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Abstract: Lipid metabolites regulate fatty acid and glucose homeostasis. The intention of 

the current study is to identify circulating lipid species, which are altered in rodent obesity 

and strongly correlate with the classically measured metabolites glucose, triglycerides, and 

cholesterol. Mice fed a high fat diet (HFD) for 14 weeks have increased body weight and 

fasting glucose. Serum triglycerides are not altered, while cholesterol tends to be increased. 

Accordingly, major cholesteryl ester (CE) species and free cholesterol are not significantly 

raised in obesity while minor metabolites, including CE 20:3 and CE 18:3, are increased or 

reduced, respectively. Distinct sphingomyelin (SM) species are elevated while ceramides 

are not raised. Phosphatidylinositol (PI) species, including PI 34:1, are raised while others 

are decreased. PI 34:1 strongly correlates with fasting glucose and proinsulin levels. 

Phosphatidylcholine (PC) 26:0, 40:2, and 40:5, which are induced in obesity, correlate with 

cholesterol. PC 38:4 and PC 40:6 are also raised in fat fed mice and positively correlate 

with fasting glucose. Lysophosphatidylcholine (LPC) species are also changed in obesity 

and the already shown reduction of LPC 16:1 has been confirmed. LPC 22:4, which is 

increased, correlates with serum cholesterol. The data indicate that circulating levels of 
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various lipid species are changed in the obesity model studied and some of them are 

strongly associated with classically measured metabolites.  
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1. Introduction 

The prevalence of obesity has dramatically increased over the past few decades [1,2]. Obesity is a 

primary risk factor for metabolic diseases, including type 2 diabetes, non-alcoholic fatty liver disease 

and cardiovascular disease, and presents a serious public health problem [3–5].  

The mechanisms linking obesity to metabolic diseases are not precisely known. There is 

considerable evidence that impaired lipid metabolism plays a major role therein [1,3,4]. Recently 

developed lipidomic techniques demonstrate a high complexity of the plasma lipidome [6]. These 

methods are used to identify new lipid biomarkers associated with obesity and type 2 diabetes which 

may be relevant in pathophysiology, diagnosis, and therapy.  

Lipid profiling in monozygotic twins reveals higher concentrations of lysophosphatidylcholine 

(LPC) and lower levels of ether phospholipids in serum of the obese twins [7]. Changes in these lipid 

species are associated with insulin resistance, independent of genetic factors [7]. Higher concentrations 

of LPC 14:0 and LPC 18:0 in overweight/obese men have been described in a second study, while 

LPC 18:1 is found reduced [8]. LPC 18:2 and sphingomyelin 16:1 in serum are inversely related to 

type 2 diabetes risk [9].  

In plasma of mice, fed a high fat diet (HFD) for 12 weeks, LPC species are even decreased and most 

of them decline already after one week of HFD. Further, sphingomyelin, ceramide, and hexosylceramide 

levels are raised [10]. Most of the LPC species analyzed are also found reduced in a second study 

using mice fed a HFD for 10 weeks. LPC 17:0, 18:0, and 18:3 are, nevertheless, significantly induced. 

Total phosphatidylcholine (PC) concentration is increased about three-fold in obesity [11], whereas, 

choline and phosphorylcholine are reduced in serum of diet-induced obese rats [12].  

Most studies have shown that ceramides are increased in rodent obesity [10,13,14], while decreased 

level of ceramide 24:1 has also been described [15]. In patients, ceramide levels are induced in  

obesity [16,17] and associated with markers of insulin sensitivity [17]. Holland et al. have proven that 

inhibition of ceramide synthesis by the serine palmitoyltransferase inhibitor myriocin improves 

obesity-associated insulin resistance [18]. Further, blockage of acid sphingomyelinase lowers HFD 

mediated ceramide generation and body weight gain [13]. Phosphatidylcholine 18:0/18:1 is a diurnal 

serum lipid in which temporal changes are dysregulated in obesity. Treatment of db/db mice with PC 

18:0/18:1 improves lipid and glucose metabolism [19]. These data further confirm a strong link 

between lipid- and glucose homeostasis. Although most studies demonstrate increased serum ceramide 

in obesity, data on further lipid metabolites are inconsistent. In the current study, various lipid species 

have been measured in serum of male mice fed a standard chow or a high fat diet for 14 weeks.  
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2. Results 

2.1. Metabolic Profile of Fat Fed Mice 

The six mice on a high fat diet (HFD) had a body weight of 39.3 (32.5–41.3) g, which was 

significantly higher compared to the six mice on a standard diet (SD) with 25.8 (23.9–27.5) g  

(Figure 1A). Total cholesterol tended to be elevated, while triglycerides in serum were not raised 

(Figure 1B,C). Fat fed mice displayed higher fasting blood glucose, tended to have increased fasting 

insulin, had raised proinsulin levels, and increased Homeostasis model assessment (HOMA) index 

(Figure 1D–G). The adipokine chemerin was markedly increased in serum of HFD mice (Figure 1H) 

as described [20,21]. 

Figure 1. Metabolic parameters of C57BL/6 mice fed a standard chow (SD) or a high fat 

diet (HFD) for 14 weeks. (A) Body weight; (B) Total cholesterol; (C) Triglycerides;  

(D) Fasting glucose; (E) Fasting insulin; (F) Proinsulin; (G) HOMA Index; and (H) Chemerin 

were measured in the serum of these animals. Numbers in the figure indicate p-values,  

p-values indicating a trend are given in brackets.  

 

2.2. Cholesterol Species  

Total cholesterol measured with a commercially available assay (Figure 1B) and mass spectrometry 

were highly correlated (r = 0.958, p < 0.001) and levels tended to be higher (p = 0.065) in serum of fat 

fed animals. Free cholesterol levels showed a similar trend (Table S1A). Concentrations of total 

saturated, monounsaturated (MUFA), and polyunsaturated (PUFA) cholesteryl ester (CE) species 

measured were similar in serum of SD and HFD fed mice (data not shown). Ratios of CE 18:1 to  

CE 18:2 (the preferred fatty acid of tissue acyl-CoA cholesterol acyltransferase (ACAT) and serum 

lecithin cholesterol acyltransferase (LCAT), respectively [22]) were significantly (p = 0.004) increased 

in HFD (data not shown). Analysis of single CEs revealed raised CE 15:0, CE 20:2 and CE 20:3, while 

CE 16:1 and CE 18:3 were decreased in HFD (Figure 2A–D, Table S1A). 
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Figure 2. Cholesteryl ester (CE), sphingomyelin (SM), and phosphatidylcholine (PC) 

species in serum of mice fed a standard chow (SD) or high fat diet (HFD) for 14 weeks. 

(A) CE 15:0; (B) CE 18:3; (C) CE 20:2; (D) CE 20:3; (E) SM 16:0; (F) PC 38:3;  

(G) PC 38:4; (H) PC 38:5; (I) PC 34:2; and (J) PC 34:3 were measured in the serum of 

these animals. Numbers in the figure indicate p-values.  

 

2.3. Sphingomyelin and Ceramides 

Total sphingomyelin (SM) was 39.3 (26.4–47.3) µmol/L in serum of HFD animals and 28.9  

(24.8–33.3) µmol/L in SD fed mice and was significantly higher in the first group (p = 0.041). Here, 

total saturated and total monounsaturated fatty acid (MUFA) species but not polyunsaturated (PUFA) 

SM were raised (p = 0.041 for both comparisons). Elevated levels of these SM classes are explained by 

higher SM 16:0 (Figure 2E) and 18:0 (p = 0.009), and higher SM 16:1 (p = 0.041), SM 18:1  

(p = 0.026), and SM 22:1 (p = 0.041) in serum of HFD fed mice (Table S1B). Ceramides were 

similarly abundant in serum of SD and HFD fed mice (Table S1C).  

2.4. Phosphatidylcholine 

Total, MUFA, PUFA, and saturated phosphatidylcholine (PC) species were not altered (data not 

shown). PC 26:0, 36:1, 38:3, 38:4, 38:5, 40:2, 40:5, and 40:6 were significantly increased. PC 34:2, 

34:3, and 36:0 were significantly decreased (Figure 2F–J, Table S1D). 

2.5. Lysophosphatidylcholine 

Total lysophosphatidylcholine (LPC), MUFA, and saturated LPC species were not changed upon 

HFD, while PUFA LPC species were significantly reduced (p = 0.015). LPC species altered in serum 

of HFD animals are listed in Table 1. Kim et al. and Barber et al. [10,11] already analyzed LPC 

species in serum of SD and HFD animals and comparison of their and current findings showed that 

LPC 16:1 was the only species which was consistently decreased in all the fat fed mice models studied. 

Other LPC species were not congruently altered (Table 1).  
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Table 1. Lipid species measured in serum of mice fed a standard chow (SD) or high fat 

diet (HFD) for 14 weeks.  

Lipid SD Std. dev. HFD  Std. dev. p-value Regulation
Regulation 
Kim et al. 

Regulation 
Barber et al. 

LPC 15:0 0.48 0.05 0.55 0.10 0.093 - ↓ ↓ 
LPC 16:1 9.36 0.67 5.51 0.94 0.002 ↓ ↓ ↓ 

LPC 16:0 69.84 4.11 60.02 13.01 0.180 - ↓ ↓ 
LPC 18:3 1.80 0.11 0.90 0.16 0.002 ↓ ↑ n.d. 
LPC 18:2 39.02 2.24 18.04 3.14 0.002 ↓ ↓ - 
LPC 18:1 82.73 5.60 84.19 16.24 0.310 - ↓ ↓ 
LPC 18:0 26.76 2.60 39.35 8.13 0.065 - ↑ ↑ 
LPC 20:5 0.48 0.09 0.57 0.08 0.180 - ↓ ↓ 
LPC 20:4 21.15 2.60 26.00 2.83 0.026 ↑ ↓ ↑ 

LPC 20:3 2.21 0.44 4.35 0.69 0.002 ↑ n.d. - 
LPC 20:0 2.10 0.25 1.24 0.26 0.002 ↓ n.d. - 
LPC 22:6 6.65 0.58 6.93 1.22 0.485 - n.d. - 
LPC 22:5 0.81 0.10 1.11 0.31 0.065 - n.d. n.d. 
LPC 22:4 0.34 0.05 0.47 0.07 0.026 ↑ n.d. n.d. 
LPC 22:0 3.81 0.35 5.23 1.50 0.065 - n.d. n.d. 

The mean values (in µM) ± standard deviation (Std. dev.) are listed. Regulation indicates increased 

(↑)/decreased (↓)/unchanged (-) levels in serum of HFD fed mice compared to SD fed animals. Significant  

p-values are shown in bold letters. Regulation described by Kim et al. [11] and Barber et al. [10] is shown for 

comparison. Lipid species consistently regulated in the three studies are highlighted in dark grey. 

Differentially regulated lipid species measured in at least two studies are highlighted with light grey.  

(Not determined, n.d.). 

2.6. Phosphatidylinositol 

Total and PUFA phosphatidylinositol (PI) tended to be increased (p = 0.065 for both comparisons) 

and MUFA PIs were significantly higher (p = 0.002) in obesity. PI 34:1 (Figure 3A), 36:1 (Figure 3B) 

and 38:3 (Figure 3C) were raised in HFD. PI 34:2 (Figure 3D), 36:2 (Figure 3E), 36:3 (Figure 3F) and 

36:4 (Figure 3G) were decreased. Data of all PI species measured are summarized in Table S1E.  

2.7. Phosphatidylethanolamine 

Total phosphatidylethanolamine (PE), MUFA, PUFA, and saturated PE were not altered (data not 

shown). PE 34:2 and PE 36:3 were diminished and PE 38:4 was raised in HFD (Figure 3H–J). Data of 

all PE species measured are listed in Table S1F.  

2.8. Body Weight Independent Correlations 

Correlations of the different lipids and total serum cholesterol, triglycerides, insulin, proinsulin, 

glucose, and HOMA index were calculated and highly significant associations (p ≤ 0.001), which were 

still significant after adjusting for body weight are shown. PC 26:0, 40:2, 40:5 and LPC 22:4 positively 

correlated with total cholesterol (Figure 4A–D). After correcting for body weight, respective p-values 

for the lipids above were 0.001, 0.001, <0.001 and 0.002. PI 34:1, PC 38:4 (r = 0.846, p = 0.001), and 
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PC 40:6 were positively associated with fasting glucose (Figure 4E,F and data not shown). After 

correcting for body weight the respective p-values were 0.010, 0.033, and 0.009. PI 34:1 also 

positively correlated with proinsulin (r = 0.845, p = 0.001, and p = 0.012, after adjusting for body 

weight). There were no significant correlations with fasting insulin, triglycerides, and HOMA index 

(data not shown).  

Figure 3. Phosphatidylinositol (PI) and phosphatidylethanolamine (PE) species in serum of 

mice fed a standard chow (SD) or high fat diet (HFD) for 14 weeks. (A) PI 34:1;  

(B) PI 36:1; (C) PI 38:3; (D) PI 34:2; (E) PI 36:2; (F) PI 36:3; (G) PI 36:4; (H) PE 34:2; 

(I) PE 36:3; and (J) PE 38:4 were measured in the serum of these animals. Numbers in the 

figure indicate p-values.  

 

Figure 4. Correlation of lipid species with systemic cholesterol and fasting glucose  

(A) Correlation of PC 40:2 with cholesterol; (B) Correlation of PC 40:5 with cholesterol;  

(C) Correlation of PC 26:0 with cholesterol; (D) Correlation of LPC 22:4 with cholesterol; 

(E) Correlation of PI 34:1 with fasting glucose; (F) Correlation of PC 40:6 with fasting glucose. 
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3. Discussion 

Nutrient oversupply and physical inactivity cause overweight/obesity which is a major factor in the 

pathogenesis of metabolic diseases [1–5]. Lipids are a highly diverse group of molecules regarding 

their structure and function [6,23,24]. Purpose of the current study is to get insight into the changes of 

serum lipids in obesity. Lipidomic analysis was performed in fat fed mice, a commonly used model to 

study obesity [10,11,18]. These mice gain more weight, have increased fasting glucose and HOMA 

index while total triglycerides are not elevated. Total cholesterol tends to be higher and, subsequently, 

most of the cholesteryl ester species measured are either unchanged or increased. CE 16:1 and CE 18:3 

are the only derivatives which are reduced. Ratios of CE 18:1 to CE 18:2, the preferred fatty acids of 

tissue ACAT and serum LCAT, respectively [22] is significantly increased in HFD. CE 18:1 tends to 

be higher suggesting a trend to higher ACAT activity in obesity in line with the literature [25].  

Analysis of total lipid concentrations revealed that only sphingomyelin is modestly but significantly 

increased in mice fed a HFD. This is partly caused by higher levels of SM 18:0 and 18:1, which have 

already been described to be raised in fat fed mice [10] and ob/ob mice [26]. Ceramide which is raised 

in serum of ob/ob mice and diet-induced obese animals [10,26] is, however, not induced in the serum 

of HFD fed mice studied herein suggesting that body weight gain is not associated with higher serum 

ceramides in general.  

Lysophosphatidylcholine species have already been measured in rodent and human  

obesity [7,8,10,11]. Comparison of current data and results from Kim et al. and Barber et al. who used 

fat fed male C57BL/6 and male C57BL/6J mice, respectively, revealed that LPC 16:1 is the only 

species which is consistently decreased in these three animal models [10,11]. LPC 18:0 is raised in the 

mice studied by Kim et al. and Barber et al. [10,11] and, at least, tends to be induced in the serum of 

fat fed animals used in the present study. LPC 22:4 has only been analyzed in the current model and is 

increased. Interestingly, this lipid positively correlates with serum cholesterol.  

These data suggest that most of the obesity-associated alterations in LPC species identified so far 

are specifically affected in the respective models studied but are not universally changed in mice 

chronically fed high fat diets. Considering that even levels of serum triglycerides and total cholesterol 

are not consistently induced in mice fed high fat diets [10–12,27] it is not surprising that most of the 

lipid species analyzed in these different mouse models are not uniformly changed.  

Concentrations and composition of fatty acids vary in different diets. Dietary fatty acids exert 

multiple functions, partly by activation of specific transcription factors [28], and this may influence 

levels of distinct lipid species. The role of palmitate in ceramide metabolism has been studied in  

detail [23]. Other constituents in the diets also affect cellular function and, most likely, the lipid  

profile [29,30]. Therefore, type of diet, duration of feeding a high fat diet and time of day and/or time 

of fasting before collecting serum may affect lipidomic profile independent of obesity [10,19,31]. 

Gender also affects lipid levels [32,33] but only male mice have been enrolled in the three studies 

compared herein [10,11].  

Most of the phosphatidylethanolamine species analyzed are not altered in obesity in accordance 

with published findings [10]. PE 38:4 is increased in the HFD model used herein and in the mice 

studied by Barber et al. [10].  
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To our knowledge phosphatidylinositol species have not been measured in rodent models of obesity 

so far. Some of the PI species analyzed are increased or decreased in serum of HFD fed animals.  

PI 34:1 representing about 1% to 2% of the PI species determined is increased in obesity. Of note,  

this lipid strongly correlates with fasting serum glucose and proinsulin levels. Of the various 

phosphatidylcholine species analyzed, only PC40:6 is also induced in the study by Barber et al. [10]. 

PC 40:6 positively correlates with serum glucose levels suggesting an association of this lipid with 

glucose homeostasis. PC 38:4 is also associated with fasting glucose concentrations and is found 

increased in the current animal model and unchanged in a recent study [10]. PC 26:0, 40:2, and 40:5, 

which are all elevated in the serum of fat fed mice strongly and positively correlate with serum 

cholesterol. Whether these associations indicate a functional relationship or co-regulation of these 

lipids needs further investigation.  

Of note, none of the lipid species changed in obesity shows a strong correlation with HOMA index 

as marker of insulin resistance. Furthermore, no strong correlations with serum triglyceride levels have 

been identified arguing against a prominent role of a single lipid species in insulin resistance and 

serum triglyceride levels.  

This comprehensive lipidomic analysis shows that sphingomyelins, glycerophospholipids, and 

cholesteryl ester species are altered in obesity at least in the rodent model studied herein. For our data 

the same limitations apply, as in all cross-sectional studies describing associations and not causal 

relationships. Thus, the pathways affected in obesity and the relevance of the identified biomarkers in 

obesity are still unknown. Furthermore, there is no established method to discriminate the effects 

related to the high fat diet and obesity. It is also important to note that serum of male mice has  

been analyzed.  

A major challenge for the future is the characterization of the individual functions of the various 

lipid species circulating in blood. Where possible current data have been compared to results of 

additional studies and only a few of these lipids, namely LPC 16:1, SM 18:0, SM 18:1, PE 38:4, and 

PC 40:6 are concordantly changed [10,11]. Therefore, these lipids are at least good candidates to 

further study their role in obesity using large cohorts of human samples to identify if any differences in 

the plasma lipid profile exist between obese and non-obese individuals. 

4. Experimental Section 

4.1. Materials 

Triglyceride concentrations were measured using GPO-PAP microtest (purchased from Roche, 

Mannheim, Germany) and total cholesterol in serum was determined by using an assay from Diaglobal 

(Berlin, Germany). Proinsulin and insulin were determined by the appropriate ELISAs from Mercodia 

(Uppsala, Sweden). Glucose was measured by QuantiChrom Glucose Assay Kit from Biotrend  

(Köln, Germany). The Homeostasis model assessment (HOMA) index was calculated using the 

formula: [fasting glucose (mmol/L) × fasting insulin (mU/L)]/22.5. 
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4.2. Animal Model 

Mice were ordered from The Jackson Laboratory (Bar Harbor, ME, USA) and housed in a 21 ± 1 °C 

controlled room under a 12 h light-dark cycle. Animals had free access to food and water and were 

housed with 3 to 5 mice per cage. Blood was drawn after fasting overnight. Rising concentrations of 

CO2 were used to produce loss of consciousness followed by cervical dislocation. Procedures were 

approved by the University of Regensburg Laboratory Animal Committee and complied with the 

German Law on Animal Protection and the Institute for Laboratory Animal Research Guide for the 

Care and Use of Laboratory Animals, 1999. 

Fourteen week old male C57BL/6 mice were kept on a high fat diet (HFD) or standard chow (SD) 

for 14 weeks. Feed composition of these diets can be downloaded from the homepage of this company 

(Ssniff, Soest, Germany) 

Gross energy of SD (ssniff® EF acc. D12450B (I) mod.) was 17.8 MJ/kg, 70% of kJ were from 

carbohydrate, 20% from protein and 10% from fat. Gross energy of HFD (ssniff® EF R/M acc. 

D12451 (II) mod.) was 22.1 MJ/kg, 35% of kJ were from carbohydrate, 20% from protein and 45% 

from fat (Ssniff, Soest, Germany). Fatty acid composition and cholesterol content of these diets are 

listed in Table S2. For technical reasons data of insulin, proinsulin, and HOMA index are shown for  

11 mice, all other data are given for 12 mice. 

4.3. Quantification of Lipids 

Lipids were quantified by direct flow injection electrospray ionization tandem mass spectrometry 

(ESI-MS/MS) in positive ion mode using the analytical setup and strategy described previously [34]. A 

precursor ion of m/z 184 was used for phosphatidylcholine (PC) [34]. A neutral loss of 141 and 277 Da 

were used for phosphatidylethanolamine (PE) and phosphatidylinositol (PI) [35], respectively. 

Sphingosine-based ceramides (Cer) were analyzed using a fragment ion of m/z 264 [36]. Free 

cholesterol (FC) and cholesteryl ester (CE) were quantified using a fragment ion of m/z 369 after 

selective derivatization of FC [37]. Lipid species were annotated according to the recently published 

proposal for shorthand notation of lipid structures that are derived from mass spectrometry [38]. 

Glycerophospholipid annotation is based on the assumption of even numbered carbon chains only.  

SM species annotation is based on the assumption that a sphingoid base d18:1 is present. In case the 

fatty acid composition was not determined, annotation represents the total number of carbons and 

double bonds. For example, PC 36:4 comprises species like PC 16:0/20:4 or 18:2/18:2.  

4.4. Statistical Analysis 

Data are presented as mean values ± standard deviation. Statistical differences were analyzed by 

two-tailed Mann-Whitney U Test (SPSS Statistics 19.0 program, IBM, Leibniz Rechenzentrum, 

München. Germany) and a value of p < 0.05 was regarded as significant. Spearman correlations  

(IBM SPSS Statistics 19.0 program) were calculated. Correlations with p ≤ 0.001 which were still 

significant (p < 0.05) after adjusting for body weight are shown.  
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5. Conclusions 

The lipid species LPC 16:1, SM 18:0, SM 18:1, PE 38:4, and PC 40:6 seem to have a role in  

rodent obesity.  
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