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received 1 April 2010; accepted in final form 9 June 2010
published online 8 July 2010

PACS 72.25.-b – Spin polarized transport
PACS 72.25.Rb – Spin relaxation and scattering

Abstract – We study the coupled dynamics of spin and charge currents in a two-dimensional
electron gas in the transport diffusive regime. For systems with inversion symmetry there are
established relations between the spin Hall effect, the anomalous Hall effect and the inverse spin
Hall effect. However, in two-dimensional electron gases of semiconductors like GaAs, inversion
symmetry is broken so that the standard arguments do not apply. We demonstrate that in the
presence of a Rashba type of spin-orbit coupling (broken structural inversion symmetry) the
anomalous Hall effect, the spin Hall and inverse spin Hall effect are substantially different effects.
Furthermore, we discuss the inverse spin Hall effect for a two-dimensional electron gas with Rashba
and Dresselhaus spin-orbit coupling; our results agree with a recent experiment.

Copyright c© EPLA, 2010

Despite the anomalous and spin Hall effect being closely
related, their histories are rather different. The anomalous
Hall effect was experimentally discovered [1] almost at
the same time as the ordinary Hall effect, while the
spin Hall effect, first predicted in 1971 [2,3] and several
times recently [4–7], has been experimentally seen only
in the last few years [8–12]. This is not surprising as the
anomalous Hall effect entails the measurement of currents
and voltages which is well established experimentally,
whereas the spin Hall effect requires the detection of a
spin current, which has to be done in an indirect way; for
a review see for example [13,14] and [15,16].
Since the anomalous and spin Hall effect have the

same physical origin, namely the spin-orbit interaction
which couples charge and spin degrees of freedom, their
dependence on various physical parameters is expected
to share similar trends. Depending on whether the
spin-orbit coupling is intrinsic in the band structure
or appears due to coupling to impurities one speaks
about intrinsic or extrinsic mechanisms. The interplay
of intrinsic and extrinsic mechanisms is non-trivial. For
instance the intrinsic Rashba type of spin-orbit coupling
in a two-dimensional electron gas suppresses drastically

(a)E-mail: peter.schwab@physik.uni-augsburg.de

the extrinsic (skew-scattering) contribution to the spin
Hall conductivity [17–20].
It is the purpose of this paper to develop a similar analy-

sis for the anomalous Hall effect and for the inverse spin
Hall effect. We will start with a phenomenological discus-
sion of charge and spin currents in a metal or semiconduc-
tor with diffusive charge carrier dynamics. We will study in
detail the two-dimensional Rashba model including extrin-
sic skew-scattering. In the anomalous Hall conductivity we
find an unexpected anomaly in the magnetic field depen-
dence. Our analysis of the inverse spin Hall effect for a
system with Rashba and Dresselhaus spin-orbit coupling
is consistent with the experimental results of [21].
As a starting point we consider a system with spin-orbit

coupling, where a spin-polarized current in the x-direction
generates a small current δjy into the transverse direction
with

δjy↑ = 2γjx↑, δjy↓ =−2γjx↓. (1)

Clearly, from these equations we can conclude that:
a) a charge current generates a transverse spin current,
δjy↑− δjy↓ = 2γ(jx↑+ jx↓) (spin Hall effect), b) a spin
current generates a transverse charge current, δjy↑+
δjy↓ = 2γ(jx↑− jx↓). If the spin current is due to an
electric field in a spin-polarized medium like a ferromagnet
this is called the anomalous Hall effect. If it is instead due
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to spin-injection into a non-magnetic material we have the
inverse spin Hall effect. The three Hall effects mentioned
are thus very closely related, and the magnitude of all of
them is determined by the dimensionless parameter γ.
Often, however, eq. (1) is not sufficient for the theoret-

ical description and, in the following, we will achieve the
necessary generalization of the equations. Let us write the
current in the x-direction as

jx↑ = σ↑Ex↑, jx↓ = σ↓Ex↓, (2)

where σ↑,↓ and Ex↑,↓ are the spin-dependent conductivity
and electric field in the x-direction, respectively. In order
to allow later arbitrary directions of the spin-polarization,
we find it convenient to introduce here the charge and
spin components for the field and the current, Ex±
1
2E
z
x =Ex↑,↓ and

1
2jx± jzx = jx↑,↓. Equation (2) can now

be rewritten as

jx = σEx+σ0zE
z
x, (3)

jzx =
1

4
σEzx+σz0Ex, (4)

where σ= σ↑+σ↓ = µρ is the Drude conductivity, ρ and
µ being the charge density and the mobility, respec-
tively. The conductivities σ0z = σz0 =

1
2 (σ↑−σ↓) = µsz,

with sz the spin density, mix spin and charge currents
and appear due to the fact that electrons carry both
degrees of freedom; the Onsager relations require the
symmetry σ0z(sz) =−σz0(−sz). Notice that the charge
and spin currents (as well as charge and spin density) as
defined here have equal units. The transverse currents are
given by

δjy = 4γj
z
x+ γ0zjx, (5)

δjzy = γjx+ γ0zj
z
x, (6)

with γ = 12 (γ↑+ γ↓) and γ0z = (γ↑− γ↓) when we allow
different γ’s for spin up an down.
In the next step diffusive currents are considered too.

This is achieved be replacing the electric fields by

σEx→ σEx =−D∂xρ+σEx, (7)

1

4
σEzx→

1

4
σEzx =−D∂xsz +

1

4
σEzx. (8)

The diffusion coefficient, D, is related to the conductivity
via the relation σ= 2e2DN0, where N0 is the single-
particle density of states at the Fermi energy. Allowing
now an arbitrary direction of the fields and the spin
polarization we obtain the set of equations

jl = σEl+σ0aEal + δjl, (9)

δjl =−4γεlab
[
1

4
σEba+σb0Ea

]
− εlabγ0bja, (10)

jal =
1

4
σEal +σa0El+ δjal , (11)

δjal = γεlab [σEb+σ0cEcb ] + εlabγ0cjcb . (12)

The structure of eqs. (9)–(12) is similar to the equations
given in ref. [22], the difference being the terms σ0aEal
and γ0bja in the charge current and γ0cj

c
b in the spin one,

which do not appear in [22]. The last term in eq. (12) will
however be of no importance in the present article and, as
such, will be ignored in the following.
We proceed by calculating the parameters entering

eqs. (9)–(11) from a microscopic model. We consider
a disordered two-dimensional electron gas (2DEG) with
Hamiltonian

H =
p2

2m
− A ·p
m
+V (x)− 1

�

λ20
4
σ× ∂xV (x) ·p− 1

2
b ·σ.
(13)

In this Hamiltonian we have both intrinsic and extrinsic
spin-orbit coupling. The intrinsic spin-orbit interaction
modifies the band structure and enters in the form of a
spin-dependent vector potential [20,23–26], which for the
Rashba model is given by

A=
mα

�
σ× êz ≡ 1

2

∑
a

(Aax, A
a
y, A

a
z)σa, (14)

with the only non-zero components Ayx =−Axy = 2mα/�.
The inclusion of the linear-in-momentum Dresselhaus
term for a (001) quantum well is achieved by adding
components Ayy =−Axx = 2mβ/�, where β is the corre-
sponding spin-orbit coupling parameter. V (x) is the scalar
potential due to the scattering from impurities and gives
rise to the extrinsic spin-orbit coupling with strength char-
acterized by the length λ0. Both spin-orbit couplings are
assumed to be weak, i.e. A ·pF /m� εF and λ0pF � �.
The Zeeman field b may be due to an external magnetic
field or may arise due to the exchange field of a ferromag-
net. In the following, for the sake of simplicity, we take
units such that �= 1.
For our microscopic model the density of states is N0 =

m/2π and the diffusion constant is D= 12v
2
F τ , with τ the

elastic scattering time. The latter is determined from the
disorder potential and in the Born approximation, assum-
ing 〈V (x)V (x′)〉= δ(x−x′)/(2πN0τ). The parameter γ
has, in principle, contributions from the skew-scattering,
side-jump, and the intrinsic mechanism. In this paper,
motivated by the fact that in 2DEGs the skew-scattering
is typically considerably stronger than the side-jump, we
limit our discussion to the interplay of skew-scattering and
the intrinsic mechanism. We then write the parameter γ as

γ = γskew+ γintr, (15)

with

γskew =−λ
2
0p
2
F

16
(2πN0v0), (16)

γintr =−mα2τ. (17)

For an explicit derivation, one may see [20,27]. In eq. (16)
v0 is the scattering amplitude from the impurity potential.
For the parameter γ0z we find in our model only a skew-
scattering contribution, explicitly γ0z = 4γskewσ0z/σ.
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It is stressed in ref. [22] that eqs. (9)–(12) are only
valid in systems with inversion center. In the absence
of the inversion symmetry —which is the case in the
situation we consider here— extra terms appear. However
for our model Hamiltonian (13) these extra terms are
conveniently taken into account by a redefinition of the
field Eal , which is now given by

1

4
σEal =−D∂l(sa− seqa )−DεabcAbl (sc− seqc ), (18)

where seq = (−e) 12N0b. For example the fields Ezy and Ezx
are in the Rashba model given by

1

4
σEzy =−D∂y(sz − seqz )+D(2mα)(sy − seqy ), (19)

1

4
σEzx =−D∂x(sz − seqz )+D(2mα)(sx− seqx ). (20)

Again we refer to the literature for microscopic deriva-
tions. For example in [28] the expressions for the spin
and charge currents in the case λ0 = 0 were obtained by
exploiting an SU(2) symmetry of the Rashba model.
How does our approach compare with other studies of

the diffusive dynamics of spin and charge? Combining
the current density (9) and (11) with the continuity
equations for spin and charge one finds coupled diffusion
equations. Such diffusion equations have been derived for
the Rashba model, e.g., in [29,30] and for the system with
both a Rashba and a linear Dresselhaus term in [31].
Our analysis extends these works: whereas the cited
papers concentrate on the intrinsic spin-orbit coupling we
include also the experimentally relevant skew-scattering.
Furthermore the spin-charge coupling conductivities σ0a
and σa0 are neglected in [29–31]. In the following we will
apply the formalism to the various Hall effects.

Anomalous Hall effect and spin Hall effect. – The
anomalous Hall effect describes a contribution to the Hall
conductivity due to the spontaneous magnetization in a
ferromagnet, the Hall current being perpendicular to both
the magnetization and the electric field. The spin Hall
effect consists instead in the appearance of a spin current
orthogonal to an applied electric field in a non-magnetic
material. Let us assume homogeneous conditions, take the
electric field along the x-axis and the magnetization along
the z-axis, and write down the charge and spin currents
along the y-axis. To linear order in the electric field eqs. (9)
and (11) become

jy = σ0zEzy + γσEzx +4(γ+ γskew)σz0Ex, (21)

jzy =
1

4
σEzy + γσEx+ γσ0zEzx . (22)

Let us at first examine the anomalous Hall current,
eq. (21), in the pure Rashba model (λ0 = 0). It is known
that in the presence of spin-orbit coupling an electric field
induces a spin polarization [32]. In the Rashba model this
lies in-plane, and for our geometry along y [33], which

implies that Ezx = 0, but Ezy �= 0. From eqs. (17) and (19)
we get

jy = σ0z

[
4D(2mα)

σ
sy − 4mα2τEx

]
. (23)

For the spin polarization one has [33]

sy = e
2N0ατEx, (24)

and thus the anomalous Hall effect in the pure Rashba
model vanishes in agreement with explicit diagrammatic
calculations. Notice that in the diagrammatic calculations
a finite anomalous Hall effect is found from a skew-
scattering-like contribution which appears at a higher
order in the magnetic field and in the presence of magnetic
impurities [34–37]. Such a contribution we do not consider
here.
The disappearance of the anomalous Hall effect is

related to the vanishing of the spin Hall effect in the pure
Rashba model. To see this, let us consider the spin Hall
current (22). Since Ezx = 0, we find by comparing eqs. (21)
and (22) the relation

jy = 4
σ0z

σ
jzy , (25)

so that a vanishing spin Hall current implies a vanishing
charge Hall current.
This relation is no longer true in the presence of both

intrinsic (α �= 0) and extrinsic spin-orbit coupling (λ0 �= 0).
In this case, the combination of an out-of-plane magnetic
field or exchange field together with an in-plane electric
field (in the x-direction) generates a component of the
spin-polarization in the x-direction so that the field Ezx no
longer vanishes.
To calculate the spin polarization we borrow from [20]

the equations

ṡ=−Γ̂(s− seq)−beff × s+SE . (26)

Here Γ̂ is the spin relaxation matrix which in the case of
pure Dyakonov-Perel spin relaxation reads

Γ̂ =
1

τDP
diag(1, 1, 2), 1/τDP =D(2mα)

2. (27)

The spins relax towards the equilibrium density seq =
−e12N0b and precess in an effective magnetic field,

beff = b+2mαµez ×E, (28)

whereas SE is an electric-field–dependent source term

SE = 2mασ(γskew+ γintr)ez ×E. (29)

Solving these equations in the static limit and ignoring
possible non-linearities in the electric field, the spin polar-
ization is determined as

sx =− bzτ
2
DP

1+ (bzτDP )2
2mασγskewEx, (30)
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sy = e
2N0ατEx− τDP 2mασ

1+ (bzτDP )2
γskewEx, (31)

sz =−e1
2
N0bz. (32)

Knowing the spin polarization we can now calculate the
Hall and spin Hall current, using eqs. (21) and (22). In
the weak magnetic field limit (bzτDP � 1) the result for
the Hall current is

jy =

(
1+
1

2

γskew

γintr

)
8γskewσ0zEx, (33)

which means that a weak Rashba term (γskew� γintr) may
considerably enhance the anomalous Hall effect. The spin
Hall current, however, vanishes [20,38],

jzy = 0, (34)

in the presence of the Rashba coupling. The term
γskew/γintr on the right-hand side of eq. (33) appears to
be singular when the Rashba coupling goes to zero. This
is because we have assumed in eq. (27) that the Elliott-
Yafet spin relaxation rate, 1/τs, can be neglected when
compared to the Dyakonov-Perel one, i.e., τs� τDP . The
same assumption leads to the vanishing spin Hall current
in eq. (34). In ref. [20] it was shown that in order to
correctly reproduce the α→ 0 limit, where the spin Hall
conductivity due to the extrinsic mechanism is finite,
one must explicitly take into account the Elliott-Yafet
spin-relaxation rate. In order to include the Elliott-Yafet
relaxation due to the extrinsic spin-orbit interaction, we
have to modify eq. (27) in the following way [20]:

Γ̂ =
1

τDP
diag(1, 1, 2)+

1

τs
diag(1, 1, 0). (35)

As a consequence, in eqs. (30), (31) we must operate
the replacement τ−1DP → τ−1DP + τ−1s , which guarantees the
correct α→ 0 limit.
In the strong magnetic field limit (bzτDP � 1), and

again assuming τs� τDP , the anomalous Hall current is
given by

jy = 8γskewσ0zEx, (36)

which is identical to the result in the absence of Rashba
spin-orbit coupling.
The Hall angle, jy/jx, as function of the magnetic field is

shown in fig. 1, for different values of the mobility and the
Rashba term. In the absence of Rashba spin-orbit coupling
eq. (36) implies that jy/jx = 2γskewb/εF , i.e. the Hall angle
as a function of the magnetic field is a structureless line.
The Rashba term causes an anomaly in weak magnetic
fields. The width of this anomaly is set by the Dyakonov-
Perel relaxation rate, and therefore depends strongly
on the value of the Rashba coupling but also on the
mobility.

α = 10−12eVm
α = 10−13eVm
α = 10−12eVm

F

j y
/
j x

0.0040.0020-0.002-0.004

4e-05
3e-05
2e-05
1e-05

0
-1e-05
-2e-05
-3e-05
-4e-05

Fig. 1: The Hall angle as a function of the magnetic field. Since
we concentrate on the anomalous Hall effect the contribution
due to the Lorentz force is ignored. We estimate the Hall
angle using parameters valid for GaAs with a carrier density of
1012/cm2. In the absence of Rashba spin-orbit coupling the Hall
angle is determined from skew-scattering, with γskew ≈ 2.7×
10−3 assuming positively charged impurities (N0v0 < 0). We
obtained the full line assuming a mobility of µ= 104 cm2/V s
and a spin-orbit coupling constant α= 10−12 eVm. The dashed
and dotted lines correspond, respectively, to µ= 104 cm2/V s,
α= 10−13 eVm and µ= 103 cm2/V s, α= 10−12 eVm.

Inverse spin Hall effect. – In the inverse spin
Hall effect (ISHE) spin-polarized carriers are injected
into a non-magnetic material. In ref. [10], for instance,
the injection of the spin current was achieved via a
ferromagnet contacting the spin-orbit active material,
while in ref. [21] spins were injected by applying an
optical technique. The spin-current generates a transverse
charge current which in the end is detected via a standard
voltage measurement. We consider the situation where a
spin current is injected in the x-direction and generates
a charge current in the y-direction. We analyze the ISHE
via eq. (9) assuming jy is linear in the driving force. Then,
the expression for the current considerably simplifies and
reads

jy = 4γj
z
x. (37)

From this relation one can directly read off a Hall angle.
If a fully polarized current is injected into the system,
then jzx =

1
2jx at the injection point and the Hall angle is

given by
αH ≈ jy/jx = 2γ. (38)

For α= 0, i.e. without intrinsic spin-orbit coupling,
the spin density decays exponentially with the distance
from the injection point, sz(x) = sz(0)exp(−x/Ls), the
spin current is proportional to the derivative of the
spin density, jzx =−D∂xsz, and therefore the Hall angle
drops exponentially too. In [21] where both intrinsic and
extrinsic spin-orbit coupling is present, a spin profile
of the type sz(x)≈ sz(0)cos(Qx) is expected, where the
constant Q depends on the strength of the intrinsic spin-
orbit coupling. Surprisingly the measured Hall data is
consistent with the assumption of jy being proportional to
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the spin density instead of its derivative. In the following
we analyze the experiment in more detail in order to
understand this point. The experiment was designed such
that the linear Rashba and Dresselhaus spin-orbit coupling
in the 2DEG are of similar size. For simplicity we assume
that both terms are equal, so that the Hamiltonian is given
by (α=−β)

H =
p2

2m
+α(py − px)(σx+σy). (39)

It is useful to formulate the theory in a rotated frame with
unit vectors e+ = (ex+ ey)/

√
2 and e− = (ex− ey)/

√
2 so

that the spin-orbit coupling reads α(py − px)(σx+σy) =
−2αp−σ+. Solving the spin diffusion equation with the
boundary condition s(0) = sz(0)ez we find a spin-spiral of
the form


s+s−
sz


= sz(0)e−x−/Ls




0

− sin(4mαx−)
cos(4mαx−)


 , (40)

the persistent spin helix of [31,39]. Here the spin-relaxation
length Ls was introduced by hand but can be justified
microscopically by any spin-relaxation mechanism like,
e.g., the Elliott-Yafet one. In the latter case, one finds
explicitly Ls =

√
2Dτs if τs� τDP . In [21] the 2DEG

channel is patterned along the [11̄0]-direction, the direc-
tion of the spin-helix propagation. The Hall current
is then proportional to the spin current flowing in the
x−-direction. After modifying eq. (19) to include both a
Rashba and a Dresselhaus term (with α=−β) we find

jy = 4γj
z
x− = 4γ

[−D∂x−sz +D(4mα)s−] (41)

= 4γ
D

Ls
sz(0) cos(4mαx−) exp(−x−/Ls). (42)

The Hall current indeed follows the spin polarization
in the z-direction with periodic changes of the sign
with increasing distance from the spin-injection point,
in agreement with the experimental finding. Also the
absolute value of the Hall angle, which is of the order
of some 10−3 is consistent with realistic estimates of the
parameters.

Summary. – We presented equations describing the
coupled dynamics of spin and charge currents in a two-
dimensional electron gas. Unlike in inversion symmetric
systems, where the spin Hall effect, the anomalous Hall
effect and the inverse spin Hall effect are essentially the
same thing no general relation between the three effects
can be given. For example in the pure Rashba model
we find a vanishing spin Hall and anomalous Hall effect,
but a finite inverse spin Hall effect. We analyzed the
inverse spin Hall effect for a system where Rashba and
Dresselhaus spin-orbit coupling have equal strength; our
results compare well with a recent experiment.
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