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Abstract

Connective tissue growth factor (CTGF) induces extracellular matrix (ECM) synthesis and contractility in human trabecular meshwork (HTM)
cells. Both processes are involved in the pathogenesis of primary open-angle glaucoma. To date, little is known about regulation and function of
CTGF expression in the trabecular meshwork (TM). Therefore, we analysed the effects of different aqueous humour proteins and stressors on
CTGF expression in HTM cells. HTM cells from three different donors were treated with endothelin-1, insulin-like growth factor (IGF)-1, angio-
tensin-II, H2O2 and heat shock and were analysed by immunohistochemistry, real-time RT-PCR and Western blotting. Viability after H2O2 treat-
ment was measured in CTGF silenced HTM-N cells and their controls. Latrunculin A reduced expression of CTGF by about 50% compared to
untreated HTM cells, whereas endothelin-1, IGF-1, angiotensin-II, heat shock and oxidative stress led to a significant increase. Silencing of
CTGF resulted in a delayed expression of aB-crystallin and in reduced cell viability in comparison to the controls after oxidative stress. Con-
versely, CTGF treatment led to a higher cell viability rate after H2O2 treatment. CTGF expression is induced by factors that have been linked to
glaucoma. An increased level of CTGF appears to protect TM cells against damage induced by stress. The beneficial effect of CTGF for viability
of TM cells is likely associated with the effects on increased ECM synthesis and higher contractility of the TM, thereby contributing to reduced
aqueous humour outflow facility causing increased intraocular pressure.
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Introduction

Primary open-angle glaucoma (POAG), one of the major causes of
blindness worldwide [1], is a neuropathy of the optic nerve leading to
a loss of axons at the optic nerve head. The critical risk factor for
POAG is intraocular pressure (IOP) which is frequently elevated [2–
4]. Elevated IOP is caused by an abnormally high aqueous humour
(AH) outflow resistance that is generated in the juxtacanalicular
region of the human trabecular meshwork (HTM) [5, 6]. To date, the
mechanisms that are responsible for the increase in TM outflow resis-
tance in POAG are not fully understood [7, 8]. There is some evidence
though that changes in the amounts and the composition of the HTM

extracellular matrix (ECM) [9, 10] as well as in the actomyosin system
of HTM cells [11–14] are involved.

Currently, transforming growth factor (TGF)-b2 is one of the
leading candidates among the multiple signalling molecules in the AH
that may cause molecular changes leading to an increase in outflow
resistance in POAG. Accordingly, patients suffering from POAG
exhibit higher levels of TGF-b2 in the AH when compared to healthy
controls [15–18]. TGF-b2 is a strong inducer of the HTM ECM and a
modifier of the actin cytoskeleton in TM cells [19]. Perfusion of
anterior segments with TGF-b2 results in an increase in outflow resis-
tance [20].

In recent studies, we showed that connective tissue growth
factor (CTGF) is mediating most of the ECM effects of TGF-b2 on
TM cells [21]. In addition, CTGF is able to modulate the biological
properties of the TM actin cytoskeleton and to increase its contrac-
tility [11]. CTGF belongs to a family of regulatory proteins that are
upregulated in a substantial number of disorders associated with a
pathological increase in ECM [22–24]. In the HTM, CTGF is among
the most highly expressed genes [25]. The comparison of the
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CTGF expression in Schlemm’s canal endothelial (SC) cells derived
from glaucoma patients with SC cells from healthy donors reported
a significant higher CTGF expression level in the glaucomatous SC
cells [26]. CTGF has also been detected in the AH [27] and its
amounts are increased in patients with pseudoexfoliation syndrome
and glaucoma associated with it [28, 29]. In patients with POAG,
only a slight increase in CTGF was found in the AH in one study
[28], whereas other authors reported a significant increased level
of CTGF [30].

To investigate the influence of CTGF signalling in the living eye,
we recently developed a mouse model with an eye-specific overex-
pression of CTGF by the use of a lens-specific promotor. Since the
CTGF-mediated effects on ECM and the actin cytoskeleton that corre-
lated with an increase in IOP and a successive loss of axons in the
optic nerve, we concluded that high amounts of CTGF cause POAG in
the mouse eye [11].

The dynamics of factors that may increase the trabecular expres-
sion of CTGF in patients with POAG remain unclear. TGF-b and cyclic
mechanical stress are the only known stimuli that have been shown
to increase the expression of CTGF in HTM cells [31, 32]. In the pres-
ent study, we show that the regulation of CTGF expression involves
various factors including different kinds of stress, suggesting a pro-
tective role for CTGF in the HTM.

Material and methods

Cell culture

Cultures of HTM cells were established from the eyes of three human
donors according to protocols published previously [32]. The age of the

donors ranged from 34 to 76 years. HTM cells of the third to fifth pas-

sage were seeded in 35-mm culture wells (4.0 9 105 cells/well) and

grown to a confluent monolayer in F10-HAM medium plus 10% (v/v)
foetal bovine serum without antibiotics in 5% CO2 at 37°C (PAA, Pas-

ching, Austria). The confluent cells were incubated in serum-free med-

ium for 24 hrs followed by incubation in fresh serum-free medium.

Endothelin-1 (ET-1), angiotensin-II (Ang II), insulin-like growth factor
(IGF)-1, hydrogen peroxide (H2O2) or latrunculin A (LatA; Sigma-Aldrich,

Taufkirchen, Germany) were added at various concentrations at different

time-points. Control cells were treated equally with corresponding vehi-
cles.

Heat-shock experiments were performed by seeding immortalized

HTM cells (HTM-N) [33] and pSiCTGF-HTM-N cells (stable plasmid-

based siRNA silencing of the CTGF gene) into Petri dishes to a con-
fluent level (1.0 9 106 cells/well). The pSiCTGF-HTM-N cell line has

an 80% reduced CTGF expression in comparison to the HTM-N cell

line as described previously [11]. The cells were kept for 24 hrs

under serum-free conditions. Then, cells were heat shocked for
15 min. at 42°C in a water bath and harvested after a further 37°C
incubation period at different time-points [0 (control), 15, 30, 45,

60 min.].
Each of the described experiments except heat shock was done with

each of the three primary cell lines. Methods for securing human

tissues were humane, included proper consent and approval, and com-

plied with the Declaration of Helsinki.

RNA analysis

Human trabecular meshwork cells were harvested and total RNA was
extracted with TRIzol (Invitrogen, Karlsruhe, Germany) according to

manufacturer’s recommendations. First strand cDNA was prepared from

total RNA using the iScript cDNA Synthesis Kit (Bio-Rad, Munich, Ger-

many) according to the manufacturer’s instructions. Real-time RT-PCR
was performed on a BioRad iQ5 Real-time PCR Detection System (Bio-

Rad) using the following temperature profile: 40 cycles of 10 sec. melt-

ing at 95°C, 40 sec. of annealing and extension at 60°C. Primer pairs

(Table 1) were purchased from Invitrogen and extended over exon–
intron boundaries. RNA that was not reversely transcribed served as

negative control for real-time RT-PCR. Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) and guanine nucleotide binding protein 2-like-
1 (GNB2L1) were both used as housekeeping genes for relative

quantification of the real-time RT-PCR experiments. Quantification was

performed with iQ5 Standard-Edition (Version 2.0.148.60623) software

(Bio-Rad).

Western blot analysis

To obtain protein extracts, cells were directly lysed in RIPA lysis buffer

(150 mM NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1% SDS and 50 mM

Tris, pH 8) and protein content was measured with the bicinchoninic acid

protein assay (Pierce, Rockford, IL, USA). Proteins were separated by
SDS-PAGE and transferred to polyvinylidene fluoride membranes. Anti-

bodies were used as follows: rabbit anti-human aB-crystallin (1:200;

Stressgen, San Diego, CA, USA), goat anti-human CTGF (1:500), donkey

anti-rabbit-horseradish peroxidase (HRP) and chicken anti-goat-HRP
(1:2000; all Santa Cruz, CA, USA). Chemiluminescence was detected on a

LAS 3000 imaging workstation (Raytest, Straubenhardt, Germany). For

normalization of the signals, blotted membranes were stained with coo-

massie blue and digitized. The total amount of protein per lane was deter-
mined and calculated using AIDA Image analyser software (Raytest). The

values of the total amount of protein were used to normalize the signal

intensity of the bands detected in Western blot analysis.

Immunohistochemistry

Cultured HTM-N and pSiCTGF-HTM-N cells were grown on microscope
slides and treated with heat shock as described above. After incubation,

Table 1 Sequences of primers used for real-time RT-PCR

Type Sequence Position
Tm
(°C)

CTGF 50-CTCCTGCAGGCTAGAGAAGC-30 884–977 59

50-GATGCACTTTTTGCCCTTCTT-30 60

GAPDH 50-AGCCACATCGCTCAGACA-30 83–148 60

50-GCCCAATACGACCAAATCC-30 60

GNB2L 50-GCTACTACCCCGCAGTTCC-30 170–241 59

50-CAGTTTCCACATGATGATGGTC-30 60
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cells were fixed with 4% paraformaldehyde for 15 min. and subse-
quently washed twice with PBS containing 0.1% Triton X-100. Rabbit

anti-human aB-crystallin antibodies were added at a 1:50 dilution in

PBS/bovine serum albumin (BSA; 5%) for 4 hrs at room temperature.

After three wash steps with PBS, fluorescein-conjugated secondary pig
anti-rabbit IgG (Dako, Glostrup, Denmark) was added at a 1:1000 dilu-

tion in PBS/BSA (5%) for 1 hr at room temperature. Actin stress fibres

were stained using phalloidin-TRITC (Sigma-Aldrich) at a dilution of
1:1000 for 1 hr at room temperature. After immunohistochemical label-

ling, Vectashield mounting medium (Vector Laboratories, Burlingame,

CA, USA) was used for mounting slides. Slides were analysed under an

Axio Imager fluorescence microscope (Carl Zeiss AG, Oberkochen, Ger-
many). Corresponding negative controls to estimate unspecific binding

of secondary antibodies were handled similarly, but incubated in PBS/

BSA without primary antibody.

Cell viability assay

To analyse the CTGF effect on the viability of HTM-N and pSiCTGF-
HTM-N cells after treatment with H2O2, cells were seeded into 96-well

plates at 3.0 9 104 cells/well. The cells were treated with 50 lM of

H2O2 alone or in combination with 50 ng/ml of recombinant CTGF

(rCTGF) [21] for 24 hrs under serum-free conditions. Viability of cells
was analysed by a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-

razolium bromide) assay. The yellow MTT is reduced by a mitochondrial

reductase to purple formazan in the mitochondria of living cells. The

absorbance of the formed fomazan is measured by 570 nm wave
length.The cells were washed with PBS, and 80 ll/well MTT solution

(tetrazolium dye, PBS and serum-free medium) was added for 2 hrs.

The formazan crystals that formed were dissolved by the addition of
dimethyl sulfoxide (DMSO). Absorption was measured with a spectro-

photometer (Sunrise, Tecan, Maennedorf, Switzerland) at 570 nm and

analysed using Magellan software (Tecan). Results are expressed as the

mean percentage of the controls. Untreated HTM-N and pSiCTGF-HTM-
N cells served as controls. Values of each sample were normalized to a

‘blank’ containing DMSO only.

Number of experiments and statistical analysis

To assess the effects of the different treatments, each experiment was

repeated at least three times from primary HTM cell lines of three differ-
ent donors and with the HTM-N and pSiCTGF-HTM-N cells. Student’s

t-test was used for statistical analysis and differences with a P-value

smaller 0.05 were regarded as significant, and with a P < 0.01 as highly

significant.

Results

Heat shock induces CTGF expression

As mechanical stress induces CTGF in HTM cells [31], we investi-
gated whether CTGF is also induced by other stressors. To this end,
HTM-N cells were treated with heat shock (42°C) and were then
allowed to recover at 37°C. After 30 min., the expression of CTGF

was significantly increased (3.3 � 0.4-fold, P < 0.05) and remained
at this level during the entire 60 min. of the recovery phase (Fig. 1A).

CTGF induces aB-crystallin expression

Amounts of the small heat-shock protein (sHSP) aB-crystallin are
higher in the TM of POAG eyes [34] and are induced by TGF-b in cul-
tured HTM cells [35]. Here, we were interested to learn whether there
is a link between aB-crystallin and CTGF in HTM cells. HTM cells trea-
ted with recombinant CTGF showed a dose-dependent increase in the
amounts of aB-crystallin, which were 3.2 � 0.3-fold higher after
treatment with 10 and 50 ng/ml of CTGF for 24 hrs (P < 0.05,
Fig. 1B).

We now wanted to know whether the expression of aB-crystallin
is changed in the presence of lower amounts of CTGF. For that pur-
pose, we used the pSiCTGF-HTM-N cell line and compared it to HTM-
N cells [11]. HTM-N cells treated with 42°C for 15 min. showed an
increased immunohistochemical staining for aB-crystallin and an
increase in actin stress fibre formation after 30 min. of recovery
phase (Fig. 1E). Following Western blot experiments, densitometric
analysis of the immunoblots identified a significant up-regulation of
aB-crystallin in HTM-N cells (4.1 � 0.3-fold, P < 0.05, 45 min.,
Fig. 1D). In contrast in pSiCTGF-HTM-N cells, aB-crystallin staining
and stress fibre formation was unchanged after heat shock exposure
(Fig. 1E). Western blot analysis of aB-crystallin synthesis in
pSiCTGF-HTM-N cells showed a delayed and reduced induction in
comparison to HTM-N cells. An induction (2.1 � 0.5-fold) of aB-
crystallin was only observed after 60 min. of recovery phase
(Fig. 1D).

Oxidative stress induces CTGF expression

As increasing age comes along with higher amounts of reactive oxy-
gen species (ROS) in the eye [36], we investigated whether oxidative
stress influences the expression of CTGF in HTM cells. To this end,
cells were treated with 50 lM H2O2 for 1, 3, 6 or 24 hrs and CTGF
and its mRNA were determined by real-time RT-PCR and Western
blotting. A 3-hrs treatment resulted in a significant increase in CTGF
mRNA expression up to 1.8 � 0.2-fold (P < 0.05) which remained
upregulated for at least 24 hrs (Fig. 2A). Moreover, after 3 hrs of oxi-
dative stress, the amounts of CTGF were 2.2 � 0.3-fold higher than
in control cells (P < 0.05). After 24 hrs, the amounts of CTGF were
still 1.9 � 0.2-fold higher than in controls (P < 0.05; Fig. 2B).

CTGF protects HTM cells against oxidative stress

As CTGF appeared to be a primary response gene to stress and as the
amounts of CTGF correlate with sHSP expression, we investigated
whether CTGF affects the viability of H2O2-treated HTM-N cells. For
this purpose, we treated HTM-N and pSiCTGF-HTM-N cells with
50 lM H2O2 alone or in combination with 50 ng/ml of CTGF for
24 hrs. Measuring cell viability was conducted by a MTT assay.
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Treatment of HTM-N cells with H2O2 lead to a significant reduction in
cell viability to 75% � 5% compared to untreated control cells
(P < 0.05). The decrease in viability was significantly higher in
pSiCTGF-HTM-N cells (55% � 2%; P < 0.01). Cells treated with a
combination of H2O2 and CTGF showed a significantly higher viability
(in HTM-N: 103% � 2%, P < 0.01 and pSiCTGF-HTM-N:
84% � 1%; P < 0.01) in comparison to the H2O2-treated cells
(Fig. 2C).

Treatment with LatA causes a reduction in
the amounts of CTGF and its mRNA

Treatment of HTM cells with 30 nM LatA for 24 hrs led to a highly
significant 0.55 � 0.1-fold reduction in CTGF mRNA expression
when compared to untreated control cells (Fig. 3A; P < 0.01. A com-
parable effect was observed after treatment with 60 nM LatA, which
did also cause a reduction in the amounts of CTGF (P < 0.01,
Fig. 3B).

Treatment with ET-1, Ang II or IGF-1 induces
CTGF and its mRNA

To assess the effects of ET-1 on the expression of CTGF in the TM,
HTM cells were treated with ET-1 at a concentration of 100 nM for
1–24 hrs and 1 day to 3 days. The amounts of CTGF and its mRNA
were analysed by real-time RT-PCR and Western blot analysis. Treat-
ment for 1, 3 and 12 hrs did not cause significant changes in the
expression of CTGF (data not shown). After 3 days of treatment, the
expression of mRNA for CTGF increased significantly by 1.6 � 0.2-
fold (Fig. 4A; P < 0.05). In addition, higher amounts of CTGF were
detected in cell extracts of treated cells compared to untreated control
cells (Fig. 4B).

To study the effects of Ang II, HTM cells were treated for 1, 3 or
6 hrs with concentrations of 10 nM and 1 lM of Ang II and analysed
as described above. Following treatment with 10 nM Ang II, the
amounts of CTGF and its mRNA remained unaffected (P > 0.05,
Fig. 5B). In contrast, treatment with 1 lM of Ang II led to significant
changes after 3 hrs of treatment. The expression of mRNA for CTGF
increased up to 2.16 � 0.18-fold (Fig. 5A; P < 0.05), an effect that
correlated with the presence of higher amounts of CTGF (Fig. 2B).
When cells were treated for 6 hrs, no significant changes were
observed when compared with control cells (Fig. 5B).

For studies on the CTGF-inducing effect of IGF-1, HTM cells were
treated with IGF-1 at concentrations of 5 and 50 ng/ml for 6 and
24 hrs respectively. After 6 hrs of incubation, there was no significant
increase between IGF-1-treated and control cells with respect to the
amounts of CTGF and its mRNA. In contrast, treatment with 50 ng/ml
of IGF-1 for 24 hrs led to a significant 2.2 � 0.2-fold increase of
CTGF mRNA when compared to untreated control cells (Fig. 6A;
P < 0.05). The increase in mRNA caused a significant increase in the
amounts of CTGF (P < 0.05, 2.1 � 0.3-fold, Fig. 6B).

Discussion

We conclude that CTGF is a primary response gene after exposure to
stress that protect HTM cells from injury. The protective effect of
CTGF appears to be associated with a stabilization of the actin cyto-
skeleton. This conclusion is based on (i) the findings that CTGF is
immediately upregulated in HTM cells after treatment with different
stressors and (ii) that CTGF induces the expression of the sHSP aB-
crystallin. (iii) The conclusion is supported by the observation that a
knockdown of CTGF leads to a reduced cell viability in HTM cells after
exposure to stress and to an attenuated up-regulation of aB-crystal-
lin, (iv) whereas a pretreatment with CTGF could prevent the stress-
induced cell loss.

The cellularity of the TM decreases throughout life [37, 38]
and the loss of TM cells is more pronounced in patients with POAG
[39]. The causes for the loss of TM cells are not clear, but it is known
that TM cells are exposed to many different stressors during the
ageing process [40, 41]. Among the stressors is mechanical stress
mediated by ciliary muscle contraction and aqueous flow rate
changes. Mechanical stress is thought to be elevated in POAG
patients with increasing IOP [40], a major risk factor for glaucoma.
Besides mechanical stress, TM is constantly exposed to oxidative
stress [41].

In many diseases, it is accepted that the ageing process is associ-
ated with a higher exposure rate to free radicals, which would lead to
a decline of physiological functions of various tissues [42] and sev-
eral studies suggest that an increased formation of ROS might be
associated with glaucoma [36, 43]. In POAG patients, a significant
reduction in mitochondrial respiratory activity and a significant
decrease in anti-oxidative capacity were detected [41, 44–46]. Those
findings resulted in the hypothesis that oxidative stress could be
involved in onset and progression of POAG. Here, we show that CTGF
is a primary response gene after oxidative stress in TM cells. The data

Fig. 1 Effect of heat shock on the expression of CTGF and aB-crystallin. (A) Western blot analysis for CTGF in cell extract of HTM-N cells after heat

shock at 42°C and recovery phase of 15–60 min. After 30 min. the CTGF expression was increased up to 3.3 � 0.4-fold (P < 0.05) and maintained

at this level until 60 min. (B) Western blot analysis for aB-crystallin in cell extract of HTM cells after treatment with 2.5–50 ng/ml of CTGF for
24 hrs. aB-crystallin was significantly increased after CTGF treatment for 24 hrs (3.2 � 0.3-fold, P < 0.05). (C and D) Western blot analysis for

aB-crystallin in cell extracts of HTM-N (C) and pSiCTGF HTM-N cells (D) after heat shock at 42°C and recovery phases of 15–60 min. Densitometric

evaluation of HTM-N cells showed a maximum of 4.1 � 0.3-fold after 30 min. (P < 0.05) while there was only a slight induction of 2.1 � 0.5-fold

observed after 60 min. in pSiCTGF HTM-N cells. Membranes were stained with coomassie blue to confirm equal loading of proteins. (E) Immunohis-
tochemical staining of aB-crystallin (green) and actin fibres (phalloidin, red) in HTM-N and pSiCTGF HTM-N cells 30 min. after heat shock. HTM-N

cells showed a more intense staining for aB-crystallin and an increased formation of actin stress fibres after heat shock, while there was no

increase in pSiCTGF HTM-N cells. Scale bar = 50 lm.
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are supported by in vivo analysis of early response genes after oxida-
tive stress. In mice, the induction of oxidative stress in the cerebellum
led to a substantial increase in CTGF within 6 hrs [47]. The immediate
up-regulation of CTGF under stress conditions was further confirmed
by our heat-shock experiments. Together with the known findings
that also mechanical stress is able to induce CTGF expression [31],
we conclude that CTGF might be a general primary response gene to
various kinds of stressors in HTM cells.

The physiological function of the early up-regulation of CTGF
seems to be a protective mechanism in HTM cells. The supplementa-
tion of CTGF prior to H2O2 treatment had a beneficial effect on the

viability of TM cells. A potential role for CTGF in cell survival was
shown in gallbladder cancer cells, where silencing of CTGF led to a
reduced cell viability [48]. We could observe a similar effect in TM
cells, where reduced levels of CTGF led to a decline in cell viability
rate after oxidative stress, whereas adding CTGF partially rescued the
loss of TM cells. A protective function of CTGF was previously shown
in the kidney, where supplementation of CTGF guarded puromycin-
treated podocytes from cell death [49].

The protective effect of CTGF might be directly linked to the
expression of the sHSP aB-crystallin, as CTGF treatment led to a sig-
nificant up-regulation of aB-crystallin in HTM cells. aB-crystallin
belongs to the family of sHSPs, and it is known to be up-regulated in
the TM of POAG patients [34]. The increased presence of sHSPs
might have a protective effect, as TM cells respond to oxidative stress
and heat shock by aB-crystallin induction [50], whereas silencing of
CTGF in TM cells blocked the stress-induced up-regulation of the
aB-crystallin. As both proteins are simultaneously regulated during
the exposure to heat shock, we assume that CTGF acts as modulator
of the aB-crystallin synthesis, because of the matricellular character
of CTGF [51]. sHSPs are able to protect cells by different mechanisms
depending on their subcellular localization. Under stress conditions,
aB-crystallin can translocate to the mitochondria and thereby inter-
acting with various components of the mitochondrial apoptotic
machinery and preventing cell death [52, 53], whereas the cytosolic
aB-crystallin can inhibit actin depolymerization, thereby leading to an
increased cell survival [54]. We assume that CTGF protects the cells
against the oxidative stress-induced disruption of the cytoskeleton
and disaggregation of actin fibres, a critical point for cell survival
[54]. In an earlier study, we could already show the positive effect of
CTGF on formation of actomyosin fibres and the contractility in HTM
cells [11], whether the mitochondrial apoptotic events are also altered
after CTGF treatment have to be investigated in the future.

Based on our observations, we wanted to address additionally the
question whether CTGF regulation in HTM cells is also linked to other
factors, which are present in the AH and/or are involved in the

A

B

C

Fig. 2 (A) Real-time RT-PCR analysis of CTGF mRNA expression in

HTM cells after treatment with 50 lM H2O2 for 1–24 hrs. A 3-hrs treat-

ment resulted in a significant increase in CTGF mRNA expression up to
1.8 � 0.2-fold which remained up-regulated for at least 24 hrs. The

mean value obtained from untreated cells was set at 1. GNB2L and

GAPDH were used as reference genes. Means � SD are shown. (B)
Western blot analysis for CTGF in cell extract of HTM cells after treat-
ment with 50 lM H2O2 for 3 and 24 hrs. Densitometric evaluation

showed a maximum of 2.2 � 0.3-fold after oxidative stress for 3 hrs.

Membranes were stained with coomassie blue to confirm equal loading

of proteins. (C) Measurement of cell viability in HTM-N and pSiCTGF
HTM-N cells via MTT assay after treatment with 50 lM H2O2 alone or

in combination with 50 ng/ml of CTGF for 24 hrs. Treatment of HTM-N

cells lead to a significant reduction to 75% � 5%. The decrease was
more intense in pSiCTGF-HTM-N cells (55% � 2%). Cells treated with

a combination of H2O2 and CTGF showed a significant higher viability

(in HTM-N 103% � 2% and pSiCTGF-HTM-N 84% � 1%). The mean

value obtained from untreated cells was set at 1. Means � SD are
shown. Asterisks mark statistically significant (*P < 0.05) and high sig-

nificant differences (**P < 0.01).
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outflow facility regulation and are assumed to be involved in CTGF
regulation in other tissues.

In the context of a CTGF-mediated induction of ECM synthesis, we
also investigated the effect of IGF-1 on CTGF expression. IGF-1 stimu-
lates CTGF to induce collagens via binding to the IGF-binding domain
of CTGF [55]. IGF-1 is present in the AH [56] and is expressed in the
TM together with its receptors [57]. In studies on the signalling path-
ways of IGF-1, the RhoA/ROCK signalling pathway is among the most
commonly highlighted [58]. In our study, physiological concentra-
tions of IGF-1 led to an increased expression of CTGF in TM cells
[56]. Little is known though about the function of IGF-1 and its recep-
tor within the TM, an avenue that should be analysed in the future.

Clearly, the common pathway between the molecules investigated
here appears to be the RhoA/ROCK pathway that is involved in the
regulation of outflow facility by altering the actin cytoskeleton of the
TM. Previous studies showed that Ang II and ET-1 induce CTGF
expression via the small GTPase RhoA [59, 60]. In this study, we obe-
served a late induction of CTGF after ET-1 treatment indicating that
the increase in CTGF could be a secondary effect. On the other hand,
Horstmeyer et al. observed a pronounced late induction of CTGF after
ET-1 in comparison to short time treatments. This finding was
explained with different expression patterns of the two endothelin
receptors A and B at the different points [61]. In contrast, a rapid
increase in CTGF after Ang II treatment clearly implicates a direct

A

B

Fig. 3 Analysis of CTGF expression in HTM cells after treatment with 30 or 60 nM latrunculin A for 24 hrs. (A) Real-time RT-PCR analysis of CTGF

mRNA expression. The mean value obtained from untreated cells was set at 1. GNB2L and GAPDH were used as reference genes. Means � SD are

shown. Asterisk marks statistically significant differences between control and latrunculin A-treated cells (**P < 0.01). (B) Western blot analysis for
CTGF in HTM cell extract. Densitometric evaluation showed a minimum of 0.67 � 0.7-fold (*P < 0.01) compared to the untreated control after

treatment with 60 nM for 24 hrs. Membranes were stained with coomassie blue to confirm equal loading of proteins. Asterisks mark statistically

significant (*P < 0.05) and high significant differences (**P < 0.01).

A

B

Fig. 4 Analysis of CTGF expression in HTM cells after treatment with 100 nM endothelin-1 for different time periods. (A) Real-time RT-PCR analysis

of CTGF mRNA expression. The mean value obtained from untreated cells was set at 1. GNB2L and GAPDH were used as reference genes.

Means � SD are shown. Asterisk marks statistically significant differences between control and endothelin-1-treated cells (*P < 0.05). (B) Western
blot analysis for CTGF in HTM cell extract. Densitometric evaluation showed a maximum of 1.8 � 0.2-fold compared to untreated control after

3 days. Membranes were stained with coomassie blue to confirm equal loading of proteins.
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effect of the substance. The fast decline of the CTGF expression under
the basal levels might be because of the short half-life of Ang II.

The CTGF-inducing effect of RhoA was shown by the treatment of
HTM cells with a constitutive active form of RhoA, whereas the inhibi-
tion of the Rho kinase, a downstream mediator of RhoA, lead to a
substantial down-regulation of CTGF [62]. The CTGF expression is
coupled to the stability of the actin cytoskeleton [63], the formation of
F-actin stress fibres led to an increased CTGF expression. This regula-
tion was dependent on the availability of G-actin. Actin disrupting
agents like LatA and B, which cause an enhanced cellular content of
G-actin, lead to a reduction in CTGF expression in different cell lines
[64]. Quite similarly, the LatA treatment of HTM cells caused a signifi-
cant down-regulation of CTGF. As latrunculin treatment of perfused
anterior chambers lead to an increase in outflow facility [65, 66], we

speculate that, given the loss of contractility in TM cells, the decrease
in CTGF-mediated ECM deposition might contribute in the long run to
the outflow increasing effect of latrunculins. On the other hand, under
stress, like increased mechanical load or oxidative stress, the TM
cells react with increased F-actin stress fibres formation, leading to
decreased G-actin levels and thereby to an enhanced CTGF expres-
sion. Thereby, inducing a vicious circle, as CTGF by itself can activate
the RhoA/ROCK signalling pathway [11]. If the stress last only for a
short period, the expression of CTGF declines rapidly to a basal
expression, which led to the assumption that compensatory mecha-
nisms are activated to normalize the CTGF expression levels [67].
Under pathological conditions, which were shown in other tissues,
those mechanisms seem to fail and the CTGF up-regulation maintains
in those tissues leading to fibrotic changes [68, 69].

A B

Fig. 5 Analysis of CTGF expression in HTM cells after treatment with 10 nM or 1 lM angiotensin-II for different time periods. (A) Real-time RT-PCR
analysis of CTGF mRNA expression. The mean value obtained from untreated cells was set at 1. GNB2L and GAPDH were used as reference genes.

Means � SD are shown. Asterisk marks statistically significant differences between control and angiotensin-II-treated cells (*P < 0.05). (B) Western

blot analysis for CTGF in HTM [71] cell extract. Densitometric evaluation showed a maximum of 2.6 � 0.8-fold compared to the untreated control
after treatment with 1 lM for 3 hrs. Membranes were stained with coomassie blue to confirm equal loading of proteins.

A B

Fig. 6 Analysis of CTGF expression in HTM cells after treatment with 5 or 50 ng/ml IGF-1 for different time periods. (A) Real-time RT-PCR analysis
of CTGF mRNA expression. The mean value obtained from untreated cells was set at 1. GNB2L and GAPDH were used as reference genes.

Means � SD are shown. Asterisk marks statistically significant differences between control and IGF-1-treated cells (*P < 0.05). (B) Western blot

analysis for CTGF in HTM cell extract. Densitometric evaluation showed a maximum of 2.1 � 0.3-fold (*P < 0.05) compared to the untreated con-
trol after treatment with 50 ng/ml for 24 hrs. Membranes were stained with coomassie blue to confirm equal loading of proteins.

ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

1017

J. Cell. Mol. Med. Vol 19, No 5, 2015



We conclude that CTGF is an important regulatory molecule in
the TM and that the RhoA/ROCK signalling pathway is involved in
some CTGF-mediated TM effects [11, 62, 70]. The newly identified
molecules and stressors, together with the findings that CTGF is
induced by dexamethasone, TGF-b1 and 2 in HTM cells [31, 32],
brings up the idea that CTGF may play an important role in the path-
ogenesis of glaucoma. Along this line, the reported constitutive basal
expression of CTGF in the TM [25] could be necessary for mainte-
nance of the TM actin cytoskeleton and ECM. An immediate upregu-
lation of CTGF following short-term stress might be an important
mechanism to protect TM cells from damage and death. In contrast,
a continuous upregulation of CTGF after chronic cellular stress might
significantly alter TM homoeostasis and lead to an increase in TM
ECM, actin-mediated contractility and finally stiffness. Clearly, such

a scenario is likely to result in increased outflow resistance and IOP,
and finally POAG.
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