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We report on theoretical investigations of the spin-orbit coupling effects in fluorinated graphene. First-principles
density functional calculations are performed for the dense and dilute adatom coverage limits. The dense limit
is represented by the single-side semifluorinated graphene, which is a metal with spin-orbit splittings of about
10 meV. To simulate the effects of a single adatom, we also calculate the electronic structure of a 10 × 10
supercell, with one fluorine atom in the top position. Since this dilute limit is useful to study spin transport and
spin relaxation, we also introduce a realistic effective hopping Hamiltonian, based on symmetry considerations,
which describes the supercell bands around the Fermi level. We provide the Hamiltonian parameters which are
best fits to the first-principles data. We demonstrate that, unlike for the case of hydrogen adatoms, fluorine’s
own spin-orbit coupling is the principal cause of the giant induced local spin-orbit coupling in graphene. The
sp3 hybridization induced transfer of spin-orbit coupling from graphene’s σ bonds, important for hydrogenated
graphene, contributes much less. Furthermore, the magnitude of the induced spin-orbit coupling due to fluorine
adatoms is about 1000 times more than that of pristine graphene, and 10 times more than that of hydrogenated
graphene. Also unlike hydrogen, the fluorine adatom is not a narrow resonant scatterer at the Dirac point. The
resonant peak in the density of states of fluorinated graphene in the dilute limit lies 260 meV below the Dirac
point. The peak is rather broad, about 300 meV, making the fluorine adatom only a weakly resonant scatterer.
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I. INTRODUCTION

Functionalizing graphene with adatoms and admolecules
is very attractive for spintronics research [1], as it offers new
tools to tailor spin and magnetic properties [2] of this unique
two-dimensional material [3]. On the one hand, adatoms—in
particular paramagnetic ones such as hydrogen [4] and organic
molecules [5]—can provide the mechanism [6,7] for the
ultrafast spin relaxation seen in spin injection experiments
[8–11]. On the other hand, even light adatoms such as hydrogen
can induce giant spin-orbit coupling (SOC) [12,13] which
makes novel spin transport phenomena such as the spin Hall
effect [14] observable in graphene.

A particularly interesting adatom is fluorine. Being the
most electronegative element, fluorine forms a strong covalent
bond with carbon, affecting the stability of possible fluorine-
graphene conformations [15]. Even before the synthesis
of graphene there were theoretical studies of fluorinated
graphite surfaces [16,17]. Magnetization measurements show
that fluorinated graphene can induce spin 1/2 paramagnetic
moments [18]. Magnetic moments also seem to be deduced
from magnetotransport [19] and weak localization measure-
ments [20]. However, theoretically the case for induced
magnetic moments due to fluorine is controversial. Some
density functional calculations predict a spin unpolarized
ground state [5], while other calculations seem to predict a
spin polarized one [21]. The difficulty seems to stem from the
self-interaction error in the exchange-correlation functionals
that tends to delocalize electronic states [22,23]. It may be
that the standard density functional approximations will not
be able to resolve this case, calling perhaps for more advanced
quantum chemistry approaches. There are also investigations
of the influence of charge doping on the magnetism in
fluorine [24]. These studies show that charge doping not only
affects the magnetism in fluorinated graphene but also leads to
a transition from covalent to ionic bonding [25].

Here we focus on spin-orbit coupling induced by fluorine
adatoms in graphene. We perform first-principles density
functional calculations in the dense and dilute limits of fluorine
coverage, to quantify the spin-orbit splitting of the relevant
energy bands. Our dense limit is given by the single-side
semifluorinated graphene (C2F) which can be experimentally
prepared by the chemical reduction of oxidized graphite
surfaces [26]. Our study focuses on the chair conformation
of C2F which is metallic within DFT, as well as within
GW calculations [27]. The computed phonon spectrum also
shows the dynamical stability of this structure [27]. It is
predicted that the ground state of C2F should be a Néel
antiferromagnet [28].

Our main finding is a giant enhancement of spin-orbit
coupling, compared even to hydrogenated graphene [13]. The
spin-orbit splitting reaches 30 meV. Such a splitting cannot
come from graphene itself, as the σ bonds are split by about
10 meV, which is the native spin-orbit splitting of the carbon
atom. Instead, the splitting comes from the fluorine adatom.
This conclusion is further confirmed by investigating the
dilute limit, represented here by a 10 × 10 supercell. For this
limit we also derive an effective minimal hopping orbital and
spin-orbit Hamiltonian, with parameters obtained by fitting
to our first-principles calculations. This realistic Hamiltonian
should be useful for model calculations of spin transport
and spin relaxation in fluorinated graphene. In particular,
it shows that fluorine adatoms in the top position are not
resonant scatterers at the Dirac point. We present tight-binding
calculations for a large, 40 × 40, supercell, as well as analytical
results for a single adatom, to show that fluorine leads to a
very broad, indeed weak or marginal resonant scattering off
the Dirac point: the peak lies 260 meV below the Dirac point,
having the full width at half maximum of 300 meV.

Our first-principles results, for both the dense and dilute
limits, were performed with the full potential linearized
augmented plane wave method, within density functional
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theory (DFT). We work with spin unpolarized ground states,
to identify spin-orbit effects in the band structures. To model
different concentrations of F adatoms we chose different
supercells. The dense (1 × 1 supercell) and intermediate
(5 × 5 supercell) coverages were calculated with the WIEN2K

code [29], using a vacuum spacing of 15 Å. The dilute limit
(10 × 10 supercell) was calculated with FLEUR [30] in the
film geometry. Spin-orbit coupling in these codes is included
within the second-variational step in the muffin-tin spheres for
valence electrons, while the core electrons are treated fully
relativistically. All our first-principles calculations are well
converged for fully relaxed structures.

The paper is organized as follows. In Sec. II we present
DFT results of the electronic band structure calculation and
specifically the spin-orbit coupling induced spin splitting of
the bands for a semifluorinated graphene (50% coverage), rep-
resenting our dense limit case. Section III A. brings the same,
but for a larger supercell, 10 × 10 supercell (0.5% coverage)
representing our dilute limit. The dilute limit is then analyzed
using a symmetry derived effective hopping Hamiltonian in
Sec. III B. The model parameters of the Hamiltonian are
fitted to the first-principles results. In Sec. III C we answer
the question whether or not fluorine adatoms on graphene
are resonant scatterers. Finally, a comparative analysis with
hydrogenated graphene is provided in the Appendix, using an
intermediate size 5 × 5 supercell.

II. DENSE LIMIT: SINGLE-SIDE SEMIFLUORINATED
GRAPHENE C2F

The unit cell of C2F contains two carbon atoms and one
fluorine which chemisorbs preferentially in the top position;
see Fig. 1. Our calculated Bader charges show a transfer
of about 0.45e from graphene to fluorine. The charged
fluorine adatoms repel each other, stretching graphene whose
lattice constant grows by about 4.1% in comparison to the
bare graphene lattice constant (aGr = 2.46 Å). The graphene
σ bonds resist stretching, resulting in a regular sp3-like

F

CF

Cnn Cnnn(a) 1x1 dense:
50% fluorination

(b) 5x5 intermediate:
2% fluorination

CnnnnCnn

ermediate:
ation

Cnnnn

FIG. 1. (Color online) Unit cells of the dense (50%) and inter-
mediate (2%) fluorination limits. The lattice vectors are shown as
black arrows and the unit cell is emphasized by the dashed lines. The
inset shows the geometrical structure around a fluorine adatom, with
labels for the adatom (F), fluorinated carbon (CF), the nearest (Cnn),
next nearest (Cnnn), and the next-next nearest (Cnnnn) neighbors of the
fluorinated carbon.
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FIG. 2. (Color online) Calculated electronic properties of single-
side semifluorinated graphene C2F as obtained from nonmagnetic ab
initio calculations. Shown is the electronic band structure (left) and
the orbital resolved atomic density of states (right) for fluorine F,
fluorinated carbon CF, and its nonfluorinated nearest neighbor Cnn.
Three relevant bands around the Fermi level are labeled by (a), (b),
and (c), respectively. The band (b), which crosses the Fermi level, is
formed by the pz orbitals sitting on Cnn.

corrugation; fluorinated carbon atoms (CF) are pulled out of the
graphene plane by about 0.312 Å. In addition, our structural
relaxation reveals that F − CF bond length increases to 1.475 Å
in comparison to the typical carbon fluorine bond length [31]
of 1.35 Å. The local corrugation allows for sp3-hybridization
and hence for admixture of carbon π and σ states. This is
expected to significantly enhance local spin-orbit coupling,
in analogy to hydrogenated graphene [12,13]. On the other
hand, the fine structure of the fluorine atom shows a splitting
of 50 meV (2P0 spectroscopic term) [32]—five times larger
than in the carbon atom. This should further enhance SOC in
fluorinated graphene due to the intrinsic fluorine contribution.
In fact, as we show below, this contribution dominates the local
enhancement of spin-orbit coupling.

In Fig. 2 we show the calculated electronic band structure
of C2F. The fully occupied valence bands range in energies
from −23 eV to −1 eV. There are seven such bands which
are occupied by 14 of the 15 valence electrons (the two
carbons contribute 4 electrons each, and fluorine has 7 valence
electrons). The band crossing the Fermi level, labeled as (b)
in Fig. 2, is only partially occupied. The lowest valence band,
at about −23 eV (not shown in the figure) stems from the
fluorine 2s orbitals; this band is only weakly dispersive. In the
energy region from −18 to −8 eV the band structure of C2F is
dominated by the almost intact carbon σ bonds, resembling the
band structure of pristine graphene at those energies. However,
in the region from −8 to −6 eV we observe anticrossings
in the band structure when moving away from the � point.
At these energies the orbital resolved DOS (see Fig. 2) on
the fluorinated carbon CF shows the presence of both pz and
px + py orbitals. This is the manifestation of the structural
sp3 hybridization—the CF atom is pulled out of the plane,
the associated p orbitals start to overlap, and their interaction
causes anticrossings.
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FIG. 3. Calculated band splittings due to SOC for the single-
side semifluorinated graphene C2F. Three figures—(a), (b), and (c)—
correspond to SOC splittings of three relevant bands (a), (b), and (c)
that are shown in Fig. 2. Dashed lines correspond to the band splittings
when turning off SOC on the fluorine adatom.

Comparing the orbital resolved DOS for F and CF atoms
in Fig. 2, we see two energy windows (−8, − 6) eV and
(5.5,7) eV in which both atoms contribute dominantly pz

orbitals. These are the bonding and antibonding states made of
pz orbitals on F and CF. On the other hand, the pz orbitals on
the nearest neighbor carbon, Cnn, form the band at the Fermi
level that is partially occupied [indicated by (b) at Fig. 2].
This band is weakly dispersive (ca. 2 eV bandwidth) since the
geometrically allowed interaction among different Cnn carbons
is of the next-nearest-neighbor type. Finally, fluorine px + py

orbitals span the energy interval from −5 eV to −1.5 eV.
These orbitals hybridize, due to their geometry, only weakly
with others. Contributions of different orbitals are indicated
by the labeled lines. We also note that there are small d orbital
contributions around the Fermi level which are most significant
for the CF atom.

Spin-orbit splittings for the three bands around the Fermi
level are shown in Fig. 3. The splittings vanish at the time
reversal points � and M and reach values up to 30 meV for
band (c). The splitting is smallest for band (a), which is formed
by the pz orbitals on the fluorinated carbon CF and fluorine,
and has only a weak px and py component. As we turn off the
spin-orbit coupling on F in our first-principles calculations,
this band still shows a significant splitting, in contrast to band
(b) and band (c), whose splitting drops to less than 1 meV. This
demonstrates that band (a) has a significant part of its splitting
due to sp3 deformation alone. On the other hand, bands (b) and
(c) are formed to a large extent by fluorine px and py orbitals,
whose atomic fine structure is imprinted in the bands as the
enhanced spin-orbit splitting. The SOC splitting can be even
more enhanced in the vicinity of the anticrossing points due
to the more effective transfer of the spin-orbit coupling from
the fluorine p levels to the underlying graphene system. In
the present case such anticrossing enhancements are observed
around the � point for the bands (b) and (c) (see the left panel
of Fig. 2 at about −1 eV and the corresponding SOC splittings
at Fig. 3), and also around the K point for the band (c) (see the
left panel of Fig. 2 at about −4 eV and the corresponding SOC

splitting at Fig. 3). The enhanced SOC splitting for the band (c)
at the K point is attributed to the interaction with the band that
is lying lower in energy at about −4 eV and which comprises
mainly the fluorine px and py orbitals (see the orbital resolved
electronic density at fluorine in Fig. 2).

III. DILUTE LIMIT

A. DFT results for 10 × 10 supercell

To describe chemisorption of an isolated fluorine on
graphene we need to consider a large enough supercell
with a single fluorine adatom to avoid interactions between
periodic images of fluorine. We consider the fluorine atom
on the top position, above a carbon atom, which has been
reported as the energetically most favorable position [27,33].
For hydrogenated graphene [13] already a 5 × 5 supercell
is sufficient to capture the essential features of the dilute
limit. In the case of fluorinated graphene this supercell size
is not enough as there is still a significant overlap between
the fluorine-derived states. We treat this intermediate case in
the Appendix. Here we focus on a 10 × 10 supercell (0.5%
of adatom coverage) as a representative of the dilute limit for
fluorine adatoms.

Our structural relaxation shows that for the 10 × 10
supercell the F − CF bond length equals 1.607 Å, the nearest-
neighbor CF − Cnn bond length equals 1.469 Å, and the
next-nearest-neighbor Cnnn − Cnnn distance equals 2.488 Å;
see Fig. 1. The fluorinated carbon CF is pulled out of the
graphene plane by about 0.423 Å, which is more than in the
dense limit (0.312 Å).

In Fig. 4 we show the calculated electronic band structure
and local DOS for selected atoms in the 10 × 10 fluorinated
graphene supercell. We again focus on three bands—(a), (b),
and (c)—near the Fermi level which, in the following, we call
the conduction, midgap, and valence bands, respectively. The
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FIG. 4. (Color online) Calculated electronic properties of flu-
orinated graphene in the dilute limit represented by a 10 × 10
supercell with a single fluorine adatom. Band structure (left) along
high symmetry lines in first Brillouin zone and orbital resolved
atomic density of states (right) are shown. The labels correspond
to conduction (a), midgap (b), and valence bands (c). Contribution of
different orbitals is indicated by the labeled lines.
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midgap band extends over the energy window from −0.1 eV
to 0.3 eV and its bandwidth is by 0.2 eV smaller than in the
associated 5 × 5 system (see the Appendix). This implies that
the Bloch modulation function of the midgap state becomes
more localized and that the interaction among the fluorine
adatoms is significantly weakened as compared to the more
dense cases. From the DOS it is apparent that the main
contribution to the electron density of conduction, midgap, and
valence bands comes from the pz orbitals on fluorine F and
nearest neighbor Cnn carbon atoms. The orbital decomposition
of the CF DOS contains besides the large amount of pz

also s and even d orbitals. Like in the dense case also in
the dilute system d orbitals appear. Such contributions are
also present in pure graphene where they play the crucial
role for the intrinsic SOC [34]. The situation here resembles
the orbital decomposition in the 5 × 5 system; see the
Appendix.

The above orbital structure analysis suggests that a tight-
binding model with only pz orbitals should be able to describe
the electronic structure in the vicinity of the Fermi level,
i.e., the conduction, midgap, and valence bands in the energy
window from −0.8 to 0.8 eV. Such a model is introduced in
the following section.

B. Effective Hamiltonian with spin-orbit coupling

1. Orbital part

Employing local symmetries we derive and analyze an
effective pz orbital tight-binding Hamiltonian including SOC
relevant in the vicinity of the fluorine adatom in the top
position; see Fig. 5. While we focus on fluorine to obtain
realistic hopping parameters, the form of our Hamiltonian is
transferable to other top-position adatoms on graphene.

Our first-principles analysis shows that the relevant states
around the Fermi level originate from pz orbitals on carbon
and fluorine atoms. To describe the orbital part of the band
structure (without spin effects) we employ a local hybridiza-
tion Hamiltonian [6,35,36] which consists of an on-site energy
εf term on the fluorine adatom and of the orbital hopping T

F

A

B1

B2
B3

a5

a6
a4

a1
a3

a2

C3
σyz

v

T

Λ

Λ
Λ

ε

FIG. 5. (Color online) Left panel: mutual positions and adopted
notation for all relevant atomic sites whose pz orbitals enter the
model tight-binding Hamiltonian including local SOC. Shown are
fluorine F, fluorinated carbon A = CF, its three nearest B1,B2,B3,
and the six next-nearest a1, . . . ,a6 neighbors. The principal axis for
C3 rotations is defined by the perpendicular F − A bond, while σv

reflections are given by three A − Bi lines and the principal axis.
Right panel: schematic representation of the dominant orbital and
spin-orbital hoppings.

term between the F adatom and the fluorinated carbon A = CF:

H′ = εf

∑
σ

F̂ †
σ F̂σ + T

∑
σ

(F̂ †
σ Âσ + Â†

σ F̂σ ). (1)

The rest is described by the standard nearest-neighbor hopping
Hamiltonian for graphene,

H0 = −t
∑
〈i,j〉

∑
σ

(ĉ†i,σ ĉj,σ + ĉ
†
j,σ ĉi,σ )

− t
∑

Bj ∈Cnn

∑
σ

(Â†
σ B̂j,σ + B̂

†
j,σ Âσ )

− t
∑
〈i,j〉

∑
σ

(B̂†
i,σ ĉj,σ + ĉ

†
j,σ B̂i,σ ), (2)

with the orbital hopping t = 2.6 eV; summation over 〈i,j 〉 runs
over all pairs of graphene nearest neighbors. Operator F̂σ (F̂ †

σ )
annihilates (creates) an electron with spin σ in the atomic pz

orbital on fluorine F. Similarly, ĉiσ (ĉ†iσ ) are the annihilation
(creation) operators for pz orbitals on graphene carbon atoms.
We also introduce Âσ (Â†

σ ) and B̂iσ (B̂†
iσ ), i = 1,2,3, as the

annihilation (creation) operators on fluorinated carbon site
A, as well as on its three nearest neighbors B1,B2,B3. Our
notation is illustrated in Fig. 5. Labels A and B derive from
the corresponding sublattice; operators are typographically
distinguished to avoid confusion.

Hamiltonian H′, Eq. (1), is consistent with the structural
C3v symmetry that emerges locally due to fluorine top-position
chemisorption. We recall that the point group C3v is generated
by C3 rotations around the fluorine-carbon bond (principal
axis) and σv—vertical reflections containing the principal
axis and the A − Bi bond. Using the full orbital Hamiltonian
H0 + H′ we have fitted our first-principles band structure of
the 10 × 10 supercell. To find the optimal values of two tight-
binding parameters T and εf we have focused on conduction,
midgap, and valence bands around the Fermi level, see bands
(a), (b), and (c) in Fig. 4, as only those have a dominant pz char-
acter. Minimization of the least-square differences between
the first-principles and model-computed band structures gives
T = 5.5eV and εf = −2.2eV. The near perfect agreement with
the first-principles data is shown in Fig. 6. This figure also
shows the model calculated DOS, using the triangle method
(2d analog of the standard tetrahedron method).

2. Spin-orbit part

We now use symmetry arguments to derive the spin-orbit
Hamiltonian HSO which gives the fine splittings of the bands
around the Fermi level. Again, only pz orbitals will be used
in the description. We identify nonzero matrix elements
〈i,σ | HSO| j,σ ′〉 between atomic pz orbitals at sites i and j

hosting spins σ and σ ′ using invariance of the microscopic
spin-orbit Hamiltonian,

HSO = �

4m2c2
ŝ · (∇V̂ × p̂), (3)

under the relevant point-group symmetry and time reversal
operations. Here, m is the electron vacuum mass, c the speed of
light, and V the total electrostatic potential energy experienced
by the electron. Symbols p̂ and ŝ are the operators of momen-
tum and spin, respectively. As we wish to construct a minimal
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FIG. 6. (Color online) Left panel: electronic band structure of the
dilute fluorinated graphene in 10 × 10 supercell configuration; the
first-principles data are presented by black dotted lines and the tight-
binding model data by blue solid lines. The model calculation is based
on the orbital Hamiltonian H0 + H′ with the parameters T = 5.5 eV
and εf = −2.2 eV that are chosen by fitting the conduction (a), midgap
(b), and valence band (c) along the M-K-�-M line, respectively. Right
panel: DOS per atom and spin corresponding to the tight-binding
computed electronic band structure from the left panel.

model, we limit the atomic orbitals |i,σ 〉 basis of the SOC
Hamiltonian to the immediate impurity region. The lattice site
index i includes only fluorine F, fluorinated carbon A, its three
nearest Cnn = {B1,B2,B3}, and its six next-nearest neighbors
Cnnn = {a1, . . . ,a6}; see Fig. 5. Moreover, we take into account
only those matrix elements 〈i,σ | HSO| j,σ ′〉 for which i and j

are spaced not further than up to the next-nearest neighbors.
Reduction of D6h—the full point group symmetry of

pristine graphene—to C3v—the symmetry corresponding to
the top-positioned adatom—induces several SOC mediated
hoppings. Apart from the usual intrinsic and Rashba hoppings,
which are found in gated graphene or in graphene on a
substrate [37], there are more terms allowed. In what follows
we summarize and discuss all the allowed matrix elements
〈i,σ | HSO| j,σ ′〉 in the specified impurity region. Since time-
reversal symmetry enables us to classify which parameters
are real, imaginary, or generally complex, we chose the
representative SOC parameters �’s shown below to be real.
The result is as follows:

�A
I = 3

√
3

i
〈A,↑|HSO|a1,↑〉, (4a)

�B
I = −3

√
3

i
〈B2,↑|HSO|B3,↑〉, (4b)

�R = 3

2i
〈A,↑|HSO|B1,↓〉, (4c)

�A
PIA + i�̃A

PIA = 3

2
〈A,↑|HSO|a1,↓〉, (4d)

�B
PIA = −3

2
〈B2,↑|HSO|B3,↓〉, (4e)

�FC = 3

2i
〈F,↑|HSO|B1,↓〉. (4f)

Before we discuss the resulting hoppings, we make two
technical comments. First, to obtain the actual phase factors for
the matrix elements that correspond to similar atomic orbital
configurations, e.g., for 〈A,↑|HSO|a2,↓〉, one needs to employ
appropriate symmetry operations. This is already accounted
for in the SOC Hamiltonian HSO provided below. Second,
the numerical prefactors are chosen such that the expansion
of the SOC Hamiltonian near the K point is numerically
prefactor-free, when considering a system coated by adatoms
periodically (forming a supercell).

Let us discuss the two terms in Eqs. (4a) and (4b). Those
are sublattice-resolved local intrinsic SOCs: �A

I mediates
spin-conserving hopping between fluorinated carbon A and
its six next-nearest neighbors Cnnn = {a1, . . . ,a6}, while �B

I
does the same for the nearest carbon atoms Cnn = {B1,B2,B3};
refer to Fig. 5 for the labeling. Equation (4c) describes the
local Rashba coupling that mediates the spin-flip hopping
between fluorinated carbon A and its three nearest neighbors
Cnn. The origin of the Rashba coupling, and hence of the
fixed orientation of the perpendicular z axis stems from a local
dipolar electric field that appears due to charge redistribution
caused by the fluorine chemisorption. The induced dipolar
field can also affect the spin-flip coupling between the nearest
and next-nearest neighbor sites, Cnn and Cnnn, but we do not
consider terms like 〈B1,↑|HSO|a6,↓〉 in what follows.

The three terms in Eqs. (4d)–(4f) are specific for sys-
tems with C3v structural symmetry. They are describing
spin-flip hoppings which connect the next-nearest neighbor
sites. The two terms in Eqs. (4d) and (4e) are sublattice-
resolved PIA-SOC terms, introduced already for hydrogenated
graphene [13] and silicene [38]. The acronym PIA stands
for pseudospin-inversion-asymmetry induced SOC: compared
to pristine graphene, sublattices A and B are, close to the
impurity site, not equivalent. The generally complex matrix
element 〈A,↑|HSO|ai ,↓〉 connects fluorinated carbon A with
its six next-nearest neighbors Cnnn. We have checked that the
imaginary part of this matrix element plays only a minor role in
the energy band splittings, so we set �A

PIA 	 3
2 〈A,↑|HSO|a1,↓〉

to be real in what follows. (In the dense limit, corresponding
to the fully fluorinated sublattice, this approximation becomes
exact, since the restored translational symmetry prohibits the
imaginary part �̃A

PIA [13].)
Similarly, the real SOC �B

PIA mediates spin-flip hoppings
among three nearest neighbors B1, B2, and B3. Our analysis
shows that this term is crucial for explaining the fine band
structure splittings due to adatom induced SOC. Finally,
parameter �FC describes allowed spin-flip hoppings among
the fluorine F and three Cnn carbon atoms B1, B2, and B3.
In our fitting procedure we find that for fluorine adatoms this
term is negligible.

We now give a minimal SOC Hamiltonian for a top-position
chemisorbed adatom:

HSO = i�A
I

3
√

3

∑
cj ∈Cnnn

∑
σ

[Â†
σ νij (ŝz)σσ ĉj,σ + H.c.]

+ i�B
I

3
√

3

∑
〈〈i,j〉〉

∑
σ

B̂
†
i,σ νij (ŝz)σσ B̂j,σ
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+ 2i�R

3

∑
Bj ∈Cnn

∑
σ 
=σ ′

[Â†
σ (ŝ × dAj )z,σσ ′B̂j,σ ′ + H.c.]

+ 2i�A
PIA

3

∑
cj ∈Cnnn

∑
σ 
=σ ′

[Â†
σ (ŝ × DAj )z,σσ ′ ĉj,σ ′ + H.c.]

+ 2i�B
PIA

3

∑
〈〈i,j〉〉

∑
σ 
=σ ′

B̂
†
i,σ (ŝ × Dji)z,σσ ′B̂j,σ ′

+ 2i�FC

3

∑
Bj ∈Cnn

∑
σ 
=σ ′

[F̂ †
σ (ŝ × dFj )z,σσ ′B̂j,σ ′ + H.c.]

+ iλI

3
√

3

∑
〈〈i,j〉〉

′ ∑
σ

ĉ
†
i,σ νij (ŝz)σσ ĉj,σ . (5)

The creation and annihilation operators are defined in the
discussion after Eq. (2). Symbol ŝ represents the array of
Pauli matrices acting on the spin space; the sign factor νij

equals +1 if the next-nearest neighbor hopping path j →
k → i via a common neighbor k is counterclockwise (−1 for
clockwise). Vectors dij and Dij are unit vectors in the xy plane
(perpendicular to the F − A bond) pointing from the projected
site j to i. The last term in Eq. (5) is the intrinsic SOC of
pristine graphene for which λI = 12 μeV; see Ref. [34]. We
have implemented this term for all next-nearest neighbors not
participating in SOC hoppings with the coupling constants �A

I
and �B

I ; this fact is indicated by the prime at the corresponding
summation symbol.

3. Fits to first-principles results

The fit of our tight-binding model to the first-principles
calculations of the 10 × 10 supercell of fluorinated graphene
is given in Fig. 7. Spin-orbit splittings of bands (a), (b),
and (c) from Fig. 4 are shown. The splittings reach maxima
of 0.1, 0.35, and 0.3 meV for the three (a), (b), and (c)
bands, respectively. Keeping the orbital parameters fixed we
focused on reproducing SOC induced splittings employing
the full model Hamiltonian H0 + H′ + HSO. We explored
various combinations of �’s that enter Eq. (5) to generate
a minimum robust set of parameters capable to explain
the observed SOC splittings. Minimizing the sum of least-
square differences for SOC splittings of conduction, midgap,
and valence bands along the full M-K-�-M line, we have
obtained the minimal SOC basis with �B

I = 3.3 meV, �B
PIA =

7.3 meV, and �R = 11.2 meV only; see Fig. 7. This indicates
that all remaining group-theory allowed SOC parameters in
Hamiltonian HSO, Eq. (5), can be safely omitted. For the
valence and conduction bands near the � point we observe
marked discrepancies between the tight-binding model and
first-principles calculations. The reason is the admixture of 2s

and 3d orbitals that contribute to DOS as much as 2pz orbitals
near �, i.e., at energies below −0.6 eV for the valence band
and above 0.9 eV for the conduction band; see Fig. 4. Since
our symmetry inspired effective SOC Hamiltonian accounts
for pz orbitals, discrepancies such as those around � are to be
expected. Nevertheless, it is rather remarkable that with only
three SOC parameters we are able to near perfectly match all
the characteristic features accompanying SOC splittings along
the whole M-K-�-M line for all three bands around the Fermi

0
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0.15

ΔE
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m
eV

]

0
0.1
0.2
0.3
0.4

ΔE
 [

m
eV

]

M K Γ M
0

0.1
0.2
0.3
0.4

ΔE
 [

m
eV

]

(a)

(b)

(c)

FIG. 7. (Color online) Spin-orbit splittings along the M-K-�-M
line for the conduction (a), midgap (b), and valence bands (c); refer
also to Fig. 6. First-principles data (dotted) are excellently reproduced
by the phenomenological tight-binding model (solid) given by the
Hamiltonian H0 + H′ + HSO from the text. The following orbital
and SOC parameters were used in the tight-binding model as the best
fits: T = 5.5 eV, εf = −2.2 eV, �B

I = 3.3 meV, �B
PIA = 7.3 meV, and

�R = 11.2 meV. Turning off the intra-atomic SOC of the fluorine
adatom in the first-principles calculations reduces the spin-orbit
splitting significantly (dashed line). This residual spin-orbit splitting
can be attributed to the structural local sp3 distortion caused by
fluorination.

level. Such a close agreement with first-principles results is to
some extent fortuitous, given by the almost sole pz character
of the bands around the Fermi level. At the same time it gives
us confidence in our minimal phenomenological orbital and
SOC hopping model, whose graphical representation is shown
in Fig. 5.

In addition to the 10 × 10 supercell, we have also calculated
a smaller, 7 × 7, supercell from first principles. The best-fit
tight-binding model parameters in this case are T = 6.1 eV,
εf = −3.3 eV, and �B

I = 3.2 meV, �B
PIA = 7.9 meV, and �R =

11.3 meV. These values are very close to those of the 10 × 10
supercell, further evidencing the robustness and consistency of
our minimal tight-binding model. The spin-orbit parameters
seem to be less sensitive to the supercell size than the orbital
ones. Both supercell results are summarized in Table I. The
intermediate case of a 5 × 5 supercell, which we find to be
insufficient to describe the dilute limit, and so unsuitable for
our tight-binding analysis here, is treated in the Appendix.

TABLE I. Orbital and SOC tight-binding parameters that fit the
electronic band structure of fluorinated graphene in 7 × 7 and 10 × 10
supercell configurations, respectively. The corresponding values are
relatively close for both supercells, confirming the reliability and
robustness of our phenomenological tight-binding model. The rest of
the group-theory allowed SOC parameters, as defined by Eqs. (4),
can be set to zero.

n × n T (eV) εf (eV) �B
I (meV) �B

PIA (meV) �R (meV)

7 × 7 6.1 −3.3 3.2 7.9 11.3
10 × 10 5.5 −2.2 3.3 7.3 11.2
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As in the dense limit, there are two principal causes of
the enhanced spin-orbit coupling due to fluorine adatom: sp3

hybridization of carbon orbitals (with spin orbit from the σ

bonds) and the native spin-orbit coupling of fluorine. In order to
separate and quantify these two contributions, we turned off the
intra-atomic SOC on fluorine in the first-principles calculation;
see Fig. 7. The splitting is significantly reduced, by an order
of magnitude. We conclude that sp3 distortion gives spin-orbit
splitting in magnitude a decade smaller than what is induced
by the native spin-orbit coupling of graphene. The giant
enhancement of spin-orbit coupling in graphene due to fluorine
adatoms comes almost solely from the spin-orbit coupling of
fluorine and hybridization of fluorine p orbitals with those of
carbon. To understand the microscopic mechanism of this SOC
transfer one should build a multiorbital tight-binding model
with all relevant orbitals on F, A, and B1,B2,B3 sites and then
downfold the Hamiltonian matrix to the pz orbital sector, as
was done for graphene [37,39]. Such an analysis is beyond the
scope of the present paper which aims at presenting an effective
single-orbital model, given by Hamiltonian HSO, Eq. (5), that
can be used for transport and spin relaxation studies.

In contrast, in hydrogenated graphene the microscopic
physics behind the giant enhancement of spin-orbit coupling
is sp3 bonding, as shown by first-principles calculations [13].
The spin-orbit coupling comes from the carbon σ bonds,
which are split by about 10 meV at �. Part of this splitting
is transferred to the π band upon sp3 hybridization as a
hydrogen is added on top of a carbon atom. In fact, spin-orbit
splittings induced by hydrogen are similar in magnitude as
what is represented by the dashed lines in Fig. 7: compare
with Ref. [13]. The effective SOC Hamiltonian HSO, Eq. (5),
can be also employed in the hydrogenated case, for which the
most dominant SO couplings are �A

I = −0.21 meV, �B
PIA =

−0.77 meV, and �R = 0.33 meV. Comparing spin-orbit cou-
pling in pristine, hydrogenated, and fluorinated graphene, the
magnitude grows roughly from 10 μeV, 1 meV, to 10 meV,
respectively, reflecting different microscopic mechanisms be-
hind the coupling in these systems.

C. “Is fluorine on graphene a resonant scatterer?”

Hydrogen chemisorbed on graphene acts as a resonant
scatterer [6,36], giving a narrow pronounced peak in the DOS
close to the Dirac point. In Fig. 8 we plot the tight-binding
bands and DOS for hydrogenated graphene using a 40 × 40
supercell with a single hydrogen in the top position. The
midgap band, formed of pz orbitals on the nearest-neighbor
Cnn carbon is very narrow, developing the resonance peak
seen in the DOS. As the supercell size grows, the valence and
conduction bands merge towards the Dirac cone structure of
pristine graphene, leaving the flat midgap band almost intact.
Such resonances are predicted to have profound effects on spin
relaxation [6] and spin transport [40].

Fluorinated graphene in the dilute limit looks qualitatively
different from hydrogenated graphene. The calculated tight-
binding band structure of a 40 × 40 supercell is shown in
Fig. 9. We have used the same parameters as for the 10 × 10
supercell in Table I, which we believe are representative for
the dilute limit. The valence and conduction bands look similar
to the corresponding bands of pristine graphene. The Dirac

M K Γ M

-0.2

-0.1

0

0.1

0.2

E
 [

eV
]

0 100 200 300
DOS [states/eV]

FIG. 8. (Color online) Extrapolated band structure and DOS of
pristine (dashed) and hydrogenated (solid) graphene for a 40 × 40
supercell. The left panel shows tight-binding model-calculated band
structures along M-K-�-M lines. The right panel shows the corre-
sponding DOS. Tight-binding orbital parameters for hydrogenated
graphene, Th = 7.5 eV and εh = 0.16 eV, are taken from Ref. [13].
The band structure of hydrogenated graphene shows a narrow
resonant peak in the vicinity of the Dirac point.

structure is almost intact. What used to be the midgap band
(b) merges together with the conduction band (a), creating
close to the K point a superimposed band structure with
linear dispersion. The linear behavior is clearly seen at small
energies in the DOS for which the gap at K is gradually
decreasing. No resonant level is observed close to the Dirac
point. However, there are significant changes in the Dirac cone
structure occurring at energies below −0.1 eV, as seen in

M K Γ M

-0.2

-0.1

0

0.1

0.2

E
 [

eV
]

0 10 20 30 40 50 60
DOS [states/eV]

FIG. 9. (Color online) Extrapolated band structure and DOS for
the pristine (dashed) and fluorinated (solid) graphene for a 40 × 40
supercell configuration. The left panel shows model-calculated band
structures along M-K-�-M and the right panel the corresponding
DOS. Characteristic changes in DOS for the dilute fluorinated
graphene become obvious below −0.1 eV. Tight-binding orbital
parameters used in the model calculations, T = 5.5 eV and εf =
−2.2 eV, are best fits to DFT results for 10 × 10 supercell
configuration.
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Fig. 9. Here, DOS shows a multiple-peak structure due to
anticrossings of the bands.

The question arises of what would be the ultimate limit
of a single fluorine adatom on an infinite graphene sheet.
The above 40 × 40 supercell calculations indicate a broad
resonance peaked somewhere below −0.2 eV. Fortunately,
the orbital-hopping part of our Hamiltonian is analytically
solvable in the single-adatom limit, and we can calculate the
change 	ν(E) of the DOS due to a single fluorine adatom.
Considering a very low concentration η (just a prefactor) of
adatoms, a typical change in the unperturbed DOS per atom
and spin—ignoring multiple-scattering interference among
different adatom scatterers—would be given by η 	ν(E). The
tight-binding Hamiltonian (1) can be effectively downfolded,
eliminating the fluorine pz orbitals by means of the Löwdin-
Schrieffer-Wolff transformation. As a result H′ produces an
energy dependent δ-like interaction H′

fold(E) localized at the
fluorinated carbon CF,

H′
fold(E) =

∑
σ

α(E)Â†
σ Âσ , where α(E) = T 2

E − εf
. (6)

Following Ref. [41], we obtain

	ν(E) = 1

π
Im

[
α(E)

1 − α(E)G0(E)

∂

∂E
G0(E)

]
. (7)

Here, G0(E) is the Green’s function per atom and spin for the
unperturbed pristine graphene, which, within the energy range
from −0.5 eV up to 0.5 eV, can be very well approximated by

G0(E) 	 E

D2

[
ln

∣∣∣∣ E2

D2 − E2

∣∣∣∣ − iπ sgn(E)�(D − |E|)
]

, (8)

with the graphene bandwidth D =
√√

3πt 	 6 eV; see, for
example, Refs. [6,36].
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FIG. 10. (Color online) Left panel: change 	ν(E) in DOS per
atom and spin, see Eq. (7), computed for the single-impurity model
employing orbital tight-binding parameters T = 5.5 eV and εf =
−2.2 eV. The pronounced maximum appears at E 	 −0.26 eV with
FWHM 	 0.3 eV. Right panel: perturbed DOS per atom and spin
ν(E) = ν0(E) + η 	ν(E) as functions of energy for the fluorine
impurity concentration η = 0.5% (solid line). The dashed line shows
the unperturbed DOS per atom and spin near the graphene neutrality
point.

Our analytical results are shown in Fig. 10, in which
we plot 	ν(E) as well as the full DOS per atom and
spin, ν(E) = ν0(E) + η 	ν(E), as functions of energy, for
fluorinated graphene at very low concentrations. The quantity
ν0(E) describes the DOS per atom and spin of the unperturbed
graphene, ν0(E) = − 1

π
ImG0(E). To visualize the changes in

DOS we take an unrealistically large concentration (whose
effect is purely multiplicative) of η = 0.5%. From Fig. 10
we see that fluorine dominantly affects the DOS at energies
around E 	 −0.26 eV which corresponds to a pronounced
peak in 	ν(E) with the FWHM 	 0.3 eV. This gives the en-
ergy window (−0.4 eV,−0.1 eV) where we expect dominant
orbital effects of fluorine chemisorption; see also results of
Ref. [42]. There is a recent experimental evidence [43], based
on electron-hole asymmetry in transport, indicating resonant
scattering due to fluorination, but further studies are certainly
called for.

IV. CONCLUSIONS

We studied, from first principles, the electronic struc-
ture and spin-orbit splitting of spin unpolarized fluorinated
graphene. Two important limits were covered: a dense limit,
represented by a 1 × 1 supercell with a single fluorine in the top
position in the cell, and a dilute limit, represented by a 10 × 10
supercell, also with a single top-positioned fluorine adatom.
We further looked at the intermediate case of a 5 × 5 supercell,
to contrast differences with the case of hydrogenated graphene.
All our investigated structures were structurally relaxed.

For the dilute limit we introduced a single-orbital tight-
binding (hopping) Hamiltonian that very nicely reproduces
the first-principles results. The orbital part of the Hamiltonian
is based on the changes of the adatom energy and includes
also hopping between the fluorine and fluorinated carbon. The
spin-orbit part includes the usual intrinsic (spin-conserving
next-nearest neighbor) and Rashba (spin-flip nearest neighbor)
hoppings, as well as new PIA hoppings which describe spin-
flip paths between next-nearest neighbors. We give a specific
description of the Hamiltonian and the complex phases of the
hoppings, as well as best fits to the DFT obtained spin-orbit
spin splittings. We also use our tight-binding Hamiltonian
to investigate superlarge supercells (40 × 40) to search for
band structure resonances due to fluorine adatoms. Using
nonperturbative analytical calculations we also obtain what
would be a single-adatom representation of the changes in
the density of states. We believe that our tight-binding model
Hamiltonian is reliable to explain the physics near the Fermi
level of fluorinated graphene and can be used in quantum
transport simulations that involve orbital and spin-orbit effects,
say momentum and spin relaxation, charge and spin transport,
or the spin Hall effect.

We draw several conclusions from our investigations. (i)
Fluorine induces a giant spin-orbit coupling, an order of
magnitude greater than hydrogen. This is evidenced directly
by the dense limit results, but also by the magnitudes of the
obtained fits to our tight-binding model. (ii) The enhancement
of spin-orbit coupling is not principally due to the σ − π

hybridization induced by structural deformation, as in the
case of hydrogen. In fact, the giant enhancement of SOC
on graphene band structure due to fluorine adatoms comes
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from the native spin-orbit coupling of fluorine, and its orbital
hybridization with carbon. (iii) Fluorine adatoms are only
weak or marginal resonant scatterers. The resonant peak in the
density of states lies 260 meV below the Dirac point. The peak
is about 300 meV broad. This again contrasts with hydrogen
adatoms which are perfect examples of narrow resonance
scatterers at the Dirac point.
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APPENDIX: INTERMEDIATE LIMIT: 5 × 5 SUPERCELL

In what follows we summarize our findings for the
intermediate limit of a 5 × 5 supercell, which lies in between
the dense and dilute ones. For hydrogenated graphene [13]
such a supercell is already large enough to represent dilute
coverage. Our 5 × 5 supercell is fully relaxed, with the lattice
constant 12.297 Å, which differs by 0.2‰ from the same-size
pure graphene supercell lattice constant (12.3 Å). Bader charge
analysis shows that fluorine acquires a negative charge of
0.518e. In contrast, for the hydrogenated case there is almost
zero charge transfer to hydrogen. In Fig. 11 we show the
calculated electronic band structures for the fluorinated and
hydrogenated graphene for comparison. In both cases one
sees a formation of the midgap states around the Fermi level.
However, the bandwidth of 0.6 eV for the fluorinated graphene
is much larger than for hydrogenated graphene, for which the
bandwidth is less than 0.1 meV [13].

The DOS for selected atoms in the vicinity of fluorine are
shown in Fig. 12. Orbital resolved analysis shows a significant
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FIG. 11. Calculated electronic band structures of fluorinated
(left panel) and hydrogenated (right panel) graphene within 5 × 5
supercell configurations. Three bands (a), (b), and (c) correspond to
the conduction, midgap, and valence band, respectively, as in the main
text. Formation of the midgap state around the Fermi level dominates
both band structures. However, for hydrogenated graphene this band
is hardly dispersive, giving the pronounced resonance at the Dirac
point.
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FIG. 12. (Color online) Calculated orbital resolved atomic DOS
for fluorinated graphene in a 5 × 5 supercell. The orbital resolved
DOS is shown for the fluorine atom F, fluorinated carbon CF, and its
nearest, next-nearest, and next-next-nearest neighbors, Cnn, Cnnn, and
Cnnnn, respectively.

contribution of pz orbitals to the states in the studied energy
window around the Fermi level. The spatial distribution of
the pz orbitals can be visualized by the electronic density
ρ(r) = ∑

n,k |φk
n (r)|2. In Fig. 13 we show a top view of the

electronic density summed over the Kohn-Sham eigenstates φk
n

including eigenstates with energies εk
n lying within the energy

window εmin = −0.2 eV and εmax = 0.6 eV with respect to the
Fermi level. The dashed line in the main figure corresponds to
the cross-sectional view shown in Fig. 13. From the plot one
sees that the midgap state represents a strongly delocalized
state mostly situated on the “nonfluorinated” sublattice (i.e.,
sublattice B, fluorinated carbon CF is on sublattice A). The
appearance of such a delocalized state indicates that a 5 × 5
supercell is not large enough to represent the dilute fluorination
limit, since there is still significant fluorine interaction among
the periodic images.

We find that sublattice B is the main contributor to the
midgap DOS (80%). The fluorine atom and the carbon atoms
at sublattice A account for only 10% each. In the valence band

FIG. 13. (Color online) Top view of the valence charge density
plot of fluorinated graphene on a 5 × 5 supercell. The charge density
was obtained by summing the absolute squares of the Kohn-Sham
states lying in the energy interval between −0.2 eV and 0.6 eV.

The dark (orange) surface is the isovalue of 0.002 Å
−3

and the light

(yellow) one corresponds to 0.001 Å
−3

. Dashed lines represent the
cross-sectional view shown in the bottom right.
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FIG. 14. (Color online) SOC splittings for the conduction (a),
midgap (b), and valence (c) bands with respect to the Fermi
level of the intermediately fluorinated 5 × 5 system. Dashed lines
are representing the SOC splittings without the intra-atomic SOC
contributions from the F atom. For comparison the SOC splittings
of the hydrogenated 5 × 5 system are provided by the dashed-dotted
lines.

at −0.6 eV, sublattice B represents 54%, sublattice A 36%,
and fluorine 10% of the local DOS. This decomposition can
be seen in Fig. 12 where the orbital resolved DOS for F, CF,

and all carbon atoms (Cnn, Cnnn, and Cnnnn) up to the third
nearest neighbors of CF are provided.

A large—predominantly pz—contribution to the midgap
states comes from the fluorine atom with 0.5 states/eV; see
the first panel in Fig. 12. Atoms Cnn and Cnnnn belonging to
the sublattice B, both carry mainly pz character and contribute
equally to the valence band edge at −0.6 eV and the midgap
level. Their DOS is very similar in shape and value. The DOS at
fluorinated carbon CF has a more complex composition (visible
also in the inset of Fig. 13), where pz, s, and d characters are
identified, but they sum up only to 0.09 states/eV. The overall
contribution of CF within the energy region from −2 eV to 2
eV is very low. The DOS contribution from Cnnn carbons at
sublattice A is negligible for the midgap and the valence band
edge and also possesses mainly pz character. The conduction
band at energies above 0.8 eV has mainly pz character for all
the atoms analyzed in Fig. 12.

Finally, Fig. 14 shows the absolute values of spin-orbit
splittings for the conduction (a), midgap (b), and valence
(c) bands. The largest splittings range from 0.26 meV for
the conduction band, via 0.6 meV for the midgap band,
up to 1.1 meV for the valence band. If we turn off the
intra-atomic SOC on fluorine, the splittings are drastically
reduced, essentially to the hydrogenated graphene level. This
nicely demonstrates the limit of what spin-orbit splittings can
be achieved by sp3 bonding. If a larger splitting is observed,
the spin-orbit coupling comes most likely from the adatom
itself, not from the host graphene lattice.
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and B. Özyilmaz, Nat. Phys. 9, 284 (2013).

[15] O. Leenaerts, H. Peelaers, A. D. Hernández-Nieves, B. Partoens,
and F. M. Peeters, Phys. Rev. B 82, 195436 (2010).

[16] J.-C. Charlier, X. Gonze, and J.-P. Michenaud, Phys. Rev. B 47,
16162 (1993).

[17] Y. Takagi and K. Kusakabe, Phys. Rev. B 65, 121103
(2002).

[18] R. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A. V.
Krasheninnikov, T. Thomson, A. K. Geim, and I. V. Grigorieva,
Nat. Phys. 8, 199 (2012).

[19] X. Hong, S.-H. Cheng, C. Herding, and J. Zhu, Phys. Rev. B 83,
085410 (2011).

[20] X. Hong, K. Zou, B. Wang, S.-H. Cheng, and J. Zhu, Phys. Rev.
Lett. 108, 226602 (2012).

[21] H.-J. Kim and J.-H. Cho, Phys. Rev. B 87, 174435 (2013).
[22] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett.

100, 146401 (2008).
[23] S. Casolo, E. Flage-Larsen, O. M. Løvvik, G. R. Darling, and

G. F. Tantardini, Phys. Rev. B 81, 205412 (2010).
[24] F. Yndurain, Phys. Rev. B 90, 245420 (2014).
[25] J. O. Sofo, A. M. Suarez, G. Usaj, P. S. Cornaglia, A. D.

Hernández-Nieves, and C. A. Balseiro, Phys. Rev. B 83,
081411(R) (2011).

[26] A. V. Okotrub, I. P. Asanov, N. F. Yudanov, K. S. Babin, A. V.
Gusel’nikov, T. I. Nedoseikina, P. N. Gevko, L. G. Bulusheva,
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