
Revenue Management for Cloud Computing Providers:

Decision Models for Service Admission Control under

Non-probabilistic Uncertainty

Tim Püschela, Guido Schryenb,∗, Diana Hristovab, Dirk Neumanna

aChair for Information Systems Research, Albert-Ludwigs-Universität Freiburg, Platz der
Alten Synagoge, 79108 Freiburg, Germany

bManagement Information Systems, Universität Regensburg, Universitätsstr. 31, 93053
Regensburg, Germany

Abstract

Cloud computing promises the flexible delivery of computing services in a
pay-as-you-go manner. It allows customers to easily scale their infrastructure
and save on the overall cost of operation. However Cloud service offerings
can only thrive if customers are satisfied with service performance. Allow-
ing instantaneous access and flexible scaling while maintaining the service
levels and offering competitive prices poses a significant challenge to Cloud
Computing providers. Furthermore services will remain available in the long
run only if this business generates a stable revenue stream. To address these
challenges we introduce novel policy-based service admission control mod-
els that aim at maximizing the revenue of Cloud providers while taking in-
formational uncertainty regarding resource requirements into account. Our
evaluation shows that policy-based approaches statistically significantly out-
perform first come first serve approaches, which are still state of the art.
Furthermore the results give insights in how and to what extent uncertainty
has a negative impact on revenue.

Keywords: admission control, informational uncertainty, revenue
management, cloud computing

∗Corresponding author
Email addresses: tim.pueschel@is.uni-freiburg (Tim Püschel),

guido.schryen@wiwi.uni-regensburg.de (Guido Schryen),
diana.hristova@wiwi.uni-regensburg.de (Diana Hristova),
dirk.neumann@is.uni-freiburg (Dirk Neumann)

Preprint submitted to European Journal of Operational Research August 19, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/33180088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Cloud computing denotes a computing model that enables ubiquitous and
on-demand network access to a shared pool of configurable resources, which
can be rapidly provisioned and released with minimal management effort
(Mell and Grance, 2009). Resources typically refer to IT infrastructures,
platforms or software, which are provided as services on a per-usage basis.
While Cloud computing enjoys wide popularity for users, Cloud providers
face fierce competition that has led to an erosion of the margins from $1 per
CPU/hour to just a few cents (Amazon, 2012).

As the revenue side is reduced by the competition, Cloud providers need
to minimize their operation costs to remain competitive. Reducing the oper-
ation costs is, however, quite difficult as the workload is highly uncertain, as
the exact distribution of job arrivals in unknown. To the Cloud providers’ dis-
may, most of modern applications are online services that require immediate
processing (e.g. Outlook.com, Dropbox, GDrive). As a consequence of the
immediacy traditional batch processing is not applicable; nor is rescaling of
the Cloud possible due to the set up time of adding additional resources to the
Cloud. Thus, Cloud providers need to manage the trade-off between main-
taining excess resources as a buffer and operating the Cloud with minimal
resources. While the former strategy assures to meet all Quality of Service
assertion even if uncharacteristically many jobs arrive, the latter strategy
clearly optimizes on the operating costs potentially leaving customers unsat-
isfied with unmet Quality of Service assertions.

An effective Admission control that determines which job requests are
processed, may alleviate this trade-off: If the workload exceeds a critical
threshold, the Cloud is susceptible to fail the Quality of Service assertion.
In extreme cases this can even result in a system overload compromising the
stability of the entire system. Admission control can act as an instrument
for Cloud providers to control the exact number of jobs that are confronting
the Cloud in the short run. The admission control decision is, however, ham-
pered by the uncertain jobs arrivals and, in addition, by resource uncertainty.
Resource uncertainty accounts for the fact that it is literally impossible to
predict the exact resource requirements necessary to meet the Quality of
Service assertions, due to the involved complexity in the underlying IT in-
frastructure (c.f. (Kounev et al., 2007)).

2

The field of revenue management has developed many solutions to related
problems in other as well as related industries. Those solutions, however, are
not applicable as they do not account for the peculiarities of online appli-
cations run in Clouds, such as resource uncertainty. Cloud systems are too
complex, to obtain good predictions on required resources for a certain job.
Thus, resource uncertainty results in a tremendous resource overestimation
(Caglar and Gokhale, 2014). We extend the revenue management literature
by introducing an admission control scheme that is tailored towards the needs
of services requiring instantaneous access. We cope with the complicated
issue of resource uncertainty by applying fuzzy set theory to revenue man-
agement. Our work incorporates feedback and significantly extends models
presented in (Püschel and Neumann, 2009; Püschel et al., 2012).

Our work contributes to the literature by suggesting and testing various
service admission control policies using extensive simulations. We show that
the admission problem can be solved in polynomial time, which is prereq-
uisite for instantaneous decisions. Furthermore, we show that our policies
succeed in satisfying the technical requirements stemming from cloud com-
puting while contemporaneously securing additional revenue for the Cloud
provider. In our analysis, we demonstrate how uncertainty can affect the
tradeoff between the revenue base and the service request acceptance rate.

The remainder of this paper is structured as follows: In the second sec-
tion, we discuss the determinants of the “Cloud Admission Control Problem”.
Subsequently, we review related work in Section 3 based on these determi-
nants. In Section 4, we propose decision models that account for various
real-time admission control policies of Cloud providers that focus uncertainty
regarding resource demands. The fifth section comprises an evaluation, where
we test and compare our models with respect to their attractiveness in terms
of revenue and service request acceptance rate. In Section 6, we provide man-
agerial implications. The paper concludes with a summary and an outlook
on new research avenues.

2. Determinants of the Cloud Admission Control Problem

Before we formulate the Cloud Admission Control Problem (henceforth
CACP), it is useful to state the characteristics of Cloud applications
representing the requirements on the CACP. In total we account for seven
different characteristics:

3

Production inflexibility: Providers usually maintain a Cloud infras-
tructure, which consists of a fixed amount of resources (e.g. servers). While
resources can easily be added to the Cloud infrastructure, it takes some time
until the Cloud is reconfigured. This reconfiguration delay dictates the Cloud
infrastructure to be fixed in the short run. In case of online job processing
the Cloud infrastructure cannot be adapted at the job admission decision.

Perishability: Resources managed as Cloud offer computation and stor-
age capacities. If the Cloud is not (fully) used it is not possible to store the
excess capacity for later consumption.

Real-time decision-making: Due to the trend towards online process-
ing, Cloud providers face the challenge to control job admission in real time.
Effective mechanisms need to work in online and real-time scenarios as well.
With respect to the CACP this translates into the requirement that the ad-
mission control mechanism needs to be of very low computational cost to be
computationally tractable.

Limited/no information on future demand/jobs: Due to the “pay-
as-you-go environment”, Cloud service providers have to serve customers
with lack of information (i.e. non-clairvoyant). In contrast to machine
scheduling problem where relevant data is available (e.g. distributions of
job arrivals and job characteristics), Cloud providers have only vague infor-
mation on (i) the job arrival rate, (ii) the exact resource need of jobs, and
on (iii) the customer’s willingness to pay.

Non-probabilistic uncertainty of required resources: Cloud cus-
tomers typically provide estimates on their jobs’ resource requirements. As
customers usually do not utilize the estimated resources for the entire job
lifecycle, Cloud customers can exploit the flexibility of Cloud infrastructures
by devoting excess resources to other customers. The uncertainty in accu-
rate resource prediction stems from two sources: (i) the customer’s ability to
make accurate predictions and (ii) the type of the job. The Cloud provider
may gather information on how well the customers calculate their predic-
tions. Customers tend to overestimate their job resource requirements to
have a buffer in case the job needs more resources. In practice, customers
just use a fraction of their requested and consequently allocated resources.
This claim can be verified by observing the actual usage of Google’s data
centers. Apparently, the used resources is way lower than the allocated re-
sources (Reiss et al., 2012). The Cloud provider can exploit this buffering
behavior, as the unused resources can be used for other jobs, increasing the
overall utilization of the Cloud. The information on the customers is, how-

4

ever, limited, if Cloud providers offer their services to the public, as there
will be a frequently varying customer base. As such, it is impossible to have
probabilistic information on the accuracy of the resource predictions. The
second uncertainty in resource prediction stems from the type of the job that
is directed to the Cloud. For example, routine jobs (e.g. weekly account-
ing or controlling tasks of customers), the required resources may be exactly
predicted drawing on prior observations. For jobs that are rarely conducted
(e.g. data mining jobs) the required resources largely depend on the analyzed
data. Predicting the job resources for those jobs is naturally very difficult.

Best-effort vs. Priority-based processing: Cloud providers typically
serve two different customer groups, which can be distinguished with respect
to their quality-of-service (QoS) requirements (Buyya et al., 2009). While
some customers accept service delivery on a best-effort base, i.e. without
guarantee that job is executed, other customers may require a guarantee that
the job is executed according to the contracted service levels. The former
customer group pay less for their service execution, while the latter group
will only pay in the case the service levels are met. Clearly, Cloud providers
favor customers with contracted service levels (henceforth gold clients) over
best-effort customers, who are processed only when resources are left.

Resistance to strategic behavior: Since customers also strive to max-
imize their utility, it is appealing for them to act strategically in order to gain
advantages. Basically customers have three ways in which they can adapt
their actions. Firstly they might be able shift their demand in time. They
might also be able to split jobs into several smaller ones or merge several jobs
into one big one. Their last option is to vary their price bid. Certain strategic
behavior can lead to a significant reduction in revenue of the Cloud provider.
Furthermore, it can reduce customer satisfaction. Customers might be un-
willing to shoulder the additional effort necessary for strategic behavior.

3. Related Work

Quite recently, the CACP has gained in attention by the service literature.
These approaches are, however, driven by the technology and not founded
by management literature. Obviously, the determinants of the Cloud admis-
sion control problem suggest the use of revenue management mechanisms.
However, revenue management has been developed primarily for the airline
industry – as such, not all requirements of Cloud services are met. Thus, we
review both literature streams and evaluate them with regard to the CACP.

5

3.1. CACP in IT-service environments

The first stream stems from computer science and focuses on technical
aspects. Ferguson et al. (1996) discuss the general applicability of economic
theories to resource management. Being a primer, their results are general,
but not specifically associated with actual implementations. An interesting
approach to realize high service levels and end-to-end QoS is the Globus Ar-
chitecture for Reservation and Allocation (Foster et al., 1999). This approach
uses advance reservations to guarantee QoS. A related approach to achieve
autonomic QoS aware resource management is based on online performance
models (Kounev et al., 2007). They introduce models that are able to predict
the impact of the acceptance of an incoming job on the performance of the
system and the ability to fulfill the service-level agreements of all jobs. Ele-
ments of client classification, such as price discrimination based on customer
characteristics, have been addressed in (Newhouse et al., 2004). The authors
– albeit technically motivated – move in the direction of applying methods
from revenue management applied in other industries. However, they do not
consider other discrimination factors, such as priority on job acceptance or
higher quality of service. Aiber et al. (2004) present an architecture for au-
tonomic self-optimization based on business objectives. Their focus is on the
technical implementation of economic principles, but not on the employed
principles. Boughton et al. (2006) present research on how workload class
importance can be considered for low-level resource allocation. They focus
on competing workloads in databases and investigate what business policies
can be used to efficiently allocate resources.

3.2. Revenue management and the CACP

Another stream aims at adapting more sophisticated concepts from
revenue management and admission problems in service computing envi-
ronments. The use of revenue management concepts by Internet Service
Providers was researched by Nair and Bapna (2001). They consider the deci-
sion to accept or reject customers but did not take different service types or
advanced reservation into account. Yeo and Buyya (2004) show an approach
for a pricing function depending on a base pricing rate and a utilization pric-
ing rate. The idea behind utilization based pricing is that when utilization is
high, demand for the resources is high as well so that customers are willing to
pay higher prices for resources. If utilization is low, lower prices are charged
to attract more customers (Bitran and Caldentey, 2003). One of the first
papers that analyze more sophisticated revenue management concepts for

6

cluster systems was published by Dube et al. (2005). The model offers one
resource for different prices. Assuming that customer behavior follows a logit
model, the authors analyze an optimization model for a small number of price
classes and provide numerical results. Maglaras and Meissner (2006) discuss
dynamic pricing strategies for revenue management problems where a com-
pany owns a fixed capacity of a resource which can be used to deliver different
products. They show that this problem can be simplified to a form where
the firm controls the aggregate rate at which resources are used. Eren and
Maglaras (2009) study a monopoly pricing scenario for a seller with limited
market information. They consider different demand learning capabilities for
sellers. Their findings suggest that policies where the pricing policy is not
continuously updated and re-optimized perform well. This makes them a
good alternative for “active” models, which may require more rigid assump-
tions. Anandasivam and Weinhardt (2010) present a policy-based decision
model for Cloud providers. However, the bid price mechanism on which this
model is based requires assumptions on workload and demand patterns. For
example, the provider has to be able to perform a sufficiently accurate de-
mand forecast: each service request for the same service requires the same
exact amount of capacity (group bookings are not possible). Another stream
of literature incorporates the uncertainty the in admission control into the re-
source management. Ramalho (1998) examines the application of fuzzy logic
to the CAC (Connection Admission Control) traffic control function in ATM
(Asynchronous Transfer Mode) broadband communication networks. Based
on observations of the traffic in the ATM link, the paper derives a Fuzzy
Logic Based CAC (FCAC) for the maximum cell loss ratio from adding a
new connection to a given traffic scenario under uncertainty. An alternative
approach to measurement-based admission control for multiclass networks
with link sharing for “applications with ill specified traffic characteristics”
using adaptively measured maximal rate envelopes is proposed in (Qiu and
Knightly, 2001). By assuming that future packet arrivals will not exceed
the past maximal rate envelopes they develop a method that among other
indicators reflects the uncertainty of the prediction of future workloads and
allows controlling important QoS parameters, such as loss probability.

3.3. Discussion

The related work covers different aspects of these research problems. Ta-
ble A.4 (see Appendix A) shows which of the main objectives, characteristics,
and basic approaches are discussed in related work. However, the mechanisms

7

are only applicable to the Cloud market to some extent and an overall de-
cision model that accounts for the aforementioned characteristics for Cloud
service providers is still missing. Furthermore, many of the mechanisms re-
quire rigid assumptions. For example, the revenue management mechanisms
dealing with non-clairvoyance (see Table A.4) do not need the exact informa-
tion about future jobs, but they do need forecasting models with sufficiently
exact prediction. To address these issues we present a novel service request
admission control model in the following section.

4. Service Request Admission Control Models

In this paper, we consider service request admission control models that
account for the characteristics discussed in the above section. They extend
previous work (Püschel and Neumann, 2009; Püschel et al., 2012). We embed
our models into a research framework that is structured along two dimen-
sions: The first dimension distinguishes situations in which the Cloud service
provider can expect to get reliable and crisp resource requirements from the
customers (situation under certainty), from those situations where the Cloud
service provider only has available vague estimates of the resources required
(situation under uncertainty). In practice, this vagueness reduces the pre-
diction quality of required resources. While the (un)certainty of required re-
sources is exogenously given, in a second dimension Cloud service providers
can decide on the applied job admission policy, which provides guidance for
the decision on whether to accept or to reject an incoming job request, by
taking into account profit- and service-orientation. The policy to apply is
a decision variable and thus represents an endogenous component. We sug-
gest three policies in this paper: first-come first-served (FCFS) policy (P1),
dynamic pricing policy (P2), and a client classification policy (P3).

As our models suggested in this section are extensions and modifica-
tions of the well-known “knapsack problem”, we briefly present and discuss
the “knapsack problem”. The need for modifications and extensions of the
“knapsack model” lies in its unrealistic assumption of complete information:
all incoming jobs including all their requirements need to be known by the
service provider. This assumption is rarely met in a “pay-as-you-go” en-
vironment, as we face it in a Cloud service setting. Thus, approaches are
necessary that address the need for making real-time decisions regarding
the acceptance/rejection of incoming job requests under the goal of revenue
maximization and in the absence of knowledge of later jobs and their re-

8

source requirements. We refer to these approaches as “online policies”. All
six models previously mentioned implement such online policies. In the sec-
ond subsection, we present the (basic) model “first-come first-served under
certainty”, on which the other five models are based. It should be noticed
that the concept of “certainty” does not target the knowledge of future jobs,
but certainty regarding the real resource requirements of the job currently
submitted. In the third subsection, we account for uncertainty (regarding
required resources). We present the theoretical underpinning, fuzzy set the-
ory, and propose the “first-come first-served under uncertainty” model. In
the fourth subsection we present the four remaining models.

4.1. Model under perfect information

If we assume that the provider has perfect information and certainty
about future events, it is possible to calculate the revenue maximizing so-
lution. This means to ignore non-clairvoyance and non-probabilistic uncer-
tainty regarding the quality of customers’ resource predictions (see Section
2). The necessary information includes incoming service requests, prices, the
exact resource requirements of each job, and capacity available in the future.

In this case, a simple instance of this problem is:

max
x

|J |∑
j=1

xj ∗ fpj (O1)

subject to:

|J |∑
j=1

cjr(t) ∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C1.1)

where T is the set of all regarded time slots; J is the set of available
jobs; R is the set of all resource types; fpj is the price paid for job j; xj is
a binary allocation variable indicating whether job j is accepted or rejected;
cjr(t) is the capacity of resource type r required by job j in time slot t; and
cr(t) is the total capacity available for resource type r during time slot t.
(O1) is the objective function and represents the achieved revenue. The con-
straints (C1.1) are resource/capacity constraints over resources R and time
slots T . It assures that not more capacity can be allocated than is available.
The maximization problem can be formulated as a linear program. It is a
generalization of the knapsack problem and thus NP-hard, and therefore it
is computationally intractable for large problem instances (the proof can be
found in Appendix E). Beyond the computational challenge to solve problem

9

instances optimally, we also face the problem that perfect information on in-
coming jobs is not available in practice. Thus, we suggest different “online
policies”, which can be executed in realtime.

4.2. First-come first-served policy under certainty

In the FCFS policy under capacity constraints an incoming job is accepted
if and only if there is enough capacity available for all resources. A job that
is rejected will not be served unless it will be resubmitted by a client with
adapted time slots or/and adapted resource requirements. In this case, the
resubmitted job is treated as a new one. This procedure applies to all of our
suggested policies. The following mathematical formulation represents the
“first-come first-served policy under certainty” model:

max
x

|J |∑
j=1

(
1

2
∗ xj

)j

(O2)

subject to:

|J |∑
j=1

cjr(t) ∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C2.1)

The objective function (O2) represents the sequential nature of the policy
by ensuring that an incoming job j is served if all required resources are
available (C2.1). The reason for this is that not accepting job j cannot be
compensated in terms of contribution to the objective value by accepting all
future incoming jobs (j+ 1), . . . , |J |. It should be noticed that in contrast to
the objective function (O1) of the basic deterministic model (see page 9) the
FCFS nature of (O2) accounts for the fact that in practice information on
future jobs is not known; the set J of considered jobs contains only already
submitted jobs. The objective function (O2) is shared by all six service
request admission control models in order to implement our main assumption
that incoming jobs require real-time acceptance decisions. (C2.1) represents
the capacity constraints which assure that not more capacity is allocated
than is available for each resource type, such as CPU, storage and bandwidth,
thus fulfilling the requirement of not degrading QoS due to acceptance of too
many jobs. The same objective function and capacity constraint is used for
all policies.

4.3. First-come first-served policy under uncertainty

While the idea of the FCFS policy is now introduced, it remains to ex-
plain how we model uncertainty in the FCFS policy (and in all other policies

10

introduced later). When customers submit their jobs to Cloud providers to-
gether with their predictions on required resources, the impreciseness of these
predictions is due to lack of information, belief, and linguistic characteriza-
tions (of the customers), which all are deemed some of the most important
roots of uncertainty (Zimmermann, 2000). It should be noticed that these
root of uncertainty are particularly inappropriate for being addressed with
probabilistic uncertainty theories, which are often based on historic data.
Accounting for these roots of uncertainty, we select fuzzy set theory. A brief
introduction into the main concepts of fuzzy set theory and fuzzy optimiza-
tion is provided in Appendix D.

The sound theoretical concepts of fuzzy sets and fuzzy arithmetic allow
for flexibly extending the model under certainty. To this end we utilize the
aforementioned concepts of fuzzy set theory by fuzzifying resource require-
ments of the customers’ service requests and modelling these requirements
with triangular fuzzy numbers. Thereby, we yield linear optimization mod-
els with crisp, binary decision variables, with a crisp objective function, and
with fuzzified coefficients in the constraints. Such models are recognized as
a specific type of fuzzy linear optimzation model in the fuzzy mathematical
programming literature. Baykasoǧlu and Göçken (2008, Table 2) refer to this
model type as “type 4” with non-fuzzy, binary (B) variables. Unfortunately,
the operations research literature is silent on how to solve instances of this
model type (Baykasoǧlu and Göçken, 2008).

In the “first-come first-served policy under uncertainty” model,
the objective function (O2) is the same as in the the “first-come first-served
policy under certainty” model. However, in the constraints the resource
requirements are now fuzzy numbers denoted by c̃jr.

|J |∑
j=1

c̃jr(t) ∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C̃2.1)

4.4. Other models

Having introduced the models for the FCFS policies under certainty and
under uncertainty, we now present the remaining four models structured
along the policies.

4.4.1. Dynamic pricing

The dynamic pricing policy follows the key idea that when resources be-
come scarce their prices increase. More specifically, it extends the FCFS

11

policy by relating the price fpj paid for a job j to resource-specific utiliza-
tion levels: accepting a job j requires that, in each time slot t ∈ T where job
j runs, the average price paid per used time slot (fpj/sj) (sj is the runtime
of job j in terms of the number of timeslots) is not below a weighted sum of
reservation prices, with the weights being the required capacities cjl(t) and
the reservation prices (per unit) rpk being the (utilization based) minimum
prices at which the provider sells his resources. We assume that providers
use a set of utilization levels K = {l0, . . . , ln−1} of their resources and assign
a specific reservation price rpk to level lk. Both the utilization levels and
the reservation prices are set by the Cloud provider and remain constant
during short-term revenue management. They can be derived based on the
provider’s cost of resources and the degree of depreciation depending on the
utilization level. If in a time slot t the utilization level Ur(t) of a resource
r exceeds level lk, then the provider requires to get at least the reservation
price rpk for (one unit of) the respective resource and time slot. It should
be noticed that while we distinguish different utilization levels in a time slot
t for different resources, we do not provide for resource-specific reservation
prices.

Dynamic pricing requires constraint (C2.2), which results to the following
constraints of the “dynamic pricing policy under certainty” model:

|J |∑
j=1

cjr(t) ∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C2.1)

|R|∑
r=1

|K|∑
k=1

([H (Ur(t)− lk−1)−H (Ur(t)− lk)] ∗ cjr(t) ∗ rpk−1 ∗ xj)

≤ fpj
sj
∀t ∈ T, ∀j ∈ J (C2.2)

The utilization level Ur(t) for resource r and time slot t is defined by:

Ur(t) :=
1

cr(t)
∗
|J |∑
j=1

cjr(t) ∗ xj, ∀r ∈ R, ∀t ∈ T (4.1)

H is the discrete heaviside step function defined by H(x) = 1 if x ≥ 0,
H(x) = 0 otherwise. Its use ensures that for each resource r and for each
time slot t only that summand is non-zero (or “activated”) that corresponds
to the respective utilization level.

12

Analogously to the FCFS policy, we derive the constraints of the corre-
sponding model “dynamic pricing policy under uncertainty”.

|J |∑
j=1

c̃jr(t) ∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C̃2.1)

|R|∑
r=1

|K|∑
k=1

([
H̃
(
Ũr(t)− lk−1

)
− H̃

(
Ũr(t)− lk

)]
∗ c̃jr(t) ∗ rpk−1 ∗ xj

)
≤ fpj

sj
∀t ∈ T, ∀j ∈ J (C̃2.2)

Here the current utilization Ũl(t) is now a fuzzy number, defined by

Ũr(t) :=
1

cr(t)
∗
|J |∑
j=1

c̃jr(t) ∗ xj, ∀r ∈ R, ∀t ∈ T. (4.2)

The discrete heaviside step function needs to be adapted so that it is
defined over fuzzy numbers: H̃(x̃) = 1 if x ≥ 0̃, H(x̃) = 0 otherwise, with 0̃
being the fuzzy number “zero”.

4.4.2. Client classification

The third policy extends the FCFS policy by implementing client clas-
sification (strict priority policy) which helps improve customer satisfaction.
The key idea of the policy is that a job is accepted only if it either submitted
by an important customer, referred to as “gold customer”, or if the current
utilization level Ur(t) does not exceed a fixed value lc for all resources in
all time slots. A Cloud provider classifies (known) customers as “gold cus-
tomers” before jobs are submitted; the classification remains constant and
is short-term but may be changed in the long run, e.g., based on a service-
level agreement with the respective customer. In order to distinguish gold
customers from others, we introduce parameter cci, which equals 1 if job i
is submitted by a gold customer and 0 else. Constraint (C2.3) implements
the described requirements. The constraints of the “client classification
policy under certainty” model are given below:

|J |∑
j=1

cjr(t) ∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C2.1)

(1− cci) ∗ Ur(t) ≤ lc ∀t ∈ T,∀r ∈ R, ∀i ∈ J (C2.3)

13

The constraints of the fuzzified model “client classification policy un-
der uncertainty” look as follows:

|J |∑
j=1

c̃jr(t) ∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C̃2.1)

(1− cci) ∗ Ũr(t) ≤ lc ∀t ∈ T,∀r ∈ R, ∀i ∈ J (C̃2.3)

4.5. Numerical example

We provide a numerical example that shows how the suggested policies
FCFS, dynamic pricing and client classification are applied (under certainty).
The example includes six jobs (job numbers correspond to the sequence of
submission) and seven time periods. For the sake of simplicity, each of the
jobs requires one instance, i.e., a job of service type 1 requires 4 units of CPU,
4 units of storage and 16 units of bandwidth (cf. Table B.5 in Appendix
B). Figure 1 shows the time slots of the jobs, Table 1 shows all remaining
job data. The available resources remain constant over all seven time slots
(j = 1, . . . , 7): CPU: c1(t) = c1 = 50, storage: c2(t) = c2 = 24, bandwidth:
c3(t) = c3 = 32.

Figure 1: Time Slots of Jobs

The application of the FCFS policy leads to the acceptance of jobs 1,
2, 3 and 4, with an overall revenue of 7.8. Figure 2a shows the allocated
resources for each time slot based on the jobs that run in the respective time
slots. Jobs 5 and 6 are not accepted as, for each of the jobs, in time slot 5
the capacity of resource 3 would be exceeded.

For the application of the dynamic pricing policy, we use three utiliza-
tion levels and corresponding reservation prices: l0 = 0% (rp0 = 0), l1 =
50% (rp1 = 0.01), l2 = 70% (rp2 = 0.03). Figure 2b shows the results for
our numerical example. Jobs 1, 2, 4 and 5 are accepted, which results in
an overall revenue of 10.0. Job 3 is not accepted for the following reason:

14

Table 1: Data of Jobs

No.
Price paid Price paid per Gold

Type
Resources

(fpj) slot (fpj/sj) customer CPU Storage Bandwidth

6 1.6 0.8 X 2 8 16 4
5 4 2 2 8 16 4
4 3 1 1 4 4 16
3 1.8 0.3 X 1 4 4 16
2 1 1 2 8 16 4
1 2 1 3 16 8 8

accepting job 3 would require to allocate (20, 12, 24) units of (CPU, storage,
bandwidth) in time slot 2, with (50, 24, 32) units being available. Thus, the
utilization levels amount to (40%, 50%, 75%) so that job 3 is not accepted
because 0.01 ·4+0.03 ·16 = 0.52 > 0.3. Job 6 is not accepted as the required
units of storage (36) exceed the available units of storage (24).

For the application of the client classification policy, we use the utilization
level lc = 0.7. Figure 2c shows the results for our numerical example. Jobs 1,
2, 3 and 6 are accepted, which results in an overall revenue of 6.4. Job 4 is not
accepted for the following reason: accepting job 4 would require to allocate
(8, 8, 32) units of (CPU, storage, bandwidth) in time slot 4, with (50, 24, 32)
units being available. Thus, the utilization level of bandwidth is 1 so that
job 4 is not accepted because 1 > 0.7. Similarly, job 5 is not accepted for the
following reason: accepting job 5 would require to allocate (12, 20, 20) units
of (CPU, storage, bandwidth) in time slot 5, with (50, 24, 32) units being
available. Thus, the utilization level of storage is 5/6 so that job 5 is not
accepted because 5/6 > 0.7.

4.6. Computational complexity

Low complexity and therefore low computational costs are paramount for
real-time decision mechanisms. We show that all policies executed under
certainty and under uncertainty run in polynomial time of the number of
service requests |J | and the number of resource types |R|. We first prove this
property for execution under certainty: In the mathematical formulation of
the policies, the objective function (O2) serves to sort the jobs by id (which
is assigned in order of arrival). Sorting can be done in O(|J | ∗ log|J |). In a
running system this is not necessary since jobs already arrive in order. Thus,
it is sufficient to check whether the constraints are satisfied. Each constraint

15

a) First-come first-served b) Dynamic pricing

c) Client classification

Figure 2: Results of the application of policies

(C2.1), (C2.2), (C2.3) can be checked in O(|R|∗|J |2). The overall complexity
is O(|R| ∗ |J |2).

As shown above, the overall complexity of the online model under cer-
tainty is O(|R| ∗ |J |2). While each arithmetic operation with fuzzy instead of
crisp numbers adds complexity, this complexity is not dependent on R or J,
but rather is a constant computational cost per operation. Thus the overall
complexity is still O(|R| ∗ |J |2).

5. Evaluation

To validate the proposed models and policies, and to estimate the effect
of different degrees of uncertainty on the revenue, a thorough evaluation is
done. We first show certain properties of the model analytically. As some
of the proofs require rigid assumptions we further evaluate the model using
simulations based on real world workloads. The simulation setting and the
workloads used for the evaluation are explained. Subsequently, the results
are presented and discussed. The simulator was implemented as a object-
oriented program in MATLAB.

16

5.1. Analytical Evaluation

The first objective for the proposed decision model is revenue maximiza-
tion. Without information about future jobs it is not possible to achieve the
maximum revenue. To analyze the performance of our model we compare the
revenue of the dynamic pricing policy with a state of the art FCFS approach.

Proposition 1. Let pIavg and pIIavg(rp) be the average price of the accepted jobs
for policy I and for policy II, respectively, with rp being the (only) reservation
price and l being the utilization level at which rp becomes applicable. Let
ar ≥ 1 be the job arrival rate, and let the price X be a random variable with
known cumulative distribution function P (X).

Then the dynamic pricing policy outperforms the FCFS approach (both
under certainty and uncertainty) in terms of revenue if 1 ∗ pIavg <
min[1, P (X ≥ rp) ∗ ar] ∗ pIIavg(rp) under some additional assumptions.

The proof and a numerical example can be found in Appendix E.
To analyze the second objective, customer satisfaction, we evaluate the

criteria defined in Section 2. These are an improvement in acceptance prob-
ability for important customers and certain fairness aspects.

Proposition 2. A policy with strict priority outperforms a first come first
served approach (both under certainty and uncertainty) in terms of gold cus-
tomer acceptance probability.

The proof can be found in Appendix E.
To address resistance to strategic behaviour described in Section 2, we

first need to consider which options for strategic behaviour customers have.
The first option some customers might have is to shift their demand to off
peak hours. Another option is to either split their jobs into several smaller
jobs or merge several jobs into a bigger one. The last option for strategic
behaviour is to vary their price bids.

While many customers need instantaneous access to services, others might
be able to shift their demand to times where services can be accessed at a
lower price. Such behaviour is actually in the interest of the provider as it
leads to a more balanced system utilization. One of the key benefits of intro-
ducing dynamic pricing is to give customers incentives for such behaviour.

To discuss the behaviour of merging or splitting jobs we analyze merge-
proofness and split-proofness (Moulin, 2007). A mechanism is merge-proof if
users cannot benefit by merging several jobs to one bigger job. Analogously

17

a mechanism is split-proof if users cannot benefit by splitting one job to
several smaller jobs. This makes sure users cannot increase their chance of
acceptance or lower their price by exploiting strategic opportunities at the
expense of others. As the following propositions show, our model is merge-
proof but not split-proof.

Proposition 3. The different policies of the model (both under certainty and
uncertainty) are merge-proof, i.e. users can not benefit by merging several jobs
to one bigger job.

Proposition 4. The different policies of the model (both under certainty and
uncertainty) are not split-proof, i.e. users can benefit by splitting one job to
several smaller jobs.

The proof of these propositions are included in Appendix E. Moulin
(2007) shows that in general it is not possible to achieve both merge- and
split-proofness.

As described earlier the third possible strategic behaviour for customers
is varying their price bids. Whether such strategic behaviour can be benefi-
cial to customers depends on the exact pricing conditions. If customers are
charged the applicable reservation price for respective utilization level they
cannot benefit from varying their bids. If pay-as-you-bid charging is used a
certain type of customer (who does not rely on instantaneous access) could
benefit but only to the extent of lowering the price to the reservation price
or shifting demand to off-peak times.

The analytical evaluation shows that the model delivers improvement
both in terms of revenue and customer satisfaction. Since the proof of the
improvements in revenue requires very specific assumptions it is necessary
to further evaluate the revenue improvements delivered by the model using
numerical simulations where these assumptions are not necessary.

5.2. Simulation setup

In our simulation, we use real workloads based on data from the Parallel
Workload Archive (Feitelson, 2011). The SHARCNET log, which was pro-
vided to the Parallel Workload Archive by John Morton (john@sharcnet.ca)
and Clayton Chrusch (chrusch@sharcnet.ca), is used as basis for these sim-
ulations. It contains 1,195,242 jobs sent to a set of 10 clusters in Ontario,
Canada from a period December 2005 until January 2007. The SHARCNET

18

log was chosen as basis because it contains a large variety of jobs with differ-
ent runtimes, numbers of used CPUs, and varying submit and start times.
The workload further shows high variation in demand over time.

Jobs running less than one hour or more than 10 days were filtered. Sub-
sequently job runtimes where rounded down to full hours to allow a timeslot
based allocation. After filtering invalid jobs, 566,701 jobs were left and fi-
nally used in the simulation. Although this filtering approach reduces the
variability in the data, the filtered data set is still quite large and its size
gives enough variability to elicit the major managerial implications.

Based on these workloads, nine joblists with different prices and service
type assignment were generated as described in the following paragraphs.
For the evaluation, we consider three types of services with requirements for
processing power, memory, and storage (see Table B.5 in the Appendix B).
Service 1 represents a bandwidth heavy service type such as video-streaming
or a content delivery network; service 2 represents services requiring mainly
storage such as file hosting or online backup drives; the third service type
represents a CPU-intensive service such as portfolio optimization or video-
transcoding. Table B.6 (see Appendix B) shows the contents of the job lists
and the source of the data used. For submission time, start time, runtime,
and customer ID the data was used as present in the workload trace. The
service type was drawn from a discrete uniform distribution. The number
of instances per service was adapted from the job requirements. The pricing
information was generated using a truncated normal distribution in order
to get non-negative prices. Full prices were calculated by multiplying unit
prices with the number of instances and time slots and rounding the value
up to the next integer. It was assumed that gold clients are willing to pay a
markup of 20% for the priorities.

In our simulation, the capacity is determined by CPU, storage, and band-
width capacity and limited to 1050 for each of these. This capacity was chosen
to accommodate some of the larger jobs from the SHARCNET log but still
have time periods where demand exceeds supply. Jobs can either start in the
same timeslot in which they are submitted or in a later timeslot. Figure F.6
(see Appendix F) gives a general visualization of the simulation process.

The fuzzified models make use of the concept of Triangular Fuzzy Numbers
(c, a, d), as described in Appendix D. More precisely, we draw on symmetric
Triangular Fuzzy Numbers, where (a− c) = (d− a). Alternatively, we write
(c, a, d) = ((1 − g) ∗ a, a, (1 + g) ∗ a), g ∈ [0, 1]. In our implementation, we
use symmetric fuzzy numbers with g ∈ {0.01, 0.05, 0.1} depending on the

19

level of uncertainty we face. The provision of different levels of uncertainty
is useful in two regards: First, it parametrizes the decision model, which
in turn allows for checking the robustness of the model. Second, it thereby
accounts for different situations of uncertainty. As mentioned in Section 2,
the level of uncertainty can vary depending on both the customer and the
service request. In this regard, we define the following four scenarios:
S1: No uncertainty is present.
S2: We assume that the uncertainty of the prediction quality of required
resources is mainly based on the type of service request (see Table B.5 in
the Appendix). We assume that for service type 1 resource requirements are
relatively easy to estimate so that we assume the lowest level of uncertainty
(g = 0.01). For service type 2 we use g = 0.05. We further assume that due
to the high CPU requirements of service type 3 requirements are most dif-
fcult to estimate, which results in the highest level of uncertainty (g = 0.1).
S3: We assume that the uncertainty of the prediction quality of required
resources is mainly based on the type of customer who requests the service.
We distinguish between customers with a known good prediction quality and
others. We regard those customers as “known” who have userids with many
jobs in the chosen workload trace. For known customers, we choose g = 0.01,
for the other customers we choose g = 0.1.
S4: We assume that the uncertainty of the prediction quality of required
resources is based on both the type of service request and the type of cus-
tomer. Due to this high uncertainty, for all jobs and customers we use the
same level of uncertainty (g = 0.1).

5.3. Simulation Results

We structure the presentation of our simulation results along the two
dimensions of our research framwework. We first present policy-related find-
ings for both situations under certainty and under uncertainty (findings 1-2),
then we present findings that refer to the differentiation between situations
under certainty and under uncertainty (findings 3-5). We refer to the differ-
ence of revenues r1 and r2 achieved in a situation under uncertainty and in a
situation under certainty, respectively, as “absolute cost of uncertainty”. We
refer to the ratio (r1 − r2)/r2 as the “relative cost of uncertainty”. Finally,
we present a finding on runtimes.

Table 2 contains policies, scenarios, mean revenues, the coefficients of
variation of revenue, the relative cost of uncertainty and the mean ratios of

20

accepted gold jobs µΣg as well as the coefficients of variation for the gold
acceptance ratio (Σ/µ)Σg.

Table 2: Revenue and gold acceptance comparison for all scenarios

Policy Scenario µ rev. (σ/µ) rev. Relative cost µΓg (σ/µ)Γg)
of uncertainty

P1

S1 21249352.78 0.0187 — 4.22% 0.0299
S2 20431190.78 0.0137 -3.85% 4.04% 0.0614
S3 20226752.44 0.0119 -4.81% 4.36% 0.0366
S4 19956299.11 0.0117 -6.09% 4.14% 0.0397

P2

S1 24722267.67 0.0169 — 4.33% 0.0462
S2 25231416.11 0.0145 2.06% 4.51% 0.0499
S3 24764950.78 0.0093 0.17% 4.66% 0.0349
S4 24431015.33 0.0086 -1.18% 4.36% 0.0432

P3

S1 17297469.78 0.0074 — 11.93% 0.0110
S2 14608163.89 0.0123 -15.55% 10.19% 0.0120
S3 16671910.22 0.0104 -3.62% 11.86% 0.0112
S4 15858202.11 0.0086 -8.32% 11.02% 0.0069

P1: FCFS policy P2: Dynamic pricing policy
P3: Client classification policy

Figure 3 depicts the mean revenue and mean gold acceptance ratio over
all simulations for each of the three policies under all four scenarios.

Finding 1. The dynamic pricing policy significantly outperforms the FCFS
policy and the client classification policy in terms of revenue under both
certainty and uncertainty.

As Figure 3 indicates, the dynamic pricing policy outperforms the FCFS
policy regarding revenue in both situations under certainty and under uncer-
tainty. This result is statistically significant at the .01 level (see the Appendix
C for a detailed decription of the statistical methodology).

As in all instances the revenue values obtained through the client classi-
fication policy were lower than those obtained through the FCFS policy, we
can apparently conclude (without detailed statistical analysis) that the dy-
namic pricing policy also outperfoms the client classification policy in terms
of revenue.

Finding 2. The client classification policy significantly outperforms the
FCFS policy and the dynamic pricing policy in terms of gold customer ac-
ceptance ratio.

21

Revenue change of policies P2 and
P3 compared to benchmark P1 for
each scenario

Increase in gold acceptance ratio
of policies P2 and P3 compared to
benchmark P1 for each scenario

P1: FCFS policy, P2: Dynamic pricing policy, P3: Client classification policy, Si:
Scenario i

Figure 3: Mean revenue and mean gold acceptance ratio over all simulations
for each of the three policies under all four scenarios

Figure 3 indicates the superior behavior of the client classification policy
in terms of the gold acceptance ratio. Overall, the gold acceptance ratio is
relatively low with about 4% for the FCFS policy and the dynamic pricing
policy, and 10% to 12% for the client classification policy. This is caused
by the highly volatile demand of specific users in the SHARCNET workload
trace.

We now turn to the differentiation between situations under certainty and
under uncertainty and also discuss the impact of the different uncertainty
scenarios on the revenue. The result shown in Figure 4 and Table 2 indicate
the following findings:

Finding 3. The FCFS policy achieves lower revenues with increasing uncer-
tainty.

The FCFS policy achieves the highest revenue in situations under cer-
tainty. When uncertainty is present and based on either the type of service
request or on the type of customer, then the revenue declines on average by
3.85% or 4.81%, respectively. When uncertainty is based on both, the lowest
revenue is achieved.

Finding 4. In the presence of uncertainty, the client classification policy
achieves much lower revenues compared to the FCFS policy and the dynamic
pricing policy.

22

P1: FCFS policy, P2: Dynamic pricing policy, P3: Client classification policy, Si:
Scenario i

Figure 4: Relative cost of uncertainty for each policy.

When uncertainty is present, the client classification policy shows much
higher losses of revenue (in terms of the relative cost of uncertainty) compared
to the FCFS policy and the dynamic pricing policy. The relative cost of
uncertainty amounts to more than 15%, even in the case of a low level of
uncertainty. As a consequence, the incentive for Cloud providers to eliminate
uncertainty is particularly high when client classification is applied.

Finding 5. The dynamic pricing policy can achieve higher values when (a
low or medium level of) uncertainty is present.

While in the presence of a high level of uncertainty (scenario 4) the rev-
enue decreases (as in the case of the FCFS policy and the client classification
policy), it marginally increases in the case of a low or medium level of un-
certainty (scenarios 2 and 3, respectively). This finding is counterintuitive
and requires further analysis. In principle, the increase of revenue is based
on a conservative acceptance approach (required resources are assumed to
be slightly higher than the given figures). This approach leads to the phe-
nomenon that a) first, jobs are rejected that would have been accepted in the
case of certainty and b) as a result, jobs that are submitted later are accepted
due to available resources. This can lead to an overall increase of revenue as
opposed to the situation under certainty because the accepted jobs are more
profitable than the rejected ones. This effect is mitigated with increasing
level of uncertainty and even disappears in the presence of a high level of
uncertainty when the decision maker is generally more careful in accepting
jobs.

In order to understand this phenomenon better, it is reasonable to recall
that the different levels of uncertainty are modeled with different widths of

23

fuzzy numbers and what the mathematical consequences of using fuzzy num-
bers and applying fuzzy arithmetic in our models are. The fuzzification of
resource demands leads to a fuzzification of the left side of the resource con-
straints (we yield triangular fuzzy numbers), while the right sides (resource
capacities) remain crisp. According to fuzzy arithmetic, a triangular fuzzy
number (c, a, d) is smaller than or equals a crisp value z, if and only if d ≤ z.
Consequently, the fuzzification of resource demands can lead to violations of
capacity constraints, when the corresponding crisp values do not. The level
of this effect depends on the width of the fuzzy numbers. We observe this
effect in applying the FCFS policy, where the presence of uncertainty leads
to a decrease of the revenue and where the highest level of uncertainty (all
fuzzy figures have width g = 0.1) leads to the lowest revenue.

Finding 6. The runtimes of executing the suggested policies are low under
both certainty and uncertainty.

The runtime of one instance of the simulation with 566,701 jobs was
between 10 and 30 seconds for scenario one (we used a PC with Intel Xeon
CPU, E5335@2:00 GHz, 3.75GB RAM). With runtimes between 1500 and
4000 seconds the scenarios with uncertainty took significantly longer, however
each decision took only fractions of a second. This shows the low computation
complexity of our approach. Due to the capacity constraint no overload
situation occurred, assuring QoS.

6. Managerial implications

In this paper, we formulize different rules for job admission to support
Cloud service providers effectively managing their computing infrastructures.
In fact, the job admission rules embody a device to establish a functioning
revenue management in Cloud environments. Cloud providers can use these
rules to optimally allocate perishable cloud resources in an effort to increase
revenue. The execution of rules necessarily needs to be automated, as human
intervention is too slow once more than thousands of jobs enter the Cloud
system at the same time. Typically, rules are implemented as policies, where
policies denote declarative rules defined by the user to adapt and control the
behavior of the system. Hence, in our case policies are adequate to embed the
logic for job admission as part of the business model of the Cloud provider.
Due to the decomposition of the rules and the operational management, the
use of policies allows a very flexible management of Cloud infrastructures.

24

Changes in the operational management takes place by merely changing or
adapting the governing policies.

The application of policies has both economic and technological implica-
tions for Cloud providers, which we discuss in the succeeding subsections.
While the economic implications are derived within the scope of the paper at
hand, we also explain the technological applicability with regard to how our
models can be applied in real practice. We briefly sketch how the policies
were integrated into a running business prototype (Nimis et al., 2008a).

6.1. Economic implications

In this paper, we provide six different policies as a part of a toolbox for
Cloud service providers, who need to manage their admission control pro-
cesses. Essentially, the cloud providers can freely choose among the different
policies that attain their business objective best. We distinguish between
two different business objectives, the maximization of short-term revenue
and the maximization of gold client satisfaction. The results are qualita-
tively depicted in Table 3 – the table entries refer to the performance of
policies with respect to the goal ranging from very good (+++) to bad (-).

Table 3: Policy recommendations for Cloud providers

Objective: Maximize (short-term) revenue

Policy / Type of estimates
Reliable estimates of Vague estimates of
the resources required the resources required

FCFS + ◦
Client classification ◦ -

Dynamic pricing ++ +++

Objective: Maximize gold customer satisfaction

Policy / Type of estimates
Reliable estimates of Vague estimates of
the resources required the resources required

FCFS ◦ ◦
Client classification +++ +++

Dynamic pricing ◦ ◦

If the Cloud provider prioritizes (short-term) revenue (c.f. upper half of
Table 3), the dynamic pricing policies should be used as our results show that
the application of dynamic pricing can lead to significant revenue gains. If
the Cloud provider faces uncertainty with respect to the required resources,
the revenue may increase even further when using the dynamic pricing policy.
The revenue attained by the client classification policy is lower than applying
FCFS. With increasing uncertainty both policies face a drop in revenue.

25

In case the provider needs to give internal users or important customers
preferred access to the Cloud services (c.f. lower half of Table 3), for exam-
ple, due to service-level agreements, client classification is the appropriate
policy. This policy can also be used to offer products at different service
levels where availability is significantly higher for gold jobs. Dynamic pricing
and FCFS are equally bad in terms of accepted gold jobs. These results are
robust if uncertainty regarding the required resources i.e., our results remain
valid when Cloud providers account for (non-probabilistic) uncertainty in
customers’ resource predictions by using fuzzy set models.

In addition, using our policies providers can determine the cost of giving
internal users or important customers preferred access to their services. With
this information they can better decide which users should be granted such
priority or what price markup is appropriate. The simulation of the suggested
policies reveals to what extent different levels of uncertainty reduce revenue.
This absolute cost of uncertainty gives information to providers regarding
their investments in measures to reduce uncertainty. For example, discounts
for customers with high quality predictions of required resources are possible.
The absolute cost of uncertainty would then provide an upper bound for such
discounts. Our simulations also allow Cloud providers to determine the effect
of adding new services with higher uncertainty to their product portfolio.

On the bottom line, our results suggest that Cloud providers should al-
ways use the dynamic pricing policy until the gold customer satisfaction
drops below a certain threshold. Then, it is best to use the client classifi-
cation policy until gold customer satisfaction recovers and return above the
threshold. The predominant use of dynamic pricing stems from the fact that
it is superior in terms of revenue to all other policies. As the client classifi-
cation policy solely cares for gold customers, it is useful to improve customer
satisfaction within a very short period of time.

Lastly it should be noted that all policies – be it under uncertainty or
certainty – are executed using a very short runtime, which implies that they
are feasible for practical application in the field.

6.2. Technological applicability

In this paper, we mainly analyze the decision policies from a theoreti-
cal perspective abstracting from real world applications. Nonetheless, the
policies have already been developed, implemented and fully integrated into
state-of-the-art resource managers within the scope of the FP6 EU-Project
SORMA (http://www.sorma-project.eu). The technical component of an

26

Figure 5: Architecture of the EERM (Nimis et al., 2008b, p. 90ff)

Economically Enhanced Resource Manager (EERM) accounts for the current
management gap between the traditional, technical layer of Cloud systems
(i.e., classical schedulers and resource managers) and the business layer. The
overall goal of the EERM is to isolate economic layers from the complex-
ity of the Cloud Systems and to align both business and performance goals
(Wirström et al., 2008). The architecture of the EERM is highlighted in
Figure 5. It shows that EERM provides the infrastructural component, in-
cluding the policy manager, which manages the execution of our policies.
A pilot test where real business users were exposed to the EERM system,
demonstrated the applicability of the economic policy approach to Cloud
environments (Windsor et al., 2009).

7. Summary and Outlook

In this work, we motivated the need for real-time decision models for the
service admission control of Cloud service providers as means of resource-
based revenue management. Based on practical requirements, we suggested
the use of policies as heuristics, which can deal with both informational cer-
tainty and uncertainty regarding actually required resource levels. As the
root of uncertainty is not randomness but subjectiveness of human assess-
ments, we drew on fuzzy set theory for modelling uncertainty.

To evaluate the models and policies, we assessed their properties analyti-
cally. As this analysis requires certain rigid assumptions we further evaluated

27

them using a simulation based on real world workloads with a simulator im-
plemented in MATLAB. The evaluation showed that the policy based on
dynamic pricing can significantly increase revenue. Depending on the type
and the level of uncertainty, the increase is between 16.34% and 23.49%. To
validate this observation, appropriate statistical tests were performed. The
results further show that the policy which gives gold clients a priority on job
acceptance can drastically increase the acceptance ratio for gold customers.

We further discussed the impact of different types of uncertainty on rev-
enue. The uncertainty of resource demands can lead to violations of capacity
constraints, when the corresponding crisp values don’t, thus reducing the
number of accepted jobs. The level of this effect depends on the level of un-
certainty, which is modelled with the “width” of triangular fuzzy numbers.
However, it can be mitigated or even disappears when the rejection of jobs in
early phases lead to the availability of capacities for attractive jobs in later
phases, which would otherwise be rejected.

Future work would need to investigate the relation between the degree
of uncertainty and revenue. We also plan to research which effects can be
observed when both the demand side, i.e. job requirements, and the supply
side (available capacity) display degrees of uncertainty.

References
Aiber, S., Gilat, D., Landau, A., Razinkov, N., Sela, A., Wasserkrug, S.,

2004. Autonomic Self-Optimization According to Business Objectives. In:
Proceedings of the ICAC. Washington, DC, USA, pp. 206–213.

Amazon, 2012. Amazon EC2 Pricelist. http://aws.amazon.com/ec2/

pricing/

Anandasivam, A., Weinhardt, C., 2010. Towards an efficient decision policy
for Cloud service providers. In: Proceedings of the ICIS. Saint Louis, USA.

Baykasoǧlu, A., Göçken, T., August 2008. A review and classification of
fuzzy mathematical programs. Journal of Intelligent & Fuzzy Systems 19,
205–229.

Bitran, G., Caldentey, R., 2003. An overview of pricing models for revenue
management. Manufacturing Service Operations Management 5 (3), 203–
229.

Boughton, H., Martin, P., Powley, W., Horman, R., 2006. Workload Class
Importance Policy in Autonomic Database Management Systems. In: Pro-
ceedings of the International Workshop on POLICY. London, Ontario,
Canada, pp. 13–22.

28

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., Brandic, I., 2009. Cloud
computing and emerging IT platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Generation Computing Systems
25 (6), 599–616.

Caglar, F., Gokhale, A., 2014. Ioverbook: Intelligent resource-overbooking
to support soft real. In: Proceedings of the 7th CloudComp. Anchorage,
Alaska.

Dube, P., Hayel, Y., Wynter, L., 2005. Yield management for IT resources
on demand: analysis and validation of a new paradigm for managing com-
puting centres. Journal of Revenue and Pricing Management 4 (1), 99–102.

Eren, S. S., Maglaras, C., 2009. Monopoly pricing with limited demand in-
formation. Journal of Revenue and Pricing Management 9 (1-2), 23–48.

Feitelson, D. G., 2011. Workload Modeling for Computer Systems Perfor-
mance Evaluation. http://www.cs.huji.ac.il/~feit/wlmod/

Ferguson, D. F., Nikolaou, C., Sairamesh, J., Yemini, Y., 1996. Economic
models for allocating resources in computer systems. In: Clearwater, S.
(Ed.), Market-Based Control: A Paradigm for Distributed Resource Allo-
cation. World Scientific Publishing, River Edge, NJ, USA, pp. 156–183.

Foster, I., Kesselman, C., Lee, C., Lindell, B., Nahrstedt, K., Roy, A., 1999.
A Distributed Resource Management Architecture that Supports Advance
Reservations and Co-Allocation. In: Proceedings of the IWQoS 1999. Lon-
don, UK, pp. 62–80.

Freund, J. E., 2003. John E. Freund’s Mathematical Statistics with Applica-
tions, 7th Edition. Miller.

Kounev, S., Nou, R., Torres, J., 2007. Autonomic QoS-Aware Resource Man-
agement in Grid Computing using Online Performance Models. In: Pro-
ceedings of the VALUETOOLS 2007. Nantes, France, pp. 1–10.

Maglaras, C., Meissner, J., 2006. Dynamic Pricing Strategies for Multiprod-
uct Revenue Management Problems. Manufacturing & Service Operations
Management 8 (2), 136–148.

Mell, P., Grance, T., July 2009. The NIST Definition of Cloud Computing.
Tech. rep. http://www.csrc.nist.gov/groups/SNS/cloud-computing/

Moulin, H., 2007. On scheduling fees to prevent merging, splitting, and trans-
ferring of jobs. Mathematics of Operations Research 32 (2), 266–283.

Nair, S., Bapna, R., 2001. An Application of Yield Management for Internet
Service Providers. Naval Research Logistics 48, 348–362.

Newhouse, S., MacLaren, J., Keahey, K., 2004. Trading Grid services within
the UK e-science Grid. In: Nabrzyski, J., Schopf, J., Weglarz, J. (Eds.),

29

Grid resource management: state of the art and future trends. Kluwer
Academic Publishers, Norwell, MA, USA.

Nimis, J., Anandasivam, A., Borissov, N., Smith, G., Neumann, D.,
Wirström, N., Rosenberg, E., Villa, M., 2008a. Sorma - business cases
for an open grid 2008. In: Proceedings of the 5th Gecon. Las Palmas de
Gran Canaria, Spain.

Nimis, J., Macias, M., Rosenberg, E., Wirström, N., Brunner, R.,
Borissov, N., Deora, V., Smith, G., 2008b. SORMA D2.2. Fi-
nal Specification and Design Documentation of the SORMA Compo-
nents. Tech. rep. http://www.im.uni-karlsruhe.de/sorma/fileadmin/
SORMA_Deliverables/D2.2_final.pdf

Püschel, T., Neumann, D., 2009. Management of cloud infrastructures:
Policy-based revenue optimization. In: Proceedings of the ICIS. Phoenix,
Arizona, USA.

Püschel, T., Schryen, G., Hristova, D., Neumann, D., 2012. Cloud Service
Revenue Management. In: Proceedings of the ECIS. Barcelona, Spain.

Qiu, J., Knightly, E. W., 2001. Measurement-based admission control with
aggregate traffic envelopes. IEEE/ACM Transactions on Networking 9 (2),
199–210.

Ramalho, M. F. N., 1998. Uncertainty measures associated with fuzzy rules
for connection admission control in ATM Networks. In: Parsons, S. (Ed.),
Applications of Uncertainty Formalisms. Springer, Berlin, Germany.

Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., Kozuch, M. A., 2012.
Towards understanding heterogeneous clouds at scale: Google trace analy-
sis. Tech. rep., Intel Science and Technology Center for Cloud Computing.

Windsor, W., Rosenberg, E., Villa, M., Amar, L., 2009. SORMA D6.2:
Pilot Study Evaluations. Tech. rep. http://www.im.uni-karlsruhe.de/
sorma/fileadmin/SORMA_Deliverables/D6.2_final.pdf

Wirström, N., Rasmusson, L., Rana, O., Clair, G. S., Villa, M., Del Grosso,
E., Koh, M., Smith, G., Baker, M., 2008. SORMA Deliverable D4.4 Newly
Developed Components. Tech. rep. http://www.im.uni-karlsruhe.de/
sorma/fileadmin/SORMA_Deliverables/D4.4_final.pdf

Yeo, C. S., Buyya, R., 2004. Pricing for Utility-driven Resource Management
and Allocation in Clusters. In: Proceedings of the ADCOM. Ahmedabad,
India, pp. 32–41.

Zimmermann, H. J., Apr. 2000. An application-oriented view of modeling
uncertainty. European Journal of Operational Research 122 (2), 190–198.

30

Appendix A. Related work

Table A.4: Objectives, Characteristics, and Related Work

Objectives

Revenue
Maximization

Nair and Bapna (2001), Yeo and Buyya (2004), Dube
et al. (2005),Maglaras and Meissner (2006), Eren and
Maglaras (2009), Poggi et al. (2009), Anandasivam
and Weinhardt (2010)

Customer
Satisfaction

Dube et al. (2005), Poggi et al. (2009)

Characteristics

Production
Inflexibility

Nair and Bapna (2001), Eren and Maglaras (2009),
Anandasivam and Weinhardt (2010)

Perishability Nair and Bapna (2001), Dube et al. (2005), Eren
and Maglaras (2009), Anandasivam and Weinhardt
(2010)

Real-time
behaviour

Nair and Bapna (2001), Dube et al. (2005), Eren
and Maglaras (2009), Anandasivam and Weinhardt
(2010)

Non-
clairvoyance

Nair and Bapna (2001), Dube et al. (2005), Maglaras
and Meissner (2006), Eren and Maglaras (2009),
Anandasivam and Weinhardt (2010)

Uncertainty of
requirements

Ramalho (1998), Qiu and Knightly (2001), Kounev
et al. (2007)

Quality of
Service

Djemame et al. (2006), Kounev et al. (2007), Poggi
et al. (2009)

Resistance to
strategic be-
haviour

Maglaras and Meissner (2006)

Approaches

Dynamic
Pricing

Yeo and Buyya (2004), Nair and Bapna (2001), Dube
et al. (2005),Maglaras and Meissner (2006), Eren
and Maglaras (2009), Anandasivam and Weinhardt
(2010)

Client
Classification

Buyya (2002), Newhouse et al. (2004), Nair and
Bapna (2001), Poggi et al. (2009)

Product
Differentiation

Maglaras and Meissner (2006), Anandasivam and
Weinhardt (2010)

31

Appendix B. Simulation setup

Table B.5: Service types

Service CPU Storage Bandwidth
1 4 4 16
2 8 16 4
3 16 8 8

Table B.6: Workload information

Variable Source Adaption / Distribution
Submission Time Workload trace None
Start time Workload trace None
Runtime Workload trace None
Number of instances Workload trace Adapted from job requirements to for

the three service setting
User ID Workload trace None
Service Type Generated Uniform Distribution {1, 2, 3}
Price Generated Normal distribution N(1, 0.5) per re-

source unit and time slot (minimum
unit price 0.1)

Appendix C. Statistical methodology

To validate that policy P2 delivers significantly higher revenue than policy
P1, we perform the following tests. We first test if the results are normally
distributed, using the Shapiro-Wilk parametric hypothesis test of composite
normality, where the null hypothesis is that the values are normally dis-
tributed with unknown mean and variance. Since all the p-values are larger
than 10% (see Table C.7), we fail to reject the null hypothesis at the 0.1 level
and thus the values are normally distributed.

We can therefore apply the F-test of equality of variances, to test for
each situation whether the variance with policy P1 is significantly different
than that with policy P2. This leads to the test statistic values shown in
Table C.8. Since the F-distribution value for 8 degrees of freedom for both

32

Table C.7: p-values

Scenarios/Level P1 S1 P1 S2 P1 S3 P1 S4 P2 S1 P2 S2 P2 S3 P2 S4
of uncertainty

p-values 0.2768 0.5306 0.5587 0.3506 0.8857 0.1148 0.5685 0.3951
P1: FCFS policy
P2: Dynamic pricing policy
P3: Client classification policy
Si: Scenario i

Table C.8: Results of comparisons of variances (F-test)

Situation F-test
H1: σ2(P1S1) = σ2(P2S1) 1.1047
H2: σ2(P1S2) = σ2(P2S2) 1.7237
H3: σ2(P1S3) = σ2(P2S3) 1.0769
H4: σ2(P1S4) = σ2(P2S4) 1.2449
P1: FCFS policy
P2: Dynamic pricing policy
P3: Client classification policy
Si: Scenario i

numerator and denominator at α = 1% is 6.03 (Freund, 2003, p. 401) and all
the test statistics are below this value, we fail to reject the null hypothesis
and thus the variances of both policies for each of the four scenarios do not
differ significantly from each other. It follows that we can apply the one-sided
t-test to test if the expected value of policy P1 is significantly higher than
the expected value of policy P2.

Table C.9 shows the rsults of the t-test. Because the t-distribution value
for 16 degrees of freedom at α = 1% is -2.583 (Freund, 2003, p. 401), we
can clearly reject the null hypotheses. We conclude that the dynamic pricing
policy brings significantly higher values than the FCFS policy.

Appendix D. Fuzzy set theory, fuzzy arithmetic and fuzzy opti-
mization

The appropriateness of using fuzzy set theory in our context is particularly
based on the fact that “a [fuzzy set theory based] framework provides a natural

33

Table C.9: Results of comparisons of means (t-test)

Situation t-test
H1: µ(P1 S1) ≥ µ(P2 S1) -16,9983
H2: µ(P1 S2) ≥ µ(P2 S2) -29,4539
H3: µ(P1 S3) ≥ µ(P2 S3) -38,5208
H4: µ(P1 S4) ≥ µ(P2 S4) -40,2884
P1: FCFS policy
P2: Dynamic pricing policy
P3: Client classification policy
Si: Scenario i

way of dealing with problems in which the source of imprecision is the absence
of sharply defined criteria of class membership rather than the presence of
random variables.” (Zadeh, 1965). We now introduce very briefly those basic
concepts of fuzzy set theory, fuzzy arithmetic, and fuzzy optimization that
are relevant for our models. For a comprehensive overview of these areas, see
(Zimmermann, 1996; Rommelfanger, 1996).

Fuzzy set theory generalizes traditional set theory in such a way that
it provides for a degree of membership with which an element belongs to a
fuzzy set. Formally, fuzzy sets can be described as follows:

Fuzzy set: Let X = {x} be some (crisp) set. Then we define a fuzzy set A
in X as a set of ordered pairs

A := {(x, µA(x))|x ∈ X} (D.1)

µA is called the membership function.

A specific type of a fuzzy set is a fuzzy number.

Fuzzy number A (real) fuzzy number Ñ is a fuzzy set in X = R whose
membership function µÑ (c ≤ a ≤ b ≤ d, a, b, c, d ∈ R) is 1. a contin-
uous mapping from R to [0, 1], 2. constant on (−∞, c] : µÑ(x) =
0 ∀x ∈ [−∞, c], 3. strictly increasing on [c, a], 4. constant on
[a, b] : µÑ(x) = 1 ∀x ∈ [a, b], 5. strictly decreasing on [b, d], and
6. constant on [d,∞] : µÑ(x) = 0 ∀x ∈ [d,∞].

34

Note that the membership function mirrors the subjective attitude of an
individual rather than reflecting statistical evidence. This is advantageous
in cases where probabilities or exact data on resource requirements are not
available, but subjective estimates of customers or experienced experts are
given. Various types of fuzzy numbers are proposed in the literature, includ-
ing triangular (µÑ is piecewise linear and a = b) fuzzy numbers, which we
use in this paper.

Fuzzy set theory provides a formal framework for arithmetic and logic
operations on fuzzy numbers and crisp numbers. Fuzzy arithmetic operations
are defined by Dubois and Prade (1978) as follows:

Fuzzy arithmetic: Let M̃ and Ñ be two fuzzy numbers with membership
functions f and g. The membership function h of the fuzzy number
that results from the operation M̃ ◦ Ñ , ◦ ∈ {+,−, ∗, /}, is defined as
h(z) = sup

x+y=z
min{f(x), g(y)}.

For triangular fuzzy numbers Ñ1 = (c1, a1, d1) and Ñ2 = (c2, a2, d2), the
above extension principle can be operationalized by an equivalent definition
that draws on α-cuts and interval arithmetic (Klir and Yuan, 1995, chapter
4). Operations on two triangular fuzzy numbers are performed component-
wise, i.e.

• Fuzzy number + Fuzzy number: (c1, a1, d1)+(c2, a2, d2) := (c1+c2, a1+
a2, d1 + d2)

• Fuzzy number ∗ scalar: (c, a, d) ∗ z := (c ∗ z, a ∗ z, d ∗ z)

• Fuzzy number + scalar: (c, a, d) + z := (c+ z, a+ z, d+ z)

• Fuzzy number / scalar: (c, a, d)/z := (c/z, a/z, d/z)

• Fuzzy number ≤ scalar: (c, a, d) ≤ z :⇔ d ≤ z

As an example, we consider two triangular fuzzy numbers 3̃ (specified by
c=2, a=b=3, and d=4; we shortly write: 3̃ := (2, 3, 4)) and 6̃ (specified by
c=5, a=b=6, and d=8; shortly: 6̃ := (5, 6, 8)). In the context of resource
requirements, these fuzzy numbers can represent customers’ estimates regard-
ing the required disc space, i.e. customer 1 expects to need “approximately
3 GB of disc space” and customer 2 expects to need “approximately 6 GB of

35

disc space”. Based on fuzzy arithmetic, the Cloud service provider expects
to reserve “approximately 9 GB of disc space”, operationalized through the
fuzzy number 9̃ := (7, 9, 12).

Appendix E. Proofs of propositions

Complexity of the maximization problem: The problem which service re-
quests to accept is an NP-hard problem and therefore computationally in-
tractable.

Proof. In the knapsack problem there is a number of items. Each item has
a value and a weight. There is also a maximum weight that can be carried
in the bag. The problem is to find the set of items which maximizes the
sum of valuation while still adhering to the weight limit. In our scenario,
the job or service requests represent the items used in the knapsack problem.
The prices represent the valuations and the capacity needed by a service
its weight. The available capacity represents the weight restriction. There-
fore any mechanism which can determine the optimal solution to the service
request admission control problem can also be used to solve the knapsack
problem, which is NP-hard. Since this problem has to be solved for each
time-slot and the solutions for the knapsack problems in different timeslots
are interrelated, it is an instance of the temporal knapsack problem (Bartlett
et al., 2005).

Proposition 1: Let pIavg and pIIavg(rp) be the average price of the accepted jobs
for policy I and for policy II, respectively, with rp being the (only) reserva-
tion price and l being the utilization level at which rp becomes applicable.
Let ar ≥ 1 be the job arrival rate, and let the price X be a random variable
with known cumulative distribution function P (X).

Then the dynamic pricing policy outperforms the first come first serve
approach (both under certainty and uncertainty) in terms of revenue if 1 ∗
pIavg < min[1, P (X ≥ rp) ∗ ar] ∗ pIIavg(rp) under some additional assumptions.

Proof. We first prove the proposition under certainty. Let Ri
exp be the av-

erage expected revenue of policy I. The dynamic pricing policy (II) then
outperforms FCFS (policy I) if

RI
exp < RII

exp (E.1)

36

To calculate the expected revenue we apply the following assumptions.
Jobs are homogeneous in terms of required resources and processing time,
prices however vary. The job arrival rate is constant. The system is large
enough and runtimes are long enough that we can assume an average number
of accepted jobs aciavg instead of a fixed capacity threshold, aciavg ≤ acmax.
acmax is the maximum number of accepted jobs per timeslot. The average
expected revenues per timeslot for each policy can then be calculated as
follows:

acIavg(ar, c) ∗ pIavg < acIIavg(ar, c, rp, l) ∗ pIIavg(rp, l) (E.2)

The equation can then be simplified as follows:

acmax(c) ∗ pIavg < acmax(c) ∗ acIInormavg(ar, rp, l) ∗ pIIavg(rp, l) (E.3)

acIInormavg(ar, rp, l) denotes the share of jobs accepted with respect to the
maximum possible acceptance rate acmax(c).

Further simplification of the right-hand side depends on rp, l and the
probability that the price of a job is lower than rp. A job is accepted if
either its price is equal or above the reservation price (P (X ≥ rp)) or its
price is below the reservation price but the utilization is below the threshold
(P (X < rp|U < l)). Since regardless of the arrival rate we cannot accept
more jobs than capacity is available, we have to cap the acceptance rate at
1.

pIavg < min[1, P (X ≥ rp) ∗ ar + P (X < rp|U < l) ∗ ar] ∗ pIIavg(rp, l) (E.4)

where U is the current utilization of the system. For purposes of sim-
plicity, P (X ≤ rp|U < l) ∗ ar can be discarded. This discards some revenue
achieved by dynamic pricing and therefore underestimates its performance.
Then

pIavg < min[1, P (X ≥ rp) ∗ ar] ∗ pIIavg(rp) (E.5)

Substituting c with c̃ in the case of uncertainty leads to the analogous
proof under the additional assumption that for the fuzzy comparison operator
the following condition holds:
1
c̃
∗ λ1 < 1

c̃
∗ λ2 ⇒ λ1 < λ2, λ1, λ2 ∈ R.

37

We illustrate this proposition in the following numerical example. If we
assume a uniform distribution between pmax and pmin, equation (E.5) can be
simplified as follows.

pmax + pmin

2
< min[1,

pmax − rp
pmax − pmin

∗ ar] ∗ pmax + rp

2
(E.6)

If we further set pmax = 1, pmin = 0, we yield:

1

2
< min[1,

1− rp
1
∗ ar] ∗ 1 + rp

2
(E.7)

If ar is known, the term min[1, 1−rp
1
∗ ar] ∗ 1+rp

2
can be maximized to

find the optimal rp for l. If rp is set this allows to calculate the minimum
ar where dynamic pricing outperforms first come first serve. For example
setting rp = 0.5 we yield:

1

2
< min[1,

1

2
∗ ar] ∗ 3

4
(E.8)

This is true for ar > 4/3. This means that for an arrival rate > 4/3 dy-
namic pricing outperforms first come first serve in terms of expected revenue.

Proposition 2: A policy with strict priority outperforms a first come first
serve approach (both under certainty and uncertainty) in terms of gold cus-
tomer acceptance probability.

Proof. We first prove the proposition under certainty. The overall acceptance
probability for policy i is denoted by pi(xk = 1). In case of strict priority
there is a utilization threshold lc.

pi(xk = 1) = pi(xk = 1|
|J |∑
j=1

cjr(t) ∗ xj ≤ lc) +

pi(xk = 1|lc ≤
|J |∑
j=1

cjr(t) ∗ xj ≤ cr(t)) ∀t ∈ T, ∀r ∈ R

(E.9)

pi(xk = 1|
|J |∑
j=1

cjr(t)∗xj ≤ lc) is identical for both FCFS and strict priority.

However if utilization exceeds this threshold lc, the remaining capacity is
exclusively reserved for gold customers. Therefore:

38

pI(xk = 1|lc ≤
|J |∑
j=1

cjr(t) ∗ xj ≤ cr(t)) ≤

pIII(xk = 1|lc ≤
|J |∑
j=1

cjr(t) ∗ xj ≤ cr(t)) ∀t ∈ T, ∀r ∈ R (E.10)

This means that

pI(xk = 1) ≤ pIII(xk = 1) (E.11)

Substituting cjr with c̃jr in the case of uncertainty leads to the analogous
proof under the assumption that for the fuzzy comparison operator the fol-
lowing condition holds:
1
c̃
∗ λ1 < 1

c̃
∗ λ2 ⇒ λ1 < λ2, λ1, λ2 ∈ R.

Proposition 3: The different policies of the model (both under certainty and
uncertainty) are merge-proof, i.e. users can not benefit by merging several
jobs to one bigger job.

Proof. There are two ways how users could benefit. Firstly, they could try
to increase chance of acceptance while maintaining the same price. Secondly,
they could try achieving the same chance for job acceptance with a lower
price. For all three constraints the chance of acceptance is contingent on
the utilization the system would have if the job was accepted. Increasing
the job size thus the corresponding utilization can only increase the risk of
rejection due to insufficient capacity (C2.1), a higher reservation price (C2.2),
or missing ”gold privileges” (C2.3). Thus users cannot benefit from merging
two jobs.

Proposition 4: The different policies of the model (both under certainty and
uncertainty) are not split-proof, i.e. users can benefit by splitting one job to
several smaller jobs.

Proof. There are two ways how users could benefit. Firstly they could try
to increase chance of acceptance while maintaining the same price. Secondly
they could try achieving the same chance for job acceptance with a lower
price. Let’s assume that the policies are split-proof. This can then be con-
tradicted by a simple example. In certain scenarios the user can decrease the
price or increase the chance of acceptance by splitting a job into smaller jobs.

39

If for example the users splits his job into two smaller jobs the utilization
level used to calculate the reservation price can be lower. Thus the job can
be accepted for a lower price. The user only has to pay the higher price for
the second submitted job. However since there is no bundling allowed the
user risks that the task is not fully completed because some of the smaller
jobs might not be accepted. Thus the model is not split-proof.

Appendix F. Simulation process

Figure F.6: Overview over the simulation process

Appendix G. References of Appendix

Bartlett, M., Frisch, A. M., Hamadi, Y., Miguel, I., Tarim, S. A.,
Unsworth, C., 2005. The temporal knapsack problem and its solution. In:
Proceedings of the 2nd International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization
Problems. pp. 34–48.

Buyya, R., 2002. Economic-based Distributed Resource Management and
Scheduling for Grid Computing. Ph.D. thesis, Monash University.

Djemame, K., Gourlay, I., Padgett, J., Birkenheuer, G., Hovestadt, M.,
Kao, O., Voß, K., 2006. Introducing Risk Management into the Grid. In:
Proceedings of the eScience 2006. Amsterdam, Netherlands, p. 28.

Dubois, D., Prade, H., 1978. Operations on fuzzy numbers. International
Journal of Systems Science 9 (6), 613–626.

Freund, J. E., 2003. John E. Freund’s Mathematical Statistics with Ap-
plications, 7th Edition. Miller.

40

Klir, G. J., Yuan, B., 1995. Fuzzy Sets and Fuzzy Logic: Theory and
Applications, 1st Edition. Prentice Hall PTR, NJ, USA.

Poggi, N., Moreno, T., Berral, J. L., Gavald´ ?, R., Torres, J., 2009.
Self-adaptive utility-based web session management. Computer Networks 53
(10), 1712–1721.

Rommelfanger, H., 1996. Fuzzy linear programming and applications.
European Journal of Operational Research 92 (3), 512–527.

Zadeh, L. A., 1965. Fuzzy sets. Information and Control 8, 338–353.
Zimmermann, H.-J., 1996. Fuzzy set theory — and its applications, 3rd

Edition. Kluwer, Norwell, MA, USA.

41

