chern class is c1(p∗ξ) = p∗c1(ξ).

5.3 Adjunction inequality

Often the only way to obtain estimates on the complexity x(σ) for a class σ ∈ H2(W ;Z)
is through adjunction inequalities, which we will describe below. To know which
adjunction inequalities hold, one has to determine the Seiberg-Witten basic classes.

Seiberg-Witten theory is a gauge theory, whose equations were suggested by Witten
[Wit94] and further enriched by Kronheimer-Mrowka [KM94]. We refer to Morgan’s
book [Mor96] for an introduction to this theory.

In the cases we consider later on, we will always have b+2 (W ) > 1. From the moduli
space of solutions of the Seiberg-Witten equations a function SW: Spinc (W ) → Z is
constructed. It is non-zero only on finitely many Spinc-structures.
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Recall that g! denotes the umkehr map PD ◦(g∗) ◦ PD corresponding to a map g
between two closed manifolds.

Definition 5.6. The set of basic classes of the 4-manifold W is the set

bas (W ) := {c1(ξ) ∈ H2(W ;Z) : ξ ∈ Spinc (W ) with SW ξ 6= 0}.

For a 3-manifold M with b1(M) ≥ 3 and a Spinc-structure ξ ∈ Spinc (M), we define
its Seiberg-Witten invariant SW ξ by SW ξ := SW p∗ξ, where p : M×S1 →M denotes
the projection. This is merely convenience, there are more intrinsic formulation of the
Seiberg-Witten invariant in dimension 3, see e.g. [Auc96].

Definition 5.7. A closed irreducible 3-manifold N has enough basic classes if for
every finite cover π : M → N and every class σ ∈ H2(M ;Z), there is a further cover
g : P →M with b1(P ) ≥ 3 and a basic class s ∈ bas (P ) with

〈s, g!σ〉 = ‖g!σ‖T .

Remark 5.8. The condition b1(M) ≥ 3 ensures that any circle bundle p : W → M
over the 3-manifold M fulfils b+2 (W ) > 1. This follows from the Gysin sequence. The
technical condition b+2 (W ) > 1 is important for the moduli space considerations in
Seiberg-Witten theory.

Kronheimer-Mrowka [KM94, Section 6] realised that Seiberg-Witten basic classes
give a way to bound the complexity of a homology 2-class from below. They obtain
the adjunction inequality for positive self-intersection. Later Ozsváth-Szabó [OS00,
Corollary 1.7] also included the case of negative self-intersection. In the special case
of a circle bundle this inequality can be formulated as follows:

Theorem 5.9 (Adjunction inequality). Let p : W → M be a circle bundle over an
closed irreducible 3-manifold M with b1(M) ≥ 3.

Every basic class s ∈ bas (W ) and every homology class σ ∈ H2(W ;Z) satisfies the
inequality

x(σ) ≥ |σ · σ|+ 〈s, σ〉.

Proof. See [FV14, Theorem 3.1]. The argument only uses the adjunction inequality for
positive self-intersections. Furthermore, irreducibility of M is used to show that there
is always a minimal surface representing the class σ without any spherical components.

We see that it will be key to identify the Seiberg-Witten basic classes of the circle
bundle. This happens in two steps. Theorem 5.11 below relates the Seiberg-Witten
invariants of the base manifold to ones of the total space.

The second step is to describe the Seiberg-Witten invariants of the base manifold.
Meng-Taubes [MT96] discovered that the Seiberg-Witten invariant is related to Milnor
torsion. This was refined by Turaev [Tur98, Theorem 1] leading to a combinatorial
description of the Seiberg-Witten invariant in dimension 3. We will use the following
formulation, which is very convenient for the use with the adjunction inequality.
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Theorem 5.10 (Turaev). Let M be a closed 3-manifold with b1(M) ≥ 2. If the
maximal Abelian torsion is non-zero, then bas (M) is non-empty. In this case the
equality below holds for every class σ ∈ H2(M ;Z):

‖σ‖tr = max
s∈bas(M)

〈s, σ〉.

Proof. See [Tur02, Chapter IX.1.2, XI.2.3].

The following theorem relates the Seiberg-Witten invariants of the total space of a
circle bundle to the Seiberg-Witten invariants of the basis.

Theorem 5.11 (Baldrige). Let p : W →M be a circle bundle over a closed irreducible
3-manifold M with b1(M) ≥ 3. Let ξ ∈ Spinc (M) be a Spinc-structure on M .

1. If the Euler class e ∈ H2(M ;Z) is non-torsion, then the equality

SW(p∗ξ) =
∑
k∈Z

SW(ξ + ke)

holds.

2. If the circle bundle is trivial, then the Seiberg-Witten invariant satisfies the equal-
ity SW(p∗ξ) = SW(ξ).

Proof. See [Bal01, Theorem 1, Proposition 7].

We conclude this section with a description of the closed irreducible 3-manifolds
with enough basic classes.

Proposition 5.12. Let N be a closed irreducible 3-manifold which is not covered by
S3 nor a torus bundle. Then N has enough basic classes.

Proof. Note that N is a graph manifold or N is aspherical with a virtually RFRS
fundamental group. Recall that the Betti numbers can only increase in a finite cover.

Claim. In both cases the manifold N admits a finite cover M with b1(M) ≥ 3.

By assumption the group π1(N) cannot be either finite nor solvable [AFW12, The-
orem 1.20]. In this case N has to have infinite virtual Betti number: this holds for
manifolds N with virtually RFRS fundamental group [AFW12, Diagram 4] and graph
manifolds [AFW12, Diagram 1]. Thus the claim holds.

We proceed with establishing the the proposition. Let π : M → N be a finite cover.
Without loss of generality we may assume that b1(M) ≥ 3 as we can consider the
fibre product of two covers and the claim above. Furthermore, let σ ∈ H2(M ;Z) be
a given class. We want to find a cover g : P → M such that the maximal Abelian
torsion of P is non-zero and the Thurston norm and the torsion norm agrees. Then
by Theorem 5.10 there is a class s ∈ bas (P ) with ‖g!σ‖T = 〈s, σ〉.

In the case of composite graph manifolds this can be arranged by Theorem 4.24 and
Corollary 4.35. For non-trivial circle bundles we have seen that these manifolds have
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vanishing Thurston norm in Lemma 3.9. Their maximal Abelian torsion is non-zero
by Lemma 4.37.

If M is aspherical and has virtually RFRS fundamental group, then this can be
deduced with Theorem 4.44.

5.4 Finite covers

Let p : W → N a circle bundle and π : M → N a finite cover of closed 3-manifolds. We
can pull back the bundle along the cover π and obtain a circle bundle p′ : W ′ → M .
The diagram below describes the situation.

π∗W W

M N

p′

π′

p

π

(5.1)

Definition 5.13. 1. An embedded surface Σ ⊂ W with fundamental class σ is
called non-degenerate if Σ fulfils the inequality

χ− (Σ) ≥ |σ · σ|+ ‖p∗σ‖T .

2. A class σ ∈ H2(W ;Z) is called non-degenerate if σ fulfils the inequality

x(σ) ≥ |σ · σ|+ ‖p∗σ‖T .

The lemma below shows that the property of being non-degenerate is compatible
with taking finite covers.

Lemma 5.14. Let Σ be an embedded surface and σ ∈ H2(W ;Q) a homology class.
Then the three statements below hold:

1. On rational homology the equality π!p∗ = (p′)∗(π
′)! holds.

2. If the surface (p′)−1 (Σ) is non-degenerate, then so is Σ.

3. If the class (p′)!σ is non-degenerate, then so is σ.

Proof. We abbreviate (p′)−1 (Σ) with Σ′ and respectively (p′)!σ with σ′.

1. First we establish the equality π!p∗ = (p′)∗(π
′)! on rational homology. As π and

π′ are finite covers, we have that π∗ ◦π! = deg π and π′∗ ◦ (π′)! = deg(π′) = deg π
[Bre93, Proposition 14.1 (6)]. The commutativity of the diagram above amounts
to the equality p∗◦π′∗ = π∗◦p′∗. Therefore, we can make the following deduction:(

π∗ ◦ π!
)
◦ p∗ = p∗ ◦

(
π′∗ ◦ (π′)!

)
⇒ π∗ ◦ π! ◦ p∗ = π∗ ◦ p′∗ ◦ (π′)!

⇒ π! ◦ p∗ = (p′)∗ ◦ (π′)!.
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2. The complexity χ− (Σ) is multiplicative, so (deg π) χ− (Σ) = χ− (Σ′). Recall
that one can calculate σ · σ by counting self-intersections. Thus we obtain the
equality (deg π) σ · σ = σ′ · σ′. As Σ′ is non-degenerate, the complexity χ− (Σ)
satisfies the inequality χ− (Σ′) ≥ |σ′ ·σ′|+‖p′∗σ′‖T . By the calculation above, we
know that p′∗σ

′ = π!p∗σ holds. Using Gabai’s Theorem 3.5 we obtain ‖π!p∗σ‖T =
deg π‖σ‖T and therefore also the inequality

χ− (Σ) ≥ |σ · σ|+ ‖p∗σ‖T .

This establishes the second statement.

3. We proceed to prove the third statement. By the above considerations it will
be enough to show the inequality (deg π) x(σ) ≥ x(σ′). Denote by Θ the set of
surfaces which are embedded into N and have fundamental class σ. Then we
have the following estimate

(deg π) x(σ) = min
S∈Θ

χ−
(
(π′)−1(S)

)
≥ x(σ′).

This proves the statement.

Now we can prove Theorem 5.1 for circle bundles with torsion Euler class.

Proposition 5.15. Let N be a closed irreducible 3-manifold with enough basic classes
and p : W → N a circle bundle whose Euler class is torsion. Then each class σ ∈
H2(W ;Z) is non-degenerate.

Proof. First we prove the statement for a trivial circle bundle p : W → N . We use
the notation from Diagram 5.1. Pick a class σ ∈ H2(W ;Z). As N has enough basic
classes there is a cover π : M → N such that b1(M) ≥ 3 and a basic class s ∈ bas (M)
such that 〈s, π!p∗σ〉 = ‖π!p∗σ‖T . By the lemma above we have π!p∗σ = p′∗(π

′)!σ. By
Theorem 5.11 the class p∗s ∈ H2(π∗W ;Z) is basic if s ∈ H2(M ;Z) is basic. Using the
adjunction inequality from Theorem 5.9 we obtain that the class σ′ := (π′)!σ satisfies
the equality

x(σ′) ≥ |σ′ · σ′|+ 〈p∗s, σ′〉 = |σ′ · σ′|+ ‖(p′)∗σ′‖T .

Therefore the class σ′ is non-degenerate and hence so is the class σ by Lemma 5.14.

Now the general statement follows from Lemma 5.14 and the fact that N has a
finite cover π : M → N such that the pulled-back circle bundle π∗W is trivial, see
Bowden [Bow09, Proposition 3].

5.5 Drilling circle bundles

In this section M denotes a closed irreducible 3-manifold with enough basic classes.
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Lemma 5.16. Let γ ⊂ M be an embedded loop. Let p : W → M be a circle bundle
with Euler class e ∈ H2(M ;Z). Furthermore, let pk : Wk →M be the circle bundle with
Euler class e + kPD[γ] for a k ∈ Z. Then the two circle bundles become isomorphic
when restricted to M \ ν (γ), i.e.

W |M\ν(γ)
∼= Wk |M\ν(γ) .

Proof. Denote the inclusion M \ν (γ) ⊂M by iν . First we calculate that i∗ν PD[γ] = 0.
Consider the diagram

H2(M ;Z) H2(M \ ν (γ) ;Z)

H1(M \ ν (γ) , ∂ν (γ) ;Z)

H1(M ;Z) H1(M,ν (γ) ;Z)

PD

i∗ν

PD

∼=

.

It is commutative [Bre93, Corollary VI.8.4] and by comparing the two ways to go
around we obtain the equality i∗ν PD[γ] = 0.

As the Euler class is natural, we have the equality

e
(
W |M\ν(γ)

)
= i∗νe = e

(
Wk |M\ν(γ)

)
.

Recall that the classifying space of principal circle bundles BS1 is an Eilenberg-
Mac Lane space K(Z, 2). Consequently, we have natural bijections

{S1-principal bundles over M}/iso. ∼= [M,BS1] ∼= H2(M ;Z),

whose composition assigns to a bundle its Euler class. So the Euler class classifies
circle bundles up to bundle isomorphisms and the claim follows.

To apply the adjunction inequality we need to use Baldrige’s theorem to translate
knowledge on the 3-dimensional Seiberg-Witten invariant to the 4-dimensional one.
But in this formula it is very well possible that the summands cancel. Nevertheless,
this can only happen for very special Euler classes. Furthermore, the Euler class is
very sensitive to local changes near essential loops. This is used to prove the following
theorem.

Lemma 5.17. Let Σ ⊂ W be an embedded surface in the circle bundle p : W → M
and γ a curve embedded into M which represents a non-torsion class [γ] ∈ H1(M ;Z).
Suppose that Σ and the torus p−1(γ) are disjoint. Then Σ is non-degenerate.
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Proof. Denote the fundamental class of the surface Σ by σ. As a first case we consider
the situation where there is a basic class s ∈ bas (M) such that 〈s, p∗σ〉 = ‖p∗σ‖T .
Pick a Spinc-structure ξ ∈ Spinc (M) with Chern class c1(ξ) = s and SW ξ 6= 0.

Abbreviate the Euler class of the circle bundle W with e ∈ H2(M ;Z). Let the
bundle pk : Wk →M be a circle bundle with Euler class ek = e+ kPD[γ]. In Lemma
5.16 we have seen that the total spaces of these two bundles are diffeomorphic away
from a neighbourhood ν

(
p−1(γ)

)
. As the surfaces Σ and p−1(γ) are disjoint, we can

consider Σ also as embedded into circle bundle Wk

Σ ⊂W \ ν
(
p−1(γ)

)
⊂Wk.

Its fundamental class will be denoted by σk ∈ H2(Wk;Z). As both σk · σk and σ · σ
can be calculated from the normal bundle of Σ, they will be equal.

As the Seiberg-Witten function SW has finite support and [γ] is non-torsion, there
exists a k ∈ Z such that for all l 6= 0 the invariant SW(ξ+ lek) vanishes. For such a k,
Baldrige’s formula from Theorem 5.11 shows that SW (p∗kξ) is non-zero and therefore
p∗ks is a basic class of Wk. Using Theorem 5.9 we obtain the inequality

χ− (Σ) ≥ x(σk) ≥ |σk · σk|+ 〈p∗s, σk〉 = |σ · σ|+ 〈s, p∗σ〉 = |σ · σ|+ ‖p∗σ‖T .

Thus Σ is non-degenerate, which concludes the first case.
Now we reduce the general case to the one above. The manifold M has enough

basic classes and thus there is a cover π : P →M and basic class s ∈ bas (P ) such that
〈s, π!σ〉 = ‖π!σ‖T . We pull-back the circle bundle along π and denote the cover of the
total spaces with g : π∗W → W . Abbreviate σ′ := g!σ and Σ′ := g−1(Σ) accordingly.
A component of π−1(γ) will project onto γ and thus also the class of this component
will not be torsion. Applying the case above to Σ′ and a component of π−1(γ) in the
pull-back bundle π∗W , we obtain the inequality

χ−
(
Σ′
)
≥ |σ′ · σ′|+ ‖p′∗σ′‖T .

Thus Σ′ is non-degenerate and so is Σ by Lemma 5.14.

The existence of such a curve γ as required by the lemma above is by no means
guaranteed. In fact, it does not always exist. The key idea will be to attach 1-handles
to the embedded surface Σ to make enough space so that there will be a curve γ with
the required properties. Of course, this increases the complexity of the surface which
we compensate by considering the procedure in finite covers.

Lemma 5.18. Let p : W →M be a circle bundle. Let Σ ⊂W be an embedded surface
and γ a curve in M such that Γ := p−1(γ) and Σ intersect transversely. Suppose that
their algebraic intersection γ · p∗[Σ] vanishes. Denote by k ∈ N the cardinality of the
intersection Γ ∩ Σ. Then there exits a surface Σγ ⊂W such that

1. the two surfaces share the same fundamental class [Σ] = [Σγ ],

2. the surface Σγ does not intersect Γ, and
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3. the complexities χ− (Σ) and χ− (Σγ) satisfy the inequality

χ− (Σγ) ≤ χ− (Σ) + k.

Proof. We show that by adding a tube we can obtain an embedded surface Σ′ ⊂ W
such that [Σ] = [Σ′], the cardinality of Σ′ ∩ Γ is k − 2 and χ− (Σ′) ≤ χ− (Σ) + 2.

By a small perturbation of Σ, we may assume that no two intersection points in Γ∩Σ
lie in the same fibre of the bundle W . Thus to each intersection point corresponds via
p a unique point on γ. There exists an arc γa,b ⊂ γ with endpoints a, b ∈ p(Γ∩Σ) such
that the corresponding intersection points have opposite sign and no other intersection
point lies over γa,b.

Pick a neighbourhood U of γa,b in M small enough so that there is a trivialisation
W |U ∼= U × S1. All our changes to Σ will be contained in p−1(U), the total space of
W |U . Let us denote Σ ∩ p−1(U) by ΣU .

As Γ and Σ intersect transversely the map ΣU
p−→ U will have full rank close to the

intersections. Thus after shrinking U this map becomes an embedding p : ΣU → U .
Its image is a submanifold S and there exists a function s : S → S1 such that

{(x, s(x)) : x ∈ S} ⊂ U × S1

corresponds exactly to Σ. Note that after shrinking U further the function s is homo-
topic to a constant function.

The surface S and γa,b intersect exactly in the points a, b. There exists a tubular
neighbourhood π : V → γa,b such that S ∩ V ⊂ π−1({a, b}). This follows from the fact
that a tubular neighbourhood of γa,b near the points a, b can be extended to a tubular
neighbourhood of γa,b [Hir88, Section 4.6]. The tubular neighbourhood V is a solid
cylinder whose discs at the ends lie in S. As s is homotopic to a constant function
there is no obstruction extending s to a map s : V → S1. We can now lift the solid
cylinder V to W via {(x, s(x)) : x ∈ V }.

Doing surgery along the lifted cylinder we obtain the embedded surface Σ′. We have
removed two discs of Σ and attached an annulus. Therefore, χ− (Σ′) ≤ χ− (Σ) + 2.
Furthermore, there is a map from the trace of the surgery to W which agrees with
the embeddings of Σ and Σ′ at the boundary, so we obtain the equality for their
fundamental classes: [Σ] = [Σ′]. Also Σ′ does not intersect γ in a, b anymore and we
have not introduced new intersection points.

Proposition 5.19. Let p : W → M be a circle bundle with non-torsion Euler class
e ∈ H2(W ;Z). Let Σ ⊂W be an embedded surface. Then Σ is non-degenerate.

Proof. Using Lemma 5.14 and the fact that M has enough basic classes, we may
assume that b1(N) ≥ 3. The fundamental class of Σ is denoted by σ. Pick a non-
torsion element in the kernel of the map

Ip∗σ : H1(N ;Z)→ Z
ω 7→ ω · p∗σ.
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This element can be represented by an embedded loop γ ⊂ M . We may assume that
Σ intersects Γ := p−1(γ) transversely and denote the cardinality of the intersection by
m.

Now for each k ≥ 2 let π : Mk → M be the cover induced from the kernel of the
homomorphism

Ip∗σ : π1N → Z/kZ
α 7→ [α] · p∗σ.

We can pick a lift γk ⊂ Mk of γ. As γ is in the kernel, the lift γk is again an
embedded loop. We denote the pull-back bundle of W along π by pk : Wk →Mk and
the associated cover by π′ : Wk → W . Abbreviate the surface (π′)−1(Σ) ⊂ Wk with
Σk and the preimage of γk under the map pk with Γk. The fundamental class of Σk is
denoted by σk = (π′)!σ.

The cover π restricts to a diffeomorphism in a neighbourhood of γk. We observe
that γk · pk∗Σk = 0 in Wk and the cardinality of the set Γk ∩ Σk is again m.

Now we apply Lemma 5.18 to Σk and γk. We obtain a surface Σk,γ , which is disjoint
from γk. By Lemma 5.17 the surface Σk,γ is non-degenerate and so χ− (Σk) satisfies

χ− (Σk) +m ≥ χ− (Σ)k,γ ≥ |σk · σk|+ ‖pk∗σk‖T .

By the multiplicativity of the left and right hand side, we have the inequality

χ− (Σ) +m/k ≥ |σ · σ|+ ‖p∗σ‖T

for all k ≥ 2. Because m is a fixed number independent of k, we see that Σ has to be
non-degenerate.

Corollary 5.20. Let p : W →M be a circle bundle over a closed irreducible 3-manifold
M with enough basic classes and non-torsion Euler class e ∈ H2(W ;Z).

Then each class σ ∈ H2(W ;Z) is non-degenerate.

5.6 Realising the lower bound

In this section we construct surfaces for many classes in H2(W ;Z) which realise the
lower bound given by Theorem 5.1. This construction is due to Friedl-Vidussi [FV14,
Lemma 4.1, Lemma 4.2] and is given for the convenience of the reader.

If a class α ∈ H2(M ;Z) is not primitive, then it is never the fundamental class of a
connected surface [Thu86, Lemma 1]. We say a class α is connected if there exists a
connected surface S ⊂ M and a natural number k ∈ N such that k[S] = α and S is
minimising the Thurston norm, i.e. ‖[S]‖T = χ− (S).

Proposition 5.21 (Friedl-Vidussi). Let σ ∈ H2(W ;Z) such that p∗σ is connected.
Then there exists a surface Σ ⊂W representing σ with

χ− (Σ) = |σ · σ|+ ‖p∗σ‖T .
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Proof. Pick an S and a k such that the equality p∗σ = k[S] holds and so that S is
Thurston norm minimising. As M is irreducible we assume that S has no spheri-
cal components. We check that we can lift the surface S along the bundle projec-
tion p : W →M . For this we consider the Gysin sequence:

Hk(M) Hk(W ) Hk−1(M) Hk+1(M)

H3−k(M) H4−k(W ) H4−k(M) H2−k(M)

PD PD PD PD

p∗ ∪e

p! p∗ ∩e
,

where e ∈ H2(M ;Z) denotes the Euler class of the circle bundle. From the exactness
of the bottom row we obtain 〈e, k · [S]〉 = 〈e, p∗σ〉 = 0. Therefore restricting the bundle
W to S gives the trivial circle bundle and we can lift k copies of S to W . Denote the
embedded surface consisting of these k copies by Σk.

Note that the equality p∗[Σk] − p∗σ = 0 holds and by the exact sequence above
there exists a union of embedded loops γ ⊂ M such that σ = [Σk] + [p−1(γ)]. We
may assume that γ and the surface S intersect transversely. Furthermore, as the
surface S is connected we can cancel intersection points of opposite signs between S
and γ. Accordingly, we assume that the algebraic intersection number agrees with the
geometric one, i.e. the set of intersection points S ∩ γ has cardinality exactly |S · γ|.

We express the intersection number |σ · σ| as

|σ · σ| = 2 |[Σk] · [p−1(γ)]| = 2k |[S] · [γ]| = 2k (#S ∩ γ),

where #S ∩ γ denotes the cardinality of the set S ∩ γ. The surfaces Σk and p−1(γ)
intersect transversely in k ·(#S∩γ) points. Each of these intersections can be resolved
by removing two discs and gluing back an annulus. This procedure does not change the
fundamental class and so after resolving every intersection point we obtain a surface Σ
with fundamental class σ = [Σk] + [p−1(γ)].

The complexity χ− (Σ) can be calculated by keeping track of the Euler characteristic
throughout the construction of Σ:

χ− (Σ) = χ− (Σk) + χ−
(
p−1(γ)

)
+ 2k · (#S ∩ γ) = χ− (Σk) + |σ · σ|.

Recall that the surface Σ has fundamental class σ and we have the equality

χ− (Σ) = kχ− (S) + |σ · σ| = |σ · σ|+ ‖p∗σ‖T ,

which proves the claim.

Remark 5.22. McMullen [McM02, Section 4 & Proposition 6.1] showed that if M has a
sufficiently generic Alexander polynomial, then every class in H2(M ;Z) is connected.
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6 Determining the Thurston norm

In Chapter 4 we used twisted Reidemeister torsion to estimate the Thurston norm.
Note that we only used one dimensional representations and we had to go up to finite
covers to make them effective. In this chapter we focus on recovering the Thurston
norm from such estimates. Surprisingly, we will see that it is possible to recover it
completely.

The results of this chapter are also covered in the article [FN15b].

6.1 Representations of the fundamental group

Let K be a field and M an irreducible 3-manifold. We have defined a representation of
a group G to be a (K,Z[G])-bimodule which is finite-dimensional as a K-vector space.
In Section 4.2 we introduced twisted Reidemeister torsion. We tensored the cellular
complex with an M -acyclic representation and then took its torsion, see Definition
4.8. If the representation is defined over the field K(t) = Quot

(
K[t±1]

)
we can apply

the function width to the torsion of the twisted chain complex, see Definition 4.28
In Definition 4.27 we introduced the representation Kθ of π1(M) for a cohomology

class θ ∈ H1(M ;Z). We have also seen that we can transform a representation V over
K of π1(M) to a representation

Vθ := Kθ ⊗K V

of π1(M) over K(t) by letting π1(M) act diagonally. The theorem below is a general-
isation of Lemma 4.30.

Theorem 6.1 (Friedl-Kim). Let M be an irreducible 3-manifold which is not diffeo-
morphic to D2 × S1. Let θ ∈ H1(M ;Z) be a cohomology class and V an M -acyclic
representation over K.

Then the Thurston norm ‖θ‖T is bounded by the inequality

dimV ‖θ‖T ≥ width τ(M ;Vθ).

Proof. See [FK06, Theorem 1.1].

Naturally we are interested in finding representations such that the above inequal-
ity is sharp. McMullen [McM02] considered this question for many examples. For a
hyperbolic knot K numerical evidence suggests that a lift of the holonomy represen-
tation π1(N(K)) → SL (2,C) detects the Thurston norm [DFJ12, Conjecture 1.7] in
the following sense:
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Definition 6.2. A representation V detects the Thurston norm of the cohomology
class θ ∈ H1(M ;Z) if the equality ‖θ‖T = 0 holds, or Vθ is M -acyclic and the Thurston
norm satisfies the equality

dimV ‖θ‖T = width τ(M ;Vθ).

Further properties of representations are defined below. They are especially of
interest for algorithmic considerations. Given a representation V of a group H and a
group homomorphism φ : G→ H, we can let G act on V through this homomorphism
and so obtain a representation resφ V of G.

Definition 6.3. 1. A representation V of G over C is integral if there exists a
(Z,Z[G])-bimodule W such that V ∼= C⊗Z W .

2. A representation V of G factors through a finite group if there is finite group H,
a homomorphism φ : G→ H and representation W of H such that V ∼= resφW .

6.2 Induced representations

We have seen that many irreducible 3-manifolds N have a finite cover π : M → N
which much simpler than the original manifold N . For example, if N has a virtually
RFRS fundamental group, then it is covered by a manifold M which fibres, see Section
4.6. For graph manifolds we have discussed various simplifications in Chapter 2. We
discuss how one can obtain a representation of π1(N) from a representation of π1(M).
Furthermore, we will see that the properties introduced above will be preserved.

Let us fix an irreducible 3-manifold N and a finite cover p : M → N of degree d.
Also we pick left coset representatives g1, . . . , gd, so

⋃
i π1(M)gi = π1(N).

Definition 6.4. Let V be a representation of π1(M). The induced representation
indπ1(N) V is the representation V ⊗Z[π1(M)] Z[π1(N)].

Remark 6.5. The induced representation indπ1(N) V is also finite dimensional. If V
has a basis {vi}, then {vi⊗gj} is a basis of indπ1(N) V . Therefore, we have the equality

d · dimV = dim
(
indπ1(N) V

)
.

We have introduced the properties of being integral and of factoring through a
finite group in Definition 6.3. The lemma below shows that these two properties are
preserved under inducing representations.

Lemma 6.6. 1. If V is integral, then so is indπ1(N) V .

2. If V factors through a finite group, the so does indπ1(N) V .

Proof. If V is integral, then there is a representation W with V ∼= C ⊗W . There is
an isomorphism

V ⊗Z[π1(M)] Z[π1(N)] ∼= C⊗
(
W ⊗Z[π1(M)] Z[π1(N)]

)
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and so indπ1(N) V is integral.
Suppose V factors through a finite group. There exists a finite group H, a ho-

momorphism φ : π1(M) → H and a representation W of H with V ∼= resφW . We
consider the induced representation

indπ1(N) V ∼= resφW ⊗Z[π1(M)] Z[π1(N)].

A representation factors through a finite group if and only if the orbit of every vector
is finite. Recall that we have picked left coset representatives gi of the group extension
π1(M) ⊂ π1(N). The orbit of every vector is finite as the pure tensors w⊗ g have the
finite orbit

{w · h⊗ gi : h ∈ π1(M)}.

The main reason for us to consider induced representations is that they inherit the
property of detecting the Thurston norm.

Proposition 6.7. Let p : M → N be a finite cover of degree d. Let V be a represen-
tation which detects the Thurston norm of the class p∗θ ∈ H1(M ;Z). Then indπ1(N) V
detects the Thurston norm of θ.

Proof. First note that we have the equalities

(indπ1(N) V )θ = K(t)⊗K (V ⊗Z[π1(M)] Z[π1(N)]) = indπ1(N) Vp∗θ.

Furthermore, the map below is an isomorphism of chain complexes:

indπ1(N) V ⊗Z[π1(N)] C(N)→ V ⊗Z[π1(M)] C(M)

(v ⊗ g)⊗ e 7→ v ⊗ g · e.

By assumption V is M -acyclic, i.e. the chain complex V ⊗C(M) is acyclic. Therefore
also indπ1(N) V is N -acyclic. The representation V detects the Thurston norm, so

dimV · ‖p∗θ‖T = width τ(M ;Vp∗θ).

We construct a fundamental family for M from a fundamental family of N . Let
{ẽ} be a collection of lifts of k-cells, then {gi · ẽ} are lifts of the k-cells of M . We
can translate the characteristic maps in the same way. Let {vi} be a basis for V . If
we choose {vi ⊗ gj} as a basis for the representation indπ1(N) Vp∗θ, then the above
isomorphism Vp∗θ ⊗ C(M) ∼= indπ1(N) Vp∗θ ⊗ C(N) preserves the basis. Therefore we
obtain the equality width τ(M ;Vp∗θ) = width τ(N ; indZ[π1(N)] Vp∗θ).

By Theorem 3.5 we have the equality ‖p∗θ‖T = d‖θ‖T , where d is the degree of the
cover π : M → N . We put the results together and obtain the equalities

dim
(
indπ1(N) V

)
‖θ‖T = dimV ‖p∗θ‖T = width τ(M ;Vp∗θ)

= width τ(N ; (indZ[π1(N)] V )θ).
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6.3 Detecting the Thurston norm

We proceed with the proof of the following theorem. Note that we give a construction
of the representations whose existence is claimed.

Theorem 6.8. Let M be an irreducible 3-manifold which is not diffeomorphic to
D2 × S1. Let θ ∈ H1(M ;Z) be a cohomology class. Then both statements hold:

1. There is an integral representation V defined over the complex numbers factoring
through a finite group which detects the Thurston norm of θ.

2. For all but finitely many primes p, there is a representation V over the finite
field Fp which detects the Thurston norm of θ.

Proof. See Theorem 6.14 and Theorem 6.16 below.

Remark 6.9. Friedl-Vidussi describe an algorithm to compute the Thurston norm
using twisted Reidemeister torsion [FV12, Section 6]. Essentially it runs through all
representations and compares the obtained lower estimates with surfaces constructed
by normal surface theory. Although this approach seems inefficient, in practice this is
a very good way to calculate the Thurston norm algorithmically.

By Theorem 6.8 we can restrict ourselves to computations over a finite field. This
accelerates computations and lowers space complexity significantly.

We already made contact with some representations. For example, the representa-
tion below was important for many of the considerations in Chapter 4.

Example 6.10. Let M be a composite graph manifold with a Seifert non-vanishing
character α : M → Z/kZ. The representation Cα detects the Thurston norm of every
class θ ∈ H1(M ;Z), see Corollary 4.35. Unfortunately, the representation is in general
not integral.

First we focus on graph manifolds. Let M be a graph manifold with a composite
graph structure and a Seifert non-vanishing character α : π1(M) → Z/kZ. Let V be
a representation of π1(N) such that the linear map (tB − 1)V is invertible for every
Seifert fibre tB of every block B. For these representations the twisted Reidemeister
torsion of M can be calculated directly from the blocks without taking the gluing
maps into account, see Theorem 4.34. We can construct various examples of these
representations by restricting along the Seifert non-vanishing character α.

Definition 6.11. Let R[G] denote the group ring of a group G over a commuta-
tive ring R. The augmentation ideal aug (R[G]) is the kernel of the augmentation
homomorphism

R[G]→ R∑
g∈G

agg 7→
∑
g∈G

ag.
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Lemma 6.12. Let p ∈ N be a prime number and n a natural number, which is coprime
to p. Let K be either a field of characteristic 0 or the field Fp of characteristic p. The
(K,Z[Z/nZ])-bimodule V := aug (K[Z/nZ]) has the property that (1−h)V is invertible
for all units h ∈ Z/nZ.

Proof. We check that the kernel of (1 − h)V is the trivial vector space. Let the vec-
tor v =

∑
g∈Z/nZ agg ∈ V be in the kernel. We have the equalities

ae = ah = ah2 = . . . ahk = . . . .

As h generates Z/nZ we obtain ae = ag for all g ∈ Z/nZ.

If K has characteristic 0, then we have ae = 0 and so v = 0. On the other hand
if K = Fp, then we apply the augmentation map to v and obtain that the equality
n · ae = 0 holds in Fp. As n and p are coprime, this implies ae = 0 and so v = 0.

Proposition 6.13. Let M be a composite graph manifold with Seifert non-vanishing
character α : M → Z/kZ. Let K be either a field of characteristic 0 or the field Fp
with prime characteristic p which is coprime to k.

Then the representation V := resα aug (K[Z/kZ]) detects the Thurston norm of every
class θ ∈ H1(M ;Z).

Proof. By Theorem 4.34 we know that Vθ is M -acyclic and has twisted Reidemeister
torsion

τ(M ;Vθ) =
∏

B∈V (M)

(det(tB − 1)Vθ)
−χ(ΣB) .

The determinant on the tensor product can be calculated as follows:

det(tB − 1)Vθ = det(tB − 1)V · (det(tB − 1)Kθ)
dimV

We deduce the equality using width det(tB−1)Vθ = dimV · |〈θ, [ΣB]〉|. As in the proof
of Theorem 4.36, we express the width of τ(M ;Vθ) as

width τ(M ;Vθ) =
∑

B∈V (M)

(dimV ) |〈θ, [ΣB]〉|

= (dimV )
∑

B∈V (M)

‖i∗Bθ‖T = (dimV )‖θ‖T .

We complete the discussion of graph manifolds with the following theorem:

Theorem 6.14. Let N be a graph manifold which is not diffeomorphic to D2 × S1.
Let θ ∈ H1(N ;Z) be a cohomology class. Then both statements hold:

1. There is an integral representation V defined over the complex numbers factoring
through a finite group which detects the Thurston norm of θ.
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2. For all but finitely many primes p, there is a representation V over the finite
field Fp which detects the Thurston norm θ.

Proof. SupposeN is a graph manifold which is covered by a graph manifold π : M → N
with a composite graph structure and a Seifert non-vanishing character α : π1(M) →
Z/kZ with k prime. Pick any prime number p coprime to k. On M the representation
V := resα aug (C[Z/kZ]) and W := resα aug (Fp[Z/kZ]) detect the Thurston norm of
π∗θ by Proposition 6.13. The representation V is an integral representation, and W
is defined over Fp. Both factor through a finite group.

By Proposition 6.7 the Thurston norm of θ is detected by the representations
indπ1(N) V and indπ1(N)W . Using Lemma 6.6 we see that the induced representa-
tions have the above properties as well.

Suppose N is covered by S3, a non-trivial circle bundle, or a torus bundle. By
the discussion in Chapter 3 their Thurston norms vanish. So by convention there is
nothing to show. These are all cases we had to consider by Theorem 2.19.

We conclude with a sketch of the case of aspherical 3-manifold with virtually RFRS
fundamental groups. Further references and more details can be found in the article
[FN15b].

Lemma 6.15. Let M be an irreducible 3-manifold with b1(M) ≥ 2. Let θ ∈ H1(M ;Z)
be a class such that ‖θ‖T = ‖θ‖A.

Then there exists an integral representation V defined over the complex numbers
factoring through a finite group which detects the Thurston norm of θ.

Sketch. We suppose that ‖θ‖T > 0. We denote the torsion subgroup of H1(M ;Z) by
T . Let ∆fr be the free Abelian torsion, see Section 4.4. We introduce names for the
coefficients:

∆fr =
∑

h∈H1(M ;Z)/T

ahh with ah ∈ Z.

Let Hθ denote the set of h ∈ H1(M ;Z)/T with ah 6= 0 and θ(h) maximal. The set Lθ
consists of h ∈ H1(M ;Z)/T with ah 6= 0 and θ(h) minimal. Furthermore, we make
the following abbreviations:

∆H :=
∑
h∈Hθ

ahh and ∆L :=
∑
h∈Lθ

ahh.

Fact. For a large enough prime q ≥ 2, the following holds: there is a group homomor-
phism α : H1(M ;Z)/T → Z/qZ such that every non-trivial character ρ : Z/qZ → C∗
has the property that

ρ ◦ α(∆H) 6= 0 and ρ ◦ α(∆L) 6= 0.

Pick such a q and α. From Lemma 4.19 we deduce that for every such character ρ
the representation Cρ◦α is M -acyclic and that width τ(M ;Cρ◦α) = ‖θ‖T .
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Fact. There exists a finite collection S of non-trivial characters ρ : Z/qZ → C∗ such
that there is an isomorphism of the Z/qZ-representations

C[Z/qZ] ∼=
∏
ρ∈S

Cρ.

Pick such a set S and denote the representation resαC[Z/qZ] by V . The proposition
follows from the equalities:

width τ(M ; resαC[Z/qZ]) =
∑
ρ∈S

width τ(M ;Cρ◦α) = dim (C[Z/qZ]) ‖θ‖T .

Theorem 6.16. Let N be an aspherical 3-manifold with virtually RFRS fundamental
group which is not diffeomorphic to D2×S1. Let θ ∈ H1(N ;Z) be a cohomology class.
Then both statements hold:

1. There is an integral representation V defined over the complex numbers factoring
through a finite group which detects the Thurston norm of θ.

2. For all but finitely many primes p, there is a representation V over the finite
field Fp which detects the Thurston norm θ.

We give a sketch and refer to the article [FN15b, Theorem 4.1] for more details.

Proof. By Theorem 4.44 there is a finite cover π : M → N such that ‖p∗θ‖T = ‖p∗θ‖A.
Applying the lemma above and Proposition 6.7, we obtain a representation V C fulfilling
the first statement. As the representation is integral there is a (Z,Z[π1(M)])-bimodule
V Z which has the property that V C ∼= C⊗Z V

Z.
By Lemma [FN15b, Lemma 4.5] for all but finitely many primes p, the representation

Fp ⊗Z V
Z is M -acyclic and fulfils the equality

width τ(M ;V C) = width τ(M ;Fp ⊗Z V
Z).
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7 Acyclic representations

In the chapters before we restricted ourselves exclusively to irreducible 3-manifolds.
One reason for this is that for defining twisted Reidemeister torsion on a 3-manifold M
we have to find an M -acyclic representation, see Definition 4.8. For most irreducible
3-manifolds we have seen in Chapter 6 that there is such a representation. Now we
proceed to characterise the compact 3-manifolds M which admit a unitary M -acyclic
representation. The characterisation can be found in Theorem 7.5.

We follow article [FN15a] and put it in context with rest of the thesis.

7.1 Characterisation

First, we introduce another property of a representation. It is weaker than factoring
through a finite group.

Definition 7.1. A representation V of π1(M) over C is unitary if there exists an inner
product on the C-vector space V which is preserved by the right action of π1(M).

Remark 7.2. Note that if a representation factors through a finite group, then it will
be a unitary representation.

Considering the remark above and Theorem 6.8, we immediately obtain the corollary
below. Non-trivial means that the representation is not the zero-dimensional vector
space.

Corollary 7.3. Let M be an irreducible 3-manifold with non-vanishing Thurston
norm. Then M admits a non-trivial unitary representation which is M -acyclic.

Recall that any 3-manifold is diffeomorphic to the connected sum of prime 3-
manifolds and the prime summands are unique, see [Kne29, p.257], [Mil62b, Theorem
1] and [AFW12, Section 1.1] for reference also in the case with non-empty boundary.

Furthermore, recall that prime oriented 3-manifolds are either irreducible or S1×S2

[Hem04, Lemma 3.13]. A 3-manifold M is called a rational homology sphere if its
rational homology groups are

Hk(M ;Q) = Hk(S
3;Q) =

{
Q for k = 0, 3

0 otherwise
.

Example 7.4. The group SO (4) acts on S3 ⊂ R4 through linear transformations.
Therefore, a discrete subgroup Γ ⊂ SO (4) which acts freely on S3 gives rise to a
manifold S3/Γ. These spherical manifolds are all rational homology spheres. But
note that not all rational homology spheres arise this way.
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The next theorem classifies which compact 3-manifold M admits a non-trivial uni-
tary and M -acyclic representation V .

Theorem 7.5. Let M be a 3-manifold not diffeomorphic to S3. Let M ∼= P1# . . .#Pk
be its prime decomposition. The following statements are equivalent:

1. There is a non-trivial unitary representation which is M -acyclic.

2. The boundary of M is toroidal (possibly empty). Furthermore, at most one of
the Pi is not a rational homology sphere.

7.2 Boundary

We will see in this section that if a 3-manifold M has boundary ∂M which is not
toroidal, then we are not able to make it acyclic using any non-trivial representation.

The next lemma gives a helpful obstruction. Recall that the Euler characteris-
tic χ(C) of a chain complex C over the complex numbers C is defined to be

χ(C) :=
∑
k

(−1)k dimCk.

Furthermore, this invariant can be expressed in terms of the dimension of the homology
groups by

χ(C) =
∑
k

(−1)k dim Hk(C).

For this equality it is essential that the cell complex C was defined over a field. For a
manifold M we abbreviate χ(V ⊗ C(M)) with χ(M ;V ).

Lemma 7.6. Let V be a representation of π1(M) over C. The Euler characteris-
tic χ(M ;V ) can also be expressed as

χ(M ;V ) = dimV · χ(M ;C) = dimV · χ(M) =
dimV · χ(∂M)

2
,

where C is the trivial representation of π1(M).

Proof. For the first equality, note that the following holds:

χ(V ⊗ C(M)) =
∑
k

(−1)k dimC Ck(M ;V )

= (dimV ) ·
∑
k

(−1)k dimC Ck(M ;C)

= dimV · χ(C⊗ C(M)).

The dimension dimC⊗Ck(M) is exactly the number of k-cells ofM . We immediately
obtain the second equality.
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The last equality follows from the equality χ(M) = 1
2χ(∂M). We see that this

equality holds in every 3-manifold M . As the Euler characteristic is multiplicative
with respect to finite covers, we may assume that M is orientable. By Poincaré
duality, we have dim Hk(M,∂M ;C) = dim H3−k(M ;C) for every 0 ≤ k ≤ 3. We write
χ(M,∂M) for the Euler characteristic of the chain complex C ⊗ C(M,∂M). From
Poincaré duality, we obtain the equation χ(M,∂M) = −χ(M). Considering the cells
of M , we also get

χ(M) = χ(M,∂M) + χ(∂M).

Combining the last two equalities, we have χ(M) = 1
2χ(∂M).

Proposition 7.7. Let M be a 3-manifold. If there is a non-trivial unitary represen-
tation which is M -acyclic, then ∂M is toroidal.

Proof. Assume the representation V is M -acyclic. By Lemma 7.2 we know that
χ(M) = χ(∂M) = 0. We pick a CW-structure for M . Let M̂ denote the 3-manifold
obtained by filling all spherical components of M . This operation does not change the
fundamental group.

By definition we have χ(∂M̂) ≤ 0. Also we may assume that ∂M̂ is non-empty.

This implies that the homology group H3(M̂ ;V ) = 0 vanishes. The 3-manifold M̂
inherits a CW-structure with the same k-cells for k ≤ 2. This yields an isomorphism
of the homology groups H1(M̂ ;V ) = H1(M ;V ) = 0. We obtain that

0 ≤
2∑
i=0

(−1)i dim Hi(M̂ ;V ) = dimV · χ(M̂).

By Lemma 7.2 we have χ(∂M̂) ≥ 0. Together with the bound above, we conclude

that the equality χ(∂M̂) = 0 holds, which ultimately implies that ∂M has to be
toroidal.

7.3 The proof

The proposition below is rather technical so we will refer to the article [FN15a, Propo-
sition 4.2] for full details.

Proposition 7.8. Let M ∼= N1#N2 be a connected sum decomposition of a given
3-manifold M . If M admits a unitary M -acyclic representation V , then either N1 or
N2 is a rational homology sphere.

Sketch. By definition there is a separating 2-sphere S2 ⊂ N1#N2 witnessing the con-
nect sum. We can find open neighbourhoods A,B covering the parts of the two
summands respectively and intersecting in a tubular neighbourhood A∩B of S2. The
Mayer-Vietoris sequence corresponding to this cover is

→ Hk(S
2;V )→ Hk(N1 \D3;V )⊕Hk(N1 \D3;V )→ Hk(M ;V )→
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For k = 0, 1 the groups Hk(Ni\D3;V ) only depend on the 2-skeleton ofNi. Therefore
we have the equality Hk(Ni \D3;V ) = Hk(Ni). The homology groups of S2 in these
low degrees are H0(S2;V ) = V and H1(S2;V ) = 0. From the exact sequence above we
see that one of the Ni has to fulfil dim H0(Ni;V ) ≥ dimV

2 . Suppose this holds for N1.

A more detailed but rather technical analysis of the exact sequences shows that N1

has to be a rational homology sphere [FN15a, Proposition 4.2]. Here we also use the
assumption that V is a unitary representation.

In Example 7.4 we have seen how to obtain rational homology spheres from S3 by
taking a finite quotient. In fact all 3-manifolds covered by S3 arise this way. If the
manifold is not covered trivially by S3, then we can find an acyclic representation.

Lemma 7.9. Let π : S3 →M be a non-trivial cover. Then there exists a representation
V which is M -acyclic.

Proof. Note that the deck transformations form a finite subgroup Γ ⊂ SO (4) such that
M ∼= S3/Γ. Again, we let SO (4) act by linear transformations on S3. We identify
π1(M) with Γ to obtain an action of π1(M) on R4. We complexify this representation
to a representation on V := C4.

As Γ acts freely and is non-trivial, every non-trivial element of the group Γ does
not fix any non-zero vector. For a non-trivial g ∈ Γ this implies that the linear map
Dg : V → V with Dg(v) := g · v− v has trivial kernel and thus is surjective. From this
and the following description

H0(M ;V ) ∼= V/〈g · v − v : g ∈ Γ, v ∈ V 〉 = 0,

we deduce that H0(M ;V ) = 0, see e.g. [FN15a, Lemma 2.5].

By the representation theory of finite groups, V is a direct summand of C[Γ].
This implies that for all k ∈ N the homology group Hk(M ;V ) is a summand of
Hk(M ;C[Γ]) = Hk(S

3;C). Therefore we also know that the equalities

H1(M ;V ) = H2(M ;V ) = 0

hold. The vanishing of the last group H3(M ;V ) follows from the fact that the Euler
characteristic vanishes: χ(M ;V ) = χ(M) = 0, see Lemma 7.6.

We have already seen many 3-manifolds where a representation exists which is M -
acyclic. By the proposition below this holds for all prime manifolds which are not the
3-sphere.

Proposition 7.10. Let M be a prime 3-manifold with toroidal boundary and M not
diffeomorphic to S3. Then there exists a non-trivial unitary representation V which is
M -acyclic.

Proof. First note that the proposition holds for all irreducible 3-manifolds with non-
zero Thurston norm by Theorem 6.8. As the case for the circle bundles D2 × S1 and
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S2 × S1 over D2 and S2 is clear, we can deduce the claim for circle bundles from
Lemma 4.37.

We are left to prove the claim for torus bundles. This follows from general arguments
of the twisted homology of fibred manifolds [FN15a, Proof of Proposition 4.6].

The last point we have to consider is that we can freely take connected sums with
rational homology spheres. This is the content of the next lemma.

Let V be a M -acyclic representation. The Seifert-van Kampen theorem gives us an
identification π1(M#S) ∼= π1(M)∗π1(S), where ∗ denotes the coproduct in groups. We
see that π1(M) is a quotient of π1(M#S) and that we can restrict the representation V
along this quotient map q : π1(M#S)→ π1(M). Denote this representation resq V by
V #.

Lemma 7.11. Let M be a 3-manifold with a M -acyclic representation V and S a
rational homology sphere. Then the representation V # constructed above is M#S-
acyclic.

Proof. Consider a connected sum M#S of a 3-manifold M and a rational homology
sphere S. Let D ⊂M be the 3-ball which is the attaching region in M for the 1-handle
of the connected sum and D′ the corresponding ball in S. There is a continuous map
q : M#S →M which collapses the summand S to a point and restrict to the identity
on M \D. Note that the following diagram is commutative:

π1(M#S) π1(M) ∗ π1(S)

π1(M)

SvK

π1(q)

.

This shows that the local coefficient systems V # and V over S2 and over M \D agree
and that V # is trivial over S. We have a morphism of the Mayer-Vietoris sequences

Hk(S
2;V #) Hk(M \D;V #)⊕Hk(S \D′;V #) Hk(M#S;V #)

Hk(S
2;V ) Hk(M \D;V )⊕Hk(D;V ) Hk(M ;V )

Id Id⊕q∗ q∗

.

We want to apply the five lemma to prove that the homomorphism q induces an
isomorphism Hk(M#S;V #) ∼= Hk(M ;V ) = 0. What is left to check is that the
homomorphism

q∗ : Hk(S \D′;V #)→ Hk(D;V )

is an isomorphism. The coefficient systems are in both cases trivial and all we have to
check is that Hk(S \D;C) = 0 for k ≥ 1. This is immediately deduced from the fact
that S is a rational homology sphere and so S \D is rational homology ball.
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