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Abstract

Eukaryotic ribosome biogenesis is a multistep process involving more than 150

biogenesis factors, which interact transiently with pre-ribosomal particles to

promote their maturation. Some of these auxiliary proteins have been isolated in

complexes found separate from the ribosomal environment. Among them, are 3

large UTP subcomplexes containing 6 or 7 protein subunits which are involved in

the early steps of ribosome biogenesis. The composition of the UTP subcomplexes

and the network of binary interactions between protein subunits have been

analyzed previously. To obtain further insights into the structural and biochemical

properties of UTP subcomplexes, we established a heterologous expression

system to allow reconstitution of the yeast tUTP/UTP A and UTP B subcomplexes

from their candidate subunits. The results of a series of reconstitution experiments

involving different combinations of protein subunits are in good agreement with

most of the previously observed binary interactions. Moreover, in combination with

additional biochemical analyses, several stable building blocks of the UTP

subcomplexes were identified. Based on these findings, we present a refined model

of the tUTP/UTP A and UTP B architecture.

Introduction

Eukaryotic ribosome biogenesis is a complex process [1] which involves synthesis,

processing and folding of the four ribosomal RNAs (rRNAs), and the stable

assembly of ,80 ribosomal proteins. Furthermore, in S. cerevisiae (hereafter

referred to as yeast), more than 150 non-ribosomal proteins, termed biogenesis

factors, and 70 small nucleolar RNAs interact transiently with pre-ribosomal
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particles in the course of ribosome maturation [2–4]. Although recent studies

have made progress to elucidate the different stages of ribosomal assembly, the

detailed molecular function of most of the ribosome biogenesis factors has yet to

be determined.

More than 10 years ago, analysis with mass spectrometry (MS) of the small

subunit (SSU) processome or 90S pre-ribosome, the earliest pre-ribosomal

particle that can be isolated, identified approximately 40 ribosome biogenesis

factors [5, 6]. Due to the association of those proteins with the U3 snoRNA, 20 of

these factors were named U three proteins (Utps). Further analysis in yeast

revealed that several Utps could be grouped into the protein subcomplexes termed

UTP A and UTP B [7].

UTP A was isolated as a protein complex composed of Utp4, Utp8, Utp9,

Utp10, Utp15, Pol5 and Nan1 [7]. With the exception of Pol5, yeast UTP A

components, together with Utp5, have been suggested to be required for optimal

rDNA transcription and, therefore, have been designated as tUtps (transcription

Utps) [8, 9]. The observed interactions between some of these tUtps, as well as

their common function in promoting transcription, suggested the existence of a

functional protein subcomplex, which is now known as the tUTP subcomplex [8].

Nevertheless, tUTP and UTP A have been proposed to be the same protein

complex despite the difference in molecular composition in regards to the

presence of Utp5 or Pol5, respectively [8, 10]. In this work, we have chosen to

refer to this protein complex as tUTP.

UTP B was characterized as a stoichiometric, six-protein complex consisting of

Utp6, Utp13, Utp18, Utp21, Dip2 and Pwp2 [7]. In good agreement, UTP B has

been purified from yeast extracts as an isolated particle under conditions which

impaired its binding to pre-rRNA [11].

Several approaches have been used in order to ascertain the architecture and

organization of the UTP subcomplexes. For example, yeast two-hybrid based

approaches were able to pinpoint the physical interactions between different

subcomplex components [12–14]. Additionally, identification of the cross-linked

peptides via MS analysis from chemical crosslinking of reconstituted yeast UTP B,

provided valuable initial structural information [15].

In this work we analyzed the architectural and biochemical properties of the

yeast subcomplexes tUTP/UTP A and UTP B with the use of a flexible

heterologous expression system to reconstitute the complexes from the defined

candidate protein subunits. By combining this approach with further biochemical

analyses, we identified several architectural building blocks of tUTP and UTP B,

which might represent intermediate states during the assembly or disassembly of

UTP subcomplexes.
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Materials and Methods

Generation of recombinant baculoviruses, SF21 insect cell

culture, and heterologous protein expression

Recombinant baculoviruses encoding combinations of the proteins of the tUTP or

UTP B subcomplexes were constructed using the MultiBac System as previously

described [16, 17]. Coding regions of the respective yeast genes were amplified by

PCR and inserted into the plasmids pUCDM, pFL, pSPL or derivatives thereof by

standard cloning procedures [18]. The oligonucleotides and plasmids used are

listed in Tables 1 and 2, respectively. Fusion plasmids containing different

combinations of genes were obtained by in vitro Cre-Lox recombination of the

respective plasmids using Cre Recombinase (New England Biolabs, Inc., Ipswich,

MA, USA). The fusion plasmids were integrated into the viral genome by

transformation into DH10MultiBac-EYFP E. coli cells. Recombinant bacmid DNA

was isolated and transfected into adherently growing SF21 insect cells using

FuGeneHD transfection reagent (Promega Corp., Madison, WI, USA) to generate

recombinant baculoviruses (V0 stock). V0 viruses were amplified in 50 mL SF21

cultures over a period of 3–5 days (V1 stock), which was subsequently used for

expression of the recombinant proteins. Aliquots of 5 mL of V1 virus stock were

used to infect 200 mL SF21 cell culture (16106 cells mL21) in 1 L Erlenmeyer

flasks and incubated for 48 h at 27 C̊. Cells were harvested in aliquots of 506106

cells by centrifugation (1306g, 10 min, room temperature). Finally, cell pellets

were frozen in liquid nitrogen and stored at 220 C̊.

Affinity purification of recombinantly expressed fusion proteins

Cell pellets derived from 506106 infected cells were processed as previously

described to generate cellular lysates [19]. When specified, an ultracentrifugation

step before the affinity purification was done using rotor TFT55.38 (Kontron

Instruments, Germany) at 2000006g for 1 h at 4 C̊ in a Optima L-80 XP

ultracentrifuge (Beckmann Coulter, Krefeld, Germany). For the one–step

purifications, 150 mL of slurry of the corresponding resin for the bait protein was

pre-equilibrated in buffer A100+ (20 mM Tris–HCl pH 8, 100 mM KCl, 5 mM

Mg(OAc)2, 2 mM Benzamidine, 1 mM PMSF, 0.5% Triton X-100, 0.1% Tween-

20), and subsequently incubated with the clarified cell extracts for 2 h at 4 C̊ on a

turning wheel. The supernatant was removed after centrifugation (4 C̊, 1 min,

1306g), and the resin was washed with buffer A100+ in batch mode (3610 mL,

361 mL). To elute the different fusion proteins, the resin was incubated with

100 mL buffer A100+, and relevant elution protocols were applied. In the case of

FLAG-tagged proteins, Anti-FLAG M2 Affinity Gel (Sigma-Aldrich, St. Louis,

MO, USA) resin was used, and the elution was performed in the presence of

300 mg mL21 FLAG peptide (Sigma-Aldrich) with a 2 h at 4 C̊-incubation on a

turning wheel. In the case of TAP-tagged proteins, IgG Sepharose 6 Fast Flow (GE

Healthcare) resin was used, and the proteins were eluted in the presence of 1 mg

mL21 of 6xHis-tagged recombinant TEV protease. For HA-tagged proteins, anti-
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Table 1. Oligonucleotides: Oligonucleotides used for cloning of Utp genes are described. Database numbers, gene amplified and sequence are indicated.

Database Nr. Gene amplified Sequence 59 to 39

2517 Primer for cloning of TAP phused genes
with Nsi1 sequence.

TTTTTTATGCATTCAGGTTGACTTCCCCGCGG

2718 primer for UTP15 cloning in Multibac
Vectors.

TTGTTGGAATTCATGGATTACAAGGATGACGACGATAAGGCTGCAATGTCG-
ACTGCTAGGCCTAGA

2719 primer for UTP15 cloning in Multibac
Vectors.

TTGTTGCTGCAGTTAACTCGTTAAAAGTTGAAGCATA

2720 primer for UTP9 cloning in Multibac
Vectors.

TTGTTGCTCGAGATGGGCTCCTCTTTGGATTT

2721 primer for UTP9 cloning in Multibac
Vectors.

TTGTTGGCTAGCTCAATCTTTGTATTCCGATGC

2722 primer for UTP4 cloning in Multibac
Vectors.

TTGTTGCTCGAGATGAGCTCATCGCTACTTTCAG

2723 primer for UTP5 cloning in Multibac
Vectors.

TTGTTGGTCGACATGGATTCTCCTGTTCTACAGTC

2724 primer for UTP5 cloning in Multibac
Vectors.

TTGTTGCTGCAGCTATTCCATCTCAACGTCACTATATC

2725 primer for UTP10 cloning in Multibac
Vectors.

TTGTTGCTCGAGATGTCTTCGTTGAGTGACCAAT

2726 primer for UTP10 cloning in Multibac
Vectors.

TTGTTGGCTAGCCTAATCTAAATACCTATCAAAAGGTTC

2727 primer for NAN1 cloning in Multibac
Vectors.

TTGTTGGTCGACATGACGCAATCCCTAGGTATC

2728 primer for NAN1 cloning in Multibac
Vectors.

TTGTTGCTGCAGCTATGTTAATACTTTCATCACACGATC

2729 primer for UTP8 cloning in Multibac
Vectors.

TTGTTGGGATCCATGCCATCCCTGTCTCAACC

2730 primer for UTP8 cloning in Multibac
Vectors.

TTGTTGGTCGACTCAAATGTCCAAGTATTCCATGG

3156 primer for UTP13 cloning in Multibac
Vectors.

TTGTTGCCCGGGATGGATCTGAAAACCTCATATAAAG

3157 primer for UTP13 cloning in Multibac
Vectors.

TTGTTGCTCGAGCTAGAATAGCTTATCCATTTCCACT

3158 primer for UTP12 cloning in Multibac
Vectors.

TTGTTGGTCGACATGGTCAAATCATACCAACGTT

3159 primer for UTP12 cloning in Multibac
Vectors.

TTGTTGCTGCAGTTATATAACGGTCCCGAAAACT

3160 primer for UTP18 cloning in Multibac
Vectors.

TTGTTGGGATCCATGACAATGGCAACAACCG

3161 primer for UTP18 cloning in Multibac
Vectors.

TTGTTGCTGCAGTTAGTAGTGGTTTAATTTCCAGAGC

3162 primer for PWP2 cloning in Multibac
Vectors.

TTGTTGCCCGGGATGAAATCCGATTTCAAGTTCTCT

3163 Primer for cloning of TAP fused genes with
XhoI sequence.

TTGTTGCTCGAGTCAGGTTGACTTCCCCGC

3164 primer for PWP2 cloning in Multibac
Vectors.

TTGTTGCTCGAGTCAAGGAAGCTCTTTCTCATTTT

3165 primer for UTP6 cloning in Multibac
Vectors.

TTGTTGGTCGACATGTCGAAGACAAGATACTATTTGG

3166 primer for UTP6 cloning in Multibac
Vectors.

TTGTTGCTGCAGTTAAAGTTTGCTGATAATTAAATCTAGAA
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HA Affinity Matrix (Roche, Basel, Switzerland) resin was used, and 500 mg mL21

HA-peptide was applied during elution. Finally, the resin beads were removed

from the eluate by centrifugation (4 C̊, 1 min, 160006g) through a MobiCol

microspin column (MoBiTec, Goettingen, Germany).

Affinity-purified protein complexes were analyzed using the Smart System

(Pharmacia Biotech) and a Superose6 PC 3.2/30 gel filtration column (GE

Healthcare) equilibrated with buffer A100 (A100+ lacking protease inhibitors and

Triton X-100) at a flow rate of 20 mL min21 at 4 C̊. Fractionation (206100 mL

fractions) was started 35 min after sample injection.

For the two–step purifications, the procedure was similar to the one described

for the one-step purification except that 26108 infected cells were used. The

eluate from the first purification step was used in a second affinity purification

performed with the corresponding resin (as described for the one-step

purification).

Western blotting (WB) analysis

Expression and purification of proteins from SF21 insect cells were monitored by

WB. FLAG-tag and HA-tag fusion proteins were detected with anti-FLAG (L5,

Agilent, Santa Clara, CA, USA) and anti-HA antibodies (3F10, Roche), in

combination with an anti-rat HRP-coupled secondary antibody (112-035-068,

Jackson Immuno Research, West Grove, PA, USA). TAP-tag fusion proteins were

detected with PAP detection reagent (P1291, Sigma-Aldrich) or with anti-CBP

(Calmodulin Binding Protein) antibody (sc-32998, Santa Cruz Biotechnology,

Inc, Dallas, TX, USA) combined with an anti-goat HRP-coupled secondary

antibody (sc-2020, Santa Cruz Biotechnology, Inc.). Protein signals were

visualized using BM Chemiluminescence Western-blotting reagent (Roche) and

an LAS-3000 Image Reader (Fujifilm).

Gel-based mass spectrometric analysis of the proteins

Mass spectrometric analysis of Coomassie Blue-stained protein bands was done as

previously described [20]. Peptide mass fingerprinting and tandem MS (MS/MS)

analyses were performed in a 4800 Proteomics Analyzer MALDI-TOF/TOF

Table 1. Cont.

Database Nr. Gene amplified Sequence 59 to 39

3167 primer for UTP21 cloning in Multibac
Vectors.

TTGTTGCCCGGGATGTCTATCGACTTGAAAAAAAGAAA

3168 primer for UTP21 cloning in Multibac
Vectors.

TTGTTGCTCGAGTCACGCGGTGGTCACAAA

3236 Primer for cloning of TAP fused genes with
SphI sequence.

TTGTTGGCATGCTCACTGATGATTCGCGTCTACTT

3239 primer for UTP4 cloning in Multibac
Vectors.

TTGTTGATGCATTCAAAACACTAACTTTGGTTGAATAA

doi:10.1371/journal.pone.0114898.t001

Building Blocks Identification of Yeast tUTP and UTP B Subcomplexes

PLOS ONE | DOI:10.1371/journal.pone.0114898 December 12, 2014 5 / 18



Table 2. Plasmids: Description of plasmids used in this work. Database Number, plasmid backbone used to clone the indicated genes is specified. Original
References for previously used plasmids are indicated. When required, plasmids used during the recombination reaction are also indicated.

Database Nr. Plasmid Backbone Genes cloned Refs. Plasmid used in the recombination reaction

K1127 pUCDM - [17]

K1130 pFL - [17]

K1212 pFL-FLAG - [19]

K1502 pSPL-3xHA - [19]

K1670 pFL-FLAG UTP15 This work.

K1671 pFL-FLAG UTP15, UTP9 This work.

K1672 pUCDM UTP4-TAP This work.

K1673 pUCDM UTP5 This work.

K1682 pUCDM UTP5, UTP4-TAP This work.

K1684 pSPL-3xHA NAN1, UTP10 This work.

K1685 pFL- UTP5, UTP9, UTP15-FLAG This work. Amplification module.

K1721 pFL- UTP4-TAP, UTP5 This work

K1978 pFL-FLAG UTP12, UTP13 This work.

K1979 pUCDM UTP18 This work.

K1980 pUCDM UTP18, PWP2-TAP This work.

K1981 pUCDM UTP18, PWP2 This work.

K1982 pFL- UTP6-HA This work

K1983 pSPL-3xHA UTP6-HA, UTP21 This work.

K1986 pFL- UTP6-HA, UTP21-TAP This work. K1130+K2122

K1987 pFL- UTP6-HA, UTP18, UTP21, PWP2-TAP This work. K1980+K1983

K1991 pFL- UTP6-HA, UTP12-FLAG, UTP13, UTP18, UTP21,
PWP2-TAP

This work. K1978+K1980+K1983

K1992 pFL- UTP6-HA, UTP12-FLAG, UTP13, UTP18, UTP21,
PWP2

This work. K1978+K1981+K1983

K1997 pUCDM UTP5, UTP4 This work.

K1999 pFL-FLAG NAN1, UTP10 This work.

K2000 pFL- UTP4, UTP5, UTP8, UTP9, UTP10, UTP15-FLAG,
NAN1-HA

This work. K1684+K1685+K1997

K2122 pSPL-3xHA UTP6, UTP21-TAP This work.

K2123 pFL- UTP4-TAP, UTP5, UTP8, UTP9, UTP15-FLAG This work. K1682+K1685

K2124 pFL- UTP5, UTP15-FLAG This work. K1670+K1673

K2126 pFL- UTP5, UTP8, UTP9, UTP15-FLAG This work. K1673+K1685

K2134 pFL- UTP6-HA, UTP18, PWP2-TAP K1130+K1980+K1982

K2135 pFL- UTP6-HA, UTP21-TAP This work. K1130+K2122

K2136 pFL- UTP6-HA, UTP18, UTP21-TAP This work. K1986+K1979

K2137 pFL- UTP6-HA, UTP18, UTP21-TAP, PWP2 This work. K1130+K1980+K1983

K2138 pFL- UTP18 This work. K1130+K1979

K2139 pFL- UTP6-HA, UTP18 This work. K2138+K1982

K2204 pFL-FLAG UTP8, UTP9, This work.

K2209 pFL- UTP4-TAP, UTP5, UTP15-FLAG This work. K1670+K1682

K2212 pFL- UTP4-TAP, UTP8-FLAG, UTP9 This work. K1672+K2204

doi:10.1371/journal.pone.0114898.t002
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instrument (ABI, Grand Island, NY USA), operated in positive-ion reflector

mode. The data were evaluated by searching the NCBI non-redundant (nr)

protein sequence database using the Mascot module implemented in the GPS

Explorer, version 3.5, software (ABI).

Results

Yeast tUTP and UTP B subcomplexes can be assembled in SF21

cells

Protein-protein binary interactions between individual components of the yeast

subcomplexes tUTP or UTP B were previously characterized via yeast two-hybrid

analyses [12, 14]. In the case of UTP B, further insights on the potential

architectural features were obtained by in vitro cross-linking of the purified

recombinant subcomplex and subsequent MS analysis [15]. To complement the

published data, this study aimed to reconstitute yeast subcomplexes tUTP and

UTP B using insect cells as a heterologous expression system. Candidate

components for either tUTP or UTP B were co-expressed in SF21 insect cells

infected with respective recombinant baculoviruses [16, 17]. For each UTP

subcomplex, several subunits were expressed in fusion with different epitope tags

to allow the use of two-step affinity purification strategies. The protein

composition of these purified complexes was analyzed by SDS-PAGE followed by

MS analyses of single protein bands. Finally, the integrity of the purified protein

complexes was verified by gel filtration.

Candidate yeast tUTP components (Utp4, Utp5, Utp8, Utp9, Utp10, Utp15 and

Nan1) were co-expressed in SF21 insect cells with Utp15 and Nan1, tagged with

FLAG and HA epitopes, respectively. One-step affinity purification from cellular

extracts of Utp15-FLAG significantly enriched all selected tUTP components

(Fig. 1A, Lane 1). However, several additional, unidentified bands were observed

mainly in the lower molecular weight range. The FLAG-purified complex was

subjected to a second affinity purification using Nan1-HA as the bait protein. This

second affinity purification step led to a strong reduction in the low molecular

weight contaminants, whereas all known tUTP components were still retained

(Fig. 1A, Lane 2). Most of these contaminants were removed when cellular

extracts were clarified by ultracentrifugation prior to the one-step affinity

purification (Fig. 1B, compare lanes 1 and 2).

Analysis of the gel filtration elution profiles for the Utp15-FLAG-purified

complexes revealed that Utp15-FLAG co-eluted with Utp4, Utp5, Utp8, and Utp9

in fraction 7 (Fig. 1C, Fraction 7). These results strongly indicate that these five

proteins form a defined multi-protein complex, which was designated as the tUTP

pentamer. Western blot analysis of the gel filtration fractionation confirmed the

co-elution of Nan1-HA with Utp15-FLAG in fractions corresponding, by

molecular weight, to a fully reconstituted tUTP (Fig. 1C, middle and lower panels,

Fractions 5 and 6). Furthermore, the WB analysis also showed the presence of

smaller complexes containing Nan1-HA (Fig. 1C, middle panel, Fraction 9),
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which could indicate a loose association of Nan1 to the tUTP pentamer. Utp10,

however, could not be observed in this analysis. In agreement with a weak

association, neither Nan1 nor Utp10 could be detected in Utp15-FLAG-associated

complexes when the cellular extracts were cleared by ultracentrifugaton (Fig. 1B).

Altogether, these results showed that a pentameric core complex of recombinant

yeast tUTP components (Utp4, Utp5, Utp8, Utp9 and Utp15) can be

reconstituted in a heterologous expression system. In the experimental conditions

used, the proteins Nan1 and Utp10 appeared to be only loosely associated with the

tUTP pentamer.

In order to characterize the components of the yeast subcomplex UTP B, cell

lysates of SF21 insect cells co-expressing Pwp2-TAP, Utp6-HA, Utp12-FLAG,

Utp13, Utp18, and Utp21 were subjected to Pwp2-TAP affinity purification via

IgG Sepharose. MS analysis identified all six recombinant proteins in the eluate, as

well as, the TEV protease used for elution (Fig. 2A, Lane 1). Similarly, after co-

expression of Pwp2, Utp6-HA, Utp12-FLAG, Utp13, Utp18, and Utp21 and FLAG

affinity purification from the cell lysates, all selected proteins were detected

through MS analysis of the eluate (Fig. 2B, Lane 1). In both cases, several

unidentified SDS-PAGE bands were observed migrating mainly in the lower

molecular weight range. Pwp2-TAP and Utp12-FLAG affinity-purified complexes

were subjected to a second affinity purification step using Utp6-HA as the bait

protein. All co-expressed components were identified by MS analysis in the

respective eluates, and all were confirmed to be present in stoichiometric amounts

by SDS-PAGE analysis (Figs. 2A and B, Lane 2). Despite the residual amounts of

TEV protease detected in the final eluate, the second affinity purification step led

to a significant reduction of low molecular weight contaminants. As was observed

for tUTP, the contaminants were also diminished if the cellular extracts were

cleared by ultracentrifugation before the one-step affinity purification procedure

(Fig. 2C, compare lanes 1 and 2).

Consistent with the reconstitution of a defined yeast multi-protein complex in

insect cells, all UTP B components (Pwp2-Utp21-Utp12-Utp13-Utp6-Utp18)

purified via Pwp2-TAP, co-migrated in the gel filtration elution profile with an

apparent molecular weight of around 670 kDa (Fig. 2D, Fractions 7 and 8). This

estimated molecular weight closely matches the theoretical mass of 550 kDa,

expected for a fully reconstituted, hexameric UTP B subcomplex. Interestingly,

Utp12-FLAG and Utp13 seemed to be partially underrepresented in fraction 8,

when compared to fractions 6 and 7. This finding suggests the formation of a

partially assembled UTP B subcomplex lacking these two proteins (Fig. 2D, upper

panel, compare intensity of Coomassie staining of proteins in all fractions). In

summary, these experiments show that the yeast UTP B complex can be

reconstituted from recombinant proteins expressed in insect cells. Furthermore,

the results suggest the formation of a stable UTP B core-complex, composed of

Pwp2, Utp6, Utp18 and Utp21, to which Utp12 and Utp13 can associate.

Altogether, we conclude that the recombinant production of either tUTP or

UTP B in insect cells allowed the recovery of highly purified protein complexes.

These complexes seem to contain stoichiometric amounts of their known protein
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Fig. 1. Yeast tUTP subcomplex reconstitution in insect cells. All candidate tUTP components were co-
expressed in SF21 insect cells infected with baculoviruses containing bacmid K2000. Proteins identified by
MS analysis are indicated as Nan1,&; Utp10,%; Utp4, m; Utp5, ¤; Utp8,N; Utp9,# and Utp15, e. (A) Two-
step affinity purification using two different bait proteins. Lysates of 26108 infected cells were used in the first
affinity purification step to purify Utp15-FLAG-containing component with anti-FLAG affinity matrix which were
eluted with the FLAG peptide (Lane 1). 90% of the eluted material was used for the second affinity purification
step with anti-HA affinity matrix to purify Nan1-HA containing components, which were eluted with the HA
peptide (Lane 2). The composition of both eluates was analyzed on a 4–12% gradient SDS-PAGE, stained
with Coomassie Blue, and the protein content of the indicated bands was identified by MS analysis. (B)
Lysates of 86107 SF21 cells infected with baculovirus K2000 were cleared by low-speed centrifugation as
described (N samples) and half of the sample was further cleared by ultracentrifugation (2000006g, 1 h, 4˚C,
U samples). Utp15-FLAG-containing components were purified from both lysates using anti-FLAG affinity
matrix and eluted with the FLAG peptide. The eluted material (10%) was analyzed on a 4–12% gradient SDS-
PAGE, stained with Coomassie Blue, and the protein content of the indicated bands was identified by MS
analysis. (C) Utp15-FLAG-containing components were purified from lysates of 46107 infected cells using
anti-FLAG affinity matrix and eluted with the FLAG peptide. Half of the eluate was fractionated on a Superose
6 gel filtration column. Aliquots of the lysate (L, 0,03%), the eluate (E, 10%) and the fractions (2–13; 15%)
were analyzed by SDS-PAGE (upper panel) and by WB using antibodies against HA (middle panel) or FLAG
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components. Thus, tUTP and UTP B can be formed in the absence of any other

yeast factors (see discussion).

Identification of the building blocks of the yeast tUTP subcomplex

As described above, co-expression of yeast tUTP proteins in insect cells led to the

reconstitution of a fully-assembled, heptameric tUTP complex. Moreover, the

results of these experiments indicate the formation of a tUTP pentamer composed

of Utp4, Utp5, Utp8, Utp9 and Utp15. To test whether formation of a stable tUTP

pentamer is possible in the absence of Utp10 and Nan1, a baculovirus encoding

the five proteins of the tUTP pentamer was used to infect insect cells. Utp4-TAP

affinity purification and subsequent analyses of the eluting proteins by SDS-PAGE

and MS (Fig. 3A) confirmed the co-purification of all co-expressed proteins

(Fig. 3A, Lane 1). When Utp4-TAP affinity-purified complexes were subjected to

a second purification using Utp15-FLAG as the bait protein, all co-expressed

components were present in the eluate (Fig. 3A, Lane 2). Likewise, all components

of the purified tUTP complex were stained with similar intensity by Coomassie

Blue, and co-eluted from the gel filtration column with an apparent molecular

weight of approximately 600 kDa (Fig. 3B). Taken together, these results confirm

that the formation of the tUTP pentamer is independent from the presence of

Nan1 and Utp10.

Although, previous yeast two hybrid analyses suggested a direct interaction

between Nan1 and Utp10 [14], the experiments described in this work provide

evidence for a weak association between these two proteins and the tUTP

pentamer. In order to clarify this interaction in vitro, the yeast proteins Utp10 and

Nan1-FLAG were co-expressed in insect cells. Predictably, Nan1-FLAG affinity

purification from corresponding insect cell extracts efficiently enriched both

proteins (Fig. 3C, Lane 1). These data indicate that a complex of Nan1 and Utp10

can be formed in the absence of other tUTP components through direct

interactions.

In order to study the protein interactions responsible for the formation of the

tUTP pentamer, insect cells were infected with viral genomes containing different

combinations of yeast tUTP pentamer components. The resulting cell extracts

were used for affinity purification of the indicated bait proteins, and the eluates

from the different purifications were analyzed by SDS-PAGE and MS analysis

(Fig. 3C and 3D).

First, Utp4-TAP was co-expressed with Utp5 and Utp15-FLAG. Utp4-TAP

affinity purification from cellular extracts confirmed the co-purification of all

three proteins (Fig. 3C, Lane 4). Moreover, the MS identification of both Utp4

and Utp5-TAP in the eluate from the Utp4-TAP affinity purification of co-

expressed Utp4-TAP and Utp5 (Fig. 3C, lane 8) suggests a direct interaction

(lower panel) epitopes. Elution of marker proteins in independent gel filtration runs are indicated at the top.
Correct identification of the corresponding protein by MS analysis is indicated.

doi:10.1371/journal.pone.0114898.g001
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Fig. 2. Yeast UTP B subcomplex reconstitution in insect cells. All selected UTP B components were co-expressed in SF21 insect cells infected with
baculoviruses containing the bacmids K1991 or K1992. The protein content of the indicated bands was identified by MS and are indicated as Pwp2, &;
Utp6, N; Utp12, ¤; Utp13, e; Utp18,# and Utp21, m. (A) Lysates of 26108 cells infected with K1991were used for two-step affinity purification. Pwp2-TAP
was used as the bait protein in the first affinity purification step with IgG-coupled Sepharose resin, and Pwp2-containing components were eluted with TEV
protease (Lane 1). Utp6-HA-containing components were purified from 90% of the first elution sample using anti-HA affinity matrix, followed by elution with
the HA peptide (Lane 2). The composition of the eluate (5% each) was analyzed on a 4–12% gradient SDS-PAGE, stained with Coomassie Blue, and
analyzed by MS. (B) Lysates of 26108 cells infected with K1992 were used for two-step affinity purification. Utp12-FLAG was purified with anti-FLAG affinity
matrix and eluted with the FLAG peptide during the first affinity purification step (Lane 1). A 90% aliquot of the eluted material was used to purify Utp6-HA-
containing components with anti-HA affinity matrix, followed by elution with the HA peptide (Lane 2). The composition of both eluates (5%) was analyzed on
a 4–12% gradient SDS-PAGE, stained with Coomassie Blue, and analyzed by MS. (C) Lysates of 86107 SF21 cells infected with bacmid K1991 were
cleared by the low-speed centrifugation described in the normal protocol (N samples), and half was further cleared by ultracentrifugation (2000006g, 1 h,
4˚C, U samples). Pwp2-TAP-containing components were purified from both lysates using IgG-coupled Sepharose resin and eluted with TEV protease. A
10% aliquot of the eluted material was analyzed on a 4-12% gradient SDS-PAGE, stained with Coomassie Blue, and analyzed with MS. (D) Pwp2-TAP-
containing components were purified from lysates of 46107 infected cells (K1991) using IgG-coupled Sepharose resin and TEV elution. Half of the eluate
was fractionated on a Superose 6 gel filtration column. Aliquots of the lysate (L, 0,03%), flow through from the first purification (FT, 0,03%), the eluate from
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between Utp4 and Utp5. In parallel, Utp15-FLAG purification from cellular

extracts, in which Utp5 and Utp15-FLAG were co-expressed, showed the presence

of both proteins in the eluate, indicating the direct interaction between both

proteins (Fig. 3C, Lane 2). Altogether, these data indicated that the tUTP

pentamer contains a trimeric building block made of Utp4 and a Utp5-Utp15

heterodimer. Significant amounts of Utp8-FLAG and Utp9 were detected in the

eluate by MS analysis (Fig. 3C, Lane 7) when both proteins were co-expressed and

Utp8-FLAG affinity-purified. This result indicates a direct interaction of Utp8 and

Utp9, which is in agreement with published data showing an independent

association of these proteins from the formation of the tUTP/UTP A subcomplex

[21]. To further elucidate whether the formation of the tUTP pentamer involves

interactions of Utp4 with the Utp8-Utp9 heterodimer, Utp4-TAP was co-

expressed with Utp8-FLAG and Utp9. When Utp4-TAP was used as the bait

protein, Utp8 and Utp9 were not detected in the respective eluates (Fig. 3C, Lane

6). Only a weak signal corresponding to Utp8-FLAG was observed by WB analysis

prior to the TEV elution, indicating some association between Utp4 and Utp8

with the resin (Fig. 3D, Beads panel, Lane 6). A possible explanation for the

apparent low co-purification of Utp8 and Utp9 with Utp4-TAP might be an

insufficient expression level of these two proteins in the respective insect cells.

Nevertheless, WB detection of Utp8-Flag and MS detection of Utp9 in

corresponding insect cell extracts argued against this possibility (Fig. 3D

Coomassie and Cell Extracts Panel, Lanes 3–7). We conclude that the weak

interaction of Utp4 with the Utp8-Utp9 dimer is stabilized by the presence of the

Utp5-Utp15 dimer in the tUTP pentamer.

In summary, these experiments showed that the tUTP complex is made of

several building blocks, which can form independently of other yeast components.

They include a Utp10-Nan1 dimer and a pentameric complex made of a Utp8-

Utp9 dimer and Utp4 bound to a dimer of Utp5 and Utp15.

Identification of the building blocks of the yeast UTP B subcomplex

The experiments for the reconstitution of the UTP B subcomplex suggested a

stable, tetrameric module consisting of Pwp2, Utp6, Utp18 and Utp21, which

interacts with Utp12 and Utp13 (Fig. 2). To assay whether the tetrameric core

module can be reconstituted independently of Utp12 and Utp13, insect cells were

infected with two different viral genomes encoding the yeast proteins Pwp2, Utp6,

Utp18 and Utp21 where either Pwp2 or Utp21 were TAP-tagged. Affinity

purification of both Pwp2-TAP and Utp21-TAP from the corresponding cell

extract, resulted in co-purification of all four proteins (Fig. 4A, Lanes 1 and 2)

the affinity column (E, 10%), and the fractions from the gel filtration column (2–13; 15%) were analyzed by SDS-PAGE (upper panel) and WB with antibodies
against CBP (middle panel) or HA (lower panel) epitopes. Elution of marker proteins in independent gel filtration runs are indicated at the top. Correct
identification by MS analysis of the corresponding protein is indicated.

doi:10.1371/journal.pone.0114898.g002
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Fig. 3. Indentification of different tUTP building blocks. Tagged proteins were purified from cell extracts containing different tUTP components in one or
two step affinity purifications. Correct identification by MS analysis of the corresponding protein is indicated as Nan1,&; Utp10,%; Utp4, m; Utp5, ¤; Utp8,

N; Utp9, # and Utp15, e. (A) Utp4-TAP, Utp5, Utp8, Utp9 and Utp15-FLAG were co-expressed in SF21 insect cells infected with a baculovirus containing
the bacmid K2123. Utp4-TAP protein was purified from lysates of 26108 infected cells with IgG-coupled Sepharose resin and eluted with TEV protease
(Lane 1). The eluted material (80%) was used for the second affinity purification step with anti-FLAG affinity matrix to purify Utp15-FLAG-containing
components, which were then eluted with the FLAG peptide (Lane 2). In both cases, 10% of the eluted fraction was analyzed on a 4–12% gradient SDS-
PAGE, stained with Coomassie Blue, and analyzed by MS. (B) The eluted material (30%) from the second affinity purification (see part A) was fractionated
on a Superose 6 gel filtration column. Samples of the affinity elution (E, 10%) and fractions from the gel filtration column (2–13; 15%) were analyzed by SDS-
PAGE (upper panel). The elution of protein standards from independent gel filtration runs are indicated at the top. (C) The indicated combinations of proteins
were co-expressed in SF21 insect cells infected with baculoviruses containing the bacmids K1999, K2124, K2126, K2209, K2123, K2212, K2204 or K1721,
respectively. Expression of the different bait proteins is indicated (+: untagged protein expressed; T:TAP-tagged; F: FLAG-tagged; *: bait protein).
Purifications were done from lysates of 56107 infected insect cells with either IgG-coupled beads (Lanes 4–6 and 8) or with anti-FLAG affinity matrix (Lanes
1–3 and 7) and eluted with TEV protease or FLAG peptide, respectively. Half of the elution material was analyzed with SDS-PAGE and MS analysis (top
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and confirmed the existence of a stable, tetrameric building block. This complex

could also be isolated by anti-HA affinity purification from cells expressing HA-

Utp6, Utp21-TAP, Utp18 and Pwp2 (Fig. 4B, Lane 1). Interestingly, co-expression

of Utp12-FLAG and Utp13 lead to the detection of both proteins after FLAG

affinity purification (Fig. 4A, Lane 7). Thus, these results identified a tetrameric

core-complex composed of Pwp2, Utp6, Utp18, and Utp21 with the associated

heterodimer, Utp12-Utp13, as building blocks of the UTP B complex.

To better dissect the architecture of the UTP B core-complex, insect cells were

independently transfected with different combinations of yeast UTP B core

complex components. When Utp21-TAP, Utp6-HA, and Utp18 were co-

expressed, Utp21-TAP affinity purification revealed all three proteins in the eluate

(Fig. 4A, Lane 5). On the other hand, after Utp6-HA affinity purification, both

Utp6 and Utp18 were also identified in the corresponding eluates (Fig. 4B, Lane

3). These results indicated the formation of a trimeric building block of the UTP B

core complex, made of Utp21, Utp6 and Utp18. Co-expression of only Utp6-HA

and Utp21-TAP, and subsequent affinity purification, did not result in any

detectable co-purification (Fig. 4C, Lane 3, upper panel). In contrast, co-

expression of Utp6-HA and Utp18, followed by Utp6-HA affinity purification,

showed the presence of both proteins in the eluate, indicating direct interaction

between these two proteins (Fig. 4B, Lane 5).

Finally, Pwp2-TAP affinity purification from the co-expression of Pwp2-TAP,

Utp6-HA, and Utp18 did not yield detectable amounts of either Utp6 or Utp18 in

the purified fraction (Fig. 4A, Lane 3). Utp6-HA expression levels were also

verified by WB analysis (Fig. 4C, lower panel), suggesting a similar expression

level in all cellular extracts. Interestingly, MS analysis of an HA affinity

purification from the same cellular identified Utp6 and Utp18 but not Pwp2 in

the eluate (Fig. 4B, Lane 2). These results are in agreement with a direct

interaction between Utp6 and Utp18 proteins, but they argue against a stable

interaction of the Utp6-Utp18 heterodimer with Pwp2. Consequently, we

conclude that Utp21 is required to recruit Pwp2 to the UTP B core complex.

In summary, these experiments identified several autonomous building blocks

of the UTP B subcomplex. First, the observation of a stable tetrameric core-

complex formed by proteins Pwp2, Utp21, Utp6 and Utp18, which could be

assembled in the absence of the Utp12-Utp13 dimer. Furthermore, our data

suggest a Pwp2-independent formation of the trimeric building block Utp21-

Utp6-Utp18, in which Utp18 is required for stable association of Utp21 with the

heterodimer Utp6-Utp18. In turn, Utp21 appears to mediate the association of

Pwp2 with the Utp21-Utp6-Utp18 heterotrimer.

panel) (D) Cell extracts and purified samples of the SF21 insect cells described in Fig. 3C were analyzed by SDS-PAGE and WB. Indicated protein content
was identified by MS analysis (Coomassie staining panel); samples from cell extracts, elution (10%) and resin before elution, were analyzed by WB using
the anti-FLAG antibody.

doi:10.1371/journal.pone.0114898.g003
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Discussion

In previous studies, the yeast subcomplexes tUTP/UTP A and UTP B have been

described in terms of functionality and protein composition [7, 8, 10, 11].

Moreover, binary interactions between their protein components have been

identified by several approaches [12–14] (Fig. 5A and B, left side). The present

study took advantage of a heterologous expression system to identify the relevant

protein building blocks leading to the formation of these subcomplexes.

The yeast subcomplexes tUTP and UTP A were suggested to be related [8, 10],

since their proposed composition only differs in the UTP A-specific protein, Pol5,

and the tUTP-specific protein, Utp5 [7, 8, 10]. In this work, co-expression of

candidate tUTP subunits allowed the isolation of a fully reconstituted tUTP

complex. Accordingly, our experiments provide biochemical evidence that the

functionally related tUtps form a protein complex, as suggested previously [8, 10].

Co-expression of all candidate UTP B components also enabled reconstitution of

the expected subcomplex with a molecular size compatible with a hexameric

protein complex.

Fig. 4. Identification of different UTP B building blocks. Tagged proteins were purified from cell extracts containing different UTP B components in one or
two step affinity purifications. Correct identification by MS analysis of the corresponding protein is indicated as Pwp2, &; Utp6, N; Utp12, ¤; Utp13, e;
Utp18,# and Utp21, m. Expression of the tagged proteins is indicated as +: untagged protein expressed; T:TAP-tagged; F: FLAG-tagged; *: bait protein. (A)
Combinations of the indicated proteins were co-expressed in SF21 insect cells infected with baculoviruses containing the bacmids K2137, K1987, K2134,
K2135, K2136, K1991 and K1978. The bait proteins were purified from lysates of 56107 infected insect cells with IgG-coupled beads and eluted with TEV
protease (Lanes 1–6) or with anti-FLAG affinity beads and elution with FLAG peptide (Lane 7). Samples of the elution were analyzed with SDS-PAGE and
MS analysis. (B) Combinations of the indicated proteins were co-expressed in SF21 insect cells infected with baculoviruses containing the bacmids K2137,
K2134, K2136, K2138 and K2139. Expression of the tagged proteins is indicated. The bait proteins were purified from lysates of 56107 infected insect cells
with anti-FLAG affinity matrix and eluted with the FLAG peptide. Samples of the elution were analyzed with SDS-PAGE and MS analysis. Note that a band
compatible with the size of Utp4-TAP is observed in Lane 3 but was not possible to characterize by MS analysis. (C) Combinations of the indicated proteins
were co-expressed in SF21 insect cells infected with baculoviruses containing the bacmids K1991, K2134, K2135, K2136, K2137 and K1987. The bait
proteins were purified from lysates of 56107 infected insect cells with IgG-coupled beads and eluted with TEV protease. Aliquots of the elution (upper panel)
or of the corresponding cell lysate (lower panel) were analyzed by WB with anti-HA antibody. The corresponding co-expressed proteins are indicated at the
top of the figure.

doi:10.1371/journal.pone.0114898.g004
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Expression of only subsets of tUTP or UTP B components lead to the

identification of smaller protein complexes, which were not predicted by the

existent binary data. Our results suggest they reflect architectural building blocks

of the yeast tUTP and UTP B subcomplexes (Fig. 5A and B, right side). The

combined data (Fig. 5) point to some shared architectural features of tUTP and

UTP B. In both subcomplexes either a pentameric tUTP or a tetrameric UTP B

core-complex interacts with a more loosely associated dimer, Nan1-Utp10 and

Utp12–Utp13, respectively. This fact could indicate a more peripheral position of

the aforementioned heterodimers. Moreover, the expression of specific combi-

nations of subcomplex components argues for a central role of Utp4 in the

formation of the tUTP core-complex and of Utp21 in the formation of the UTP B

Fig. 5. Refined model of tUTP and UTP B architecture. Binary interactions observed by protein-fragment
complementation assay [13] (red line), yeast two hybrid assay [12, 13] (blue line) or both (green line) are
depicted for tUTP (A) and UTP B (B) components. Arrows point from prey to bait proteins. Building blocks
observed in the present study are grouped by solid surfaces for tUTP (A) and UTP B (B) subcomplexes.
Loose interaction (yellow surface); whole complex (white surface); Dimer (green surface); Trimer (purple
surface); core-complex (red surface); dissociable dimer (blue surface).

doi:10.1371/journal.pone.0114898.g005
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core-complex. Indeed, recent structural analysis of Utp21 supports this notion by

indicating two binding platforms which might establish simultaneous interactions

with the Utp6-Utp18 dimer and Pwp2 [22]. Future studies are necessary to

delineate how the central role of Utp4 in the formation of the tUTP is relayed in

the mammalian orthologue due to the absence of proteins Utp8 and Utp9 [9].

Besides their likely role as architectural units, the tUTP and UTP B building

blocks identified in this work might also represent assembly or disassembly

intermediates of these subcomplexes. Currently, little is known of the formation

of the tUTP and UTP B subcomplexes in vivo. These complexes might be formed

on nascent pre-rRNA or assembled in the cytoplasm and enter the nucleus/

nucleolus as preformed complexes. In this regard, ribosome production in insect

cells should be highly downregulated after viral infection [23]. Thus, tUTP and

UTP B formation should occur independent of ongoing ribosome biogenesis.

Moreover, both protein subcomplexes are produced in the absence of any other

yeast factor, including yeast pre-rRNA, which indicates an assembly mechanism

mainly triggered by the intrinsic affinities of the subcomplex components. Still,

auxiliary factors/chaperones conserved among eukaryotes might facilitate

subcomplex formation. In any case, we consider as a possibility that in vivo

assembly of the yeast subcomplexes tUTP and UTP B might involve transient

formation of the building blocks identified in this work.
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