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1 Introduction

While, in the framework of the handbag approach, the role of the helicity
non-flip GPDs, H,E, H̃ and Ẽ, in deeply virtual Compton scattering and
in exclusive meson leptoproduction have intensively been studied during the
last fifteen years, the applications of the transversity or helicity-flip GPDs
are rare. Only a few publications on this issue can be found in the literature,
e.g. [1]-[8]. This is in sharp contrast to the situation of transversity in semi-
inclusive reactions where a rich literature exists, see for instance the review
articles [9, 10]. The reason for this fact is that, for the quark transversity
GPDs, the emitted and reabsorbed partons have opposite helicities. Since the
interactions of light quarks with gluons or photons conserve helicity, the ini-
tial parton helicity flip can only be compensated by higher-twist meson wave
functions. Therefore, the contribution from the quark transversity GPDs are
small in most cases and are difficult to separate from those of the helicity
non-flip GPDs. For the gluon transversity GPDs the situation is different
but it seems that their contributions are even smaller.

Leptoproduction of pseudoscalar mesons is an exception. On the one
hand, the contributions from H̃ and Ẽ are rather small in this case. On the
other hand, those from the transversity GPDs are comparably large since
their contributions are enhanced by the chiral condensate which appears in
the wave function for a (ground state) pseudoscalar meson [7]. This fact en-
tails the dominance of the amplitudes for the transitions from a transversely
polarized virtual photon to the pseudoscalar meson, γ∗

T → P . The asymptot-
ically leading amplitudes for the transitions from a longitudinally polarized
photon, γ∗

L → P , are much smaller according to the estimates made in [7, 8].
The only substantial contributions to these amplitudes are the meson-pole
terms as, for instance, the pion pole in π+ leptoproduction 3.

Here, in this work, we are going to investigate the role of the transversity
GPDs in vector-meson leptoproduction. We will utilize the parametriza-
tions of the helicity non-flip GPDs advocated for in [11] as well as those of
the valence-quark transversity GPDs used in our study of leptoproduction
of pseudoscalar mesons [7, 8]. In addition we will allow for sea-quark con-
tributions from these GPDs. As in [7, 8] we will not perform detailed fits

3The pion-pole contribution dominates the π+ cross section at small momentum trans-
fer as is well-known. However, this result cannot be considered as a success of the handbag
approach. A calculation of the π+ cross section from LO Feynman graphs (see Fig. 1)
underestimates it markedly.
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to experimental data. In so far the results we will present below are to be
understood as estimates. A more exact determination of the transversity
GPDs is to be left for future investigations. Prerequisite to such an analysis
are data on, say, the π0 cross section at reasonably large photon virtuality,
Q2, and large c.m.s. energy, W . Such data may come from the COMPASS
experiment or the upgraded Jefferson Lab.

The plan of the paper is the following: In the next section we will outline
the handbag approach, referring to our previous work [7, 8, 11, 12] and
giving only details for the treatment of the contributions from the transversity
GPDs. In this section we will also discuss the calculation of the subprocess
amplitude for quark helicity flip and present the parametrizations of the
GPDs. In Sect. 3 we will present our results for those observables of vector-
meson leptoproduction which are sensitive to the transversity GPDs. The
paper is closed with a summary.

2 The handbag approach

We consider the process γ∗(q, µ) p(p, ν) → V (q′, µ′) p(p′, ν ′) in the generalized
Bjorken-regime of large Q2 and large W but fixed Bjorken-x, xBj. The sym-
bols in the brackets denote the momenta and the helicities of the particles.
The square of the momentum transfer, ∆ = p′ − p, is assumed to be much
smaller than Q2 (t = ∆2). We also restrict ourselves to small values of xBj,
i.e. to values of skewness,

ξ =
(p− p′)+

(p+ p′)+
≃ xBj

2− xBj
(1 +m2

V /Q
2) , (1)

smaller than about 0.1 (mV denotes the mass of the vector meson V ). We
stress that throughout the paper we neglect terms which are suppressed as√
−t/Q or stronger. We will work in a photon-proton center-of-mass system

where the proton momenta are defined as p = p̄ − ∆/2 and p′ = p̄ + ∆/2.
The average proton momentum is p̄ = (p + p′)/2 and we choose its three-
momentum part to point along the 3-axis.

As described in detail in [11, 12] a helicity amplitude Mµν′,µν is assumed
to factorize in a hard subprocess amplitude Hµλ,µλ (where λ is the helicity
of the internal partons, quarks or gluons) and a soft proton matrix element,
parametrized in terms of GPDs, see Fig. 1. Since the partons which are
emitted and reabsorbed from the proton collinearly to its initial and final
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Figure 1: A typical graph for meson leptoproduction. The helicity labels
refer to the amplitude M0−,++ and to the subprocess γ∗q → (qq̄)q.

state momentum, have the same helicity in this subprocess amplitude the
GPDs H and E appear in the convolution. There are, however, also small,
nearly negligible contributions from H̃ and Ẽ to the µ = ±1 amplitudes.

The subprocess amplitudes are calculated within the modified perturba-
tive approach [13] in which quark transverse degrees of freedom in the sub-
process as well as Sudakov suppressions are taken into account. This entails
the necessity to use a light-cone wave function for the meson instead of a dis-
tribution amplitude. In the limit of Q2,W → ∞ the subprocess amplitudes
for transitions from a longitudinally polarized photon to a likewise polarized
vector meson, γ∗

L → VL , can be shown to turn into the collinear result, i.e. the
familiar asymptotic factorization formula emerges for the amplitude M0ν′,0ν .
The factorization of M0ν′,0ν has rigorously been proven to hold in the limit
of Q2,W → ∞[14, 15]. The infrared singularities known to occur in the sub-
process amplitudes for transversely polarized photons and mesons HV

±λ,±λ in
collinear approximation, are regularized by the quark transverse momentum,
k⊥, in the modified perturbative approach. (Note that explicit helicities are
labeled by their signs or by zero.) The γ∗

T → VT amplitudes are therefore

suppressed by
√
〈k2

⊥〉/Q with respect to those for γ∗
L → VL transitions 4. For

further details of the handbag approach we refer to [11, 12].
The role of the transversity GPDs [1, 17] HT , ĒT = 2H̃T + ET , . . .

in exclusive leptoproduction of pseudoscalar mesons has been investigated
in [7, 8]. Since for these GPDs the emitted and reabsorbed partons have
opposite helicities they only contribute to the amplitudes for transversely
polarized photons to the order of accuracy we are working. As discussed in

4For a different treatment of γ∗
T
→ V

T
transitions see [16].
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[7, 8] the contributions from the transversity GPDs seem to be dominant in
most of the pseudoscalar channels. For instance, the transverse cross section
for π0 production is estimated in [8] to be about 10 times larger than the
longitudinal cross section which seems to be in agreement with experiment
[18, 19].

Here, in this work we are going to explore the role of the transversity
GPDs in vector-meson leptoproduction. In full analogy to the case of pseu-
doscalar mesons the quark transversity GPDs contribute to the amplitudes
MV

0ν′,±ν for γ∗
T → VL transitions:

MV
0+,++ =

e0
2

√
−t′

2m

∑

a

eaCa
V

∫
dx
∑

λ

[
2λHV

0λ,+−λ (Ē
a
T − ξẼa

T )

+ HV
0λ,+−λ (Ẽ

a
T − ξEa

T )
]
,

MV
0+,−+ = −e0

2

√
−t′

2m

∑

a

eaCa
V

∫
dx
∑

λ

[
2λHV

0λ,+−λ (Ē
a
T − ξẼa

T )

− HV
0λ,+−λ (Ẽ

a
T − ξEa

T )
]
,

M0−,++ = e0
√
1− ξ2

∑

a

eaCa
V

∫
dx
[
HV

0−++(HT +
ξ

1− ξ2
(Ẽa

T − ξEa
T ))

+
t′

2m2

∑

λ

λHV
0λ,+−λ H̃

a
T

]
,

MV
0−,−+ = e0

√
1− ξ2

∑

a

eaCa
V

∫
dx
[
HV

0−−+(H
a
T +

ξ

1− ξ2
(Ẽa

T − ξEa
T )

− t′

2m2

∑

λ

λHV
0λ,+−λ) H̃

a
T

]
. (2)

As independent amplitudes we choose those with ν = 1/2. The amplitudes
with ν = −1/2 are related to the other ones by parity conservation 5:

MV
−µ′−ν′,−µ−ν = (−1)µ−ν−µ′+ν′MV

µ′ν′,µν . (3)

Since we neglect contributions which are suppressed at least by
√
−t/Q,

only helicity-non-flip subprocess amplitudes can appear in the convolutions
(2). For quark helicity-flip the only subprocess amplitude of this type is
HV

0−,++(= HV
0+,−−) and, hence, only the γ∗

T → VL transitions are fed by the

5This relation holds analogously for the subprocess amplitudes.
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transversity GPDs to the order of accuracy we are working. The expressions
(2) can easily be derived with the help of the proton-quark matrix elements
given in [17]. In (2) m is the proton mass, a denotes the quark flavor and ea
the quark charges in units of the positron charge, e0. For unflavored mesons
the non-zero flavor weight factors, Ca

V , read

Cu
ρ0 = −Cd

ρ0 = Cu
ω = Cd

ω = 1/
√
2 , Cs

φ = 1 . (4)

For the flavored mesons, ρ+ andK∗0, the p → n and p → Σ+ transition GPDs
appear. As a consequence of isospin symmetry or SU(3) flavor symmetry the
transition GPDs can be related to the corresponding proton GPDs [20] 6

Kρ+ = Ku −Kd , KK∗0

= −Kd +Ks , (5)

where K is some GPD. For these mesons there are no flavor weight factors
and the charges have to be absorbed into the subprocess amplitudes. Finally,
t′ = t− t0 where

t0 = −4m2 ξ2

1− ξ2
(6)

is the minimal value of −t allowed in the process in question. Since we only
consider small values of the skewness −t0 is very small and the difference
between t′ and t is tiny.

An interesting property of the helicity amplitudes can be inferred from
(2). With the help of parity conservation one sees that part of the amplitudes
(2) behave like those for the exchange of a particle with either natural (N)
or unnatural parity (U)

MV N
−µ′ν′,−µν = (−1)µ

′−µMV N
µ′ν′,µν ,

MV U
−µ′ν′,−µν = −(−1)µ

′−µMV U
µ′ν′,µν . (7)

Thus, the combinations ĒT − ξẼ and H̃T behave like natural parity ex-
change while ẼT − ξET behaves like unnatural parity. Remarkably, the pro-
ton helicity-flip amplitudes in (2) cannot be splitted in natural and unnatural
parity contributions completely. Such a behavior of the amplitude M0−,++ is
known to hold for photoproduction of pions since the late sixties [21] and was
the reason for the introduction of Regge cuts. According to [7] the GPDs H

6The different masses of the nucleon and the hyperon are taken into account as in [31].
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(H̃) and E (Ẽ) also behave like (un)natural parity exchange. The γ∗
T → VT

amplitudes can therefore be written as

MV
+±,++ = MV N

+±,++ +MV U
+±,++ . (8)

Other γ∗
T → VT amplitudes are related to these amplitudes either by the

symmetry (7) or by parity invariance. The amplitude MV U
+−,++ is fed by the

ξẼ [12]. Since we are interested in small skewness and since it is no reason
known why Ẽ could be larger than the other GPDs (with the exception
of the pion-pole contribution which is however irrelevant for vector-meson
production) we neglect MV U

+−,++.

With regard to the fact that the GPD ẼT is antisymmetric in ξ: ẼT (ξ) =
−ẼT (−ξ), we neglect ẼT and ET in (2) for small skewness. Moreover, we
also neglect the amplitude HV

0−,−+ in (2) since it proportional to t/Q2 due
to angular momentum conservation in contrast to the helicity non-flip am-
plitude HV

0−,++ which is not forced to vanish for forward scattering by this

conservation law. Finally, we disregard the GPD H̃T in (2) by the admittedly
weak argument that its contribution is proportional to t/(4m2). Taking all
these simplifications into account the amplitudes given in (2) reduce to

MV
0−,++ = e0

∑

a

eaCa
V

∫
dxHV

0−,++(x, ξ, Q
2, t = 0)Ha

T (x, ξ, t) ,

MV
0+,±+ = ∓e0

√
−t′

4m

∑

a

eaCa
V

∫
dxHV

0−,++(x, ξ, Q
2, t = 0)Ēa

T (x, ξ, t) ,

MV
0−,−+ = 0 . (9)

Although the transversity GPDs are leading twist, the amplitudes given in (2)
and (9) are of twist-3 nature. Quark and antiquark forming the valence Fock
state of the longitudinally polarized vector meson have the same helicity in
HV

0−,++, see Fig. 1. This necessitates the use of twist-3 meson wave functions
which will be discussed in Sect. 2.1.

We repeat that (9) only refers to the quark transversity GPDs. The con-
tributions from their gluonic partners require the non-flip subprocess ampli-
tude HV

−−,++, i.e. the amplitude with gluon as well as photon-meson helicity
flip (all helicities are either plus or minus 1). The convolutions of HV

−−,++

and the gluonic transversity GPDs determine the γ∗
T → V−T amplitudes

MV
∓ν′,±ν. As is well-known from the SDMEs for ρ0 and φ production (e.g.

r111) measured for instance by HERMES [22] and H1 [23], these amplitudes
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are very small, compatible with zero within errors and usually neglected in
analyses of vector-meson leptoproduction 7. We will do so here as well. Small
γ∗
T → V−T amplitudes are consistent with the assumption of small gluonic

transversity GPDs. This assumption is not in conflict with rather large quark
transversity GPDs since the quark and gluon transversity GPDs evolve in-
dependently with the scale [1, 24]. The amplitudes for γ∗

L → VT transitions
will be neglected too. They are experimentally small [22, 23] and strongly
suppressed in the handbag approach.

2.1 Calculation of the twist-3 subprocess amplitude

We begin with the discussion of the light-cone wave function for the valence
Fock component of a helicity-zero vector meson that moves along the 3-
direction and for which quark and antiquark have the same helicity, see
Fig. 1. Obviously, this configuration requires one unit of orbital angular
momentum projection l3. Such a light-cone wave function has been given in
[25] recently

|V ; q′, µ′ = 0, |l3| = 1〉 =
1√
2

∫
dτd2k⊥

16π3
Ψ

(2)
V (τ, k2

⊥)
1

mV

√
τ τ̄

×
[
k−
⊥b

†
+(τ,k⊥)d

†
+(τ̄ ,−k⊥)

− k+
⊥b

†
−(τ,k⊥)d

†
−(τ̄ ,−k⊥)

]
| 0〉 , (10)

Color and flavor factors are omitted for convenience. The quark fields, b† and
d†, depend on the momentum fractions τ and τ̄ ≡ 1− τ of the meson’s mo-
mentum, q′, and on the quark transverse momentum, k⊥. The combinations
of its 1- and 2-components

k±
⊥ = k1

⊥ ± ik2
⊥ (11)

represent one unit of l3. Acting on the perturbative vacuum the quark fields
create quark and antiquark momentum eigenstates

| q′(τ,k⊥);λ〉 = b†qλ(τ,k⊥) | 0〉 ,
| q̄′(τ̄ ,−k⊥);λ〉 = d†qλ(τ̄ ,−k⊥) | 0〉 . (12)

7As shown in [1, 2] the gluon transversity GPDs contribute to the γ∗
T
→ γ−T

DVCS
amplitudes to NLO.
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It has been shown in [25] that the wave function (10) has the correct behavior
under the parity operation for a helicity-zero ρ meson. In contrast to [25]
we divide by the meson mass in order to have a scalar wave function Ψ(2) of
the same dimension as the wave function Ψ(1) appearing in the expression
for the usual l3 = 0 Fock component of the vector meson

|V ; q′, µ′ = 0, lz = 0〉 =
1√
2

∫ dτd2k⊥

16π3
Ψ

(1)
V (τ, k2

⊥)
1√
τ τ̄

×
[
b†+(τ,k⊥)d

†
−(τ̄ ,−k⊥)

+ b†−(τ,k⊥)d
†
+(τ̄ ,−k⊥)

]
| 0〉 . (13)

The states (10) and (13) respect covariant particle state normalization. Hence,
the probabilities of the | l3 |= 1 and 0 Fock components are given by

∫
dτd2k⊥

16π3

k2
⊥

m2
V

| Ψ(2)
V (τ, k2

⊥) |2 = P|l3|=1 ,

∫
dτd2k⊥

16π3
| Ψ(1)

V (τ, k2
⊥) |2 = Pl3=0 , (14)

with P|l3|=1 + Pl3=0 ≤ 1. The spin part of (10) is equivalent to the following
expression

Γ|l3|=1 =
1√
2mV

[
q/′k/+mV k/−

k2
⊥

2τ τ̄
+ k2

⊥

τ̄ − τ

2τ τ̄mV
q/′ +O(k3

⊥)
]
. (15)

for an incoming vector meson. The 4-vector k is defined as

k = [0, 0,k⊥] , (16)

in light-cone coordinates. This spin wave function can be transformed to the
frame we are working by a transverse boost. The equivalence of (15) and the
spin part of (10) can readily be derived. Representing the parton states in
(10) by Dirac spinors in the rest frame, one sees

k−
⊥u+(0)v̄+(0)− k+

⊥u−(0)v̄−(0) =
1

2
(1 + γ0)k/ . (17)

A boost of this expression to the frame where the meson moves rapidly along
the 3-axis leads to

k−
⊥u+(τ,k⊥)v̄+(τ̄ ,−k⊥) − k+

⊥u−(τ,k⊥)v̄−(τ̄ ,−k⊥)

∼ (p/1 +m1)(q/
′ +mV )k/(−p/2 +m2) (18)

9



with the quark and antiquark momenta being defined as

p1 = [τq′+,
τ 2m2

V + k2
⊥

2τq′+
,k⊥] , p2 = [τ̄ q′+,

τ̄ 2m2
V + k2

⊥

2τ̄ q′+
,−k⊥] . (19)

The quark and antiquark masses are taken as m1 = τmV and m2 = τ̄mV .
This guarantees that q′ = p1 + p2 up to corrections of order k2

⊥. From (18)
one easily derives (15).

By counting the numbers of γ matrices in the Feynman expression for
this amplitude (including the two from the proton matrix element for parton
helicity flip) one sees that only the first and the third term of the spin wave
function (15) contribute to the parton helicity-flip amplitude. The first term,
q/′k/, leads to a contribution of order t/Q2 and is consequently neglected.
Hence, the subprocess amplitude HV

0−,++ is generated by the third term.
Performing the LO calculation of HV

0−,++ from that term and the set of
Feynman graphs of which an example is shown in Fig. 1, we obtain

HV
0−++ = 32π

mV ξ

Q2

CF√
Nc

∫
dτ
∫ dk2

⊥

16π2

k2
⊥

2τ τ̄m2
V

Ψ
(2)
V (τ, k2

⊥)

× αs(µr)

(
1

x− ξ + iǫ

1

τ̄ (x− ξ)− 2ξk2
⊥/Q

2 + iǫ

+
1

x+ ξ − iǫ

1

τ(x+ ξ) + 2ξk2
⊥/Q

2 − iǫ

)
. (20)

The number of colors is denoted by Nc, CF = 4/3 and µR is an appropri-
ate renormalization scale (see below). Eq. (20) holds for unflavored vector
mesons. As we already mentioned for flavored mesons built up by a quark qa
and an antiquark q̄b, the corresponding quark charges ea and eb multiply the
first and second term of (20), respectively. Following [13] we only retain k2

⊥

in the denominators of the parton propagators. There the parton transverse
momentum plays a decisive role since it competes with terms ∝ τ(τ̄ )Q2 which
become small in the end-point regions where either τ or τ̄ tends to zero.

The distribution amplitude associated with the third term of the wave
function (15), reads

∫
dk2

⊥

16π2

k2
⊥

2τ τ̄m2
V

Ψ
(2)
V (τ, k2

⊥) =
fT
V

2
√
2Nc

h
(s)
‖V (τ) . (21)

According to [26], the twist-3 chiral-odd distribution amplitude h
(s)
‖ is defined

10



by the meson-vacuum matrix element 8

〈0|q̄(z)q(−z)|V ; q′, µ′ = 0〉 (22)

(a path-ordered gauge factor along the straight line connecting the points z
and −z is understood). This distribution amplitude comes along with the
tensor decay constant fT

V of the vector meson. The latter depends on the
factorization scale µF to be specified below

fT
V (µF ) = fT

V (µ0)

(
αs(µF )

αs(µ0)

)4/27

. (23)

For the tensor decay constant we use the QCD sum rule estimate give in [27].
According to this work it amounts to about 0.8 times the usual decay constant
of a longitudinally polarized l3 = 0 vector meson at the scale µ0 = 1 GeV.
As a consequence of the nature of the wave function Ψ

(2)
V the subprocess

amplitude HV
0−,++ is of twist-3 accuracy and is parametrically suppressed by

mV /Q as compared to the leading-twist amplitudes HV
0+,0+.

In the modified perturbative approach we are using, the amplitude (20)
is Fourier transformed from the k⊥-space to the canonically conjugated im-
pact parameter space b, for details see [11]. The obtained b-space expression
is multiplied with the Sudakov factor, exp [−S(τ,b, Q2)], representing gluon
radiation calculated to next-to-leading-log accuracy using resummation tech-
niques and having recourse to the renormalization group [13]. The impact
parameter b which is the quark-antiquark separation, acts as an infrared
cut-off. Radiative gluons with wave lengths between the infrared cut-off and
a lower limit (related to the hard scale Q2) yield suppression; softer gluons
are part of the meson wave function, while harder ones are an explicit part
of the subprocess amplitude. Consequently, the factorization scale is given
by the quark-antiquark separation µF = 1/b. The renormalization scale, µR,
is taken to be the largest mass scale appearing in the subprocess amplitude,
i.e. µR = max(τQ, τ̄Q, 1/b). For ΛQCD a value of 220 MeV is used in the
Sudakov factor and in the evaluation of αs from the one-loop expression.

2.2 Parametrization of the GPDs

In order to evaluate the convolutions in (9) and the analogous ones for the
other amplitudes we need the GPDs. We adopt for them the parametrizations

8A second twist-3 helicity-flip distribution amplitude, h
(t)
‖V , [26] is associated with the

q/′k/ -term of the |l3| = 1 wave function.
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proposed in our previous work [7, 8, 11]. The GPDs are constructed from
the zero-skewness GPDs with the help of the double distribution ansatz [28]

Ki(x, ξ, t) =
∫ 1

−1
dρ

∫ 1−|ρ|

−1+|ρ|
dηδ(ρ+ ξη − x)Ki(ρ, ξ = 0, t)wi(ρ, η) , (24)

whereK is a GPD and i stands for gluon, sea or valence quarks. A possible D
term [29] is neglected. For the weight function w that generates the skewness
dependence we use [30]

wi(ρ, η) =
Γ(2ni + 2)

22ni+1Γ2(ni + 1)

[(1− | ρ |)2 − η2]ni

(1− | ρ |)2ni+1
. (25)

For the parameter ni a value of 2 is taken for the gluon and sea-quark he-
licity non-flip GPDs and 1 in all other cases. The zero-skewness GPDs are
parametrized as

Ki(ρ, ξ = 0, t) = ki(ρ) exp [tpki(ρ)] , (26)

where ki is the forward (t = 0) limit of the zero-skewness GPD which for H ,
H̃ andHT are the unpolarized, polarized and transversity PDFs, respectively.
For the other GPDs the forward limits are parametrized like the PDFs

ki(ρ) = Nkiρ
−αki(1− ρ)βki . (27)

The profile function pki in (26) is parametrized in a Regge-like manner

pki(ρ) = −α′
ki ln (ρ) + bki , (28)

where α′
ki represents the slope of a Regge trajectory and bki parametrizes the

t dependence of its residue.
The best determined GPD is H since it controls the cross sections for lep-

toproduction of flavor-neutral vector mesons. The values of the parameters
which specify H , are obtained from fits to the cross section data at small
skewness and can be found in [11]. The GPDs H̃ and Ẽ play no role in the
observables we are going to discuss below. The GPD E for valence quarks,
on the other hand, is of importance for some of the observables of interest.
The values of its parameters are given in [11, 31]. This parametrization of
E for valence quarks at zero skewness is in agreement with the findings of
an analysis of the nucleon form factors in terms of GPDs [32]. According to
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this analysis the second moments of E for u and d valence quarks at t = 0
have about the same magnitude but opposite sign. Due to a sum rule for
the second moments of E at ξ = t = 0 [33, 34] the respective moments
for the gluon and sea quarks cancel each other to a large extent. Since, for
our parametrization, the zero-skewness GPDs have no nodes except at the
end points x = 0 and 1, this cancellation approximately happens for other
moments too. It even approximately occurs for the convolutions with the
subprocess amplitudes. For this reason we do not consider E for gluons and
sea quarks in this work. In passing we note that the set of helicity non-flip
GPDs proposed in [11, 31] has been examined in a calculation of DVCS to
leading-twist accuracy and leading-order of perturbative QCD [35]. The re-
sults are found to be in satisfactory agreement with all small skewness data.
Recently the form factor analysis from 2004 [32] has been updated [36]. All
the new data on the nucleon form factors are taken into account in the up-
date as well as more recent parton distributions [37]. The zero-skewness
valence-quark GPDs H and E obtained in this analysis do not differ much
from those proposed in the 2004 analysis at low −t. We checked that the use
of these new valence-quark GPDs do not alter our results perceptibly.

The only available small-skewness data which provide clear evidence for
strong contributions from transversely polarized virtual photons and there-
fore information on the transversity GPDs, are the π+ electroproduction cross
section [38] and the asymmetries measured with a transversely polarized tar-
get [39]. However the π+ data provide only information on the combination
Hu

T−Hd
T . The forward limit ofHT is the transversity distribution, δ(x), which

has been determined by Anselmino et al. [40] in an analysis of the data on the
azimuthal asymmetry in semi-inclusive deep inelastic lepton-nucleon scatter-
ing and in inclusive two-hadron production in electron-positron annihilation.
The moments of the transversity distributions proposed in [40], i.e. the low-
est moments of HT at t′ = 0, are about 40% smaller than a lattice QCD
result [41], they are also substantially smaller than model results (cf. [40]
and references therein). Also the analysis of π0 leptoproduction performed
in [8], suggest larger moments of HT . In order to surmount this difficulty we
leave unchanged the parametrization of the transversity distributions given
in [40, 8] but adjust their normalizations to the lattice QCD moments of
[41]. The other transversity GPD, ĒT , is only constrained by lattice QCD
results [42], its contribution to π+ production is very small. The values of
the parameters for the valence quark GPDs HT and ĒT proposed in [8], are
quoted in Tab. 1. Given the uncertainties of the present lattice QCD results
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[43] we consider these parametrizations as rough estimates which only allow
explorative studies of transversity effects in exclusive meson leptoproduction.
In other words, we only achieve estimates of various observables. For this
reason we do not attempt an error assessment of our results; this is beyond
feasibility at present. Evolution of the transversity GPDs is not taken into
account, all pertinent experimental data cover only a very limited range of
Q2.

The last item we have to specify are the sea-quark transversity GPDs.
A flavor symmetric sea is assumed with the parameters quoted in Tab. 1.
These parameters are adjusted to the data discussed below.

GPD αki βki α′
ki[ GeV−2] bki[ GeV−2] Nki

Huv

T - 5 0.45 0.3 1.1

Hdv
T - 5 0.45 0.3 -0.3

Hs
T 0.6 7 0.45 0.5 -0.17

Ēuv

T 0.3 4 0.45 0.5 6.83

Ēdv
T 0.3 5 0.45 0.5 5.05

Ēs
T 0.6 7 0.45 0.5 -0.10

Table 1: Parameters for the transversity GPDs at a scale of 2 GeV.

The l3 = 0 wave functions for the vector mesons are specified in [11, 31].
Basically they are simple Gaussians in k⊥. This type of wave function is also
used for the scalar | l3 |= 1 wave function

Ψ
(2)
V (τ, k2

⊥) = 16π2
√
2Ncf

T
V m

2
V a

4
V T exp [−a2V Tk

2
⊥/(τ τ̄ )] . (29)

Its associated distribution amplitude is just the asymptotic form for mesons

h
(s)
‖V = 6τ τ̄ . (30)

In principle this is the leading term of a Gegenbauer series [26]. We however

disregard all higher Gegenbauer terms except of the C
3/2
1 -term for the K∗0

meson for which we take a value of 0.1 for its coefficient. As discussed in
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[44] the higher Gegenbauer terms are strongly suppressed in the modified
perturbative approach.

The wave function (29) leads to the probability of the | l3 |= 1 Fock
component

P|l3|=1 =
4

15
πNc(f

T
V mV a

2
V T )

2 (31)

and the r.m.s. k⊥ is

〈k2
⊥〉 =

3

14
a−2
V T . (32)

With aρT ≃ 1 GeV and fT
ρ = 167 MeV (see [11]) one finds the plausible

values P|l3|=1 = 0.13 and 〈k2
⊥〉1/2 = 0.46 GeV.

3 Results

3.1 Spin density matrix elements

The γ∗
T → VL amplitudes can be probed by some of the SDMEs. Using the

simplifications discussed in Sect. 2, one finds for the relevant SDMEs [45]

r100(V )σV
0 = − | MV

0+++ |2 ,

r500(V )σV
0 =

√
2Re

[
MV ∗

0+++MV
0+0+ +

1

2
MV ∗

0−++MV
0−0+

]
,

Re r0410(V )σV
0 = −Re r110(V )σV

0 = Im r210(V )σV
0

=
1

2
Re
[
MV ∗

0+++MV N
++++ +

1

2
MV ∗

0−++MV N
+−++

]
, (33)

where

σV
0 = | MV

++,++ |2 + | MV
+−,++ |2 + | MV

0+,++ |2 +1

2
| MV

0−,++ |2

+ ε
[
| MV

0+,0+ |2 + | MV
0−,0+ |2

]
. (34)

The ratio of the longitudinal and transverse photon flux is denoted by ε.
Up to a phase space factor σV

0 is the unseparated cross section dσ = dσT +
εdσL. The contribution from the γ∗

T → VL amplitudes to the transverse cross
section for ρ0 production is negligibly small, it amounts to only 2− 3%.

A particularly interesting SDME is r100. It measures the absolute value
of the amplitude M0+++ which is fed by the GPD ĒT in the combination

15



0.0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0.0

0.1

0.2

0.3

r1
00

 

-t'[GeV2]

W=5 GeV
Q2=2 GeV2

r5
00

0

0.0 0.1 0.2 0.3 0.4 0.5
-0.6

-0.4

-0.2

0.0

0.2

0.4

r1
00

 

-t'[GeV2]

Q2=2.2 GeV2

r5
00

0

Figure 2: Left: Handbag results for the SDMEs r500 (solid line) and r100
(dashed line) for ρ0 production. Data taken from HERMES [22]. Right:
Predictions for r500 and r100 at W = 8.1 GeV (solid and dashed line, respec-
tively) and W = 3 GeV (dash-dotted lines).

euĒ
u
T −edĒ

d
T for ρ0 production, see (4) and (9). Since both, Ēu

T and Ēd
T , have

the same sign and almost the same strength this amplitude is rather large.
The signs of these GPDs are fixed by the lattice QCD results [42]. In fact,
for the tensor anomalous magnetic moment of the nucleon which represents
the lowest moment of ĒT at t = 0, κu

T ≃ κd
T > 0 is found in [42]. Models

support this result [46, 47].
The SDME r500 is more complicated. It measures the real part of a com-

bination of two interference terms; in terms of GPDs

r500 ∼ Re
[
〈ĒT 〉∗LT 〈H〉LL +

1

2
〈HT 〉∗LT 〈E〉LL

]
(35)

where 〈K〉XY denotes the convolution of the GPD K with the subprocess
amplitude for a γ∗

Y → VX transition (X, Y label longitudinal or transverse
polarization ). I.e. r500 is related to interference terms of amplitudes fed by
transversity GPDs with leading γ∗

L → VL amplitudes. The first term in
(35) dominates by far since 〈H〉LL is much larger than 〈E〉LL while both
the transversity contributions are of roughly the same strength. Thus, r500
essentially probes ĒT , too. As is to be seen from Fig. 2 we achieve fair
agreement between the HERMES data on ρ0 production [22] and our handbag
results for r100 and r500. A point worth mentioning is that r500 ∝

√
−t′ and

r100 ∝ t′ for t′ → 0 as a consequence of angular momentum conservation.
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Figure 3: The SDMEs Re r0410 and Im r210. Data taken from HERMES [22].
The solid lines represent our results.

Also for the SDMEs Re r100, Re r
04
10 and Im r210 we find good agreement

with the data on ρ0 production, see Fig. 3 for the latter two SDMEs. Within
the handbag approach the three SDMEs are equal (up to a sign) and probe
a similar combination of interference terms as r500. The difference is that
for these SDMEs H and E are convoluted with the subprocess amplitude
for γ∗

T → VT transitions. For these SDMEs the ĒT term is also dominant.
The contribution from ĒT for sea quarks is less than 5% for all SDMEs, the
valence quarks dominate.

These results are an addendum to our previous study of SDMEs [11].
In summary we achieve a fair description of all SDMEs within the handbag
approach now. An exception is the relative phase between the amplitudes
for γ∗

T → ρ0T and γ∗
L → ρ0L transitions which is too small in the handbag

approach as compared to experiment [22]. It would be of interest to probe
the transversity contributions to the SDMEs also at other energies. As an
example we show in Fig. 2 r500 and r100 at the COMPASS energy of 8.1 GeV
and at 3 GeV which is typical of the upgraded JLab.

3.2 Transversely polarized target asymmetries

There are the following non-zero modulations of the transverse target spin
asymmetry AUT

A
sin(φ−φs)
UT (V )σV

0 = −2 Im
[
εMV ∗

0−,0+MV
0+,0+

17



+MV N∗
+−,++MV N

++,++ +
1

2
MV ∗

0−,++MV
0+,++

]
,

A
sin(φs)
UT (V )σV

0 =
√
ε(1 + ε) Im

[
MV ∗

0+++MV
0−0+ −MV ∗

0−++MV
0+0+

]
,

A
sin(φ+φs)
UT (V )σV

0 = ε Im
[
MV ∗

0−,++MV
0+,++

]
,

A
sin(2φ−φs)
UT (V )σV

0 = −
√
ε(1 + ε) Im

[
MV ∗

0+,++MV
0−,0+

]
. (36)

which can easily be derived from expressions given in [48] 9. Here, φ is the
azimuthal angle between the lepton and the hadron plane and φs specifies
the orientation of the target spin vector with respect to the lepton plane. It
is to be stressed that the COMPASS collaboration [49] which has measured

these modulations recently, took out the ε-dependent prefactors
√
ε(1± ε)

and ε (for the sin(φ+ φs) modulation) in their definition of the asymmetries
(ε ≃ 0.8 for HERMES and ≃ 0.96 for COMPASS kinematics).

The sin(φ− φs) modulation of AUT has been measured by the HERMES
[50] and COMPASS collaborations [51] for ρ0 leptoproduction. In [31] this
asymmetry has already been investigated by us and shown to be in reason-
able agreement with experiment. However, the transversity GPDs were not
taken into account in this analysis. The present analysis reveals that their
contribution to the sin(φ − φs) modulation is small, the 〈E〉∗LL〈H〉LL and
〈E〉∗TT 〈H〉TT interference terms are dominant 10. This is obvious from the
sin (φ+ φs) modulation shown in Fig. 4 which is related to just the same
interference term, 〈ĒT 〉∗LT 〈HT 〉LT , as the contributions from the γ∗

T → VL

transitions to the sin(φ − φs) modulation. A small, almost zero sin(φ + φs)
modulation is in agreement with experiment [49] within errors. Hence, the
results presented in [31] essentially remain valid. For completeness we show
these results here again, see Fig. 5. The sin(2φ − φs) modulation which is
also shown in Fig. 4, is very small in agreement with experiment [49]. It is
related to the 〈ĒT 〉∗LT 〈E〉LL interference term. The sin(3φ− φs) modulation
is strictly zero in our approach since it is related to interference terms with
the neglected MV

0−,−+ and γ∗
T → V−T amplitudes. At large values of −t′

this is not in good agreement with the COMPASS data [49], the deviations
amount to a bit more than one standard deviation.

9The angle between the directions of the virtual photon and the incoming lepton is
negligibly small for the kinematics of interest in this work.

10Note that the sin(φ − φs) modulation is the only one that has a pure leading-twist
contribution, namely 〈E〉∗

LL
〈H〉

LL
.
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The sin(φs) modulation is related to interference terms between transver-
sity GPDs and H,E like the SDME r500 but with interchanged H and E
contributions

A
sin(φs)
UT ∼ Im

[
〈ĒT 〉∗LT 〈E〉LL − 〈HT 〉∗LT 〈H〉LL

]
. (37)

The first term makes up the sin(2φ − φs) modulation and we already know
that it is very small, see Fig. 4. The second term in (37) is larger since,
as we already mentioned, 〈H〉LL is much larger than 〈E〉LL. This term is
an interference term of two helicity non-flip amplitudes and is therefore not
forced to vanish for forward scattering by angular momentum conservation
in contrast to the first term which behaves ∝ t′ for t′ → 0. Results for
the sin(φs) modulation are shown in Fig. 6. For COMPASS kinematics it is
negative and amounts to about 0.02 in absolute value. This is in reasonable
agreement with experiment given that our results are only estimates and
do not represent detailed fits to data. For HERMES kinematics the sin(φs)
modulation is very small while, at W = 3 GeV, we find for it larger values
and a zero at t′ ≃ −0.12 GeV2.

For a transversely polarized target and a longitudinally polarized beam
various modulations of the asymmetry ALT can be measured. In terms of
helicity amplitudes the non-zero modulations read

Acos φs

LT (V )σV
0 =

√
ε(1− ε) Re

[
MV ∗

0+,++MV
0−,0+ −MV ∗

0−,++MV
0+,0+

]
,

A
cos (φ−φs)
LT (V )σV

0 =
√
1− ε2Re

[
MV ∗

0−,++MV
0+,++ − 2MV N∗

+−.++MV U
++,++

]

A
cos (2φ−φs)
LT (V )σV

0 = −
√
ε(1− ε)Re

[
MV ∗

0+,++M
V
0−,0+

]
. (38)

Leaving aside the ε-dependent prefactors in (38) the modulations cos(φs) and
cos (2φ− φs) of ALT are related to the same combinations of helicity ampli-
tudes as the corresponding modulations of AUT except that the imaginary
parts are to be substituted by the real parts. The cos(φ − φs) modulation

contains the real part of the 〈ĒT 〉∗LT 〈HT 〉LT interference term as in A
sin (φ−φs)
UT

and a 〈E〉∗TT 〈H̃〉TT term. The imaginary part of the 〈ĒT 〉∗LT 〈HT 〉LT interfer-
ence term also controls the sin(φ + φs) modulation of AUT . In our handbag
approach the cos(φ−φs) and cos (2φ− φs) modulations are very small as are
the sin(φ + φs) and sin(2φ − φs) ones. The cos(φs) modulation is similar in

sign and size to A
sin(φs)
UT . These results are in agreement with the COMPASS

data [49] within, however, huge experimental errors. Two examples of the
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ALT modulations are shown in Fig. 7. In contrast to the SDMEs discussed in
Sect. 3.1, for which the contributions from ĒT are dominant, the only sub-
stantial contribution from the transversity GPDs to the asymmetries AUT

and ALT is that from HT . The cos(φs) modulation is rather strongly influ-
enced by Hs

T . Without it this modulation would be positive in conflict with
experiment.

The COMPASS collaboration [49] has also measured the Q2 and the xBj

dependence of the asymmetries AUT and ALT for ρ0 leptoproduction. In
Fig. 8 we confront the Q2 dependence of these data with our results. Again
agreement is to be seen within experimental errors. Results of similar quality
are obtained for the xBj dependence. The calculated asymmetries are often
very small and hardly to distinguish from zero in the plots.

3.3 Predictions for other vector mesons

Estimates of the unseparated cross sections for ω, ρ+ and K∗0 leptoproduc-
tion without the γ∗

T → VL transitions have been given in [31]. For the case of
the ω the new contributions increase the cross section a little, about 2−3% as
is the case for the ρ0 channel. On the other hand, for ρ+ and K∗0 production
the cross sections increase by about 20− 30% as compared to the estimates
presented in [31] (the quoted values are for COMPASS kinematics). Worth
to mention is that the ω cross section is about an order of magnitude smaller
than the ρ0 one. Due to the absence of the contributions from H for gluons
the ρ+ and K∗0 cross sections are even suppressed by about a factor of 100.

Since the u and d valence quark GPDs of ĒT have the same sign and
roughly the same strength (see Tab. 1) a partial cancellation of both the
contributions occur for ω and ρ+ production as a consequence of the flavor
composition of these mesons, see (4) and (5). The resulting rather small
contribution from ĒT is however compensated to some extent by smaller
cross sections. These properties result in substantially different SDMEs. As
examples we show r100 and r500 in Fig. 9 for typical COMPASS kinematics. As
is to be seen from this figure both the SDMEs, r100 (in absolute value) and r500,
are slightly larger for the ω channel than for the ρ0 one. For the case of the ρ+

the SDMEs are noticeably larger. Even strikingly larger SDMEs are found
for the K∗0 channel. This is so because only Ēdv

T contributes and the cross
section is very small. We note in passing that the HERMES collaboration
[52] has shown preliminary data on the SDME for ω production at the DIS
2013 (W = 5 GeV, Q2 = 2 GeV2). For the SDMEs under control of the
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transversity GPDs we find fair agreement between these data and the results
from our handbag approach.

Since HT for u and d valence quarks have opposite signs (see Tab. 1) a
partial cancellation of the two contributions takes place for the ρ0 channel
while they add for ω and ρ+ production. Moreover, the absence of the con-
tribution from H for gluon leads to very different relative phases between
〈HT 〉LT and 〈H〉LL for ρ+ and K∗0 production. Thus, larger modulations
of AUT and ALT are to be expected in particular for the ρ+ and K∗0 chan-
nels than for ρ0 production. Indeed for the sin(φs) and cos(φs) modulations
displayed in Fig. 10, this pattern is clearly seen.

Predictions for A
sin(φ−φs)
UT for ω,K∗0 and ρ+ leptoproduction are already

given in [31]. With regard to the fact that the contributions from the
γ∗
T → VL amplitudes play only a minor role for this modulation, the results

presented in [31] remain unchanged practically. The sin(φ − φs) modula-
tion is much larger for ω, ρ+ and K∗0 channels than for ρ0 production. The
largest asymmetry A

sin(φ−φs)
UT is found for ρ+ production. It also exhibites

a very different t′-dependence and opposite sign than for the other vector
meson channels. This is a consequence of the large helicity flip amplitude
M0−,0+ which is related to the GPD E. The amplitude M0+,0+ is not much
larger than the flip amplitude for this channel since the gluon GPD does not
contribute and because of the cancellation in the flavor combination of u and
d valence quarks for H while, for E, both the contributions add. For further
details of this asymmetry it is referred to [31]. For φ leptoproduction all
modulations of AUT and ALT as well as the SDMEs given in (33) are very
small since the strange transversity GPDs HT and ĒT are small. On the
other hand, experimental data on these observables may allow for a better
determination of these GPDs.

3.4 Longitudinal polarization

More asymmetries can be measured with a longitudinally polarized beam
and/or target. Though there is no data on such asymmetries available as yet
except of a few data points for exclusive ρ0 production on the proton [53, 54]
and the deuteron [55] with however very large errors, we will discuss them
briefly here. Using the simplifications discussed is Sect. 2 (see Eq. (9)) and
ignoring again the difference between the directions of the virtual photon and
the incoming lepton, we find the following non-zero observables
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Figure 10: Predictions for A
sin(φs)
UT (left) and A

cos(φs)
LT (right) for ω (solid line),

ρ+ (dotted line) and K∗0 (dashed line) leptoproduction at a typical COM-

PASS kinematics. The prefactors
√
ε(1± ε) are taken out. The handbag

results are shown as solid lines. Data are taken from [49].
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A
sin(φ)
LU (V )σV

o = −
√
ε(1− ε) Im

[
2MV ∗

0+,++MV
0+,0+ +MV ∗

0−,++MV
0−,0+

]
,

A
sin(φ)
UL (V )σV

o = −
√
ε(1 + ε) Im

[
MV ∗

0−,++MV
0−,0+

]
,

A
cos(0φ)
LL (V )σV

0 =
√
1− ε2

{
2Re

[
MV N∗

++,++MV U
++,++

]
+

1

2
|MV

0−,++|2
}
,

A
cos(φ)
LL (V )σV

0 = −
√
ε(1− ε)Re

[
MV ∗

0−,++MV
0−,0+

]
. (39)

The asymmetry ALU measures the imaginary part of the same interference

term as the SDME r500. Thus, we expect an ALU , divided by
√
2ε(1− ε),

slightly smaller than r500. As we discussed in Sect. 3.1 the termM∗
0−,++M0−,0+

being related to the GPDs HT and Ẽ, is very small with the consequence
of small AUL and A

cos(φ)
LL at least for ρ0 and ω production. The asymmetry

A
cos(0φ)
LL receives a contribution from the γ∗

T → VT amplitudes, i.e. from the
interference term of 〈H〉TT and 〈H̃〉TT . There is also a contribution to it
from the transversity GPD HT which was not taken into account in our pre-
vious work [11, 12] where we already analysed ALL for ρ0 production. Since
in our approach |M0−,++| < |M0+,++| the additional term is smaller than
−r100/2. With regard to our results on the SDME r100 displayed in Figs. 2 and
9, and those on the interference of the γ∗

T → VT amplitudes presented in [11]

we find a small asymmetry A
cos(0φ)
LL for ρ0 and ω production at COMPASS

kinematics. However, a revision of the parametrization of H̃ given in [11]
seems to be advisable.

4 Summary

The role of transversity GPDs in vector-meson leptoproduction is investi-
gated. It is argued that these GPDs control the γ∗

T → VL transition am-
plitudes and constitute a twist-3 effect consisting of leading-twist GPDs in
combination with twist-3 meson wave functions. As compared to the asymp-
totically leading γ∗

L → VL amplitudes the γ∗
T → VL ones are suppressed

by mV /Q. In contrast to pion leptoproduction the γ∗
T → VL amplitudes

do not affect the unpolarized cross sections considerably; they only influence
markedly some of the SDMEs and asymmetries measured with a transversely
polarized target. In most cases they contribute via interferences with ampli-
tudes under control of the helicity non-flip GPDs. For the estimates made
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in this work the parametrizations of the GPDs are taken from our previ-
ous work [8, 11]. The only new pieces introduced here are the sea-quark
transversity GPDs. From this set of GPDs we evaluate various SDMEs and
modulations of the asymmetries AUT and ALT and compare the results to
HERMES [22, 50] and COMPASS data [49, 51]. In general fair agreement
with experiment is obtained.

We stress that we do not attempt detailed fits of the transversity GPDs
to the data on SDMEs and asymmetries. A precise calculation, including
an error assessment, of the transversity effects in leptoproduction of vector
mesons is beyond feasibility at present. There are many uncertainties like
the parameterization of the transversity GPDs or the exact treatment of the
twist-3 contribution (e.g. the neglect of possible three-particle configurations
of the meson state). Also higher-order perturbative corrections other than
those included in the Sudakov factor and, implicitly, in the experimental elec-
tromagnetic form factor of the pion appearing in the pion-pole contribution
to π+ leptoproduction, are ignored. According to [56] the NLO corrections
to the leading-twist contribution are rather large for the cross sections for
Q2 <∼ 10 GeV2. Further uncertainties occur for K∗0 production. In contrast
to the case of the ρ+ where the p → n transition GPDs are related to the
diagonal proton ones by isospin symmetry, the proton - Σ+ transition GPDs
are connected to the proton GPDs by SU(3) flavor symmetry which is less
accurate than isospin symmetry. The assumption of a flavor symmetric sea
for all GPDs is also stronger for K∗ than for ρ mesons. With regard to all
these uncertainties we consider our investigation of leptoproduction of vector
mesons as an estimate of the pertinent observables. The trends and magni-
tudes of the SDME and asymmetries are likely correct but probably not the
details. Despite these uncertainties our estimates of transversity effects in ρ0

production for which data is available, work surprisingly well. Data on other
vector-meson channels are highly welcome; they will provide further checks
of the transversity effects we are advocating. Such data may be provided
by COMPASS and by the upgraded Jlab in future. We are aware that such
measurements are a challenge for experimenters. We have shown only a few
examples of SDMEs and asymmetries for ω, ρ+ and K∗0 leptoproduction but
we have results for all observables discussed in this paper. Tables of these
results can be obtained from the authors on request.
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