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1 

Chapter 1 

1 Introduction 

Introduction 

1.1 G-protein coupled receptors 

There are approximately 20,000–25,000 protein encoding genes in the human genome 

(Pennisi, 2012). The number of both, disease modifying and “druggable” genes (Rask-

Andersen et al., 2014), was estimated to be in the range of 3000 for each group (Hopkins and 

Groom, 2002), with an overlap, representing potential drug targets (Rask-Andersen et al., 

2011), of about 600 to 1500 genes (Hopkins and Groom, 2002). G-protein coupled receptors 

(GPCRs) represent the most important class of biological targets (Figure 1.1) of the currently 

approved drugs (~30 %) and are considered as promising targets for the discovery and 

development of future drugs as well (Jacoby et al., 2006). About 800 GPCRs are encoded in 

the human genome. As a kind of molecular switches, GPCRs play a major role in signal 

transduction from the outside into the cell. Signals may be external sensory stimuli or 

molecules emitted from other cells (cellular communication, e. g., neurotransmission). Various 

signals such as photons, ions, biogenic amines, purines, lipids, nucleic acid derivatives, 

peptides and proteins (Jacoby et al., 2006) are recognized by GPCRs which include 388 

olfactory receptors and roughly 400 receptors recognizing hormones, neurotransmitters and 

other endogenous ligands (Pawson et al., 2014). 

 

Figure 1.1: Number of 
human targets, measured by 
the number of distinct 
human UniProt entries: 
enzymes, catalytic receptors 
(enzyme-linked receptors); 
transporter, GPCRs (without 
olfactory receptors), VGICs 
(voltage-gated ion channels); 
LGICs (ligand-gated ion 
channels); other ICs (other ion 
channels), NHRs (nuclear 
hormone receptors) and other 
proteins. Adapted from the 
IUPHAR DB (Pawson et al., 
2014) on 05.11.2014 
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2 1.1 G-protein coupled receptors 

1.1.1 GPCR classes 

GPCRs (Davenport et al., 2013; Foord et al., 2005) are subdivided into families (classes A-F). 

All proteins that were proven to bind G-proteins were included and the remaining 7TM 

receptors were assigned to the O (Other) family (Kolakowski, 1994). The well-known system 

of the International Union of Pharmacology (IUPHAR) is similar with the exception that the 

Frizzled class is referred to as a separate family instead of being included in family O (Foord 

et al., 2005; Kolakowski, 1994), dividing GPCRs into classes A-C, Frizzled GPCRs, Other 7TM 

proteins and Adhesion GPCRs (Figure 1.2;(Fredriksson et al., 2003; Pawson et al., 2014). 

 

Figure 1.2: Members of 
different GPCR classes (A 
(without olfactory receptors), 
B, C, Frizzled, Other and 
Adhesion). Numbers in 
parentheses indicate orphan 
GPCRs included in the figure. 
Adapted from the IUPHAR DB 
(Pawson et al., 2014) on 
05.11.2014. 

Class A, also called the Rhodopsin-like family, represents the largest class, comprising more 

than 75 % of all GPCRs (Figure 1.2). It is a very heterogeneous group of GPCRs with a highly 

conserved short N-terminus and differently conserved motifs within the TMs, for example the 

DRY motif in TM3, the FxxCWxP motif in the middle of TM6, the NPxxY motif at the bottom of 

TM7 and the disulphide bond forming cysteines in TM3 and ECL2. All in all the conservation 

in TM regions is very low (Lagerström and Schiöth, 2008). Class A of GPCRs is subdivided 

into four groups (α, β, γ and δ). Receptors of biogenic amines such as adrenaline, dopamine, 

serotonin or histamine, belong to group α. 

Characteristic of the small Secretin family (class B) is an extracellular hormone-binding 

domain, a disulphide bond between two cysteine residues in ECL1 and ECL2 as well as a 

relatively long N-terminus with three cysteines (Lagerström and Schiöth, 2008). 

The Glutamate family is assigned to class C of GPCRs. Typical for this class is a long 

N-terminus, which is the region where the endogenous ligand is bound according to the so-

called Venus flytrap mechanism (VFTM). Like in most GPCRs the disulphide bond between 

ECL1 and ECL2 is present (Lagerström and Schiöth, 2008). 

Long highly glycosylated and diverse N-termini, a GPCR proteolytic site (GPS) as well as 

conserved cysteines in ECL1 and ECL2 are characteristic of the Adhesion family (Lagerström 

and Schiöth, 2008). 
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The less characterized Frizzled GPCR class consists of the frizzled and smoothened receptors 

(Lagerström and Schiöth, 2008). 

1.1.2 Structure of G-protein coupled receptors 

The first high resolution crystal structure of a GPCR, the bovine rhodopsin, was published in 

2000 (Palczewski et al., 2000). Bovine rhodopsin was used as a template for homology 

modelling until the first structure of a biogenic amine GPCR, the β2 adrenoceptor (β2AR) in the 

inactive state, was published in 2007 (Cherezov et al., 2007; Rasmussen et al., 2007). As the 

stabilization of the active state proved to be particularly challenging, the resolution of the 

structure of the β2AR active state in 2011 (Rasmussen et al., 2011a) may be considered as 

the beginning of a new era of GPCR research. 

A GPCR consists of an extracellularilly located N-terminus, seven transmembrane domains, 

connected by three extracellular (ECL1-3) and three intracellular loops (ICL1-3), and an 

intracellular C-terminus, including a membrane-associated helical domain (helix 8, H8) 

(Figure 1.3;(Alexander et al., 2013). 

 

Figure 1.3: Structure of the 
human histamine H4R in the 
active state. Homology model 
was generated based on the 
nanobody stabilized active state 
of the β2AR (PDB (Protein Data 
Bank) ID: 3P0G) as template 
(Rasmussen et al., 2011a). The 
surface illustrates the binding 
pocket region. 
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GPCRs are embedded in the membrane lipids and the binding pocket (orthosteric site, in 

Figure 1.3 illustrated as surface) is formed by extracellular parts of the TMs as well as by ECL2 

on top of the binding pocket (Granier and Kobilka, 2012). GPCR function can be modulated by 

ligand binding to allosteric sites, which are less conserved than orthosteric sites as 

demonstrated by X-ray structures of muscarinic acetylcholine receptor subtypes 

(Christopoulos, 2014; Granier and Kobilka, 2012; Haga et al., 2012; Kruse et al., 2012; Kruse 

et al., 2014; Kruse et al., 2013). 

1.1.3 Function of G-protein coupled receptors 

A GPCR toggles between both the inactive and active state (Figure 1.4). An agonist elicits a 

biological response by stabilizing the receptor in the active state Ra (Figure 1.4 and Figure 1.5). 

The intrinsic activity of partial agonists ranges from 0 to 100 %. Partial agonists are ligands not 

capable of producing the maximal response. This is in agreement with the idea that partial 

agonists stabilize the active state less effective than full agonists (Kenakin, 2001). 

A neutral antagonist (intrinsic activity = 0 %) neither activates nor inhibits the receptor, i. e., 

the basal equilibrium between both active Ra and inactive Ri states remains unaltered. A 

neutral antagonist is capable of competing with both agonists and inverse agonists for 

orthosteric binding. 

Considering constitutive activity as a prerequisite, an inverse agonist decreases the elevated 

level of basally activated receptors by stabilizing the inactive state (Kenakin, 2004). 

Differentiation between full and partial inverse agonists is possible, enabling full inverse 

agonists to stabilize the inactive state Ri more effectively (α ≤ -100 %) than partial inverse 

agonists (0 > α > -100 %). In terms of intrinsic activity, the responses to GPCR ligands are 

referenced to the maximal effect produced by the endogenous ligand as the standard agonist 

(e. g. histamine in case of the H4R, i. a. = 100 %). Therefore, depending on the basal activity 

of the GPCR of interest in the respective assay, the intrinsic activity of a full inverse agonist 

can by definition be lower than -100 %. (Seifert and Wieland, 2005). 

 

Figure 1.4: Two state 
model of a GPCR. The 
receptor toggles between the 
inactive state Ri and the 
active state Ra. Adapted from 
Seifert and Wenzel-Seifert 
(2002). 
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Figure 1.5: Effects of 
ligands with different 
intrinsic activities shown 
as concentration-response 
curves. [35S]GTPγS assays 
were performed with different 
H4 receptor species 
orthologs. Modified from 
Seifert and Wieland (2005). 

1.1.4 Models of ligand binding and G-protein coupling 

1.1.4.1 Classical model 

Binding of ligand A to a receptor R is described by the Langmuir adsorption isotherm according 

to Clark (1933) and Clark (1937) (Equation(1.1): 

ρ =
[AR]

[Rt]
=  

[A]

[A]  +  KA
 (1.1) 

Herein, AR is referred to as the ligand bound receptor, Rt corresponds to the total number of 

receptor sites and KA to the equilibrium dissociation constant (Ka to the equilibrium association 

constant) of the agonist receptor complex. ρ describes the fraction of ligand bound and total 

receptor concentration (Kenakin, 2009). 

Different modifications, introduced by Ariens (1954), Stephenson (1956) and Furchgott (1966) 

led to the assumption (Equation(1.2): 

 

(1.2) 

The term ε, referring to the agonist-specific term intrinsic efficacy, and the total concentration 

of receptors [Rt] were introduced in the binding function (Equation(1.3): 

Response = f (
[A]

[A] + KA
× ε × [Rt]) (1.3) 

1.1.4.2 Operational model 

The “operational” model, developed by Black and Leff (1983), improved the model describing 

the relationship between agonist concentration and response (Kenakin, 2009). The 

assumption of one ligand binding to one receptor is valid. 
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The response is dependent on the agonist concentration [A], KA, т (power of the agonist to 

produce response) and Emax (maximal response of the system). Both Emax and т are receptor 

and system dependent (Equation(1.4): 

response =  
[A] ×  τ × Emax

[A] × (τ + 1) +  KA 
 (1.4) 

High levels of т (e. g. 100-1000) imply a relatively high percentage of activated receptor species 

over a broad range of т. But if т → 0, the maximal response → 0. Moreover, the smaller KA 

(higher affinity), the less agonist is required to attain the same response. 

1.1.4.3 Ternary complex models 

The ternary complex model – firstly described by De Lean et al. (1980) – takes into account 

the binding of the activated receptor to membrane proteins such as G-proteins 

(Equation(1.5;(Kenakin, 2009): 

 

(1.5) 

The extended ternary complex model additionally implies the equilibrium between the inactive 

Ri and the active Ra receptor states (Figure 1.6;(Kenakin, 2009; Samama et al., 1993). 

 

Figure 1.6: Illustration of the 
extended ternary complex model. 
According to Kenakin (2009). KG: 
equilibrium dissociation constant of the 
receptor/G-protein complex and Kg: 
respective equilibrium association 
constant. 

The conversion of Ri to Ra is considered in the allosteric constant L (Equation(1.6): 

L =  
[Ra]

[Ri]
 (1.6) 

Furthermore, the terms α, referring to differences in affinity of the ligand to Ra compared to Ri, 

and γ, referring to differences in affinity of the ligand bound receptor to the G-proteins 

compared to the ligand-unbound receptor, were introduced (Kenakin, 2009). For example, an 

α or a γ value of 10 means, that the ligand has a tenfold higher affinity to Ra compared to Ri or 

ARGAR + GA + R
Ka

KGKA

Kg

ARi ARa ARaG

RaGRaRi

Ka

L Kg

G

αγKa

γKgαL

αKa

G



 Chapter 1: Introduction 7 

a tenfold higher affinity of the ligand-receptor complex to G-proteins compared to the ligand-

free receptor. 

The fraction ρ (Equation(1.7) of the two G-protein activated receptor species [RaG] and [ARaG] 

and the total receptor population is given as: 

ρ =  

L × [G]

KG
 (1 +

α × γ × [A]

KA
)

[A]

KA 
 (1 + α × L (1 +

γ × [G]

KG
)) + L (1 +

[G]

KG
) + 1

 (1.7) 

The terms α and γ define the intrinsic activity (Kenakin, 2004). If a ligand binds with high affinity 

to the active state of the receptor (α > 1) and this ligand-bound receptor binds to G-proteins 

with high affinity (γ > 1), the ligand will be an agonist with positive intrinsic activity. By contrast, 

α and γ < 1 means that the ligand preferentially stabilizes the inactive state of the receptor with 

high affinity and the affinity of the ligand-bound receptor to G-proteins decreases. The 

corresponding quality of action becomes obvious in a functional system with constitutive 

activity, and the respective ligand is referred to as an inverse agonist. 

Further refinements were made with the cubic ternary complex model (Figure 1.7), taking into 

account the interaction of inactive receptor states (Ri and ARi) with G-proteins (Kenakin, 2009; 

Weiss et al., 1996a; Weiss et al., 1996b; c). 

 

Figure 1.7: Cubic ternary complex model, 
according to Kenakin (2009). β: effect of receptor 
activation on the coupling of G-protein to the 
receptor (effect of G-protein coupling on receptor 
activation); δ: constant describing the synergism 
between receptor activation, G-protein coupling or 
the binding of a ligand. 

1.1.5 Constitutive activity of GPCRs 

Constitutive activity describes the ability of a GPCR to spontaneously produce a cellular 

response in the absence of a ligand (Lefkowitz et al., 1993). So far, constitutive activity has 

been observed for more than 60 wild-type GPCRs and several disease-causing mutants 

(Seifert and Wenzel-Seifert, 2002). 
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The higher the constitutive activity of a GPCR, the more the basal equilibrium between inactive 

and active state is shifted towards the active state. Therefore, the amplitude of the response 

elicited by a full agonist is lower at a constitutively active receptor compared to a GPCR devoid 

of constitutive activity (Kenakin, 2004). Inversely, the maximum effect of an inverse agonist 

increases with the level of constitutive activity of the receptor of interest. The hallmarks of a 

constitutively active receptor are a high basal activity, a high intrinsic activity and potency of 

partial agonists and a high inverse agonistic effect of inverse agonists (Seifert et al., 1998). 

The phenomenon of constitutive activity can be derived from the extended ternary complex 

model (Equation(1.8;(Kenakin, 2004; 2009): 

 

(1.8) 

1.1.6 Signal transduction 

GPCRs may be considered as molecular switches transferring extracellular signals to 

intracellular responses. Conformational changes from inactive to active state(s) allow for 

activation of signal transducers, i. e., effectors such as G-proteins (Chapter 1.1.6.2) or 

β-arrestins (Chapter 1.1.6.3) (Granier and Kobilka, 2012). 

1.1.6.1 Structure of G-proteins and G-protein cycle 

Currently, 16 different Gα G-protein subunits as well as 5 Gβ and 12 Gγ subunits are known 

(Cabrera-Vera et al., 2003; Downes and Gautam, 1999). In G-proteins not activated by a 

GPCR, the GDP-bound Gα subunit is combined with the Gβγ-dimer to form a heterotrimeric 

complex (Figure 1.8 and Figure 1.9;(Hurowitz et al., 2000). Both the Gα as well as the Gβγ 

subunit are attached to the membrane via lipid anchors (Chen and Manning, 2001; Dupre et 

al., 2009). Binding of a ligand to a GPCR gives a ternary complex consisting of the agonist-

bound active receptor and the nucleotide free Gα and Gβγ subunit (Bünemann et al., 2003; 

De Lean et al., 1980; Kling et al., 2013; Ratnala and Kobilka, 2009). Upon Gα activation by a 

GPCR, GDP is released and replaced by GTP, and Gα (Figure 1.10) dissociates from Gβγ 

(Rasmussen et al., 2011b). Gα and Gβγ have their own effectors and influence the levels of 

second messengers (Tuteja, 2009). The active state of the Gα subunit is switched off by the 

intrinsic GTPase activity to give inactive GDP-bound Gα, which re-associates with Gβγ. 

Regulators of G-protein signalling (RGS proteins; GTPase activating proteins, GAPs) can 

enhance the activity of the GTPase (Neitzel and Hepler, 2006; Wieland et al., 2007; Willars, 

2006). 

RaGRaRi
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Figure 1.8: G-protein cycle, turned on by histamine H4 receptor stimulation as an example. Gαi1 
is coloured in green, the Gβ1 subunit in turquoise, the Gγ2 subunit in pink and the adenylyl cyclase (AC) 
in blue. The following crystal structures were used: inactive heterotrimeric complex of Gαi1 and Gβ1γ2 
(PDB ID: 1GG2 (Wall et al., 1995)), active Gαi1 (PDB ID: 1GIA (Coleman et al., 1994)), adenylyl cyclase 
(1CUL (Tesmer et al., 2000)); hH4R was generated as a homology model with the active state of the 
β2AR (PDB ID: 3P0G (Rasmussen et al., 2011a)) as template. Modified from Gilman (1987) and 
Rasmussen et al. (2011b). 
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Figure 1.9: Crystal structure 
of heterotrimeric G-proteins 
Gαi1 and Gβ1γ2. PDB ID: 
1GG2 (Wall et al., 1995). Gαi1 
is coloured in green, Gβ1 in 
turquoise and Gγ2 in pink. The 
bound GDP is illustrated as 
sticks. 

 

Figure 1.10: Crystal 
structure of Gαi1 in the active 
state. The non-hydrolysable 
GTP analogue GTPγS is 
bound to the Gαi1 subunit. 
PDB ID: 1GIA (Coleman et al., 
1994). 

1.1.6.2 Functions of different G-protein subtypes 

According to the α subunits, G-proteins are usually divided into four families: Gs, Gi/o, Gq/11 and 

G12 (Downes and Gautam, 1999). Activation of Gαs, for instance mediated by the histamine 

H2R, leads to an increase in the production of 3’,5’-cyclic adenosine monophosphate (cAMP) 

by the adenylyl cyclase (AC) (Figure 1.11;(Liu et al., 2003; Neves et al., 2002). By contrast, 

the stimulation of Gαi/o-coupled receptors such as the H3R and H4R results in an inhibition of 

the AC activity and a decreasing cAMP level (Figure 1.11;(Neves et al., 2002). cAMP 

stimulates many kinases, most prominently the protein kinase A (PKA), which is capable of 

phosphorylating numerous substrates, including the cAMP response element binding protein 

(CREB) (Birnbaumer, 2007; Hur and Kim, 2002).  
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Although the term inhibitory G protein (Gi) was initially derived from the inhibitory effect on the 

AC, members of the Gαi family reveal also signal transmission via the Gβγ-subunit (Khan et 

al., 2013), e. g., by activation of phospholipase C- (PLC-;(Harden et al., 1987)) (Figure 1.11). 

Moreover, K+ channels are activated and inactive Ca2+ channels are stabilized resulting in 

hyperpolarization and inhibition of excitation. Kinase (Akt) pathways are activated via the 

stimulation of PI3K (phosphatidylinositol-3-kinase) and formation of the second messenger 

PIP3 (phosphatidylinositol-3,4,5-trisphosphate) (Hur and Kim, 2002). Activation of PLC-β2 and 

3 induces synthesis of the second messengers IP3 (inositol-1,4,5-trisphosphate) and DAG 

(1,2-diacylglycerol) (Hokin and Hokin, 1955; Hokin and Hokin, 1953). Whereas DAG activates 

the PKC directly, IP3 increases the intracellular calcium level (Berridge et al., 1983) and 

therefore indirectly activates the PKC (Birnbaumer, 2007). 

Gαq/11-coupled receptors such as the H1R activate PLC-β1 and 4 (Wu et al., 1992) cleaving 

PIP2 (phosphatidylinositol-4,5-bisphosphate) to give IP3 and DAG (Birnbaumer, 2007; Neves 

et al., 2002) (Figure 1.11). 

 

Figure 1.11: Signalling pathways of GPCRs, exemplified by the histamine receptor subtypes H1R-
H4R. Gα proteins are marked in green, the Gβ-subunit in turquoise and the Gγ-subunit in pink; enzymes 
are highlighted in blue, except for kinases (orange), and ion channels are marked in yellow ochre. 
Modified from Steinhilber et al. (2005) and Aktories et al. (2006). 

1.1.6.3 β-arrestin-mediated GPCR internalization and signalling 

Out of four different known isoforms of arrestins, two arrestins are expressed in the retina 

(“visual arrestins”) and two “non-visual” arrestins were identified, namely β-arrestin1 and 2 
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(Luttrell and Gesty-Palmer, 2010). β-arrestins are capable of both directly influencing diverse 

signalling pathways (e. g. protein kinases) as well as of modifying the number of active 

receptors by the internalization and downregulation machinery (Luttrell and Lefkowitz, 2002; 

Shenoy and Lefkowitz, 2011). In particular, continuous stimulation of a GPCR by an agonist 

implies a β-arrestin mediated desensitization (Hanyaloglu and von Zastrow, 2008). In the first 

step of this process the receptor is phosphorylated by GRKs (G-protein coupled receptor 

kinases) (Figure 1.12), a class of enzymes comprising seven different subtypes (Luttrell and 

Lefkowitz, 2002; Ribas et al., 2007; Watari et al., 2014). In detail, GPCRs are preferentially 

phosphorylated at serine and threonine residues in ICL3 and the C-terminus. Phosphorylation 

increases the affinity of β-arrestins to the receptor; β-arrestin binding precludes further coupling 

of G-proteins to the receptor. Unlike the visual arrestins, β-arrestins additionally contain clathrin 

and β2-adaptin (AP2 complex) binding motifs and are therefore involved in the processes of 

endocytosis, resensitization and downregulation (Goodman et al., 1996). Inhibiting the function 

of the GTPase dynamin (Zhang et al., 1996), being responsible for the endocytosis via clathrin-

coated pits, prevents the internalization of GPCRs. After endocytosis, the receptor is either 

recycled or degraded in lysosomes, depending on the duration of β-arrestin binding to the 

receptor. If β-arrestins dissociate from the receptor upon endocytosis (e. g. β2AR), the receptor 

is preferentially recycled to the plasma membrane (class A β-arrestin recruitment). However, 

in case that the receptor (e. g. V2R) remains bound to β-arrestin, the receptor is most probably 

degraded (class B β-arrestin recruitment) (DeWire et al., 2007; Gurevich and Gurevich, 2006; 

Luttrell, 2008).  

Apart from the internalization process, β-arrestins can directly modulate several effector 

proteins such as ERK (extracellular signal-regulated kinase), a MAPK (mitogen-activated 

protein kinase), and can activate PI3K or inhibit the transcription factor NFκΒ by activation of 

IκΒ (Figure 1.12;(Reiter et al., 2012; Shenoy and Lefkowitz, 2011). 

According to the concept of “functional selectivity” or “biased signalling”, depending on the 

bound ligand, the receptor should be capable to activate, either G-proteins (G-protein biased 

ligand) or β-arrestins (β-arrestin biased ligand). Ligands causing the GPCR-mediated 

activation of both, G-proteins and β-arrestins, are referred to as balanced ligands (Reiter et al., 

2012). 
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Figure 1.12: β-arrestin-mediated desensitization and signalling of GPCRs. On the one hand, 
agonist binding to a GPCR, e. g., histamine to the hH4R, initiates G-protein dependent signalling. On 
the other hand, activated receptors are specifically phosphorylated (red) by GRKs (dark green). This 
phosphorylation increases β-arrestin recruitment (brown) to the receptor and precludes further G-protein 
activation. β-arrestin links the receptor to the internalization machinery of clathrin (blue) and clathrin 
adaptor (AP2, pink) leading to a dynamin-dependent (grey) receptor internalization via “clathrin coated 
pits”. In the endosomes, the receptor is either degraded in lysosomes or agonist dissociation is facilitated 
by the low pH in the endosome leading to the dissociation of β-arrestin. The receptor is 
dephosphorylated and recycled to the plasma membrane. Besides, β-arrestins influence many signalling 
pathways such as ERK, PI3K or NFκΒ. Downregulation modified from Gurevich and Gurevich (2006) 
and β-arrestin signalling from Reiter et al. (2012). 

1.2 Histamine and histamine receptors 

1.2.1 Historical perspective of histamine 

Histamine was firstly synthesized by Windaus and Vogt from histidine (Windaus and Vogt, 

1907). Three years later, Sir Henry Dale and his colleagues isolated histamine from the mould 

ergot in the Wellcome Laboratories (Dale and Laidlaw, 1910). Subsequently, Dale and Laidlaw 

performed studies on the physiological effects of histamine. When injected into animals, 
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histamine caused contractions of smooth muscles in the gut and the respiratory tract, 

vasodepression, increase in cardiac contractility and a shock-like syndrome (Dale and Laidlaw, 

1910; 1911; 1919; Parsons and Ganellin, 2006). In 1927, histamine was identified as an 

endogenous substance in the lung and liver (Best et al., 1927). 

The finding that histamine induced anaphylaxis and was involved in allergies inspired the 

search for compounds antagonizing the pathological effects of histamine. The first 

antihistamines blocking the action of histamine in an anaphylactic reaction were identified in 

the 1930s (Bovet and Staub, 1937; Fourneau and Bovet, 1933). 

1.2.2 Histamine: occurrence and metabolism 

Stored in vesicles (granules), histamine predominates in mast cells (Riley and West, 1952), 

basophils (Falcone et al., 2006) and thrombocytes. Herein, histamine forms an ionic interaction 

with the acidic mucopolysaccharid heparin. Besides, histamine is stored in enterochromaffin-

like cells in the gastric mucosa (Prinz et al., 2003) and acts as a neurotransmitter of 

histaminergic neurons (Dy and Schneider, 2004). 

Histamine features two basic groups with the amine moiety in the side chain being more basic 

(pKa2 = 9.4) than the nitrogen in the imidazole ring (pKa1 = 5.8). Under physiological conditions 

(pH = 7.4), the monocationic form (amine in the side chain protonated) predominates 

(Figure 1.13). However, the monocation is not a single molecular entity, since the imidazole 

ring can undergo 1,3-tautomerism. In aqueous solution the Nτ-H-tautomer is preferred 

compared to the Nπ-H-nitrogen tautomer (Figure 1.13;(Ganellin, 1973). 

 

Figure 1.13: 1,3-Tautomerism of imidazole 
ring in the histamine monocation. 

Histamine is a biogenic amine, synthesized from the amino acid L-histidine by the L-histidine-

decarboxylase (HDC) (Figure 1.14;(Beall and Vanarsdel, 1961). Whereas special transporters 

are known for catecholamines or serotonin, histamine re-uptake was reported to be mediated 

by organic cation transporters (OCTs;(Gründemann et al., 1999; Schneider et al., 2011; 

Schneider et al., 2005). The main route of biotransformation and the only one in brain is the 

Nτ-methylation by histamine-N-methyltransferase (HNMT;(Weinshilboum et al., 1999) prior to 

oxidation by aldehyde dehydrogenase and xanthine oxidase. The second route of inactivation 

leads to 1-ribosyl-imidazole-4-acetic acid by oxidation and ribosylation (Beall and Vanarsdel, 

1961). 
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Figure 1.14: Histamine synthesis and metabolism. Modified from Aktories et al. (2006). 

1.2.3 Histamine receptor subtypes and ligands 

1.2.3.1 Homologies between the four histamine receptor subtypes 

Whereas the hH3R is highly related to the hH4R (41 % sequence identity; Table 1.1;(Hough, 

2001; Leurs et al., 2009), the first two histamine receptor subtypes share a relatively low 

sequence homology to the hH3R and hH4R (18-22 % sequence identity; Table 1.1;(Leurs et 

al., 2009; Lovenberg et al., 1999). For example, the hH1R is more similar to the muscarinic 

receptors (De Backer et al., 1993), and the hH2R shares a higher level of sequence identity 

with the 5-HT4R or the D2R-like family than with hH3R and hH4R (Vassilatis et al., 2003). 
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Table 1.1: Homologies (%) between the four human histamine receptor subtypes hH1R, hH2R, 
hH3R and hH4R. 

 

Receptor 
 

hH1R 
 

hH2R 
 

hH3R 
 

hH4R 
 

hH1R 100    

hH2R 25 100   

hH3R 21 21 100  

hH4R 22 18 41 100 

Sequence alignment was performed with Clustal-X 2.1 together with about 80 class A GPCRs. Identities 
between histamine receptor subtypes hH1R-hH4R were calculated and the number of identical amino 
acids were divided by the number of amino acids of the respective shorter sequence. 

1.2.3.2 Key amino acids of the four histamine receptor subtypes 

All histamine receptor subtypes feature the highly conserved residues among class A GPCRs 

(grey;(Mirzadegan et al., 2003), the conserved disulphide bond forming cysteine residues in 

TM3 and ECL2 (yellow;(Strader et al., 1994) as well as the DRY motif (DRF motif in H3R), the 

FxxCWxP and the NPxxY motif (green; Figure 1.15). The presence of an acidic residue at the 

bottom of TM6 (D/E6.30) enables the H1R, H2R and the H3R, unlike the H4R (A2986.30), to form 

an ionic lock. Besides, the acidic D3.32, a very important residue for ligand binding (Gantz et 

al., 1992; Ohta et al., 1994; Shin et al., 2002), and Y6.51 are highly conserved. The in ECL2 

located FF motif is highly conserved in case of the H3R and H4R, but replaced by FY in the 

H1R and VQ in the H2R. S5.43, present in case of the H3R and H4R, is replaced by A at the H1R 

and G at the H2R. Position 5.46 (E in H3R and H4R, N in H1R and T in H2R) has been proven 

to be very important for ligand binding, in particular in case of agonists (Gantz et al., 1992; 

Ohta et al., 1994; Shin et al., 2002; Uveges et al., 2002). In TM7, residues, which are probably 

also involved in ligand binding and activation, are only poorly conserved: This is, e. g., the case 

for the basic R3417.36 at the hH4R, which is replaced by an acidic E at the hH3R and neutral 

residues (M and A) at the hH1R and hH2R, respectively. 
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                                            N-term                                                                                                                                                                             TM1                                                                            ICL 1                                                                      TM2                                                                                        n 
hH1R ------MSLPNSSCLLEDKMCEGNKTTMASP--QLMPLVVVLSTICLVTVGLNLLVLYAVRS--ERKLHTVGNLYIVSLSVADLIVGAVVMPMNILYLLM 

hH2R ......-------MAPNGTASSFCLDST---.ACKITIT...AVLI.I..AG.VV.CL..GLN.-.R.RNLT.CF....AIT..LL.LL.L.FSAI.Q.S 

hH3R MERAPPDGPL.A.GA.AGEAAAAGGARGF.-AAWTAV.AALMALLIVA..LG.A..ML.FVA.DSSLRT-QN.FFLLN.AIS.FL...FCI.LYVP.V.T 

hH4R ......-------------.PDT.S.INL.-LSTRVT.AFFM.LVAFAIMLG.A..IL.FVV.DKNLR.-RSSYFFLN.AIS.FF..VISI.LY.PHT.F 

 1       10        20        30        40        50        60        70        80        90       100 

conserv. 0000000000000011111223111321120010232732266251323611925923921200131130135153559766933592316931313291 

 

                                                ECL1                                                                           TM3                                                                                         ICL2                                                                   TM4                                                                                                    ECL2                                               d    
hH1R SKWSLGRPLCLFWLSMDYVASTASIFSVFILCIDRYRSVQQPLRYL-KYRTKTRASATILGAWFLSFLWVIPILGWNHFMQQTSVR---REDKCETDFYD 

hH2R C...F.KVF.NIYT.L.VMLC....LNL.MISL...CA.MD....P.VLV.PV.VAISLVLI.VI.ITLSFLSIHLGWNSRNETSK..GNHTTSKCKVQV 

hH3R GR.TF..G..KL..VV..LLC.S.A.NIVLISY..FL..TRAVS.RAQQGDTR..VRKM.LV.V.A..LYG.AILSWEYLSGG---SSIP.GH.YAE.FY 

hH4R -E.DF.KEI.V...TT..LLC...VYNIVLISY...L..SNAVS.RTQHTGVLKIVTLMVAV.V.A..VNG.MILVSESWKDE---GSE----..PG.FS 

        110       120       130       140       150       160       170       180       190       200 

conserv. 0594496139123333925229793356267229951792335391021122172222651393763311022711111143200000011112113311 

 


hH1R VTWFKVMTAIINFYLPTLLMLWFYAKIYKAVRQHCQHRELIN-------RSLPSFSEIKLRPENPKGDAKKPGKESPWEVLKRKPKDAGGGSVLKSPSQT 

hH2R NEVYGLVDGLVT....L.I.CIT.YR.F.VA.D---------.......------------------Q..RINHI.------------------------ 

hH3R NWY.LITASTLE.FT.F.SVTF.NLS..LNIQRRTRL.LDGAREAAGPEPPPEAQPSPPPP.GCWGCWQ.GH.EAM.LHRYGVGEAAV.AEAGEATLGGG 

hH4R EWYILAI.SFLE.VI.VI.VAY.NMN..WSLWKRDHL-----.......--SRCQ.HPG---------------LTAVSSNICGHSFR.RL.SRR.L.-- 

        210       220        230      240       250       260       270       280       290       300 

conserv. 2012133332549229172511111495123141011000000000000001110111100000000012101113101100011101210111111100 

 


hH1R PKEMKSPVVFSQEDDREVDKLYCFPLDIVHMQAAAEGSSRDYVAVNRSHGQLKTDEQGLNTHGASEISEDQMLGDSQSFSRTDSDTTTETAPGKGKLRSG 

hH2R ---------------------------------------------------------------------------------------------------- 

hH3R ----------------------------GGGGSV.SPT.SSGSSSRGTERPRSLKRGSKPSASSA---------------------------------.L 

hH4R -------------------------------ASTEVPA.FHSERQR---RKSSLMFSSRTKMNSN---------------------------------TI 

        310       320       330       340       350       360       370       380       390       400 

conserv. 0000000000000000000000000000000111111120101111000111111011111111100000000000000000000000000000000010 

 

                                                                                                     ICL3                                                                                                                                 TM6                                                                                 ECL3                                                TM7                                                                         H8     d 
hH1R SNTGLDYIKFTWKRLRSHSRQYVSGLHMNRERKAAKQLGFIMAAFILCWIPYFIFFMVIAFCKNCCN---EHLHMFTIWLGYINSTLNPLIYPLCNENFK 

hH2R ----------------.WKAATIR------.H..TVT.AAV.G...I..F...TA.VYRGLRGDDAIN...V.EAIVL....A..A...IL.AAL.RD.R 

hH3R EKRMKMVSQS------FTQ.FRL.R-----D..V..S.AV.VSI.G...A..TLLMIIR.A.HGH.V.P.DYWYETSF..LWA..AV..VL....HHS.R 

hH4R ASKMGSFSQSDSVA.HQREHVELLR-----A.RL..S.AILLGV.AV..A..SL.TI.LS.YSSATG.PKSVWYRIAF..QWF..FV...L....HKR.Q 

        410       420       430       440       450       460       470       480       490       500 

conserv. 1110011110000000114311521000004472625932652291599199121152131123111000411111329912199159957942233395 

 

                                                   H8                                                                                                                                                                                                                                                                                                       C-term 
hH1R KTFKRILHIRS------------------------------------------------------------- 

hH2R TGYQQLFCC.LANRNS.........HKTSLRSNASQLSRTQSREPRQQEEKPLKLQVWSGTEVTAPQGATDR 

hH3R RA.TKL.CPQKLKIQPHSSLEHCWK............................................... 

hH4R .A.LK.FC.KKQPLPSQHSRSVSS................................................ 

        510       520       530       540       550       560       570 

conserv. 435266321521111100000000000000000000000000000000000000000000000000000000 

 

Figure 1.15: Multiple sequence alignment of the human histamine receptor subtypes hH1R, hH2R, 
hH3R and hH4R. Most conserved amino acids among class A GPCRs are coloured in grey, amino acids 
involved in ligand binding and receptor activation in blue, the two cysteines forming a disulphide bond 
in yellow and the DRY motif, the FxxCWxP and NPxxY motifs as well as the amino acid 6.30 are 
coloured in green. Dots in the sequence indicate identity with the hH1R. Sequence alignment and 
conservations were computed with Clustal-X 2.1 together with about 80 class A GPCRs. The 
conservation score ranges from 0 (0 % homology) to 9 (100 % homology). TMs were calculated with 
DSSP implemented in SYBYL-X 1.3 (Chapter 3.3.2.2). 

1.2.3.3 Selectivity profile of histamine receptor ligands 

The endogenous ligand histamine binds with high affinity and potency to the hH3R and hH4R, 

with lower affinity to the hH1R and lowest affinity to the hH2R (Table 1.2;(Seifert et al., 2013). 

The selectivities of other histamine receptor ligands are described in the following sections. 
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Table 1.2: Selectivity profiles of various histamine receptor ligands. 
 

Ligand 
 

hH1R 
 

hH2R 
 

hH3R 
 

hH4R 
 

histamine 6.7–6.9 [5.6–5.7]1,2 5.9–6.01,2 [4.3]2,4 7.6–7.9 [8.2]1,2 7.6–7.9 [7.9]1,2 

2-methylhistamine 6.11,3   5.4 [6.1]1,3 

histaprodifen 7.0 [6.5]1,2   4.4 [4.6]1,2 

mepyramine (8.3) [8.4]1,2   5.2 [< 4]1,2 

diphenhydramine [7.9]2,4 [< 5]2,4 [< 5]2,4 n.a.1,5, [< 5]2,4 

chlorpheniramine    4.6 [4.6]1,5 

cetirizine [8.0]6   n.a. [< 4]1,5, [< 5]6 

loratadine [6.8]6   n.a. [4.7]1,5, [< 5]6 

terfenadine    n.a. [4.8]1,5 

dimaprit n.a.1,2 5.7–6.01,2  5.8 [6.5]3,7 

amthamine n.a.1,2 6.4–6.71,2  5.33,7 

arpromidine (6.5) [6.5]1,2 6.7–7.11,2   

cimetidine [< 5]2,4 [6.2]2,4 [< 5]2,4 [< 5]2,4 

ranitidine [< 4]2,4 [7.1]2,4 [< 5]2,4 [< 5]2,4 

famotidine  7.3–7.51,2   

Nα-methylhistamine   [8.9]1,2, 9.5 [8.2]3,7 6.61,2, 6.2 [6.6]3,7 

immepip   10.4 [9.3]3,7 7.8 [7.7]3,7 

imetit   [9.2]1,2, 9.9 [8.8]3,7 8.21,2, 7.9 [8.2]3,7 

proxyfan   [7.9]1,2, 8.5 [7.9]3,7 7.2 [7.3]3,7 

thioperamide [< 5]2,4 [< 4]2, 4 7.0 [7.3]1,2 6.9–7.0 [6.9]1,2 

clobenpropit   9.4 [8.6]3,7 7.7 [8.1]3,7 

4(5)-methylhistamine 4.81,2 5.51,2 n.a.1,2 7.1–7.5 [7.6]1,2 

UR-PI294 5.51,2 6.41,2 8.81,2 8.51,2 

VUF8430 n.d.3,7, [< 4]2,4 n.d.3,7, [< 4]2,4 6.5 [6.0]3,7 7.3 [7.5]3,7 

UR-PI376 < 5 [4.6]1,2 < 5 [5.4]1,2 6.0 [6.3]1,2 7.5 [7.2]1,2 

OUP-16   5.5 [5.7]3,7 7.1 [6.9]3,7 

JNJ28610244 [< 5]3,8 [< 6]3,8 [< 5]3,8 7.0 [7.3]3,8 

2-arylbenzimidazole9    9.3 [9.7]3,7 

clozapine (8.4) [8.6]1,2 (6.3)1,2 < 4 [< 4]1,2 5.8 [5.9]1,2, 6.8 [6.7]3,10 

isoloxapine    7.6 [7.4]10 

JNJ7777120 [4.33]1,2, [< 5]6 [> 4.5]6 [5.3]6 7.4–8.3 [7.5]1,2, [8.4]6 
 

Intrinsic activity is highlighted in colours: dark green (agonism, 0.75 < α), light green (partial agonism, 
0.25 < α ≤ 0.75), orange (neutral antagonism, -0.25 ≤ α ≤ 0.25), light red (partial inverse 
agonism, -0.25 > α ≥ -0.75) and red (inverse agonism, -0.75 > α). Intrinsic activities from GTPase or 
[35S]GTPγS assays on Sf9 cells, unless otherwise indicated. Potencies of agonists and inverse agonists 
are given as pEC50 values (without parentheses or brackets), affinities or antagonist activities are given 
as [pKi] or (pKb), respectively. 

1.2.3.4 H1 receptor 

In 1966, Ash and Schild introduced the term H1 receptor (H1R) as histamine was obviously 

exerting its biological effects via two different receptor subtypes (Ash and Schild, 1966). The 

gene encoding the H1R (487 amino acids) is located on chromosome 3 (genlocus 3q25) and 

                                                
1pEC50/pKb determined in GTPase assay, pKi in competition binding assay on Sf9 insect cells 
2Seifert et al. (2013) 
3Igel et al. (2010) 
4pKi determined on mammalian cells 
5Deml et al. (2009) 
6Thurmond et al. (2008) 
7pKi determined in competition binding assay, pEC50/α in CRE-β-galactosidase reporter gene assay on SK-N-MC cells 
8pKi determined on SK-N-MC cells, pEC50/α with SRE-luciferase reporter gene assay 
92-arylbenzimidazole as shown in Figure 1.23 (Lee-Dutra et al., 2006) 
10pKi determined by displacement with [3H]mepyramine, pEC50/α by NFκΒ-luciferase reporter assay on COS-7 cells 
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was firstly cloned in 1993 (De Backer et al., 1993). Stimulating Gαq/11 proteins, the H1R 

increases the intracellular calcium level (Chapter 1.1.6.2). 

The H1R is expressed on smooth muscle cells, endothelial cells, in the hearth and in the central 

nervous system. Mediated by the H1R, histamine contracts smooth muscle cells, stimulates 

the production of nitric oxide (NO) and increases the vascular permeability (Hill et al., 1997). 

Moreover, in allergic reactions arachidonic acid metabolism and prostaglandin synthesis have 

been shown to play a major role (Carter et al., 1988; Leurs et al., 1994; Murayama et al., 1990; 

Resink et al., 1987). Furthermore, histamine provokes a negative inotropic effect via the H1R 

(Genovese et al., 1988; Guo et al., 1984; Zavecz and Levi, 1978). 

Generally, H1R agonists are interesting pharmacological tools without therapeutic value. 

However, there is one exception: Betahistine (Aequamen®; Figure 1.16) is approved for the 

treatment of Menière’s disease (Barak, 2008). Starting from histamine as a model compound, 

H1R selectivity was achieved by 2-substitution as in 2-methylhistamine or 2-phenylhistamines 

(Figure 1.16;(Leschke et al., 1995). Furthermore, Elz et al. developed a new series of highly 

selective and potent H1R-agonists, namely histaprodifen and derivatives (Figure 1.16;(Elz et 

al., 2000a; Elz et al., 2000b). The potency of histaprodifen was further increased by structural 

modification resulting in suprahistaprodifen (Figure 1.16;(Menghin et al., 2003). 

 

Figure 1.16: Structures of selected H1R agonists. 

H1R antagonists are well-established drugs for the treatment of allergy symptoms, e. g., in 

allergic rhinitis, urticaria and pruritus. Systemically available, H1R antagonists prevent the 

symptoms of nausea as the H1R is expressed both in the vestibular apparatus and in the 

Nucleus tractus solitarius (Jensen et al., 2008; Krakauer et al., 2005). 

Revealing high selectivity compared to non-H1 histamine receptor subtypes (≥ 100-fold; 

Table 1.2;(Deml et al., 2009), the H1R antagonists (“antihistamines”) are classified into 

centrally active compounds of the first generation (mepyramine (Pyrilamine®), 
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diphenhydramine (Dolestan®) and chlorpheniramine) and compounds without (or with 

reduced) central availability of the second generation (cetirizine (Zyrtec®), loratadine 

(Claritine®) and terfenadine (Teldane®)) (Figure 1.17). Second generation H1R antagonists 

are (at least theoretically) non-sedating and therefore of advantage in the treatment of allergy 

symptoms such as allergic rhinitis. Centrally active H1R antagonists inhibit histamine-induced 

arousal and can be used as sedatives or hypnotics (Doxylamine, Hydroxyzine (Atarax®)) (Hill 

et al., 1997). 

 

Figure 1.17: Structures of selected H1R antagonists. 

1.2.3.5 H2 receptor 

The existence of the H2R was confirmed by pharmacological experiments using the first 

antagonist, burimamide, capable of inhibiting the histamine-stimulated gastric acid secretion 

and the positive chronotropic response at the heart (Black et al., 1972). The cDNA of the H2R 

was cloned by Gantz et al. (1991a; 1991b). The human H2R gene is located on chromosome 

5 (genlocus 5q35). The receptor consists of 359 amino acids and couples to the Gαs protein 

(Chapter 1.1.6.2). 

The H2R is expressed on the parietal cell of the stomach, on smooth muscle cells, suppressor-

T-cells, neutrophils, in the CNS and in the hearth (Hill et al., 1997). Via H2R-mediated 

stimulation of the proton pump (H+/K+-ATPase) histamine increases gastric acid secretion. H2R 

activation results in relaxation of smooth muscles and results in a positive inotropic and 

chronotropic response in the heart (Hill et al., 1997). 

Dimaprit was one of the first H2R selective agonists (Durant et al., 1977), followed by highly 

potent and selective guanidine-type ligands (Lim et al., 2005; Seifert et al., 2013) such as 

impromidine (Durant et al., 1978; Durant et al., 1985), arpromidine (Buschauer, 1989) and 
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amthamine (Eriks et al., 1992) (Figure 1.18 and Table 1.2). Bivalent agonists revealed 

dramatically enhanced potency and selectivity (Birnkammer et al., 2012). Interestingly, 30 

years ago impromidine, which is not approved as a drug, was very successfully used as an 

ultima ratio to treat patients suffering from severe catecholamine-insensitive congestive heart 

failure (Baumann et al., 1984). However, H2R agonists have not been routinely used in the 

clinic, but represent valuable pharmacological tools. 

 

Figure 1.18: Structures of selected H2R agonists. 

Cimetidine (Tagamet®) was the first clinically available H2R antagonist (Parsons and Ganellin, 

2006), followed by non-imidazoles such as ranitidine and famotidine (Figure 1.19 and 

Table 1.2), which have improved properties, for example, less or no pharmacokinetic 

interactions due to inhibition of CYP450 enzymes (Parsons and Ganellin, 2006). The H2R 

antagonists (Thurmond et al., 2008) had been very important antiulcer drugs over decades, 

but were replaced by the more effective proton pump inhibitors. 

 

Figure 1.19: Structures of selected H2R antagonists. 

1.2.3.6 H3 receptor 

Arrang et al. (1983) discovered the inhibitory effect of histamine on its own neuronal synthesis 

and release by a negative feedback mechanism mediated stimulation of presynaptic H3 

autoreceptors. In a further study, the agonist (R)-α-methylhistamine and the inverse agonist 

thioperamide were used to pharmacologically define the third histamine receptor subtype 

(Arrang et al., 1987). In 1999, the cloning of the H3R cDNA was reported (Lovenberg et al., 

1999). The gene locus is 20q13.33. Both the H3R (445 amino acids) and the H4R are Gαi/o 

coupled GPCRs inhibiting the AC (Clark and Hill, 1996; Seifert et al., 2013). 

The H3R is mainly expressed in the central nervous system with highest densities in the basal 

ganglia, cortical areas and hippocampus (Martinez-Mir et al., 1990). Apart from its function as 

a presynaptic autoreceptor, the H3R is acting as a presynaptic heteroreceptor, modulating the 
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release of other neurotransmitters such as serotonin, norepinephrine, dopamine and 

acetylcholine (Gemkow et al., 2009). As a consequence, H3R stimulation or inhibition can 

influence the regulation of a broad variety of physiological functions. For example, the H3R is 

associated with regulation of food intake, sleep-wake cycle, body temperature and blood 

pressure. It might furthermore contribute to the pathogenesis of schizophrenia, Parkinson’s 

disease, obesity and attention deficit hyperactivity disorder (ADHD) (Berlin et al., 2011). 

Recently, the first H3R ligand, the inverse agonist pitolisant was introduced into the clinic 

(Figure 1.20;(Schwartz, 2011). Pitolisant is applied against excessive diurnal sleepiness of 

patients with narcolepsy and considered of potential value in the treatment of Parkinson’s 

disease or obstructive sleep apnoea (Schwartz, 2011). 

Thioperamide (Arrang et al., 1987) and clobenpropit (van der Goot et al., 1992) were among 

the first H3R antagonists described in literature (Figure 1.20). As the H3R is constitutively 

active, these ligands act as inverse H3R agonists, decreasing the elevated level of basal 

receptor activation (Arrang et al., 2007; Morisset et al., 2000). 

 

Figure 1.20: Structures of three H3R inverse agonists. 

Numerous H3R ligands, e. g., (R)-α-methylhistamine, immepip, proxyfan and imetit, were 

chemically derived from histamine and related compounds (Figure 1.21). It should be stressed 

that the selectivity for the H3R compared to the H4R and vice versa is a major problem, in 

particular regarding imidazole-type ligands (Chapter 1.2.3.3). 

 

Figure 1.21: Structures of selected H3R agonists. 

1.2.3.7 H4 receptor 

In 1975, Clark et al. reported on a chemotactic effect of histamine on eosinophils. This effect 

could not be antagonized by H1R- or H2R-blockers (Clark et al., 1975). Moreover, the 

histamine-induced H3R-mediated increase in cytosolic calcium in human eosinophils 

(Chapter 1.1.6.2) was not affected by H1R- and H2R-antagonists, but could be inhibited by the 

H3R-antagonist thioperamide. Ultimately, discrepancies between the potencies of the H3R 
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agonists (R)-α-methylhistamine and Nα-methylhistamine on the one hand and histamine on the 

other hand gave reason to postulate a fourth “eosinophil” histamine receptor (Raible et al., 

1994). The 390 amino acid spanning hH4R shares a high sequence homology (41 %) with the 

hH3R (Chapter 1.2.3.1) and was independently discovered by six research groups at the 

beginning of the new century (Liu et al., 2001a; Morse et al., 2001; Nakamura et al., 2000; 

Nguyen et al., 2001; Oda et al., 2000; Zhu et al., 2001). Located on chromosome 18 (genlocus 

18q11.2), the H4R contains three exons and two introns (Leurs et al., 2009). 

Like the H3R, the H4R inhibits the Gαi/o protein, leading to inhibition of the AC and decreasing 

cAMP levels as well as to activation of phospholipase C-β (PLC-β) via Gβγ complexes (Leurs 

et al., 2009; Seifert et al., 2013; Thurmond et al., 2008). The hH4R was proven to exhibit higher 

constitutive activity than the hH3R (Schneider et al., 2009). 

In the extracellular space, sodium is the prevailing cation at a concentration of about 140 mM 

(Katritch et al., 2014). Activation or constitutive activity of several GPCRs, for instance the 

hH3R or the D2R, were proven to be highly dependent on the sodium chloride concentration 

(Katritch et al., 2014; Neve et al., 1991; Selent et al., 2010). The conserved amino acid D2.50 

was found to be strongly involved in sodium-dependent regulation of GPCRs (Fenalti et al., 

2014; Katritch et al., 2014; Liu et al., 2012). Sodium ions act as allosteric modulators of 

GPCRs, stabilizing the inactive state (Katritch et al., 2014). In contrast to other GPCRs, the 

constitutive activity of the hH4R, mH4R and rH4R is more or less insensitive against sodium 

chloride (Schneider et al., 2009; Schnell et al., 2011; Wittmann et al., 2014). 

The H4R is reported to be mainly expressed on mast cells, basophils, eosinophils, dendritic 

and T cells (Zampeli and Tiligada, 2009) and to play an essential role in processes such as 

the migration of immune cells, cytokine release and chemotaxis. H4R antagonists harbour a 

potential as drugs for the treatment of allergic reactions including bronchial asthma, allergic 

rhinitis, atopic dermatitis, itch and pruritus as well as of autoimmune diseases such as arthritis 

(Cowden et al., 2014; de Esch et al., 2005; Dunford and Holgate, 2011; Dunford et al., 2006; 

Marson, 2011; Pini et al., 2014; Thurmond et al., 2014b; Wifling et al., 2015b; Zampeli and 

Tiligada, 2009). 

In a clinical study in healthy volunteers JNJ39758979 (Figure 1.22;(Thurmond et al., 2014a) 

was demonstrated to inhibit histamine induced pruritus (Kollmeier et al., 2014). The results 

were interpreted as a proof of concept (Seifert, 2014; Thurmond et al., 2014a). Unfortunately, 

a phase II clinical trial, evaluating the adverse effects of JNJ39758979, had to be prematurely 

terminated due to two cases of drug-induced agranulocytosis (Murata et al., 2015). 

Due to the high sequence identity, many H3R agonists, for example, Nα-methylhistamine, 

(R)-α-methylhistamine and immepip, were found to possess agonistic activity at the H4R, too 

(Figure 1.23;(Lim et al., 2005). Imetit as well as proxyfan show lower potency, affinity and 
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intrinsic activity at the hH4R compared to the hH3R (Figure 1.21 and Table 1.2;(Lim et al., 

2005). The hH3R inverse agonist clobenpropit turns to partial agonism at the hH4R, albeit with 

lower potency and affinity compared to the hH3R (Figure 1.23 and Table 1.2;(Lim et al., 2009; 

Lim et al., 2005). 4(5)-Methylhistamine, initially used as a rather weak “selective” agonist for 

the definition of the H2R by Black et al. (1972), proved to be a highly potent and selective H4R 

agonist (Figure 1.23 and Table 1.2;(Lim et al., 2005). Moreover, the H2R agonist dimaprit and 

its analogue, the H3R agonist VUF8430, initially described as a weak H2R agonist as well (Sterk 

et al., 1986), are both H4R agonists (Figure 1.23;(Lim et al., 2006; Lim et al., 2005). Revealing 

good selectivity against the H1R and H2R, the imidazole-containing compound UR-PI294 is 

equipotent at both the H3R and H4R (Figure 1.23;(Igel et al., 2009b). To increase the selectivity 

for the H4R over the H3R, cyanoguanidines derived from OUP-16 (Hashimoto et al., 2003) were 

synthesized, for example UR-PI376 (Igel et al., 2009a) and trans-(+)-(1S,3S)-UR-RG98 

(Geyer, 2011) (Figure 1.23). These H4R agonists revealed up to 100-fold selectivity over the 

H3R with even higher selectivity over the H1R and H2R. Derived from the H4R antagonist 

JNJ7777120, oxime-type ligands such as JNJ28610244 with agonistic activity at the hH4R 

were developed (Figure 1.23 and Table 1.2). In contrast to other H4R agonists, these oximes 

were almost equipotent at all investigated H4R species orthologs (human, mouse, rat, guinea 

pig, monkey and dog H4R;(Yu et al., 2010). 2-Arylbenzimidazole-type compounds were 

developed as new ligand class (Figure 1.23;(Lee-Dutra et al., 2006) . Clozapine, known to 

address numerous GPCRs, binds to all histamine receptor subtypes and acts as a neutral 

antagonist at the hH1R (highest potency and affinity) and hH2R, a partial inverse agonist at the 

hH3R (lowest potency and affinity) and partial agonist at the hH4R (Figure 1.23 and 

Table 1.2;(Appl et al., 2011). The clozapine analogue isoloxapine revealed even higher 

potency and affinity than the parent compound (Figure 1.23;(Smits et al., 2006). 

 

Figure 1.22: Structures of representative H4R antagonists/inverse agonists. 

The full inverse agonist thioperamide was shown to be equipotent at the hH4R and the hH3R. 

The higher maximum of the inverse agonistic effect at the hH4R most probably reflects the 

higher constitutive activity of the hH4R (Figure 1.22 and Table 1.2;(Lim et al., 2005; Seifert et 

al., 2013). A high-throughput-screening campaign at Johnson & Johnson led to the discovery 

of the H4R partial inverse agonist JNJ7777120 (Jablonowski et al., 2003), which was reported 

to possess the same affinity to the hH4R and the rodent H4Rs (Thurmond et al., 2004). 

Therefore, JNJ7777120 has been widely used as a standard antagonist in animal models 
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(Beermann et al., 2012; Cowden et al., 2010; Deml et al., 2009; Dunford et al., 2006; Morgan 

et al., 2007; Rossbach et al., 2009a; Rossbach et al., 2009b; Zampeli et al., 2009). However, 

the quality of action of JNJ7777120 is species- and assay-dependent. For instance, the 

compound acts as a partial agonist at the mH4R, rH4R and the cH4R, when investigated in the 

GTPase assay (Brunskole et al., 2011; Schnell et al., 2011). Therefore, results from animal 

models should be interpreted with caution. The aforementioned discrepancies might partly be 

explained with the high constitutive activity of the human H4R; most other species orthologs, 

e. g., the rodent H4Rs, are devoid of constitutive activity (Schnell et al., 2011). Furthermore, 

JNJ7777120 activates β-arrestins in a Gαi protein independent manner, supporting the idea of 

functional selectivity or biased signalling (Seifert et al., 2011). 

 

Figure 1.23: Structures of selected H4R agonists. 



26 1.3 Species differences 

High affinity H4R antagonists were identified in different chemical classes of compounds, for 

example quinazolines (Smits et al., 2008) and 2-aminopyrimidines (Cowart et al., 2008; 

Mowbray et al., 2011; Savall et al., 2015) (for review on H4R ligands, see, e. g. Schreeb et al. 

(2013) and Igel et al. (2010)). 

1.3 Species differences 

Several H4R species orthologs, namely rH4R (rat, Rattus norvegicus), mH4R (murine, Mus 

musculus), gpH4R (guinea pig, Cavia porcellus), pH4R (porcine, Sus scrofa), mkH4R (monkey, 

Macaca fascicularis) and cH4R (canine, Canis lupus familiaris), were cloned and 

pharmacologically characterized soon after the exploration of the human H4R (Jiang et al., 

2008; Liu et al., 2001b; Oda et al., 2002; Oda et al., 2005). 

1.3.1 Homologies between H4R species variants 

As illustrated in Table 1.3 the sequence homologies between the H4R orthologs are rather low. 

Whereas the mkH4R shares a high homology of 94 % with the hH4R (Lim et al., 2010), the 

homology is only 65-69 % between the hH4R and the rodent receptors, mH4R, rH4R and 

gpH4R, respectively. The homology between the hH4R and the cH4R as well as the pH4R is 

equal to 72 %. In conclusion, the hH4R is most similar to the mkH4R, the pH4R to cH4R and 

mH4R to rH4R, respectively. These different degrees of homology may be reflected by different 

pharmacological behaviour in a ligand-dependent manner, compromising the value of 

translational animal models. 

Table 1.3: Sequence homologies (%) between different H4R species variants: hH4R (human), 
mkH4R (monkey), cH4R (canine), pH4R (pig), gpH4R (guinea pig), mH4R (mouse) and rH4R (rat). 

 

Receptor 
 

hH4R 
 

mkH4R 
 

cH4R 
 

pH4R 
 

gpH4R 
 

mH4R 
 

rH4R 
 

hH4R 100       

mkH4R 94 100      

cH4R 72 73 100     

pH4R 72 73 73 100    

gpH4R 65 65 63 63 100   

mH4R 68 68 66 67 63 100  

rH4R 69 69 65 67 62 85 100 
 

Identities between H4R species variants were calculated and the number of identical amino acids were 
divided by the number of amino acids of the respective shorter sequence. 

1.3.2 Key amino acids of the H4R species orthologs 

Among the amino acids in the binding pocket, D943.32 (Figure 1.24) plays a key role, as 

mutation to A, E or N resulted in a complete loss of specific [3H]histamine binding (Shin et al., 

2002). Another anchoring point for ligands is E1825.46; mutation to A or Q prevented 
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[3H]histamine binding, and mutation to D decreased affinity about 15-fold (Shin et al., 2002). 

T1785.42, S1795.43, N1474.57 and S3206.52 were found to be of minor relevance for [3H]histamine 

binding (Shin et al., 2002). Interestingly, the amino acid corresponding to Y953.33 in the hH4R 

was shown to fulfil a key role in ligand binding at the M3R (Han et al., 2005), and the same 

holds for the M1R in case of the amino acid corresponding to Y3196.51 in the hH4R (Ward et al., 

1999). 

 

Figure 1.24: Snake plot representation of the hH4R. Amino acids with highest conservation among 
class A GPCRs are highlighted in red, amino acids important for ligand binding and activation in blue 
(D943.32, Y953.33, E1825.46 and Y3196.51). Cysteines forming a disulphide bridge are marked in yellow. 
TMs were calculated with DSSP implemented in SYBYL-X 1.3 (Chapter 3.3.2.2). 

As illustrated in Figure 1.25, all seven H4R orthologs share the most conserved amino acids 

among class A GPCRs (grey;(Mirzadegan et al., 2003). Furthermore, most important amino 

acids involved in the binding and activation process are conserved: D943.32, Y953.33, E1825.46 

and Y3196.51, whereas F169ECL2, S1795.43 and R3417.36 are poorly conserved among H4R 

species orthologs. The FxxCWxP and the NPxxY motifs (green) as well as the two conserved 

disulphide bond forming cysteines in TM3 and ECL2 (yellow;(Strader et al., 1994) are present 

within all orthologs. 

In many GPCRs, e. g., the β2AR, the DRY motif – positioned at the intracellular part of the 

receptor – forms the “ionic lock” with an acidic amino acid in TM6 (D/E6.30). This ionic lock is 

not present in the H4R species orthologs (A/G6.30) and was supposed to be the reason for the 

high constitutive activity of the hH4R. However, the hH4R-A6.30E mutant showed only slightly 

reduced constitutive activity compared to the wild-type (Schneider et al., 2010). The DRY motif 

was proven to play a key role in the activation of the hH4R. In particular, the hH4R-R3.50A 

mutant did not stimulate G-proteins at all, i. e., agonistic activity was completely lost, 

suggesting stabilization of the hH4R inactive state. This is supported by binding data of 

antagonists and agonists: thioperamide affinity increased by 300-400 %, whereas histamine 

affinity decreased by ~50 %. 
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                                            N-term                                                                                       TM1                                                                       ICL 1                                                                    TM2                                                                ECL1                             TM3                                                     n     
hH4R MPDTNS--TINLSLSTRVTLAFFMSLVAFAIMLGNALVILAFVVDKNLRHRSSYFFLNLAISDFFVGVISIPLYIPHTLFEWDFGKEICVFWLTTDYLLC 

mkH4R .................I........L.........V........................................M...................... 

cH4R .SA..G....T.P....I....L...L.........V.........K.....N........A.....M............D....NKL.A...IA..... 

pH4R .SAI.DTN.NT.P.N..IA...L...L.LV......V...............N..L........................K.KLEDN..A...II..... 

rH4R .SES.G...DV.P.TAQ.P...L...L....TI...V......A.R......N...........................N.N..SG..M...I...... 

mH4R .SES.....GI.PPAAQ.P...L..SF.....V...V........R......N...........L..L.........V..N.N..SG..M...I...... 

gpH4R .LAN......A.T-.IKIS.T.L...L.I......VV.....I..R......N........A.....A.A......SS.TY.TS..QA.....I...... 

 1      10         20        30        40        50        60        70        80        90       100 

conserv. 9233930091293154563979399349359469956999997596699999599599999699599497999999539329325324939992499999 

 

                                                                                   TM3                                                  ICL2                                                                     TM4                                                                                                        ECL2                                                                                    TM5                                            d   
hH4R TASVYNIVLISYDRYLSVSNAVSYRTQHTGVLKIVTLMVAVWVLAFLVNGPMILVSESWKDE------GSECEPGFFSEWYILAITSFLEFVIPVILVAY 

mkH4R ..............................I..........................T........................V........L........ 

cH4R .T.............Q.........A....I....S............H..I........NSSFGVVEEKD......TR..V...S..F..LV..FS... 

pH4R ...........F...Q..............I....A...G........H..V.....A..QG......KQD.....LK...V....L.F..LA..L.... 

rH4R .....S.........Q......R..A....I....AQ.....I...........A.D...NSTN....TE......VT........A....LL..S..V. 

mH4R ...............Q.........A....IM...AQ.....I...........A.D...NSTN....TKD.....VT.....T..ML...LL...S... 

gpH4R ...............Q......W..A..S.TW..A.Q.....IFS.MT......I.D..QNS......TT......LKK..FALP..L...L..IL.... 

        110       120       130       140       150       160       170       180       190       200 

conserv. 9799969999969992999999299699794399561995996579754996993966975300000024699999245994343723399639722959 

 

                                                             TM5                                                                                                                                                                                                        ICL3                                                                                                                                                                                                                                     
hH4R FNMNIYWSLWKRDHLSRCQSHPGLTAVSSNI-CGHSFRGRLSSRRSLSASTEVPASFHSERQRRKSSLMFSSRTKMNSNTIASKMGSFSQSDSVALHQRE 

mkH4R .......................P......S...Q...CG....G.......M.V.L............Y.L.......R..............G..... 

cH4R ...Y........GN...W..Q.T..S...SN...SLL..G.F..T...EQK.TAP.VPLK.HE...N.LL.L.AQ...SI.T...A.LTH...LC..... 

pH4R ..LY........G........C...P...GS.W.....CG.F..T...DPK.AA..L....P....T.W..L..R.-.SLT..NK.FL.H...L....K. 

rH4R .SVQ........GS....P..A.FI.T..RG.T...R.TG.AC.T..PGLK.PA..L...SP.G....LV.L..H.SGSI..F.V...CR.E.PV..... 

mH4R ..VQ........RA....P..A.FSTT..SA.S..LH.AGVAC.T.NPGLK.SA..R...SP.....ILV.L..H...SIT.F.V...WR.E.A..R... 

gpH4R .SAH........EK....L...V.PSD..SSDH...C.QDPD..AT.P.RK.TT..LG.DKS......L..I.AYK...V......FL.H...L..Q... 

        210       220       230       240       250       260       270       280       290       300 

conserv. 9531999999992299922962223429932019421913312937332159234922364264996732939624355227163513139692294979 

 

                                            ICL3                                                                   TM6                                                                                ECL3                                                TM7                                                                                     H8                                                                       C-term 
hH4R HVELLRARRLAKSLAILLGVFAVCWAPYSLFTIVLSFYSSATGPKSVWYRIAFWLQWFNSFVNPLLYPLCHKRFQKAFLKIFCIKKQPLPSQHSRSVSS 

mkH4R .A......................................E..S...............................................P....... 

cH4R .I......K........................IR.I.PLEQR.QI.G.E.T.....L......F.......H.........HM..PSI..-QN..... 

pH4R .L......K..R..........I.......L..TR.V.PTNPF.STAV.KF.........C...F..................L...STL.-.N..T.. 

rH4R ......G.K..R...V..SA..I.....C.......T.RRGER...I..S..........LI..F......R......W..L.VT...A..-QTQ.... 

mH4R YA....G.K..R......SA..I.....C.......T.PRTER......S..............F......R......W..L.VT...AL.-QNQ.... 

gpH4R .I..F...K.........AA..I.......T.VIY..FPERNLT..T..HT.............F................LPVRR.ST.P-.N..I.T 

        310       320       330       340       350       360       370       380       390 

conserv. 439959396996999799339969999929297419163223135331933799999599279939999996599999199315475321504469597 

 

Figure 1.25: Sequence alignment of the histamine H4 receptor orthologs hH4R (human), mkH4R 
(monkey), cH4R (canine), pH4R (pig), rH4R (rat), mH4R (mouse) and gpH4R (guinea pig). Amino 
acids with highest conservation among class A GPCRs are coloured in grey. Amino acids involved in 
the ligand binding and activation process are highlighted in blue, the two cysteine residues forming a 
disulphide bond in yellow, and the DRY motif, the FxxCWxP motif, the NPxxY motif, as well as the 
position equivalent to A2986.30 in the hH4R are coloured in green. Dots in the sequence indicate identity 
with the hH4R. Sequence alignment and conservations were computed with Clustal-X 2.1: The score 
ranges from 0 (0 %) to 9 (100 %). TMs were calculated with DSSP implemented in SYBYL-X 1.3 
(Chapter 3.3.2.2). 

1.3.3  Pharmacological characteristics of H4R species orthologs 

Pharmacological differences between the human and monkey H4R became obvious in 

particular for the ligands clozapine, JNJ7777120 and its analogue VUF6002 (Table 1.4;(Lim et 

al., 2010). Clozapine bound to the monkey H4R with approximately 10 times higher affinity than 

to the human H4R (pKi 7.3 vs. 6.4), whereas the antagonists JNJ7777120 and VUF6002 

revealed an about 10-fold decrease in affinity from the human to the monkey H4R (pKi 8.3 vs. 

7.5 and 7.5 vs. 6.7) (Lim et al., 2010). However, similar binding and/or functional profiles of 

histamine, clobenpropit, imetit, (R)-α-methylhistamine, 4(5)-methylhistamine, VUF8430 and 

thioperamide at both the human and monkey H4R were determined by Lim et al. (2010) and 

Oda et al. (2005). The mutant hH4R-L175V, bearing the same amino acid as the mkH4R in 

position 5.39, and the mkH4R showed a similar binding profile for clozapine and JNJ7777120 

(Lim et al., 2010), indicating an important contribution of L1755.39 to different ligand binding 

profiles at the mkH4R and the hH4R, respectively. 
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Table 1.4: Effects of H4R ligands on different H4R species orthologs. 
 

Ligand 
 

Para-
meter 

 
hH4R 

 
mkH4R 

 
cH4R 

 
pH4R 

 
rH4R 

 
mH4R 

 
gpH4R 

 
[3H]histamine 
 

Kd 
[nM] 

911, 512, 1013,14, 315 1511, 316 7511, 1613,14, 
1816 

1111, 415 13411, 
13612, n.a.14 

7811, 4212, 
n.a.14 

1111, 612 

histamine α 1.012,13,14,16,18 1.017 1.013,14,16 1.015,17 1.012,14,18 1.012,14,18 1.012 
pEC50 8.112, 7.613,15, 7.914, 

7.316,17, 7.818 
7.417 6.813, 7.114, 

6.116 
6.715, 5.917 7.112, 5.214, 

6.518 
7.512, 5.814, 
5.917, 7.118 

8.112 

pKi 7.911, 8.2 12, 7.913, 8.415 7.811 7.211, 7.613, 
7.516 

7.911, 7.715 7.011, 7.212 7.111, 7.412 8.011, 7.912 

4(5)-methyl-
histamine 

α 1.013,16,18, 0.914  0.913,14, 
0.816 

 1.114, 1.018 1.014,18  

pEC50 7.113, 7.214, 7.318, 6.916  6.113, 6.214, 
5.216 

 5.114, 6.018 6.014, 6.918  

pKi 7.311, 7.613, 7.714 7.011 6.311, 7.016, 
6.913,14 

7.711 6.411 6.811 7.311 

VUF8430 α 1.018    1.018 1.018  
pEC50 7.018    6.118 6.818  
pKi 7.511 7.311 5.911 6.511 6.811 6.711 6.311 

clozapine α 0.713, 1.318  013  1.118 1.018  
pEC50 6.013, < 415, 7.018  n.a.13 < 415 5.718 5.418  
pKi 6.411, 6.212, 6.313, 6.115 7.311 4.511, 3.813 5.211, 4.715 5.611, 5.712 5.511, 5.512 7.311, 7.112 

immepip α 1.018    0.918 1.018  
pEC50 7.618    7.218 6.918  

UR-PI294 α 0.914, 1.018  0.814  1.614, 1.018 1.014,18  
pEC50 8.514, 8.718  7.214  4.614, 8.218 6.514, 8.318  
pKi 7.814  7.014     

UR-PI376 α 0.914, 1.018  0.314  0.414, 0.118 0.214, 0.518  
pEC50 7.514, 7.718  4.814  4.514, (5.2)18 6.914, 6.618  
pKi 7.114  < 514     

clobenpropit α 1.018    0.418 0.618  
pEC50 7.015, 7.617, 7.918 7.217  < 415, 5.717 6.818 6.817, 6.718  
pKi 7.511, 8.312, 8.015 7.511 6.511 6.611, 6.415 7.311, 7.212 7.311, 7.812 8.211, 8.812 

JNJ7777120 α -0.213, -0.414, 016, -0.318  0.713, 14, 016  0.514,18 0.614, -0.218  
pEC50 8.313, 7.514, < 416, (7.8)18  6.213, 6.814, 

< 416 
 6.514, 8.218 6.714, (7.6)18  

pKi 8.311, 7.513,14 7.511 7.111, 6.813, 
7.014, 7.316 

6.311 8.411 8.411 6.011 

JNJ28610244 α 0.719 0.819   0.919 1.219  
pEC50 7.019 5.919   6.319 6.719  
pKi 7.319 6.719 5.019  6.719 7.719 6.519 

VUF6002 pKi 7.511 6.711 6.211 5.111 7.311 6.911 5.811 

thioperamide α -0.913, -1.014, -0.318, 015  0.313,14 015 014, -0.218 -0.114, -0.418  
pEC50 6.913,18, 7.014  6.413, 6.914  n.a.14, 

(6.9)18 
n.a.14, 6.518  

pKi 7.111, 7.312, 6.913,15, 
6.314 

7.111 6.411, 6.713, 
6.314, 7.116,  

7.011, 6.415 7.511, 7.612 7.611, 7.612 7.111, 7.512 

(R)-α-methyl-
histamine 

α 0.812, 1.116, 1.018  0.616  0.412, 1.018 0.812, 1.018 0.412 
pEC50 7.012, 5.816, 6.015,17, 

6.518 
6.117 5.516 5.215, 5.117 6.012, 5.618 6.612, 4.917, 

6.218 
6.512 

pKi 6.812,15  7.016 6.615 6.212 6.412 6.712 

imetit α 0.312, 0.816, 0.918  0.716  0.312, 1.018 0.812, 1.0 18 012 
pEC50 8.512, 7.416, 7.515, 7.817, 

7.518 
7.317 5.916 6.215, 5.917 8.112, 7.218 8.112, 6.817, 

7.418 
n.a.12 

pKi 8.912, 8.515  7.316 7.115 8.212 8.212 7.912 

 

Intrinsic activities/potencies/affinities of agonists and inverse agonists are given as α/pEC50/pKi values 
(without parentheses), and antagonist activities as (pKb); n.a., not applicable. 

                                                
11Lim et al. (2010); transiently transfected HEK 293T cells 
12Liu et al. (2001b); binding: stably transfected SK-N-MC cells; Ca2+ assays: cotransfection of 293-EBNA cells with Gqi5 + xH4R 
13Brunskole et al. (2011); binding and GTPase assays: xH4R co-expressed with Gαi2, Gβ1γ2 and GAIP (Sf9 cells) 
14Schnell et al. (2011); binding and GTPase assays: xH4R co-expressed with Gαi2, Gβ1γ2 and GAIP (Sf9 cells) 
15Oda et al. (2002); binding and cAMP assays: CHO cells transfected with xH4R;  
16Jiang et al. (2008); binding: transfected COS-7 cells (cH4R), transfected SK-N-MC cells (mkH4R); SRE-luciferase reporter gene 

assay: HEK 293 cells transfected with SRE-luciferase reporter gene construct, xH4R and Gqi5. 
17Oda et al. (2005); SRE-luciferase reporter gene assay: HEK 293 cells transfected with SRE-luciferase reporter gene construct, 

xH4R and Gqi5 
18Nordemann et al. (2013); luciferase reporter gene assay: transfected HEK 293T-CRE-Luc cells, co-expressing the CRE-

controlled luciferase and xH4R. 
19Yu et al. (2010); binding: stably transfected SK-N-MC cells; SRE-luciferase reporter gene assay: HEK 293 cells transfected with 

SRE-luciferase reporter gene construct, xH4R and Gqi5. 
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Differences between human, porcine and canine H4Rs are reflected by distinct ligand binding 

and functional data (Table 1.4). VUF8430, clozapine, clobenpropit, JNJ7777120 and VUF6002 

revealed a significant decrease in affinity and/or potency at both the cH4R and pH4R compared 

to the hH4R. By contrast, affinity and/or potency of histamine, 4(5)-methylhistamine and 

thioperamide were reduced only in case of the cH4R, but remained nearly constant at the pH4R 

(Brunskole et al., 2011; Jiang et al., 2008; Lim et al., 2010; Oda et al., 2002; Oda et al., 2005; 

Schnell et al., 2011). Both potency and affinity of UR-PI294 and UR-PI376 decreased at the 

cH4R compared to the hH4R (Schnell et al., 2011). Intrinsic activity decreased only in case of 

UR-PI376. The fact that both JNJ7777120 and thioperamide behaved as partial agonists at 

the cH4R implies the absence of constitutive activity at this H4R species ortholog (Brunskole et 

al., 2011; Schnell et al., 2011). A site-directed mutagenesis study was performed to identify 

amino acids determining the pharmacological differences between human and porcine H4R. 

N1474.57 in the hH4R was mutated to H, the corresponding residue in the pH4R and cH4R, and 

the double mutant hH4R-N147H+S179L, corresponding to the amino acids of the pH4R in 

positions 1474.57 and 1795.43, was generated. These mutants partly mimicked the cH4R and the 

pH4R, but could not fully explain the different ligand binding data at human, porcine and canine 

H4Rs (Lim et al., 2010). A chimeric approach revealed the region between the DRY motif and 

E1825.46 to be responsible for different ligand affinities at human and porcine H4R (Lim et al., 

2010). Additionally, a recent chimeric approach identified both ECL2 and ECL3 to contribute 

to distinct ligand binding and functional properties as well as to different constitutive activities 

of human and canine H4R (Brunskole et al., 2011). The respective hH4R chimera containing 

either ECL2 or ECL3 of the cH4R exhibited a binding and functional profile comparable to that 

of the cH4R. 

Likewise, species-dependent differences in binding and functional data of H4R ligands became 

obvious comparing the human and the rodent H4R orthologs, i. e., the gpH4R, mH4R and rH4R 

(Table 1.4). Compared to the hH4R, affinities of VUF8430, JNJ7777120 and VUF6002 

significantly decreased at the gpH4R, whereas the affinities of histamine, 4(5)-methylhistamine 

and thioperamide remained constant and the affinities of clozapine and clobenpropit even 

increased (Lim et al., 2010; Liu et al., 2001b). Measured on HEK 293T cells expressing the 

receptor of interest, the affinities of most investigated ligands decreased at the mouse and rat 

H4R orthologs compared to the human H4R. This in particular holds for the ligands histamine 

(pKi: hH4R, 7.9; mH4R, 7.1; rH4R, 7.0), 4(5)-methylhistamine (pKi: hH4R, 7.3; mH4R, 6.8; rH4R, 

6.4), VUF8430 (pKi: hH4R, 7.5; mH4R, 6.7; rH4R, 6.8) and clozapine (pKi: hH4R, 6.4; mH4R, 

5.5; rH4R, 5.6) (Lim et al., 2010). However, clobenpropit, JNJ7777120 and thioperamide 

revealed a comparable or even higher affinity at the mouse and rat H4R orthologs than at the 

hH4R (Lim et al., 2010). For these compounds, Nordemann et al. (2013) reported comparable 

functional data determined in the luciferase gene reporter assay on H4R orthologs expressed 
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in HEK 293T cells. By contrast, on membranes of H4R-expressing Sf9 insect cells, Schnell et 

al. (2011) determined a very low potency of histamine at the mH4R (pEC50 = 5.8) and rH4R 

(pEC50 = 5.2) compared to the potency at the hH4R (pEC50 = 7.9). A similar ortholog-dependent 

selectivity profile was determined for the H4R agonist UR-PI294. The pharmacological 

behaviour of many other H4R ligands changed as well: The human H4R inverse agonist 

thioperamide turned to neutral antagonism at the mH4R and rH4R. Characteristic of a protean 

agonist, the intrinsic activity of JNJ7777120 increased from the human H4R to the mouse and 

rat H4R orthologs, turning from partial inverse agonism to partial agonism. Furthermore, the 

intrinsic activity of UR-PI376 decreased from the hH4R to the mouse and rat H4R orthologs. 

Unfortunately, mutagenesis studies are not available in case of the gpH4R, but Lim et al. (2008) 

determined the region between V1414.51 and E1825.46 to be responsible for differences in 

agonist affinity between the hH4R and the mH4R. In particular, F169 was suggested as “the 

key amino acid” accounting for differences in the ligand binding profile between hH4R and 

mH4R. 
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Chapter 2 

2 Scope and Objectives 

Scope and Objectives 

There are substantial pharmacological differences between various H4R species orthologs 

(Brunskole et al., 2011; Lim et al., 2008; Schneider et al., 2009; Schnell et al., 2011), in 

particular, with respect to the potency and quality of action of H4R-agonists as well as inverse 

agonists. For example, histamine and a number of other agonists have considerably higher 

potency at the human H4R than at the mouse and rat H4R (Schnell et al., 2011). Several ligands 

even show different qualities of action (agonism, inverse agonism) when investigated on 

different species. Whereas the hH4R is highly constitutively active, the mH4R and rH4R are 

devoid of constitutive activity (Schnell et al., 2011). Such species-dependent differences 

represent a major problem regarding the validation of the H4R as a drug target and the 

evaluation of ligands as potential drugs in translational animal models. 

The aim of this project was to analyse molecular determinants of pharmacological differences 

between human, mouse and rat H4Rs. Two complementary approaches were applied, namely 

molecular modelling and molecular pharmacological investigations. Based on previous data, 

homology models of inactive and active states and sequence comparisons, H4R species 

variants were to be analysed with respect to amino acid exchanges, in particular close to the 

ligand binding pocket. Figure 2.1 presents an overview of all positions envisaged for analysis. 

Potential key amino acids and their role in receptor binding and function had to be verified by 

studies on H4R mutants, co-expressed together with G-protein subunits Gαi2 and Gβ1γ2 in Sf9 

insect cells. The affinities, potencies and intrinsic activities of agonists, antagonists and inverse 

agonists were determined in [3H]histamine saturation binding, [3H]histamine competition 

binding and functional [35S]GTPγS assays. Via receptor models and docking of investigated 

ligands, results from these experiments were to be analysed with the intention to elucidate the 

influence of mutated amino acids on constitutive activity and ligand binding and to suggest 

molecular determinants of receptor activation. 

Lim et al. (2008) identified F169 as a key amino acid responsible for the large differences in 

ligand binding data between hH4R and mH4R. The question arose whether F169 may also 

contribute to the high constitutive activity of the hH4R. Therefore, the hH4R-F169V as well as 
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the reciprocal mH4R-V171F mutant were generated. Indicated by hH4R homology models, the 

role of S1795.43, which is among those amino acids forming the orthosteric ligand binding site, 

on its own and in concert with F169 was to be investigated as well. The two single mutants 

hH4R-S179M and hH4R-S179A were envisaged as well as the two double mutants 

hH4R-F169V+S179M and hH4R-F169V+S179A, representing the amino acids of the mH4R or 

rH4R only in one or two positions, respectively, as well as the reciprocal double mutant 

mH4R-V171F+M181S. 

The second extracellular loop, ECL2, is important for ligand binding as well as for GPCR 

activation (Wheatley et al., 2012). Crystal structures of various GPCRs indicated that amino 

acids corresponding to the FF motif in the hH4R are located close to the ligand binding pocket. 

Therefore, not only F169, but also F168 had to be considered by expression and 

characterization of a hH4R-F168A mutant in Sf9 cells. 

Brunskole et al. (2011) demonstrated by means of chimeras of the hH4R containing ECL2 or 

ECL3 of the cH4R that both, ECL2 and ECL3, contribute to ligand binding, receptor activation 

and constitutive activity. Sequence alignments and homology models revealed that the hH4R 

has numerous acidic amino acids in ECL2, but only one basic residue in ECL3, whereas the 

mH4R and the rH4R comprise three or four basic amino acids in ECL3. In view of these 

differences regarding basic residues in ECL3 the single mutant hH4R-S330R was generated, 

corresponding to an arginine in this position of the rat H4R. 

Based on previous investigations in our laboratory (Schnell et al., 2011) on the impact of 

hH4R-R341S (as in mH4R/rH4R) and R341E (cH4R) mutants on ligand potencies, it was 

envisaged to analyse the role of R341 with respect to constitutive activity, too. This implied the 

expression of both mutants in Sf9 cells and the characterization of ligands in binding and 

functional assays. 
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Figure 2.1: Snake plot of the hH4R indicating all residues to be investigated by in-vitro 
mutagenesis (F168ECL2, F169ECL2, S1795.43, S330ECL3 and R3417.36; green colour). The two cysteines 
forming a disulphide bond are marked in yellow and the most conserved residue in each TM of class A 
GPCRs in red. TMs were calculated with DSSP implemented in SYBYL-X 1.3 (Chapter 3.3.2.2). 
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Chapter 3 

3 Computational Chemistry 

Homology modelling, analysis of inactive and 

active human H4 receptor states and ligand 

docking 

Note: Parts of this chapter were already published prior to submission of this thesis in PLoS 

One and Br. J. Pharmacol. (Wifling et al., 2015a; Wifling et al., 2015b). John Wiley & Sons 

granted me the permission to use the material incorporated in Wifling et al. (2015b) for this 

thesis. For detailed information on the contributions by co-authors, cf. “Danksagungen”. 

Computational Chemistry 

3.1 Summary 

Background and purpose: Whereas the human H4R shows a high degree of constitutive 

activity, the rodent orthologs mH4R and rH4R are devoid of basal activity. Aiming at the 

identification of the molecular determinants of species-dependent differences in terms of ligand 

binding and constitutive activity, molecular modelling studies were performed to suggest 

potential key amino acids, which were to be replaced by site-directed mutagenesis and verified 

by pharmacological in vitro studies. 

Experimental approach: Homology models of the hH4R inactive form based on the crystal 

structure of the hH1R and of active conformations of H4R orthologs based on the β2AR were 

generated with SYBYL 7.3 and SYBYL-X 1.3. The binding pockets were investigated with 

respect to differences in the amino acid sequence, comparing the H4R species orthologs. 

Important molecular switches were analysed and the investigated ligands were manually 

docked in the model of the hH4R in its inactive state. 

Results: Based on the homology models of the H4R species orthologs, the amino acids 

F168ECL2, F169ECL2, S1795.43, S330ECL3 and R3417.36 were suggested for in-vitro mutagenesis 

studies. Among the conformational changes essential for GPCR activation, the tyrosine toggle 
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switch and the transmission switch were feasible in our homology models. By contrast, the 

ionic lock and the controversial rotamer toggle switch of W3166.48 were not detectable. F168ECL2 

and F169ECL2 were suggested to interact with surrounding hydrophobic and aromatic amino 

acids by hydrophobic and π-π interactions. These contacts were assumed to be crucial for the 

contraction of the binding pocket and, thus, for constitutive activity. S1795.43 can form an 

H-bond with T3236.55, which is impossible in case of mutation to M and A. Whereas this 

interaction alone was insufficient to explain the high constitutive activity of the hH4R, S1795.43 

in concert with F169ECL2 stabilized the H4R active state. This supported the hypothesis that the 

contraction of the binding pocket and, in particular, the concomitant movement of both TM5 

and TM6 is unlikely in case of the respective double mutants. Considering docking poses, key 

interactions of most ligands with D943.32, E1825.46 and Q3477.42 were detected. 

Conclusions: Molecular modelling investigations were used to suggest amino acids to be 

mutated and were helpful to explain the data from experimental studies, which confirmed F168 

and F169 alone and F169 in concert with S179 as key residues for the extraordinarily high 

constitutive activity of the hH4R. The F/F/S motif is also present in other highly constitutively 

active GPCRs such as the hH3R or the β2AR. Therefore, the results may be interpreted as a 

hint to a general mechanism of GPCR activation. 

3.2 Introduction 

Since the first structure of a GPCR, the bovine rhodopsin, was disclosed in 2000 at a resolution 

of 2.8 Å (Palczewski et al., 2000), numerous crystal structures were reported for approximately 

25 GPCRs from all classes. The files of the crystal structures can be downloaded from the 

Brookhaven Protein Data Bank (PDB;(Bernstein et al., 1977). Meanwhile not only structures 

of agonist, antagonist or inverse agonist bound inactive states, but also of active states (agonist 

bound) and even complexes with allosteric modulators were resolved (for review, see, e. g. 

Granier and Kobilka (2012), Kruse et al. (2014) and Venkatakrishnan et al. (2013)). 

Furthermore, structures differ with respect to the stabilizing methods: insertion of lysozyme 

T4L at various sites, antibody, thermostabilization, mutations or coupling to G-proteins. 

Inactive and active states are both available in case of the β2AR (Rasmussen et al., 2011a; 

Rasmussen et al., 2007; Rasmussen et al., 2011b). Intriguingly, not only agonist binding, but 

also coupling of a nanobody or the native G-protein Gαs and Gβ1γ2 at the cytoplasmic domain 

is necessary to stabilize the active β2AR state (Rasmussen et al., 2011a; Rasmussen et al., 

2011b; Ring et al., 2013; Weichert et al., 2014). 

Crystal structures of H4R species orthologs and of the hH3R are not available. Therefore, 

homology models based on crystal structures of other GPCRs must be generated. For this 

purpose, all known structures of biogenic amine GPCRs are generally eligible as templates 
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(see Table 3.1) due to the high conservation of TM domains, fulfilling the minimum requirement 

for homology modelling of 30 % sequence identity. In contrast, the intra- and extracellular 

regions are less similar. Such homology models enable deeper insights into key ligand-

receptor interactions as well as into the molecular determinants of discrepancies observed 

among H4R orthologs. In particular, homology models may be useful to search for amino acids 

accounting for the high constitutive activity of the human H4R, i. e., for candidates to be 

investigated by the site-directed mutagenesis approach. 

Homology models also serve for the simulation of ligand binding modes in docking 

experiments. All ligands were docked that were also studied in pharmacological assays, and 

pharmacological data as well as published material were utilized in order to find reasonable 

docking poses. Moreover, comparing the inactive state homology model of the hH4R based on 

the hH1R (Shimamura et al., 2011) with the active state homology model of the hH4R based 

on the β2AR (Rasmussen et al., 2011a) enabled deeper insights into movements upon receptor 

activation and into molecular switches. 

3.3 Methods 

3.3.1 Available GPCR crystal structures 

Table 3.1: Biogenic amine GPCR crystal structures. 
 

Target 
 

Ligand 
 

G-protein 
substitution 

 

PDB ID 
 

Å 
 

Reference 
 

tβ1AR cyanopindolol (antagonist) stabilizing 
mutations 

2VT4 2.70 Warne et al. (2008) 

dobutamine (partial agonist); 
dobutamine (partial agonist); 
carmoterol (agonist); 
isoprenaline (agonist); 
salbutamole (agonist) 

2Y00; 
2Y01; 
2Y02; 
2Y03; 
2Y04 

2.50; 
2.60; 
2.60; 
2.85; 
3.05 

Warne et al. (2011) 

carazolol (inverse agonist); 
cyanopindolol (antagonist); 
iodocyanopindolol (antagonist); 
cyanopindolol (antagonist) 

2YCW; 
2YCX; 
2YCZ; 
2YCY 

3.00; 
3.25; 
3.65; 
3.15 

Moukhametzianov et 
al. (2011) 

bucindolol (antagonist); 
carvediolol (inverse agonist) 

4AMI; 
4AMJ 

3.20; 
2.30 

Warne et al. (2012) 

ligand-free 4GPO 3.50 Huang et al. (2013) 

compound 20; 
compound 19 (antagonists) 

3ZPQ; 
3ZPR; 

2.70; 
2.80 

Christopher et al. 
(2013) 

cyanopindolol (antagonist) 4BVN 2.10 Miller-Gallacher et al. 
(2014) 
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Table 3.1 (continued) 
 

Target 
 
Ligand 

 

G-protein 
substitution 

 
PDB ID 

 
Å 

 
Reference 

 
hβ2AR carazolol (inverse agonist) T4L chimera 2RH1 2.40 Cherezov et al. 

(2007) 

carazolol (inverse agonist); 
carazolol 

Fab5 complex 2R4R; 
2R4S 

3.40; 
3.40 

Rasmussen et al. 
(2007) 

timolol (inverse agonist) T4L chimera 3D4S 2.80 Hanson et al. (2008) 

ligand-free Fab complex 3KJ6 3.40 Bokoch et al. (2010) 

ICI118551 (inverse agonist); 
compound 2 (inverse agonist); 
alprenolol (antagonist) 

T4L chimera 3NY8; 
3NY9; 
3NYA 

2.84; 
2.84; 
3.16 

Wacker et al. (2010) 

FAUC50 (irreversible agonist) T4L chimera 3PDS 3.50 Rosenbaum et al. 
(2011) 

BI-167107 (agonist) Nb80 (nanobody) 3P0G 3.50 Rasmussen et al. 
(2011a) 

BI-167107 (agonist) Gαsβ1γ2 
heterotrimer 

3SN6 3.20 Rasmussen et al. 
(2011b) 

carazolol (inverse agonist) T4L chimera 4GBR 3.99 Zou et al. (2012) 

BI-167107; 
hydroxybenzyl isoproterenol; 
adrenaline (agonists) 

Nb6B9 4LDE; 
4LDL; 
4LDO 

2.79; 
3.10; 
3.20 

Ring et al. (2013) 

compound 2 (covalent agonist) Nb6B9 4QKX 3.30 Weichert et al. (2014) 

hD3R eticlopride (antagonist) T4L chimera 3PBL 2.89 Chien et al. (2010) 

hH1R doxepin (antagonist) T4L chimera 3RZE 3.10 Shimamura et al. 
(2011) 

hM2R QNB (antagonist) T4L chimera 3UON 3.00 Haga et al. (2012) 

iperoxo (agonist); 
iperoxo (agonist) + LY2119620 
(allosteric modulator) 

Nb9-8 4MQS; 
4MQT 

3.50; 
3.70 

Kruse et al. (2013) 

rM3R tiotropium (inverse agonist) T4L chimera 4DAJ 3.40 Kruse et al. (2012) 

tiotropium (inverse agonist); 
tiotropium (inverse agonist); 
NMS (antagonist) 

4U14; 
4U15; 
4U16 

3.57; 
2.80; 
3.70 

Thorsen et al. (2014) 

h5-HT1BR dihydroergotamine; 
ergotamine (agonists) 

chimera with 
E. coli soluble 
cytochrome b562 

4IAQ; 
4IAR 

2.80; 
2.70 

Wang et al. (2013) 

h5-HT2BR ergotamine (agonist) chimera with 
E. coli soluble 
cytochrome b562 

4IB4 2.70 Wacker et al. (2013) 

ergotamine (agonist) 4NC3 2.80 Liu et al. (2013) 

 

3.3.2 H3R/H4R homology models based on the active state of the β2AR 

3.3.2.1 Sequence alignment 

Sequences of the β2AR and of the target receptors were retrieved from the UniProt 

Knowledgebase (UniProt, 2013) and imported into Clustal-X 2.1 (Larkin et al., 2007) for 

multiple sequence alignment. Clustal-X 2.1 determines the phylogenetic relatedness of the 

respective amino acids and introduces gaps along the variable loop regions if necessary. The 
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alignment was performed with the Gonnet PAM250 matrix (Gonnet et al., 1992) and based on 

about 80 similar class A GPCR sequences as input. The resulting alignment of the template 

and target receptors is shown in Figure 3.1. 

                                            N-term                                                                                                                                                                                                                                TM1                                                                     ICL 1                                                  TM2                                                  n 
β2AR MGQPGNGSAFLLAPNGSHA----PDHDV--------TQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVP 

hH4R -------------------.MPDTNS---........INLSLSTR.TLAFF...VAF..ML..A...L.FVVDKN.RHRSS..FLN..IS.FFV.VISI. 

mKH4R -------------------.MPDTNS---........INLSLSTRITLAFF...LAF..ML..AV..L.FVVDKN.RHRSS..FLN..IS.FFV.VISI. 

cH4R -------------------.MSATNG---........ITLPLSTRITLAFL...LAF..ML..AV..L.FVVDKK.RHRS...FLN..I..FFV.MISI. 

pH4R -------------------.MSAINDTN-........NTLPLNTRIALAFL...LA.V.ML..AV..L.FVVDKN.RHRS...LLN..IS.FFV.VISI. 

rH4R -------------------.MSESNG---........DVLPLTAQ.PLAFL...LAF..TI..AV..L.FVADRN.RHRS...FLN..IS.FFV.VISI. 

mH4R -------------------.MSESNS---........GILPPAAQ.PLAFL..SFAF..MV..AV..L.FVVDRN.RHRS...FLN..IS.FLV..ISI. 

gpH4R -------------------.MLANNS---........-IALTSIKISLTFL...LAI..ML...V..L.FIVDRN.RHRS...FLN..I..FFV.AIAI. 

hH3R -----------MERAPPDGPLNASGALAGEAAAAGGARGFSAA.TAVLAAL.A.LIV.T.L..A..ML.FVADSS.R.QN.F.LLN..IS.FLV.AFCI. 

 1       10        20        30        40        50        60        70        80        90       100 

 

                                                    TM2             ECL1                                                                               TM3                                                                                          ICL2                                                                   TM4                                                                              ECL2             
β2AR FGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLT-KNKARVIILMVWIVSGLTSFLPIQMHWYRATHQ----EAIN 

hH4R LYIP.T.F-E.D..KEI.V..LTT.Y.LC...VYNIVL.SY...LSVSNAVS.RTQH.GVL.IVTLMVA..VLAF.VNGPM.LVSESWKDE-....-GSE 

mKH4R LYIP.M.F-E.D..KEI.V..LTT.Y.LC...VYNIVL.SY...LSVSNAVS.RTQH.GIL.IVTLMVA..VLAF.VNGPM.LVSETWKDE-....-GSE 

cH4R LYIP.T.F-D.D...KL.A..LIA.Y.LC.T.VYNIVL.SY...QSVSNAVS.RAQH.GIL.IVSLMVA..VLAF.VHGPI.LVSESWKNSSFGVV.EKD 

pH4R LYIP.T.F-K.KLEDNI.A..LI..Y.LC...VYNIVL.SF...QSVSNAVS.RTQH.GIL.IVALMVG..VLAF.VHGPV.LVSEAWKQG-....-KQD 

rH4R LYIP.T.F-N.N..SGI.M..LIT.Y.LC...VYSIVL.SY...QSVSNAVR.RAQH.GIL.IVAQMVA...LAF.VNGPM.LASDSWKNSTN...-TEE 

mH4R LYIP.V.F-N.N..SGI.M..LIT.Y.LC...VYNIVL.SY...QSVSNAVS.RAQH.GIM.IVAQMVA...LAF.VNGPM.LASDSWKNSTN...-TKD 

gpH4R LYIPSS.T-Y..S.KQA.V..LIT.Y.LC...VYNIVL.SY...QSVSNAVW.RAQHSGTW.IATQMVA...F.FM.NGPM.LISDSWQNS-....-TTE 

hH3R LYVPYV.TGR....RGL.KL.LVV.Y.LC.S.AFNIVL.SY..FLSV.RAVS.RAQQGDTRR.VRKM.L..VLAF.LYGPA.LSWE.LSGGSS..IPEGH 

        110       120       130       140       150       160       170       180       190       200 

 

                                                              ECL2                                                                                      TM5                                                                                                                                                                                                         ICL3                                                                                                                          
β2AR CYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKR------------------------------------------------------- 

hH4R .EPG-----..SEWYILAIT.FLE.VI.VILVAYFNMNIYWSLWAAAAAAAKRDHL....SRCQSHPGLTAVSSNI........................ 

mKH4R .EPG-----..SEWYIVAIT.FLE.LI.VILVAYFNMNIYWSLWAAAAAAAKRDHL....SRCQSHPGPTAVSSNS........................ 

cH4R .EPG-----...RWYVLAI..FFE.L..VFSVAYFNMYIYWSLWAAAAAAAKRGNL....SRWQSQPTLTSVSSSN........................ 

pH4R .EPG-----.LKEWYVLAITLFFE.LA.VLLVAYFNLYIYWSLWAAAAAAAKRGHL....SRCQSHCGLTPVSSGS........................ 

rH4R .EPG-----.V.EWYILAITAFLE.LL.VSLV.YFSVQIYWSLWAAAAAAAKRGSL....SRCPSHAGFIATSSRG........................ 

mH4R .EPG-----.V.EWYILTITMLLE.LL.VISVAYFNVQIYWSLWAAAAAAAKRRAL....SRCPSHAGFSTTSSSA........................ 

gpH4R .EPG-----.LKKWYF.LPT.LLE.LI.ILLVAYFSAHIYWSLWAAAAAAAKREKL....SRCLSHPVLPSDSSSSD....................... 

hH3R ...E-----..Y.WYFL.TA.TLE.FT.FLSVT.FNLSIYLNIQAAAAAAA.RTRLRLDGAREAAGPEPPPEAQPSPPPPPGCWGCWQKGHGEAMPLHRY 

        210       220        230      240       250       260       270       280       290       300 

 

n 
β2AR ---QLQKIDKSEGRFH-------VQNLSQVEQ------------------------------DGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLP 

hH4R .CGHSFRGRL.SR.SLSAS....TEVPASFHSERQRRKSSLMFSSRTKMNSNTIASKMGSFSQSDSVALHQ.EHVEL.RARRLA.S.A.LL.V.AV..A. 

mKH4R .CG.SFRCGL.SRGSLSAS....TEMPVSLHSERQRRKSSLMYSLRTKMNSNRIASKMGSFSQSDSVGLHQ.EHAEL.RARRLA.S.A.LL.V.AV..A. 

cH4R .CGS.LRGGLFSRTSLSEQ....KETAPS.PLKRHERKSNLLLSLRAQMNSSIITSKMASLTHSDSLCLHQ.EHIEL.RAR.LA.S.A.LL.V.AV..A. 

pH4R .WGHSFRCGLFSRTSLSDP....KEAAASLHSERPRRKSTLWFSLRTRM.SSLTASNKGFLSHSDSLALHQKEHLEL.RAR.LARS.A.LL.V.AI..A. 

rH4R .TGHSRRTGLACRTSLPGL....KEPAASLHSESPRGKSSLLVSLRTHMSGSIIAFKVGSFCRSESPVLHQ.EHVEL.RGR.LARS.AVLLSA.AI..A. 

mH4R .SGH.HRAGVACRTSNPGL....KESAASRHSESPRRKSSILVSLRTHMNSSITAFKVGSFWRSESAALRQ.EYAEL.RGR.LARS.A.LLSA.AI..A. 

gpH4R .HGHSCRQ.PDSRATLPAR....KETTASLGSDKSRRKSSLLFSIRAYKNSNVIASKMGFLSHSDSLALQQ.EHIELFRAR.LA.S.A.LLAA.AI..A. 

hH3R GVGEAAVGAEAGEATLGGGGGGGSVASPTSSSGSSSRGTERPRSLKRGSKPSASSASLEKRMKMVSQSFTQ.--FRLSRDR.VA.S.AV.VSI.G...A. 

        310       320       330       340       350       360       370       380       390       400 

 

                                                            TM6                       ECL3                                                   TM7                                                                                    H8                   n 
β2AR FFIVNIVHVIQD--NLIRKEVYILLNWIGYVNSGFNPLIYCRS-PDFRIAFQELLCLRRSSLK----AYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDL 

hH4R YSLFT..LSFYSSATGPKSVW.RIAF.LQWF..FV...L.PLCHKR.QK..LKIF.IKKQP.PSQHSRSVSS---------------------------- 

mKH4R YSLFT..LSFYSSETGSKSVW.RIAF.LQWF..FV...L.PLCHKR.QK..LKIF.IKKQP.PSPHSRSVSS---------------------------- 

cH4R YSLFT.IRS.YPLEQRPQIVG.EITF.LQWL..FV..FL.PLCHKH.QK..LKIFHMKKP.IPS.QNRSVSS---------------------------- 

pH4R YSLLT.TRSVYPTNPFPSTA..KFAF.LQWF..CV..FL.PLCHKR.QK..LKIF..KKQ.TLS.HNRSTSS---------------------------- 

rH4R YCLFT..LSTYRRGERPKSIW.SIAF.LQWF..LI..FL.PLCHRR.QK..WKI..VTKQPAPS.QTQSVSS---------------------------- 

mH4R YCLFT..LSTYPRTERPKSVW.SIAF.LQWF..FV..FL.PLCHRR.QK..WKI..VTKQPALS.QNQSVSS---------------------------- 

gpH4R YSLTTVIYSFFPER..TKSTW.HTAF.LQWF..FV..FL.PLCHKR.QK..LKI.PV..Q.TPP.HNRSIST---------------------------- 

hH3R YTLLM.IRAACHGHCVP-DYW.ETSF.LLWA..AV..VL.PLCHHS..R..TK...PQKLKIQPHSSLEHCWK--------------------------- 

        410       420       430       440       450       460       470       480       490       500 

 

                                                                                                                                                                   C-term 
β2AR PGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL 

hH4R -------------------------------- 

mKH4R -------------------------------- 

cH4R -------------------------------- 

pH4R -------------------------------- 

rH4R -------------------------------- 

mH4R -------------------------------- 

gpH4R -------------------------------- 

hH3R -------------------------------- 

        510       520       530 

Figure 3.1: Multiple sequence alignment of the β2AR (template) with the target receptors hH4R, 
mkH4R, cH4R, pH4R, rH4R, mH4R, gpH4R and hH3R. The most conserved amino acid in each TM of 
class A GPCRs is labelled in grey and the two cysteines forming a disulphide bond are coloured in 
yellow. Dots in the sequences indicate identity with the template structure. The cancelled amino acids 
were not resolved in the β2AR crystal structure (PDB ID: 3P0G). ICL3 loops of the targets were replaced 
by seven A. 
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In case of no correspondence of all highly conserved amino acids in the TM domains 

(Mirzadegan et al., 2003) or of the conserved cysteine in TM3 (Strader et al., 1994) or if gaps 

occurred in the TM regions, a new alignment with more similar sequences was performed 

using the option “Reset all gaps before alignment”. In the crystal structure of the β2AR, ICL3 

as well as parts of the N- and C-terminus are missing and were therefore removed in the 

alignment (Figure 3.1). 

3.3.2.2 3D structure generation 

After importing the PDB file of the active state β2AR structure (Protein Data Bank ID: 3P0G) 

into SYBYL-X 1.3 (Tripos, St. Louis, MO USA), the amino acids of the template (β2AR) were 

consecutively mutated into the corresponding residues of the target receptors along parts of 

the N-terminus, TM regions 1-7, ICL1, ECL1 (hH3R), α-helical domain of ICL2, helix 8 and 

parts of the C-terminus. In case of the missing ICL3 loops, seven alanine residues were 

introduced. The positions of the conserved cysteine in ECL2 were preserved in order to retain 

the disulphide bridge with C3.25. For the remaining extra- and intracellular regions (ECL1 in 

case of H4R orthologs, non-helical part of ICL2, ECL2, ECL3 and loop connecting TM7 and 

helix 8), loop searches were performed with the Loop Search Tool implemented in 

SYBYL-X 1.3. This tool scans the PRODAT database (part of the Protein Data Bank (Bernstein 

et al., 1977)) for fragments with proper residue lengths and well-fitting anchor residues (Rossi 

et al., 2007). In case of ECL2, two loop searches were performed up- and downstream the 

conserved cysteine residue. The α-helical region in ECL2, being present in the crystal structure 

of the β2AR, could not be reproduced in the homology models. 

The side chains of the amino acids were added and their conformations were adjusted. If 

possible, side chain torsion angles of the template receptor were retained. In case of side chain 

clashes, most appropriate conformations were selected from the Lovell library (Lovell et al., 

2000). Using the structure preparation tool of SYBYL-X 1.3, the protonation states of acidic (D, 

E) and basic (K, R) amino acids were manually adjusted, termini were fixed, hydrogens were 

added and all atoms were assigned with Amber7 FF99 atom types and charges. Afterwards, 

the target sequences were renumbered according to the primary structure retrieved from 

UniProt (UniProt, 2013). 

Finally, for each target model a short minimization run (100 cycles, Powell method (Powell, 

1964)) with the Amber7 FF99 force field (Cornell et al., 1995) and a dielectric constant of 4 

was performed in order to eliminate strain. 

TM definitions of the hH4R model were assigned according to the DSSP (Define Secondary 

Structures of Proteins) algorithm (Kabsch and Sander, 1983) implemented in SYBYL-X 1.3 

(second column in Table 3.2). In case of different results (especially in case of TM4, TM6, TM7 

and helix 8), TM definitions of the β2AR (Protein Data Bank ID: 3P0G) were assigned according 
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to the DSSP algorithm of SYBYL-X 1.3 (third column in Table 3.2) and the homologous regions 

in the hH4R were determined by alignment with Clustal-X 2.1. 

Table 3.2: TM/helix definitions of the hH4R model based on the active β2AR. 
 

Helices 
 

Protable definition of hH4R 
 

Protable definition of β2AR 
 

TM1 S11-V42 S11-V42 

TM2 R49-L77  R49-L77 

TM3 K84-S117 G83-S117 

ICL2 (loop) A119-Q125 A119-H126 

TM4 I132-V153 V129-L152 

TM5 W172-W202 W172-L201 

TM6 R297-V325 R297-F328 

TM7 S337-L357 K336-Y358 

H8 F365-K371 K363-I372 
 

Definitions were assigned according to DSSP of the hH4R model (second column) or DSSP of the 
aligned β2AR (PDB ID: 3P0G; third column). Implemented definitions in the PDB file are marked in bold. 

3.3.3 hH4R homology model based on the inactive state of the hH1R 

To suggest promising mutants and hH4R-specific intramolecular interactions close to the ligand 

binding site, a homology model of the hH4R was generated with the modelling suite SYBYL 7.3 

(Tripos, St. Louis, MO USA) using the crystal structure of the hH1R (Protein Data Bank ID: 

3RZE) as template (Shimamura et al., 2011). For this purpose, the inactive state of the 

template is not inconsistent with the constitutively active state of the hH4R since the binding 

pocket regions and extracellular domains of both states are probably as similar as in case of 

the β2AR (Rasmussen et al., 2011a). The resulting model contains all extracellular (ECL) and 

intracellular (ICL) loops except ICL3 (G215-H292). To close the gap between the intracellular 

parts of TM5 and TM6, eight alanines were inserted in place of ICL3 (and the lysozyme domain 

of the template structure, respectively). 15 missing amino acids of the N-terminus were added 

by a recently established protocol (Strasser and Wittmann, 2013). The E2-loop is not 

completely resolved in the hH1R structure. After removing the hH1R residues W165, N166 and 

H167, the missing amino acids V153-K158 were included into the hH4R model using the Loop-

Search module within SYBYL. The inserted regions of the N-terminus and ECL2 were 

separately refined by energy minimization and a short gas phase MD simulation (500 ps). 

Histamine was manually docked considering interactions with the hH4R suggested from results 

of in-vitro mutagenesis (Shin et al., 2002). Finally, the model was provided with Amber7 FF99 

(histamine: Gasteiger-Hueckel) charges and energy minimized with the Amber7 FF99 force 

field (Cornell et al., 1995) and a dielectric constant of 4 up to a gradient of 0.01 kcal Mol-1 Å-1. 

TM definitions were assigned according to the PDB file of the template (Table 3.3). 
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Table 3.3: TM/helix definitions of the hH4R model based on the inactive hH1R crystal structure 
(Shimamura et al., 2011). 

 

Helices 
 

TM definition 
 

TM1 V16-V42 

TM2 R49-F78 

TM3 K84-S117 

ICL2 (loop) A119-H126 

TM4 V129-V153 

TM5 Y173-R204 

TM6 R297-F328 

TM7 S337-L360 

H8 K363-I372 
 

3.3.4 Illustration in PyMOL 

The generated coordinate files (PDB) were imported into PyMOL Molecular Graphics System, 

Version 1.6 (Schrödinger LLC, Portland, OR USA) and illustrations were prepared with this 

software package. 

3.3.5 Docking experiments 

Ligands were manually docked into the binding pocket considering main interactions with the 

receptor (D943.32, E1825.46 and Q3477.42), currently available published literature and site-

directed mutagenesis results. Ligands were provided with correct SYBYL and Amber7 FF99 

atom types as well as with Gasteiger-Hueckel charges and the receptor with Amber7 FF99 

charges. The ligand alone was firstly minimized with the Tripos force field and the Powell 

minimization method (Powell, 1964). Subsequently, the ligand was minimized together with 

the closest amino acids to the ligand-binding site with the Tripos force field as well as 

adjustment of constraints and afterwards the whole receptor was fully minimized with the 

Amber7 FF99 force field (Cornell et al., 1995). Minimization was essentially performed as 

described in Chapter 3.3.3. 

3.4 Results and Discussion 

3.4.1 Homology Modelling 

3.4.1.1 Template selection 

Depending on the intrinsic activities of investigated ligands (inverse agonist, neutral antagonist 

or agonist) or on the extraordinarily high constitutive activity of the hH4R, inactive and active 

state crystal structures, respectively, are preferable as template. At the time of model 

preparation, only the active state of the hβ2AR (PDB ID: 3P0G) was available (Rasmussen et 

al., 2011a). 
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In principle, models of inactive H4R states may be based on all released structures of biogenic 

amine GPCRs (Table 3.1). To select an appropriate template, different criteria are useful: 

identity or conservation of amino acids with regard to the whole sequence, the TM regions or 

the ligand binding site as well as even ligand similarity (Lin et al., 2013). Table 3.4 presents 

the sequence identities (overall and TMs) of all targets with biogenic amine GPCRs from which 

structures were available. Obviously, the overall identities are only low, ranging from 13 % to 

26 %. However, if one considers the TM regions, the minimal requirement for homology 

modelling, namely identities of 30 % and greater, is fulfilled in many cases. Among the possible 

templates, the hM2R, rM3R, hD3R, h5-HT1BR, h5-HT2BR or the hH1R, the inactive crystal 

structure of the hH1R (Shimamura et al., 2011) was selected for generation of an inactive state 

model of the hH4R although the sequence similarity and phylogenetic relatedness with the 

rM3R is somewhat greater. The main reason was that the FF motif in ECL2, one of the main 

determinants of constitutive activity of the hH4R (see Chapter 5), is conserved (FY) in the hH1R. 

Table 3.4: Identical amino acids (overall and TM % identity) between biogenic amine GPCRs with 
available crystal structures (rows) and possible homology models (columns). 

 

Receptor 
 

hH4R 
 

mkH4R 
 

cH4R 
 

pH4R 
 

rH4R 
 

mH4R 
 

gpH4R 
 

hH3R 
 

 o/a 
 
TM 

 
o/a 

 
TM 

 
o/a 

 
TM 

 
o/a 

 
TM 

 
o/a 

 
TM 

 
o/a 

 
TM 

 
o/a 

 
TM 

 
o/a 

 
TM 

 
tβ1AR 15 20 15 19 16 20 15 20 16 20 16 20 17 23 19 25 

hβ2AR 15 23 14 22 16 25 13 22 16 23 16 23 17 25 14 22 

hD3R 21 28 21 29 22 30 21 27 22 29 22 29 23 29 25 33 

hH1R 21 29 21 29 21 29 23 30 22 31 21 30 23 31 23 32 

hM2R 21 30 21 29 20 30 22 33 23 32 23 31 23 31 22 32 

rM3R 26 33 26 33 24 32 26 36 25 34 26 34 26 35 25 34 

h5-HT1BR 22 29 21 28 22 30 23 30 23 29 22 27 22 29 25 29 

h5-HT2BR 18 26 18 25 17 26 18 25 16 23 18 26 18 27 16 29 
 

For calculation of the % identities, the number of identical amino acids was divided by the construct with 
less amino acids. For calculation of TM % identities, TM definitions shown in Table 3.2 were considered. 
o/a, overall % identity; TM, TM1-7 % identity. 

3.4.1.2 3D structure validation 

The stereochemical properties were checked with PROCHECK (Laskowski et al., 1993), 

available as online tool PDBsum. Ramachandran plots for all generated homology models 

were retrieved from the PDBsum server (Figure 3.2). About 90 % of all residues are positioned 

in the most favoured regions (A, B, L) and about 10 % in additional allowed regions (a, b, l, p) 

(Table 3.5). Disallowed regions are occupied by one amino acid in four homology models 

(hH4R, mkH4R, pH4R and gpH4R) and by six amino acids in case of the hH4R model based on 

the inactive state structure of the hH1R (Shimamura et al., 2011). 

Furthermore, the side chain torsion angles (χ1 up to χ5), the RMSD distance from planarity (for 

planar groups such as aromatic rings) as well as bond lengths and G-factors were calculated 
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with PROCHECK. G-factors quantify deviations of given stereochemical properties from 

normality. Values below -0.5 are unusual and values below -1.0 highly unusual. The overall G-

factors of the respective homology models were in the normal range (Table 3.5). 

A (hH4R) 

 

B (hH4R) 

 

C (mkH4R) 

 

D (cH4R) 

 

E (pH4R) 

 

F (gpH4R) 

 

G (rH4R) 

 

H (mH4R) 

 

I (hH3R) 

 

Figure 3.2: Ramachandran plots of the generated homology models illustrating the phi (ϕ) and 
psi (ψ) torsion angles. (A) The inactive state crystal structure of the hH1R (PDB ID: 3RZE) was used 
as template; for all other homology models (B-I), the active state of the β2AR (PDB ID: 3P0G) was used 
as template. Glycines are shown as triangles and all other residues except prolines as squares. Red 
fields, most favoured regions; dark yellow fields, additional allowed regions; light yellow fields, 
generously allowed regions; white fields, disallowed regions. A and a, α-helix; B and b, β-strand; L and 
l, left-handed α-helix; p, allowed ε (Morris et al., 1992). 
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Table 3.5: Ramachandran plot statistics showing the %age of residues in each segment and the 
G-factors. 

 

Residues in 
 

hH4R* 
 

hH4R 
 

mkH4R 
 

cH4R 
 

pH4R 
 

gpH4R 
 

rH4R 
 

mH4R 
 

hH3R 
 

most favoured regions 
(A, B, L) 

85.2 88.7 88.8 91.1 88.3 88.0 90.9 90.9 89.8 

additional allowed 
regions (a, b, l, p) 

12.7 10.9 10.9 8.9 11.4 11.6 9.1 9.1 10.2 

generously allowed 
regions (~a, ~b, ~l, ~p) 

0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

disallowed regions 1.8 0.4 0.4 0.0 0.4 0.4 0.0 0.0 0.0 

Overall G-factor -0.19 -0.17 -0.17 -0.17 -0.20 -0.20 -0.16 -0.17 -0.23 

 

*The inactive state crystal structure of the hH1R (PDB ID: 3RZE) was used as template; for all other 
homology models, the active state of the β2AR (PDB ID: 3P0G) was used as template. 

3.4.2 Species differences between H4R orthologs 

Comparing the sequence alignments and homology models, a number of amino acids of the 

hH4R were identified, which are mutated in at least one H4R species ortholog. Most interesting 

are mutations in the ligand binding pocket, in TMs 3, 5, 6 and 7 which presumably move during 

receptor activation (Hulme, 2013; Rasmussen et al., 2011a) as well as within ECL2 and ECL3 

also playing a role in recognition and binding of ligands and in receptor function (Brunskole et 

al., 2011; Peeters et al., 2011; Wheatley et al., 2012) (Figure 3.3 and Table 3.6). 

 

Figure 3.3: Amino acids 
close to the binding 
pocket of the hH4R 
mutated in at least one 
H4R species ortholog. 
Shown is the hH4R 
homology model based on 
the inactive state of the 
hH1R (PDB ID: 3RZE). 

Mainly focusing on species differences between hH4R, mH4R and rH4R, the following 

mutations are most striking: F169ECL2 in the hH4R is exchanged by V in the mH4R and rH4R, 

S1795.43 is replaced by M in the mH4R and A in the rH4R as well as R3417.36 by S in both the 

mH4R and rH4R (Table 3.6). Moreover, S3206.52 is exchanged by C in the mH4R and rH4R and 

L175

F169

H75
T76F82

A143

N147

T178

S179

L181

S320

R341

S330
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S330ECL3 by P in the mH4R and R in the rH4R. For further investigation by in-vitro mutagenesis, 

F169, S179, S330 and R341 were selected as potential key amino acids with respect to 

species differences of ligand binding and constitutive activity. With the promising results for 

the hH4R-F169V mutant in hand, the role of F168 was additionally investigated. 

Table 3.6: Positions close to the binding pocket with amino acids differing between the hH4R and 
species variants. 

 

Ballesteros 
 

hH4R 
 

mkH4R 
 

cH4R 
 

pH4R 
 

rH4R 
 

mH4R 
 

gpH4R 
 

2.64 H75 H H H H H S 

2.65 T76 M T T T V S 

ECL1 F82 F F L F F S 

4.53 A143 A A A A A S 

4.57 N147 N H H N N N 

ECL2 F169 F F L V V L 

5.39 L175 V L L L L A 

5.42 T178 T S T T T T 

5.43 S179 S S L A M S 

5.45 L181 L F F L L L 

6.52 S320 S S S C C S 

ECL3 S330 S P P R P P 

7.36 R341 R E K S S H 
 

3.4.3 Comparison of inactive and active state hH4R models 

A ligand stabilizing the active receptor conformation (agonist) or the ability of a receptor to 

spontaneously form the active state (constitutively active receptor) are two independent and 

different prerequisites for receptor activation (Trzaskowski et al., 2012). Ligand binding to the 

receptor induces conformational changes (molecular switches) leading to a specific equilibrium 

of inactive and active states quantified by intrinsic activity (Figure 3.4). In case of an active 

receptor state, G-proteins are enabled to couple at the intracellular side where TM movements 

(Figure 3.4C) unclose a binding pocket for the C-terminus of the Gα subunit. Most prominent 

changes occur within TM6. At the β2AR (Rasmussen et al., 2011a), a 11.4 Å outward 

movement of E6.30 due to a clockwise rotation of this TM near the conserved P6.50 (Trzaskowski 

et al., 2012) was demonstrated. Comparing inactive and active hH4R models, a 9.8 Å outward 

movement of TM6 at the amino acid A2986.30 was determined (Figure 3.4B, C) as well as a 

slight outward movement of TM5 (Figure 3.4C, D) and a slight inward movement of TM3 at the 

intracellular side (Figure 3.4C, D). Additionally, the binding pocket is contracted (Figure 3.4A) 

due to slight inward movements of TM3 (straight) and TMs 4 to 7 (clockwise). 
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Figure 3.4: Comparison of an inactive hH4R model based on the hH1R (PDB ID: 3RZE; red) with 
an active state hH4R model based on the β2AR (PDB ID: 3P0G; green). Arrows indicate the 
movements upon activation. (A) Top view from the extracellular side, (B) side view illustrating the 
outward movement of TM6 at the intracellular face, (C) intracellular view also indicating the outward 
movement of TM6 and (D) side view at the opposite side compared to (B). 

The so-called ionic lock – a salt bridge between R3.50 and E6.30 – was first evident in the case 

of bovine rhodopsin (Palczewski et al., 2000) and supposed to restrain GPCRs in the inactive 

conformation (Angelova et al., 2002; Ballesteros et al., 2001; Greasley et al., 2002; Shapiro et 

al., 2002). However, the ionic lock is missing in H4R species orthologs due to substitution of 

glutamate by alanine (Figure 3.5) and even in inactive state structures of some biogenic amine 

GPCRs (see, e. g. β1AR (Moukhametzianov et al., 2011; Warne et al., 2008), β2AR (Cherezov 

et al., 2007; Hanson et al., 2008; Rasmussen et al., 2007), H1R (Shimamura et al., 2011) and 

M2R (Haga et al., 2012)) containing the R3.50-E6.30 couple. Other crystal structures of, e. g., the 

D3R (Chien et al., 2010) or the A2AR (Dore et al., 2011) feature the ionic lock. Nevertheless, 

R3.50 belongs to the D/ERY motif which plays a key role in GPCR activation and interaction 

with G-proteins as approved by mutagenesis studies with the H2R (Alewijnse et al., 2000) and 

the H4R (Schneider et al., 2010). D3.49 forms a salt bridge with the neighbouring R3.50 
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constraining the receptor in the inactive conformation (hH4R: D1113.49 with R1123.50; 

Figure 3.5;(Ballesteros et al., 1998; Scheer et al., 1996; 1997). Mutations of D3.49 preclude this 

ionic interaction and trigger receptor activation, i. e., the mutants show constitutive activity and 

higher agonist affinities. In contrast, mutations of R3.50 led to highly instable and inactive 

receptors not interacting with G-proteins (Alewijnse et al., 2000; Schneider et al., 2010). 

 

Figure 3.5: Relocation of the DRY motif during activation. Inactive hH4R state: red, based on the 
hH1R, PDB ID: 3RZE; active hH4R state: green, based on the β2AR, PDB ID: 3P0G. In the inactive state, 
D1113.49 forms an ionic interaction with R1123.50. Activation relocates R1123.50 and the ionic interaction 
is precluded. Moreover, the ionic lock between R1123.50 and position 6.30 is missing due to the presence 
of A2986.30. Y122ICL2 possibly forms an H-bond with D1113.49 upon activation. 

The so-called rotamer toggle switch of W3.48 (hH4R: W3166.48) was previously assumed to be 

part of the signal transmission (Shi et al., 2002). A rearrangement of the side chains of 

C/S/T6.47, W6.48 (part of the FxxCWxP motif) and F6.52 were supposed to modulate the P6.50 kink 

in TM6 (Kobilka and Deupi, 2007). Result is the outward movement of the cytoplasmic face of 

TM6. However, the active states of neither the A2AR (Xu et al., 2011) nor the β2AR (PDB ID: 

3P0G;(Rasmussen et al., 2011a) indicate rotamer transitions of W6.48. Consequently, the 

rotamer toggle switch cannot be detected when comparing inactive and active state hH4R 

homology models (Figure 3.6). However, a transmission switch relocates the amino acids in 

TM3, TM5 and TM6, namely I/L3.40, P5.50, L5.51, F6.44 and W6.48 (hH4R: V1023.40, P1865.50, 

V1875.51, F3126.44 and W3166.48; Figure 3.6) (Deupi and Standfuss, 2011). 
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Figure 3.6: Amino acid movements from the inactive hH4R state to the active hH4R state. Inactive 
state: red, based on the hH1R, PDB ID: 3RZE; active state: green, based on the β2AR, PDB ID: 3P0G. 
Shown are the amino acids putatively modulated by the controversial rotamer toggle switch (C3156.47, 
W3166.48 and P3186.50; FxxCWxP motif) and the transmission switch (V1023.40, P1865.50, V1875.51, 
F3126.44 and W3166.48). 

In the inactive state, the so-called “hydrophobic barrier” separates the water-mediated 

hydrogen bond network between the binding pocket and the NPxxY motif from the DRY motif 

(essential for G-protein activation; Figure 3.7A, B;(Standfuss et al., 2011; Trzaskowski et al., 

2012). Activation of the receptor includes a rotation of TM6 responsible for opening the 

hydrophobic barrier. Y3587.53 is rearranged (tyrosine toggle switch; Figure 3.7C) and the 

hydrogen bond network is expanded towards the DRY motif (Figure 3.7B). 

As recently discovered at rhodopsin, an ionic interaction between position 3.28 and 7.43 (3-7 

lock switch) in inactive states is precluded on receptor activation (Trzaskowski et al., 2012). In 

case of the hH1R (Shimamura et al., 2011) and the D3R (Chien et al., 2010), interactions 

between D3.32 and Y7.43 (hH4R: D943.32 and W3487.43) may replace this mechanism. However, 

this ionic interaction was also observed in active crystal structures as the β2AR (Rasmussen 

et al., 2011a; Rasmussen et al., 2011b). Thus, the 3-7 lock switch seems not to be a common 

feature of GPCR activation. 
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Figure 3.7: Hydrophobic barrier in (A) the inactive hH4R (red) being dissolved in (B) the active 
state (green). Inactive state: based on the hH1R, PDB ID: 3RZE; active state: based on the β2AR, 
PDB ID: 3P0G. (C) Movements of TM6 lead to a rearrangement of Y3587.53 in the NPxxY motif (N3547.49, 
P3557.50, Y3587.53). 

3.4.4 Analysis of the binding modes of the investigated H4R ligands 

3.4.4.1 Ligand-free basal hH4R states 

In contrast to the rodent orthologs, fractions of the hH4R (and the hH3R) are activated without 

ligands (Schneider et al., 2009; Schnell et al., 2011). Reason for this "preactivation" are 

intramolecular interactions stabilizing the receptor in the active state. These interactions are 

precluded in the case of rodent orthologs. A comparison of hH4R, mH4R and rH4R may indicate 

amino acids being responsible for the high constitutive activity of the hH4R. Experimentally, 

F168ECL2 and F169ECL2 on their own as well as F169ECL2 in concert with S1795.43 were 
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determined as key amino acids in this respect (Chapters 4 and 5). The FF motif in ECL2, also 

present, e. g., in the hH3R or the β2AR, interacts with hydrophobic and aromatic amino acids 

such as Y953.33, P166ECL2, L1755.39, T1785.42, Y3196.51, T3236.55, L3266.58, T333ECL3 and Y3407.35 

(Figure 3.8A, D, F). Result is a hydrophobic cluster with the FF motif as essential component. 

This cluster contributes to the contraction of the binding pocket as illustrated in Figure 3.4A 

(Lebon et al., 2011; Lebon et al., 2012; Tse, 2011) and, by this, to the stabilization of an active 

state. However, mutation of F169 to V (Figure 3.8B, E) or F168 to A (Figure 3.8C, G) disrupts 

some of these hydrophobic and π-π interactions and therefore the contraction of the binding 

pocket is prevented in favour of the inactive state, i. e., constitutive activity decreases. 

A (F168/F169) 

 

B (F168/V169) 

 

C (A168/F169) 

 

D (F169) 

 

E (V169) 

 

F (F168) 

 

G (A168) 

 

Figure 3.8: Interactions of the F168/F169 motif with hydrophobic and aromatic amino acids. (A, 
D, F) F168/F169 interacting with hydrophobic and aromatic amino acids. (B, E) Interactions of V169 
with the hydrophobic cluster and (C, G) interactions of A168 with the hydrophobic cluster. Model based 
on the inactive state of the hH1R (PDB ID: 3RZE). 

Single mutations of S1795.43 to M or A did not significantly change the level of constitutive 

activity, but the double mutation of F169ECL2 to V and S1795.43 to M or A significantly dropped 
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constitutive activity, leading to an intrinsic activity of thioperamide comparable to that at mH4R 

and rH4R (Chapter 4). S1795.43 forms an H-bond with T3236.55 (Figure 3.9A) which is precluded 

in case of mutation into M or A (Figure 3.9B, C). With an intact FF motif (Figure 3.8A, D, F), 

this H-bond is not mandatory for the concomitant inward movements of TM5 and TM6 at the 

extracellular face, i. e., the contraction of the binding pocket. Therefore, S1795.43 on its own 

does not contribute to the high constitutive activity of the hH4R. But if both the FF motif is 

disrupted by mutation of F169ECL2 into V and the H-bond between S1795.43 and T3236.55 is 

precluded, hydrophobic and π-π interactions with TM5 and TM6 are weakened (Figure 3.8B, 

E) and the aforementioned inward movements of TM5 and TM6 are impossible. 

A (S179) 

 

B (M179) 

 

C (A179) 

 

Figure 3.9: Effects of S1795.43, S179M and S179A. (A) H-bond with T3236.55; H-bond precluded in 
case of mutation to (B) M or (C) A. Model based on the inactive state of the hH1R (PDB ID: 3RZE). 

Furthermore, mutation of R3417.36 to S or S330ECL3 to R in the hH4R caused a slight decrease 

in constitutive activity (Chapters 6 and 7). These mutations may destabilize the extracellular 

surface by changing the charges and polarities of the extracellular environment. 

3.4.4.2 Histamine 

The docking mode of histamine is described in Chapter 4.2  

3.4.4.3 UR-PI294 

Compared to histamine, the main interactions of UR-PI294 with the hH4R, namely with D943.32, 

E1825.46 and Q3477.42 are maintained (Figure 3.10): The Nτ hydrogen of the imidazole moiety 

forms an H-bond with E1825.46 and the guanidinium hydrogens form H-bonds with D943.32 and 

Q3477.42. The imidazolylpropyl moiety fits well in the hydrophobic surface composed of Y953.33, 

P166ECL2, F168ECL2, F169ECL2, L1755.39, T1785.42, W3166.48 and Y3196.51. 

Based on site-directed mutagenesis studies (Chapter 5), F168ECL2 is assumed to interact with 

UR-PI294 as mutation to A decreased potency by approximately 1.5 orders of magnitude. 

Whereas S179, S330 and R341 were of minor influence, introduction of the critical F into the 

mH4R (mH4R-V171F mutant) increased potency by more than one order of magnitude 

supporting the key function of the FF motif in binding of UR-PI294 (Chapters 4, 6 and 7). 

However, intrinsic activities almost remained unaltered. 
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Figure 3.10: Docking pose of UR-PI294 in the hH4R. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). Colour code: oxygen – red, nitrogen – blue; carbon atoms are coloured individually: 
key interactions of UR-PI294 (D943.32, E1825.46 and Q3477.42) are illustrated in dark blue, the FF motif 
(F168ECL2 and F169ECL2) is coloured in green and the amino acids of the hydrophobic cluster (Y953.33, 
P166ECL2, L1755.39, T1785.42, W3166.48, Y3196.51, T3236.55, L3266.58, T333ECL3 and Y3407.35) in magenta. 

3.4.4.4 Thioperamide 

The classical H3R/H4R inverse agonist thioperamide decreases activity below the level of 

constitutive activity, present at both histamine receptor subtypes. It was assumed that agonists 

especially bind at TM3, TM5, TM6 and TM7, but antagonists or inverse agonists partly also 

occupy a pocket between TM1 and TM2. Wittmann et al. (2014) proposed a binding mode of 

thioperamide at the hH3R that can by analogy also be applied at the hH4R: the cyclohexane 

moiety of thioperamide is embedded in a hydrophobic network of amino acids of the 

hydrophobic cluster and the FF motif, the thiourea moiety is positioned in the vicinity of F169 

and the Nπ-H of the imidazole ring contacts D943.32, whereas the key interactions of other 

ligands with E1825.46 and Q3477.42 are absent or only weak. The imidazole ring is rather 

embedded in a hydrophobic pocket consisting of amino acids such as Y722.61 and F3447.39 

(Figure 3.11). Probably this binding mode, in particular the missing interaction with E1825.46 

and Q3477.42, prevents the contraction of the orthosteric binding pocket (inward movements of 

TMs 5, 6 and 7), characteristic of the conversion of the receptor to the active state (Rasmussen 

et al., 2011a). The hH3R forms a similar pocket (Wittmann et al., 2014), but thioperamide acts 

as a weaker inverse agonist at the hH3R due to its lower constitutive activity. 

At the hH4R-S330R, hH4R-R341S, hH4R-F169V, hH4R-F169V+S179M/A or hH4R-F168A 

mutants, thioperamide has a different ability to shift the more or less basally activated receptor 
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to an inactive state (Chapters 4, 5, 6 and 7). Therefore, the intrinsic activity of thioperamide 

decreased from full inverse agonism at the hH4R wild-type to partial inverse agonism or even 

neutral antagonism at the respective mutants. Potency and affinity changes at the generated 

receptor mutants were only marginal in most cases. The increase in pKb at the hH4R-F168A 

mutant by one order of magnitude compared to the wild-type receptor is compatible with higher 

affinity of thioperamide to inactive than to active state(s), represented by the mutant devoid of 

constitutive activity and the highly constitutively active wild-type hH4R. 

 

Figure 3.11: Docking pose of thioperamide in the hH4R. MD simulation performed and model 
provided by Strasser (2014). Model based on the inactive state of the hH1R (PDB ID: 3RZE). Colour 
code: oxygen – red, nitrogen – blue, sulphur – yellow; carbon atoms are coloured individually: the key 
interaction of thioperamide (D943.32) is illustrated in dark blue, amino acids subjected to in-vitro 
mutagenesis (F168ECL2, F169ECL2, S1795.43, S330ECL3 and R3417.36) are coloured in green, the amino 
acids of the hydrophobic cluster (Y953.33, P166ECL2, L1755.39, T1785.42, W3166.48, Y3196.51, T3236.55, 
L3266.58, T333ECL3 and Y3407.35) in magenta and the amino acids close to the imidazole ring of 
thioperamide (Y722.61, W903.28, L913.29, F3447.39 and W3487.43) in pink. 

3.4.4.5 JNJ7777120 

We found a similar JNJ7777120 binding mode as Lim et al. (2010) and Schultes et al. (2013). 

The hydrogen of the positively charged piperazine nitrogen forms an H-bond with D943.32 and 

Q3477.42, the carbonyl oxygen accepts an H-bond from C983.36 and the indole N-H is involved 

in an H-bond with the carboxylate group of E1825.46 (Figure 3.12;(Lim et al., 2010). The 

chlorinated indole ring is embedded between Y953.33 and Y3196.51 occupying a pocket between 

TM3, TM5, TM6 and ECL2. It is furthermore enclosed in hydrophobic interactions with F168ECL2 

and F169ECL2 and contacts L1755.39 and S1795.43. Structure activity relationships support this 
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binding mode, as the indole N-H and the carbonyl moiety are essential for ligand affinity 

(Jablonowski et al., 2003). 

 

Figure 3.12: Docking pose of JNJ7777120 in the hH4R. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). Colour code: oxygen – red, nitrogen – blue, sulphur – yellow, chlorine – green; carbon 
atoms are coloured individually: key interactions of JNJ7777120 (D943.32, E1825.46 and Q3477.42) are 
illustrated in dark blue, interactions of JNJ7777120 with C983.36 in yellow, amino acids subjected to in-
vitro mutagenesis (F168ECL2, F169ECL2, S1795.43 and R3417.36) are coloured in green and the amino acids 
of the hydrophobic cluster (Y953.33, P166ECL2, L1755.39, T1785.42, W3166.48, Y3196.51, T3236.55, L3266.58, 
T333ECL3 and Y3407.35) in magenta. 

Compared to the hH4R wild-type, a decrease in pKb (1.4 orders of magnitude) was 

experimentally detected at the hH4R-F168A mutant, supporting direct interactions of F168 with 

JNJ7777120 (Figure 3.13B; Chapter 5). The hH4R-F169V mutant revealed a significant 

decrease in potency (∆pEC50 = 0.9), albeit the decrease in affinity was smaller (∆pKi = 0.3) 

(Chapter 4). These results suggest that also F169 interacts with the indole ring of JNJ7777120 

(Figure 3.13A). Compared to the hH4R wild-type, the hH4R-S179M mutant did not change 

JNJ7777120 affinity. By contrast, the hH4R-S179A mutant resulted in significantly increased 

potency and affinity (∆pKi = 0.6), indicating repulsive interaction of S179 with the chlorinated 

indole ring (Figure 3.13A). 

The differences in intrinsic activities of JNJ7777120 (partial inverse agonism at hH4R and 

hH4R-S179M/A, neutral antagonism at hH4R-F169V+S179A and hH4R-R341S, and partial 

agonism at hH4R-F168A, hH4R-F169V and hH4R-F169V+S179M) are largely compatible with 

the different constitutive activities (Chapters 4, 5 and 7). The situation is similar to 

thioperamide, albeit JNJ7777120 acts as a protean agonist (Kenakin, 2001). JNJ7777120 may 

bind to both the inactive and the active hH4R state, but with preference for the former one. 
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Depending on the basal activity of the receptor species (high, low or no constitutive activity), 

the affinity component for the active state leads to partial inverse agonism, neutral antagonism 

and partial agonism, respectively. 

 

Figure 3.13: (A, B) Contacts of JNJ7777120 with the side chains of TM5 (L1755.39, T1785.42, S1795.43) 
as well as interactions with (A) F169 and (B) F168. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). 

3.4.4.6 VUF8430 

Jongejan et al. (2008) proposed a binding mode of VUF8430 interacting with D943.32, E1825.46 

and Q3477.42 (Figure 3.14). The isothiourea moiety is embedded between TM5 and TM6, 

whereas the guanidinium group is involved in an H-bond network with TM3 and TM7. 

 

Figure 3.14: Docking pose of VUF8430 in the hH4R. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). Colour code: oxygen – red, nitrogen – blue, sulphur – yellow; carbon atoms are 
coloured individually: key interactions of VUF8430 (D943.32, E1825.46 and Q3477.42) are illustrated in dark 
blue, the FF motif (F168ECL2 and F169ECL2) is coloured in green and the amino acids of the hydrophobic 
cluster (Y953.33, P166ECL2, L1755.39, T1785.42, W3166.48, Y3196.51, T3236.55, L3266.58, T333ECL3 and 
Y3407.35) in magenta. 
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Whereas the hH4R-S330R and hH4R-R341S/E mutants revealed a minor influence of these 

amino acids on binding and intrinsic activity, the potency of VUF8430 increased by about 0.7 

orders of magnitude at the mH4R-V171F mutant compared to the mH4R wild-type (Chapters 4, 

6 and 7). At the hH4R-F168A mutant, a highly significant decrease of the potency of VUF8430 

was observed (∆pEC50 = 1.7) with respect to the hH4R wild-type (Chapter 5). Therefore, the 

thioethyl chain may interact with F168, possibly via amino acids of the hydrophobic cluster 

(Figure 3.14). 

3.4.4.7 Immepip 

The binding mode of immepip is highly similar to that of histamine and VUF8430 (Figure 3.15). 

However, immepip is more rigid in comparison to histamine and therefore the distance 

between the imidazole ring (carbon in 4-position) and the nitrogen interacting with D943.32 and 

Q3477.42 is longer (5.09 Å vs. 3.84 Å). 

Concerning the investigated mutants, hH4R-S330R and hH4R-R341S/E are without effect on 

affinity, potency and intrinsic activity (Chapters 6 and 7). However, introduction of F171 into 

the mH4R (mH4R-V171F) increased potency by about 0.8 orders of magnitude (Chapter 4). 

Compared to the hH4R wild-type, the hH4R-F168A mutant decreased potency by about 1.9 

orders of magnitude (Chapter 5). As in case of VUF8430, interactions of F168 with immepip 

may be mediated by amino acids of the hydrophobic cluster. 

 

Figure 3.15: Docking pose of immepip in the hH4R. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). Colour code: oxygen – red, nitrogen – blue; carbon atoms are coloured individually: 
key interactions of immepip (D943.32, E1825.46 and Q3477.42) are illustrated in dark blue, the FF motif 
(F168ECL2 and F169ECL2) is coloured in green and the amino acids of the hydrophobic cluster (Y953.33, 
P166ECL2, L1755.39, T1785.42, W3166.48, Y3196.51, T3236.55, L3266.58, T333ECL3 and Y3407.35) in magenta. 

F169

T333

Y95

Y319

Y340

D94

Q347

E182

TM6

TM7

TM3

TM4

ECL1

ECL2
F168

TM5

ECL3

T178

W316

L175

T323

P166 L326



74 3.4 Results and Discussion 

3.4.4.8 Clozapine 

According to Jongejan et al. (2008), Lim et al. (2010) and Schultes et al. (2013), the hydrogen 

of the N-methylpiperazine ring of clozapine interacts with D943.32 and the N-H of the 7 

membered ring system with the carboxylate group of E1825.46 (Figure 3.16). The carbonyl 

moiety of Q3477.42 forms an H-bond with the N-H function of the 7 membered ring as well as 

with the hydrogen of the N-methylpiperazine ring. However, in contrast to Jongejan et al. 

(2008) and Lim et al. (2010), the chlorine moiety of the tricyclic ring system was suggested to 

interact with TM5 as well as with the FF motif, i. e., the tricyclic ring is vertically oriented. This 

correlates with the binding mode shown for JNJ7777120, i. e., the chlorine of JNJ7777120 

adopts a similar position as the chlorine of clozapine. Therefore, both JNJ7777120 and 

clozapine reveal a similar behaviour at the investigated mutants. 

 

Figure 3.16: Docking pose of clozapine in the hH4R. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). Colour code: oxygen – red, nitrogen – blue, chlorine – green; carbon atoms are 
coloured individually: key interactions of clozapine (D943.32, E1825.46 and Q3477.42) are illustrated in dark 
blue, amino acids subjected to in-vitro mutagenesis (F168ECL2, F169ECL2, S1795.43 and S330ECL3) are 
coloured in green and the amino acids of the hydrophobic cluster (Y953.33, P166ECL2, L1755.39, T1785.42, 
W3166.48, Y3196.51, T3236.55, L3266.58, T333ECL3 and Y3407.35) in magenta. 

According to the key role of the FF motif in binding of clozapine, an exchange of F168 into A 

or F169 into V in the hH4R significantly decreased the pEC50 values of clozapine from 6.24 at 

the hH4R wild-type to 5.38 and 5.68, respectively (Chapter 5). By contrast, potency and intrinsic 

activity of clozapine significantly increased at the mH4R-V171F and the mH4R-V171F+M181S 

mutants compared to the mH4R wild-type (Chapter 4). Neutral antagonism turned to partial 

agonism. These results support the suggested binding mode and the interaction of clozapine 

with the FF motif (Figure 3.17). Whereas compared to the hH4R wild-type, the hH4R-S179M 
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single mutant did not change potency and affinity, introduction of alanine significantly 

increased both potency and affinity of clozapine. Accordingly, pEC50 and pKi values of 

clozapine at the hH4R-F169V+S179A mutant were significantly higher than at the 

hH4R-F169V+S179M mutant. This supports the hypothesis that the tricyclic ring interacts with 

TM5 more favourable in case of the smaller alanine (Figure 3.17). Due to a similar mechanism 

as proposed for JNJ7777120, less voluminous side chains of TM5 may improve the affinity of 

the ligand. The hH4R-S330R mutant significantly decreased potency and affinity of clozapine 

compared to the hH4R wild-type (∆pEC50 = 0.7; Chapter 6). Probably, altering the charge profile 

at the extracellular surface may impede the positively charged clozapine on entering the 

binding pocket. Moreover, steric repulsion may come into play. 

 

Figure 3.17: (A, B) Contacts of clozapine with the side chains of TM5 (L1755.39, T1785.42, S1795.43) 
as well as interactions with (A) F169 and (B) F168. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). 

3.4.4.9 Isoloxapine 

The structures of clozapine and isoloxapine are highly similar apart from the exchange of the 

nitrogen by an oxygen. Thus, the binding mode of isoloxapine is comparable to that of 

clozapine (Figure 3.18). However, the oxygen probably interacts with the protonated carboxylic 

group of E1825.46. Isoloxapine showed similar effects as clozapine at nearly all of the mutants, 

with the exception of a decrease in intrinsic activity at the hH4R-R341S/E mutants compared 

to the hH4R wild-type (∆α = 0.29 and 0.30; Chapter 7). 
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Figure 3.18: Docking pose of isoloxapine in the hH4R. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). Colour code: oxygen – red, nitrogen – blue, chlorine – green; carbon atoms are 
coloured individually: key interactions of isoloxapine (D943.32, E1825.46 and Q3477.42) are illustrated in 
dark blue, amino acids subjected to in-vitro mutagenesis (F168ECL2, F169ECL2, S1795.43, S330ECL3 and 
R3417.36) are coloured in green and the amino acids of the hydrophobic cluster (Y953.33, P166ECL2, 
L1755.39, T1785.42, W3166.48, Y3196.51, T3236.55, L3266.58, T333ECL3 and Y3407.35) in magenta. 

3.4.4.10 UR-PI376 

Igel et al. (2009a) proposed a binding mode where the phenylthioethyl moiety of UR-PI376 

interacts with a pocket between TM2 and TM7. However, results from site-directed 

mutagenesis suggest an interaction of the FF motif with UR-PI376 (Chapter 5). A possible 

docking mode enabling interactions with both F168 and F169 as well as the surrounding amino 

acids of the hydrophobic cluster is shown in Figure 3.19. The carboxylic group of D943.32 and 

the carbonyl moiety of Q3477.42 form H-bonds with the hydrogens of the cyanoguanidine 

moiety. Additionally, the Nπ nitrogen or the Nτ hydrogen of the imidazole moiety may be 

involved in an H-bond with the hydrogen of the protonated (Igel et al., 2009a) or with the 

deprotonated carboxylic group of E1825.46, respectively (second variant shown in Figure 3.19). 

Moreover, the Nτ nitrogen may act as H-bond donor for the side chain oxygen of T1785.42. 

Compared to the hH4R wild-type, both the hH4R-F168A and hH4R-F169V mutants revealed a 

significant decrease in UR-PI376 potency by 1.5 orders of magnitude (Chapter 5). Also intrinsic 

activities of UR-PI376 were reduced at both mutants by 0.6-0.7 units. These results support 

the binding mode illustrated in Figure 3.19. Only minor effects on UR-PI376 affinity were 

observed in case of the hH4R-S179M/A mutants compared to the wild-type, but S179 mutation 

to M and A decreased intrinsic activity (Chapter 4). Accordingly, reduced intrinsic activity of 

UR-PI376 was also obvious at the double mutants hH4R-F169V+S179M/A compared to the 
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hH4R-F169V mutant and to the hH4R. These changes in intrinsic activities may be due to the 

lower constitutive activity of these receptor mutants, i. e., the basal equilibrium between 

inactive and active states is shifted towards the inactive state, making the relative signal 

amplitude of the agonist smaller. The hH4R-S330R mutant revealed both a decrease in 

potency (affinity) as well as a decrease in intrinsic activity compared to the hH4R wild-type 

(Chapter 6). As discussed for clozapine, the entry of the bulky UR-PI376 into the binding pocket 

may be impeded by a more voluminous ECL3 or by electrostatic repulsion. UR-PI376 revealed 

a decrease in intrinsic activity at the hH4R-R341S/E mutants compared to the hH4R wild-type 

(Chapter 7). The pKi value of UR-PI376 was 0.6 orders of magnitude higher at the hH4R-R341E 

mutant than at the wild-type, indicating H-bond formation between the carboxylic group of 

E3417.36 and the cyanoguanidine moiety. 

 

Figure 3.19: Docking pose of UR-PI376 in the hH4R. Model based on the inactive state of the hH1R 
(PDB ID: 3RZE). Colour code: oxygen – red, nitrogen – blue, sulphur – yellow; carbon atoms are 
coloured individually: key interactions of UR-PI376 (D943.32, E1825.46 and Q3477.42) are illustrated in dark 
blue, amino acids subjected to in-vitro mutagenesis (F168ECL2, F169ECL2, S1795.43, S330ECL3 and 
R3417.36) are coloured in green and the amino acids of the hydrophobic cluster (Y953.33, P166ECL2, 
L1755.39, T1785.42, W3166.48, Y3196.51, T3236.55, L3266.58, T333ECL3 and Y3407.35) in magenta. 

3.4.4.11 Clobenpropit 

Istyastono et al. (2011) and Feng et al. (2013) proposed two different binding modes of 

clobenpropit (Lim et al., 2009). However, our site-directed mutagenesis results support the 

binding mode where D943.32 and Q3477.42 form H-bonds with the imidazole ring and E1825.46 

acts as H-bond acceptor for the hydrogens of the isothiourea moiety (Figure 3.20). The 
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p-chlorophenyl ring is involved in a network of aromatic amino acids, namely Y953.33, Y3196.51, 

F168ECL2 and F169ECL2. 

[3H]histamine competition binding data indicated reduced affinity at the hH4R-F169V and the 

hH4R-S179M mutant compared to the wild-type (∆pKi = 0.5 and 0.6, respectively; Chapter 4). 

Substitution of S179 by A was without effect. The affinity of clobenpropit at the double mutants 

hH4R-F169V+S179M/A was similar as at the hH4R-F169V mutant. At the hH4R-F168A mutant, 

the potency of clobenpropit was only slightly lower than at the hH4R wild-type (Chapter 5). The 

intrinsic activity of clobenpropit significantly decreased from the hH4R to the hH4R-F169V, 

hH4R-F168A, hH4R-F169V+S179M/A and the hH4R-S179M/A mutants. Again, this descending 

order is at least in part due to the different constitutive activities. The partial inverse agonistic 

effect of clobenpropit at the hH4R-S179M mutant may be attributed to side chain clashes with 

TM5, preventing the contraction of the binding pocket, i. e., the inactive state is stabilized. At 

the hH4R-S330R and hH4R-R341S/E mutants, clobenpropit did not show significant changes 

of potency and intrinsic activity compared to the wild-type (Chapters 6 and 7). 

 

Figure 3.20: Docking pose of clobenpropit in the hH4R. Model based on the inactive state of the 
hH1R (PDB ID: 3RZE). Colour code: oxygen – red, nitrogen – blue, chlorine – green, sulphur – yellow; 
carbon atoms are coloured individually: key interactions of clobenpropit (D943.32, E1825.46 and Q3477.42) 
are illustrated in dark blue, amino acids subjected to in-vitro mutagenesis (F168ECL2, F169ECL2 and 
S1795.43) are coloured in green and the amino acids of the hydrophobic cluster (Y953.33, P166ECL2, 
L1755.39, T1785.42, W3166.48, Y3196.51, T3236.55, L3266.58, T333ECL3 and Y3407.35) in magenta. 

3.5 Conclusions 

Homology modelling and comparison of the models of H4R species orthologs – hH4R, mH4R 

and rH4R – enabled the suggestion of amino acids that may potentially be of relevance for 
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ligand binding and for the extraordinarily high constitutive activity of the hH4R. In particular, 

F168ECL2, F169ECL2, S1795.43, S330ECL3 and R3417.36 were proposed as potential key amino 

acids with respect to constitutive activity. Moreover, a comparison of both inactive and active 

state models enabled a better understanding of the molecular basis of the phenomenon 

“constitutive activity”. Based on our data from binding and functional assays on H4R wild-types 

and mutants, docking studies with the investigated ligands have led to reasonable binding 

modes largely corresponding with experimental results. 
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Chapter 4 

4 Molecular determinants for the high 

constitutive activity of the human 

histamine H4 receptor: Functional 

studies on orthologs and mutants 

Note: Major parts of this chapter were already published prior to submission of this thesis in 

Br. J. Pharmacol. (Wifling et al., 2015b). John Wiley & Sons granted me the permission to use 

the material incorporated in Wifling et al. (2015b) for this thesis. For detailed information on 

the contributions by co-authors, cf. “Danksagungen”. 

F169 and S179 

4.1 Summary 

Background and purpose: Some histamine H4 receptor (H4R) ligands act as inverse agonists 

at the human H4R (hH4R), a receptor with exceptionally high constitutive activity, but as neutral 

antagonists or partial agonists at the constitutively inactive mouse H4R (mH4R) and rat H4R 

(rH4R). To study molecular determinants of constitutive activity, H4R reciprocal mutants were 

constructed: single mutants: hH4R-F169V, mH4R-V171F, hH4R-S179A, hH4R-S179M; double 

mutants: hH4R-F169V+S179A, hH4R-F169V+S179M and mH4R-V171F+M181S. 

Experimental approach: Site-directed mutagenesis with pVL1392 plasmids containing hH4R 

or mH4R were performed. Wild-type or mutant receptors were co-expressed with Gαi2 and 

Gβ1γ2 in Sf9 cells. Membranes were studied in saturation and competition binding assays 

([3H]histamine) as well as in functional [35S]GTPγS assays with inverse, partial and full agonists 

of the hH4R. 

Key results: Constitutive activity decreased from the hH4R via the hH4R-F169V mutant to the 

hH4R-F169V+S179A and hH4R-F169V+S179M double mutants. F169 alone or in concert with 

S179 plays a major role in stabilizing a ligand-free active state of the hH4R. Partial inverse 

hH4R agonists like JNJ7777120 behaved as neutral antagonists or partial agonists at species 
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orthologs with lower or no constitutive activity. Some partial and full hH4R agonists showed 

decreased maximal effects and potencies at hH4R-F169V and double mutants. However, the 

mutation of S179 in the hH4R to M as in mH4R or A as in rH4R did not significantly reduce 

constitutive activity. 

Conclusions and implications: F169 and S179 are key amino acids for the high constitutive 

activity of the hH4R and may also be of relevance for other constitutively active GPCRs. 

4.2 Introduction 

The human histamine H4 receptor (hH4R) was independently discovered by several groups 

(Liu et al., 2001a; Morse et al., 2001; Nakamura et al., 2000; Nguyen et al., 2001; Oda and 

Matsumoto, 2001; Zhu et al., 2001). The H4R is coupled to Gαi-proteins, leading to inhibition 

of adenylyl cyclase and, via release of Gβγ-complexes, to the activation of phospholipase C 

(for reviews, see, e. g. Leurs et al. (2009); Seifert et al. (2013); Thurmond et al. (2008)). H4R-

mediated Gαi activation in membrane preparation is monitored by agonist-stimulated 

[35S]GTPS binding to Gαi-proteins or Gαi-mediated [γ-32P]GTP hydrolysis (Schneider et al., 

2009). The H4R is primarily expressed in cells of the immune system and seems to play a pro-

inflammatory role in bronchial asthma, atopic dermatitis and pruritus (de Esch et al., 2005; 

Dunford and Holgate, 2011; Dunford et al., 2006; Marson, 2011; Schnell et al., 2011; Zampeli 

and Tiligada, 2009). Human H4R expression and function has been unequivocally 

demonstrated by several independent groups in eosinophils (Buckland et al., 2003; Ling et al., 

2004; O'Reilly et al., 2002; Reher et al., 2012). However, eosinophils are very difficult to purify 

in sufficient amounts for pharmacological studies so that experiments with recombinant hH4R 

are very important. 

A G-protein-coupled receptor (GPCR) capable of producing its biological response in the 

absence of a bound ligand is termed constitutively active (Seifert and Wenzel-Seifert, 2002). 

Previous studies have shown that the hH4R possesses an unusually high constitutive activity, 

resulting in high agonist-independent Gαi-protein activation (Morse et al., 2001; Seifert et al., 

2013; Strasser et al., 2013). A plausible cause could be the missing ionic lock between an 

arginine in the DRY motif (TM3) and an acidic amino acid in TM6 (replaced by an alanine in 

the hH4R). However, this was not confirmed by reconstitution of this motif in the hH4R 

(Schneider et al., 2010). The constitutive activity of canine, murine and rat H4R species 

isoforms (cH4R, mH4R and rH4R, respectively) is substantially lower (Schneider et al., 2010; 

Schnell et al., 2011; Strasser et al., 2013). Another striking difference was observed with the 

prototypical H4R antagonist JNJ7777120 (1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methyl-

piperazine, Figure 4.1), a partial agonist at the cH4R, the rH4R and the mH4R, but a partial 

inverse agonist at the hH4R. Also H4R agonists (Igel et al., 2010) from the class of NG-acylated 
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imidazolylpropylguanidines and cyanoguanidines differed with respect to affinity, potency and 

efficacy among H4R species isoforms (Schnell et al., 2011). 

 

Figure 4.1: Structures of investigated H4R ligands. 

Mouse, rat and dog are important laboratory animal species for assessing the 

pathophysiological role of the H4R (Dunford et al., 2006; Liu et al., 2001b; Rossbach et al., 

2009b). It is, therefore, important to characterize the effects of ligands at those H4R species 

orthologs in comparison to the hH4R. Considering the rather low sequence identity of H4R 

species isoforms (see alignment of hH4R, mH4R and rH4R, Figure 4.2), the question arises 

which molecular determinants account for the species differences in constitutive activity, ligand 

binding and intrinsic activity. 

A systematic investigation with chimeras localized the region between V1414.51 and E1825.46 

(superscripts according to the Ballesteros and Weinstein numbering (Ballesteros and 

Weinstein, 1995)) involving the second extracellular loop (ECL2) to be responsible for 

differences in agonist affinity between the hH4R and the mH4R (Lim et al., 2008). Moreover, 

among single hH4R-mH4R amino acid exchanges in this region, the hH4R-F169V mutant 

resulted in the largest shifts towards the Kd and pKi values at the mH4R, suggesting that this 

residue in ECL2 is “the key amino acid” for differential interactions of certain agonists with the 

hH4R and the mH4R (Lim et al., 2008). As in the case of the two corresponding consecutive 

phenylalanine residues in the 2-adrenoceptor structure (Cherezov et al., 2007), it was 
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assumed that F169 is involved in a network of hydrophobic interactions, stabilizing ECL2 in a 

conformation, which positions F168 towards the binding pocket (Lim et al., 2008). 

                                            N-term                                                                                        TM1                                                           ICL 1                                                                          TM2                                                              ECL1                                TM3                                             n         
  hH4R MPDTNSTINLSLSTRVTLAFFMSLVAFAIMLGNALVILAFVVDKNLRHRSSYFFLNLAISDFFVGVISIPLYIPHTLFEWDFGKEICVFWLTTDYLLCTA 

  mH4R .SES...GI.PPAAQ.P...L..SF.....V...V........R......N...........L..L.........V..N.N..SG..M...I........ 

  rH4R .SES.G.DV.PLTAQ.P...L..LL....TI...V......A.R......N...........................N.N..SG..M...I........ 

         1       10        20        30        40        50        60        70        80        90       100 

 

                                                                              TM3                                              ICL2                                                                 TM4                                                                                        ECL2                                                                                                  TM5                                                           d  
  hH4R SVYNIVLISYDRYLSVSNAVSYRTQHTGVLKIVTLMVAVWVLAFLVNGPMILVSESWKDEG--SECEPGFFSEWYILAITSFLEFVIPVILVAYFNMNIY 

  mH4R .............Q.........A....IM...AQ.....I...........A.D...NSTNTKD.....VT.....T..ML...LL...S.....VQ.. 

  rH4R ...S.........Q......R..A....I....AQ.....I...........A.D...NSTNTE......VT........A....LL..S..V..SVQ.. 

                110       120       130       140       150       160       170       180       190       200 

 

                                             TM5                                                                                                                                                                                                             ICL3                                                                                                                                                                                                                                TM6         
  hH4R WSLWKRDHLSRCQSHPGLTAVSSNICGHSFRGRLSSRRSLSASTEVPASFHSERQRRKSSLMFSSRTKMNSNTIASKMGSFSQSDSVALHQREHVELLRA 

  mH4R ......RA....P..A.FSTT..SAS..LH.AGVAC.T.NPGLK.SA..R...SP.....ILV.L..H...SIT.F.V...WR.E.A..R...YA....G 

  rH4R ......GS....P..A.FI.T..RGT...R.TG.AC.T..PGLK.PA..L...SP.G....LV.L..H.SGSI..F.V...CR.E.PV...........G 

                210       220       230       240       250       260       270       280       290       300 

 

                                                                                                           TM6                                                                          ECL3                                                       TM7                                                                              H8                                                                     C-term 
  hH4R RRLAKSLAILLGVFAVCWAPYSLFTIVLSFYSSATGPKSVWYRIAFWLQWFNSFVNPLLYPLCHKRFQKAFLKIFCIKKQPLPSQHSRSVSS 

  mH4R .K..R......SA..I.....C.......T.PRTER......S..............F......R......W..L.VT...AL..N-Q.... 

  rH4R .K..R...V..SA..I.....C.......T.RRGER...I..S..........LI..F......R......W..L.VT...A...T-Q.... 

                310       320       330       340       350       360       370       380       390 

Figure 4.2: Sequence alignment of hH4R, rH4R and mH4R. TMs are indicated by wavy lines. 
N-term, N-terminus (extracellular); C-term, C-terminus (intracellular); ICL1, ICL2, and ICL3, first, 
second, and third intracellular loops; ECL1, ECL2, ECL3, first, second, and third extracellular loops. 
Dots in the sequences indicate identity with the hH4R. The most conserved residues in each TM 
domain are highlighted by grey shading. TMs were defined according to the hH4R homology model 
based on the crystal structure of the hH1R. 

To further investigate the role of F169, we generated the single mutants hH4R-F169V and 

mH4R-V171F. Up to now, no functional studies on G-protein coupling at these mutants exist to 

discriminate between agonist, antagonist and inverse agonist effects. We therefore tested H4R 

ligands with different qualities of action in functional [35S]GTPγS assays. 

Figure 4.3 shows the putative histamine binding pocket of the hH4R and various amino acids 

in the vicinity of this pocket which are specific for the hH4R compared to the mH4R and the 

rH4R. According to results from in-vitro mutagenesis (Shin et al., 2002), the positively charged 

amino group of histamine forms a salt bridge with D943.32. The ethylamine side chain is 

embedded between Y953.33 and Y3196.51, whereas the Nπ nitrogen of the imidazolyl moiety is 

hydrogen bonded to the side chain of E1825.46. F168 (ECL2) points into the binding pocket, 

albeit direct contacts with histamine are not obvious. Hydrogen bonds of the Nτ nitrogen with 

the hydroxyls of T1785.42 and S1795.43 are possible, but on the single mutants hH4R-T178A, 

hH4R-S179A (Shin et al., 2002) and hH4R-S179M (Lim et al., 2008), histamine affinity and 

activity was only slightly reduced compared to the wild-type hH4R (factor 2 to 4). However, 

S1795.43 is mutated in the mH4R (M) and the rH4R (A) and therefore a promising candidate for 

more detailed investigations. In order to study the pharmacological profile including the 

constitutive activity of the single hH4R-S179A and hH4R-S179M mutants, we expressed these 

constructs in Sf9 cells. 
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Figure 4.3: Ligand binding pocket of the hH4R in complex with histamine. The model is based on 
the crystal structure of the hH1R as template (Shimamura et al., 2011). Histamine (ball and stick model) 
was manually docked considering interactions with the hH4R suggested from results of in-vitro 
mutagenesis. Colours of atoms if not otherwise indicated: C – grey, N – blue, O – red. S – yellow. 
Carbons and backbone nitrogens of amino acids, which are different in the rH4R and mH4R, are orange-
coloured. Other important amino acids of or close to the ligand binding pocket are represented by cyan-
coloured C and backbone N atoms. TMs are drawn as ribbons: TM2 – orange, TM3 – yellow, 
TM5 – green, TM6 – light blue, TM7 – magenta. The C-terminal part of ECL2 is shown as tube. 

Although our hH4R model does not indicate direct interactions of S1795.43 and F169 

(Figure 4.3), the question arose whether there is an additive effect of both amino acids with 

respect to the selectivity of ligands for the human H4R ortholog. We therefore prepared the 

double mutants of the hH4R, hH4R-F169V+S179A and hH4R-F169V+S179M, corresponding 

to the rat and mouse H4R in positions 169 and 179, as well as the reciprocal double mutant of 

the mH4R, mH4R-V171F+M181S. 

4.3 Methods 

4.3.1 Materials 

The pcDNA3.1 vector containing the hH4R sequence was obtained from the UMR cDNA 

Resource Centre at the University of Missouri-Rolla (Rolla, MO USA). The cDNAs encoding 

the mouse and rat H4Rs were a kind gift of Dr. R. Thurmond (Johnson & Johnson 

Pharmaceutical R&D, San Diego, CA USA). The construction of the human, mouse and rat 
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pVL1392-SF-H4R-His6 and of the pGEM-3Z-SF-mH4R-His6 plasmids, respectively, was 

described previously (Schneider et al., 2009; Schnell et al., 2011). Baculovirus encoding Gαi2 

was kindly provided by Dr. A. G. Gilman (Department of Pharmacology, University of 

Southwestern Medical Centre, Dallas, TX USA). Recombinant baculovirus encoding the 

unmodified version of the Gβ1γ2 subunits was a kind gift of Dr. P. Gierschik (Department of 

Pharmacology and Toxicology, University of Ulm, Ulm, Germany). Pfu Ultra II DNA polymerase 

was obtained from Agilent (Böblingen, Germany). The DNA primers for polymerase chain 

reaction (PCR) were synthesized by MWG-Biotech (Ebersberg, Germany). Restriction 

enzymes and T4-DNA ligase were from New England Biolabs (Ipswich, MA USA). Gradient 

gels (8-16 %, 12 well nUView gels), the “prestained” peqGOLD protein marker III, used for 

western blotting as well as the “unstained” peqGOLD protein marker I, used for Coomassie 

brilliant blue R staining, were from Peqlab (Erlangen, Germany). The antibody selective for 

Gαi1/2 was from Calbiochem (Darmstadt, Germany). The anti-FLAG M1 antibody, the amino-

terminal FLAG-BAP fusion protein and histamine were from Sigma-Aldrich (Taufkirchen, 

Germany). The binding of secondary antibodies coupled to peroxidase (HRP) was detected 

with the ECL Western Blotting Substrate (Thermo Scientific, Nidderau, Germany). UR-PI294 

and UR-PI376 were synthesized as described (Igel et al., 2009a; Igel et al., 2009b). 

Thioperamide, JNJ7777120, and VUF8430 were synthesized according to Lange et al. (1995), 

Jablonowski et al. (2003), and Lim et al. (2006). Isoloxapine (Schmutz et al., 1967; Smits et 

al., 2006) was provided by S. Gobleder (Institute of Pharmacy, University of Regensburg, 

Regensburg, Germany). All other H4R ligands were purchased from Tocris (Avonmouth, 

Bristol, UK). The chemical structures of the ligands are depicted in Figure 4.1. UR-PI376 

(10 mM) was dissolved in 50 % (v/v) dimethyl sulfoxide (DMSO) and dilutions were prepared 

in 20 % (v/v) DMSO in order to attain a final DMSO concentration of 2 % (v/v) in each well. 

10 mM stock solutions of clozapine and isoloxapine were prepared in Millipore water containing 

3 and 2 mole equivalents of HCl, respectively. All other stock solutions were prepared with 

Millipore water. [35S]GTPγS (≥ 1000 Ci/mmol, radiochemical purity > 95 %) and [3H]histamine 

(14.2 Ci/mmol) were from Hartmann Analytic (Braunschweig, Germany). All other reagents 

were from standard suppliers and of the highest purity available. 

4.3.2 Construction of the cDNA for hH4R-F169V, hH4R-S179A/M, 

hH4R-F169V+S179A/M, mH4R-V171F and mH4R-V171F+M181S 

In order to introduce the F169V mutation into the pVL1392-SF-hH4R-His6 expression vector a 

site directed mutagenesis PCR was performed using the complementary single mismatching 

primers 5’-GT GAA TGT GAA CCT GGA TTT GTT TCG GAA TGG TAC ATC C-3’ and 5’-G GAT 

GTA CCA TTC CGA AAC AAA TCC AGG TTC ACA TTC AC-3’ and the pVL1392-SF-hH4R-His6 

plasmid as template. The mutation hH4R-S179A was introduced with the mismatching primers 
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5’-C CTT GCC ATC ACA GCA TTC TTG GAA TTC GTG ATC CC-3’ as well as 5’-GG GAT CAC 

GAA TTC CAA GAA TGC TGT GAT GGC AAG G-3’, whereas the mutation hH4R-S179M was 

generated with mismatching primers 5’-GG TAC ATC CTT GCC ATC ACA ATG TTC TTG GAA 

TTC GTG ATC CCA G-3’ and 5’-C TGG GAT CAC GAA TTC CAA GAA CAT TGT GAT GGC 

AAG GAT GTA CC-3’ using the pVL1392-SF-hH4R-His6 plasmid as template. The hH4R double 

mutants were established with the generated pVL1392-SF-hH4R-F169V-His6 plasmid as 

template. The S179A mutation was introduced using the mismatching primers 5’-C CTT GCC 

ATC ACA GCA TTC TTG GAA TTC GTG ATC CC-3’ and 5’-GG GAT CAC GAA TTC CAA GAA 

TGC TGT GAT GGC AAG G-3’. For the exchange S179M, two complementary mismatching 

primers were applied (5’-G GAA TGG TAC ATC CTT GCC ATC ACA ATG TTC TTG GAA TTC 

GTG ATC CC-3’ and 5’-GG GAT CAC GAA TTC CAA GAA CAT TGT GAT GGC AAG GAT GTA 

CCA TTC C-3’).  

The V171F mutation was introduced into the pGEM-3Z-SF-mH4R-His6 cloning vector by using 

the primers 5’-C TGT GAG CCT GGC TTT TTT ACA GAG TGG TAC ATC C-3’ and 5’-G GAT 

GTA CCA CTC TGT AAA AAA GCC AGG CTC ACA G-3’. The pGEM-3Z-SF-mH4R-V171F-His6 

and pVL1392-SF-hH4R-His6 plasmids were digested with SacI and XbaI and the mH4R-V171F 

cDNA fragment was cloned into the pVL1392 vector backbone. For generation of the 

mH4R-V171F+M181S mutation, pVL1392-SF-mH4R-V171F-His6 was used and a second 

mutation (M181S) was introduced with the primers 5’-GG TAC ATC CTC ACC ATT ACA AGC 

CTC TTG GAA TTC CTG C-3’ as well as 5’-G CAG GAA TTC CAA GAG GCT TGT AAT GGT 

GAG GAT GTA CC-3’. The sequences of the mutated H4R cDNAs and the pVL1392 backbone 

were verified by sequencing and agarose gel electrophoresis, respectively.  

4.3.3 Cell culture, generation of recombinant baculoviruses, membrane 

preparation  

Cell culture and generation of high-titre recombinant baculovirus stocks (Schneider et al., 

2009) as well as the co-infection of Sf9 cells with high-titre baculovirus stocks encoding Gαi2, 

Gβ1γ2 and the respective H4R (Brunskole et al., 2011) were performed as described recently. 

Membrane preparations were performed according to Gether et al. (1995) in the presence of 

0.2 mM phenylmethylsulfonyl fluoride, 1 mM ethylenediaminetetraacetic acid (EDTA), 

10 μg/mL leupeptin and 10 μg/mL benzamidine as protease inhibitors. Prepared membranes 

were resuspended in binding buffer (75 mM Tris/HCl, 12.5 mM MgCl2, 1 mM EDTA, pH 7.4) 

and stored at -80 °C in 0.5 or 1.0 mL aliquots.  

4.3.4 SDS-PAGE and Coomassie staining 

Prior to incubation at 30 °C for 15 min, 15 µg of the respective membranes including a negative 

control (Sf9 cells transfected with pVL1392 devoid of an insert) were loaded onto the gel as 
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well as 5 µL of the “unstained” protein marker I. A 2x Laemmli sample buffer without urea was 

used for sample preparation. The gels were stained in an aqueous solution of 0.1 % 

Coomassie brilliant blue G250 in 50 % methanol and 10 % acetic acid and subsequently 

destained with an aqueous solution containing 13 % methanol and 7 % acetic acid. 

4.3.5 Western blotting 

For the detection of the FLAG-tagged receptor, a sample buffer containing urea was used and 

the samples were incubated for 15 min at room temperature to prevent aggregation (Ren et 

al., 2009). For loading control, 10 ng of the amino-terminal FLAG-BAP fusion protein, heated 

for 5 min at 95 °C in Laemmli sample buffer, was added to 10 µg of the membranes. For 

detection of the Gαi2 protein, the samples were incubated for 15 min at 30 °C in sample buffer 

without urea prior to loading of 0.5 µg protein. 

4.3.6 [3H]histamine saturation binding experiments 

The experiments were performed in 96-well plates. Each well contained 43-150 µg of protein 

in a total volume of 100 µL. For saturation binding, membranes were incubated in binding 

buffer containing [3H]histamine (1-200 nM) and 0.2 % (w/v) BSA for 60 min at room 

temperature under shaking at 200 rpm. Non-specific binding, amounting to 6.4–16.0 % of total 

binding at 100 nM [3H]histamine, was determined in the presence of 10 µM unlabelled 

histamine. Filtration through glass microfibre filters (Whatman GF/C), pretreated with 

polyethylenimine 0.3 % (w/v), using a Brandel 96 sample harvester separated unbound from 

membrane-associated [3H]histamine. After three washing steps with binding buffer, for each 

well filter pieces were punched and transferred into 96-well sample plates 1450-401 (Perkin 

Elmer, Rodgau, Germany). Each well was supplemented with 200 µL of scintillation cocktail 

(Rotiscint Eco plus, Roth, Karlsruhe, Germany) and incubated in the dark under shaking at 

200 rpm. Radioactivity was measured with a Micro Beta2 1450 scintillation counter. 

4.3.7 [3H]histamine competition binding assay 

Each well contained 13-50 µg of protein in a total volume of 100 µL. BSA concentration, 

incubation time as well as the use of scintillation cocktail, polyethylenimine and 96-well sample 

plates 1450-401 (Perkin Elmer, Rodgau, Germany) was the same as shown for the 

[3H]histamine saturation binding assay. But [3H]histamine was added at concentrations 

reflecting the Kd value of the respective receptor, determined in [3H]histamine saturation 

binding assays. 

4.3.8 [35S]GTPγS binding assay 

Membranes were thawed, centrifuged for 10 min at 4 °C and 13,000 g and carefully 

resuspended in binding buffer. Experiments were performed in 96-well plates in a total volume 
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of 100 µL per well. Each well contained 6-15 µg of protein, 1 µM GDP, 100 mM NaCl, 0.05 % 

(w/v) bovine serum albumin (BSA), 20 nCi of [35S]GTPγS (≥ 0.2 nM) and ligand at 

concentrations as indicated in the results section. Neutral antagonists were incubated in the 

presence of histamine at concentrations corresponding to the 10-fold of the EC50 value at the 

respective receptor. Nonspecific binding was determined in the presence of 10 µM unlabelled 

GTPγS. After incubation under shaking at 200 rpm at room temperature for 2 h, bound 

[35S]GTPγS was separated from free [35S]GTPγS by filtration through glass microfibre filters 

using a 96-well Brandel harvester (Brandel Inc., Unterföhring, Germany). The filters were 

washed three to four times with binding buffer (4 °C), dried over night and impregnated with 

meltable scintillation wax prior to counting with a Micro Beta2 1450 scintillation counter (Perkin 

Elmer, Rodgau, Germany). 

Ligands were tested in triplicate and curves were fitted with variable slope. Means ± SEM of 

pEC50, pKb and α were calculated from the means of all individual curves. The maximal 

response to histamine at the respective wild-types and mutants was set to 100 % and all other 

ligands, including inverse agonists, were referenced to histamine. 

4.3.9 Homology model of the hH4R 

Cf. Chapter 3.3.3. 

4.3.10  Miscellaneous 

Protein concentrations of all membrane preparations were determined with the Bio-Rad DC 

protein assay kit (München, Germany) in one experiment. Because UR-PI376 had to be 

dissolved in 20 % DMSO, the water control as well as the full agonist histamine (α = 1.0), to 

which all other ligands were referenced, were also dissolved in 20 % DMSO in case of this 

ligand. Data from the [3H]histamine saturation binding, [3H]histamine competition binding and 

the [35S]GTPγS assays were analysed with the Prism 5.01 software (GraphPad, San Diego, 

CA USA). Kb- and Ki-values were calculated according to the Cheng-Prusoff equation (Cheng 

and Prusoff, 1973). All values are given as mean ± SEM of at least three (up to nine) 

independent experiments performed in triplicate. Significances were calculated using one-way 

analysis of variance (ANOVA), followed by Bonferroni’s multiple comparison test. 

The drug/molecular target nomenclature conforms to BJP's Guide to Receptors and Channels 

(Alexander et al., 2011). 
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4.4 Results 

4.4.1 Expression of recombinant proteins 

Histamine H4 receptor wild-types (hH4R, mH4R and rH4R) as well as mutants (hH4R-F169V, 

mH4R-V171F, hH4R-S179A, hH4R-S179M, hH4R-F169V+S179A, hH4R-F169V+S179M and 

mH4R-V171F+M181S) were expressed in Sf9 insect cells together with G-protein subunits Gαi2 

and Gβ1γ2 (Schneider et al., 2010). High expression at comparable ratios of both, receptors 

(wild-types and mutants) and G-proteins, was confirmed by SDS-PAGE with Coomassie 

staining and densitometric analysis referred to the bands with apparent molecular weights of 

78, 76, 33 and 30 kDa, respectively, present in all samples including the negative control 

(Figure 4.4). 

 

Figure 4.4: Coomassie stained gels of the respective receptors, co-expressed with Gαi2 and 
Gβ1γ2. A negative control (transfection with pVL1392 devoid of an insert) is included. 

Western blots using anti FLAG M1 and anti Gαi1/2 antibodies identified bands at 39 and 71 kDa, 

probably, representing the unglycosylated and the glycosylated or the dimeric form of the 

receptor, as exemplarily shown for hH4R-F169V in Figure 4.5. The Gαi2-protein appeared at 

41 kDa (Figure 4.5). 
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Figure 4.5: (A) Western blot (10 µg total protein per lane, spiked 
with 10 ng amino-terminal FLAG-BAP) with anti-FLAG M1 
antibody. (B) Western blot with anti-Gαi1/2 antibody (0.5 μg 
protein per lane). Figures indicate the “prestained” peqGOLD 
protein marker III proteins, referenced to the molecular mass of the 
“unstained” peqGOLD protein marker I. 

Regardless of the high expression of the mH4R, the rH4R and the mH4R mutants, in these 

cases almost no specific binding of [3H]histamine was detectable, which is in agreement with 

reported data for the mH4R and rH4R (Schnell et al., 2011), most probably due to the low affinity 

of histamine to these receptor proteins. Therefore, competition binding experiments with 

[3H]histamine were not feasible at mH4R, mH4R mutants and rH4R.  

By contrast, high specific binding of [3H]histamine to the hH4R, hH4R-F169V, hH4R-S179A, 

hH4R-S179M mutant and to the hH4R-F169V+S179A and hH4R-F169V+S179M double 

mutants was detected. Bmax values ranged from 1.5 to 2.3 pmol [3H]histamine per mg of soluble 

membrane protein and the Kd values of [3H]histamine from 11.2 to 36.6 nM (Table 4.1 and 

Figure 4.6). 

Table 4.1: Saturation binding data for [3H]histamine at H4R wild-types and mutants. 
 

Receptor 
 

Kd [nM] 
 

Bmax [pmol/mg] 
 

hH4R 11.16 ± 1.92 1.93 ± 0.32 

hH4R-F169V 20.15 ± 4.47 1.92 ± 0.23 

hH4R-S179M 17.81 ± 3.26 2.08 ± 0.02 

hH4R-F169V+S179M 36.59 ± 4.24 1.52 ± 0.07 

hH4R-S179A 14.81 ± 3.84 2.25 ± 0.16 

hH4R-F169V+S179A 28.65 ± 3.57 1.46 ± 0.09 
 

Kd and Bmax values are given as mean ± SEM for three independent experiments, each performed in 
triplicate. Non-specific binding, amounting to 6.4–16.0 % of total binding at 100 nM [3H]histamine, was 
determined in the presence of 10 µM unlabelled histamine. 
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Figure 4.6: Saturation binding curves for [3H]histamine at H4R wild-type and mutants shown as 
mean values ± SEM from three independent experiments performed in triplicate. 

4.4.2 [3H]histamine competition binding experiments 

The affinity at the hH4R-F169V mutant was in the same range or lower compared to the data 

at the wild-type hH4R (Table 4.2). The decrease in affinity was pronounced for UR-PI376 (pKi 

6.33 vs. 7.27), clozapine (pKi 5.51 vs. 6.18), isoloxapine (pKi 6.05 vs. 6.93) and clobenpropit 

(pKi 7.21 vs. 7.73). Effects of a single S179A or S179M mutation on affinity were marginal for 

most compounds, but higher affinity at hH4R-S179A compared to the wild-type was determined 

in case of thioperamide, JNJ7777120, clozapine, isoloxapine and UR-PI376. At the double 

mutants, clozapine, isoloxapine and UR-PI376 showed reduced affinity, whereas the affinity of 

thioperamide and JNJ7777120 for the hH4R-F169V+S179A variant was even higher than for 

the hH4R. In general, the pKi values were higher at the hH4R-S179A than at the hH4R-S179M 
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single mutants and higher at the hH4R-F169V+S179A than at the hH4R-F169V+S179M double 

mutants (Table 4.2). 

Table 4.2: [3H]histamine binding on hH4R wild-type and mutants. 
 

Ligand 
 

hH4R 
 

hH4R-F169V 
 

hH4R-S179M 
 

hH4R-F169V 
+S179M 

 

hH4R-S179A 
 

hH4R-F169V 
+S179A 

 

histamine 7.89 ± 0.04 7.59 ± 0.05 ● 7.49 ± 0.03 ●● 7.40 ± 0.06 ●●● 7.61 ± 0.07 ● 7.45 ± 0.07 ●●● 

UR-PI294 7.84 ± 0.03 7.83 ± 0.04 7.93 ± 0.16 7.81 ± 0.05 7.90 ± 0.09 7.72 ± 0.08 

thioperamide 6.75 ± 0.07 6.98 ± 0.15 6.67 ± 0.04 6.58 ± 0.06 7.34 ± 0.14 ● 7.29 ± 0.16 

JNJ7777120 7.16 ± 0.05 6.83 ± 0.05 ●● 7.23 ± 0.07 6.81 ± 0.02 ●● 7.78 ± 0.02 ●●● 7.48 ± 0.04 ● 

VUF8430 7.84 ± 0.03 7.44 ± 0.02 7.55 ± 0.07 7.42 ± 0.15 7.81 ± 0.14 7.69 ± 0.15 

immepip 7.73 ± 0.16 7.47 ± 0.00 7.49 ± 0.09 7.54 ± 0.13 7.44 ± 0.08 7.52 ± 0.08 

clozapine 6.18 ± 0.03 5.51 ± 0.16 ● 6.36 ± 0.12 5.23 ± 0.14 ●●● 6.59 ± 0.11 5.48 ± 0.04 ● 

isoloxapine 6.93 ± 0.02 6.05 ± 0.13 ●●● 7.02 ± 0.10 6.24 ± 0.08 ●● 7.47 ± 0.08 ● 6.68 ± 0.09 

UR-PI376 7.27 ± 0.07 6.33 ± 0.11 ●●● 7.10 ± 0.12 6.18 ± 0.06 ●●● 7.60 ± 0.04 6.40 ± 0.07 ●●● 

clobenpropit 7.73 ± 0.07 7.21 ± 0.03 ●● 7.14 ± 0.09 ●●● 7.23 ± 0.04 ●● 7.56 ± 0.06 7.22 ± 0.02 ●● 
 

pKi-values ([3H]histamine competition binding) are given as mean ± SEM of at least three independent 
experiments, performed in triplicate. Results of statistical tests (one-way ANOVA and Bonferroni post 
hoc tests): significant differences with respect to hH4R - ● p < 0.05, ●● p < 0.01, ●●● p < 0.001. 

4.4.3 Functional analysis of wild-type and mutant H4 receptors in the 

[35S]GTPγS assay 

We determined potencies (pEC50) and maximal effects (α) as well as antagonist activities (pKb) 

at wild-type and mutated receptors in the [35S]GTPγS-assay, using agonists and antagonists, 

respectively (Figure 4.1, Table 4.3 and Table 4.4). Amounts of [35S]GTPγS bound were similar 

except for mH4R-V171F+M181S, mH4R-V171F, mH4R and rH4R (Figure 4.7A). To facilitate 

comparison of the ratio of agonism to inverse agonism at the H4R orthologs and mutants, the 

changes in [35S]GTPγS binding were expressed as relative values in Figure 4.7B. In this 

representation, the span between maximal increase in [35S]GTPγS binding elicited by the full 

agonist histamine and maximal decrease induced by the inverse agonist thioperamide was set 

to 100 %. [35S]GTPγS binding in the absence of ligand (water control) was set to zero 

(Figure 4.7B). The inverse agonism of thioperamide reflects the extent of constitutive activity 

of the respective wild-type or mutated H4R (Figure 4.7). The response to thioperamide 

decreased in the order: hH4R > hH4R-S179M > hH4R-S179A > hH4R-F169V > 

hH4R-F169V+S179M > hH4R-F169V+S179A > mH4R-V171F+M181S > mH4R-V171F = rH4R 

= mH4R. Thus, the single mutation F169V significantly decreased the exceptionally high 

constitutive activity of the hH4R, and the mutation of hH4R-F169 and S179 into the 

corresponding amino acids of the mH4R and rH4R caused a further decrease. The single 

hH4R-S179A or S179M mutation did not reduce constitutive activity significantly. Accordingly, 

F169 alone and in concert with S179 contributed to the high constitutive activity of the hH4R. 

The mH4R and the rH4R did not show constitutive activity under the same conditions; 

thioperamide behaved as a neutral antagonist in the [35S]GTPγS assay. This was also the case 
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for the mH4R-V171F mutant, and there was no significant increase in constitutive activity for 

the mH4R-V171F+M181S mutant. The higher the constitutive activity, the lower is the relative 

"residual" receptor capacity for activation by agonists (Figure 4.7B). Thus, the relative maximal 

response to histamine increased in the order: hH4R < hH4R-S179M < hH4R-S179A < 

hH4R-F169V < hH4R-F169V+S179M < hH4R-F169V+S179A < mH4R-V171F+M181S < 

mH4R-V171F = rH4R = mH4R. 

 

Figure 4.7: Maximal agonistic effects of histamine (light grey) and maximal inverse agonistic 
effects of thioperamide (dark grey) in [35S]GTPγS assays. (A) Absolute values of bound [35S]GTPγS 
[pmol/mg protein] in the presence of histamine and thioperamide. Values demarcating light and dark 
grey bars represent the basally (in the absence of ligand) bound [35S]GTPγS. (B) For each H4R species, 
the sum of the histamine and thioperamide effects was scaled to 100 %; the zero line represents the 
ligand-free control. Significant changes: hH4R vs. hH4R-F169V (p < 0.001), hH4R vs. 
hH4R-F169V+S179A (p < 0.001), hH4R vs. hH4R-F169V+S179M (p < 0.001), hH4R-F169V vs. 
hH4R-F169V+S179A (p < 0.001), hH4R-F169V vs. hH4R-F169V+S179M (p < 0.001) and mH4R vs. 
mH4R-V171F+M181S (p < 0.05). 

Concentration-response curves of histamine normalized to a percentual scale (maximal effect 

100 %) are shown in Figure 4.8A and Figure 4.9A. The potency of histamine decreased from 

the hH4R via hH4R-F169V, hH4R-S179A and hH4R-S179M mutants to the hH4R double 

mutants by up to one order of magnitude (Table 4.3, Figure 4.8A and Figure 4.9A). The 

potencies of histamine at the mH4R and the rH4R were low (pEC50 ~ 4-5, Table 4.4, Figure 4.8A 

and Figure 4.9A). Corresponding to the key role of F169 in the hH4R, the potency was 

significantly higher at the mH4R-V171F and mH4R-V171F+M181S mutant than at the mH4R 

wild-type. 

UR-PI294 (Igel et al., 2009b) was a full agonist with potencies being five to ten times higher 

than those of histamine at all H4R species variants (Table 4.3 and Table 4.4, Figure 4.8B and 

Figure 4.9B). The rank order at the hH4R mutants corresponded to that of histamine. The pEC50 

value at mH4R-V171F was in between the values at the hH4R and mH4R wild-types, i. e., the 

presence of F169, making the mH4R more similar to the hH4R, substantially increased the 

potency of UR-PI294, too. 

A B
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The inverse agonistic response to thioperamide was highest at the hH4R, slightly smaller at 

the hH4R-S179A (Figure 4.9C) and hH4R-S179M (Figure 4.8C) mutants, significantly reduced 

at the hH4R-F169V mutant and, in particular, at the double mutants, hH4R-F169V+S179A and 

hH4R-F169V+S179M (Table 4.3, Figure 4.8C and Figure 4.9C). Whereas thioperamide acted 

as a weak partial inverse agonist at the mH4R-V171F+M181S mutant, it behaved as a neutral 

antagonist at the mH4R, the rH4R and the mH4R-V171F mutant with pKb values of 7.84, 7.12, 

6.44 and 7.73, respectively. 

JNJ7777120 was a partial inverse agonist at the highly constitutively active hH4R and 

hH4R-S179A/M (Table 4.3 and Table 4.4, Figure 4.8D and Figure 4.9D) but a partial agonist 

at the hH4R-F169V mutant, the mH4R, the rH4R and the mH4R-V171F mutant. At the double 

mutants as well as at the mH4R-V171F+M181S mutant, the compound rather behaved as a 

neutral antagonist.  

Clozapine and isoloxapine were weak partial agonists or neutral antagonists at the mH4R and 

the rH4R (Table 4.4, Figure 4.8E, F and Figure 4.9E, F). Introduction of phenylalanine into the 

mH4R (mH4R-V171F mutant) significantly increased partial agonism of both compounds. Also 

at the hH4R and its mutants, clozapine and isoloxapine acted as partial agonists. At the 

hH4R-F169V and the double mutants, the potencies were lower than at the wild-type receptor, 

with the maximal effects only decreasing in case of clozapine. In contrast, at the hH4R-S179M 

and S179A mutants, potencies of both clozapine and isoloxapine were similar to those at the 

hH4R; maximal effects were reduced only at the S179M mutant. Generally, the potencies and 

the maximal effects of isoloxapine were higher than those of clozapine. 

Both clobenpropit, a partial, and UR-PI376 (Igel et al., 2009a), a full agonist at the hH4R, 

showed a considerable decrease in the maximal effects from the hH4R wild-type over the 

hH4R-F169V mutant to the double mutants, where clobenpropit revealed neutral antagonism 

(Table 4.3, Figure 4.8G, H and Figure 4.9G, H). At the hH4R-S179M mutant, clobenpropit was 

a partial inverse agonist. At the hH4R the pEC50-values of UR-PI376 and clobenpropit were 

similar, whereas at the double mutants the pKb values of UR-PI376 were much lower than 

those of clobenpropit. At the mH4R, the rH4R, the mH4R-V171F and the mH4R-V171F+M181S 

mutant, both compounds behaved as weak partial agonists or neutral antagonists with maximal 

effects increasing from mH4R over the mH4R-V171F to the mH4R-V171F+M181S mutants 

(Table 4.4). 

The potent hH4R agonists VUF8430 (Table 4.3 and Table 4.4, Figure 4.8I and Figure 4.9I) and 

immepip (Table 4.3 and Table 4.4, Figure 4.8J and Figure 4.9J) showed only little changes in 

pEC50 and α values at the five hH4R mutants in comparison to the wild-type. However, at the 

mH4R, the rH4R and the mH4R-V171F mutant, potencies and maximal effects were much 

lower. 
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Table 4.3: [35S]GTPγS binding on hH4R wild-type and mutants. 
 

Ligand 
 

Para-
meter 

 

hH4R 
 

hH4R-F169V 
 

hH4R-S179M 
 

hH4R-F169V
+S179M 

 

hH4R-S179A 
 

hH4R-F169V
+S179A 

 

histamine α 1 1 1 1 1 1 
pEC50 8.13 ± 0.06 

■■■, ♦♦♦ 
7.72 ± 0.07 

●●, ■■■, ♦♦♦ 
7.48 ± 0.08 

●●●, ■■■, ♦♦♦ 
7.24 ± 0.02 

●●●, ■■■, ♦♦♦ 
7.50 ± 0.05 

●●●, ■■■, ♦♦♦ 
7.36 ± 0.07 

●●●, ■■■, ♦♦♦ 

UR-PI294 α 1.02 ± 0.03 1.00 ± 0.07 0.98 ± 0.00 0.94 ± 0.05 0.92 ± 0.03 0.86 ± 0.08 
pEC50 8.35 ± 0.04 

■■■, ♦♦♦ 
8.00 ± 0.11 

■■■, ♦♦♦ 
7.98 ± 0.11 

■■■, ♦♦♦ 
7.82 ± 0.02 

●●, ■■■, ♦♦♦ 
8.16 ± 0.04 

■■■, ♦♦♦ 
7.84 ± 0.01 

●●, ■■■, ♦♦♦ 

thioperamide α -1.39 ± 0.08 

■■■, ♦♦♦ 
-0.63 ± 0.06 

●●●, ■■■, ♦♦♦ 
-1.19 ± 0.06 

■■■, ♦♦♦ 
-0.28 ± 0.04 

●●● 
-1.12 ± 0.06 

●, ■■■, ♦♦♦ 
-0.23 ± 0.03 

●●● 
pEC50 6.58 ± 0.06 

■■■ 
6.52 ± 0.05 

■■■ 
6.51 ± 0.04 

■■■ 
6.60 ± 0.05 ■■ 6.78 ± 0.06 7.28 ± 0.11 

pKb 6.83 ± 0.05   6.81 ± 0.07  7.60 ± 0.10 

●●●, ■■, ♦♦♦ 

JNJ7777120 α -0.39 ± 0.03 

■■■, ♦♦♦ 
0.43 ± 0.03 

●●●, ♦♦ 
-0.48 ± 0.03 

■■■, ♦♦♦ 
0.18 ± 0.04 

●●●, ■■■ 
-0.66 ± 0.06 

●●●, ■■■, ♦♦♦ 
0 ●●●, ■■■, ♦♦♦ 

pEC50 7.10 ± 0.08 

■■■, ♦♦♦ 
6.21 ± 0.12 

●●●, ♦♦♦ 
7.12 ± 0.03 

■■■, ♦♦♦ 
7.28 ± 0.11 7.99 ± 0.08 

●●●, ■■■, ♦♦♦ 
n.a. 

pKb 7.60 ± 0.05   6.85 ± 0.16 

■■, ♦♦♦ 
 7.47 ± 0.09 

■■■, ♦♦♦ 

VUF8430 α 0.84 ± 0.06 

♦♦♦ 
0.91 ± 0.06 

♦♦♦ 
0.85 ± 0.03 

♦♦♦ 
0.86 ± 0.01 

♦♦♦ 
0.85 ± 0.05 

♦♦♦ 
0.75 ± 0.06 ♦ 

pEC50 7.42 ± 0.12 

■■■, ♦♦♦ 
7.61 ± 0.07 

■■■, ♦♦♦ 
7.41 ± 0.08 

■■■, ♦♦♦ 
7.06 ± 0.13 

■■■, ♦♦♦ 
7.53 ± 0.09 

■■■, ♦♦♦ 
7.36 ± 0.09 

■■■, ♦♦♦ 

immepip α 0.81 ± 0.03 0.85 ± 0.05 0.84 ± 0.09 0.84 ± 0.03 0.85 ± 0.06 0.65 ± 0.08 
pEC50 7.67 ± 0.05 

■■■, ♦♦♦ 
7.73 ± 0.19 

■■■, ♦♦♦ 
7.45 ± 0.10 

■■■, ♦♦♦ 
7.45 ± 0.10 

■■■, ♦♦♦ 
7.67 ± 0.09 

■■■, ♦♦♦ 
7.68 ± 0.11 

■■■, ♦♦♦ 

clozapine α 0.67 ± 0.04 

■■■, ♦♦♦ 
0.56 ± 0.03 

■■■, ♦♦♦ 
0.49 ± 0.08 

■■■, ♦♦♦ 
0.49 ± 0.03 

■■■, ♦♦♦ 
0.62 ± 0.09 

■■■, ♦♦♦ 
0.36 ± 0.02 

●●, ■■, ♦♦ 
pEC50 6.24 ± 0.10 

■■■, ♦♦♦ 
5.68 ± 0.12 ●, 

■■■, ♦♦♦ 
6.26 ± 0.12 

■■■, ♦♦♦ 
5.25 ± 0.04 

●●● 
6.59 ± 0.10 

■■■, ♦♦♦ 
5.71 ± 0.07 ●, 

■■■, ♦♦♦ 

isoloxapine α 0.81 ± 0.03 

■■■, ♦♦♦ 
0.85 ± 0.09 

■■■, ♦♦♦ 
0.62 ± 0.03 

■■■, ♦♦ 
0.90 ± 0.03 

■■■, ♦♦♦ 
0.77 ± 0.06 

■■■, ♦♦♦ 
0.83 ± 0.10 

■■■, ♦♦♦ 
pEC50 7.08 ± 0.13 

■■■, ♦♦♦ 
6.36 ± 0.10 

●●●, ■■■, ♦♦♦ 
7.26 ± 0.08 

■■■, ♦♦♦ 
6.24 ± 0.09 

●●●, ■■■, ♦♦♦ 
7.36 ± 0.07 

■■■, ♦♦♦ 
6.69 ± 0.03 

■■■, ♦♦♦ 

UR-PI376 α 1.11 ± 0.08 

■■■, ♦♦♦ 
0.49 ± 0.02 

●●●, ■■■, ♦♦♦ 
0.80 ± 0.04 

●●●, ■■■, ♦♦♦ 
0.12 ± 0.01 

●●● 
1.02 ± 0.06 

■■■, ♦♦♦ 
0.25 ± 0.01 

●●●, ■■, ♦ 
pEC50 7.79 ± 0.08 

■■■, ♦♦♦ 
6.25 ± 0.11 

●●●, ♦♦ 
6.93 ± 0.06 

●●●, ■■, ♦♦♦ 
7.23 ± 0.12 7.28 ± 0.04 

■■■, ♦♦♦ 
6.88 ± 0.18 

●●●, ■■, ♦♦♦ 
pKb    5.82 ± 0.14 

●●● 
 6.31 ± 0.22 

clobenpropit α 0.45 ± 0.04 

■■■, ♦♦♦ 
0.27 ± 0.05 ●, 

♦♦♦ 
-0.44 ± 0.04 

●●●, ■■■, ♦♦♦ 
0 ●●●, ■ 0 ●●●, ■ 0 ●●●, ■ 

pEC50 7.65 ± 0.11 

■■, ♦♦♦ 
7.63 ± 0.15 

■■, ♦♦♦ 
6.10 ± 0.15 

●●● 
n.a. n.a. n.a. 

pKb    7.06 ± 0.07 ♦ 7.42 ± 0.08 

♦♦♦ 
7.56 ± 0.16 ■, 

♦♦♦ 
 

pEC50-values ([35S]GTPγS agonist mode), pKb-values ([35S]GTPγS antagonist mode) and α (intrinsic 
activity, maximal effect relative to histamine = 1.0) are given as mean ± SEM of at least three (up to 
nine) independent experiments, performed in triplicate. Results of statistical tests (one-way ANOVA and 
Bonferroni post hoc tests): significant differences with respect to hH4R - ● p < 0.05, ●● p < 0.01, 
●●● p < 0.001; significant differences with respect to mH4R - ■ p < 0.05, ■■ p < 0.01, ■■■ p < 0.001; 
significant differences with respect to rH4R - ♦ p < 0.05, ♦♦ p < 0.01, ♦♦♦ p < 0.001. In case of neutral 
antagonism (-0.25 ≤ α ≤ 0.25), pKb-values were considered for statistical analysis instead of pEC50-
values. Maximal effect α = 0: neutral antagonism, n.d.: not determined, n.a.: pEC50 or pKb not applicable 
from performed experiments. Functional data for hH4R cf. Nordemann et al. (2013). 
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Table 4.4: [35S]GTPγS binding on mH4R and rH4R wild-types and mH4R mutants. 
 

Ligand 
 

Para-
meter 

 

hH4R 
 

mH4R-V171F 
+M181S 

 

mH4R-V171F 
 

mH4R 
 

rH4R 
 

histamine α 1 1 1 1 1 
pEC50 8.13 ± 0.06 ■■■, 

♦♦♦ 
5.87 ± 0.05 ●●●, 

■■■, ♦♦♦ 
5.95 ± 0.08 ●●●, 

■■■, ♦♦♦ 
5.17 ± 0.14 ●●●, 

♦♦♦ 
4.28 ± 0.06 ●●●, 

■■■ 

UR-PI294 α 1.02 ± 0.03 0.94 ± 0.04 0.99 ± 0.09 0.95 ± 0.03 1.09 ± 0.03 
pEC50 8.35 ± 0.04 ■■■, 

♦♦♦ 
6.95 ± 0.11 ●●●, 

■■■, ♦♦♦ 
7.25 ± 0.02 ●●●, 

■■■, ♦♦♦ 
6.10 ± 0.11 ●●●, 

♦♦ 
5.48 ± 0.08 ●●●, 

■■ 

thioperamide α -1.39 ± 0.08 ■■■, 

♦♦♦ 
-0.20 ± 0.03 ●●● 0 ●●● 0 ●●● 0 ●●● 

pEC50 6.58 ± 0.06 ■■■ 7.11 ± 0.08 n.a. n.a. n.a. 
pKb 6.83 ± 0.05 7.84 ± 0.04 ●●●, 

■■■, ♦♦♦ 
7.73 ± 0.09 ●●●, 

■■■, ♦♦♦ 
7.12 ± 0.09 ●●●, 

♦♦♦ 
6.44 ± 0.09 ■■■ 

JNJ7777120 α -0.39 ± 0.03 ■■■, 

♦♦♦ 
0 ●●●, ■■■, ♦♦♦ 0.42 ± 0.03 ●●●, 

♦♦ 
0.44 ± 0.02 ●●●, 

♦♦ 
0.24 ± 0.01 ●●●, 

■■ 
pEC50 7.10 ± 0.08 ■■■, 

♦♦♦ 
n.a. 6.93 ± 0.12 ■■, 

♦♦♦ 
6.10 ± 0.07 ●●●, 

♦♦♦ 
6.13 ± 0.14 

pKb 7.60 ± 0.05 5.90 ± 0.03 ●●●, 

♦♦♦ 
  4.93 ± 0.16 ●●●, 

■■■ 

VUF8430 α 0.84 ± 0.06 ♦♦♦ 0.73 ± 0.07 ♦ 0.67 ± 0.05 0.68 ± 0.04 0.43 ± 0.05 ●●● 
pEC50 7.42 ± 0.12 ■■■, 

♦♦♦ 
5.83 ± 0.16 ●●●, 

■, ♦♦♦ 
5.75 ± 0.18 ●●●, 

■, ♦♦♦ 
5.06 ± 0.14 ●●● 4.47 ± 0.15 ●●● 

immepip α 0.81 ± 0.03 0.95 ± 0.03 0.66 ± 0.09 0.67 ± 0.08 0.68 ± 0.10 
pEC50 7.67 ± 0.05 ■■■, 

♦♦♦ 
5.73 ± 0.06 ●●●, 

♦♦♦ 
6.10 ± 0.12 ●●●, 

■■■, ♦♦♦ 
5.27 ± 0.06 ●●● 4.95 ± 0.07 ●●● 

clozapine α 0.67 ± 0.04 ■■■, 

♦♦♦ 
0.41 ± 0.08 ●, 

■■■, ♦♦♦ 
0.45 ± 0.04 ■■■, 

♦♦♦ 
0 ●●● 0 ●●● 

pEC50 6.24 ± 0.10 ■■■, 

♦♦♦ 
5.71 ± 0.16 ●, 

■■■, ♦♦♦ 
5.35 ± 0.03 ●●● n.a. n.a. 

pKb    4.92 ± 0.04 ●●● 4.90 ± 0.09 ●●● 

isoloxapine α 0.81 ± 0.03 ■■■, 

♦♦♦ 
0.68 ± 0.05 ■■■, 

♦♦♦ 
0.44 ± 0.01 ●, ■ 0 ●●● 0.19 ± 0.03 ●●● 

pEC50 7.08 ± 0.13 ■■■, 

♦♦♦ 
6.01 ± 0.05 ●●●, 

■■■, ♦♦♦ 
5.69 ± 0.16 ●●●, 

♦♦ 
n.a. 5.82 ± 0.16 

pKb    5.26 ± 0.03 ●●● 5.12 ± 0.02 ●●● 

UR-PI376 α 1.11 ± 0.08 ■■■, 

♦♦♦ 
0.33 ± 0.04 ●●●, 

■■■, ♦♦ 
0 ●●● 0 ●●● 0 ●●● 

pEC50 7.79 ± 0.08 ■■■, 

♦♦♦ 
6.08 ± 0.03 ●●● n.a. n.a. n.a. 

pKb  6.08 ± 0.11 6.30 ± 0.10 ●●●, 

♦♦ 
6.06 ± 0.17 ●●● 5.48 ± 0.03 ●●● 

clobenpropit α 0.45 ± 0.04 ■■■, 

♦♦♦ 
0.35 ± 0.03 ♦♦♦ 0.27 ± 0.04 ●, ♦♦♦ 0.20 ± 0.02 ●●●, ♦ 0 ●●●, ■ 

pEC50 7.65 ± 0.11 ■■, 

♦♦♦ 
6.72 ± 0.13 ●●● 7.00 ± 0.15 ●, ♦ 6.07 ± 0.09 n.a. 

pKb    6.79 ± 0.00 ●● 6.28 ± 0.04 ●●● 
 

cf. Table 4.3; functional data for mH4R and rH4R cf. Nordemann et al. (2013). 
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Figure 4.8: Concentration-response curves of ligands investigated in [35S]GTPγS and 
[3H]histamine competition binding assays. All curves are scaled with respect to a maximal histamine 
effect of 100 %. Symbols and colours refer to the species variants and mutants, respectively. Filled 
symbols: wild-types; open symbols: mutants. (A) histamine; (B) UR-PI294; (C) thioperamide; (D) 
JNJ7777120; (E) clozapine; (F) isoloxapine; (G) clobenpropit; (H) UR-PI376; (I) VUF8430; (J) immepip. 
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Figure 4.9: Concentration-response curves of ligands investigated in [35S]GTPγS and 
[3H]histamine competition binding assays. All curves are scaled with respect to a maximal histamine 
effect of 100 %. Symbols and colours refer to the species variants and mutants, respectively. Filled 
symbols: wild-types; open symbols: mutants. (A) histamine; (B) UR-PI294; (C) thioperamide; (D) 
JNJ7777120; (E) clozapine; (F) isoloxapine; (G) clobenpropit; (H) UR-PI376; (I) VUF8430; (J) immepip. 
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4.5 Discussion 

4.5.1 Affinities and potencies of the investigated ligands at H4R orthologs and 

mutants  

Except for clobenpropit at hH4R-S179M, binding data were in the same range as the respective 

EC50 values from functional studies in the [35S]GTPγS-assay (Table 4.2 and Table 4.3). 

Comparing mutant with wild-type receptors, changes in potency (Figure 4.10B and 

Figure 4.11B) were higher than changes in affinity (Figure 4.10C and Figure 4.11C), e. g. in 

case of histamine and UR-PI294, indicating that the higher potencies of ligands at the hH4R 

were a result of the higher constitutive activity. For most agonists, potencies were lower at 

hH4R-F169V and/or the double mutants than at the hH4R and higher at the mH4R-V171F 

and/or mH4R-V171F+M181S mutant than at the mH4R (Table 4.3 and Table 4.4). Remarkable 

exceptions were VUF8430 and immepip with only minor effects of the F169V and the double 

mutations. With respect to histamine, clozapine and VUF8430, our results correlate with 

previous data (Lim et al., 2008), showing markedly reduced affinity for the hH4R-F169V 

compared to the wild-type in the case of histamine and clozapine, whereas the affinity of 

VUF8430 was only slightly lowered. 

For clozapine and JNJ7777120, binding modes were proposed in which the phenyl and 

chlorophenyl moieties, respectively, occupy a pocket between TMs 3, 5, 6 and ECL2 (Kooistra 

et al., 2013; Lim et al., 2010). The phenyl rings of isoloxapine and UR-PI376 may adopt similar 

positions. For UR-PI294, clobenpropit, VUF8430 and immepip, the potencies at the 

hH4R-F169V mutant indicate no influence of F169 on binding (Table 4.3). However, at the 

mH4R-V171F mutant these compounds are more potent than at the mH4R wild-type 

(Table 4.4). The structures of these ligands suggest a binding mode different to that of 

JNJ7777120, clozapine and isoloxapine (pKi values: cf. Table 4.2). The potencies of histamine, 

JNJ7777120, clozapine, clobenpropit and UR-PI376 are different on at least one of the double 

mutants compared to the hH4R-F169V single mutant (Figure 4.10B and Figure 4.11B). The 

additional mutation may either lead to a decrease in potency (histamine) or an increase 

(JNJ7777120) at both double mutants. The docking poses of histamine (Figure 4.3), clozapine 

and JNJ7777120 (Kooistra et al., 2013; Lim et al., 2010) do not indicate direct interactions with 

F169, but its substitution by valine may alter or destabilize the topology of the ligand binding 

pocket, in particular the conformation of L1755.39, L3266.58 and Y3407.35 (Figure 4.12) and, in 

turn, selectively affect ligand-receptor interactions. Alternatively or additionally, F169 at the 

entrance of the pocket may be part of the "optimal" ligand binding path. 

In accordance with previous reports (Lim et al., 2008; Shin et al., 2002) the hH4R-S179A and 

S179M mutants suggest a minor role of S1795.43 on histamine binding. An increase in both 

potency and affinity (cf. thioperamide, JNJ7777120, clozapine, isoloxapine) due to S179A 
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exchange may be interpreted as a hint that hydrophobic interactions come into play. For most 

ligands pEC50 and pKi values are lower at hH4R-S179M than at hH4R-S179A (Table 4.2 and 

Table 4.3), possibly due to steric hindrance of ligand binding by the methionine side chain. 

 

 

Figure 4.10: Radar plots of 
maximal effects, potencies and 
affinities at wild-type and three 
mutant human → mouse and two 
mouse → human H4 receptors. (A) 
maximal effects (α values, relative to 
histamine = 1), (B) pEC50 values (or 
pKb in case of partial agonists 
with -0.25 ≤ α ≤ 0.25), (C) pKi values 
(n.a. for mH4R and mH4R mutants). 
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Figure 4.11: Radar plots of 
maximal effects, potencies and 
affinities at wild-type and three 
mutant human → rat H4 receptors. 
(A) maximal effects (α values, 
relative to histamine = 1), (B) pEC50 
values (or pKb in case of partial 
agonists with -0.25 ≤ α ≤ 0.25), (C) 
pKi values. 

 

Figure 4.12: Intramolecular 
interactions specific for the hH4R 
suggested from site-directed 
mutagenesis – F169V (mH4R, 
rH4R), S179M (mH4R) and S179A 
(rH4R) – and from an hH4R model 
based on the crystal structure of 
the hH1R. Colours of side chain 
atoms: N – blue, O – red. Interacting 
amino acids are represented as ball 
and stick model. Colours of carbons 
and backbone nitrogens: F169 and 
S179 – ochery, other amino acids 
different in the rH4R and 
mH4R – orange, further residues 
essential for interactions – cyan. A 
red dashed line indicates a hydrogen 
bond between S1795.43 and T3236.55. 
TMs are drawn as ribbons: 
TM5 – green, TM6 – light blue, 
TM7 – magenta. The C-terminal part 
of ECL2 and the N-terminal part of 
ECL3 are shown by tubes (cyan- and 
violet-coloured, respectively). 
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4.5.2 Different quality of action of JNJ7777120  

The different degrees of constitutive activity of H4R species orthologs become obvious from 

different qualities of action, inverse agonism, neutral antagonism or agonism, of one and the 

same ligand. JNJ7777120 is a partial inverse agonist at the wild-type hH4R, the hH4R-S179M 

and hH4R-S179A single mutants, becomes a neutral antagonist at the double mutants 

hH4R-F169V+S179M and hH4R-F169V+S179A as well as at the mH4R-V171F+M181S mutant 

and a partial agonist at the mH4R, the rH4R and the mH4R-V171F mutant. Thus, JNJ7777120 

fulfils the criteria of a protean agonist: inverse agonism at highly constitutively active receptors 

and partial agonism at lower or not constitutively active receptors (Kenakin, 2001). A striking 

exception is the hH4R-F169V mutant at which JNJ7777120 actually had to be expected to act 

as a weak partial inverse agonist, but showed partial agonism with similar potency as at the 

mH4R and the rH4R. Possibly, a ligand-specific stabilization of an active state due to the F169V 

exchange accounts for this apparent discrepancy. The chloro substituent in JNJ7777120 is 

suggested to interact with the side chain of hH4R-L1755.39 (Kooistra et al., 2013; Lim et al., 

2010), which is close to F/V169 (Figure 4.12). These interactions within the JNJ7777120-

occupied binding pocket may result in different qualities of action by stabilizing distinct 

conformations in wild-type and mutant receptors. 

4.5.3 Maximal effects of agonists at H4R orthologs and mutants  

Among the investigated hH4R agonists, histamine, UR-PI294, isoloxapine, VUF8430 and 

immepip do not show significantly reduced maximal effects at the hH4R mutants compared to 

the wild-type receptor (Figure 4.10A and Figure 4.11A). By contrast, in case of clozapine, 

clobenpropit and especially UR-PI376, decreasing maximal responses became obvious from 

the hH4R over the F169V mutant to the double mutants. Except for UR-PI294 and immepip, 

which produced responses comparable to that of histamine at all tested H4R species variants, 

the maximal agonistic effects (α values) were lowest at the mH4R and the rH4R (Figure 4.10A 

and Figure 4.11A). A significant influence of the mH4R-V171F mutation was only observed with 

clozapine and isoloxapine. UR-PI376 was a partial agonist only at the mH4R-V171F+M181S 

mutant. Taking the different constitutive activities of the H4R species variants into 

consideration, the situation becomes more complex in case of the agonists, too. Equal maximal 

effects at H4R orthologs and mutants with high and low constitutive activity, respectively, result 

from different contributions to the stabilization of the active receptor state by one and the same 

agonist. Therefore, comparing maximal effects does not allow for drawing conclusions on 

selective impacts of F169 and/or S179 on receptor activation by different ligands. Furthermore, 

stabilization of an active state by agonists may be based on interactions different from those 

in the ligand-free, constitutively active receptor, i. e., multiple active states must be taken into 

consideration. Therefore, beyond the G-protein activation used as readout in the present study, 
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ligand-specific receptor conformations may trigger different signalling pathways according to 

the concept of functional selectivity (biased signalling; cf. conventional G-protein activation 

versus β-arrestin recruitment (Nijmeijer et al., 2012; Rosethorne and Charlton, 2011)). 

4.5.4 Constitutive activity 

More than 40 % of the GPCRs studied in vitro have been found to exhibit constitutive activity 

(Seifert and Wenzel-Seifert, 2002). Active GPCR states may be stabilized by intramolecular 

interactions in the ligand binding region, also in the absence of agonists. The key result of this 

study is the fact that the exceptionally high constitutive activity of the hH4R is significantly 

reduced by the single F169V and the double F169V+S179M and F169V+S179A mutations, 

whereas the single S179M and S179A mutations do not significantly reduce constitutive 

activity. The effect of both amino acids, F169 (ECL2) and S1795.43, on the constitutive activity 

is cumulative. The mH4R, the rH4R and the mH4R-V171F mutant are not constitutively active. 

The constitutive activity is slightly increasing at the mH4R-V171F+M181S mutant. By contrast, 

high constitutive activity of the hH4R is reflected by maximal inverse agonism of thioperamide, 

described as a full (Lim et al., 2005) or partial (Schneider et al., 2009) inverse agonist. In this 

context, the question arises whether thioperamide is a weaker partial inverse agonist at the 

hH4R mutants than at the wild-type or whether the maximal inverse agonistic effects only 

depend on different levels of constitutive activity. The assumption of comparable inverse 

agonism is supported by the fact that, at the hH4R-F169V and at the double mutants, but not 

at the hH4R-S179A and hH4R-S179M mutants, the minimum of [35S]GTPγS binding in the 

presence of thioperamide approximately corresponds to that at the mH4R and the rH4R 

(Figure 4.7A). Moreover, in the case of the hH4R and the double mutants, the pEC50, pKb and 

pKi values are similar (Table 4.2 and Table 4.3, Figure 4.8 and Figure 4.9). All criteria of 

constitutive activity (Seifert et al., 1998), high basal activity, high intrinsic activity and potency 

of partial agonists and a high inverse agonistic effect of inverse agonists, are fulfilled. 

A possible explanation for the dependence of the high constitutive activity on the presence of 

F169 and S179 can be derived from a homology model of the hH4R based on the crystal 

structure of the hH1R (Shimamura et al., 2011). Our model indicates that F169 may adopt 

different conformations. Its phenyl ring may be directed towards the upper part of ECL2 like 

the corresponding tyrosine in the hH1R or point to the ligand binding pocket. The first variant 

is rather unlikely due to an unfavourable polar environment and putative clashes with P166 

(ECL2). In the second case shown in Figure 4.12, F169 is part of a hydrophobic cluster 

consisting of P166 (ECL2), L1755.39, L3266.58 and Y3407.35. Additionally, F169 contacts T333 

(ECL3). A valine side chain as in the mH4R, rH4R and the hH4R-F169V mutants may interact 

only with P166 and/or L175. Furthermore, S1795.43 forms a hydrogen bond with T3236.55, which 

is impossible when S179 is exchanged by alanine or methionine as in the rH4R and the mH4R, 
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respectively. The cumulative effect on constitutive activity by mutation of both, F169 and S179, 

indicates that the agonist-free active state of the hH4R is stabilized by hydrophobic interactions 

between ECL2 and the extracellular parts of TMs 5, 6 and 7 as well as the hydrogen bond 

between S1795.43 and T3236.55. In concert, these contacts favour a specific arrangement in 

particular of TMs 5 and 6, comparable to the stabilization of an active conformation by an 

agonist. An inward bulge of TM5 around position 5.46 and smaller inward movements of TMs 

6 and 7 are characteristic of the activated β2-adrenoceptor (β2AR) compared to the inactive 

state (Rasmussen et al., 2011a; Rosenbaum et al., 2011). At the cytoplasmic face of the 

receptor, an outward move of TM6 and rearrangements of TMs 5 and 7 are necessary for G-

protein binding and contribute to the stabilization of active GPCR states. The TMs are 

suggested to behave as “oscillating arms”. When they move inwards at the extracellular side, 

they move outwards at the intracellular side and vice versa. Thus, the inward movement of 

TM5 and TM6 close to the agonist binding pocket results in an outward movement of these 

TMs at the “bottom” of the receptor. In case of the hH4R, a proximal arrangement of TMs 5 and 

6 at the extracellular side becomes possible in the absence of bound agonist due to a network 

of interactions involving F169 and S179. However, also other amino acids contribute to the 

agonist-free stabilization of the active state of the hH4R, since the double mutants still show a 

moderate degree of constitutive activity.  

In case of the β2AR, an S204A+S207A double mutant showed about 50 to 60 % lower 

constitutive activity than the β2AR wild-type (Ambrosio et al., 2000). S2045.43 forms a hydrogen 

bond with N2936.55 (Rasmussen et al., 2011a), corresponding to the suggested interaction of 

S1795.43 with T3236.55 in the hH4R. A contribution of phenylalanine in ECL2 to constitutive 

activity by a network of hydrophobic interactions with amino acids in TMs 5, 6 and 7 has not 

been shown for other GPCRs, but may also play a role in other constitutively active receptors 

such as the hH3R and the β2AR, which both contain the same FF motif as the hH4R. 

4.6 Conclusions 

Up to now, most studies on the constitutive activity of GPCRs have focused on the intracellular 

face, the DRY motif and the N-terminal part of TM6. The present study provides further 

evidence that intramolecular interactions in the agonist binding region contribute to the 

stabilization of ligand-free active GPCR states. Key result is the decrease in constitutive activity 

from the hH4R over the hH4R-F169V mutant to the hH4R-F169V+S179A and 

hH4R-F169V+S179M double mutants. Thus, F169 in ECL2 and S179 in TM5 play a major role 

in stabilizing a ligand-free active state of the hH4R. Similar results on the β2AR suggest a 

common principle that may be of relevance for other GPCRs as well. 



112 4.7 References 

4.7 References 

Alexander, S. P.; Mathie, A.; Peters, J. A. (2011). Guide to Receptors and Channels (GRAC), 
5th edition. Br. J. Pharmacol. 164 Suppl 1: S1-324. 

Ambrosio, C.; Molinari, P.; Cotecchia, S.; Costa, T. (2000). Catechol-binding serines of 
beta(2)-adrenergic receptors control the equilibrium between active and inactive receptor 
states. Mol. Pharmacol. 57(1): 198-210. 

Ballesteros, J. A.; Weinstein, H. (1995). Integrated methods for the construction of three 
dimensional models and computational probing of structure function relations in G 
protein-coupled receptors. Methods Neurosci. 25: 366-428. 

Brunskole, I.; Strasser, A.; Seifert, R.; Buschauer, A. (2011). Role of the second and third 
extracellular loops of the histamine H(4) receptor in receptor activation. Naunyn 
Schmiedebergs Arch. Pharmacol. 384(3): 301-317. 

Buckland, K. F.; Williams, T. J.; Conroy, D. M. (2003). Histamine induces cytoskeletal changes 
in human eosinophils via the H(4) receptor. Br. J. Pharmacol. 140(6): 1117-1127. 

Cheng, Y.; Prusoff, W. H. (1973). Relationship between the inhibition constant (K1) and the 
concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic 
reaction. Biochem. Pharmacol. 22(23): 3099-3108. 

Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. 
S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. (2007). High-
resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled 
receptor. Science 318(5854): 1258-1265. 

de Esch, I. J.; Thurmond, R. L.; Jongejan, A.; Leurs, R. (2005). The histamine H4 receptor as 
a new therapeutic target for inflammation. Trends Pharmacol. Sci. 26(9): 462-469. 

Dunford, P. J.; Holgate, S. T. (2011). The role of histamine in asthma. Adv. Exp. Med. Biol. 
709: 53-66. 

Dunford, P. J.; O'Donnell, N.; Riley, J. P.; Williams, K. N.; Karlsson, L.; Thurmond, R. L. (2006). 
The histamine H4 receptor mediates allergic airway inflammation by regulating the 
activation of CD4+ T cells. J. Immunol. 176(11): 7062-7070. 

Gether, U.; Lin, S.; Kobilka, B. K. (1995). Fluorescent labeling of purified beta 2 adrenergic 
receptor. Evidence for ligand-specific conformational changes. J. Biol. Chem. 270(47): 
28268-28275. 

Igel, P.; Dove, S.; Buschauer, A. (2010). Histamine H4 receptor agonists. Bioorg. Med. Chem. 
Lett. 20(24): 7191-7199. 

Igel, P.; Geyer, R.; Strasser, A.; Dove, S.; Seifert, R.; Buschauer, A. (2009a). Synthesis and 
structure-activity relationships of cyanoguanidine-type and structurally related histamine 
H4 receptor agonists. J. Med. Chem. 52(20): 6297-6313. 

Igel, P.; Schneider, E.; Schnell, D.; Elz, S.; Seifert, R.; Buschauer, A. (2009b). N(G)-acylated 
imidazolylpropylguanidines as potent histamine H4 receptor agonists: selectivity by 
variation of the N(G)-substituent. J. Med. Chem. 52(8): 2623-2627. 

Jablonowski, J. A.; Grice, C. A.; Chai, W.; Dvorak, C. A.; Venable, J. D.; Kwok, A. K.; Ly, K. 
S.; Wei, J.; Baker, S. M.; Desai, P. J.; Jiang, W.; Wilson, S. J.; Thurmond, R. L.; Karlsson, 



 Chapter 4: F169 and S179 113 

L.; Edwards, J. P.; Lovenberg, T. W.; Carruthers, N. I. (2003). The first potent and 
selective non-imidazole human histamine H4 receptor antagonists. J. Med. Chem. 
46(19): 3957-3960. 

Kenakin, T. (2001). Inverse, protean, and ligand-selective agonism: matters of receptor 
conformation. FASEB J. 15(3): 598-611. 

Kooistra, A. J.; Kuhne, S.; de Esch, I. J.; Leurs, R.; de Graaf, C. (2013). A structural 
chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand 
design. Br. J. Pharmacol. 170(1): 101-126. 

Lange, J. H. M.; Wals, H. C.; Vandenhoogenband, A.; Vandekuilen, A.; Denhartog, J. A. J. 
(1995). 2 Novel Syntheses of the Histamine H-3 Antagonist Thioperamide. Tetrahedron 
51(48): 13447-13454. 

Leurs, R.; Chazot, P. L.; Shenton, F. C.; Lim, H. D.; de Esch, I. J. (2009). Molecular and 
biochemical pharmacology of the histamine H4 receptor. Br. J. Pharmacol. 157(1): 14-
23. 

Lim, H. D.; de Graaf, C.; Jiang, W.; Sadek, P.; McGovern, P. M.; Istyastono, E. P.; Bakker, R. 
A.; de Esch, I. J.; Thurmond, R. L.; Leurs, R. (2010). Molecular determinants of ligand 
binding to H4R species variants. Mol. Pharmacol. 77(5): 734-743. 

Lim, H. D.; Jongejan, A.; Bakker, R. A.; Haaksma, E.; de Esch, I. J.; Leurs, R. (2008). 
Phenylalanine 169 in the second extracellular loop of the human histamine H4 receptor 
is responsible for the difference in agonist binding between human and mouse H4 
receptors. J. Pharmacol. Exp. Ther. 327(1): 88-96. 

Lim, H. D.; Smits, R. A.; Bakker, R. A.; van Dam, C. M.; de Esch, I. J.; Leurs, R. (2006). 
Discovery of S-(2-guanidylethyl)-isothiourea (VUF 8430) as a potent nonimidazole 
histamine H4 receptor agonist. J. Med. Chem. 49(23): 6650-6651. 

Lim, H. D.; van Rijn, R. M.; Ling, P.; Bakker, R. A.; Thurmond, R. L.; Leurs, R. (2005). 
Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 
receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor 
agonist. J. Pharmacol. Exp. Ther. 314(3): 1310-1321. 

Ling, P.; Ngo, K.; Nguyen, S.; Thurmond, R. L.; Edwards, J. P.; Karlsson, L.; Fung-Leung, W. 
P. (2004). Histamine H4 receptor mediates eosinophil chemotaxis with cell shape 
change and adhesion molecule upregulation. Br. J. Pharmacol. 142(1): 161-171. 

Liu, C.; Ma, X.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; 
Carruthers, N.; Lovenberg, T. W. (2001a). Cloning and pharmacological characterization 
of a fourth histamine receptor (H(4)) expressed in bone marrow. Mol. Pharmacol. 59(3): 
420-426. 

Liu, C.; Wilson, S. J.; Kuei, C.; Lovenberg, T. W. (2001b). Comparison of human, mouse, rat, 
and guinea pig histamine H4 receptors reveals substantial pharmacological species 
variation. J. Pharmacol. Exp. Ther. 299(1): 121-130. 

Marson, C. M. (2011). Targeting the histamine H4 receptor. Chem. Rev. 111(11): 7121-7156. 

Morse, K. L.; Behan, J.; Laz, T. M.; West, R. E., Jr.; Greenfeder, S. A.; Anthes, J. C.; Umland, 
S.; Wan, Y.; Hipkin, R. W.; Gonsiorek, W.; Shin, N.; Gustafson, E. L.; Qiao, X.; Wang, 
S.; Hedrick, J. A.; Greene, J.; Bayne, M.; Monsma, F. J., Jr. (2001). Cloning and 
Characterization of a Novel Human Histamine Receptor. J. Pharmacol. Exp. Ther. 
296(3): 1058-1066. 



114 4.7 References 

Nakamura, T.; Itadani, H.; Hidaka, Y.; Ohta, M.; Tanaka, K. (2000). Molecular cloning and 
characterization of a new human histamine receptor, HH4R. Biochem. Biophys. Res. 
Commun. 279(2): 615-620. 

Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R.; Rauser, L.; Lee, 
S. P.; Lynch, K. R.; Roth, B. L.; O'Dowd, B. F. (2001). Discovery of a novel member of 
the histamine receptor family. Mol. Pharmacol. 59(3): 427-433. 

Nijmeijer, S.; Vischer, H. F.; Rosethorne, E. M.; Charlton, S. J.; Leurs, R. (2012). Analysis of 
multiple histamine H(4) receptor compound classes uncovers Galphai protein- and beta-
arrestin2-biased ligands. Mol. Pharmacol. 82(6): 1174-1182. 

Nordemann, U.; Wifling, D.; Schnell, D.; Bernhardt, G.; Stark, H.; Seifert, R.; Buschauer, A. 
(2013). Luciferase reporter gene assay on human, murine and rat histamine H4 receptor 
orthologs: correlations and discrepancies between distal and proximal readouts. PLoS 
One 8(9): e73961. 

O'Reilly, M.; Alpert, R.; Jenkinson, S.; Gladue, R. P.; Foo, S.; Trim, S.; Peter, B.; Trevethick, 
M.; Fidock, M. (2002). Identification of a histamine H4 receptor on human eosinophils--
role in eosinophil chemotaxis. J. Recept. Signal Transduct. Res. 22(1-4): 431-448. 

Oda, T.; Matsumoto, S. (2001). [Identification and characterization of histamine H4 receptor]. 
Nippon Yakurigaku Zasshi 118(1): 36-42. 

Rasmussen, S. G.; Choi, H. J.; Fung, J. J.; Pardon, E.; Casarosa, P.; Chae, P. S.; Devree, B. 
T.; Rosenbaum, D. M.; Thian, F. S.; Kobilka, T. S.; Schnapp, A.; Konetzki, I.; Sunahara, 
R. K.; Gellman, S. H.; Pautsch, A.; Steyaert, J.; Weis, W. I.; Kobilka, B. K. (2011a). 
Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 
469(7329): 175-180. 

Reher, T. M.; Neumann, D.; Buschauer, A.; Seifert, R. (2012). Incomplete activation of human 
eosinophils via the histamine H4-receptor: evidence for ligand-specific receptor 
conformations. Biochem. Pharmacol. 84(2): 192-203. 

Ren, H.; Yu, D.; Ge, B.; Cook, B.; Xu, Z.; Zhang, S. (2009). High-level production, solubilization 
and purification of synthetic human GPCR chemokine receptors CCR5, CCR3, CXCR4 
and CX3CR1. PLoS One 4(2): e4509. 

Rosenbaum, D. M.; Zhang, C.; Lyons, J. A.; Holl, R.; Aragao, D.; Arlow, D. H.; Rasmussen, S. 
G.; Choi, H. J.; Devree, B. T.; Sunahara, R. K.; Chae, P. S.; Gellman, S. H.; Dror, R. O.; 
Shaw, D. E.; Weis, W. I.; Caffrey, M.; Gmeiner, P.; Kobilka, B. K. (2011). Structure and 
function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469(7329): 236-
240. 

Rosethorne, E. M.; Charlton, S. J. (2011). Agonist-biased signaling at the histamine H4 
receptor: JNJ7777120 recruits beta-arrestin without activating G proteins. Mol. 
Pharmacol. 79(4): 749-757. 

Rossbach, K.; Wendorff, S.; Sander, K.; Stark, H.; Gutzmer, R.; Werfel, T.; Kietzmann, M.; 
Baumer, W. (2009b). Histamine H4 receptor antagonism reduces hapten-induced 
scratching behaviour but not inflammation. Exp. Dermatol. 18(1): 57-63. 

Schmutz, J.; Kuenzle, G.; Hunziker, F.; Gauch, R. (1967). Heterocycles with 7-membered 
rings. IX. 11- Amino substituted dibenzo[b,f]-1,4-thiazepines and -oxazepines. Helv. 
Chim. Acta 50(1): 245-254. 



 Chapter 4: F169 and S179 115 

Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R. (2009). High constitutive activity and a G-
protein-independent high-affinity state of the human histamine H(4)-receptor. 
Biochemistry 48(6): 1424-1438. 

Schneider, E. H.; Schnell, D.; Strasser, A.; Dove, S.; Seifert, R. (2010). Impact of the DRY 
motif and the missing "ionic lock" on constitutive activity and G-protein coupling of the 
human histamine H4 receptor. J. Pharmacol. Exp. Ther. 333(2): 382-392. 

Schnell, D.; Brunskole, I.; Ladova, K.; Schneider, E. H.; Igel, P.; Dove, S.; Buschauer, A.; 
Seifert, R. (2011). Expression and functional properties of canine, rat, and murine 
histamine H(4) receptors in Sf9 insect cells. Naunyn Schmiedebergs Arch. Pharmacol. 
383(5): 457-470. 

Seifert, R.; Strasser, A.; Schneider, E. H.; Neumann, D.; Dove, S.; Buschauer, A. (2013). 
Molecular and cellular analysis of human histamine receptor subtypes. Trends 
Pharmacol. Sci. 34(1): 33-58. 

Seifert, R.; Wenzel-Seifert, K. (2002). Constitutive activity of G-protein-coupled receptors: 
cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs 
Arch. Pharmacol. 366(5): 381-416. 

Seifert, R.; Wenzel-Seifert, K.; Lee, T. W.; Gether, U.; Sanders-Bush, E.; Kobilka, B. K. (1998). 
Different effects of Gsalpha splice variants on beta2-adrenoreceptor-mediated signaling. 
The Beta2-adrenoreceptor coupled to the long splice variant of Gsalpha has properties 
of a constitutively active receptor. J. Biol. Chem. 273(18): 5109-5116. 

Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; 
Cherezov, V.; Liu, W.; Han, G. W.; Kobayashi, T.; Stevens, R. C.; Iwata, S. (2011). 
Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354): 
65-70. 

Shin, N.; Coates, E.; Murgolo, N. J.; Morse, K. L.; Bayne, M.; Strader, C. D.; Monsma, F. J., 
Jr. (2002). Molecular modeling and site-specific mutagenesis of the histamine-binding 
site of the histamine H4 receptor. Mol. Pharmacol. 62(1): 38-47. 

Smits, R. A.; Lim, H. D.; Stegink, B.; Bakker, R. A.; de Esch, I. J.; Leurs, R. (2006). 
Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and 
pharmacological evaluation of dibenzodiazepine derivatives. J. Med. Chem. 49(15): 
4512-4516. 

Strasser, A.; Wittmann, H. J.; Buschauer, A.; Schneider, E. H.; Seifert, R. (2013). Species-
dependent activities of G-protein-coupled receptor ligands: lessons from histamine 
receptor orthologs. Trends Pharmacol. Sci. 34(1): 13-32. 

Thurmond, R. L.; Gelfand, E. W.; Dunford, P. J. (2008). The role of histamine H1 and H4 
receptors in allergic inflammation: the search for new antihistamines. Nat. Rev. Drug 
Discov. 7(1): 41-53. 

Wifling, D.; Löffel, K.; Nordemann, U.; Strasser, A.; Bernhardt, G.; Dove, S.; Seifert, R.; 
Buschauer, A. (2015b). Molecular determinants for the high constitutive activity of the 
human histamine H4 receptor: functional studies on orthologues and mutants. Br. J. 
Pharmacol. 172(3): 785-798. 

Zampeli, E.; Tiligada, E. (2009). The role of histamine H4 receptor in immune and inflammatory 
disorders. Br. J. Pharmacol. 157(1): 24-33. 



116 4.7 References 

Zhu, Y.; Michalovich, D.; Wu, H.; Tan, K. B.; Dytko, G. M.; Mannan, I. J.; Boyce, R.; Alston, J.; 
Tierney, L. A.; Li, X.; Herrity, N. C.; Vawter, L.; Sarau, H. M.; Ames, R. S.; Davenport, C. 
M.; Hieble, J. P.; Wilson, S.; Bergsma, D. J.; Fitzgerald, L. R. (2001). Cloning, 
expression, and pharmacological characterization of a novel human histamine receptor. 
Mol. Pharmacol. 59(3): 434-441. 

 



117 

Chapter 5 

5 The extracellular loop 2 (ECL2) of the 

human histamine H4 receptor 

substantially contributes to ligand 

binding and constitutive activity 

Note: Major parts of this chapter were already published prior to submission of this thesis in 

PLoS One (Wifling et al., 2015a). For detailed information on the contributions by co-authors, 

cf. “Danksagungen”. 

F168 

5.1 Summary 

In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor 

(hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), 

replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. 

Stabilization of the inactive state was even more pronounced for a double mutant, in which, in 

addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the 

FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in 

Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied 

in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at 

the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and 

more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high 

constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected 

by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, 

JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A 

mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, 

F168 was proven to play a key role not only in ligand binding and potency, but also in the high 

constitutive activity of the hH4R. 
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5.2 Introduction 

Among the extracellular loops (ECLs) of class A GPCRs, the ECL2 is the largest and the most 

diverse one (Peeters et al., 2011). ECL2 contributes to ligand recognition, binding, selectivity, 

allosteric modulation and activation of GPCRs (Peeters et al., 2011; Wheatley et al., 2012). In 

the absence of ligand, ECL2 is a putative “gatekeeper” (Peeters et al., 2011), assumed to 

adopt an open conformation giving access to the binding pocket. Ligand binding can induce a 

partially closed conformation. Massotte and Kieffer (2005) and Klco et al. (2005) suggested 

that ECL2 is involved in interactions stabilizing the inactive state of the receptor. However, 

specific amino acid sequences in the ECL2 of some GPCRs may stabilize active receptor 

states and play a role in constitutive activity (Nanevicz et al., 1996; Sum et al., 2009). For 

instance, ECL2 was reported to be involved in the activation of the human muscarinic M3 

(hM3R;(Scarselli et al., 2007) and the human histamine H4 receptor (hH4R;(Brunskole et al., 

2011; Wifling et al., 2015b). Additionally, the disulphide bond between cysteines in both ECL2 

and transmembrane domain 3 (TM3) (Figure 5.1) is of relevance for GPCR function, as shown, 

for example, for rhodopsin (Davidson et al., 1994), the M1R (Shi and Javitch, 2002), the β2-

adrenergic (β2AR;(Noda et al., 1994) and the gonadotropin releasing hormone receptor 

(GnRH-R;(Cook and Eidne, 1997). Furthermore, ECL2 contributes to the high affinity state of 

the β2AR (Noda et al., 1994). Apart from modifying ligand-free states, ECL2 was shown to 

have an impact on ligand binding and selectivity (Avlani et al., 2007; Shi and Javitch, 2002; 

2004). 

Constitutive activity describes the ability of a GPCR to produce a biological response in the 

absence of a bound ligand (Lefkowitz et al., 1993; Milligan, 2003). The degree of constitutive 

activity reflects the shift of the basal equilibrium from the inactive to the active state of a GPCR. 

Inverse agonists stabilize the inactive receptor conformation and are therefore capable of 

reducing or blocking constitutive activity. Consequently, constitutive activity of a GPCR is a 

prerequisite to determine inverse agonism and vice versa (Seifert et al., 1998). 

In contrast to the rodent orthologs mH4R and rH4R, high constitutive activity is characteristic of 

the hH4R (Brunskole et al., 2011; Schnell et al., 2011; Seifert et al., 2013; Wifling et al., 2015b). 

H4R species orthologs are well suited for exploring the molecular basis of this phenomenon, 

because there are not too many differences between the sequences in ECL2. Site-directed 

mutagenesis within the ECL2 of the hH4R compared to the mH4R revealed that the 

hH4R-F169V mutant is similar to the mH4R in terms of ligand affinities and potencies, 

suggesting that F169 is a key amino acid for differential interactions of certain agonists with 

the human and mouse H4R orthologs (Lim et al., 2008). The assumption that F169 also 

contributes to constitutive activity was confirmed by investigations on the mutants hH4R-F169V 

and F169V+S179M (Wifling et al., 2015b). F169 alone or in concert with S179 (TM5, ligand 
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binding site) plays a major role in stabilizing a ligand-free active state of the hH4R. The 

constitutive activity of the hH4R-F169V mutant was significantly reduced compared to the wild-

type hH4R. In particular, the inverse agonistic effect of thioperamide decreased. 

F169 is part of the FF motif, which is located on top of the ligand binding pocket (Figure 5.1) 

and conserved in a number of class A GPCRs, e. g., the hβ2AR, hH3R, monkey H4R, canine 

H4R and the hM2R. Instead of the FF motif, other GPCRs, such as the hβ1AR, hM1R, hM3R, 

hM4R, and the hM5R, as well as several H4R species orthologs, e. g., pig H4R, guinea pig H4R, 

mouse H4R and rat H4R, contain only one phenylalanine, which is located in a position 

corresponding to that of F168 in the hH4R. In these cases, in the adjacent position a non-

aromatic hydrophobic amino acid such as valine or leucine is present instead of phenylalanine. 

 

Figure 5.1: View from the extracellular side into the binding pocket of the human H4R. Homology 
model (Wifling et al., 2015b) based on the crystal structure of the hH1R inactive state (Shimamura et al., 
2011). The FF motif (F168 and F169), pointing to the ligand binding pocket, is illustrated as green balls 
and sticks, the disulphide bond connecting TM3 with ECL2 as yellow sticks and the binding pocket as a 
semitransparent surface coloured in magenta. Generated with PyMOL Molecular Graphics System, 
Version 1.6 (Schrödinger LLC, Portland, OR USA). 

Crystal structures provide information on the position and the conformation of the FF motif. 

The side chain of the first phenylalanine (in case of the hM2R also of the second one (Haga et 

al., 2012)) points into the ligand binding pocket. In the hβ2AR and in the hH1R, the second 

phenylalanine (and a tyrosine in case of hH1R) is oriented in the opposite direction 

(Rasmussen et al., 2011a; Shimamura et al., 2011). Our recent results on the contribution of 

F169 to the constitutive activity of the hH4R suggested that F168 plays a significant role as 

well. In order to investigate the influence of F168 on both receptor activation and ligand binding 

(Wifling et al., 2015b), we generated and characterized the hH4R-F168A mutant in comparison 
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to the wild-type and the recently described hH4R-F169V mutant. The mutant receptors were 

expressed in Sf9 insect cells, and membrane preparations were used for saturation binding 

with [3H]histamine and functional studies were performed with inverse agonists, neutral 

antagonists and agonists in the [35S]GTPγS assay (Figure 5.2). 

 

Figure 5.2: Structures of the investigated H4R ligands. 

5.3 Materials and Methods 

5.3.1 Materials 

The pcDNA3.1 vector containing the hH4R sequence was from the cDNA Resource Centre at 

the University of Missouri-Rolla (Rolla, MO USA). The pVL1392-SF-H4R-His6 plasmid was 

constructed as described previously (Schneider et al., 2009; Schnell et al., 2011). Baculovirus 

encoding Gαi2 was kindly provided by Dr. A. G. Gilman (Department of Pharmacology, 

University of Southwestern Medical Centre, Dallas, TX USA). Recombinant baculovirus 

encoding the Gβ1γ2 subunits was a kind gift of Dr. P. Gierschik (Department of Pharmacology 

and Toxicology, University of Ulm, Ulm, Germany). Pfu Ultra II DNA polymerase was from 

Agilent (Böblingen, Germany). The DNA primers for polymerase chain reaction (PCR) were 

from MWG-Biotech (Ebersberg, Germany). Restriction enzymes were from New England 

Biolabs (Ipswich, MA USA). Gradient gels (8-16 %, 12 well nUView gels) as well as the 

peqGOLD protein marker I, used for Coomassie brilliant blue R staining, were from Peqlab 
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(Erlangen, Germany). UR-PI294 and UR-PI376 were synthesized as described (Igel et al., 

2009a; Igel et al., 2009b). Thioperamide, JNJ7777120 and VUF8430 were synthesized 

according to Lange et al. (1995), Jablonowski et al. (2003), and Lim et al. (2006). Isoloxapine 

(Schmutz et al., 1967; Smits et al., 2006) was synthesized and provided by Dr. S. Gobleder 

(Institute of Pharmacy, University of Regensburg, Regensburg, Germany). All other H4R 

ligands were from Tocris (Avonmouth, Bristol, UK). For chemical structures of the investigated 

compounds cf. Figure 5.2. UR-PI376 (10 mM) was dissolved in 50 % (v/v) dimethyl sulfoxide 

(DMSO) and dilutions were prepared in 20 % (v/v) DMSO in order to attain a final DMSO 

concentration of 2 % (v/v) in each well. Stock solutions (10 mM) of clozapine or isoloxapine 

were prepared in Millipore water containing 3 and 2 mol equivalents of HCl, respectively. All 

other stock solutions were prepared with Millipore water. [35S]GTPγS (1000 Ci/mmol) and 

[3H]histamine (25 Ci/mmol) were from Hartmann Analytic (Braunschweig, Germany). All other 

reagents were from standard suppliers and of the highest purity available. 

5.3.2 Methods 

5.3.2.1 Site-directed mutagenesis of the hH4R 

The preparation of the hH4R-F168A cDNA was essentially performed as described for the 

hH4R-F169V mutant (Wifling et al., 2015b). To introduce the F168A mutation into the 

pVL1392-SF-hH4R-His6 expression vector a site-directed mutagenesis PCR was performed 

using the following primers 5’-GGT AGT GAA TGT GAA CCT GGA GCC TTT TCG GAA TGG 

TAC ATC C-3’ and 5’-G GAT GTA CCA TTC CGA AAA GGC TCC AGG TTC ACA TTC ACT 

ACC-3’. 

5.3.2.2 Cell culture, generation of recombinant baculoviruses and membrane 

preparation 

Cell culture and generation of high-titre recombinant baculovirus stocks (Schneider et al., 

2009) as well as the co-infection of Sf9 cells with high-titre baculovirus stocks encoding Gαi2, 

Gβ1γ2 and the respective H4R (Brunskole et al., 2011) were performed as described recently 

(Wifling et al., 2015b). Membrane preparations were performed according to Gether et al. 

(1995) in the presence of 0.2 mM phenylmethylsulfonyl fluoride, 1 mM 

ethylenediaminetetraacetic acid (EDTA), 10 μg/mL leupeptin and 10 μg/mL benzamidine as 

protease inhibitors. Prepared membranes were resuspended in binding buffer (75 mM 

Tris/HCl, 12.5 mM MgCl2, 1 mM EDTA, pH 7.4) and stored at -80 °C in 0.5 or 1.0 mL aliquots. 

5.3.2.3 SDS-PAGE and Coomassie staining 

Prior to incubation at 30 °C for 15 min, the respective membrane preparation (15 µg protein) 

as well as a negative control (Sf9 cells transfected with pVL1392 devoid of an insert) were 

loaded onto the gel as well as 5 µL of the protein marker I (Wifling et al., 2015b). A 2x sample 
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buffer without urea was used for sample preparation. The gels were stained in a solution of 

0.1 % Coomassie brilliant blue G250 in 50 % methanol and 10 % acetic acid and subsequently 

destained with a solution containing 13 % methanol and 7 % acetic acid. 

5.3.2.4 [3H]histamine saturation binding experiments 

The experiments were performed in 96-well plates (Wifling et al., 2015b). Each well contained 

43-133 µg of protein in a total volume of 100 µL. For saturation binding, membranes were 

incubated in binding buffer containing [3H]histamine (1-200 nM) and 0.2 % (w/v) BSA at room 

temperature under shaking at 200 rpm for 60 min. Non-specific binding was determined in the 

presence of 10 µM unlabelled histamine. Filtration through glass microfibre filters (Whatman 

GF/C), pretreated with polyethylenimine 0.3 % (w/v), using a Brandel 96 sample harvester 

(Brandel, Unterföhring, Germany), was performed to separate unbound from membrane-

associated [3H]histamine. After three washing steps with binding buffer, filter pieces were 

punched out, transferred into 96-well sample plates 1450-401 (Perkin Elmer, Rodgau, 

Germany), and 200 µL of scintillation cocktail (Rotiscint Eco plus, Roth, Karlsruhe, Germany) 

per well were added before incubation in the dark under shaking at 200 rpm. Radioactivity was 

measured with a Micro Beta2 1450 scintillation counter (Perkin Elmer, Rodgau, Germany). 

5.3.2.5 [35S]GTPγS binding assay 

Membranes were thawed, centrifuged for 10 min at 4 °C and 13,000 g and carefully 

resuspended in binding buffer (Wifling et al., 2015b). Experiments were performed in 96-well 

plates in a total volume of 100 µL per well. Each well contained 7-19 µg of protein (7-10 µg for 

hH4R, 10-14 µg for hH4R-F169V and 10-19 µg for hH4R-F168A), 1 µM GDP, 100 mM NaCl, 

0.05 % (w/v) bovine serum albumin (BSA), 20 nCi of [35S]GTPγS (0.2 nM) and ligand at 

concentrations as indicated in the results section. Antagonism was determined in the presence 

of histamine (10-fold EC50 at the respective receptor). Nonspecific binding was determined in 

the presence of 10 µM unlabelled GTPγS. After incubation under shaking at 200 rpm at room 

temperature for 2 h, bound [35S]GTPγS was separated from free [35S]GTPγS by filtration 

through glass microfibre filters using a 96-well Brandel harvester. The filters were washed 

three to four times with binding buffer (4 °C), dried over night and impregnated with meltable 

scintillation wax prior to counting with a Micro Beta2 1450 scintillation counter. 

5.3.2.6 Miscellaneous 

Protein concentrations of all membrane preparations were determined with the Bio-Rad DC 

protein assay kit (München, Germany) in one experiment. Because UR-PI376 had to be 

dissolved in 20 % DMSO, the water control as well as the full agonist histamine (α = 1.0), to 

which all other ligands were referenced, were also dissolved in 20 % DMSO in case of this 

ligand. Concentration-response curves were constructed by fitting the data according to the 
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four parameter logistic fit (variable slope), and analysed with the Prism 5.01 software 

(GraphPad, San Diego, CA USA). Kb values were calculated according to the Cheng-Prusoff 

equation (Cheng and Prusoff, 1973). All values are given as mean ± SEM of at least three 

independent experiments performed in triplicate. Significances were calculated using one-way 

analysis of variance (ANOVA), followed by Bonferroni’s multiple comparison test. 

5.4 Results 

5.4.1 Receptor expression 

Human histamine H4 receptor wild-type as well as mutants (hH4R-F169V and hH4R-F168A) 

were expressed in Sf9 insect cells together with G-protein subunits Gαi2 and Gβ1γ2 (Schneider 

et al., 2010; Wifling et al., 2015b). As previously shown by SDS PAGE and western blots 

(Wifling et al., 2015b), the wild-type or mutated H4 receptors migrated with an apparent 

molecular weight of 39 kDa and the Gαi2 protein with an apparent molecular weight of 41 kDa. 

The hH4R wild-type and both mutant receptors, hH4R-F169V and hH4R-F168A, respectively 

as well as the Gαi2 protein were expressed at comparably high levels as becomes obvious 

from Coomassie stained SDS gels (Figure 5.3). However, specific binding of [3H]histamine to 

the hH4R-F168A mutant was too low to determine the Kd value (highest concentration of 

radioligand used: 200 nM). By contrast, the wild-type hH4R as well as the hH4R-F169V mutant 

revealed high specific binding as described previously (cf. Wifling et al. (2015b), saturation 

binding curves are depicted in Figure 4.6A and B). 

 

Figure 5.3: Coomassie stained SDS gels. 
Membrane proteins of Sf9 insect cells, co-
expressing the respective receptor as indicated 
and Gαi2 as well as Gβ1γ2 were separated on 8-
16 % polyacrylamide gradient gels. All samples 
were analysed on the same gel. In the interest of 
clarity, the membranes prepared from Sf9 cells 
transfected with pVL1392 devoid of an insert 
(negative control) were placed next to the 
molecular weight standard. 

116

66

45

35

25

kDa

Gαi2 (41 kDa)

receptor

(39 kDa)



124 5.4 Results 

5.4.2 Functional analysis of wild-type and mutant H4 receptors 

Functional data – intrinsic activities (α), potencies (pEC50) and antagonist activities (pKb) – 

were determined in the [35S]GTPγS assay using standard agonists as well as inverse agonists 

and neutral antagonists (Figure 5.2 and Table 5.1). For comparison, data from the hH4R-F169V 

mutant (Wifling et al., 2015b) are included in Table 5.1. Upon maximal stimulation with 

histamine, the amounts of bound [35S]GTPγS were significantly different, decreasing in the 

order hH4R wild-type > hH4R-F169V > hH4R-F168A (Figure 5.4). The effect of the inverse 

agonist thioperamide reflects constitutive activity of wild-type and mutant receptors. The 

response to thioperamide decreased in the order hH4R > hH4R-F169V > hH4R-F168A 

(Figure 5.4), i. e., constitutive activity was highest at the hH4R wild-type, significantly smaller 

at the hH4R-F169V mutant (Wifling et al., 2015b) and absent at the hH4R-F168A mutant, where 

thioperamide acted as a neutral antagonist. 

 

Figure 5.4: Maximal agonistic effects of 
histamine (light blue) and maximal inverse 
agonistic effects of thioperamide (yellow) in the 
[35S]GTPγS-assay. Data represent [35S]GTPγS 
[pmol/mg protein] specifically bound to wild-type 
and mutated H4Rs. The line separating light blue 
and yellow bar represents [35S]GTPγS binding in 
the absence of ligand. 

The normalized concentration-response curves of histamine (maximal effect of histamine at 

the respective receptors, set to 100 %) are depicted in Figure 5.5A. The potency of histamine 

decreased from the hH4R via the hH4R-F169V to the hH4R-F168A mutant by more than two 

orders of magnitude (Figure 5.5A and Table 5.1). The same holds for the full agonist UR-PI294 

(Igel et al., 2009b) with a decrease in potency by about 1.5 orders of magnitude from the hH4R 

to the hH4R-F168A mutant without significant changes of intrinsic activity (Figure 5.5B). 

The potency of clozapine and the structurally related isoloxapine decreased from the hH4R via 

the hH4R-F169V to the hH4R-F168A mutant with maximal shift of the curve by one order of 

magnitude (Figure 5.5C, D). The intrinsic activity of clobenpropit, a partial agonist, and 

UR-PI376 (Igel et al., 2009a), a full agonist at the hH4R significantly decreased at the two 

mutants (Figure 5.5E, F). For clobenpropit, despite reduced maximal responses, no significant 

changes of the potency were observed. By contrast, the potency of UR-PI376 was by more 

than one order of magnitude lower at the mutants than at the wild-type. 
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Compared to the wild-type hH4R, the potencies and intrinsic activities of the partial agonists 

immepip and VUF8430 were not significantly affected by the hH4R-F169V mutation (Wifling et 

al., 2015b). By contrast, at the hH4R-F168A mutant, the potencies decreased by about two 

orders of magnitude (Figure 5.5G, H). 

Inverse agonism of thioperamide was highest at the hH4R, significantly lower at the 

hH4R-F169V (Wifling et al., 2015b) and not detectable at the hH4R-F168A mutant (Figure 5.5I). 

Instead, thioperamide behaved as a neutral antagonist with a pKb value of 7.97. JNJ7777120 

was a partial inverse agonist at the hH4R but, surprisingly, acted as a partial agonist at the 

hH4R-F169V and hH4R-F168A mutants (Figure 5.5J). 

Table 5.1: [35S]GTPγS binding on hH4R wild-type, hH4R-F169V and hH4R-F168A mutant. 
 

Ligand 
 
Parameter 

 
hH4R 

 
hH4R-F169V 

 
hH4R-F168A 

 
histamine α 1 1 1 

pEC50 8.13 ± 0.06 7.72 ± 0.07 ●● 5.98 ± 0.06 ●●● 

UR-PI294 α 1.02 ± 0.03 1.00 ± 0.07 0.91 ± 0.06 
pEC50 8.35 ± 0.04 8.00 ± 0.11 6.78 ± 0.11 ●●● 

thioperamide α -1.39 ± 0.08 -0.63 ± 0.06 ●●● 0 ●●● 
pEC50 6.58 ± 0.06 6.52 ± 0.05 n.a. 
pKb 6.83 ± 0.05  7.97 ± 0.07 ●●● 

JNJ7777120 α -0.39 ± 0.03 0.43 ± 0.03 ●●● 0.20 ± 0.01 ●●● 
pEC50 7.10 ± 0.08 6.21 ± 0.12 ●● 6.40 ± 0.17 
pKb 7.60 ± 0.05  6.17 ± 0.19 ●● 

VUF8430 α 0.84 ± 0.06 0.91 ± 0.06 0.69 ± 0.06 
pEC50 7.42 ± 0.12 7.61 ± 0.07 5.74 ± 0.03 ●●● 

immepip α 0.81 ± 0.03 0.85 ± 0.05 0.81 ± 0.02 
pEC50 7.67 ± 0.05 7.73 ± 0.19 5.82 ± 0.11 ●●● 

clozapine α 0.67 ± 0.04 0.56 ± 0.03 0.40 ± 0.01 ●● 
pEC50 6.24 ± 0.10 5.68 ± 0.12 ● 5.38 ± 0.10 ●● 

isoloxapine α 0.81 ± 0.03 0.85 ± 0.09 0.83 ± 0.07 
pEC50 7.08 ± 0.13 6.36 ± 0.10 ●● 6.10 ± 0.05 ●●● 

UR-PI376 α 1.11 ± 0.08 0.49 ± 0.02 ●●● 0.39 ± 0.05 ●●● 
pEC50 7.79 ± 0.08 6.25 ± 0.11 ●●● 6.30 ± 0.15 ●●● 

clobenpropit α 0.45 ± 0.04 0.27 ± 0.05 ● 0.14 ± 0.02 ●● 
pEC50 7.65 ± 0.11 7.63 ± 0.15 7.40 ± 0.13 
pKb   7.24 ± 0.06 

 
pEC50-values ([35S]GTPγS agonist mode), pKb-values ([35S]GTPγS antagonist mode) and α (intrinsic 
activity, maximal effect relative to histamine = 1.0) are given as mean ± SEM of at least three  
independent experiments, performed in triplicate. Results of statistical tests (one-way ANOVA and 
Bonferroni post hoc tests): significant differences with respect to hH4R - ● p < 0.05, ●● p < 0.01, 
●●● p < 0.001. In case of neutral antagonism (-0.25 ≤ α ≤ 0.25), pKb-values were considered for statistical 
analysis instead of pEC50-values. Maximal effect α = 0: neutral antagonism. Data for hH4R and 
hH4R-F169V cf. Wifling et al. (2015b). 
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Figure 5.5: Concentration-response curves of ligands investigated in the [35S]GTPγS assay. All 
curves are normalized with respect to the maximal effect of histamine (100 %) at the respective receptor. 
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5.5 Discussion 

5.5.1 Potencies of ligands at mutated H4 receptors 

With respect to potency at mutant H4 receptors, except thioperamide, the investigated ligands 

are divided in two groups. The first group, comprising JNJ7777120, clozapine, isoloxapine, 

UR-PI376 and clobenpropit, has similar potency at both the hH4R-F169V and the hH4R-F168A 

mutant. These ligands contain bulky aromatic groups. The phenyl and chlorophenyl moieties 

of clozapine and JNJ7777120, respectively, were suggested to occupy a hydrophobic pocket 

between TMs 3, 5, 6 and ECL2 (Kooistra et al., 2013; Lim et al., 2010). Most notably, MD 

simulations with JNJ7777120 indicated that the chloro substituent is surrounded by a relatively 

tight pocket formed by E163ECL2, F168ECL2, F169ECL2, L1755.39 and T3236.55 (Schultes et al., 

2013). Mutations of these amino acids, especially, affect binding modes directed towards 

ECL2. Affinity of ligands may be reduced due to loss of direct contacts and/or by distortion of 

the pocket. The binding mode of clobenpropit is probably different, because of similar potency 

at the wild-type and both mutants. 

The second group, histamine, UR-PI294, VUF8430 and immepip, comprises rather small 

ligands devoid of hydrophobic substituents. Characteristic of this group is a significant 

decrease in potency by about two orders of magnitude at the hH4R-F168A mutant compared 

to the wild-type hH4R (Figure 5.6A). By contrast, there were only minor effects on potency at 

the hH4R-F169V mutant. Thus, F168 is probably involved in direct interactions with the ligands 

of this group. 

 

Figure 5.6: Radar plots of potencies and maximal effects at wild-type human H4R, hH4R-F169V 
and hH4R-F168A mutants. (A) pEC50 values (or pKb in case of partial agonists/inverse agonists 
with -0.25 ≤ α ≤ 0.25). (B) maximal effects (α values, relative to histamine = 1). 

The ligands of both groups are full or partial agonists, apart from JNJ7777120 at the wild-type 

hH4R. According to docking on hH4R homology models, agonists as well as several 

antagonists and inverse agonists probably bind between TMs 3, 5, 6 and 7 via key interactions 

with D943.32, E1825.46 and Q3477.42 (Kooistra et al., 2013; Lim et al., 2010; Schultes et al., 2013). 
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Thioperamide is an exception as it binds only to inactive hH4R state(s). By analogy, 

thioperamide is known to stabilize the inactive conformation of the closely related hH3R. 

Molecular dynamics simulations of an hH3R-thioperamide complex revealed a binding mode 

characterized by an extended conformation of the ligand, which is oriented parallel to the 

membrane plane, an interaction of the imidazolyl moiety with tyrosine in position 2.61, and the 

thiourea group positioned in the vicinity of F193, which corresponds to F169 in the hH4R 

(Wittmann et al., 2014). It may be speculated that thioperamide binds to the hH4R in the same 

way, selectively contacting Y722.61 and F3447.39, whereas interactions with E1825.46 and 

Q3477.42, proven essential in case of other H4R ligands, are precluded or only weak. Such a 

binding mode would prevent the constriction of the orthosteric binding site (inward movements 

of TMs 5, 6 and 7), characteristic of the conversion of the receptor to the active state 

(Rasmussen et al., 2011a). Direct interactions of thioperamide with F168 or F169 cannot be 

deduced from the data in Table 5.1. The increase in pKb at the hH4R-F168A mutant by one 

order of magnitude compared to the wild-type receptor is compatible with higher affinity of 

thioperamide to inactive than to active state(s), represented by the mutant devoid of 

constitutive activity and the highly constitutively active wild-type H4R. 

5.5.2 Intrinsic activities of ligands and constitutive activity of receptors 

The hH4R agonists histamine, UR-PI294, isoloxapine, VUF8430 and immepip did not show 

significantly reduced intrinsic activities at both hH4R mutants compared to the wild-type, 

whereas the maximal effects of clozapine, clobenpropit and UR-PI376 were diminished 

(Figure 5.6B). In case of inverse agonists, the reduced constitutive activity of the mutants is 

reflected by lower maximal (inverse) responses. The partial inverse hH4R agonist JNJ7777120 

was a partial agonist at the mutant receptors. Thioperamide was a partial inverse agonist at 

hH4R-F169V, the mutant with reduced constitutive activity, and a neutral antagonist at the 

hH4R-F168A mutant, which is devoid of constitutive activity. The results support the hypothesis 

that both F168 and F169 play a role in stabilizing an active state of the wild-type hH4R. 

Constitutive activity (Lefkowitz et al., 1993) reflects a ligand-independent interconversion 

between inactive and active receptor conformations. Interactions at the intracellular face 

involving the DRY motif have been proven crucial for basal and agonist-induced receptor 

activation and signalling (Alewijnse et al., 2000; Schneider et al., 2010). In case of the hH4R, 

which is devoid of the ionic lock, we demonstrated that interactions close to the ligand binding 

pocket and ECL2 account for the high constitutive activity (Wifling et al., 2015b). The mutation 

of F169 alone and, even more pronounced, the mutation of both F169 (ECL2) and S1795.43 

(numbering according to the Ballesteros nomenclature (Ballesteros and Weinstein, 1995)) into 

the corresponding amino acids of the mouse and rat H4R orthologs (F169V, S179M, S179A) 

resulted in a highly significant reduction of the constitutive activity (Wifling et al., 2014). 
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The hH4R model in Figure 5.7 suggests mutual effects of both phenylalanines, F168 and F169 

(the FF motif), on the conformation of ECL2 (Lim et al., 2008). Our present results with the 

hH4R-F168A mutant support this idea. Compared to hH4R-F169V, which has still a low 

constitutive activity, hH4R-F168A is completely devoid of constitutive activity. Accordingly, the 

single mutation of either F169 into V and, especially, F168 into A weakens interactions within 

ECL2 and the surrounding hydrophobic pocket consisting of amino acids as Y953.33, P166ECL2, 

L1755.39, T1785.42, T3236.55, L3266.58, T333ECL3, and Y3407.35 (Figure 5.7). Therefore, 

replacement of F168 or F169 probably causes major conformational changes, which 

destabilize active and stabilize inactive receptor states. 

 

Figure 5.7: Binding pocket of the hH4R, homology model (Wifling et al., 2015b) based on the 
inactive state crystal structure of the hH1R (Shimamura et al., 2011). Nitrogens are coloured in blue, 
oxygens in red and sulphurs in yellow. The carbons are differently coloured: the two cysteines forming 
the disulphide bond in yellow, the amino acids representing the hydrophobic cluster in magenta, 
important amino acids for ligand binding in cyan and the two adjacent phenylalanines forming the FF 
motif in green. 

5.6 Conclusions 

The present study demonstrates a highly significant influence of the hH4R-F168A mutant on 

ligand binding as well as on constitutive activity, even surpassing the consequences of 

hH4R-F169V mutation, revealing a key role of the FF motif for both, ligand-receptor interaction 

and interconversion between inactive and active conformation of the wild-type hH4R. The 

results may also be of relevance for other class A GPCRs comprising the FF motif, such as 

the β2AR, the H3R and the M2R. 
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Chapter 6 

6 Effect of S330R mutation in ECL3 on 

ligand binding and function of the human 

H4R 

S330 

6.1 Summary 

Different numbers of basic residues in ECL3 (one in case of the hH4R, three in case of the 

mH4R and four in case of the rH4R) of H4R species orthologs led to the hypothesis that these 

residues play a role in ligand binding and constitutive activity. In order to test this hypothesis, 

the hH4R-S330R mutant was generated to introduce one additional basic residue in the ECL3 

of the hH4R. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits 

Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine saturation and competition 

binding as well as in functional [35S]GTPγS assays. The constitutive activity of the hH4R-S330R 

mutant was clearly reduced compared to the hH4R wild-type, whereas changes in ligand 

binding affinities were negligible. The results are compatible with the hypothesis that basic 

amino acids in ECL3 of the H4R contribute to the stabilization of the rodent orthologs in the 

inactive state. Apart from hH4R-S330R, additional charged amino acids in extracellular loops 

should be taken into consideration to study this phenomenon in more detail.  

6.2 Introduction 

Hoffmann et al. (1999) explored the influence of both, ECL2 and ECL3, on ligand binding of 

the human P2Y1 receptor. The amino acids D204ECL2 and E209ECL2 as well as R287ECL3 of the 

P2Y1R were identified as key residues in receptor function. Mutations of D204ECL2 to A, N or E 

revealed a decrease in potency of the investigated ligands, whereas mutations of E209ECL2 to 

A or R287ECL3 to A or E resulted in a complete loss of receptor function. Thus, changing the 

charge of the amino acid in the respective positions, i. e., replacing an acidic residue by a non-

polar or basic residue and vice versa, can influence the binding of ligands. In search for 

molecular determinants of the high constitutive activity of the human H4R, the number of acidic 
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and basic residues in the extracellular loops of the respective H4R species orthologs, hH4R, 

mH4R and rH4R, were compared (Figure 6.1). Remarkably, one basic amino acid (K336) is 

present in ECL3 in case of the hH4R, three basic residues are present in case of the mH4R 

(R333, R336 and K338) and even four in case of the rH4R (R332, R333, R336 and K338) 

(Figure 6.1). By contrast, acidic residues are present in a similar number in ECL2 among all 

three H4R species orthologs (Figure 6.1). In order to examine, whether an additional basic 

residue in ECL3 of the hH4R contributes to ligand binding and influences constitutive activity, 

hH4R-S330R was generated and the mutant receptor was co-expressed with Gαi2 and Gβ1γ2 

in Sf9 insect cells. [3H]histamine saturation and competition binding as well as functional 

[35S]GTPγS assays were performed with ten H4R agonists and inverse agonists, respectively 

(for structures of the investigated ligands cf. Figure 4.1 and Figure 5.2). Instead of S330ECL3 in 

the hH4R, P is present in the mH4R and R in the rH4R. Therefore, the hH4R-S330R mutant 

reflects differences between the hH4R, mH4R (no basic residue in equivalent position) and 

rH4R (R332ECL3 in equivalent position) and should be suitable to uncover changes in the 

pharmacology of the hH4R caused by one additional basic residue in ECL3. 

  

 

Figure 6.1: Homology models of (A) 
hH4R, (B) mH4R and (C) rH4R. Models 
based on the active state crystal 
structure of the β2AR (PDB ID: 3P0G); 
all basic (cyan) and acidic (green) 
residues in ECL2 and ECL3 are 
highlighted. 
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6.3 Materials and Methods 

6.3.1 Materials 

Cf. Chapters 4.3.1 and 5.3.1. 

6.3.2 Site-directed mutagenesis of the hH4R 

The construction of the hH4R-S330R mutant was essentially performed as described (Wifling 

et al., 2015b). To introduce the S330R mutation into the pVL1392-SF-hH4R-His6 expression 

vector a site-directed mutagenesis PCR was performed, using the two complementary primers 

5’-C CTT TCA TTT TAT CGC TCA GCA ACA GGT CCT AAA TCA GTT TGG-3’ and 5’-CCA AAC 

TGA TTT AGG ACC TGT TGC TGA GCG ATA AAA TGA AAG G-3’ 

6.3.3 Cell culture, generation of recombinant baculoviruses and membrane 

preparation 

Cf. Chapters 4.3.3 and 5.3.2.2. 

6.3.4 SDS-PAGE and Coomassie staining 

Cf. Chapters 4.3.4 and 5.3.2.3. 

6.3.5 [3H]histamine saturation binding experiments 

Performed according to the procedure described in Chapters 4.3.6 and 5.3.2.4 with the 

exception that each well contained 35-47 µg protein in case of the hH4R-S330R mutant. 

6.3.6 [3H]histamine competition binding assay 

Performed according to the procedure described in Chapter 4.3.7 with the exception that each 

well contained 15-18 µg protein in case of the hH4R-S330R mutant. 

6.3.7 [35S]GTPγS binding assay 

Performed according to the procedure described in Chapters 4.3.8 and 5.3.2.5 with the 

exception that each well contained 8-12 µg protein in case of the hH4R-S330R mutant. 

6.3.8 Miscellaneous 

Cf. Chapters 4.3.10 and 5.3.2.6 

6.4 Results 

6.4.1 Expression of recombinant proteins 

The respective wild-type H4R ortholog (hH4R, mH4R or rH4R) or the hH4R-S330R mutant and 

the G-protein subunits Gαi2 and Gβ1γ2 were co-expressed in Sf9 cells (Wifling et al., 2015a; 
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Wifling et al., 2015b). As shown for the hH4R-F169V mutant by western blots, the wild-type 

and mutated receptors migrated with an apparent molecular weight of 39 kDa and the Gαi2 

protein with an apparent molecular weight of 41 kDa (cf. Chapter 4.4.1;(Wifling et al., 2015b). 

These two bands were absent in the negative control (Sf9 cells transfected with pVL1392 

devoid of an insert; Figure 6.2). As becomes obvious from Coomassie stained SDS gels 

(Figure 6.2), both, wild-type H4Rs (hH4R, mH4R and rH4R) and the hH4R-S330R mutant, were 

expressed at comparable levels. 

 

Figure 6.2: Coomassie stained SDS gels. 
Membrane proteins of Sf9 insect cells, co-
expressing the respective receptor as indicated 
and Gαi2 as well as Gβ1γ2, were separated on 8-
16 % polyacrylamide gradient gels. All samples 
were analysed on the same gel. 

The Kd value of [3H]histamine at the hH4R-S330R mutant (15.32 nM) was comparable with the 

Kd value at the hH4R (11.16 nM) (Table 6.1 and Figure 6.3). 

Table 6.1: Saturation binding data for [3H]histamine at hH4R and the hH4R-S330R mutant. 
 

Receptor 
 

Kd [nM] 
 

Bmax [pmol/mg] 
 

hH4R 11.16 ± 1.92 1.93 ± 0.32 

hH4R-S330R 15.32 ± 1.82 2.60 ± 0.05 
 

Kd and Bmax values are given as mean ± SEM for at least two independent experiments, each performed 
in triplicate. Non-specific binding, amounting to 7.1-16.0 % of total binding at 100 nM of [3H]histamine, 
was determined in the presence of 10 µM of unlabelled histamine. 
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Figure 6.3: Saturation binding curve for 
[3H]histamine at the hH4R-S330R mutant. Data 
represent mean values ± SEM from two 
independent experiments performed in triplicate. 

6.4.2 Competition binding data of H4R ligands at the hH4R-S330R mutant 

Competition binding studies using [3H]histamine as the radioligand revealed only minor 

differences between the pKi values determined at the hH4R wild-type and the hH4R-S330R 

mutant (Table 6.2). 

Table 6.2: [3H]histamine competition binding on hH4R wild-type and hH4R-S330R mutant. 
 

Ligand 
 

hH4R 
 

hH4R-S330R 
 

histamine 7.89 ± 0.04 7.54 ± 0.03 ●● 

UR-PI294 7.84 ± 0.03 7.81 ± 0.08 

thioperamide 6.75 ± 0.07 6.70 ± 0.10 

JNJ7777120 7.16 ± 0.05 7.41 ± 0.06 

VUF8430 7.84 ± 0.03 7.77 ± 0.05 

immepip 7.73 ± 0.16 7.43 ± 0.01 

clozapine 6.18 ± 0.03 5.92 ± 0.06 ● 

isoloxapine 6.93 ± 0.02 6.65 ± 0.07 ● 

UR-PI376 7.27 ± 0.07 7.03 ± 0.00 

clobenpropit 7.73 ± 0.07 7.51 ± 0.06 

pKi values are given as mean ± SEM of at least two independent experiments, performed in triplicate. 
Results of statistical tests (unpaired t test): significant differences with respect to hH4R - ● p < 0.05, 
●● p < 0.01, ●●● p < 0.001.  

6.4.3 Functional analysis of the hH4R-S330R mutant compared to wild-type 

H4Rs in the [35S]GTPγS assay 

The amounts of bound [35S]GTPγS [pmol/mg] were lower at the hH4R-S330R mutant than at 

the hH4R wild-type (Figure 6.4A). Generally, [35S]GTPγS binding at the rodent orthologs was 

significantly lower than at the human receptor. The signal amplitude was lowest at the mH4R. 

Transforming the amounts of bound [35S]GTPγS into relative scales, revealed highest 

constitutive activity (reflected by the maximal inverse agonistic effect of thioperamide) for the 

hH4R wild-type, followed by the hH4R-S330R mutant at a significantly lower level. By contrast, 

the rodent orthologs were devoid of constitutive activity (Figure 6.4B). 
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Figure 6.4: Maximal agonistic effects of histamine and maximal inverse agonistic effects of 
thioperamide in the [35S]GTPγS assay. (A) Data represent [35S]GTPγS [pmol/mg protein] specifically 
bound to wild-type and mutated H4Rs in the presence of histamine (light grey) and thioperamide (dark 
grey). Values demarcating light and dark grey bars represent the basal amount (in the absence of ligand) 
of bound [35S]GTPγS. (B) Relative effects of histamine and thioperamide. The sum of histamine and 
thioperamide of each construct was scaled to 100 %, and the zero line represents the ligand-free control.  

Consequently, the intrinsic activity of thioperamide was significantly higher at the hH4R-S330R 

mutant than at the hH4R wild-type due to the lower constitutive activity of the hH4R-S330R 

mutant (Table 6.3 and Figure 6.5C). 

Regarding pEC50 values there was a decrease in potency, comparing the hH4R wild-type with 

the hH4R-S330R mutant (Table 6.3 and Figure 6.5A, G, H, I), by 0.4, 0.7, 0.6 and 0.5 

logarithmic units in case of histamine, clozapine, isoloxapine and UR-PI376. 

Table 6.3: [35S]GTPγS binding on hH4R wild-type and hH4R-S330R mutant. 
 

Receptor 
 

hH4R 
 

hH4R-S330R 
 

Ligand 
 

α 
 

pEC50 

 

α 
 

pEC50 

 

histamine 1 8.13 ± 0.06 ■■■, ♦♦♦ 1 7.69 ± 0.14 ●, ■■■, ♦♦♦ 

UR-PI294 1.02 ± 0.03 8.35 ± 0.04 ■■■, ♦♦♦ 0.99 ± 0.06 8.10 ± 0.01 ■■■, ♦♦♦ 

thioperamide -1.39 ± 0.08 ■■■, ♦♦♦ 6.58 ± 0.06 ■■ -0.88 ± 0.04 ●●●, ■■■, ♦♦♦ 6.47 ± 0.05 ■■■ 

JNJ7777120 -0.39 ± 0.03 ■■■, ♦♦♦ 7.10 ± 0.08 ■■■, ♦♦♦ -0.30 ± 0.04 ■■■, ♦♦♦ 6.96 ± 0.07 ■■, ♦♦♦ 

VUF8430 0.84 ± 0.06 ♦♦ 7.42 ± 0.12 ■■■, ♦♦♦ 0.93 ± 0.04 ■, ♦♦♦ 7.22 ± 0.14 ■■■, ♦♦♦ 

immepip 0.81 ± 0.03 7.67 ± 0.05 ■■■, ♦♦♦ 0.73 ± 0.03 7.54 ± 0.10 ■■■, ♦♦♦ 

clozapine 0.67 ± 0.04 ■■■, ♦♦♦ 6.24 ± 0.10 ■■■, ♦♦♦ 0.59 ± 0.04 ■■■, ♦♦♦ 5.50 ± 0.13 ●●, ■■, ♦ 

isoloxapine 0.81 ± 0.03 ■■■, ♦♦♦ 7.08 ± 0.13 ■■■, ♦♦♦ 0.87 ± 0.01 ■■■, ♦♦♦ 6.48 ± 0.12 ●●, ■■■, ♦♦♦ 

UR-PI376 1.11 ± 0.08 ■■■, ♦♦♦ 7.79 ± 0.08 ■■■, ♦♦♦ 0.84 ± 0.06 ■■■, ♦♦♦ 7.26 ± 0.08 ●, ■■■, ♦♦♦ 

clobenpropit 0.45 ± 0.04 ■■, ♦♦♦ 7.65 ± 0.11 ■■■, ♦♦♦ 0.45 ± 0.05 ■■, ♦♦♦ 7.85 ± 0.13 ■■■, ♦♦♦ 
 

pEC50 values ([35S]GTPγS agonist mode) and α (intrinsic activity, maximal effect relative to 
histamine = 1.0) are given as mean ± SEM of at least three independent experiments, performed in 
triplicate. Results of statistical tests (one-way ANOVA and Bonferroni post hoc tests; mH4R and rH4R 
were considered): significant differences with respect to hH4R - ● p < 0.05, ●● p < 0.01, ●●● p < 0.001; 
significant differences with respect to mH4R - ■ p < 0.05, ■■ p < 0.01, ■■■ p < 0.001; significant differences 
with respect to rH4R - ♦ p < 0.05, ♦♦ p < 0.01, ♦♦♦ p < 0.001. Functional data for hH4R cf. Wifling et al. 
(2015b). 

A B
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Figure 6.5: Concentration-response curves of H4R ligands investigated in [35S]GTPγS and 
[3H]histamine competition binding assays. All curves are scaled with respect to a maximal histamine 
effect of 100 %. Symbols and colours refer to the species variants and mutants, respectively. Filled 
symbols: wild-types; open symbols: hH4R-S330R. (A) histamine; (B) UR-PI294; (C) thioperamide; (D) 
JNJ7777120; (E) VUF8430; (F) immepip; (G) clozapine; (H) isoloxapine; (I) UR-PI376; (J) clobenpropit. 
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6.5 Discussion 

6.5.1 Affinities and potencies of the investigated ligands at H4R wild-types and 

the hH4R-S330R mutant 

The Bmax value of the hH4R-S330R mutant was only slightly higher than that of the hH4R wild-

type (factor 1.35), so that a comparably high receptor expression level was assumed (Table 6.1 

and Figure 6.3). Saturation and binding experiments using [3H]histamine as the radioligand 

gave comparable Kd and pKi values at the wild-type hH4R and the S330R mutant (Table 6.1 

and Table 6.2). [35S]GTPγS assays (Table 6.3 and Figure 6.6B) revealed moderate changes 

of functional data of H4R ligands, in particular, in case of histamine, clozapine, isoloxapine and 

UR-PI376. 

 

 

Figure 6.6: Radar plots of intrinsic activities, 
potencies and affinities at wild-type H4 
receptors and the hH4R-S330R mutant. (A) 
maximal effects (α values, relative to 
histamine = 1), (B) pEC50 values (or pKb in case of 
partial agonists with -0.25 ≤ α ≤ 0.25), (C) pKi 
values (n.a. for mH4R and rH4R). 

6.5.2 Maximal agonist effects and constitutive activities determined at H4R 

orthologs and hH4R-S330R mutant 

With respect to the intrinsic activity of the investigated H4R ligands, thioperamide was an 

exception: replacement of S330 by R led to a decrease in the maximal inverse agonistic effect 

of thioperamide at the hH4R-S330R mutant (-0.88) compared to the hH4R wild-type (-1.39) 
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(Figure 6.6A). The decreased inverse agonistic response elicited by thioperamide reflects a 

reduced constitutive activity of the hH4R-S330R mutant (Figure 6.4). This is in agreement with 

the observation that the inverse agonism at the hH4R-S330R mutant was in between the 

responses elicited by thioperamide at the hH4R and the rodent orthologs (Figure 6.4). 

Exploring the potential role of charged amino acids in ECL3 in the thyroid stimulating hormone 

receptor (TSHR) by site-directed mutagenesis studies, Claus et al. (2005) suggested hydrogen 

bonds between ECL2 and ECL3 to be involved in ligand binding and function. By analogy with 

these results, interactions of acidic residues in ECL2 with basic residues in ECL3 such as R330 

are conceivable in case of the hH4R. This assumption is supported by the fact that constitutive 

activity decreased at the hH4R-S330R mutant compared to the hH4R wild-type, i. e., 

interactions between basic residues in ECL3 as R330 with acidic residues in ECL2 may 

contribute to the stabilization of the inactive hH4R state. 

6.6 Conclusions 

The influence of an exchange of a neutral by a basic residue (hH4R-S330R) in the extracellular 

loop 3 of the hH4R was demonstrated for the first time. The results are compatible with the 

hypothesis that basic amino acids in ECL3 of the H4R contribute to the stabilization of the 

rodent orthologs in the inactive state. Apart from hH4R-S330R, additional charged amino acids 

in extracellular loops should be taken into consideration to study this phenomenon in more 

detail. 
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Chapter 7 

7 Investigations on the contribution of 

R3417.36 to ligand binding and function of 

the hH4R 

R341 

7.1 Summary 

Instead of R3417.36 in the hH4R, amino acids of different chemical nature are present in the 

respective position of H4R species orthologs: the positively charged R in the human receptor 

is replaced by S in the rodent orthologs, mH4R and rH4R, respectively, and by the acidic amino 

acid E in the cH4R. Therefore, R3417.36 was taken into consideration as a potential key residue 

for species-dependent differences regarding ligand binding and constitutive activity. To test 

this hypothesis, binding and functional investigations on hH4R-R341S and hH4R-R341E 

mutants were performed. The receptors were co-expressed with the G-protein subunits Gαi2 

and Gβ1γ2 in Sf9 insect cells, and the membranes were studied in [3H]histamine saturation and 

competition binding as well as in [35S]GTPγS assays. The results revealed a slightly decreased 

constitutive activity of the hH4R-R341S mutant, whereas the constitutive activity of the 

hH4R-R341E mutant remained unchanged compared to the hH4R wild-type. Thus, a major 

contribution of R3417.36 in the hH4R to ligand binding and function was not confirmed. 

7.2 Introduction 

R3417.36 is positioned at the top of TM7 enabling interactions with both, the binding pocket 

region as well as the extracellular surface (R341-1 and R341-2; Figure 7.1). Compared to the 

human receptor, in both the mH4R and rH4R, R is replaced by S, whereas E is present in case 

of the cH4R. Previous investigation of three ligands (histamine, thioperamide and UR-PI376) 

on both mutants, hH4R-R341S and hH4R-R341E, respectively, in the [γ-33P]GTP hydrolysis 

(GTPase) assay revealed only minor differences (Schnell et al., 2011). In the present study, a 

broader variety of hH4R ligands, i. e., ten compounds including inverse agonists and agonists 

(for structures of the investigated ligands cf. Figure 4.1 and Figure 5.2), was investigated in 
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the [35S]GTPγS assay. The latter was selected to preclude signal amplification, which can take 

place in the GTPase assay. In principle, signal amplification can reduce or abolish differences 

in intrinsic activities, e. g., by apparently elevating the intrinsic activity of partial agonists up to 

(almost) full agonism. At the same time, the level of constitutive activity is reduced and agonist 

potencies are most commonly increased (Kenakin, 2009). 

To answer the question, whether R3417.36 contributes to the differences in ligand binding and 

constitutive activity, comparing hH4R, mH4R, rH4R (Table 4.4) and cH4R (Brunskole et al., 

2011), the positively charged arginine was replaced by serine, a neutral amino acid, or 

glutamate, a negatively charged amino acid. These mutations might change interactions with 

acidic and basic residues in the extracellular region, for instance, R15, E160, E163 and K336 

(Figure 7.1). 

 

Figure 7.1: Homology model of the hH4R based on the crystal structure of the hH1R inactive state. 
Two different conformations of R341 (pink, R341-1 and R341-2) and the surrounding acidic (green) and 
basic (cyan) residues are shown. The docked histamine is illustrated in spherical calottes (magenta) 
and the key residues in ligand binding in dark blue. 

7.3 Materials and Methods 

7.3.1 Materials 

Cf. Chapters 4.3.1 and 5.3.1. 
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7.3.2 Site-directed mutagenesis of the hH4R 

The two pVL1392-SF-hH4R-R341S/E-His6 plasmids were constructed by Katerina Ladova and 

Irena Brunskole (Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Germany). 

7.3.3 Cell culture, generation of recombinant baculoviruses and membrane 

preparation 

Recombinant baculoviruses encoding the hH4R-R341S/E mutants were kindly provided by 

Katerina Ladova and Irena Brunskole. Cell cultures and membrane preparations were 

performed according to the procedures described in Chapters 4.3.3 and 5.3.2.2. 

7.3.4 SDS-PAGE and Coomassie staining 

Cf. Chapters 4.3.4 and 5.3.2.3. 

7.3.5 [3H]histamine saturation binding experiments 

Experiments were performed according to the procedures described in Chapters 4.3.6 and 

5.3.2.4 with the exception that each well contained 53-85 µg protein in case of the 

hH4R-R341S/E mutants. 

7.3.6 [3H]histamine competition binding assay 

Experiments were performed according to the procedure described in Chapter 4.3.7 with the 

exception that each well contained 20-24 µg protein in case of the hH4R-R341S/E mutants. 

7.3.7 [35S]GTPγS binding assay 

Experiments were performed according to the procedures described in Chapters 4.3.8 and 

5.3.2.5 with the exception that each well contained 9-14 µg protein in case of the 

hH4R-R341S/E mutants. 

7.3.8 Miscellaneous 

Cf. Chapters 4.3.10 and 5.3.2.6 

7.4 Results 

7.4.1 Expression of the recombinant proteins hH4R-R341S and hH4R-R341E 

As also shown for other mutants (cf. Chapter 4.4.1, 5.4.1 and 6.4.1;(Wifling et al., 2015a; 

Wifling et al., 2015b), both, wild-type (hH4R, mH4R, rH4R) and mutated (hH4R-R341S and 

hH4R-R341E) H4 receptors, migrating with an apparent molecular weight of 39 kDa (cf. 

Western blots on the example of the hH4R-F169V mutant, Chapter 4.4.1;(Wifling et al., 2015b), 
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as well as the Gαi2 protein subunit, migrating with an apparent molecular weight of 41 kDa, 

were expressed at comparable levels (Figure 7.2). 

 

Figure 7.2: Coomassie stained SDS gels. 
Membrane proteins of Sf9 insect cells, co-
expressing the respective receptor as 
indicated and Gαi2 as well as Gβ1γ2 were 
separated on 8-16 % polyacrylamide gradient 
gels. All samples were analysed on the same 
gel. 

Both the Kd and Bmax values of the hH4R wild-type as well as of the hH4R-R341S and 

hH4R-R341E mutants were in a comparable range (Table 7.1 and Figure 7.3). 

Table 7.1: Kd and Bmax values determined with [3H]histamine on hH4R, hH4R-R341S and 
hH4R-R341E. 

 

Receptor 
 

Kd [nM] 
 

Bmax [pmol/mg] 
 

hH4R 11.16 ± 1.92 1.93 ± 0.32 

hH4R-R341S 11.52 ± 1.64 2.19 ± 0.03 

hH4R-R341E 8.62 ± 0.93 1.72 ± 0.04 
 

Data are given as mean values ± SEM for at least two independent experiments, each performed in 
triplicate. Non-specific binding, amounting to 5.3-16.0 % of total binding at 100 nM [3H]histamine, was 
determined in the presence of 10 µM unlabelled histamine. 

 

Figure 7.3: Saturation binding curves of [3H]histamine at (A) hH4R-R341S and (B) hH4R-R341E 
mutants. Data represent mean values ± SEM from two independent experiments performed in triplicate. 
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7.4.2 [3H]histamine competition binding on hH4R-R341S and hH4R-R341E 

For most of the compounds investigated in [3H]histamine competition binding, the differences 

between pKi values at wild-type and mutant receptors were not significant. However, in case 

of thioperamide a decrease in affinity became obvious comparing the hH4R wild-type and the 

hH4R-R341S mutant, whereas the affinity at the hH4R-R341E mutant increased by 0.3 and 0.6 

logarithmic units in case of UR-PI294 and UR-PI376, respectively (Table 7.2). 

Table 7.2: Binding data of H4R ligands hH4R, hH4R-R341S and hH4R-R341E. 
 

Ligand 
 

hH4R 
 

hH4R-R341S 
 

hH4R-R341E 
 

histamine 7.89 ± 0.04 7.68 ± 0.03 7.73 ± 0.08 

UR-PI294 7.84 ± 0.03 7.80 ± 0.04 8.13 ± 0.04 ● 

thioperamide 6.75 ± 0.07 6.41 ± 0.04 ● 6.66 ± 0.05 

JNJ7777120 7.16 ± 0.05 7.22 ± 0.02 7.25 ± 0.07 

VUF8430 7.84 ± 0.03 7.92 ± 0.10 8.10 ± 0.09 

immepip 7.73 ± 0.16 7.62 ± 0.02 7.74 ± 0.03 

clozapine 6.18 ± 0.03 5.99 ± 0.09 6.24 ± 0.07 

isoloxapine 6.93 ± 0.02 6.83 ± 0.01 7.05 ± 0.12 

UR-PI376 7.27 ± 0.07 7.45 ± 0.11 7.85 ± 0.01 ● 

clobenpropit 7.73 ± 0.07 7.67 ± 0.00 7.93 ± 0.07 
 

pKi values ([3H]histamine competition binding) are given as mean ± SEM of at least two independent 
experiments, performed in triplicate (n.a. for mH4R and rH4R). Results of statistical tests (one-way 
ANOVA and Bonferroni post hoc tests): significant differences with respect to hH4R - ● p < 0.05, 
●● p < 0.01, ●●● p < 0.001. 

7.4.3 Functional investigation of wild-type, hH4R-R341S and hH4R-R341E 

mutant H4 receptors in the [35S]GTPγS assay 

The amounts of bound [35S]GTPγS [pmol/mg] were comparable at the hH4R wild-type and the 

hH4R-R341E mutant, whereas the mutation of R341 to S resulted in a decrease in [35S]GTPγS 

binding (Figure 7.4A). Normalization of the amounts of bound [35S]GTPγS to percentual values 

facilitates the comparison of constitutive activities (Figure 7.4B): The constitutive activity of the 

hH4R-R341E mutant remained essentially unchanged compared to the hH4R wild-type. By 

contrast, the constitutive activity decreased, when R341 was replaced by S, making the hH4R 

more similar to the rodent orthologs (mH4R or rH4R).
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Figure 7.4: Maximal agonistic effects of histamine and maximal inverse agonistic effects of 
thioperamide in [35S]GTPγS assays. (A) Amounts of [35S]GTPγS [pmol/mg] bound to wild-type and 
mutated H4Rs in the presence of histamine (light grey) and thioperamide (dark grey). Values 
demarcating light and dark grey bars represent the basally (in the absence of ligand) bound [35S]GTPγS. 
(B) Relative effects of histamine and thioperamide. The sum of responses to histamine and thioperamide 
was scaled to 100 % and the zero line represents the ligand-free control. 

The concentration-response curves of the respective ligands at the investigated human, 

mouse and rat H4R wild-types and the hH4R-R341S and hH4R-R341E mutants are illustrated 

in Figure 7.5. The potency of histamine decreased on both of the hH4R-R341S/E mutants (by 

up to half an order of magnitude in case of hH4R-R341S) compared to the hH4R wild-type 

(Table 7.3 and Figure 7.5A). 

Whereas a slightly reduced intrinsic activity was detected in case of the hH4R-R341S mutant, 

the potency of UR-PI294 decreased significantly by up to half an order of magnitude from the 

hH4R wild-type over the hH4R-R341S to the hH4R-R341E mutant (Table 7.3 and Figure 7.5B). 

The intrinsic activity of thioperamide was comparable at the hH4R-R341E mutant and the hH4R 

wild-type, but was significantly increased at the hH4R-R341S mutant (Table 7.3 and 

Figure 7.5C). JNJ7777120, a partial inverse agonist at the hH4R, showed even more 

pronounced inverse agonism at the hH4R-R341E mutant, but was a neutral antagonist at the 

hH4R-R341S mutant (Table 7.3 and Figure 7.5D). 

No significant differences between functional data on the three receptors were detected for 

immepip, VUF8430 and clobenpropit; UR-PI376 revealed a moderate decrease in intrinsic 

activity at the hH4R-R341S mutant compared to the hH4R (Table 7.3 and Figure 7.5E, F, I, J). 

Whereas clozapine showed no significant changes in agonist activity at the two mutant 

receptors, the structural analogue isoloxapine revealed a slight increase in potency at the 

hH4R-R341E mutant as well as a significant decrease in intrinsic activity at both mutants, 

hH4R-R341S and hH4R-R341E, respectively (Table 7.3 and Figure 7.5G, H).  

A B
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Table 7.3: [35S]GTPγS binding on hH4R wild-type and mutants. 
 

Ligand 
 

Para-
meter 

 

hH4R 
 

hH4R-R341S 
 

hH4R-R341E 
 

histamine α 1 1 1 
pEC50 8.13 ± 0.06 ■■■, ♦♦♦ 7.59 ± 0.15 ●●, ■■■, ♦♦♦ 7.71 ± 0.07 ■■■, ♦♦♦ 

UR-PI294 α 1.02 ± 0.03 0.78 ± 0.02 ●●●, ■■, ♦♦♦ 0.93 ± 0.02 ♦♦ 
pEC50 8.35 ± 0.04 ■■■, ♦♦♦ 8.13 ± 0.00 ■■■, ♦♦♦ 7.89 ± 0.02 ●●, ■■■, ♦♦♦ 

thioperamide α -1.39 ± 0.08 ■■■, ♦♦♦ -0.89 ± 0.04 ●●, ■■■, ♦♦♦ -1.51 ± 0.10 ■■■, ♦♦♦ 
pEC50 6.58 ± 0.06 ■■ 6.54 ± 0.03 ■■ 6.62 ± 0.06 ■■ 
pKb 6.83 ± 0.05   

JNJ7777120 α -0.39 ± 0.03 ■■■, ♦♦♦ 0 ●●●, ■■■, ♦♦♦ -0.60 ± 0.03 ●●●, ■■■, ♦♦♦ 
pEC50 7.10 ± 0.08 ■■■, ♦♦♦ n.a. 7.39 ± 0.08 ■■■, ♦♦♦ 
pKb 7.60 ± 0.05 6.79 ± 0.14 ■, ♦♦♦  

VUF8430 α 0.84 ± 0.06 ♦♦ 0.91 ± 0.08 ♦♦ 0.82 ± 0.08 ♦ 
pEC50 7.42 ± 0.12 ■■■, ♦♦♦ 7.54 ± 0.07 ■■■, ♦♦♦ 7.67 ± 0.08 ■■■, ♦♦♦ 

immepip α 0.81 ± 0.03 0.88 ± 0.09 0.74 ± 0.04 
pEC50 7.67 ± 0.05 ■■■, ♦♦♦ 7.67 ± 0.15 ■■■, ♦♦♦ 7.83 ± 0.15 ■■■, ♦♦♦ 

clozapine α 0.67 ± 0.04 ■■■, ♦♦♦ 0.64 ± 0.02 ■■■, ♦♦♦ 0.61 ± 0.03 ■■■, ♦♦♦ 
pEC50 6.24 ± 0.10 ■■■, ♦♦♦ 6.04 ± 0.14 ■■■, ♦♦ 6.48 ± 0.13 ■■■, ♦♦♦ 

isoloxapine α 0.81 ± 0.03 ■■■, ♦♦♦ 0.56 ± 0.01 ●●, ■■■, ♦♦♦ 0.55 ± 0.06 ●●, ■■■, ♦♦♦ 
pEC50 7.08 ± 0.13 ■■■, ♦♦♦ 7.11 ± 0.08 ■■■, ♦♦♦ 7.52 ± 0.06 ●, ■■■, ♦♦♦ 

UR-PI376 α 1.11 ± 0.08 ■■■, ♦♦♦ 0.85 ± 0.05 ●, ■■■, ♦♦♦ 0.92 ± 0.07 ■■■, ♦♦♦ 
pEC50 7.79 ± 0.08 ■■■, ♦♦♦ 7.63 ± 0.06 ■■■, ♦♦♦ 7.85 ± 0.13 ■■■, ♦♦♦ 

clobenpropit α 0.45 ± 0.04 ■■■, ♦♦♦ 0.52 ± 0.01 ■■■, ♦♦♦ 0.49 ± 0.02 ■■■, ♦♦♦ 
pEC50 7.65 ± 0.11 ■■, ♦♦♦ 7.50 ± 0.08 ■, ♦♦♦ 7.36 ± 0.19 ♦♦♦ 

 

pEC50 values ([35S]GTPγS agonist mode), pKb values ([35S]GTPγS antagonist mode) and α (intrinsic 
activity, maximal effect relative to histamine = 1.0) are given as mean ± SEM of at least three 
independent experiments, performed in triplicate. Results of statistical tests (one-way ANOVA and 
Bonferroni post hoc tests; mH4R and rH4R were considered): significant differences with respect to hH4R 
- ● p < 0.05, ●● p < 0.01, ●●● p < 0.001; significant differences with respect to mH4R - ■ p < 0.05, ■■ p < 0.01, 
■■■ p < 0.001; significant differences with respect to rH4R - ♦ p < 0.05, ♦♦ p < 0.01, ♦♦♦ p < 0.001. In case 
of neutral antagonism (-0.25 ≤ α ≤ 0.25), pKb values were considered for statistical analysis instead of 
pEC50 values. Maximal effect α = 0: neutral antagonism. Functional data for hH4R cf. Wifling et al. 
(2015b). 
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Figure 7.5: Concentration-response curves of H4R ligands investigated in [35S]GTPγS and 
[3H]histamine competition binding assays. All curves are scaled with respect to a maximal histamine 
effect of 100 %. Symbols and colours refer to the species variants and mutants, respectively. Filled 
symbols: wild-types; open symbols: mutants. (A) histamine; (B) UR-PI294; (C) thioperamide; (D) 
JNJ7777120; (E) VUF8430; (F) immepip; (G) clozapine; (H) isoloxapine; (I) UR-PI376; (J) clobenpropit. 
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7.5 Discussion 

7.5.1 Affinities and potencies of ligands at H4R wild-types and hH4R-R341S/E 

mutants 

A contribution of R341 in the human H4R to [3H]histamine binding was not detectable by 

investigations on hH4R-R341S and hH4R-R341E mutants (Table 7.1 and Figure 7.3). 

The pEC50 value of histamine was slightly decreased at the hH4R-R341S mutant, presumably 

as a consequence of reduced constitutive activity of this mutant (Table 7.3 and Figure 7.6B). 

UR-PI294 revealed a minor increase in pKi values (Table 7.2 and Figure 7.6C), but a moderate 

decrease in pEC50 values comparing the hH4R and the hH4R-R341E mutant (Table 7.3 and 

Figure 7.6B). The affinity of UR-PI376 unequivocally increased at the hH4R-R341E mutant 

compared to the hH4R wild-type (Table 7.2 and Figure 7.6C). This is in agreement with results 

by Schnell et al. (2011), who determined a ΔpEC50 of 0.4. 

 

 

Figure 7.6: Radar plots of maximal effects, 
potencies and affinities at wild-type H4 
receptors and hH4R-R341S/E mutants. (A) 
Intrinsic activities (α values, relative to 
histamine = 1), (B) pEC50 values (or pKb in case of 
partial agonists with -0.25 ≤ α ≤ 0.25), (C) pKi 
values (n.a. for mH4R and rH4R). 
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7.5.2 Maximal agonist effects and constitutive activities determined at H4R 

orthologs and hH4R-R341S/E mutants  

The hH4R-R341S/E mutations caused mainly an impact on the constitutive activity (Figure 7.4). 

Whereas an extraordinarily high constitutive activity was characteristic of the hH4R and the 

hH4R-R341E mutant, constitutive activity significantly decreased upon introduction of serine in 

position 3417.36 (cf. intrinsic activities of thioperamide: -1.39, -1.51 and -0.89; Table 7.3 and 

Figure 7.6A). 

Concomitantly with the decreasing constitutive activity (increasing intrinsic activity of 

thioperamide at the hH4R-R341S mutant), the intrinsic activities of UR-PI294 and UR-PI376 

decreased at the hH4R-R341S mutant compared to the hH4R (Table 7.3 and Figure 7.6A). 

Moreover, the inverse agonist JNJ7777120 turned to neutral antagonism at the hH4R-R341S 

mutant (Table 7.3 and Figure 7.6A). The intrinsic activity of isoloxapine dropped at both 

mutants, hH4R-R341S and hH4R-R341E, respectively. (Table 7.3 and Figure 7.6A). 

Based on site-directed mutagenesis studies of the α1BAR, Porter et al. (1996) suggested that 

K3317.36, located on equivalent position than R3417.36, interacts with the negatively charged 

D1253.32, stabilizing the active conformation of the receptor in the absence of an agonist. Upon 

epinephrine binding, the positively charged ligand competes with the protonated amino group 

of K3317.36. This assumption is supported by the fact that affinity and potency of epinephrine 

increased up to 6-fold at the α1BAR mutants α1BAR-K331A and α1BAR-K331E. In case of the 

5-HT1BR, a decrease in affinity of serotonin by about 6-fold was shown for the 5-HT1BR-D352A 

mutant, suggesting a substantial contribution of D3527.36 to serotonin binding (Granas and 

Larhammar, 1999). Compared with the α1BAR and 5-HT1BR, a salt bridge between R3417.36 

and D943.32 is less likely. Instead, ionic interactions of R3417.36 with acidic residues in ECL2 

like E160 or E163 (Figure 7.1) are conceivable. This is in agreement with the fact that 

constitutive activity decreased at the hH4R-R341S mutant. Nevertheless, the constitutive 

activity was comparable at the hH4R wild-type and the hH4R-R341E mutant. This may be 

interpreted as a hint that interactions of a charged amino acid in position 7.36 with acidic or 

basic residues in the extracellular loops promote the conversion of the inactive to the active 

receptor state. 

7.6 Conclusions 

It turned out that the constitutive activity of the hH4R-R341S mutant was very similar to that of 

the hH4R-S330R mutant, albeit JNJ7777120 was a neutral antagonist at the hH4R-R341S 

mutant, but a partial inverse agonist at the hH4R-S330R mutant. However, compared to the 

hH4R-F168A mutant and the double mutants hH4R-F169V+S179M/A, the changes in 

constitutive activity were rather small. The inverse agonistic effect of thioperamide varies 
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considerably depending on the assay used, even when comparing the [35S]GTPγS and the 

[γ-33P]GTPase assay: the more distal the readout the higher the extent of signal amplification. 

Consequently, with respect to the identification of molecular determinants of functional 

properties of GPCRs, the quantification of proximal signals, as close as possible to changes 

of receptor conformation, should be preferred. 
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Chapter 8 

8 Summary 

Summary 

The histamine H4R belongs to class A of G-protein coupled receptors (GPCRs) and is 

considered as a promising drug target for the treatment of inflammatory diseases such as 

allergic asthma. The validation of the H4R in translational animal models is compromised by 

species-dependent differences regarding intrinsic activities, potencies and affinities of ligands, 

in particular, comparing the hH4R (human) and the rodent orthologs, i. e., the mH4R (mouse) 

and rH4R (rat). In contrast to the mH4R and rH4R, the hH4R shows a high degree of constitutive 

activity. Therefore, H4R species orthologs represent ideal candidates to study the phenomenon 

of “constitutive activity”. These species differences are supposed to be determined by one or 

several distinct amino acids in the ligand binding pocket of human, mouse and rat H4R. 

Aiming at more detailed insights into the molecular determinants of ortholog-dependent ligand-

receptor interactions, a series of H4R mutants were generated and expressed (Sf9 cells) to 

determine radioligand binding and functional data ([35S]GTPγS assay). Apart from F169, which 

was identified by Lim et al. as a key amino acid for distinct ligand binding affinities at H4R 

orthologs, S179, S330 and R341 were mutated, based on molecular modelling studies, to the 

corresponding amino acids of the rodent H4Rs, resulting in hH4R-F169V, hH4R-S179M/A, 

hH4R-F169V+S179M/A, hH4R-S330R and hH4R-R341S. The reciprocal mH4R mutants, 

mH4R-V171F and mH4R-V171F+M181S, respectively, served as control. Moreover, to study 

the role of the F168/F169 motif, which is also found in, e. g., the β2AR, H3R and the M2R, the 

hH4R-F168A mutant was expressed in Sf9 cells. Additionally, R341 was mutated to the residue 

of the cH4R (canine), resulting in hH4R-R341E. 

Coomassie staining together with western blotting revealed comparable ratios of receptor to 

G-protein expression in Sf9 cell membranes. Similar Bmax values determined in [3H]histamine 

saturation binding assays confirmed comparably high receptor expression levels throughout 

all preparations. 

Compared to the hH4R wild-type, especially UR-PI376, clozapine and isoloxapine revealed a 

significant decrease in potency and affinity at the hH4R-F169V single and the 

hH4R-F169V+A179M/A double mutants, respectively. With respect to several ligands, the 
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reverse mH4R mutants, mH4R-V171F and mH4R-V171F+M181S, respectively, became more 

hH4R-like. Moreover, the potency and/or affinity of most ligands was higher at the S179A than 

at the respective S179M mutants. As key result, the constitutive activity of the hH4R-F169V 

and the double mutants was significantly reduced compared to the wild-type hH4R. By contrast, 

an exchange of S179 by M or A alone did not significantly affect constitutive activity. Strikingly, 

the double mutants were comparable to the mH4R and to the rH4R, which are devoid of 

constitutive activity. The inverse agonism of thioperamide decreased from the hH4R via the 

hH4R-F169V mutant to the hH4R-F169V+S179M/A double mutants, respectively. 

The data for the hH4R-F168A mutant revealed a major contribution of F168 to ligand binding 

with a concomitant, up to over 100-fold decrease in ligand potencies and a complete loss of 

constitutive activity, compared to the wild-type hH4R. Thioperamide acted as a neutral 

antagonist and JNJ7777120 turned to partial agonism. 

Potencies and affinities of the ligands clozapine, isoloxapine and UR-PI376 slightly decreased 

at the hH4R-S330R mutant compared to the hH4R wild-type. Constitutive activities slightly 

decreased at the hH4R-S330R mutant. 

Compared to the hH4R, the affinity of UR-PI376 increased at the hH4R-R341E mutant. By 

contrast, the constitutive activity of the hH4R-R341S mutant decreased slightly. 

Molecular modelling studies suggested that F168ECL2 and F169ECL2 interact with the 

surrounding hydrophobic and aromatic amino acids, which are supposed to be involved in the 

contraction of the binding pocket and, thus, in constitutive activity. S1795.43 was proposed to 

form an H-bond with T3236.55, which is precluded in case of mutation to M or A. S1795.43 alone 

was not the cause for the high constitutive activity of the hH4R. However, this amino acid in 

concert with F169ECL2 significantly contributed to the concomitant distal outward movement of 

TM5 and TM6. 

In conclusion, especially F168 and F169 alone or F169 in concert with S179 favour the 

conversion of the inactive to the active state of the human H4R. Similar motifs in other GPCRs 

such as the β2AR or the H3R suggest a common mechanism of receptor activation. 
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9.1 Plasmid map of pVL1392-SF-hH4R-His6 

  

Figure 9.1: Map of the pVL1392-SF-hH4R-His6 plasmid. Baculovirus recombination regions 
(3170…3997 and 5956…6661) are coloured in blue, lef2 (baculovirus late expression factor 2, 
3170…3294) in light green. CoIE1 origin (8717…9305) is indicated in yellow and allows replication in 
TOP 10 cells. AmpR (9476…10336, purple) beginning with AmpR promoter (10337…10441, white) is 
responsible for expression of β-lactamase and therefore allows negative selection of TOP10 cells. 
ORF603 (baculovirus ORF603 protein, green, 3332…3937); ORF1629 (baculovirus capsid-associated 
protein, green, 6073…6661); lac promoter (white, 8363…8393) and operator (red, 8339…8355); CAP 
binding site (black, 8408…8429) activates transcription in presence of cAMP. HindIII cleavage sites are 
marked in black (1, 5555, 6483 and 7521). Important primers and mutated residues are also indicated: 
pVL1392for (orange, 4016…4034); pVL1392rev (orange, 5587…5604); hH4R cDNA (light green, 
4270…5439); polyhedrin promoter (white, 4001…4092); FLAG (light blue, 4246…4269); hH4R_1_fw 
(orange, 4485…4505); hH4R-F168 (black, 4771…4773); hH4R-F169 (black, 4774…4776); hH4R-S179 
(black, 4804…4806); hH4R-S330 (black, 5227…5229); hH4R-R341 (black, 5290…5292); His6 (light 
blue, 5440…5457). Sequence map was generated with SnapGene 1.5.1 trial version (GSL Biotech LLC, 
Chicago, IL USA). 

9.2 Summary of potencies, intrinsic activities and affinities 

pVL1392-SF-hH4R-His6

10.934 bp

pVL1392-SF-hH4R-His6 

10.934 bp 
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9.2.1 Summary of potencies 

 

Figure 9.2: pEC50 values (or apKb in case of partial agonists with -0.25 ≤ α ≤ 0.25) of H4R ligands 
at wild-type and mutant H4 receptors. pEC50 values were determined in [35S]GTPγS assays. Data 
shown are mean values ± SEM of at least three independent experiments, performed in triplicate. 
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9.2.2 Summary of intrinsic activities 

 

Figure 9.3: α values (intrinsic activities) of H4R ligands at wild-type and mutant H4 receptors. α 
values were determined in [35S]GTPγ assays. The intrinsic activity of histamine was set to 1.0, and all 
other ligands, including inverse agonists, were referenced to histamine. Data shown are mean 
values ± SEM of at least three independent experiments, performed in triplicate. α = 0: neutral 
antagonism. 
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9.2.3 Summary of affinities 

 

Figure 9.4: pKi values of H4R ligands at wild-type and mutant H4 receptors. pKi values were 
determined in [3H]histamine competition binding assays. Data shown are mean values ± SEM of at least 
two independent experiments, performed in triplicate. 
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9.3 Comparison of affinities and potencies of H4R ligands 

 

Figure 9.5: Comparison of pKi values, determined in 
[3H]histamine competition binding assays, and pEC50 values, 
determined in [35S]GTPγS assays. The dashed line represents the 
line of identity.  
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9.4 Statistical analysis of wild-type and mutant H4 receptors 

9.4.1 Statistical analysis of H4R ligand potencies 

Table 9.1: Statistical analysis (one-way ANOVA and Bonferroni post hoc tests) of the pEC50 
values determined at wild-type and mutated H4 receptors. 

 

Receptor 

 

histamine 

 

UR-PI294 

 

thioperamide 

 

JNJ7777120 

 

VUF8430 

 

immepip 

 

clozapine 

 

isoloxapine 

 

UR-PI376 

 

clobenpropit 

 

hH4R ααα, V, mmm, 
MMM, aaa, 
AAA, SS, E, 
R, sss, fff, 
μμμ, rrr 

ααα, MM, AA, 
EE, sss, fff, 
μμμ, rrr 

ααα, AAA, 
sss, fff, μμμ 

ααα, VVV, 
aaa, sss, μμμ, 
rrr 

ααα, sss, fff, 
μμμ, rrr 

ααα, sss, fff, 
μμμ, rrr 

αα, MMM, R, 
fff, μμμ, rrr 

ααα, VVV, 
MMM, RRR, 
sss, fff, μμμ, 
rrr 

ααα, VVV, 
mmm, MMM, 
AAA, sss, fff, 
μμμ, rrr 

mmm, sss, f, 
μμ, rrr 

hH4R-F168A hhh, VVV, 
MMM, AAA, 
SSS, EEE, 
μμμ, rrr, 
mmm, aaa, 
RRR 

hhh, VVV, 
MMM, AAA, 
SSS, EEE, f, 
μμμ, rrr, 
mmm, aaa, 
RRR 

hhh, VVV, 
MMM, A, 
SSS, EEE, 
μμμ, rrr, 
mmm, aaa, 
RRR 

hhh, M, AAA, 
EEE, ff, rrr, 
mmm, aaa, 
RR 

hhh, VVV, 
MMM, AAA, 
SSS, EEE, μ, 
rrr, mmm, 
aaa, RRR 

hhh, VVV, 
MMM, AAA, 
SSS, EEE, rrr, 
mmm, aaa, 
RRR 

hh, EEE, mm, 
aaa 

hhh, AA, 
SSS, EEE, 
μμμ, rrr, 
mmm, aaa 

hhh, SSS, 
EEE, rr, m, 
aaa, RRR 

rr, mmm 

hH4R-F169V h, ααα, M, 
sss, fff, μμμ, 
rrr 

ααα, sss, fff, 
μμμ, rrr 

ααα, AAA, 
sss, fff, μμμ 

hhh, mmm, M, 
aaa, AAA, 
EEE, RR, ff, 
rrr 

ααα, sss, fff, 
μμμ, rrr 

ααα, sss, fff, 
μμμ, rrr 

aa, EEE, μ, r hhh, mmm, 
aaa, SSS, 
EEE, fff, μμμ, 
rrr 

hhh, mm, 
aaa, A, SSS, 
EEE, RRR, rrr 

mmm, sss, 
μμ, rrr 

hH4R-S179M hhh, ααα, fff, 
μμμ, rrr, sss 

ααα, fff, μμμ, 
rrr, sss 

ααα, AAA, fff, 
μμμ, sss 

ααα, VVV, 
μμμ, rrr, aa, 
sss 

ααα, fff, μμμ, 
rrr, sss 

ααα, fff, μμμ, 
rrr, sss 

αα, MMM, fff, 
μμμ, rrr, R 

ααα, VVV, 
MMM, AA, fff, 
μμμ, rrr, RRR, 
sss 

hhh, α, VV, 
MMM, SS, 
EEE, f, μμμ, 
rrr, sss 

hhh, ααα, 
VVV, MMM, 
AAA, SSS, 
EEE, fff, aaa, 
RRR 

hH4R-
F169V+S179M 

hhh, V, ααα, 
sss, fff, μμμ, 
rrr 

hh, ααα, sss, 
ff, μμμ, rrr 

AAA, ααα, 
sss, fff, μμμ 

V, A, α, aaa, 
sss, μμ, rrr 

ααα, sss, fff, 
μμμ, rrr 

ααα, sss, fff, 
μμμ, rrr 

hhh, mmm, 
aaa, S, EEE 

hhh, mmm, 
aaa, SSS, 
EEE, f, μμμ, 
rrr 

hhh, AAA, 
mmm, aaa, 
SSS, EEE, 
RRR 

mmm, R, r 

hH4R-S179A hhh, ααα, fff, 
μμμ, rrr, sss 

ααα, fff, μμμ, 
rrr, sss 

ααα, AAA, fff, 
sss 

hhh, ααα, 
VVV, mm, 
MMM, SSS, 
fff, μμμ, rrr, 
RRR, sss 

ααα, fff, μμμ, 
rrr, sss 

ααα, fff, μμμ, 
rrr, sss 

ααα, VV, 
MMM, AA, fff, 
μμμ, rrr, RRR, 
ss 

ααα, VVV, 
MMM, AAA, 
fff, μμμ, rrr, 
RRR, sss 

ααα, VVV, 
MMM, fff, 
μμμ, rrr, sss 

mmm, rrr 

hH4R-
F169V+S179A 

hhh, ααα, sss, 
fff, μμμ, rrr 

hh, ααα, sss, 
fff, μμμ, rrr 

hhh, VVV, α, 
mmm, MMM, 
aaa, SSS, 
EEE, RRR, 
μμ, rrr 

VVV, ααα, M, 
S, sss, μμμ, 
rrr 

ααα, sss, fff, 
μμμ, rrr 

ααα, sss, fff, 
μμμ, rrr 

aa, EEE, μμ, 
rr 

αα, mm, aaa, 
EEE, sss, fff, 
μμμ, rrr 

hhh, V, MMM, 
SSS, EEE, 
ss, μμ, rrr 

mmm, ss, μ, 
rrr 

hH4R-R341S hh, fff, μμμ, 
rrr, ααα, sss 

fff, μμμ, rrr, 
ααα, sss 

AAA, fff, μμμ, 
ααα, sss 

A, μ, rrr, aaa, 
ss 

fff, μμμ, rrr, 
ααα, sss 

fff, μμμ, rrr, 
ααα, sss 

M, f, μμμ, rrr VVV, MMM, 
fff, μμμ, rrr, 
ααα, RR, sss 

VVV, MMM, 
AAA, fff, μμμ, 
rrr, ααα, mm, 
sss 

rrr, mmm, s 

hH4R-R341E h, fff, μμμ, rrr, 
ααα, sss 

hh, fff, μμμ, 
rrr, ααα, sss 

AAA, fff, μμ, 
ααα, sss 

VVV, μμμ, rrr, 
ααα, sss 

fff, μμμ, rrr, 
ααα, sss 

fff, μμμ, rrr, 
ααα, sss 

VVV, MMM, 
AAA, fff, μμμ, 
rrr, ααα, RRR, 
sss 

VVV, MMM, 
AAA, fff, μμμ, 
rrr, ααα, RRR, 
sss 

VVV, MMM, 
AAA, fff, μμμ, 
rrr, ααα, 
mmm, sss 

rrr, mmm 

hH4R-S330R h, ααα, sss, 
fff, μμμ, rrr 

ααα, sss, fff, 
μμμ, rrr 

ααα, AAA, 
sss, fff, μμμ 

αα, VV, aaa, 
sss, μμ, rrr 

ααα, sss, fff, 
μμμ, rrr 

ααα, sss, fff, 
μμμ, rrr 

h, m, aaa, 
EEE 

hhh, mmm, 
aaa, SS, 
EEE, fff, μμμ, 
rrr 

ααα, VVV, 
MMM, sss, fff, 
μμμ, rrr 

mmm, M, sss, 
ff, μμμ, rrr 

mH4R-
V171F+M181S 

hhh, VVV, 
mmm, MMM, 
aaa, AAA, 
SSS, EEE, 
μμμ, rrr, RRR 

hhh, VVV, 
mmm, MMM, 
aaa, AAA, 
SSS, EEE, 
μμμ, rrr, RRR 

hhh, VVV, 
mmm, MMM, 
aaa, SSS, 
EEE, μμμ, rrr, 
RRR 

hhh, mmm, 
MMM, aaa, 
AAA, SS, 
EEE, fff, rrr, 
RRR 

hhh, VVV, 
mmm, MMM, 
aaa, AAA, 
SSS, EEE, 
μμ, rrr, RRR 

hhh, VVV, 
mmm, MMM, 
aaa, AAA, 
SSS, EEE, rrr, 
RRR 

aa, EEE, μμ, 
rr 

hhh, mmm, 
aaa, AAA, 
SSS, EEE, 
μμμ, rrr 

hhh, mmm, 
aaa, AA, 
SSS, EEE, 
RRR 

hhh, VVV, 
AA, S, RRR 

mH4R-V171F hhh, VVV, 
MMM, AAA, 
μμμ, rrr, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, VVV, 
MM, AAA, 
μμμ, rrr, α, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, VVV, 
MMM, μμμ, 
rrr, mmm, 
aaa, SSS, 
EEE, RRR 

VV, μμ, rrr, 
αα, aaa, sss 

hhh, VVV, 
MMM, AAA, 
μ, rrr, mmm, 
aaa, SSS, 
EEE, RRR 

hhh, VVV, 
MMM, AAA, 
μμμ, rrr, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, mmm, 
aaa, S, EEE 

hhh, VVV, M, 
AAA, rr, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, rr, m, 
aaa, SSS, 
EEE, RRR 

h, r, mmm, 
RR 

mH4R hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, fff, rrr 

hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, fff, rrr 

hhh, VVV, 
MMM, AA, 
ααα, mmm, 
SSS, EE, 
RRR, sss, fff, 
rrr 

hhh, MM, 
AAA, mmm, 
aaa, S, EEE, 
RR, ff, rrr 

hhh, VVV, 
MMM, AAA, 
α, mmm, aaa, 
SSS, EEE, 
RRR, ss, f 

hhh, VVV, 
MMM, AAA, 
mmm, aaa, 
SSS, EEE, 
RRR, fff 

hhh, V, AA, 
mmm, aaa, 
SSS, EEE, ss 

hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss 

hhh, AA, 
mmm, aaa, 
SSS, EEE, 
RRR 

hh, VV, A, 
RRR 

rH4R hhh, VVV, 
MMM, AAA, 
μμμ, ααα, 
mmm, aaa, 
SSS, EEE, 
RRR, sss, fff 

hhh, VVV, 
MMM, AAA, 
μμμ, ααα, 
mmm, aaa, 
SSS, EEE, 
RRR, sss, fff 

AAA, μμμ, 
ααα, sss, fff 

hhh, VVV, 
MMM, AAA, 
μμμ, ααα, 
mmm, aaa, 
SSS, EEE, 
RRR, sss, fff 

hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, fff 

hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, fff 

hhh, V, AA, 
mmm, aaa, 
SSS, EEE, ss 

hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, ff 

hhh, VVV, 
AAA, αα, 
mmm, aaa, 
SSS, EEE, 
RRR, ff 

hhh, VVV, M, 
AAA, αα, aaa, 
SSS, EEE, 
RRR, f 

 

Significances of the respective ligands (columns) at the respective receptors (rows) compared to other 
receptor constructs are depicted in the cell. Significant differences with respect to: hH4R – h, 
hH4R-F168A – α, hH4R-F169V – V, hH4R-S179M – m, hH4R-F169V+S179M – M, hH4R-S179A – a, 
hH4R-F169V+S179A – A, hH4R-R341S – S, hH4R-R341E – E, hH4R-S330R – R, 
mH4R-V171F+M181S – s, mH4R-V171F – f, mH4R – μ, rH4R – r (one letter: p < 0.05, two letters: p < 0.01, 
three letters: p < 0.001). In case of neutral antagonism (-0.25 ≤ α ≤ 0.25), pKb values were considered 
for statistical analysis instead of pEC50 values. 
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9.4.2 Statistical analysis of intrinsic activities of H4R ligands 

Table 9.2: Statistical analysis (one-way ANOVA and Bonferroni post hoc tests) of α values 
(intrinsic activity) determined at wild-type and mutated H4 receptors. 

 

Receptor 

 

histamine 

 

UR-PI294 

 

thioperamide 

 

JNJ7777120 

 

VUF8430 

 

immepip 

 

clozapine 

 

isoloxapine 

 

UR-PI376 

 

clobenpropit 

 

hH4R   ααα, VVV, 
MMM, a, 
AAA, SSS, 
RRR, sss, fff, 
μμμ, rrr 

ααα, VVV, 
MMM, aaa, 
AAA, SSS, 
EEE, sss, fff, 
μμμ, rrr 

rr  α, AA, s, μμμ, 
rrr 

ff, μμμ, rrr ααα, VVV, 
mm, MMM, 
AAA, SS, R, 
sss, fff, μμμ, 
rrr 

ααα, VV, 
mmm, MMM, 
aaa, AAA, f, 
μμμ, rrr 

hH4R-F168A   hhh, VVV, 
SSS, EEE, 
mmm, aaa, 
RRR 

hhh, VVV, 
AAA, SS, 
EEE, fff, μμμ, 
mmm, aaa, 
RRR, ss 

  h, μμμ, rrr ff, μμμ, rrr hhh, MM, 
SSS, EEE, fff, 
μμμ, rrr, 
mmm, aaa, 
RRR 

hhh, SSS, 
EEE, mmm, 
RRR, ss 

hH4R-F169V   hhh, ααα, 
mmm, MM, 
aaa, AAA, 
EEE, R, sss, 
fff, μμμ, rrr 

hhh, ααα, 
mmm, MMM, 
aaa, AAA, 
SSS, EEE, 
RRR, sss, rr 

rrr  μμμ, rrr E, fff, μμμ, rrr hhh, mmm, 
MMM, aaa, A, 
SSS, EEE, 
RRR, fff, μμμ, 
rrr 

hh, mmm, 
MMM, aaa, 
AAA, SSS, 
EE, rrr 

hH4R-S179M   ααα, VVV, 
MMM, AAA, 
E, fff, μμμ, rrr, 
R, sss 

ααα, VVV, 
MMM, AAA, 
SSS, fff, μμμ, 
rrr, a, R, sss 

rr  μμμ, rrr μμμ, rrr hh, ααα, VVV, 
MMM, AAA, 
fff, μμμ, rrr, 
sss 

hhh, ααα, 
VVV, MMM, 
AAA, SSS, 
EEE, fff, μμμ, 
rrr, aaa, RRR, 
sss 

hH4R-
F169V+S179M 

  hhh, VV, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, VVV, AA, 
mmm, aaa, 
SS, EEE, 
RRR, ss, fff, 
μμμ 

rr  μμμ, rrr S, E, fff, μμμ, 
rrr 

hhh, VVV, αα, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, VVV, 
mmm, SSS, 
EEE, RRR, 
sss, fff, μ 

hH4R-S179A   h, ααα, VVV, 
MMM, AAA, 
EEE, fff, μμμ, 
rrr, sss 

hhh, ααα, 
VVV, m, 
MMM, AAA, 
SSS, fff, μμμ, 
rrr, RRR, sss 

rr  A, μμμ, rrr f, μμμ, rrr ααα, VVV, 
MMM, AAA, 
fff, μμμ, rrr, 
sss 

hhh, VVV, 
mmm, SSS, 
EEE, fff, μ, 
RRR, sss 

hH4R-
F169V+S179A 

  hhh, VVV, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, VVV, 
ααα, mmm, 
MM, aaa, 
EEE, RRR, fff, 
μμμ, rrr 

r  hh, a, S, EE, 
μμμ, rrr 

ff, μμμ, rrr hhh, V, mmm, 
aaa, SSS, 
EEE, RRR, f, 
μ 

hhh, VVV, 
mmm, SSS, 
EEE, RRR, 
sss, fff, μ 

hH4R-R341S  r hhh, MMM, 
AAA, fff, μμμ, 
rrr, ααα, EEE, 
sss 

hhh, VVV, 
MM, fff, μμμ, 
rrr, αα, mmm, 
aaa, EEE, 
RRR 

rrr  A, μμμ, rrr M, μμμ, rr, R hh, VVV, 
MMM, AAA, 
fff, μμμ, rrr, 
ααα, sss 

VVV, MMM, 
AAA, fff, μμμ, 
rrr, ααα, 
mmm, aaa 

hH4R-R341E   VVV, MMM, 
AAA, SSS, fff, 
μμμ, rrr, ααα, 
m, aaa, RRR, 
sss 

hhh, VVV, 
MMM, AAA, 
SSS, fff, μμμ, 
rrr, ααα, RRR, 
sss 

rr  AA, μμμ, rrr V, M, μμμ, rr, 
R 

VVV, MMM, 
AAA, fff, μμμ, 
rrr, ααα, sss 

VV, MMM, 
AAA, ff, μμμ, 
rrr, ααα, 
mmm, aaa 

hH4R-S330R   hhh, ααα, V, 
m, MMM, 
AAA, EEE, 
sss, fff, μμμ, 
rrr 

ααα, VVV, m, 
MMM, aaa, 
AAA, SSS, 
EEE, sss, fff, 
μμμ, rrr 

rrr  μμμ, rrr S, E, fff, μμμ, 
rrr 

h, ααα, VVV, 
MMM, AAA, 
sss, fff, μμμ, 
rrr 

ααα, mmm, 
MMM, aaa, 
AAA, μμ, rrr 

mH4R-
V171F+M181S 

  hhh, VVV, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, αα, VVV, 
mmm, MM, 
aaa, EEE, fff, 
μμμ, rrr, RRR 

  h, μμμ, rrr μμμ, rrr hhh, mmm, 
aaa, SSS, 
EEE, fff, μμ, 
rr, RRR 

αα, mmm, 
MMM, aaa, 
AAA, rrr 

mH4R-V171F   hhh, VVV, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, MMM, 
AAA, rr, ααα, 
mmm, aaa, 
SSS, EEE, 
RRR, sss 

  μμμ, rrr hh, VVV, 
MMM, AA, μμ, 
αα, a, RRR 

hhh, VVV, A, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss 

h, MMM, 
AAA, rrr, 
mmm, aaa, 
SSS, EE 

mH4R   hhh, VVV, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, MMM, 
AAA, ααα, 
mmm, aaa, 
SSS, EEE, 
RRR, sss, rr 

  hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, fff 

hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, ff 

hhh, VVV, A, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, ss 

hhh, M, A, 
mmm, a, 
SSS, EEE, 
RR, r 

rH4R   S hhh, VVV, 
mmm, aaa, 
SSS, EEE, 
RRR 

hhh, VV, AAA, 
μμ, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, ff 

hh, VVV, MM, 
A, mm, aa, 
SSS, EE, 
RRR 

  hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, 
sss, fff 

hhh, VVV, 
MMM, AAA, 
ααα, mmm, 
aaa, SS, EE, 
RRR, sss 

hhh, VVV, 
ααα, mmm, 
aaa, SSS, 
EEE, RRR, ss 

hhh, VVV, μ, 
mmm, SSS, 
EEE, RRR, 
sss, fff 

 

Significances of the respective ligands (columns) at the respective receptors (rows) compared to other 
receptor constructs are depicted in the cell. Significant differences with respect to: hH4R – h, 
hH4R-F168A – α, hH4R-F169V – V, hH4R-S179M – m, hH4R-F169V+S179M – M, hH4R-S179A – a, 
hH4R-F169V+S179A – A, hH4R-R341S – S, hH4R-R341E – E, hH4R-S330R – R, 
mH4R-V171F+M181S – s, mH4R-V171F – f, mH4R – μ, rH4R – r (one letter: p < 0.05, two letters: p < 0.01, 
three letters: p < 0.001). Blank cells indicate non-significant changes. 
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9.4.3 Statistical analysis of H4 receptor affinities 

Table 9.3: Statistical analysis (one-way ANOVA and Bonferroni post hoc tests) of pKi values 
determined at nine wild-type and mutated H4 receptors. 

 

Receptor 

 

histamine 

 

UR-PI294 

 

thioperamide 

 

JNJ7777120 

 

VUF8430 

 

immepip 

 

clozapine 

 

isoloxapine 

 

UR-PI376 

 

clobenpropit 

 

hH4R V, mmm, 
MMM, a, 
AAA, R 

 a V, MM, aaa, A   V, MMM, AA VVV, MM, a VVV, MMM, 
AAA, E 

VVV, mmm, 
MM, AAA 

hH4R-F169V h   h, mmm, aaa, 
AAA, SS, 
EEE, RRR 

E  h, mmm, aaa, 
EE 

hhh, mmm, 
aaa, AA, SS, 
EEE, R 

hhh, mmm, 
aaa, SSS, 
EEE, RR 

hhh, a, SS, 
EEE 

hH4R-S179M hhh  aa VVV, MMM, 
aaa 

  VVV, MMM, 
AAA 

VVV, MMM VVV, MMM, 
AAA, EE, a 

hhh, SS, EEE, 
aa, R 

hH4R-
F169V+S179M 

hhh, E  AA, aaa hh, AAA, 
mmm, aaa, 
SS, EEE, 
RRR 

E  hhh, mmm, 
aaa, SS, 
EEE, R 

hh, mmm, 
aaa, S, EEE 

hhh, mmm, 
aaa, SSS, 
EEE, RRR 

hh, S, EEE 

hH4R-S179A h  h, mm, MMM, 
SSS, E, R 

hhh, VVV, 
mmm, MMM, 
A, SSS, EEE, 
R 

  VVV, MMM, 
AAA, S, R 

h, VVV, 
MMM, AAA, 
SS, RRR 

VVV, m, 
MMM, AAA, R 

V, mm, A, E 

hH4R-
F169V+S179A 

hhh  MM, SS h, VVV, 
MMM, a 

  hh, mmm, 
aaa, EE 

VV, aaa hhh, mmm, 
aaa, SSS, 
EEE, RR 

hhh, a, SS, 
EEE 

hH4R-R341S   AA, aaa VV, MM, aaa   MM, a VV, M, aa VVV, MMM, 
AAA 

VV, M, AA, 
mm 

hH4R-R341E M  a VVV, MMM, 
aaa 

V, M  VV, MMM, AA VVV, MMM h, VVV, 
MMM, AAA, 
mm, RRR 

VVV, MMM, 
AAA, mmm, 
a, R 

hH4R-S330R h  a VVV, MMM, a   M, a V, aaa VV, MMM, a, 
AA, EEE 

m, E 

 

Significances of the respective ligands (columns) at the respective receptors (rows) compared to other 
receptor constructs are depicted in the cell. Significant differences with respect to: hH4R – h, 
hH4R-F169V – V, hH4R-S179M – m, hH4R-F169V+S179M – M, hH4R-S179A – a, 
hH4R-F169V+S179A – A, hH4R-R341S – S, hH4R-R341E – E, hH4R-S330R – R (one letter: p < 0.05, 
two letters: p < 0.01, three letters: p < 0.001). Blank cells indicate non-significant changes. Note: not 
applicable to mH4R, rH4R, mH4R mutants and hH4R-F168A. 
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