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Motivation

For a long time, the more than hundred years ago developed light bulb has been the

most widely spread artificial light source. This could change in the near future.

Organic light-emitting diodes (OLEDs) represent a new technology for the generation

of light which is highly attractive for the use in displays as well as for illumination

purposes.1,2 In the display sector, the application of this new technology offers clear

advantages compared to state of the art liquid crystal displays (LCDs), for example,

drastically higher in picture contrast, vast independence of the viewing angle, low energy

consumption, and orders of magnitudes faster image refreshing rates. Furthermore, the

OLED technology allows the realization of extremely thin and in addition flexible displays

which opens up completely new perspectives for the design of respective devices. All

these factors render OLEDs highly attractive and resulted in the fact that more and more

cell phones with displays based on this technology are commercially available nowadays.

OLEDs are also assigned to possess a huge market potential in the lighting sector.

However, respective products do not qualify for mass production as of yet. In Ger-

many, this issue has been addressed by large scale research projects initiated by the

“Bundesministerium für Bildung und Forschung” (German Ministry of Education and

Research), for example by funding programs like “Organische Elektronik – Grundlagen

der Technologie und Anwendungsszenarien” (Organic Electronics – Principles of the

Technology and Scenarios for Applications).3 Such research initiatives are intended to

help OLEDs entering the lighting market. In this regard, the launch of pilot production

lines for OLEDs for illumination purposes, one of them being located at the OSRAM

OLED GmbH in Regensburg, can be seen as a big step towards this direction.4
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Of particular importance for the emission and performance properties of an OLED is

the emitter material used which, after the injection of electrical charges, is stimulated

to emit light. It turned out that third row transition metal complexes are particularly

well suited for this purpose.1 In contrast to conventional fluorescent, purely organic

compounds, these complexes exhibit a pronounced phosphorescence from their lowest

excited triplet state with high emission quantum yields and short emission decay times.1,5–7

The underlying mechanism for this is the efficient coupling of spin and orbital angular

momentum induced by the central metal ion. Furthermore and most importantly, the

application of phosphorescent compared to conventional fluorescent emitters results in

a four times higher OLED device performance as phosphorescent materials can show

the triplet harvesting effect.1,8–10 This mechanism allows utilizing all electrically injected

excitons, singlets and triplets, for the generation of light. For this reason, phosphorescent

materials are strongly preferred to conventional fluorescent ones.

At the moment, triplet emitters based on the elements iridium and platinum are of

particular relevance for commercial applications. However, this material class exhibits

several disadvantages. On the one hand, iridium and platinum are noble metals that are

extremely rare and therefore, emitters based on these materials are very cost intensive.

This fact would render the introduction of a wide spread OLED based illumination

uneconomic. On the other hand, there are problems with the photophysical properties

of this material class. For example, despite intense research efforts during the last two

decades the development of long-term stable and efficient emitters for the blue color

range still remains a major challenge.11,12

Although copper complexes are significantly more attractive due to the drastically

lower costs,13 at first sight, they do not seem to be a viable alternative to the more

expensive noble metal compounds. As copper possesses a considerably smaller spin orbit

coupling constant compared to the distinctly heavier elements iridium and platinum it is

expected that the phosphorescence decay times are significantly longer.5,6 This would

result in pronounced saturation effects and as a consequence in significant efficiency losses

when applied in electroluminescent devices. However, if the ligands are properly chosen,

copper complexes can exhibit a very small energy separation ∆E(S1 − T1) between the

first excited singlet S1 and triplet T1 state. Therefore, at ambient temperature a thermal

population of the singlet state S1 from the energetically lower lying triplet state T1 can

occur. This mechanism opens an additional, highly effective radiative decay path to the

S0 ground state and represents a thermally activated delayed fluorescence (TADF).5,6
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Furthermore, as the emission in this case mainly occurs via the singlet state S1, a drastic

reduction of the emission decay time is observed at ambient temperature. Importantly,

emitters that exhibit a TADF also show the Singlet Harvesting effect.5,6 Accordingly,

when applied in OLEDs the same high efficiencies can be achieved with them as with

materials exhibiting the Triplet Harvesting effect.

The attractiveness of TADF compounds for electroluminescence applications has

stimulated the development of new Cu(I) based emitter materials in recent years. However,

it still remains a challenge to understand the correlations between chemical structure and

emission properties and therefore, to specifically develop new materials with improved

luminescence properties like higher emission quantum yields and shorter emission decay

times. Gaining deeper insights into these structure-property relationships and developing

a more detailed understanding for the photophysical processes of Cu(I) complexes

represents the motivation for this thesis.

After a brief introduction to the basic concept of electroluminescence in chapter 1, a

general overview over the electronic structure of transition metal compounds is given in

chapter 2. The main part of this thesis, however, focuses on the investigation of different

classes of Cu(I) complexes with spectroscopic and also with computational methods. In

chapter 3, the discussion hereby centers around Cu(I) complexes containing two metal

ions. In the first section of this chapter complexes in which an aminophosphine ligand

is coordinated to each copper center and where the two copper centers themselves are

bridged by two halides are studied. This allows a detailed examination of the influence

of the halide on the emission properties. In the second part, the investigations are

extended to a dinuclear Cu(I) compound with diphosphine ligands and its respective

Ag(I) homologue and therefore gives insight how varying the chelating ligands and the

central metal ions affects the electronic structure of these complexes. In chapter 4,

Cu(I) compounds with one metal center are examined. In the first part, a pair of two

tetrahedrally coordinated complexes is spectroscopically characterized. It is demonstrated

how a slight chemical substitution can drastically increase the emission quantum yield. In

addition, the effects of the surrounding matrix environment on the emission behavior are

studied in detail. The second part focuses on the investigation of two structurally related

three coordinated Cu(I) compounds, one of them showing a highly effective thermally

activated delayed fluorescence, the other one showing intense phosphorescence at ambient

temperature. This distinct difference in the emission behavior is rationalized by applying

spectroscopic and computational methods. The thesis closes with a conclusion.





1
Introduction to Organic Light Emitting Diodes

1.1 Electroluminescence

The working principle of organic light emitting diodes (OLEDs) is based on the phe-

nomenon of electroluminescence (EL), that is the generation of light by the application

of an electrical field to the sample under investigation.14–16 Fundamental research in this

field goes back to the first half of the 20th century. For the first time, electroluminescence

was reported by Destriau when he investigated a powder sample of zinc sulfide which

however was spoiled – nowadays this would be called doped – with copper.17 For organic

compounds the observation of EL has been described by Bernanose et al. for the first

time in 1953.18,19 In contrast to these two experiments, in which an alternating current

voltage was required for the observation of EL, Pope et al. described luminescence from

an anthracene single-crystal under application of a direct current voltage of several

hundred Volts in 1963.20 However, the experiments of Destriau, Bernanose, and Pope

required high driving voltages which limited EL to a laboratory environment. As a

consequence, EL was of very limited relevance for technological applications. In the

following years the driving voltages could be significantly reduced to well below 100 V.

This was achieved by shrinking the thickness of the devices to only a couple of 100 nm

through the use of vacuum deposition in the production process. But also these devices

did not become technologically relevant due to extremely short device lifetimes of only a

couple of minutes which was mainly owed to the still relatively large voltages needed for

operation.21 A major breakthrough could be achieved by Tang and van Slyke in 1987

by reducing the voltage necessary for operation to less than 10 V.22 This was possible

by using a layered device structure in their experiments. More specifically, they applied
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Figure 1.1: Schematic representation of a three-layer OLED stack.

two different materials for the transport of electrons and holes from the cathode and

anode, respectively, through the device to the recombination zone. On the one hand,

this allowed an efficient injection and transport of the charge carriers without significant

ohmic losses. On the other hand, in this way the recombination zone of electrons and

holes could be limited to a narrow area on the interface of the two transport layers. This

approach resulted in an at this time highly efficient device with an external emission

quantum yield of about 1 %. In fact, this device structure laid the foundation for further

developments and represented the starting point for extensive research in the field of

organic light emitting diodes.

1.2 Device Structure and Principle of Operation

In general, an OLED can be even simpler than the two layer device suggested by Tang

and van Slyke as in principle it is sufficient to sandwich one organic emissive layer between

the anode and the cathode. In contrast to multilayer stacks though, such an approach

suffers from inferior device performance, especially, regarding the device efficiency and

lifetime.2,7,23,24 As the most simple device design that is of practical relevance a three

layer stack can be considered. Figure 1.1 shows the structure of a such a device. In the

following, the purpose of the individual components will be explained briefly.

The core component of every OLED is the emissive layer where the light emitting

molecules are located. In the case of a small molecule OLED it consists of a hole and

electron conducting matrix material into which the desired emitter is doped. Emitter ma-
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terials that exhibit phosphorescence or thermally activated delayed fluorescence (TADF)

are preferred as they can exhibit a four times larger electroluminescence emission quantum

yield and therefore a four times larger device efficiency compared to conventional purely

fluorescent emitters (compare section 1.3).1,2,6–8,23,24 At the moment, iridium(III)- and

platinum(II)-complexes represent the most efficient class of phosphorescent emitters25–27

whereas copper(I)-complexes are entering the field of TADF emitters.13,28–43 Indepen-

dently, recently also the potential of purely organic compounds that exhibit a TADF was

recognized for the use in OLEDs.5,44–48 An interesting aspect is the emitter concentration

in the emissive layer. Usually, large emitter concentrations are desired to realize OLEDs

with high brightness. However, for iridium complexes and most other emitters it has been

shown that an increase of the emitter concentration results in a decrease of the emission

quantum yield due to intermolecular interactions such as triplet-triplet annihilation.49–51

Therefore, the doping concentration of the emissive layer is typically limited to the range

between 5 % and 15 %. In contrast to this, copper compounds frequently do not exhibit

such a self-quenching effect6,13,33,35,36 and could therefore be applied in much higher

doping concentrations even up to 100 %.13,52,53

The emissive layer is sandwiched between two layers which are intended to increase the

mobility of the charge carriers and are therefore called electron transport layer (ETL) and

hole transport layer (HTL), respectively. Interestingly, the thickness of these layers does

not have a significant impact on the electrical properties of the device but the optical

properties can be improved by choosing an appropriate thickness for these layers. For

example, an increase of the ETL thickness increases the distance between emissive layer

and cathode. As a consequence, a possible loss channel, the coupling of the radiating

dipole of the emitter with the metal cathode, can be minimized.7,54–57 Another important

aspect is that by appropriately doping the transport layers, the ratio of injected holes to

injected electrons can be adjusted and ideally be brought close to one. This prevents an

excess of carriers of one type and therefore enhances the device efficiency.7,10,58

An electrical contact for the three layer stack described above, is provided by two

electrodes. For the anode preferentially indium tin oxide (ITO) is used due to its high

electrical conductivity and optical transparency.59 For the cathode, metals with a low

work function are suited, e. g. aluminum or magnesium.59 As all layers together with the

two electrodes are significantly thinner than 1 µm a substrate is needed for mechanical

stability. For this purpose glass is often used. If flexibility of the entire stack is desired

polymer foils are an alternative.60
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Figure 1.2: Principle of operation of an OLED.

The fundamental processes that lead to light emission from an OLED are displayed

in Figure 1.2.2,7,23,24 With the application of an external voltage to the two electrodes,

negatively charged electrons are injected from the cathode into the LUMO (lowest

unoccupied molecular orbital) of an electron transport layer molecule. Similarly, positively

charged holes are injected into the HOMO (highest occupied molecular orbital) of a

hole transport layer molecule. As the external voltage results in a strong electric field

across the layer stack, both charge carrier types, electrons and holes, start to migrate

towards the emissive layer. In contrast to charge transport mechanisms in inorganic

semiconductors or metals where the carriers can move almost freely through the respective

material, in the case of organic materials the transport occurs via thermally activated

hopping processes between adjacent molecules. Formally, this corresponds to a series of

redox reactions. Eventually, one of the two particles is trapped on a matrix or an emitter

molecule. If an oppositely charged carrier comes close enough, electrostatic attraction

between both particles becomes relevant and this leads to the formation of a bound

state called exciton. Furthermore, the attraction between both particles results in the

localization of electron and hole on the same molecule which can then be considered being

in an excited state. Ideally, this should occur on an emitter molecule, so that a photon

can be emitted when the molecule relaxes radiatively to the ground state. Typically, the

generated light then leaves the OLED towards the direction of the (transparent) anode.

As the energy efficiency of an OLED strongly depends on the design of the layer stack,



1.2 Device Structure and Principle of Operation 19

it is helpful to define a quantity for the evaluation of the light generation efficiency. A

key parameter that is suitable for this purpose is the emission quantum yield η.7,61,62

It is furthermore reasonable, to distinguish between the internal ηint and the external

emission quantum yield ηext. Hereby, ηint corresponds to the probability with which a

photon is generated by an exciton in the emissive layer whereas ηext also respects the

outcoupling probability of the generated photon from the device to the outside world.

At first, the discussion will be focused on the internal emission quantum yield.

ηint = β · ΦPL · γ (1.1)

As can be seen from this equation, three factors contribute to ηint. In the following,

each factor will be discussed briefly. The spin-statistics factor is represented by β. This

factor is determined by the emitter material class used. Conventional fluorescent emitters

posses a value of β = 0.25 whereas phosphorescent emitters and emitters that exhibit a

thermally activated delayed fluorescence have a four times larger value of β = 1.6,8,9,23 A

more detailed discussion of the spin-statistics factor is given in section 1.3.

The second contribution to the internal quantum efficiency is given by the photolu-

minescence quantum yield ΦPL of the emitter material used. This quantity describes

the probability with which the absorption of a photon results in the emission of another

photon and is therefore given by the ratio of photons emitted to photons absorbed. In an

equivalent formulation ΦPL can be expressed as the ratio of the radiative rate and the sum

of radiative and nonradiative rate.63 Currently, for the application in OLEDs emitters

based on phosphorescent iridium complexes are of particular interest. These materials

can reach high photoluminescence quantum yields of close to 100 %.5,6,49,50,64–67 However,

such high emission quantum yields are in general only found for iridium complexes

exhibiting green emission. Due to the presence of emission quenching ligand field (dd∗)

states, it still remains a challenge to develop highly desired efficient blue emitting Ir(III)

compounds.5 In contrast to this, Cu(I) complexes posses a closed d-shell and therefore

no excited ligand field states are present. This renders Cu(I) compounds a promising

emitter class for OLEDs especially for the blue range of the spectrum. Recently, several

examples for such blue emitting Cu(I) compounds with photoluminescence quantum

yields as high as 90 % have been reported.13,33,36,37,39,68 Also, the complexes presented in

chapter 3 and 4 are promising as they exhibit quantum yields of up to 76 %.
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The last term in equation 1.1 represents the charge-balance factor γ which describes the

ratio of injected electrons and holes to excitons formed.61 A charge balance factor smaller

than 1 indicates that there is an excess of charge carriers of one kind accumulating in the

device which then cannot contribute to the generation of light. However, by careful device

design γ factors of close to 1 can be reached and have already been demonstrated.10 It

is noted that in contrast to the spin-statistics factor β and to the photoluminescence

quantum yield ΦPL, the charge balance factor γ is in a first approximation independent

of the emitter material used but does strongly depend on the design of the OLED layer

stack.

Compared to the internal quantum efficiency ηint the external emission quantum yield

ηext also takes the outcoupling efficiency χout of the generated photons into account.7,24,55

ηext = ηint · χout (1.2)

Whereas in modern devices internal quantum efficiencies of close to 1 can be reached

and have already been demonstrated more than one decade ago,10 typical outcoupling

efficiencies amount only to about 0.2. Two main loss channels could be identified to be

responsible for this. (1) The organic layers and the substrate typically exhibit indices of

refraction larger than about n = 1.5. As a result, total reflection on the layer interfaces

and especially, on the substrate/air interface occurs. This leads to trapping of the

generated photons in the device. An approach to minimize this loss channel is structuring

the surface of the devices e. g. with arrays of micro lenses or spheres.24,69,70 (2) As the

emitting molecule can be considered a radiating dipole, coupling of this dipole to the

metal cathode is possible. As a consequence, electron oscillations (surface plasmons) can

be excited in the metal. A reduction of this loss channel can be achieved by placing the

dipole more far away from the metal cathode for example by increasing the thickness of

the electron transport layer. Another approach is to align the emitter molecules in a way

that the the coupling to the metal cathode is minimized.7,24,55–57

1.3 Triplet Harvesting and Singlet Harvesting

In the previous section, it has already been mentioned that with emitters exhibiting

a phosphorescence or a thermally activated delayed fluorescence a four times higher
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Figure 1.3: Simplified scheme of the exciton formation and recombination process in a
host/guest system. E(e− h): binding energy of electron and hole, R: spatial
separation of electron and hole, ∆E(S1 − T1): energy separation of singlet
(S) and triplet state (T), ISC: intersystem crossing. Adapted from references
23, 72.

emission quantum yield can be achieved in electroluminescent devices compared to

purely fluorescent materials.5,8,13,23,40 In order to understand this different behavior, the

mechanisms that lead to exciton formation in the emissive layer and as a result to the

population of the excited states of the emitter molecules have to be analyzed. The

following discussion of this is based on the one given in references 5, 23, 71, 72.

A simplified scheme of the exciton formation process is displayed in Figure 1.3. For

the following considerations it is assumed that the EML consists of a host material in

which the emitter is doped at a low concentration. Furthermore, it is assumed that an

electron and a hole have already been injected into the EML and that the hole is already

localized at the emitter molecule.

Driven by the external electrical potential the electron now starts to migrate towards



22 1 Introduction to Organic Light Emitting Diodes

the hole through thermally activated hopping processes. Both particles can be considered

as uncorrelated as long as they are far apart from each other. As the electron approaches

the hole, Coulomb interaction between the oppositely charged particles becomes effective.

As a consequence of this electrostatic attraction, the distance between electron and hole

decreases further. When the separation R between electron and hole falls below a critical

value Rc both particles can be considered to form a bound state – an exciton. This is the

case when the Coulomb energy E(e− h) becomes larger than the thermal energy Eth.

E(e− h) =
e2

4πεε0R
!

= kBT = Eth (1.3)

In this equation, e represents the elementary charge, ε0 and ε the permittivity of the

vacuum and the matrix material, respectively, kB the Boltzmann constant, and T the

temperature.

According to this equation, if a value of ε = 3 is assumed, at ambient temperature

an exciton is already formed at at a relatively large distance of electron and hole of

about Rc = 180�A. This means that electron and hole do not have to be located on one

molecule in order to form a bound state but that they can still be separated by a large

number of matrix molecules.

As soon as electron and hole are considered to be correlated also the spin of both

particles has to be taken into account. As both particles carry a spin of 1/2 the total spin

of the formed exciton can either amount to S = 0, corresponding to a singlet state with

multiplicity M = 1, or to S = 1, corresponding to a triplet state with multiplicity M = 3.

Consequently, electron and hole can form four different exciton states, one of them being

a singlet and three of them representing the triplet. As at this point all states are nearly

degenerate an even population of all four states is expected. In a statistical limit this

leads to a ratio of singlet to triplet excitons of 1 : 3.73

When the electron approaches the hole within a radius of about 15�A the wave functions

of both particles may be regarded to start to overlap. At this point, the exchange

interaction between the two particles cannot be neglected anymore. As a result, the

formerly degenerate singlet and triplet states are now energetically split by twice the

exchange integral.

Eventually, the attraction of electron and hole will lead to a localization of both

particles on the same emitter molecule. This situation corresponds to this molecule being
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in an excited state. Subsequently, the emitter molecule relaxes to the lowest excited

singlet or triplet state depending on the total spin of the respective exciton. Typically,

this occurs on a picosecond time scale or faster.

It is emphasized that from exciton formation to the population of the excited emitter

states the spin is conserved meaning that singlet excitons can only populate singlet and

triplet excitons only triplet states of the emitter molecule. As a consequence, 75 % of the

emitter molecules will be in their lowest excited triplet while only 25 % will be in their

lowest excited singlet state.

Starting from this situation (Figure 1.4b), the further relaxation processes depend on

the class of the emitter material used. A graphical representation of possible relaxation

paths is displayed in Figure 1.4 for three different emitter types.

In conventional purely organic molecules (Figure 1.4a) the population of the first

excited singlet state S1 can result in an efficient radiative deactivation to the ground

state via a fluorescence which typically occurs at a time scale in the order of several ns

and with quantum yields of up to 100 %.63 Also an intersystem crossing process (ISC)

from the S1 to the T1 state can occur. However, due to the absence of effective spin-orbit

coupling (SOC) in purely organic molecules the time scale for this process is significantly

longer (up to several milliseconds) than the fluorescence decay time.63 Therefore, the

contribution of ISC to the deactivation of the S1 state can be neglected. In contrast to

the highly allowed S1 → S0 transition, the T1 → S0 transition is strongly spin-forbidden.

This results in phosphorescence decay times which can be as long as several seconds.

As such long decay times favor the occurrence of nonradiative deactivation processes

the probability for a radiative transition is rather small. Accordingly, in purely organic

molecules only the singlet excitons (25 %) can be used for the generation of light in an

electroluminescent device, while all triplet excitons (75 %) are lost for this purpose. This

fact limits the internal quantum yield of OLEDs using fluorescent emitters to ηint = 0.25.

The situation is different when transition-metal compounds are looked at (Figure 1.4c).

In this case, the central metal atom induces significant SOC. As a consequence, the

time constant for the ISC process is drastically decreased to values in the pico- or even

femtosecond region.74–79 Under the condition that singlet and triplet state are separated

by several 103 cm−1, an emission from the singlet state cannot be observed anymore as

almost all singlet excitations are transferred to the triplet state before a fluorescence can

occur. Furthermore, SOC adds significant allowedness to the otherwise spin-forbidden

transition from the triplet to the ground state. For compounds with particularly effective
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SOC, emission decay times can be as short as 1 or 2 µs, while emission quantum yields

approaching 100 % can be achieved.5,26,27,56,64,65,80. Thus, in contrast to purely organic

emitters, the triplet excitations are not lost for the emission process. As a consequence,

OLEDs utilizing phosphorescent emitters can reach an internal emission quantum yield

of ηint = 1. As according to this mechanism all excitations are collected in the triplet

state, this is called the triplet harvesting effect.

On the other hand, in many other, especially 1st row, transition metal compounds

SOC is significantly less effective which results in relatively long triplet decay times of

up to several milliseconds.5,32,33,35,36,81 Emitters exhibiting such long decay times are

rather ineffective when applied in OLEDs as pronounced saturation effects, such as

triplet-triplet annihilation or efficiency roll-off, would occur.51 These problems can be

overcome if the long triplet emission decay time does not become effective, for example,

if emitters are used that exhibit only a small energy separation ∆E(S1 − T1) between

first excited singlet and triplet state, so that a thermal re-population of the singlet from

the triplet state reservoir is possible at ambient temperature (Figure 1.4d). Such a

mechanism corresponds to a thermally activated delayed fluorescence and leads to an

effective reduction of the overall emission decay time as a significant part of all excitations

is radiatively deactivated via the short lived singlet state.82 Moreover, in OLEDs utilizing

TADF emitters all injected excitons, singlets and triplets, can be converted to light.

Consequently, the internal emission quantum yield of such devices can also amount to

ηint = 1. In analogy to the triplet harvesting effect, this mechanism is termed singlet

harvesting effect as at ambient temperature the radiative deactivation is occurring almost

exclusively via the singlet state.5,13,33,35–37
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Figure 1.4: Schematic representation of the electroluminescence excitation process for
different emitter classes. (b) Spin statistics results in 25 % singlet and 75 %
triplet state population. (a) In conventional purely fluorescent emitters, only
emission from the singlet state occurs. All triplet excitations are lost for the
emission of light. (c) In transition metal complexes all singlet excitations
are transferred to the triplet state via fast intersystem crossing (ISC). From
the triplet state, an efficient radiative deactivation through a T1 → S0

phosphorescence is possible. As a result, all excitations, singlets and triplets
can be harvested in the triplet state and utilized for the generation of light
(triplet harvesting effect). (d) In compounds that exhibit a small energy
separation ∆E(S1 − T1) between the first excited singlet and triplet state,
a thermally activated delayed fluorescence (TADF) can occur. In this case,
also all excitons can be converted to light but the emission results from the
highly allowed S1 → S0 transition (singlet harvesting effect). Adapted from
reference 5.





2
Photophysical Properties of Transition Metal

Complexes

In the last chapter, it has already been pointed out that transition metal compounds

possess high potential for application as emitters in electroluminescent devices. In this

chapter, aspects of the electronic structure and emission properties of such complexes

will be discussed. As this thesis focuses on the photophysical investigation of Cu(I)

compounds, the following discussion will be centered around this material class. Where it

seems necessary, also comparisons to the well investigated class of platinum and iridium

compounds will be drawn.

2.1 Electronic States

As for all transition metal complexes, also for Cu(I) compounds the emission properties

are largely determined by their frontier orbitals, that are the highest occupied and lowest

unoccupied molecular orbitals (MOs). From these MOs, the lowest excited electronic

states result. In a rather simple approximation, the frontier orbitals can be described

by the occupied π and unoccupied π∗ orbitals of the ligand(s) and the occupied d and

unoccupied d∗ orbitals of the central metal ion. In such a model system, four different

one electron excitations can occur. An illustration of this is given in Figure 2.1. It is

noted that all considerations presented here are only valid for molecules exhibiting a

singlet ground state.

The excitation of an electron from a π to a π∗ orbital corresponds to a ligand centered

(LC) transition. Hereby, π and π∗ orbitals are usually located on the same ligand.
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Figure 2.1: Frontier orbitals and the resulting excited states of a transition metal com-
plex. Only one electron excitations are displayed. Inclusion of the exchange
interaction results in an energetic splitting of otherwise degenerate singlet and
triplet states. If further spin-orbit coupling is included an energy splitting of
the three triplet substates occurs. Adapted from reference 83.

However, in heteroleptic complexes, an electron can also be transferred from a π orbital of

one ligand to the π∗ orbital of another ligand. In this case, the process is termed ligand-to-

ligand charge transfer (LLCT). In the literature, many examples for platinum compounds

exhibiting ligand centered transitions have been reported. For copper compounds, this

transition type is less relevant but also here some examples exist.78,84

Metal centered (MC) transitions occur if an electron is excited from a d orbital of

the central metal atom to another unoccupied metal orbital. Typically, the unoccupied

orbital is of d∗ type. In this case, the resulting dd∗ state can also be termed as ligand

field (LF) state. In iridium and platinum compounds, these LF states generally are

not the lowest lying excited states but they can be energetically close enough so that

a thermal population from the emissive state can occur even at ambient temperature.

As LF states are frequently not emissive they represent a major source for nonradiative

deactivation and even molecular dissociation, especially for blue emitting compounds in

which emissive and LF state can be as close as only a few thousand wavenumbers. In

contrast to this, LF states do not have an influence on the emission behavior of Cu(I)
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compounds, as the d-shell of Cu(I) possesses a d10 configuration and is therefore fully

occupied, so that no empty accessible d∗ orbitals and therefore no LF states exist. For

this reason, Cu(I) compounds might be well suited for the development of stable blue

emitters with high emission quantum yields. Moreover, in Cu(I) clusters, also metal

centered ds∗ excitations can occur. In contrast to LF states these states can be highly

emissive and contribute to the emission (compare for example reference 85).

Metal-to-ligand charge transfer (MLCT) transitions occur if on excitation significant

charge is transferred from the central metal ion to one of the ligands. This transition type

largely determines the emission behavior of most OLED relevant iridium and platinum

complexes. In particular, through the involvement of the metal center in the emitting

states, strong spin-orbit coupling can be induced which can result in high emission

yields and short emission decay times. In contrast to this, for Cu(I) complexes SOC

is significantly less effective (presumably) due to the smaller SOC constant of copper.

This would lead to distinctly longer emission decay times and smaller emission quantum

yields. However, the charge transfer character is generally much more pronounced for

copper compared to platinum and iridium complexes. As a consequence, a thermally

activated delayed fluorescence can occur for Cu(I) compounds.

It is crucial to note that in this simple molecular orbital picture an important aspect,

the interaction of the two unpaired electrons with each other, via Coulomb and exchange

interaction, is neglected. An inclusion of these effects results in a splitting of each state,

except for the ground state, into two states with different spin configuration, in the case

of a singlet ground state into a singlet and a triplet excited state. These two states

are energetically split by approximately twice the exchange integral K. The following

example displays a situation frequently found in Cu(I) compounds. Typically, in such

complexes the lowest excited singlet and triplet state is of MLCT character where the

HOMO is mainly located on the d-orbitals of the metal center whereas the LUMO is

mainly located on the ligand’s π∗ orbital. In this situation, the energy splitting between

the first excited singlet and triplet state ∆E(S1 − T1) is given by:

∆E(S1 − T1) ≈ 2K = 2

〈
d(r1)π∗(r2)

∣∣∣∣ e2

4πε0r12

∣∣∣∣ d(r2)π∗(r1)

〉
(2.1)

Hereby, d and π∗ represent the wavefunctions of the HOMO and LUMO, respectively, r1

and r2 the electron coordinates, and r12 their spatial separation. From this equation it is
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apparent that the exchange integral depends on the (spatial) overlap of the wavefunctions

of the molecular orbitals involved in the transition. For a dπ∗ charge transfer transition,

this overlap can be rather small as d and π∗ orbitals are located at different parts

of the molecule. In this situation, a small exchange integral and therefore a small

splitting between first excited singlet and triplet state result. The situation is different

for localized transitions, for example for ligand centered transitions of ππ∗ character. In

this case, a strong spatial overlap of the electron wavefunctions occurs as HOMO and

LUMO are located at the same ligand. Consequently, the exchange integral and the

splitting between first excited singlet and triplet state are large. More general, it can be

stated that the singlet-triplet energy splitting decreases with increasing charge transfer

character of the transition. It is remarked that the considerations made above only

represent an approximation to the real situation found in transition metal complexes,

where molecular orbitals typically consist of mixtures between ligand and metal centered

orbitals. Accordingly, also the states represent mixtures.

2.2 Spin-Orbit Coupling

The central metal ion has a further strong impact on the properties of the electronic states

of transition metal complexes. In particular, the metal center induces significant spin-

orbit coupling (SOC) which results in fast intersystem crossing (ISC) between singlet and

triplet states. For Pt(II) compounds, ISC times as fast as 50 fs have been observed.23,76

In contrast to this, for Cu(I) compounds significantly longer ISC time constants of about

10 ps have been reported.79,86,87 However, this is still orders of magnitude faster than

time constants for prompt fluorescence which typically range between 1 ns and 100 ns.

As a consequence, prompt fluorescence can in general not be observed in transition metal

complexes.

Furthermore, SOC allows an efficient coupling of different states. Of particular

interest in this regard is the coupling of singlet states to the lowest excited triplet state.

Through this, significant singlet character can be mixed into this triplet state which adds

allowedness to the otherwise spin-forbidden T1 → S0 transition. Consequently, short

phosphorescence decay times and high emission quantum yields for this transition result.

Efficient coupling between two electronic states according to the direct SOC process can

hereby only occur if the following three conditions are fulfilled:
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1. The interacting states must not result from the same molecular orbitals.

2. The two interacting states must result from two molecular orbitals that share the

same metal center. Ideally, this metal center should exhibit a large SOC constant.

3. The interacting states must result from different metal d-orbitals.

From this it can be concluded that direct SOC is mainly effective for states resulting from

molecular orbitals that have significant contributions from metal d-orbitals. Therefore,

coupling between MLCT states is most efficient whereas LC states can neither couple

to a MLCT nor to another LC state. For an evaluation of the SOC efficiency in real

molecular systems the radiative T1 → S0 transition rate kr can be used. Hereby, it is

important to note, that the three triplet substates, in the following marked with the

index i, experience different admixtures from higher lying singlet states and therefore

exhibit different radiative rates. A quantitative expression for kr(i) can be given by the

following equation which is obtained from perturbation theoretical considerations:88

kr(i) =
64π4ν̄3

3hc3

∑
m

∣∣∣∣〈Sm |HSO|T1(i)〉
E(Sm)− E(T1)

∣∣∣∣2 |〈S0 |er| Sm〉|2 (2.2)

In this equation, ν̄ represents the transition energy in wavenumbers, HSO the Hamilton

operator for SOC, S and T the unperturbed wavefunctions of the coupling singlet and

triplet states with the energies E(S) and E(T), respectively, and er the dipole operator.

Furthermore, SOC also leads to an alteration of the energies of the coupling states. For

the three substates of the lowest excited triplet state T1, an energy stabilization occurs.

As each substate experiences different amounts of admixtures from higher lying singlet

and triplet states, a different energy stabilization for each individual triplet substate

results. Similarly as described above, also an expression for the energy splitting of the

three triplet substates can be obtained from the perturbation theory formalism:88

E(i) = E(T1)−
∑
n,j

|〈Tn(j) |HSO|T1(i)〉|2

E(Tn)− E(T1)
−
∑
m

|〈Sm |HSO|T1(i)〉|2

E(Sm)− E(T1)
(2.3)

This splitting is also observed in the absence of a magnetic field. Therefore, the energy

separation of the energetically lowest and highest lying triplet substate is termed zero
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field splitting (ZFS).

For completeness it is mentioned that also the process of indirect SOC exists. However,

this process is significantly less effective compared to the direct one. A more detailed

discussion of this and other aspects of SOC can be found in reference 88.

2.3 Temperature Dependence of Emission

In transition metal complexes emission is not occurring from a single electronic state.

For example, if other states are energetically close, they can be thermally populated

and contribute to the emission. Hereby, each state exhibits an individual deactivation

rate ki to the ground state. Under the assumption, that all states are in a fast thermal

equilibrium, the states are populated according to a Boltzmann distribution and the total

deactivation rate k(T ) of all states to the ground state in dependence of the temperature

T is given by:1,28,89

k(T ) =

p∑
i=1

ki exp
[
−∆E(i−i0)

kBT

]
p∑
i=1

exp
[
−∆E(i−i0)

kBT

] (2.4)

In this equation, kB represents the Boltzmann constant and ∆E(i − i0) the energy

separation between i-th state and the energetically lowest excited state i0. However,

emission decay times τ are experimentally better accessible than rates k. Therefore, it

is helpful to rephrase equation 2.4 accordingly, using τ = k−1. For a four level system

consisting of the lowest excited singlet (S1) and triplet (T1) state, whereby the triplet

consists of the three substates I, II, and III, the emission decay time can be written as

a function of temperature according to the following equation:39,65,89

τ(T ) =
1 + exp

[
−∆E(II−I)

kBT

]
+ exp

[
−∆E(III−I)

kBT

]
+ exp

[
−∆E(S1−I)

kBT

]
τ−1
I + τ−1

II exp
[
−∆E(II−I)

kBT

]
+ τ−1

IIIexp
[
−∆E(III−I)

kBT

]
+ τ−1

S1
exp

[
−∆E(S1−I)

kBT

]
(2.5)

For molecular systems, in which no TADF occurs and in which therefore the en-
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ergetic separation between first excited singlet and triplet state ∆E(S1 − I) is large

(> 3000 cm−1), the last term in the nominator and denominator in equation (2.5) is small

and can be neglected. This leads to:1,65

τ(T ) =
1 + exp

[
−∆E(II−I)

kBT

]
+ exp

[
−∆E(III−I)

kBT

]
τ−1
I + τ−1

II exp
[
−∆E(II−I)

kBT

]
+ τ−1

IIIexp
[
−∆E(III−I)

kBT

] (2.6)

A situation frequently found for Cu(I) complexes is that the zero field splitting

(ZFS = ∆E(III− I)) is small (< 1 to 2 cm−1). In this case, it is justified to assume

∆E(II− I) = ∆E(III− I) = 0. Then, equation (2.5) simplifies to:

τ(T ) =
3 + exp

[
−∆E(S1−I)

kBT

]
3τ−1

T1
+ τ−1

S1
exp

[
−∆E(S1−I)

kBT

] (2.7)

Note that ∆E(S1 − I) often is also termed as ∆E(S1 − T1).

Importantly, by fitting equations (2.5) – (2.7) to experimental data, more specifically

to the temperature dependent behavior of the emission decay time, the energy splitting

of the emitting states as well as their individual decay constants can be determined

for the investigated compounds. As in contrast to Pt(II) and Ir(III)generally for Cu(I)

complexes no highly resolved spectra can be obtained even at a temperature of T = 1.3 K

(compare chapters 3 and 4) this indirect method provides detailed access to properties of

the electronic states.
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Dinuclear Copper Complexes

In the last decades, Cu(I) complexes have been intensely studied due to their interesting

luminescence properties. Research in this field has been additionally stimulated, since the

potential of these compounds as emitters in organic light-emitting diodes was recognized.

Hereby, most investigations focused on Cu(I) complexes exhibiting one copper center that

is pseudo-tetrahedrally coordinated by two bidentate ligands.5,6,28,33,35,38,42,78,79,84,86,87,90–99

In contrast to this, dinuclear Cu(I) compounds are significantly less explored, especially

with regard to their emission behavior. Only recently, respective investigations have been

published, suggesting that also this material class can show very promising properties

at ambient temperature, such as short emission decay times, high emission quantum

yields, and the possibility to tune the emission energy over a wide spectral range, from

the deep blue to the dark red.13,30,32,37,100–106 In addition, for some of these complexes it

was demonstrated that they exhibit a thermally activated delayed fluorescence,30,32,102,106

making them highly attractive for the use in OLEDs. Interestingly, the activation energy

for the TADF process can be as low as only 350 cm−1 for the dimers,30,102 significantly

smaller than for monomeric Cu(I) complexes for which the activations energies are

typically about two to three times larger.5,6,28,33,35,39,42

Therefore, in this chapter a new class of Cu(I) dimers is studied in detail to get a

deeper insight into the emission processes. The complexes represent dinuclear compounds

in which one bidentate ligand is coordinated to each copper center and where the copper

centers themselves are bridged by two halides. In the first section of this chapter, the

investigation focuses on the influence of the halides on the emission behavior. In the

second section, the ligands and the metal ions are modified to study the respective effects

on the emission properties.
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3.1 Complexes with Aminophosphine Ligands

In this section, the four halide bridged copper complexes [Cu(µ-Cl)(PNMe2)]2 (1), [Cu(µ-

Br)(PNMe2)]2 (2), [Cu(µ-I)(PNMe2)]2 (3), and [Cu(µ-I)(PNpy)]2 (4) are investigated

(compare Figure 3.1). The two copper centers in each compound are bridged by two halide

atoms (chlorine, bromine, iodine). As chelating ligands, the aminophosphines Ph2P-

(o-C6H4)-N(CH3)2 (PNMe2) and Ph2P-(o-C6H4)-NC4H8 (PNpy) are used. A detailed

photophysical characterization is carried out focusing on the TADF mechanism and on

the lowest excited singlet and triplet state properties. In particular, the triplet state,

studied down to T = 1.3 K, reflects details of the effectiveness of spin-orbit coupling

(SOC) in halide-bridged copper compounds. The discussion given in this section is

essentially following the one given in reference 36.

Figure 3.1: Chemical structures of compounds 1–4. Ph = Phenyl, Me = Methyl.

3.1.1 Crystal Structures

In Figure 3.2, the structures of the four investigated compounds are displayed as received

from X-ray measurements.i Important interatomic distances and angles are summarized

in Table 3.1.

Two different coordination structures were found for the investigated substances. In

compound 1, the copper and halide atoms are located in one plane representing a planar

iX-ray measurements were performed by Fritz-Robert Küchle, University of Tübingen
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Figure 3.2: ORTEP representation (50 % ellipsoids) of compounds 1–4 from X-ray struc-
ture determinations. Hydrogen atoms are not displayed for clarity. Crystal
structures were provided by Fritz-Robert Küchle, University of Tübingen.

geometry of the copper halide core. In contrast, for the compounds 2–4 these atoms

include distinct dihedral angles Br(1)–Cu(2)–Cu(1)–Br(2) of 128.2° (2), I(1)–Cu(2)–

Cu(1)–I(2) of 132.7° (3), and I(1)–Cu(2)–Cu(1)–I(2) of 139.6° (4) representing a butterfly

type geometry of the copper halide core. Additionally, the orientation of the two ligands

relative to each other differs between these two types of structures. More specifically, in

the planar coordination, the phosphorus and nitrogen atoms of the ligands are in trans

positions, whereas in the butterfly coordination they are in cis positions.
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An analysis of the interatomic distances of the substances containing the PNMe2

ligand (compounds 1–3) reveals that the lengths of the copper halide bonds (Cu(1)–X(1))

increases from 1 (2.369�A) to 2 (2.418�A) to 3 (2.582�A). This trend is also reflected in

the other Cu–X bonds (Cu(1)–X(2), Cu(2)–X(1), and Cu(2)–X(2)) and is expected, as

the radii of the halide atoms increase in the order Cl < Br < I. Moreover, a slightly

larger Cu(1)–Cu(2) distance is found for 3 (2.574�A) than that for 2 (2.559�A). Replacing

the PNMe2 ligand (compound 3) by PNpy (compound 4) leads to a significant increase

of the Cu(1)–Cu(2) distance to 2.688�A due to the increased steric demand of the ligand,

more specifically of the cyclopentyl groups. However, compound 1 exhibits the largest

Cu(1)–Cu(2) distance (2.983�A)), which is a result of the planar structure of the copper

halide core of this molecule. Thus, large variations of the the Cu(1)–Cu(2) distances

ranging from 2.56�A to 2.98�A are observed for the studied complexes 1–4. Similarly large

variations also occur for other halide-bridged dinuclear copper complexes.13,30,32,37,100–105

3.1.2 Computational Investigations

The type of the electronic transition and the characters of the involved molecular orbitals

that contribute to the emission can be elucidated by carrying out density functional

theory (DFT) and time-dependent density functional theory (TDDFT) calculations.

Applying the B3LYP functional and the def2-SVP basis set, as suggested by Jesser et

al.,107 HOMO and LUMO contour curves are obtained for compound 3 for the (optimized)

ground state geometry (Figure 3.3).

Figure 3.3: HOMO and LUMO of compound 3 for the ground state S0 geometry in
the gas phase. The basis set used was def2-SVP. B3LYP was used as the
functional.
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Figure 3.4: HOMO and LUMO energies of compound 1 in dependence of the Cu(1)–
Cu(2) separation. For the results marked with the small dots, the Cu(1)–
Cu(2) separations were constrained. The large dots indicate the results
of a calculation without constraints. Calculations were performed on the
B3LYP/def2-SVP level of theory.

The pronounced spatial separation of these frontier orbitals indicates that the HOMO–

LUMO transition possesses significant charge transfer (CT) character. More specifically,

with an excitation charge is transferred from the d orbitals of the copper and the p

orbitals of the iodine atoms to the unoccupied orbitals. The latter ones are mainly

located on the PNMe2 ligands. Therefore, this transition can be assigned to be of

(metal+halide)-to-ligand charge transfer ((M+X)LCT) character.

TDDFT calculations give an insight into the molecular orbital contributions to the

electronic energy states. For example, for compound 3 the HOMO–LUMO transition

contributes to the lowest excited singlet and triplet state by ≈ 90 % and ≈ 60 %,

respectively. A further significant amount comes from the HOMO–2 to LUMO+1

transition, which amounts to ≈ 10 % for the singlet and ≈ 20 % for the triplet state. All

contributing occupied orbitals (HOMO, HOMO–2) are located on copper and iodine,

whereas all contributing unoccupied orbitals (LUMO, LUMO+1) are located on the
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ligands. This means that the lowest excited states represent 1,3(M+X)LCT states. Such

a significant CT character is usually connected with relatively broad and unstructured

spectra. Indeed, the experimentally determined emission spectra are broad even at low

temperatures and thus in agreement with this prediction (see next section and Figure

3.5).

DFT calculations also allow to investigate the influence of the Cu(1)–Cu(2) separation

on the emission behavior. For this, the geometry of compound 1 was optimized while

the separation of the Cu(1)–Cu(2) atoms was constraint to values between 1.2�A and

3.0�A. Without the constraint, a Cu(1)–Cu(2) separation of 3.1�A is found. Interestingly,

in a wide range of Cu(1)–Cu(2) separations, from about 1.8�A to 3.1�A, the HOMO and

LUMO energies do not change significantly, indicating that also the emission energy

should not change. While the LUMO energy is not affected if the distance of the copper

centers is further decreased to values below 1.8�A, an increase of the HOMO energy is

observed presumably due to metal-metal interactions and a red shifted emission would

be expected. However, compounds that exhibit such small Cu–Cu separations are not

known. Therefore, it can be concluded that the Cu(1)–Cu(2) separation has negligible

impact on the emission energy, especially for the compounds investigated in this section.

A graphical representation of these results is displayed in Figure 3.4.

3.1.3 Spectroscopic Introduction

The studied compounds show intense blue (3, 4) and green (1, 2) luminescence under

UV excitation. At first, the discussion will focus on the photophysical properties of

compound 3. The measurements were performed with powder samples due to the limited

chemical stability of the substances in solution.108 A justification for this approach

is given below. Figure 3.5 shows the emission and excitation spectra measured at

ambient and at liquid nitrogen temperature, respectively. With temperature variation,

distinct changes of the emission properties are observed. At T = 77 K, the emission

maximum lies at λmax(77 K) = 471 nm (50 % high energy flank at 443 nm), the decay

time amounts to τ(77 K) = 270 µs, and the quantum yield ΦPL(77 K) is as high as

almost 100 %. According to this relatively long decay time and due to the detailed

investigations at lower temperatures (T = 1.3 K, compare section 3.1.5), the emitting

state at low temperature is assigned to be the triplet state T1 with a singlet ground

state S0. With temperature increase to T = 300 K, a slight blue-shift of the emission to
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Figure 3.5: Emission and excitation spectra of compound 3 (powder) at ambient tem-
perature (solid line) and at 77 K (dotted line). The emission spectrum was
recorded under excitation at λexc = 360 nm, and the excitation spectrum was
detected at λdet = 470 nm. The inset shows a photo of the powder sample of
compound 3 excited at 365 nm.

λmax(300 K) = 464 nm (50 % high energy flank at 433 nm) and a drastic decrease of the

emission decay time to τ(300 K) = 4.6 µs are observed, while the quantum yield decreases

only slightly to ΦPL(300 K) = 65 %. A comparison of the quantum yields and decay times

at the different temperatures reveals an interesting behavior. According to kr = ΦPL τ
−1,

the corresponding radiative rates can be determined. The radiative rate increases from

kr(77 K) = 3.7× 103 s−1 to kr(300 K) = 1.4× 105 s−1, that is by more than a factor of 40.

Obviously, with a temperature increase from 77 K to 300 K, a different emission process

is thermally activated. In the following section, this behavior is assigned as a thermally

activated delayed fluorescence (TADF).

Interestingly, concentration quenching in the powder samples, being usually connected

with energy-transfer processes between adjacent molecules,109 does not seem to be of

importance for the studied complexes. This is indicated by the observed high emission

quantum yields and the monoexponential decay behavior in the whole temperature

range from approximately 30 K to 300 K. This behavior can be rationalized when the
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character of the electronic transition is analyzed. On excitation, a significant amount

of charge is transferred from the copper centers to the ligands resulting in a formal

(partial) oxidation of Cu(I) to Cu(II). As Cu(I) prefers a tetrahedral whereas Cu(II)

prefers a planar coordination environment, excitation results in a flattening distortion

and in a lowering of the excited state energy.5,30,33,35,38,42,90–97,110 As a consequence, the

energy cannot be transferred from an excited to an adjacent non-excited molecule as

the resonance condition for this process is not fulfilled. A related self-trapping behavior

has been discussed in reference 111. In addition, it is remarked that in powders of other

Cu(I) complexes such a self-trapping effect does not necessarily occur. In particular,

this is observed for compounds that exhibit low-lying ligand-centered transitions of

ππ∗ character with no significant geometry change and therefore no significant energy

stabilization of the excited state on excitation.78,84

In Figure 3.6, ambient temperature emission spectra are reproduced for the four

investigated compounds. Interestingly, for substances 3 and 4, which both contain iodine

as the bridging halide, no significant differences in the emission energy and shape of the

spectrum are observed, although the Cu(1)–Cu(2) separations differ by more than 0.1�A.

This is in agreement with the DFT calculations presented in the previous section (Figure

3.4) which show that a change of the Cu(1)–Cu(2) separation from 2.6�A to 2.7�A should

not have an impact on the emission energy. On the other hand, a remarkable blue-shift of

the emission energies occurs in the series from 1 to 2 to 3,4. The emission peak maxima

lie at 506 nm (Cl), 490 nm (Br), and 464 or 465 nm (I). A similar shift is also observed

for the emission maxima at T = 77 K (mainly representing the triplet state emissions).

DFT calculations show that the energy shift is essentially caused by a stabilization of

the HOMO in the series from Cl, Br, and I, whereas the LUMO remains almost at the

same energy. For completeness, it is remarked that this trend is in agreement with the

effect that one would expect from a decrease of the ligand field strength in the series

Cl− > Br− > I−.102,112

In Table 3.2, photophysical data for the investigated compounds are summarized. The

emission quantum yields at T = 300 K are equal within limits of experimental error

for the compounds 2–4 (ΦPL = 65 %), whereas compound 1 exhibits a lower value of

ΦPL = 45 %. However, the chemical structure of compound 1 differs from those of

the other substances in the position of the copper and halide atoms relative to each

other as well as in the orientation of the ligands (compare Figure 3.2). Therefore, a

direct comparison of the photophysical properties of these two structure types is difficult.
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Figure 3.6: Emission spectra of substances [Cu(µ-Cl)(PNMe2)]2 (1), [Cu(µ-Br)(PNMe2)]2
(2), [Cu(µ-I)(PNMe2)]2 (3), and [Cu(µ-I)(PNpy)]2 (4) measured as powders
at ambient temperature (λexc = 360 nm).

Presumably, the lower quantum yield of 1 is related to a more flexible structure with

respect to the excited state geometry changes, which results in an increase of nonradiative

deactivation processes. Indeed, the much larger Cu(1)–Cu(2) separation found for 1 as

compared to that of 2–4 (Table 3.1) supports this model. Furthermore, a comparison

of the ΦPL values at ambient and liquid nitrogen temperatures reveals that an increase

of the quantum yields occurs with decreasing temperature. A behavior like this is not

unusual and is related to a decrease of the nonradiative deactivations on cooling.

The emission decay times measured at T = 300 K for the four compounds do not differ

significantly. They lie between about 4 µs and 7 µs. These values are mainly determined

by the energy separations between the excited singlet S1 and triplet T1 states. A detailed

discussion is found in the next section. On the other hand, at T = 77 K, the emission

decay times of the different compounds deviate significantly and range from 220 µs to

930 µs. These differences are related to spin-orbit coupling (SOC) being differently

effective in the four compounds. Corresponding effects are discussed in more detail in

section 3.1.5.
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Table 3.2: Photophysical properties of the compounds 1–4 measured at ambient and at
liquid nitrogen temperature in the powder phase.

compound Temp. λmax τ ΦPL kr
[K] [nm] µs [%] [s−1]

1
300 506 6.6 45 6.8× 104

77 513 220 100 4.5× 103

2
300 490 4.1 65 1.6× 105

77 498 930 100 1.1× 103

3
300 464 4.6 65 1.4× 105

77 471 270 100 3.7× 103

4
300 465 5.6 65 1.2× 105

77 465 250 100 4.0× 103

Similar as already described above for 3, compounds 1 and 2 exhibit a red-shift of

the emission when cooled to T = 77 K. (For compound 4 this red-shift is only displayed

at the high energy flanks of the emission spectra). The red-shift is accompanied by the

drastic increase of the emission decay time but is not paralleled by an equally strong

increase of the emission quantum yield. Obviously, cooling results in a drastic lowering

of the radiative rates. This effect is most pronounced for compound 2 for which the

radiative rate decreases by almost a factor of 150. The decrease of the radiative rates

along with the red-shift of the emission with decreasing temperature indicates that all

studied materials show the effect of TADF at ambient temperature. In the following

section, this mechanism will be discussed in more detail.
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Figure 3.7: Temperature dependence of the emission decay time of substance 3 as powder.
The solid red line represents a fit of the experimental data according to
equation 3.1. The compounds were excited with a pulsed laser at a wavelength
of 355 nm (pulse width ≈ 8 ns). The emission was detected at the maximum
of each emission spectrum.

3.1.4 Thermally Activated Delayed Fluorescence

A deeper understanding of the emission properties is obtained by studying the decay

time as a function of temperature in the range between 30 K and 300 K. In the entire

temperature range, the decay is monoexponential. The result is depicted in Figure 3.7

for the example complex 3.

For this compound, the emission decay time is almost constant in the temperature range

between about 30 K and 60 K and one observes a plateau with τ ≈ 290 µs. According to

the long decay time, this emission is assigned as phosphorescence from the triplet state

T1 to the ground state S0. Further evidence for the triplet character of this state is given

in the next section. According to the discussion presented in the previous section, this

triplet is of 3(M+X)LCT parentage. With temperature increase, a strong reduction of

the emission decay time is observed. This is attributed to a thermal activation of a higher

lying electronic state, which carries significantly more allowedness for the transition to
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the ground state than the T1 state. Therefore, the corresponding state is assigned as the

lowest excited singlet state S1 being of 1(M+X)LCT character. This effect represents

a TADF. At temperatures above T ≈ 120 K, the contribution of the singlet state to

the emission dominates (see below, Figure 3.8). For thermally equilibrated states, the

emission decay time of the two excited state system can be expressed as a function of

the temperature according to equation 3.1. In the literature, such an approach has been

described before for similar systems.1,6,8,9,32,33,35,39,42

τ(T ) =
3 + exp

[
−∆E(S1−T1)

kBT

]
3 τ(T1)−1 + τ(S1)−1 exp

[
−∆E(S1−T1)

kBT

] (3.1)

In this equation, kB represents the Boltzmann constant, and τ(S1) and τ(T1) are the

emission decay times of the singlet state S1 and triplet state T1, respectively, in the absence

of thermalization. ∆E(S1 − T1) is the energy separation (activation energy) between

these two states. Because in the temperature range investigated a monoexponential decay

behavior was found, it can be concluded that in fact a fast thermalization between the

two excited states occurs, and thus, equation 3.1 can be applied. Fitting the equation

to the measured data allows determining the decay time of the prompt fluorescence to

τ(S1) = 90 ns, the decay time of the phosphorescence to τ(T1) = 290 µs (corresponding

to the plateau seen in Figure 3.7), and the energy separation between the two states

to ∆E(S1 − T1) = 570 cm−1. The short decay time of τ(S1) = 90 ns determined for

the thermally activated state substantiates its singlet character. Thus, the measured

emission decay time at T = 300 K of τ(TADF) = 4.6 µs represents a S1 → S0 fluorescence,

which, however, because it is fed from the long-lived triplet state reservoir, represents a

delayed fluorescence. It is remarked that despite this short decay time of the singlet state,

no prompt fluorescence is directly observed. This indicates that S1 → T1 intersystem

crossing (ISC) is much faster than the emission process. Experimentally determined ISC

times of ≈ 10 ps found for other Cu(I) compounds support this.79,86,87

The energy separation between the singlet S1 and the triplet T1 states with ∆E(S1 −
T1) = 570 cm−1 is very small as compared to other organo-transition metal complexes,

such as Pd(II) or Pt(II) compounds with ∆E(S1 − T1) values of several 103 cm−1.76,113

This behavior of the Cu(I)-compounds is ascribed to be a consequence of the distinct

spatial separation of the occupied and unoccupied frontier orbitals, in particular, of the
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HOMO and LUMO, which leads to a small electron exchange interaction and therefore

to a small singlet-triplet energy splitting (compare for example reference 114).

An alternative approach to determine the energy separation ∆E(S1−T1) is to compare

the emission spectra at T = 77 K (almost pure triplet emission and T = 300 K (almost

pure singlet emission). The energy separation of these spectra, taken at the high-energy

flank at 50 % of the maximum intensity, amounts to ∆E(S1 − T1) = 522 cm−1 (Figure

3.6) and thus matches well to the value found from the fit procedure. The spectral

blue-shift of the emission towards higher temperatures substantiates further that an

energetically higher lying electronic state is thermally populated. This strongly indicates

that TADF is the dominant emission mechanism of this compound at high temperatures.

It is remarked that the determination of ∆E(S1 − T1) from the spectral shift is less

accurate compared to the indirect method based on the analysis of the temperature

dependent change of the emission decay time. One reason for this is that on heating

temperature induced spectral broadening can occur which can mask spectral shifts.

For the compounds 1, 2, and 4, similar investigations with respect to the temperature

dependence of the decay times have been carried out. The resulting data are summarized

in Table 3.3. An analysis of these data allows to come to a better understanding of the

emission process. All compounds exhibit small values for the singlet-triplet splitting

∆E(S1 −T1) ranging from 460 cm−1 to 630 cm−1 and therefore, show pronounced TADF

at ambient temperature. For the triplet decay times τ(T1), distinctly different values are

found. A more detailed discussion of this property is presented in the following section.

For the decay time of the singlet state τ(S1) (obtained from the fitting procedure),

values amounting to 90 ns to 210 ns are determined. Hereby, compounds 2, 3, and 4

show very similar singlet decay times of 90 ns to 110 ns, while compound 1 exhibits

a by a factor of about two longer decay time of 210 ns. This can be a consequence

of a more distinct charge transfer that is connected with a smaller transition dipole

moment of the corresponding transition, leading to a weaker allowedness. Moreover,

the more pronounced charge transfer character should also result in a smaller value

for ∆E(S1 − T1) as the wave functions’ overlap is smaller, which results in a smaller

exchange interaction. Indeed, complex 1 shows the smallest ∆E(S1 − T1) value of the

investigated substances. A detailed discussion of this aspect is given in section 3.2.3. The

more distinct charge transfer character of the S1 → S0 fluorescence in compound 1 could

be a result of the different molecular geometry of compound 1 compared to the other

substances (compare Figure 3.2). This assumption is supported by the investigations
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Table 3.3: Overview of the properties of the first excited singlet and triplet states of the
investigated substances

compound (powder) 1 2 3 4

∆E(S1 − T1)a [cm−1] 460 510 570 630
τ(T1)a [µs] 250 1200 290 250
τ(S1)a [ns] 210 110 90 100
τ(TADF)b [µs] 6.6 4.1 4.6 5.6

a From the fit
b Measured at T = 300 K

performed in section 4.2 which reveal a strong dependence of the singlet-triplet energy

separation on the coordination geometry. At ambient temperature, the decay times of the

delayed fluorescence τ(TADF) range from 4.1 µs to 6.6 µs. These values are governed by

the singlet decay times τ(S1) and the singlet-triplet energy splittings ∆E(S1 −T1) of the

respective compounds. The influence of the triplet decay time τ(T1) on τ(TADF) can be

neglected for these compounds at ambient temperature. Interestingly, compound 1, which

exhibits the smallest ∆E(S1 − T1) value, also shows the longest delayed fluorescence

decay time of τ(TADF) = 6.6 µs. This is a consequence of the relatively long singlet

decay time of τ(S1) = 210 ns, as is discussed in detail in the section 3.2.3.

It is illustrative to visualize the percentage of the emission intensity originating from the

singlet I(S1) and from the triplet state I(T1) relative to the total emission intensity Itot

in dependence of the temperature. I(S1) is proportional to the population of the singlet

state N(S1) and to the radiative rate constant kr(S1) of this state for the deactivation to

the groundstate.

I(S1) = αkr(S1)N(S1) (3.2)

In the same way, I(T1) is given by

I(T1) = αkr(T1)N(T1) (3.3)
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Hereby, α is a proportionality constant that is equal in both equations. The radiative

rate kr(S1) and kr(T1) can be expressed in terms of the quantum yields and the emission

decay times according to kr = ΦPL τ
−1. For this rough estimate, it is further assumed

that the quantum yields ΦPL(S1) and ΦPL(T1) do not depend on the temperature. With

this, Itot = I(S1) + I(T1), and assuming that the populations of both states follow a

Boltzmann distribution (fast equilibration), one obtains

I(T1)

Itot
=

[
1 +

kr(S1)g(S1)

kr(T1)g(T1)
e
−∆E(S1−T1)

kBT

]−1

=

[
1 +

ΦPL(S1)τ(T1)

3ΦPL(T1)τ(S1)
e
−∆E(S1−T1)

kBT

]−1

(3.4)

g(S1) = 1 and g(T1) = 3 are the degeneracy factors for the singlet and triplet states,

respectively. Using I(T1) = Itot − I(S1) leads to

I(S1)

Itot
= 1−

[
1 +

ΦPL(S1)τ(T1)

3ΦPL(T1)τ(S1)
e
−∆E(S1−T1)

kBT

]−1

(3.5)

Applying equations 3.4 and 3.5 and using the fit parameters as determined for compound

3 (∆E(S1 − T1) = 570 cm−1, τ(S1) = 90 ns, τ(T1) = 290 µs, ΦPL(S1) = 0.65, and

ΦPL(T1) = 1.0), the plots shown in Figure 3.8 are obtained. At low temperature

(T < 60 K), only a T1 phosphorescence occurs. With temperature increase, the intensity

contributed from the T1 state decreases, while the intensity stemming from the S1 state

increases. At T = 300 K, almost all intensity (98 %) stems from the singlet state.

3.1.5 The Triplet State T1

The triplet state T1 of the studied Cu(I) complexes is assigned as being of 3(M+X)LCT

character, which is based on DFT and TDDFT calculations (Figure 3.3). Additionally,

the occurrence of only broad-band emission spectra even at low temperatures and of

small ∆E(S1 − T1) values support this assignment. Literature classifications carried

out for similar Cu(I) complexes come to equivalent characterizations.13,30,32,37,100–106

The triplet state usually splits into three triplet substates. In organo-transition metal

complexes, the corresponding energy splitting of the three substates, the zero-field
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Figure 3.8: Emission intensities stemming from the singlet state S1 (delayed fluorescence)
and the triplet state T1 (phosphorescence), normalized to the total intensity
Itot = I(S1) + I(T1) in dependence of temperature according to equations
3.4 and 3.5. The parameters used are the ones found for compound 3
(∆E(S1 − T1) = 570 cm−1, τ(T1) = 290 µs, τ(S1) = 90 ns, ΦPL(S1) = 0.65,
and ΦPL(T1) = 1.0).

splitting (ZFS), is essentially determined by spin-orbit coupling to higher lying singlet

and triplet states.5,6,88,92,115,116 For emitting complexes, it is interesting to learn about

these substates. However, detailed studies for Cu(I) complexes are only rarely found. For

example, theoretical investigations are reported in reference 92, while first experimental

investigations have been carried out only recently.33,106 The reason why an experimental

access to triplet substate properties of Cu(I) complexes is difficult is related to the

occurrence of only very broad charge-transfer spectra (resulting from strong electron-

phonon coupling23) and thus to the difficulty of resolving the individual substates.

Moreover, at temperatures higher than about 15 K, relaxation processes thermalize the

individual population of the three substates in a time faster than that of the individual

substate emission. Therefore, the information about the individual substate is lost.

Accordingly, adequate investigations require measurements at very low temperature, that

is when fast processes of thermalization due to spin-lattice relaxation (SLR) are largely
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frozen out, at least for small ∆E(ZFS) values.33,75,76,117–120 If so, individual substates can

become observable, at least indirectly on the basis of the decay time behavior. Hence,

the investigations of the triplet state properties are extended down to T = 1.3 K. In the

following, the discussion will focus on compound 1.

Figure 3.9 displays the emission decay behavior of compound 1 in dependence of the

temperature. In the range of 15 K < T < 300 K, the decay is monoexponential, and a

very similar trend is observed as that for compound 3 (compare Figure 3.7). Fitting

the measured data with equation 3.1 gives values of ∆E(S1 − T1) = 460 cm−1 and

τ(S1) = 210 ns (compare Figure 3.9, inset). The decay time of the T1 state, represented

by the plateau, lies at τ(T1) = 250 µs. This value displays the emission decay time of

all three triplet substates if thermally equilibrated (compare Figure 3.9 right-hand side,

blue marked range). However, below T ≈ 15 K, the emission decay becomes more and

more non-monoexponential, and at T = 1.3 K, the decay curve can be fitted well with a

tri-exponential function which gives the three decay components τI = 2.8 ms, τII = 1.0 ms,

and τIII = 90 µs (Figure 3.10). A similar three-component decay has frequently been

observed for other organo-transition metal compounds, such as Pd(II),76,121 Pt(II),76,122,123

Ir(III),119 Re(I),120 and other Cu(I)33 complexes. The different decay components have

been assigned to the emissions from the three individual triplet substates, which are

zero-field split by less than 1 or 2 cm−1 and in several cases even much less.75,76 Such a

behavior is a consequence of very slow spin-lattice relaxation (SLR) processes between

energetically near-lying substates at very low temperature.ii An equivalent assignment

is also applied to the investigated Cu(I) compound and thus, the energy level diagram

shown as inset in Figure 3.10 is obtained.

Obviously, the discussion presented above implies that below T ≈ 15 K, equation 3.1

does not hold to describe the decay behavior (no thermalization). Nevertheless, in Figure

3.9, the plot is extended to temperatures below 15 K to visualize the drastic increase of

the longest emission decay component. Interestingly, below T ≈ 3 K, a second plateau is

observed for this long component. It simply signifies that a further temperature decrease

would not lead to a significant population change between the different substates.

In the case of a fast thermalization and for ∆E(ZFS)� kBT , the averaged emission

iiAn occurrence of a distinctly larger energy separation ∆(ZFS) between the triplet substates is not
probable because a splitting of already a few cm−1 would induce decay components of less than a
few µs according to fast spin-lattice relaxation processes even at T = 1.3 K (compare references 75,
124–126). However, correspondingly short decay components have not been observed.
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Figure 3.9: Emission decay time of compound 1 versus temperature. In the temperature
range above ≈ 15 K, the three triplet substates are in a fast thermal equilib-
rium and only one decay component can be observed. At temperatures higher
than ≈ 60 K, the singlet state S1 becomes thermally populated, resulting in
a reduction of the emission decay time. At ambient temperature, the process
of TADF leads to a decay time of τ(TADF) = 6.6 µs. In the inset, an energy
level diagram of compound 1 is shown. With decreasing temperature below
≈ 15 K, the emission decay deviates more and more from a monoexponential
decay. In this part of the plot, only the longest decay component of the
non-monoexponential function is displayed (compare Figure 3.10).

decay time τav of the three triplet substates can be expressed by the three individual

decay times according to equation 3.6.76,117

τav = 3

[
1

τI
+

1

τII
+

1

τIII

]−1

(3.6)

τI , τII , and τIII represent the emission decay times of the individual triplet substates I,

II, and III.

If the individual substate decay times as determined from the 1.3 K decay curve (Figure



54 3 Dinuclear Copper Complexes

3.10) are inserted, a value of τav = 241 µs is obtained. This value agrees well with the

observed decay time of the plateau of τ(T1) = 250 µs. The pronounced correspondence

substantiates that the three decay components determined at T = 1.3 K originate indeed

from the three triplet substates of the T1 state.

Figure 3.10: Emission decay behavior of compound 1 at T = 1.3 K. Pulsed excitation
at λexc = 355 nm. The inset shows the triplet state T1 with its substates I,
II, and III and their respective individual decay times. The corresponding
zero-field splitting is less than 2 cm−1.

Equivalent studies as discussed above have also been carried out for the compounds

2, 3, and 4 (Table 3.4). For example, the decay components of 3 were determined

to be τI = 1.8 ms, τII = 630 µs, and τIII = 110 µs. Using equation 3.6, this results in

τav = 267 µs. Within limits of experimental error of about 10 %, also this value fits well

to the measured decay time in the range of the plateau with τ = 290 µs. This holds

similarly for the compounds 2 and 4.

The individual decay components display some interesting trends. If the nonradiative

processes are ignored (T = 1.3 K), the radiative decay time can be used as a measure of

the allowedness of the radiative transition rate. Thus, it is seen that all transition rates

are very small. This becomes apparent when the corresponding values are compared

to those of other transition metal complexes, such as the triplet substates of Ir(ppy)3,
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Table 3.4: Emission decay times of the triplet state T1 and its respective substates I, II,
and III.

compound 1 2 3 4 Ir(ppy)3
a

τI [µs]b 2800 2200 1800 1500 116
τII [µs]b 1000 1100 630 500 6.6
τIII [µs]b 90 850 110 110 0.2
τav[µs]c 241 1181 267 255
τ(30 K)[µs]d 250 1200 300 270

a Data from reference 65 for comparison
b The error in the fit of the decay components is 10 %
c Decay time of the triplet state T1 calculated according to equation 3.6
d Experimentally determined decay time of the T1 state

given in Table 3.4 for comparison. In particular, the radiative rates of Ir(ppy)3 are

several orders of magnitude larger than those of the Cu(I) complexes. Obviously, this

is a consequence of the effectiveness of SOC of the corresponding substates to higher-

lying singlet states.5,65,88,92,115,116,123,127–129 Trends are also seen when the different copper

complexes are compared. The decay time of substate I decreases in the series of 1 (Cl), 2

(Br), 3 (I), 4 (I) and thus displays some influence of the increasing SOC constant from Cl

(SOC constant ξ = 587 cm−1), to Br (ξ = 2460 cm−1), to I (ξ = 5069 cm−1).130 However,

a corresponding trend does not occur for the decay times of substate III if 1 (Cl) is

compared with 2 (Br), but these compounds have different chemical structures (Figure

2). Apparently, the individual structure influences the effectiveness of SOC. Interestingly,

the trend of increasing SOC induced by the halides is again observed (with respect to

substate III) if 2 (Br) and 3 (I) are compared. Both compounds have similar molecular

structures.

Interestingly, most organo-transition metal compounds frequently exhibit orders of

magnitude different emission decay times of the three triplet substates (compare the values

given for Ir(ppy)3 (Table 3.4) and many other compounds discussed in reference 5). This

trend is also clearly seen for compounds 1, 3, and 4 but not for compound 2. Obviously,

for this compound, SOC of all three substates to higher-lying singlets is not very different.

In this respect, compound 2 represents a very rare example. It is remarked that more
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detailed assignments concerning SOC paths would require theoretical calculations that

include SOC. Such investigations have not been carried out for the studied compounds

and only very rarely for other organo-transition metal compounds.115,127–129,131

A further aspect should be addressed. The lowest triplet states of the studied copper

complexes have been assigned as 3(M+X)LCT states. According to Figure 3.3, the

Cu(I) metal and halide atoms X are involved in the HOMO and, as discussed in section

3.1.3, also in the HOMO–1. Because, according to TDDFT calculations, transitions

from these occupied MOs determine the lowest excited triplet and singlet sates, one

would expect that the relatively heavy atoms with SOC constants of ξ(Cu) = 857 cm−1

and ξ(I) = 5069 cm−1 for 3 and 4 would have a strong influence on the triplet state

properties such as large ZFSs and short triplet decay times. However, this is not observed

experimentally. Obviously, further investigations are required in this respect.

3.1.6 Concluding Remarks

In this chapter four halide bridged Cu(I) dimers with chelating aminophosphine ligands

were structurally analyzed and photophysically characterized. At ambient temperature,

the complexes exhibit high photoluminescence quantum yields (up to 65 %) and relatively

short emission decay times (as low as about 4 µs), and the emission color can be tuned

from green to blue by variation of the halide X. The involved electronic transitions are

assigned to (metal+halide)-to-ligand CT character. Accordingly, the lowest excited singlet

(S1) and triplet (T1) states are designated as 1,3(M+X)LCT states. With these transitions,

a distinct CT is connected. Hence, the quantum mechanical exchange interaction and,

thus, the resulting energy separations between the S1 and T1 states ∆E(S1 − T1) are

expected to become relatively small. Indeed, the experimentally determined values

amount only to a few hundred cm−1 and thus belong to the smallest energy separations

reported for Cu(I) compounds reported so far. As a consequence, these materials

are highly attractive candidates for studies and applications of TADF. For example,

compound 3 ([Cu(µ-I)(PNMe2)]2), representing a blue-light emitter (λmax = 464 nm,

CIE color coordinates (0.16;0.22)) exhibits an activation energy for the TADF process of

∆E(S1−T1) = 570 cm−1. According to the drastically higher allowedness of the S1 → S0

with respect to the T1 → S0 transition, radiative deactivation occurs via the S1 state, if

thermally activated. Thus, at ambient temperature, the observed emission stems almost

completely from the S1 state (98 %). Only 2 % results from the T1 state. Consequently,
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the ambient temperature emission represents a fluorescence, though thermally activated

from the long-lived triplet state reservoir. Hence, the emission is a S1 → S0 delayed

fluorescence. For compound 3, it decays with a time constant of τ(TADF) = 4.6 µs at

ambient temperature. For compound 3, an overview of the relevant states for the emission

process and their respective decay paths is given in Figure 3.11. For completeness, it

is remarked that a prompt fluorescence has not been observed. Obviously, this is a

consequence of a down-ISC time from the S1 to the T1 state being significantly shorter

than the prompt emission decay time of 90 ns as determined from a fit procedure. This is in

agreement with ISC time constants of about 10 ps found for other Cu(I) compounds.79,86,87

Figure 3.11: Energy level diagram and decay times of the lowest excited states for [Cu(µ-
I)(PNMe2)]2 (compound 3). Adapted from reference 106.
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3.2 Complexes with Diphosphine Ligands

In this section, the Cu(I) complex Cu2Cl2(dppb)2 and the corresponding Ag(I) homologue

Ag2Cl2(dppb)2 are investigated (Figure 3.12). Similarly as for the complexes discussed in

the previous section, the two metal centers are bridged by two halide, more specifically, by

two chlorine atoms. Here, as chelating ligand dppb (1,2-bis-(diphenylphosphino)benzene),

representing a diphosphine ligand, was used, in contrast to the aminophosphine ligand

from the previous section. Parts of this chapter have been published previously in

reference 41.

Figure 3.12: Chemical structures of the investigated compounds.

3.2.1 DFT and TDDFT Calculations

To get insight into the electronic structures of Cu2Cl2(dppb)2 and Ag2Cl2(dppb)2, den-

sity functional theory (DFT) and time-dependent density functional theory (TDDFT)

calculations were performed on the B3LYP/def2-SVP level of theory, which has shown to

give good results for other Cu(I) complexes.107 As input geometry, the atom coordinates

received from X-ray structure determination of Cu2Cl2(dppb)2 were used.iii For the

calculations of Ag2Cl2(dppb)2, the Cu atoms in the input file were replaced by Ag as for

this complex no crystals suitable for X-ray structure determinations could be obtained.

At first, geometry optimizations for the singlet ground state were performed for both

compounds. For these geometries, it was found that the first excited singlet and triplet

states largely result from transitions between molecular orbitals that are centered at

the metals and the chlorides and at the ligands, respectively. Accordingly, the cor-

responding transitions are of (metal+halide)-to-ligand charge transfer ((M+X)LCT)

iiiX-ray data provided by Rafa l Czerwieniec, University of Regensburg
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Figure 3.13: Energy positions of molecular orbitals of Ag2Cl2(dppb)2 and Cu2Cl2(dppb)2

as obtained from DFT calculations for the optimized T1 state geometry.
HOMO and LUMO orbitals are represented by the bold lines. Relative
contributions of the different atoms to the molecular orbitals are color coded.
In addition, the contour plots of the HOMOs and LUMOs are displayed for
both compounds.

character. This is in agreement with the results found for the aminophosphine com-

plexes discussed in the previous section and with literature reports of other Cu(I) and

Ag(I) complexes.30,100,102,106,132. However, for a description of the emission properties of

Cu2Cl2(dppb)2 and Ag2Cl2(dppb)2, the triplet geometry is more suited. Therefore, an

optimization of the lowest excited triplet state geometry was performed. The resulting

structures differ distinctly from those of the ground state for both compounds. More

specifically, in the triplet state geometry, one of the two dppb ligands is rotated by about

90° along the axis which connects the two metal centers. This significant distortion is

a result of the (M+X)LCT character of the transition as has already been described

before.30,102 As a consequence, the symmetry of the compound is reduced which leads to
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a localization of the frontier orbitals at one side of the compounds (compare Figure 3.13),

in contrast to the situation in the ground state geometry, in which both metal-halide

centers and both ligands were involved.

In the triplet state geometry, for both compounds the first excited singlet and triplet

state almost completely result from HOMO–LUMO transitions. As these two frontier

orbitals have only a small spatial overlap, the energy splittings between the first excited

singlet and triplet state are expected to be rather small. From the calculations, values

of ∆E(S1 − T1) = 760 cm−1 for Cu2Cl2(dppb)2 and ∆E(S1 − T1) = 1060 cm−1 for

Ag2Cl2(dppb)2 are found. Although the calculations do not take the environment of

the complexes into account (gas phase calculations), the results are in astonishingly

good agreement with the experimental values of ∆E(S1 − T1) = 600 cm−1 for the

Cu(I) and ∆E(S1 − T1) = 980 cm−1 for the Ag(I) complex (see below). In the case

of the Ag(I) complex, the phosphorus contribution to the HOMO amounts to 35 %,

whereas for the Cu(I) homologue only 24 % are found. As the phosphorus atoms also

contribute to the LUMO, a larger spatial HOMO–LUMO overlap and therefore, a larger

exchange interaction and a larger singlet-triplet splitting results for Ag2Cl2(dppb)2.

Interestingly, also the experimentally observed blue-shift of Ag2Cl2(dppb)2 compared to

that of Cu2Cl2(dppb)2 (compare section 3.2.2) is reflected in the calculations. It can

mainly be attributed to a stabilization of the HOMO energy of Ag(I) as compared to the

Cu(I) complex.

3.2.2 Spectroscopic Discussion

In Figure 3.14, the emission spectra of Cu2Cl2(dppb)2 and Ag2Cl2(dppb)2 are shown

for ambient and for liquid nitrogen temperature. In accordance with the (M+X)LCT

character of the emitting state, as predicted by the DFT and TDDFT calculations, the

spectra are broad and featureless, even at a temperature of T = 1.6 K (not shown).

Compared to the Cu(I) complex, the Ag(I) homologue displays a by 65 nm (2500 cm−1)

blue-shifted emission with a maximum at λmax = 480 nm at 300 K. This blue-shifted

emission can be rationalized with the second ionization potential of Ag being by 1.2 eV

(9680 cm−1 higher than that of Cu.133 As the HOMO is mainly localized on the metal

centers, the higher ionization potential results in a stabilization of the HOMO energy and

therefore, in an increase of the HOMO–LUMO energy gap. Consequently, the emission

of the Ag(I) complex is expected to be blue-shifted compared to the emission of the
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Figure 3.14: Emission spectra of Cu2Cl2(dppb)2 and Ag2Cl2(dppb)2 powders recorded at
300 K and 77 K. Excitation at λexc = 350 nm

Cu(I) homologue, which matches the experimental observation. This trend is also nicely

displayed by the DFT calculations presented in the previous section (compare Figure

3.13).

Similar as the dinuclear copper complexes with aminophosphine ligands discussed in

section 3.1, also the diphosphine complexes presented in this section display a pronounced

TADF behavior. For Ag2Cl2(dppb)2, a distinct blue-shift of the emission from 495 nm

to 480 nm is observed on temperature increase from 77 K to 300 K. This blue-shift is

paralleled by a drastic decrease of the emission decay time from 1100 µs to 15 µs while the

emission quantum yield does not change significantly in this temperature range (compare

Table 3.5). Consequently, the radiative rate increases from kr(77 K) = 8.7× 102 s−1 to

kr(300 K) = 6.2× 104 s−1, which is by more than a factor of 70. Such a large increase of

the radiative rate on heating clearly indicates that the emission at ambient temperature

represents a TADF. For Cu2Cl2(dppb)2 an even larger increase of the radiative rate by

a factor of more than 490 is found on heating from T = 77 K to 300 K (compare Table

3.5). However, the spectral shift on heating is not as obvious as for the Ag homologue.

This is a consequence of thermal broadening effects that occur on heating which can
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Table 3.5: Photophysical data of Ag2Cl2(dppb)2 and Cu2Cl2(dppb)2 powders. The energy
separations ∆E(S1 − T1) between the lowest excited triplet T1 and singlet S1

state as well as the decay times of τ(S1) result from fits according to equation
3.1 (see also Figure 3.15).

Powder Ag2Cl2(dppb)2 Cu2Cl2(dppb)2

λmax(300 K) 480 nm 545 nm
λmax(77 K) 495 nm 545 nm
ΦPL(300 K) 93 % 35 %
ΦPL(77 K) 96 % 52 %
∆E(S1 − T1) 980 cm−1 600 cm−1

τ(T1)(77 K) 1100 µs 2200 µs
τ(S1) 45 ns 70 ns
τ(TADF)(300 K) 15 µs 3 µs
kr(300 K) 6.2× 104 s−1 11.7× 104 s−1

kr(77 K) 8.7× 102 s−1 2.4× 102 s−1

kr(300 K)/kr(77 K) 70 490

mask shifts of the emission energy caused by a TADF, especially if the energy separation

∆E(S1 − T1) is small. Thus, instead of using the temperature induced spectral shift, it

is helpful to use a more precise approach for determining the activation energy for the

TADF process based on investigating the emission decay time as function of temperature.

In the following, the discussion will mainly focus on the Ag(I) complex as silver

compounds have been much less explored so far, especially with respect to their TADF

properties. The emission decay behavior of this compound for the temperature range

between 30 K and 300 K is displayed in Figure 3.15. At temperatures below about 100 K

the decay time is essentially constant amounting to 1100 µs. With increasing temperature,

the decay time decreases drastically. At ambient temperature, it amounts to only 15 µs

which is almost two orders of magnitude shorter than at T = 30 K. This clearly shows

that at ambient temperature a different electronic state dominates the emission behavior

compared to low temperature. This state can be assigned to be the lowest excited singlet

state S1. From the monoexponentiality of the decays in the entire temperature range

it can be concluded that the states involved in the emission process are in a thermal

equilibrium. Therefore, it is justified to use equation 3.1 to fit the data points displayed
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Figure 3.15: Emission decay time of Ag2Cl2(dppb)2 powder versus temperature. The
insets show the monoepxonential decays at 77 K and 300 K, respectively.
λexc = 378 nm, λdet = 480 nm. The curve connecting the data points
represents a fit according to equation 3.1. The resulting fit parameters are
summarized in Table 3.5.

in Figure 3.15. From this procedure, values for the decay times of the singlet S1 and

triplet T1 states are obtained as well as the energy separation ∆E(S1 − T1) of these

states. They amount to τ(S1) = 45 ns, τ(T1) = 1100 µs, and ∆E(S1−T1) = 980 cm−1. It

is remarked that a prompt fluorescence could not be observed for this compound. Similar

measurements were also performed for the Cu(I) complex. The results are summarized

in Table 3.5.

3.2.3 Comparative Discussion and Conclusion

In this section, a detailed photophysical investigation of the two complexes Ag2Cl2(dppb)2

and Cu2Cl2(dppb)2 has been carried out. It has been shown that for both complexes

the emission behavior at ambient temperature is dominated by a thermally activated

delayed fluorescence. The activation energy for the TADF process could be determined
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to ∆E(S1 − T1) = 980 cm−1 for the Ag(I) and ∆E(S1 − T1) = 600 cm−1 for the Cu(I)

complex.

A comparison of the TADF activation energies of the Cu(I) complex with diphosphine

ligands presented in this section (Cu2Cl2(dppb)2) and the corresponding Cu(I) complex

with aminophosphine ligands presented in the previous section ([Cu(µ-Cl)(PNMe2)]2)

reveals an interesting trend. In the case of the complexes with diphosphine ligands, the

experimentally determined TADF activation energy amounts to ∆E(S1−T1) = 600 cm−1,

whereas for the complex featuring aminophosphine ligands it is about 25 % smaller

amounting to ∆E(S1 −T1) = 460 cm−1. This effect can be understood when the HOMO

and LUMO compositions of the respective compounds are analyzed. In both cases,

the HOMO is mainly located on the metal-halide core, whereas the LUMO is localized

on the ligands. However, a significant portion of the HOMO is also located on the

phosphorus atoms that coordinate to the two Cu(I) centers. In the case of the complex

with diphosphine ligands the P contribution to the HOMO amounts to 24 % (6 % for

each P atom). As the P atoms also contribute with 8 % to the LUMO, the largest spatial

overlap of HOMO and LUMO is occurring on the P atoms. Importantly, this spatial

overlap determines the singlet-triplet energy splitting.

In contrast to this, for the complexes with aminophosphine ligands it is found that the

overall contribution of the P atoms to the HOMO is significantly smaller amounting to

12 %. This is simply a consequence of the reduced number of P atoms in these ligands as

each P atom still contributes with 6 %. Interestingly, the two nitrogen atoms coordinating

to the copper centers only have a negligible contribution (< 1 % per nitrogen atom)

to the HOMO. The spatial distribution of the LUMO is similar to the one found for

the diphosphine complex. It is localized on the ligands, whereby the phosphorus atoms

contribute with about 4 % while the nitrogen atoms’ contribution is negligible. Thus, for

the complexes with aminophosphine ligands a smaller singlet-triplet splitting is expected

due to the smaller spatial overlap of HOMO–LUMO on the coordinating phosphorus and

nitrogen atoms.

Continuing this thought, a complex featuring diamine ligands should exhibit an

even smaller energy separation between singlet and triplet state as the nitrogen atoms

coordinating to the Cu(I) centers should neither contribute significantly to the HOMO nor

to the LUMO. As a consequence, the spatial overlap of HOMO and LUMO and therefore

the energy splitting between the first excited singlet and triplet state should be small.

To investigate this, a TDDFT calculation was performed for a model compound, which
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is based on Cu2Cl2(dppb)2 but all phosphorus atoms have been replaced by nitrogen.

For this compound, the calculations predict a significantly smaller singlet triplet energy

separation of less than 100 cm−1.

This raises an interesting question: In order to reduce the overall TADF decay time at

ambient temperature, is it sufficient to only reduce the energy splitting of the first excited

singlet and triplet state? To answer this question it is helpful to have a closer look at

equation 3.1. At first sight, a natural limit for the overall emission decay time is given

when ∆E(S1 − T1) = 0. In this case, and under the assumption that τ(T1)� τ(S1), the

equation simplifies to:

τ(T) =
3 + exp

[
−∆E(S1−T1)

kBT

]
3 τ(T1)−1 + τ(S1)−1 exp

[
−∆E(S1−T1)

kBT

] = 4 τ(S1) (3.7)

Consequently, a lower limit for the overall emission decay time is given by four times

the singlet decay time. For Cu(I) complexes, singlet decay times lying between about

30 ns and 210 ns haven been reported (compare for example references 28, 32, 33, 35, 42

and the complexes presented in this chapter), which would limit the overall emission

decay times to values between 120 ns and 840 ns. This would be shorter compared to

conventional triplet emitters based on iridium and platinum which typically exhibit

phosphorescence decay times in the microsecond range.5,6

However, in the approach above it is neglected that there is a correlation between the

energy separation of the first excited singlet and triplet state ∆E(S1−T1) and the decay

time of the first excited singlet state τ(S1). Both quantities are determined by the spatial

overlap of HOMO and LUMO.iv A small spatial overlap of these frontier orbitals results

in a small exchange interaction and therefore a small singlet triplet splitting. However, a

small spatial overlap of HOMO and LUMO also reduces the allowedness of the S1 → S0

transition resulting in longer decay times τ(S1) of the S1 state. This trend is clearly

displayed by the experimental data obtained for the complexes presented in this chapter

and a graphical representation of this correlation is given in Figure 3.16.

For the following considerations it is helpful to define an analytical function that

correlates the experimentally found singlet decay times τ(S1) with the experimentally

ivFor this consideration it is assumed that the first excited singlet and triplet state result from the
HOMO–LUMO transition.
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Figure 3.16: Emission decay time of the singlet state S1 versus energy separation of the
first excited singlet and triplet state ∆E(S1 − T1). Data are given for the
compounds presented in this chapter. The red line represents a fit of the
data with a single exponential function.

determined singlet triplet energy separation ∆E(S1 − T1). It turns out that the data

points in Figure 3.16 can be adequately fitted by a single exponential function:

∆E(S1 − T1)(τ(S1)) = y0 + A exp

[
−τ(S1)

τ0

]
(3.8)

It is strongly emphasized that this function is not derived from physical arguments

but is only used to simplify the following discussion. From the fitting procedure the

free parameters could be determined to y0 = 470 cm−1, A = 1750 cm−1, and τ0 = 33 ns.

Plugging equation 3.8 with the respective parameters into equation 3.1 and assuming
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that τ(T1)� τ(S1) gives:

τ(τ(S1)) =
3 + exp

[
−∆E(∆E(S1−T1))

kBT

]
3 τ(T1)−1 + τ(S1)−1 exp

[
−∆E(∆E(S1−T1))

kBT

]
≈

3 + exp
[
−∆E(S1−T1)

kBT

]
τ(S1)−1 exp

[
−∆E(∆E(S1−T1))

kBT

]
= τ(S1)

[
3 exp

[
∆E(S1 − T1)

kBT

]
+ 1

]

= τ(S1)

3 exp

y0 + A exp
[
− τ(S1)

τ0

]
kBT

+ 1


= τ(S1)

3 exp

470 cm−1 + 1750 cm−1 exp
[
− τ(S1)

33 ns

]
kBT

+ 1



(3.9)

In this way, an equation is obtained that gives a lower limit for the emission decay

time τ in dependence of the singlet decay time τ(S1) and therefore, via equation 3.9

also in dependence of ∆E(S1 − T1). In Figure 3.17, a graphical representation of

equation 3.9 is shown for T = 300 K. Interestingly, the graph exhibits a minimum

for a singlet decay time of about τ(S1) = 110 ns which corresponds to a singlet triplet

energy splitting of ∆E(S1 − T1) = 535 cm−1. Accordingly, for these values of τ(S1) and

∆E(S1 − T1), respectively, the overall TADF emission decay time τ is minimal and

amounts to τmin = 4.5 µs. This value seems to represent a fundamental lower limit that

cannot be exceeded if only emission according to a TADF mechanism is considered. This

result is also in agreement with the literature as until now no (radiative) emission decay

times shorter than about 4.5 µs have been reported.

However, in all consideration above it was assumed that the 3 τ(T1)−1 term in equation

3.1 can be neglected. This approximation is justified for all complexes presented in

this chapter due to their long triplet decay times. In section 4.2, however, a class of

Cu(I) complexes is presented, of which the triplet decay times are orders of magnitude

shorter. For these compounds, the triplet decay time has to be taken into account when

calculating the lower limit of the overall emission decay time. Therefore, by providing an

additional effective radiative decay path via the T1 → S0 transition a reduction of the
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overall emission decay time to values lower than 4.5 µs could be achieved.

Figure 3.17: Overall emission decay time τ versus decay time of the singlet state τ(S1)
according to equation 3.9 for T = 300 K



4
Mononuclear Copper Complexes

4.1 Cu(I) Complexes with two Bidentate Ligands

In the last years, Cu(I) complexes have been intensely studied as their potential as

low-cost emitters for the application in electroluminescent devices was recognized.

Hereby, Cu(I) compounds that are pseudo-tetrahedrally coordinated by two biden-

tate ligands have been in the focus of research.5,6,33,35,42,78,86,95–97,134–137 However, on

excitation these compounds can undergo a formal (partial) oxidation from Cu(I) to Cu(II)

due to the pronounced metal-to-ligand charge transfer (MLCT) character of the transi-

tion.5,6,13,30,32–38,40,42,52,68,85,86,95–97,134–139 As a consequence, a geometry distortion from the

pseudo-tetrahedral to a more planar coordination geometry occurs.5,30,33,35,90,91,93,94,96,97,110

Such distortions typically result in strong non-radiative deactivation to the ground

state. An approach to address this problem is the use of sterically demanding lig-

ands that largely suppress flattening distortions. This concept has been successfully

applied before for other Cu(I) complexes.33,35 In this chapter, the two charged Cu(I)

complexes [Cu(POP)(dmbpy)][BF4] (1) and [Cu(POP)(tmbpy)][BF4] (2) (dmbpy =

4,4’- dimethyl-2,2’-bipyridine; tmbpy = 4,4’,6,6’-tetramethyl-2,2’-bipyridine; POP =

bis[2-(diphenylphosphino)-phenyl]ether) are investigated. Their chemical structures are

displayed in Figure 4.1. Both compounds consist of a bipyridine and a biphosphine

ligand coordinated tetrahedrally to a Cu(I) center. In contrast to complex 1, complex

2 possesses an additional pair of methyl groups at the 6,6’ positions of the bipyridine

ligand which introduces a strong sterical interaction with the POP ligand. As a result,

flattening distortions on excitation are largely suppressed and the emission quantum yield

is significantly increased (compare Figure 4.1). For a better understanding of this effect,
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Figure 4.1: Structures of complexes 1 and 2 and their emission in ethanol recorded
for similar compound concentrations. Note the striking differences in the
brightness.

the complexes were investigated in different media under variation of the temperature.

Furthermore, a detailed analysis of the temperature-dependent decay behavior of com-

pound 2 reveals the occurrence of an efficient thermally activated delayed fluorescence

(TADF) showing that compound 2 exhibits excellent properties for harvesting all singlet

and triplet excitons in the lowest excited singlet state when applied as an emitter in an

electroluminescent device (singlet harvesting effect).5,6,33 It is noted that large parts of

this chapter have been previously published in reference 42.

4.1.1 Spectroscopic Discussion

In Figure 4.2, the structure of compound 2 as determined from X-ray measurements is

displayed.i From this, the slightly perturbed tetrahedral coordination environment around

the Cu(I) center is apparent. More specifically, the angle between the N(41)–Cu–N(49)

and the P(2)–Cu–P(28) plane amounts to 82° which only slightly deviates from the 90°

of an ideal tetrahedron. Furthermore, also the steric blocking that is responsible for

restricting the flattening distortion on excitation becomes obvious. Mainly, it can be

attributed to an interaction between the phenyl groups present at the biphosphine ligand

and the methyl groups present at the 6,6’ positions of the bipyridine ligand. An overview

of important bonding distances and angles is given in Table 4.1.

At first, the discussion of the photophysical properties will focus on compound 2. In

Figure 4.3, the absorption spectra of this complex and of the coordinating POP ligand

recorded in ethanol (EtOH) are shown. In addition, also the absorption spectrum of bpy

iX-ray data were provided by Neil Robertson and Charlotte L. Linfoot, University of Edinburgh, GB.
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Figure 4.2: X-ray structure of 2 with probability ellipsoids set to 50 %. H atoms are
omitted for clarity. X-ray data were provided by Neil Robertson and Charlotte
L. Linfoot, University of Edinburgh, GB.

(bipyridine) recorded in the same solvent is displayed, as replacement for tmbpy which

was not available. However, the absorption spectra of bpy and tmbpy are not expected

to deviate significantly.

In the range between about 220 nm and 330 nm an intense absorption band is observed

for complex 2. This band is also present in the spectra of the free ligands, indicating that

it originates from ligand centered transitions. However, compared to the free ligands, the

absorption band of the complex displays a slight red-shift which is likely a consequence

of metalation. In contrast, between 330 nm and 450 nm the free ligands do not show an

absorption but an absorption band for the complex is observed. Therefore, this band can

be assigned to result from metal-to-ligand charge transfer (MLCT) transitions.

This assignment is supported by DFT and TDDFT calculations which show that

the HOMO is mainly located on the copper center, whereas the LUMO is located on

the bipyridine ligand (compare Figure 4.4) and that transitions between these frontier

orbitals determine the lowest excited singlet and triplet state.

At ambient temperature, the powder exhibits yellow luminescence under UV light.

The corresponding emission spectrum is broad and featureless, being in agreement

with the charge-transfer character of the transition. The spectrum exhibits a peak at

λmax = 555 nm, and the emission decay time amounts to τ = 11 µs. Most notably, the

compound’s emission quantum yield is observed as ΦPL = 55 %.

Interestingly, the emission quantum yield can be further increased by grinding the
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Table 4.1: Selected bond lengths and bond angles for compound 2 as received from
single crystal X-ray crystallography measurements and from DFT calculations
performed on the B3LYP/def2-SVP level of theory. X-ray data were provided
by Neil Robertson and Charlotte L. Linfoot, University of Edinburgh.

compound 2 X-ray DFT

Cu–N(41) [�A] 2.089(3) 2.170

Cu–N(49) [�A] 2.097(3) 2.172

Cu–P(2) [�A] 2.2518(11) 2.371

Cu–P(28) [�A] 2.2901(11) 2.379
N(41)–Cu–N(49) [°] 79.64(13) 78.09
N(41)–Cu–P(2) [°] 121.85(9) 117.74
N(49)–Cu–P(2) [°] 117.03(10) 113.04
N(41)–Cu–P(28) [°] 103.50(10) 108.40
N(49)–Cu–P(28) [°] 114.35(9) 121.73
P(2)–Cu–P(28) [°] 115.25(4) 113.35

substance, for example between two glass plates. After this procedure, a quantum yield

of ΦPL = 74 % is obtained for the ground powder. In contrast to this, the quantum

yield decreases to ΦPL = 39 %, when the powder is compressed by applying a pressure of

6000 kg cm−2 for approximately 20 minutes.ii This displays an interesting trend as the

emission quantum yield seems to be correlated to the grain size of the powder. More

precisely, a small grain size is correlated with a high quantum yield and vice versa. This

trend is also represented for the radiative kr and non-radiative rates knr which de- and

increase, respectively, with growing grain size (compare Table 4.2). Furthermore, from

Figure 4.5(b) it can be seen that also the emission energies are influenced by mechanical

manipulations which results in a red-shift of the emission from λmax = 555 nm to

λmax = 565 nm after compression. A rationalization for this behavior can be given when

powder diffraction data are analyzed for the freshly synthesized and the compressed

sample (Figure 4.5(a)). Clearly, it can be seen that after compression more peaks appear

in the diffraction pattern indicating an increase of the the samples crystallinity. Such

changes in the morphology can result in drastic changes of the emission properties, which

iiCompression performed by Sebastian Maderlehner, University of Regensburg
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Figure 4.3: Absorption spectra of the complex [Cu(POP)(tmbpy)][BF4] and of the lig-
ands POP and bpy recorded in EtOH. Emission spectra are displayed for
[Cu(POP)(tmbpy)][BF4] as powder and in an EtOH solution. All spectra
were recorded at ambient conditions.

has recently been shown for other Cu(I) compounds.140–142 In the following, only the

data for the untreated powder samples as received from synthesis will be discussed.

When compound 2 is dissolved in ethanol (EtOH), the emission is red-shifted (λmax =

575 nm) compared to the powder (λmax = 555 nm). In addition, the quantum yield

decreases significantly from ΦPL(powder) = 55 % to ΦPL(EtOH) = 6 %. Also, the

emission decay time decreases from τ(powder) = 11 µs to τ(EtOH) = 2.5 µs. Such a

behavior has been reported also for other Cu(I) compounds in the literature and can be

rationalized with the pronounced metal-to-ligand charge transfer (MLCT) character of the

emitting state according to the following model:33,35 On excitation, a significant amount

of charge is transferred from the metal to a ligand resulting in a formal (partial) oxidation

of the metal center from Cu(I) to Cu(II). As a consequence of this, a flattening distortion

occurs, as Cu(II) prefers a planar coordination environment, in contrast to the tetrahedral

one of Cu(I). Such structural reorganizations are connected with a stabilization of the
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Table 4.2: Emission data for complexes 1 and 2 recorded in ethanol, powder, and doped
into a polymethylmethacrylate (PMMA) matrix, respectively. For compound
2, data are given for the powder as received from synthesis, after grinding, and
after compression. For compound 1, no obvious differences in the emission
behavior were observed after mechanical manipulations.

Temp. [Cu(POP)(dmbpy)]+ [Cu(POP)(tmbpy)]+

1 2

EtOH
λmax[nm] 300 K 655 575
τ [µs] 300 K 0.02 2.5
ΦPL[%] 300 K < 1 6
kr[104 s−1] 300 K 2.4
knr[104 s−1] 300 K 38
λmax[nm] 77 K 605 535
τ [µs] 77 K 16a 73

Powder
λmax[mn] 300 K 575 555b 555c 565d

τ [µs] 300 K −e 11b 13c 11d

ΦPL[%] 300 K 9 55b 74c 39d

kr[104 s−1] 300 K 5.0b 5.7c 3.5d

knr[104 s−1] 300 K 4.1b 2.0c 5.5d

λmax[nm] 77 K 595 575b

τ [µs] 77 K −e 87b

ΦPL[%] 77 K 47b

kr[104 s−1] 77 K 0.5b

knr[104 s−1] 77 K 0.6b

PMMA
λmax[nm] 300 K 565 525
τ [µs] 300 K −e −e
ΦPL[%] 300 K 6 64

a Slightly deviating from monoexponential decay.
b Data refer to measurements on powder as received from synthesis.
c Data refer to measurements on powder after grinding.
d Data refer to measurements on powder after compression.
e Strongly non monoexponential decay.
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Figure 4.4: HOMO and LUMO of Cu(POP)(tmbpy)+ (2). Calculations performed on
the B3LYP/def2-SVP level of theory.

emitting state and therefore with a red-shift of the emission energy. Hereby, the tendency

of such major structural reorganizations to occur is especially pronounced in nonrigid

environments. Accordingly, the emission is expected to be red-shifted in solution compared

to the more rigid powder environment. This is in agreement with the experimental

observations. Furthermore, structural reorganizations are expected to open a highly

effective nonradiative relaxation channel due to increased Franck-Condon factors of the

excited and the ground state.63 As a result of the increase of the non-radiative deactivation

rate, the emission quantum yield and the emission decay time are reduced in less rigid

environments. Also this trend is observed experimentally. It is mentioned that cooling the

ethanol solution to T = 77 K leads to a rigid cage around the complex through freezing of

the solvent. This prevents distinct geometry changes upon excitation. As a consequence,

the emission spectrum is blue-shifted from λmax(300 K) = 575 nm to λmax(77 K) = 535 nm.

Interestingly, when compound 2 is doped into a polymethylmethacrylate (PMMA) matrix,

the emission is blue-shifted (λmax(PMMA) = 525 nm) compared to that of the powder

(λmax(powder) = 555 nm). In addition, the emission quantum yield increases from

ΦPL(powder) = 55 % to ΦPL(PMMA) = 64 %. At first sight this seems counterintuitive

as a polymer matrix should provide a less rigid environment than the neat powder.5,33,35,37

However, for this specific compound this might not be the case, rather it seems that the

PMMA matrix provides more rigidity of the direct environment which is reflected in the

blue-shifted emission and the increased emission quantum yield.



76 4 Mononuclear Copper Complexes

Figure 4.5: (a) Powder diffraction pattern recorded for the sample as received from
synthesis (red) and after compression (black). (b) Emission spectra recorded
before and after compression. Diffraction measurements were performed by
Sebastian Maderlehner, University of Regensburg.

In the powder phase, the emission of compound 2 (λmax = 555 nm) is blue-shifted

compared to compound 1 (λmax = 575 nm). Also, compound 2 exhibits a significantly

higher emission quantum yield of ΦPL = 55 % compared to the value of ΦPL = 9 % found

for compound 1. These trends are also displayed for the complexes dissolved in EtOH

solution and doped into a PMMA matrix, respectively (compare Table 4.2). Mainly,

the higher quantum yield of compound 2 can be attributed to the 6,6’-methyl groups

present on the bipyridine ligand. These groups act to sterically limit the flattening

distortion on excitation thus preventing an effective nonradiative deactivation to the

ground state. In compound 1 these groups are not present explaining its lower quantum

yield. Furthermore, as discussed above, a flattening distortion results in a red-shift of

the emission. Accordingly, the emission of 1 is expected to be red-shifted compared to 2.

Indeed, this is experimentally observed.

It is noted that also the electron donating character of the methyl groups has an

influence on the emission energy. However, in the absorption spectra only a slight

red-shift of the MLCT absorption band of compound 1 compared to 2 is observed.

In emission, a similarly small energy shift would be expected. However, the observed

energy shift in emission is significantly larger and therefore cannot be rationalized by the

electron donating effect of the methyl groups. An overview of the emission parameters of

compounds 1 and 2 is given in Table 4.2.
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4.1.2 Temperature Dependent Measurements

For a more detailed understanding, the emission behavior of compound 2 (powder) was

investigated under variation of temperature (Figures 4.6 and 4.7). At T = 77 K, the

emission decay time amounts to 87 µs and is therefore assigned to be a phosphorescence

originating from the lowest excited triplet state T1. With increasing temperature, the

decay time decreases drastically to 11 µs at ambient temperature while the quantum

yield does not change significantly between liquid nitrogen and ambient temperature

(ΦPL(300 K) = 55 %, ΦPL(77 K) = 47 %). With this, the radiative rates can be calculated

according to kr = ΦPL τ
−1. They amount to kr(77 K) = 5.4× 103 s−1 and kr(300 K) =

5.0× 104 s−1, i. e. a pronounced increase of the radiative rate by almost a factor of 10

occurs on heating. This very strong increase is paralleled by a blue-shift of the emission

from 575 nm to 555 nm (peak to peak, compare Figure 4.6). Both effects, the increase of

the radiative rate and the blue-shift of the emission can be rationalized by a thermal

population of the energetically higher lying singlet state S1 from the triplet state T1

(Figure 4.7, inset). Such an emission mechanism corresponds to a thermally activated

delayed fluorescence (TADF). The energy separation between the first excited singlet and

triplet state ∆E(S1 − T1) can be estimated from the shift of the emission spectra from

77 K to 300 K, giving ∆E(S1 − T1) = 630 cm−1 (Figure 4.6). A more accurate approach

to determine this energy separation results from measuring the change of the emission

decay time as a function of temperature (Figure 4.7) according to equation 4.1.5,6,28,89,143

τ (T ) =
3 + exp

[
−∆E(S1−T1)

kBT

]
3 τ(T1)−1 + τ(S1)−1 exp

[
−∆E(S1−T1)

kBT

] (4.1)

In this equation, ∆E(S1 − T1) represents the energy separation between the first excited

singlet and triplet state, τ(S1) and τ(T1) are the emission decay times of the first excited

singlet and triplet state, respectively, and kB the Boltzmann constant. From the fitting

procedure, a value of ∆E(S1 − T1) = 720 cm−1 results. This matches well the value

obtained from the spectral shift. For the decay time of the first excited singlet state,

a value of τ(S1) = 160 ns was found. Such a value is in agreement with the singlet

nature of the of this state, however, being connected with a low oscillator strength of

the S1 ↔ S0 transition. An emission originating as a prompt fluorescence was not found,
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Figure 4.6: Emission spectra of [Cu(POP)(dmbyp)][BF4] (1) and [Cu(POP)(tmbyp)][BF4]
(2) at different temperatures. The samples were excited at λexc = 350 nm.

presumably due to the significantly faster intersystem crossing process between the S1

and T1 state.79,86,87 Moreover, the value found for τ(T1) = 84 µs supports the assignment

of a triplet state emission. It is noted that equation 4.1 can only be applied if the emitting

states are in a thermal equilibrium. In the temperature range between 77 K and 300 K,

this condition is fulfilled.

For completeness it is mentioned that for compound 1 a determination of the energy

splitting ∆E(S1 − T1) by measuring the emission decay time in dependence of the

temperature could not be performed due to the large nonradiative contribution to the

decay time. However, from the shift of the emission energy from T = 77 K to 300 K the

splitting can be estimated to amount to ∆E(S1 − T1) = 580 cm−1 (compare Figure 4.6)

which is similar to the splitting found for compound 2.
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Figure 4.7: Emission decay time of compound 2 (powder) versus temperature. The decay
times are close to monoexponential in the whole temperature range. The solid
curve represents a fit according to equation 4.1. The parameters obtained
from the fitting procedure amount to ∆E(S1−T1) = 720 cm−1, τ(T1) = 84 µs,
and τ(S1) = 160 ns.

4.1.3 Conclusion

In this section it was demonstrated how a slight modification of the chemical structure of

a [CuI(diimine)(diphosphine)]+ can lead to a substantial increase of the emission quantum

yield. In the case of the [Cu(POP)(dmbpy)]+ complex, this is achieved by the increase of

the steric demand of the bipyridine ligand through the introduction of two additional

methyl groups in the 6,6’ positions resulting in the [Cu(POP)(tmbpy)]+ complex. In

combination with the bulky POP ligand, these groups limit the photoinduced flattening

distortion that the compound can undergo on excitation of an MLCT state. As a result,

the nonradiative deactivation to the ground state is significantly reduced, leading to

around a 6-fold increase of the emission quantum yield from 9 % to 55 % (or even 74 %

for the sample after grinding). These observations demonstrate the increased rigidity

enforced upon the structure of 2 compared to that present in 1 as a result of the steric

demands of the 6,6’-methyl groups on the bipyridyl ligands.

Most interestingly, for the sterically constrained compound 2, it was found that

at ambient temperature the emission is largely determined by a thermally activated

delayed fluorescence. At ambient temperature, the compound emits almost only from the
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first excited singlet state S1 (1MLCT) which is thermally populated from the T1 state

(3MLCT). This results in a relatively short emission decay time at ambient temperature

of 11 µs as compare to the triplet state decay time of 84 µs. This short emission decay

time along with the high emission quantum yield and the occurrence of a TADF make

compound 2 highly attractive for the use in electroluminescent devices. Recently, efficient

light-emitting electrochemical cells utilizing this class of compounds as emitter materials

have been demonstrated.99
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4.2 Cu(I) Complexes with Three Coordinations

A crucial parameter that determines the effectiveness of a thermally activated delayed

fluorescence in a particular substance is the energy separation between the first excited

singlet and triplet state ∆E(S1 − T1). If it is larger than about 3000 cm−1, a thermal

population of the singlet state S1 from the triplet state T1 is not effective. Therefore, it

is important to understand how ∆E(S1 − T1) can be controlled by properly engineering

the chemical structure of an emitter complex. For this, the two structurally related

Cu(I) complexes (IPr)Cu(py2-BMe2) (1) and (Bzl-3,5Me)Cu(py2-BMe2) (2) (IPr = 1,3-

bis(2,6-diisopropylphenyl)imidazol-2-ylidene, Bzl-3,5Me = 1,3-bis(3,5-dimethylphenyl)-

1H-benzo[d]imidazol-2-ylidene, py2-BMe2 = di(2-pyridyl)dimethylborate) have been

investigated. The chemical structures are displayed in Table 4.3. Interestingly, compound

1 shows a highly effective TADF (with ∆E(S1−T1) = 740 cm−1), whereas for compound

2 only phosphorescence but no TADF is observed at ambient temperature. In this section,

a detailed photophysical investigation of the the two complexes is presented and it is

discussed why despite similar chemical structures the photophysical properties of both

compounds differ drastically, especially with respect to the value found for ∆E(S1 − T1).

Large parts of this section have been published previously in reference 39.

4.2.1 Ambient Temperature Phosphorescence versus TADF

Under excitation with UV light, the powders of the studied complexes display intense

blue (1) and yellow (2) luminescence at ambient temperature with short emission decay

times of 11 µs and 18 µs and remarkably high emission quantum yields of 76 % (1) and

73 % (2), respectively. In Figure 4.8, the corresponding emission spectra are displayed.

The spectra are broad and featureless with maxima at 475 nm (1) and 575 nm (2) at

300 K. The shapes of the spectra indicate that the emission originates from a charge

transfer state which, in this case, is mainly of metal-to-ligand charge transfer (MLCT)

nature. This assumption is in agreement with literature assignments of other Cu(I)

compounds.5,6,13,30,32–38,40,42,52,68,85,86,95–97,134–139 and is further substantiated by results of

DFT and TDDFT calculations presented in reference 68 and below. The emission of 2 is

found at significantly lower energy than that of compound 1. This can be rationalized

by the expansion of the π-system of the IPr ligand (compound 2) which leads to a lower

lying LUMO energy than that of the Bzl-3,5Me ligand, whereas the HOMO of both
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Figure 4.8: Normalized emission spectra of compound 1 and 2 as powders at ambient
temperature and at 77 K. The samples were excited at λexc = 350 nm.

compounds are comprised of metal and py2-BMe2 orbitals, giving HOMO energies that

are nearly unchanged. As a result, the HOMO–LUMO gap and therefore, the emission

energy is lower for 2 than for 1.68

When cooling from ambient temperature to 77 K, a red-shift of the emission from

475 nm to 490 nm (≈ 650 cm−1) is observed for compound 1. In addition, the emission

decay time increases by a factor of about three from 11 µs to 34 µs, whereas the radiative

rate kr = ΦPL τ
−1 decreases by about the same factor from 6.9× 104 s−1 to 2.7× 104 s−1.

The significantly longer emission decay time at T = 77 K of 34 µs (compared to the 11 µs

found at 300 K) suggests that the emitting state at T = 77 K is the triplet state T1.

Further proof for this assignment is given in section 4.2.3. However, it is remarked that a

triplet decay time of 34 µs is extraordinarily short compared to other Cu(I) presented in

this thesis and found in the literature.5,32,33,35,81,144 This indicates that spin-orbit coupling

(SOC) is particularly effective in compound 1. A more detailed discussion of this is

given in sections 4.2.2 and 4.2.3 The observed changes of the emission decay time or

the radiative rate and the spectral shift of the emission peaks upon temperature change

can be explained by the occurrence of a TADF at T = 300 K and is discussed in more

detail in section 4.2.3. In contrast, the emission decay time of compound 2 changes only

slightly from 21 µs to 18 µs when heating from T = 77 K to ambient temperature. Almost
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Table 4.3: Structures and emission properties of the compounds (IPr)Cu(py2-BMe2) (1)
and (Bzl-3,5Me)Cu(py2-BMe2) (2) as powders. The decay time is monoex-
ponential in the entire temperature range above ≈ 25 K. The radiative kr
and non-radiative knr rates were calculated according to kr = ΦPL τ

−1and
knr = (1− ΦPL) τ−1, respectively.

1 2

Temp. [K] 300 77 300 77
λmax [nm] 475 490 575 585
ΦPL [%] 76 91 73 80
τ [µs] 11 34 18 21
kr[104 s−1] 6.9 2.7 4.1 3.8
knr[104 s−1] 2.2 0.3 1.5 1.0

no change is found for the radiative rate amounting to kr(77 K) = 3.8× 104 s−1 and

kr(300 K) = 4.1× 104 s−1, respectively. This indicates that for compound 2 TADF is not

effective and that the observed emission even at ambient temperature is a phosphorescence

stemming from T1. The slight red-shift of the high energy flank observed on cooling

may be explained (especially for this triplet emitter) by freezing out energetically higher

lying emissions from an inhomogeneously broadened distribution in the powder sample

(compare reference 96) and is therefore not a result of the freezing out of the singlet

emission. This is in contrast to compound 1 for which the entire spectrum is shifted.

(4.8) Further support for this rationalization is given by the investigation of the emission

spectra in a PMMA (polymethylmethacrylate) matrix at 300 K and 77 K. In this situation,

no such spectral change on temperature variation is observed, besides a slight narrowing

on cooling.
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4.2.2 Compound 2 – Typical Triplet Emitter

In this section, the discussion is focused on compound 2. More specifically, the decay

behavior of this compound is investigated in the temperature range between 1.3 K and

300 K (Figure 4.9) which is particularly instructive.

From Figure 4.9, it can be seen that the (thermalized) decay time for compound 2 is

almost constant in the temperature range between ≈ 10 K and 300 K and amounts to

about 20 µs. Also the radiative rate is essentially constant (compare Table 4.3) which

allows assigning the emission as phosphorescence stemming from the T1 state in the entire

temperature range. An emission via the TADF mechanism (compare section 4.2.3) is not

occurring in this case. Thus, it can be concluded that the energy splitting ∆E(S1 − T1)

between the first excited singlet and triplet state is larger than 3000 cm−1 as for such a

large value no significant thermal activation is expected at T = 300 K.

Figure 4.9: Thermalized emission decay time of compound 2 (powder) versus temperature.
The sample was excited at λexc = 355 nm and the signal was detected at
λdet = 600 nm. The red line represents a fit according to equation 4.2. Insets:
Decay curves at 1.3 K, 77 K, and 300 K.

Interestingly, when the temperature is decreased below ≈ 10 K a steep increase of

the decay time from about 20 µs to 1 ms at T = 1.3 K is observed. A similar behavior

is well known from other transition metal compounds, such as Ir(III) and Pt(II) com-

pounds,5,65,76,88,118,145,146 and can be related to the energy splitting of the triplet state into
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three substates. This so-called zero-field splitting (ZFS) is a consequence of spin-orbit

coupling (SOC). Apart from the fast component with a decay time of 2 µs found at

T = 1.3 K, the emission decay time at low temperature is governed by a Boltzmann

distribution of the three substates I, II, and III. According to the monoexponential

decay, these states are in a thermal equilibrium (after several µs). At low temperature,

mainly emission from the energetically lowest substates I (and II) is observed. With

increasing temperature, the higher lying substate III is thermally populated. Since

frequently, the radiative rates corresponding to the transitions from the energetically

higher lying substates to the S0 ground state are larger than the rates corresponding

to the lowest substate(s), the averaged emission decay time decreases with increasing

temperature.5,28,65,76,88,118,145,146 Accordingly, the data given in Figure 4.9 can be fitted

with a modified Boltzmann function (equation 4.2) in order to determine the ZFS values

and the decay time constants of the individual triplet substates (compare references 28,

65, 118).

τ(T) =

[
1 + e

−∆E(II−I)
kBT + e

−∆E(III−I)
kBT

]
×[

τ−1
I + τ−1

II e
−∆E(II−I)

kBT + τ−1
IIIe

−∆E(III−I)
kBT

]−1 (4.2)

In this equation, τ(T) refers to the emission decay time at a given temperature T, τI ,

τII , and τIII to the individual decay times of the three triplet substates (I, II, and III),

∆E(III− I) and ∆E(II− I) to the energy splittings between the triplet substates III/I

and II/I, respectively, and kB to the Boltzmann constant.

As a result of the fitting procedure, a value of ∆E(III− I) = ∆E(ZFS) = 5 cm−1 was

found. Such large ZFS values are only rarely found for Cu(I) complexes and only one

example of a similarly large ZFS splitting has been reported recently.106 However, by

this procedure, it could not be determined where substate II is energetically located with

respect to substate I and III. If it is assumed that substates I and II are energetically

close (∆E(II − I) ≈ 0 cm−1, compare references 5, 33), the emission decay times of

the three triplet substates can be obtained. They amount to τI ≈ τII = 1.5 ms and

τIII = 7 µs. The results found for compound 2, especially the value of ZFS = 5 cm−1

and the average emission decay time match well with an empirical ordering scheme that

correlates ∆E(ZFS) with the phosphorescence decay time.1,5 From this perspective it is
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not surprising that a ZFS value of 5 cm−1 is found for a compound with a triplet decay

time of about 20 µs.

The short emission decay component of 2 µs at T = 1.3 K becomes shorter and the

component diminishes rapidly with increasing temperature and cannot be observed

at temperatures higher than ≈ 25 K. Such a behavior indicates the occurrence of a

relatively slow spin-lattice relaxation (SLR) from the higher lying triplet substate III to

the substates I and II according to the direct process of SLR.76,145 Moreover, in a very

rough estimate, one can use the measured value of τ(SLR) = 2 µs to determine the energy

separation between the involved states, i. e. the value of ∆E(ZFS). With the relation

of ∆E(ZFS)3 ∝ τ(SLR)−1 for the direct process of SLR and the corresponding values

known from other organo-transition metal compounds,76,145 one obtains a value of 4 cm−1

which nicely confirms the splitting values as determined from the fitting procedure as

discussed above.

4.2.3 Compound 1 – Thermally Activated Delayed Fluorescence

In Figure 4.10, the emission decay time of compound 1 is displayed versus temperature.

Similar as for compound 2, two decay components are observed in the temperature range

between 1.3 K and ≈ 25 K (not displayed in Figure 4.10). The short component can

again be assigned to SLR processes, whereas the long component corresponds to the

thermalized emission of the three triplet substates (compare previous section). As for

compound 2, a significant reduction of the decay time between T = 1.3 K and 10 K from

110 µs to 40 µs is observed. Again, this can be assigned to the thermal population of

higher lying triplet substates from the lowest one(s) leading to an average value of 34 µs

between ≈ 10 K and ≈ 100 K (“plateau”).

However, in contrast to the behavior of compound 2, the emission decay time of

compound 1 is not constant up to T = 300 K. It decreases from about 34 µs to 11 µs at

ambient temperature. This effect can be rationalized by the following considerations.

At low temperature, only the triplet state T1 is contributing to the emission. With

increasing temperature, a thermal population of the energetically higher lying singlet S1

state becomes possible. As the S1 state exhibits a significantly shorter emission decay

time than the T1 state, an overall reduction of the emission decay time is observed with

increasing temperature. Additionally, a blue-shift of the emission occurs as the S1 state

lies energetically higher than the T1 state. This emission mechanism corresponds to a
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Figure 4.10: Emission decay time of compound 1 as powder versus temperature. The
sample was excited at λexc = 378 nm and the signal was detected at λdet =
490 nm. The red line represents a fit according to equation 4.3. Inset: Decay
curves at T = 77 K and 300 K.

TADF.

The measured data, as displayed in Figure 4.10, can be fitted with equation 4.3, which

represents an expansion of equation 4.2 by two additional terms (marked in red), which

take the thermal population of the singlet state S1 into account.

τ(T) =

[
1 + e

−∆E(II−I)
kBT + e

−∆E(III−I)
kBT + e

−∆E(S1−T1)
kBT

]
×[

τ−1
I + τ−1

II e
−∆E(II−I)

kBT + τ−1
IIIe

−∆E(III−I)
kBT + τ−1

S1
e
−∆E(S1−T1)

kBT

]−1 (4.3)

From the fitting procedure, the decay times of the three triplet substates of τI ≈ τII =

116 µs and τIII = 13 µs and a value of ∆E(ZFS) = 4 cm−1 was found. The latter one is

only slightly smaller than found for compound 2. Similarly as for compound 2, the energy

of substate II with respect to substate I and III could not be determined. For the fitting

procedure ∆E(II − I) = 0 cm−1 was assumed. The energy splitting between the first
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excited triplet T1 and singlet S1 state is determined to ∆E(S1 − T1) = 740 cm−1. This

value is in good agreement with the blue-shift of the emission spectrum when heating

from 77 K to 300 K amounting to 650 cm−1. The corresponding emission decay time of

the singlet state is found to be τ(S1) = 160 ns. Such a short decay time emphasizes the

singlet nature of this state. It is remarked that in contrast to the delayed fluorescence,

a prompt fluorescence is not observed for this compound as intersystem crossing (ISC)

from the S1 to the T1 state, probably being of the order of 10 ps,79,86,87 is much faster

than the prompt S1 → S0 emission.

Interestingly, the increase of the radiative rate and the related decrease of the emission

decay time with increasing temperature is for compound 1 significantly less pronounced

than for other Cu(I) complexes. For example, the copper complexes presented in chapter

3 show an increase of the radiative rates by the TADF process by a factor of 40 to 150,

whereas compound 1 exhibits only an increase by a factor of 3. An explanation for

this behavior can be given when the emission decay path from the triplet to the singlet

ground state is also taken into account. For the compounds in section 3, the triplet state

decay times are long, lying between 250 µs and 2200 µs, whereas compound 1 exhibits

a decay time of only 34 µs. Therefore, a reduction of the decay time by involving the

TADF process at higher temperatures is much less effective.

4.2.4 Controlling TADF by Ligand Orientation

As discussed in section 4.2.1, at ambient temperature compound 1 displays an effective

TADF, whereas for compound 2 thermal population of the singlet state is not observed

due to the activation energy being greater than 3000 cm−1. Obviously, this effect is

connected to differences in the chemical structures of the NHC (N-heterocyclic) ligands

on the molecules. From Table 4.4 it can be seen that the compounds differ in two aspects.

(i) the π-system of the imidazole ring in compound 1 is expanded by benzannulation

in compound 2. (ii) The isopropyl groups groups at the 2,6-positions on the pendant

phenyl rings of the NHC ligand in 1 are replaced by methyl groups at the 3,5-positions

giving compound 2.

For a better understanding of the effects of these modifications on the energy gap

∆E(S1 − T1) between the first excited singlet and triplet state, DFT and TDDFT

calculations were performed for compound 1 and 2 as well as for two further model

compounds 1a and 2a as are displayed in Table 4.4. Compound 1a represents a modified
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version of compound 1 in which the imidazole ring is π-extended to benzimidazole, but the

isopropyl groups on the phenyl rings are retained. Compound 2a represents a modification

of compound 2 where the π-system of the benzimidazole moiety is trimmed to imidazole,

but the methyl groups are left unchanged. For all four structures displayed in Table

4.4, a DFT geometry optimization for the electronic ground state was performed. As

starting geometry, the crystal structures were used as described and provided in reference

68. The starting geometries of compounds 1a and 2a were created by expanding or

contracting the π-system, respectively, of the NHC ligand in the structures of compound

1 and 2. TDDFT calculations were performed on the structures obtained after geometry

optimization.

It was found that compound 1 and 1a exhibit similar (and small) singlet-triplet gaps

of 710 cm−1 and 600 cm−1, respectively. This is in good agreement with the experimental

value found for compound 1 amounting to ∆E(S1 − T1) = 740 cm−1 (compare section

4.2.3). For compound 2 and 2a, large values of 5800 cm−1 and 4200 cm−1, respectively,

were found (Table 4.4). These results indicate that expanding the π-system of the

NHC ligand does not have a strong impact on the singlet-triplet splitting. Therefore,

these modifications cannot explain the experimentally found differences with values of

∆E(S1 − T1) = 740 cm−1 for 1 and of ∆E(S1 − T1) > 3000 cm−1 for 2.

Interestingly, the insensitivity of the exchange energy to benzannulation of the imidazole

ring indicates that the methyl and isopropyl groups present at the IPr and Bzl-3,5Me

ligands play an important role for the ∆E(S1 − T1) value and the occurrence of TADF.

However, it seems unlikely that these groups impart a direct electronic impact on the

singlet-triplet splitting. Instead, the alkyl groups can exert steric control over the

orientation of the two ligands towards each other and change the electronic behavior

of the compounds in this manner. In support, the X-ray structures (compare reference

68) show that for compound 1, the IPr and the py2BMe2 are nearly coplanar, whereas

for compound 2, the Bzl-3,5Me and py2-BMe2 ligands are almost perpendicular to each

other (Figure 4.11).

Thus, the influence of the relative orientations of the ligands towards each other on the

singlet-triplet energy splitting was investigated using a model compound 1b (Figure 4.11).

In this model compound, the isopropyl groups were removed from the phenyl rings of the

NHC ligand. This change allows for variation of the N–C–Cu–N torsion angle (marked

green in Figure 4.13) without encountering steric hindrance from the adjacent py2-BMe2

ligand. The N–C–Cu–N torsion angle of 1b was then fixed at values between 0° and 100°
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Table 4.4: Chemical structures of compounds 1 and 2 as well as of the modified versions
1a and 2a. The values for ∆E(S1 − T1) obtained from TDDFT calculations
and from experimental investigations (in brackets) are also displayed.

1 1a

710 cm−1 (740 cm−1) 600 cm−1

2 2a

5800 cm−1 (> 3000 cm−1) 4200 cm−1
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Figure 4.11: Perspective drawing of the optimized geometries of compounds 1 and 2
as well as of the model compound 1b. Hydrogen atoms were omitted for
clarity.

in steps of 10° for a DFT geometry optimization of the singlet ground state. Interestingly,

these calculations show that the spatial distribution of the HOMO changes with variation

of the torsion angle. In particular, for an angle of 0° the HOMO is localized on the

copper center and the py2-BMe2 ligand, whereas it is extended onto the imidazole ring

when the angle is 90° (compare Figure 4.12). In contrast, the LUMO remains localized

on the π∗-orbitals of the NHC ligand for all torsion angles. The difference in the HOMO

is due to the angular relation between the metal d- and imidazole π-orbitals. When the

ligands are coplanar the two sets of orbitals are (spatially) orthogonal and thus do not

electronically couple to each other. However, in the perpendicular orientation the orbitals

have the appropriate symmetry to conjugate and delocalize their electronic distribution

onto both ligands. Consequently, spatial overlap between HOMO and LUMO is small

when the torsion angle is 0° (hence a small exchange energy results), whereas a significant

overlap exists between the frontier orbitals with a 90° torsion thereby increasing the

exchange energy. Since the lowest excited singlet and triplet states are largely comprised

from transitions between these frontier orbitals (> 94 % for the S1 and > 82 % for the

T1 state, see Table 4.5) variation in the degree of spatial overlap will strongly alter the

value of ∆E(S1 − T1).

A more accurate estimate of the dependence of the singlet-triplet splitting on the

torsion angle can be made when TDDFT calculations are performed on the (torsion

constrained) optimized geometries. As compound 1b exhibits a symmetry element at all



92 4 Mononuclear Copper Complexes

Figure 4.12: HOMOs and LUMOs of model compound 1b displayed for a torsion angle
of 0° and 90°, respectively.

rotations (either a mirror plane or a S2 axis), the values of ∆E(S1 − T1) are identical

at positive and negative torsion angles. The data, displayed in Figure 4.13, show that

the singlet-triplet splitting in 1b is lowest 540 cm−1 when the N–C–Cu–N torsion angle

between the two ligands is 0°. This result is in agreement with the experimental data

found for compound 1 with a torsion angle of 5° and a singlet-triplet splitting of 740 cm−1.

In contrast, when the torsion angle is 70° (as realized for compound 2) a splitting of

3700 cm−1 is obtained from the calculations. For such a large ∆E(S1 − T1) energy

separation no TADF would occur at ambient temperature. These model calculations

strongly support the experimental results of a lower ∆E(S1 − T1) limit of 3000 cm−1 as

predicted for compound 2.



4.2 Cu(I) Complexes with Three Coordinations 93

Table 4.5: Percental contribution of the HOMO–LUMO transition to the S1 and T1 states.
Data given for compound 1b at the B3LYP/def2-SVP level of theory.

Torsion angle S1 T1

0° 0.95 0.93
10° 0.95 0.92
20° 0.95 0.91
30° 0.94 0.90
40° 0.94 0.88
50° 0.95 0.85
60° 0.97 0.82
70° 0.96 0.85
80° 0.98 0.88
90° 0.99 0.88
100° 1.00 0.88

4.2.5 Conclusion

Materials that are applied as emitters in organic light-emitting diodes should be able to

utilize all injected excitons for the generation of light. At the moment, these requirements

are best met by materials that exhibit the triplet harvesting effect, typically based on

high-cost Pt(II) or Ir(III) complexes, or the singlet harvesting effect, typically based

on low-cost Cu(I) complexes or purely organic materials. Emitters showing the triplet

harvesting effect hereby stand out through very effective spin-orbit coupling, whereas

emitters exhibiting the singlet harvesting effect excel through a small energy splitting

between the first excited triplet and singlet state resulting in a thermally activated

delayed fluorescence.

Both mechanisms lead to an effective reduction of the emission decay time and allow

exploiting singlet and triplet excitons for the generation of light in an OLED. One

of the compounds presented in this section (compound 1) combines the advantages

of both the triplet and the singlet harvesting effect. (i) It exhibits relatively strong

spin-orbit coupling which results in a (compared to other Cu(I) compounds known

so far) very short triplet emission decay time of only 34 µs. (ii) The energy splitting

between the first excited singlet and triplet state amounts to only 740 cm−1. Therefore

the compound exhibits an effective TADF. The contribution of each of the two effects

to the emission can be quantified according to equations 3.4 and 3.5 in section 3.1.4.
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Figure 4.13: Singlet-triplet splitting ∆E(S1 − T1) in dependence of the torsion angle
N–C–Cu–N (marked by the green line) as obtained from DFT and TDDFT
calculations on the B3LYP/def2-SVP level of theory.

It is found that at ambient temperature 38 % of the emission intensity stems from the

triplet state and 62 % from the singlet state. Accordingly, the deactivation via both

radiative decay paths induces a greater overall radiative deactivation rate. Thus, due

to the combination of phosphorescence and delayed fluorescence an effective decay time

of τ = 11 µs can be achieved which is shorter than the decay times of the individual

processes (τTADF (300 K) = 16 µs and τPh = 34 µs).

Another important issue that has been revealed in this investigation is the connection

between the orientation of the ligands towards each other and the value of the activation

energy for a TADF process. The ligand orientation is crucial for the difference between

a good OLED emitter with relatively short decay time and an emitter with too long

emission decay time for good OLED performance. Therefore, the results presented here

give valuable guidelines for the development of new TADF emitter materials.
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Figure 4.14: Energy level diagrams of compound 1 and 2. At ambient temperature,
compound 2 shows only emission from the triplet state, while compound
1 additionally exhibits a TADF. The combination of TADF and triplet
emission (phosphorescence) results in a distinct reduction of the emission
decay time. The triplet state exhibit zero-field splittings of 4 cm−1 and 5 cm−1

for compound 1 and 2, respectively. The TADF decay time τ(TADF) at
T = 300 K was calculated according to τ(phosphorescence + TADF)−1 =
τ(phosphorescence)−1 + τ(TADF)−1. Note that the given phosphorescence
decay times are the T = 77 K values.





Experimental Section

All investigated substances were provided by cooperation partners. The synthetic routes

are described in references 36, 41, 68, 95. Emission and excitation spectra were measured

with a Fluorolog 3-22 (Horiba Jobin Yvon) spectrometer which was equipped with a

cooled photomultiplier (RCA C7164R). For the measurement of the emission decay times

the same photomultiplier was used in combination with a FAST multichannel scaler PCI

card (Comtec). As excitation source for the decay time measurements a pulsed diode laser

(Picobrite PB-375L,) with an excitation wavelength of 378 nm and a pulse width < 100 ps

or a pulsed Nd:YAG Laser (IB Laser Inc. DiNY pQ 02) with an excitation wavelength

of 355 nm and a pulse width < 7 ns were used. For adjusting the temperature in the

range between 1.3 K and 300 K, the samples were placed into a helium cryostat (Cryovac

Konti Cryostat IT) in which the helium gas flow and heating were controlled. Absolute

measurements of the photoluminescence quantum yields at ambient temperature and

at 77 K, respectively, were performed with a C9920-02 (Hamamatsu Photonics) system.

Absorption spectra were recorded using a Cary 300 (Varian) two beam spectrometer.

For measurements of emission properties in solution, all samples were deoxygenated by

at least five freeze-pump-thaw cycles. Measurements were performed in dilute solutions

to prevent concentration effects. For the same reason, the doping concentration for

measurements in polymethylmethacrylate film was chosen to be less than 1 wt %. DFT

and TDDFT calculations were carried out using NWChem 6.3 on a high performance

computing cluster.147 The calculations were performed on the B3LYP/def2-SVP level of

theory,148,149 which has shown to give good results for other Cu(I) compounds.107





Summary

In this thesis, different classes of OLED (Organic Light-Emitting Diodes) relevant Cu(I)

and Ag(I) complexes have been investigated. Within each compound class two or more

specific complexes with slightly altered chemical structures have been studied to establish

relationships between chemical structures and photophysical properties. The compounds

have been studied in a wide temperature range between 1.3 K and 300 K. For some

materials, also the influence of the surrounding environment on the emission behavior

has been investigated. In addition, density functional (DFT) and time-dependent density

functional (TDDFT) methods have been applied to get further insight into the electronic

structure. In the following, an overview over the results obtained in the scope of this

thesis is given. It is noted that parts of these summaries have been extracted from the

abstracts of references 36, 39, 41, 42.

Complexes with two copper centers

In the first part of chapter 3, the four Cu(I) complexes [Cu(µ-Cl)(PNMe2)]2, [Cu(µ-

Br)(PNMe2)]2, [Cu(µ-I)(PNMe2)]2, and [Cu(µ-I)(PNpy)]2 (structures displayed on page

36) have been investigated. They represent a series of dinuclear compounds in which

an aminophosphine ligand is coordinated to each copper center and where the copper

centers themselves are bridged by two halides. At ambient temperature, the complexes

exhibit strong blue and green emission as powders with emission maxima ranging from

λmax = 464 nm to 506 nm and emission quantum yields as high as 65 % at decay times

as short as 4 µs. Interestingly, it was found that the bridging halides distinctly alter the
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emission energy, whereas the spatial separation of the two copper centers does not have a

significant impact on this. Moreover, all compounds do not show effects of concentration

quenching at high emitter concentration, a property that might be attractive for reducing

the efficiency roll-off in OLEDs at higher current densities. An investigation of the

emission decay behavior between 1.3 K and 300 K gives insight into the nature of the

emitting states. At temperatures below ≈ 60 K, the decay times of the studied compounds

amount to several hundred microseconds, which indicates that the emission originates

from a triplet state (T1 state). DFT calculations show that this state is of (metal+halide)-

to-ligand charge transfer 3(M+X)LCT character. Studies at T = 1.3 K allow to gain

insight into the three triplet substates, in particular, to determine the individual substate

decay times being as long as a few milliseconds. The energy splitting of these three

substates, the zero-field splitting (ZFS), could be determined to be smaller than 2 cm−1.

With an analysis of these data, conclusions about the effectiveness of spin-orbit coupling

(SOC) can be drawn. Interestingly, the large differences of the spin-orbit coupling (SOC)

constants of the halides are not obviously displayed in the triplet state properties. With

temperature increase from T ≈ 60 K to 300 K, a significant decrease of the emission decay

time by almost two orders of magnitude is observed, and at ambient temperature, the

decay times amount to only 4 µs− 7 µs without a significant reduction of the emission

quantum yield. This drastic decrease of the (radiative) decay time is a result of the

thermal population of a short-lived singlet state (S1 state) that lies energetically only

a few hundred wavenumbers (460 cm−1 − 630 cm−1) higher than the T1 state. Such an

emission mechanism corresponds to a thermally activated delayed fluorescence (TADF).

At ambient temperature, almost only a delayed fluorescence (≈ 98 %) is observed.

In the second part of chapter 3, the photophysical investigations are extended to the

dinuclear Cu2Cl2(dppb)2 complex (structure displayed on page 58). In contrast to the

compounds presented in the first part, this complex features diphosphine instead of

aminophosphine ligands while the remaining chemical structure is similar. Furthermore,

also the Ag(I) homologue Ag2Cl2(dppb)2 is studied. The emission maximum of the Cu(I)

complex is found to lie at λmax = 545 nm and the emission quantum yield amounts to

35 %. Compared to this, the emission maximum of the Ag(I) complex is significantly blue

shifted by 65 nm resulting in an emission maximum of λmax = 480 nm. Interestingly, the

emission quantum yield is almost three times higher for the Ag(I) complex amounting to

93 %. Therefore, substituting the Cu(I) by an Ag(I) ion represents a promising strategy

for engineering highly efficient blue light emitters. Both compounds show a very effective
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thermally activated delayed fluorescence with energy splittings ∆E(S1 − T1) amounting

to only 600 cm−1 for the Cu(I) and 980 cm−1 for the Ag(I) complex. Consequently, the

emission decay times at ambient temperature are short amounting to only 3 µs and 15 µs

for the Cu(I) and the Ag(I) complex, respectively. The TADF process is also displayed

in the increase of the radiative rate when heating from 77 K to 300 K. For the Ag(I)

complex the radiative rate increases by a factor of 70 from 8.7× 102 s−1 to 6.2× 104 s−1.

For the Cu(I) complex, the radiative rate even increases by a factor of about 500 from

2.4× 102 s−1 to 1.2× 105 s−1. In contrast to this, investigations down to T = 30 K show

that emission decay times of the triplet state T1 are very long amounting to τ = 1.1 ms

for the Ag(I) and to τ = 2.2 ms for the Cu(I) complex. This indicates that spin-orbit

coupling is particularly weak.

Interestingly, from the experimental data obtained from investigations on the dinuclear

compounds presented in this chapter, a correlation between the decay time of the singlet

state S1 and the singlet triplet energy splitting ∆E(S1 − T1) could be proposed. From

this it can be concluded that there exists a lower limit for the emission decay time that

cannot be overcome by emitters whose emission mechanism corresponds to a pure TADF.

For ambient temperature, this limit has been determined to be of the order of about

4.5 µs.

Complexes with one copper center

In the first part of chapter 4, the two mononuclear complexes [Cu(I)(POP)(dmbpy)]+

and [Cu(I)(POP)(tmbpy)]+ have been studied (structures displayed on page 70). The

compounds exhibit one copper center which is pseudo-tetrahedrally coordinated by

the bidentate ligands POP and dmbpy or tmbpy, respectively. At ambient tempera-

ture, the emission of [Cu(I)(POP)(tmbpy)]+ as powder peaks at λmax = 555 nm and

the emission quantum yield amounts to 55 %. In contrast to this, the emission of

[Cu(I)(POP)(dmbpy)]+ is red shifted with a maximum at λmax = 575 nm and the emis-

sion quantum yield is drastically lower amounting to only 9 %. Both effects, the red shift

of the emission and the lower emission quantum yield, can be related to a flattening

distortion from a pseudo-tetrahedral towards a more planar coordination that occurs on

excitation. This flattening distortion is assigned to be a consequence of the pronounced

metal-to-ligand charge transfer character of the first excited singlet and triplet state.

Moreover, the distortion is more pronounced for [Cu(I)(POP)(dmbpy)]+. This is because
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[Cu(I)(POP)(tmbpy)]+ exhibits two additional methyl groups on the tmbpy ligand which

sterically interact with the POP ligand and therefore limit the extent of the flattening

distortion. Furthermore, it was found that the matrix plays a crucial role for the emission

behavior. A relatively rigid matrix, for example solid powder, largely suppresses geometry

distortions on excitation whereas in softer matrices, for example fluid solution, this is

not the case. As a consequence, the emission of both compounds is red shifted and

the emission quantum yield is significantly reduced in solution compared to the powder

phase. Interestingly, the emission properties of the powder of [Cu(I)(POP)(tmbpy)]+

can be strongly altered by mechanical manipulation, for example by grinding or by

compression. Hereby, compression results in an increase of the samples crystallinity, a

slight red shift of the emission, and a decrease of the emission quantum yield. This might

indicate that compressing the powder sample results in a softer local environment for

the emitting molecules. To gain further insight into the electronic structure the emission

behavior of [Cu(I)(POP)(tmbpy)]+ was investigated in dependence of the temperature.

At temperatures lower than ≈ 100 K the emission decay time amounts to about 84 µs.

With increasing temperature the decay time decreases and reaches 11 µs at ambient tem-

perature. This emission mechanism represents a thermally activated delayed fluorescence.

The activation energy for this process could be determined to ∆E(S1 − T1) = 720 cm−1.

In the second part of chapter 4, the photophysical properties of the two highly emissive

three-coordinate Cu(I) complexes (IPr)Cu(py2-BMe2) and (Bzl-3,5Me)Cu(py2-BMe2)

(structures displayed on page 83), with two different N-heterocyclic (NHC) ligands

have been investigated in detail. The compounds exhibit remarkably high emission

quantum yields of more than 70 % in the powder phase. Despite similar chemical

structures of both complexes, at ambient temperature only (IPr)Cu(py2-BMe2) exhibits

a thermally activated delayed blue fluorescence (λmax = 475 nm), whereas compound

(Bzl-3,5Me)Cu(py2-BMe2) shows a pure yellow phosphorescence (λmax = 575 nm). This

behavior is related to the torsion angle between the two ligands. Changing this angle

has a huge impact on the energy splitting between the first excited singlet S1 and triplet

T1 state and therefore on the TADF properties. In addition, it was found that in

both compounds spin-orbit coupling is particularly effective compared to other Cu(I)

complexes. This is reflected in short emission decay times of the triplet state of only 34 µs

((IPr)Cu(py2-BMe2)) and 21 µs ((Bzl-3,5Me)Cu(py2-BMe2)), respectively, as well as in the

zero-field splitting of the triplet state amounting to 4 cm−1 for (IPr)Cu(py2-BMe2) and

5 cm−1 for (Bzl-3,5Me)Cu(py2-BMe2). Accordingly, at ambient temperature, compound
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(IPr)Cu(py2-BMe2) exhibits two radiative decay paths which are thermally equilibrated:

one via the S1 state as TADF path (62 %) and one via the T1 state as phosphorescence

(38 %). Thus, if the material is applied in an organic light-emitting diode, the generated

excitons are harvested mainly in the singlet state, but to a significant portion also in the

triplet state. This novel mechanism based on two separate radiative decay paths reduces

the overall emission decay time distinctly.





Conclusion

In recent years it has been recognized that low-cost Cu(I) complexes represent an

attractive alternative to high-price Ir(III) and Pt(II) compounds as emitters in organic

light-emitting diodes (OLEDs). For this application, Cu(I) complexes should exhibit

short emission decay times and high emission quantum yields, properties that strongly

depend on the chemical structure of the specific complex. Gaining deeper insight into the

structure-property relationship of this emitter class is the central aspect of this thesis.

Typically, emission quantum yields of Cu(I) compounds are relatively low as the

complexes undergo pronounced geometry distortions on excitation which results in strong

non-radiative deactivation to the ground state. However, if these distortions are largely

suppressed the emission quantum yield can be increased significantly. One approach to

achieve this is the use of sterically demanding ligands. Another approach is based on an

increase of the rigidity of the matrix in which the emitter molecules are embedded. Both

concepts have been demonstrated to give good results, but especially the interaction

between emitter molecule and matrix environment is underexplored and possesses large

potential for an improvement of the emission properties of the guest molecules.

Even if they exhibit high emission quantum yields, most Cu(I) complexes at first sight

seem unsuitable for the application in electroluminescent devices due to their long triplet

state (phosphorescence) decay times which can amount up to several milliseconds. Such

long decay times would result in pronounced saturation effects and significantly lower

the efficiency of electroluminescent devices. However, Cu(I) complexes can exhibit a

very small energy separation between the first excited singlet and triplet state due to

the pronounced charge transfer character of these states. As a consequence, at ambient
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temperature a thermally activated delayed fluorescence (TADF) can occur which results

in a significant shortening of the decay time.

Interestingly, in this thesis it has been shown that there exists a lower limit for the

emission decay time that can be achieved with pure TADF emitters which amounts to

approximately 4.5 µs. However, it is suggested that this restriction could be surpassed

if an additional radiative decay path is activated. This can be achieved by developing

new Cu(I) based emitter materials that exhibit strong spin-orbit coupling (SOC) so that

besides the TADF path an efficient radiative deactivation channel via the triplet state as

phosphorescence can occur. The combination of both effects, TADF and phosphorescence,

is well suited to further minimize the emission decay time below the limit mentioned above.

However, understanding the processes that lead to efficient SOC in Cu(I) complexes is an

object of current research. Further investigations are required to gain an understanding

of the SOC process and to systematically develop respective emitter materials.
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chez certains composés organiques. J. Chim. Phys. 1953, 50, 64.

19 Bernanose, A.; Vouaux, P. Electroluminescence organique: étude du mode d’émission.
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tional Calculations of Phosphorescence Parameters for fac-tris(2-phenylpyridine)

Iridium. Chem. Phys. 2007, 333, 157.

129 Jacko, A. C.; McKenzie, R. H.; Powell, B. J. Models of Organometallic Complexes

for Optoelectronic Applications. J. Mater. Chem. 2010, 20, 10301.

130 Murov, S.; Hug, G.; Carmichael, I., Handbook of Photochemistry, 2nd edition;

Marcel Dekker: New York, NY, United States, 1993, pp 339–341.
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Labile or Stable: Can Homoleptic and Heteroleptic PyrPHOS-Copper Complexes

be Processed from Solution? Inorg. Chem. 2014, 53, 7837.



Bibliography 121

143 Harrigan, R. W.; Crosby, G. A. Symmetry Assignments of the Lowest CT Excited

States of Ruthenium (II) Complexes via a Proposed Electronic Coupling Model. J.

Chem. Phys. 1973, 59, 3468.

144 Zhang, Q.; Komino, T.; Huang, S.; Matsunami, S.; Goushi, K.; Adachi, C. Triplet

Exciton Confinement in Green Organic Light-Emitting Diodes Containing Lumi-

nescent Charge-Transfer Cu(I) Complexes. Adv. Funct. Mater. 2012, 22, 2327.

145 Yersin, H.; Strasser, J. Triplets in Metal-Organic Compounds. Chemical Tunability

of Relaxation Dynamics. Coord. Chem. Rev. 2000, 208, 331.

146 Bossi, A.; Rausch, A. F.; Leitl, M. J.; Czerwieniec, R.; Whited, M. T.; Djurovich, P.

I.; Yersin, H.; Thompson, M. E. Photophysical Properties of Cyclometalated Pt(II)

Complexes: Counterintuitive Blue Shift in Emission with an Expanded Ligand π

System. Inorg. Chem. 2013, 52, 12403.

147 Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H.

J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. NWChem:

A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular

Simulations. Comput. Phys. Commun. 2010, 181, 1477.

148 Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange.

J. Chem. Phys. 1993, 98, 5648.

149 Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence

and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of

Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297.





Danksagung

An dieser Stelle bedanke ich mich bei allen Kollegen, Freunden und Familienmitgliedern,

die mich während meiner Promotion unterstützt haben. Mein Dank gilt . . .

. . . insbesondere Prof. Dr. Hartmut Yersin für die Möglichkeit, meine Dissertation in
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