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‘We present a microscopic derivation of the generalized Boltzmann and Eilenberger equations in the presence
of non-Abelian gauges for the case of a nonrelativistic disordered Fermi gas. A unified and symmetric treat-
ment of the charge [U(1)] and spin [SU(2)] degrees of freedom is achieved. Within this framework, just as the
U(1) Lorentz force generates the Hall effect, so does its SU(2) counterpart gives rise to the spin Hall effect.
Considering elastic and spin-independent disorder we obtain diffusion equations for charge and spin densities
and show how the interplay between an in-plane magnetic field and a time-dependent Rashba term generates

in-plane charge currents.
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I. INTRODUCTION

Spin-charge-coupled dynamics in two-dimensional elec-
tron (hole) gases has been the focus of much theoretical and
experimental work over the last two decades.!? Its rich phys-
ics belongs to the field of spintronics and shows much po-
tential for applications. Thanks to spin-orbit coupling all-
electrical control of the spin degrees of freedom of carriers,
as well as magnetic control of the charge one, is, in principle,
possible.? Particularly interesting from this point of view are
phenomena such as the spin Hall effect and the anomalous
Hall effect. For a review of both, see Refs. 4—6, respectively.
In general terms the theoretical problem at hand is that of
describing spin-charge-coupled transport in a disordered sys-
tem. In the semiclassical regime, defined by the condition
Nr<<l, a Boltzmann-type treatment is sensible and expected
to provide physical transparency. Here A is the Fermi wave-
length and [ a typical length scale characterizing the
system—say, the mean free path or that defining spatial in-
homogeneities due to an applied field. The Boltzmann equa-
tion is a versatile and powerful tool for the description of
transport phenomena,” and various generalizations to the
case in which spin-orbit coupling appears have been
proposed.3~1% More general Boltzmann-type equations have
also been obtained.!'"!3 In both cases though, much of the
physical transparency is lost due to a complicated structure
of the velocity operator and of the collision integral. A semi-
classical approach based on wave-packet equations'*!> can
partially circumvent these complications, though it is limited
to the regime A, 7/h>1 with A, the spin-orbit energy
and 7 the quasiparticle lifetime. On the other hand it
was pointed out in different works'®?? that Hamiltonians
with a linear-in-momentum spin-orbit coupling term can be
treated in a unified way by introducing SU(2) gauge
potentials in the model. Taking as an example the Rashba
Hamiltonian
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where « is the spin-orbit coupling constant, one can identi-
cally transform it to

[p + yAzo*2]
=+

t. 2
. cons (2)

R

Here summation over a=x,y,z is implied, 7y is the SU(2)
coupling constant, and the components of the SU(2) vector
potential are Y Ag)y=—UAg)y=2ma, (Ag);=(Ag);=0.
From this point of view a different Hamiltonian, say, the
Dresselhaus one, simply corresponds to a different choice of
the vector potential. An additional advantage of this ap-
proach is that it ensures the proper definition of physical
quantities such as spin currents and polarizations.?’">3 More
generally, the use of the non-Abelian language shows flex-
ibility and potential and has already proven useful in differ-
ent contexts. For example, in Ref. 19 it was used to predict
the existence of a “persistent spin helix” in systems with
equal strength Rashba and Dresselhaus couplings. Such a
helix was later observed®* and soon after exploited.” The
authors of Ref. 20 on the other hand employed it in their
proposal of a perfect spin filter based on mesoscopic inter-
ference circuits. Finally, since non-Abelian potentials can
also be created optically,®~%° the range of applications of the
approach goes beyond systems described by Hamiltonians
like Eq. (2). Indeed, even in solid-state systems higher-
dimensional models such as the one considered in Ref. 30
would fit into the picture.’!

Our goal in the present paper is therefore to put the non-
Abelian approach in the semiclassical regime on firm
ground, in order to obtain kinetic equations with a clear
physical structure and as broad a field of application as pos-
sible. More precisely, we derive an SU(2) X U(1) covariant
Boltzmann equation in the framework of the Keldysh?? mi-
croscopic formalism. In the covariant approach a completely

©2010 The American Physical Society
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symmetric treatment of the charge and spin degrees of free-
dom is achieved.?* Also, we discuss the more general Eilen-
berger equation®* 3¢ derived with the help of the so-called
&-integrated Green’s function technique. The latter allows
one to justify the Boltzmann equation in the case when the
momentum is not a good quantum number due to impurity or
other scattering, and the notion of particles with a given mo-
mentum is ill defined. The results obtained hold in the me-
tallic regime €,> %/ 7 with €, the Fermi energy and %/ 7 the
level broadening due to disorder, and as long the spin split-
ting due to the [SU(2)] gauge fields is small compared to the
Fermi energy, A,,<e€g, but for arbitrary values of A, 7/%.
We emphasize that, within this approach, not only the ap-
plied electric and magnetic fields but also the internal spin-
orbit-induced ones can be position and time dependent.

Our guideline for the present work is the familiar U(1)
gauge-invariant Boltzmann equation. This reads’

(ark%.VR+F~VP*>f(T,R,p*)=I[f], (3)

where the electron-distribution function f at time 7 and po-
sition R is a function of the gauge-invariant kinematic mo-
mentum p*=p+eA(T,R) (rather than the canonical momen-
tum p), and the Lorentz force F=—¢[E+ (p*/m) AB] appears.
The right-hand side (rhs) of Eq. (3) contains the collision
integral.

The paper is organized as follows. In Sec. II we start by
recalling the quantum derivation of the Boltzmann equation,
which allows us to introduce the general formalism in a pur-
poseful way. In Sec. Il the generalized Boltzmann and
Eilenberger equations are obtained. In Sec. IV the diffusive
regime is discussed and spin-charge-coupled diffusion equa-
tions are derived. Finally, Sec. V shows two example calcu-
lations. The first involves a study of the Bloch equations in
the static limit in the presence of in-plane electric and mag-
netic fields whereas the second is concerned with a novel
effect, in which an in-plane charge current is generated by
the interplay of an in-plane magnetic field and a time-
dependent Rashba term.

We use a system of units where the Planck constant
fi=1 and e=|e|.

II. GRADIENT EXPANSION

The original quantum-mechanical derivation of the classi-
cal Boltzmann equation by Keldysh3? has been exploited and
extended by many authors, in particular, by Langreth®” and
Altshuler.?® Since it is very instructive, we outline the proce-
dure following Ref. 34 and consider for simplicity’s sake the
case of free electrons in a perfect lattice. Our aim will be to
generalize it to the non-Abelian case and to later introduce
disorder. The main character is the Green’s function in

Keldysh space G
. (G* GX
Gz( 0 GA)' @

G®4 are the standard retarded and advanced Green’s func-
tions whereas GX is the Keldysh Green’s function which car-
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ries the statistical information about the occupation of the
energy spectrum. One starts from the left-right-subtracted
Dyson (quantum kinetic) equation

-i[G;'(1,1)® G(1',2)] =0, (5)

where 1,1’,2 are generalized coordinates containing space
and time coordinates as well as spin and Keldysh space (and
possibly additional) indices. The square brackets denote the
commutator, the symbol “®” indicates convolution/matrix
multiplication over the internal variables/indices and

[= iV, +eA(D)] }
N T (1) (A1)
2m
(6)

describes free electrons coupled to an external electromag-
netic field. In order to introduce the gradient expansion we
write the Green’s function in the mixed representation in
terms of Wigner coordinates

G51(1,1’)={ia,1—

G(X,p) = f dxe P*G(X,x), (7)

where X=([t,+1,]/2,[x;+x,]/2) is the center-of-mass coor-
dinate and x=(t;—1,,X;—X,) the relative one,

X=(T,R),

x=(tr), p=(ep), px=—et+p-r.

Notice that in the presence of both translational symmetry
with respect to time and space, the dependence on X drops
out and convolution products as those in Eq. (5) would re-
duce to simple products in Fourier space. In the presence of
external fields or in nonequilibrium conditions, Fourier trans-
forms, as defined in Eq. (7), of convolution products can be
systematically expanded in powers of derivatives with re-
spect to the center-of-mass coordinates. To leading order, the
gradient expansion applied to Eq. (5) yields

~i[Gy'® Gl = 3.Gy' 9,G — 3Gy 0.6~ V,Gy' - VG
+VgrGy' - V,G. (8)

Notice that such an expansion is in our case justified by the
assumption that py(ep) is the biggest momentum (energy)
scale of the problem. On the rhs in the above both G and Gal
are functions of (X,p) with

2
Gy (X.p)=€e- W

+e®(X). 9)
Integrating the Keldysh component of Eq. (8) over the en-
ergy € leads to the lhs of the Boltzmann equation for the
distribution function

f(X.p) = 1[1 o d—fGK(X,m} (10
2 2i

Note that the above defined quantity is not gauge invariant.

For this reason if one is to obtain a result in the form of Eq.

(3) a shift of the whole equation must formally be

performed—i.e., one must send p—p* in Eq. (8). This is

done in Ref. 37, though such a shift could also have been
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performed before the gradient expansion. The latter is the
way followed in Ref. 38, where the mixed representation is
right from the beginning defined in terms of the kinematic
momentum

G(X,p) — f dxe PrANRG(X x), A=(d,A). (11)

Unfortunately the simple and convenient concept of a “shift”
does not work when non-Abelian gauges are considered.
This is because the nature of the transformation [Eq. (11)] is
actually geometric, a fact that manifests itself only when
dealing with noncommuting fields. At its core lies the Wilson
line Up(2,1), which is the exponential of the line integral of
the gauge potential along the curve I' going from 1 to 2
(see Ref. 39)

Ur(2,1) = Pe M aA0), (12)

Here the symbol P stands for path ordering along I" whereas
7 is a general coupling constant—in the U(1) case it reduces
to e. In the spirit of the gradient expansion the integral in Eq.
(12) is evaluated for small values of the relative coordinate x,
and it is thus reasonable to pick I' as the straight line con-
necting the two points. For the U(1) gauge it is seen that

Up(2,1) = g7ieAXx (13)

which is precisely the phase factor appearing in Eq. (11). In
other words, the “shifting” of Eq. (8) should properly be seen
as the transformation

[G,'(1,1)® G(1',2)]
— Ur(X,D[Gy' (1,1 e G(1",2)]Ur(2,X),  (14)

where I'(I") is a straight line from 1(X) to X(2) (Ref. 40)
and matrix multiplication over the internal indices between
Ur,Urr and the commutator is implied.

With this hindsight about the nature of the shift required
to obtain Eq. (3), it is possible to generalize the construction
to the non-Abelian case. A general gauge transformation is
defined as a local rotation of the second-quantized annihila-
tion fermionic field ¢

¢ (1) =V1), VIHVi(1)=1, (15)
For the gauge potential one has
7A' (1) = V(D[7A(1) + i,V (1). (16)

Notice that this is now a tensor with both real space and
gauge indices

7A(1) = (e® + YWVU2, eA + yAYUY2), (17)

where we found convenient to separate the Abelian coupling
constant e from its non-Abelian counterpart y. The non-
Abelian scalar potential y¥“*/2 describes a Zeeman term—
i.e., of the kind b-s. Here s is the spin of the carriers whereas
b could be an applied magnetic field or, in a ferromagnet, the
exchange field due its magnetization. The 7*/2’s are the gen-
erators of the given symmetry group, which in the SU(2)
case become the Pauli matrices, t*=0“, a=x,y,z. In the fol-
lowing boldfaced quantities will indicate vectors in real

PHYSICAL REVIEW B 82, 195316 (2010)

space whereas the presence of italics will denote a gauge
structure—which, as in the above, will sometimes be written
down explicitly. A sum over repeated indices is always im-
plied. Since a Wilson line transforms covariantly, i.e.,
UN2,1)=V(2)Ur(2,1)Vi(1), it is possible to define a
Green’s function

G(1,2) = U(X,1)G(1,2)Up(2,X) (18)

which is locally covariant, i.e.,

G'(1,2) = V(X) G2V (X). (19)

In terms of GX we can define a distribution function

fX,p) = %{1 + f d—e.é"(x,p)} (20)

2ri

which will be the natural generalization of f(X,p*) from
Eq. (3). The procedure is then clear: (1) transform the kinetic
equation according to Eq. (14); (2) expand the Wilson lines
(see below); (3) perform a gradient expansion and write

everything in terms of GX(X,p); and (4) integrate over the
energy € to obtain the Boltzmann equation or over
&E=p?/2m—u to end up with the Eilenberger equation.

Postponing the discussion of the last point to the next
section, we now consider the general expression

Gy'(X.p) = e~ H(X.p)
a a 2
e [p+eAX) -;)/.A (X)112] 4 ed(X)

+ YPUX) 2. (21)

In the Rashba model, Eq. (2), one, for example, identifies
‘=0 A= Aj. (22)

The procedure outlined above (points 1-3) leads to a locally

covariant equation for G  accurate to  order
[(ﬁx(?p)(A(?p),(A(?p)z] (see Ref. 41): in the mixed representa-
tion language we have formally two expansion parameters,
dxd,<1—the standard gradient expansion one—and
Ad,<1—coming from the gauge fields. In the SU(2) case
the latter corresponds to the physical assumption that the
spin-orbit energy be small compared to the Fermi one,
A,,/ €x<<1. Even though our treatment is valid for any non-
Abelian gauge, we now pick the SU(2) gauge for definite-
ness’ sake. In this case steps 1-3 lead to

- ~ 1 x
(aT+ P -2 {[eE+yElo, 1+ {F vp,-})czo,
m 2m 2

(23)

where the symbol {-,-} denotes the anticommutator. The co-
variant (wavy) derivatives are
Ir=dr—ifV,-], Vrp=Vep+ifdA,] (24)

whereas the generalized Lorentz force reads
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B AB
f:—e{E+pA }—'y[é#p }
m m
u ~ J - ~— _J
u(1) sU(2) (25)

The fields are given as usual in terms of the field tensor I,
but this has now an SU(2) X U(1) structure

E;=Fo,=—dpA; -V @, (26)

& =F== 0pA] -V W+ i W, AT, (27)
1 0 a 1 a

B;= E'Eiiijk’ Bi= EEU]‘ij’ (28)

F). = Vi A= VA, (29)

Fi= Vi Af = Vi A + v Aj, A" (30)

Note that in order to obtain Eq. (23) it is sufficient to expand
the Wilson lines to first oder in x, e.g.,

Up(X,1) = 1 +77A%. 31)

This is not true for a general convolution of the kind
[F(1,1")®G(1',3)] with F(1,1’) a function with a more
complicated structure than that of Gal(l,l’). Such a case
would require a second order expansion, e.g.,

. . 2 2
UrX,1) = 1+ nA% + naxA% - nZAZ% (32)

and would lead to a rather more complicated equation.

To complete our preparatory work for the derivation of
the kinetic Boltzmann or Eilenberger equations, we need to
introduce the effect of disorder. Within the Keldysh formal-
ism this is done by the addition of a self-energy contribution
on the rhs of Eq. (5)

-i[3(1,2)9 G(2,3)], (33)

which can be manipulated just as the “free” (G;') term. In
spin-orbit-coupled systems the presence of disorder can have
a number of interesting effects. Indeed, phenomena such as
the spin Hall effect, anomalous Hall effect, or related ones
can have both an intrinsic and an extrinsic origin.> This
depends on whether they arise from fields due to the band or
device structure or from those generated by impurities. In the
latter case skew-scattering and side-jump contributions to the
dynamics appear.*>*3 For a discussion of these issues see
Refs. 5 and 44—47. In the following we limit ourselves to the
treatment of intrinsic effects in the presence of spin-
independent disorder. We consider elastic scattering with
probability W=W(p-p’) and quasiparticle lifetime
7"1=27TEp15(ep—epr)W(p—p’). In the Born approximation,
the disorder self-energy in the mixed representation reads

PHYSICAL REVIEW B 82, 195316 (2010)

S(X,p,&) = > Wp-p)GX,p',e). (34)

p

From Eq. (34) one obtains that the locally covariant self-

energy S is
S(X.p.e) =2 W(p-p)G(X.p'.e), (35)
pl
Which, in turn, implies
MG1=-i3.G]. (36)

Note that for a leading order description of the coupling be-
tween spin [SU(2)] and charge [U(1)], corrections O(Ad,) in
the collision integral are enough. Notice also that, whereas G
is peaked at the different folds of the spin-split Fermi sur-

face, the peaks of G are “shifted” and thus located on the
Fermi surface in the absence of spin-orbit coupling.

III. BOLTZMANN AND EILENBERGER EQUATIONS

The question of whether to integrate the locally covariant
kinetic equation with respect to € or to é=p?/2m— u depends
on the physical situation. If the spectral density i(GX—G?) is
not “&-like” as a function of € the energy integration is for-
mally impracticable. The ¢ integration on the other hand is
capable of justifying a Boltzmann-type approach even when
the first approach fails or looks severely limited.*** For the
case considered of a degenerate gas of free electrons collid-
ing elastically with impurities both procedures are viable,
provided the condition €71 holds—since, as mentioned
before, all quantities appearing in Eq. (36) are peaked at the
A,,=0 Fermi surface.

N

A. Boltzmann (e integration)

Energy integration of the Keldysh component of Egs. (23)
and (36) yields a Boltzmann-type kinetic equation for the
2 X 2 matrix distribution function f(X,p)

(7 2 S -V pem=T @

with the covariant derivatives and the generalized Lorentz
force F defined, respectively, as in Egs. (24) and (25), and
where the collision integral reads

f]=-2m2 W(p-p')8le, - 6)[f(X.p) - f(X.p")].
=
(38)

Notice that Egs. (37) and (38) are formally valid both in two
and three dimensions. However, since the physical system
we have in mind is a two-dimensional electron gas, from
now on we restrict ourselves to two dimensions. Observable
properties are conveniently expressed via the matrix density,
p, and current, 7,

p(X) = f

dZ
5 :;zf(x,p), (39)
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d2
gzﬁf(x,p), (40)

- 2

which obey the following generalized continuity equation:

Irp(X) + Vg - T(X) =0, (41)

derived by integrating Eq. (37) over the momentum. Observ-
ables such as the particle and spin densities, n and s, and the
particle and spin currents, jO and j%, can be evaluated as

10 =T p(X)1, (“2)
() = ST p(X)], 3)
3’00 =T T, (44)
J(X) =TT, 4s)

One can check that these expressions agree with their micro-
scopic definitions. '8!

Equation (37) is the first main result of the paper. Though
the idea of rewriting spin-orbit interaction in terms of non-
Abelian gauge fields is no novelty, we are not aware of a
Boltzmann formulation in the above form. Whereas in Refs.
8 and 9 the collision integral and the velocity are nondiago-
nal in the charge-spin indices, here their structure is simpler.
The gauge fields appear only in the covariant derivatives,
describing precession of the spins around the external mag-
netic field and the internal spin-orbit one, and in the gener-
alized Lorentz force, which couples the spin and charge
channels.

B. Eilenberger (£ integration)

The integration over & of Egs. (23) and (36) yields in two
dimensions the Eilenberger equation

<5T+ VP - ﬁR— %3{{% - (eE + yé')},-}

+ ZL{f(pF7 (P) ' [_ Is + {b&q:,], }>§K
Pr

de’ Nl K
=- 27TN0J 2, We-eNg" () =g (e"]. (46)
where p=(cos ¢,sin ¢), @=(-sin @,cos @), W(@o—¢’) is the
scattering amplitude at the Fermi surface and gX is the
Keldysh component of the covariant quasiclassical Green’s
function
i

gX.p,6) = ;f d§é(X,cp, €8). (47)

Notice that the energy derivative J, acts on the whole anti-
commutator, i.e., on §K too. Just as in the Boltzmann case,
and as opposed to what happens in the literature,'>!3 the
velocity and the collision integral have here a simple diago-
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nal structure, whereas the gauge fields appear only in the
covariant derivatives and force terms. The collision integral
will be extensively discussed in the Appendix to make an
explicit comparison with Ref. 12 possible. Integration of Eq.
(46) over the energy and the angle leads again to the conti-
nuity Eq. (41), this time with densities and currents ex-
pressed in terms of g

p0) =22 [ aez 9)

TX) =~ % f dev i (Pg~). (49)

where (--+) denotes the angular average. Recall that when
expressing physical quantities in terms of the standard qua-
siclassical Green’s function g=i/m[ dfé equilibrium high-
energy contributions are missed.>*3® For instance, Eq. (48)
for the particle density when only U(1) fields are present
would be written, in terms of gK, as

p0) =0 f de(g ) + Noe(X) (50)

with the second term due to the scalar potential originating
from the high-energy part. A virtue of the present formula-
tion is that such contributions are by construction included in
the covariant g. Moreover notice that, whereas in the pres-
ence of spin-orbit coupling the usual normalization condition
g2=1 is modified and becomes momentum dependent,13 in
the covariant formulation g>=1 holds—see the Appendix.
The normalization condition is established by direct calcula-
tion “at infinity,” i.e., where, far from the perturbed region,
the Green’s function reduces to its equilibrium form. It plays
the role of a boundary condition imposed on Eq. (46), and
thus defines its solution uniquely.*3*° In the presence of in-
terfaces between different regions wave functions have to be
matched, and this can be translated into a condition to be
fulfilled by the quasiclassical Green’s function on either side
of the interfaces.>®! Recently some very general such
boundary conditions for multiband systems were obtained,
though valid only as long as the spin and charge channels are
decoupled. When this is not anymore the case, things are
complicated by the momentum dependence of the normaliza-
tion and, as far as we are aware of, beyond the present treat-
ment of boundaries. The covariant formulation in terms of g
suggests, however, the possibility for a nontrivial extension
of the known boundary conditions to the case in which spin
and charge channels are coupled, precisely because of the
simple normalization of g.

IV. DIFFUSIVE REGIME

Our goal in this section is the discussion of spin-charge-
coupled dynamics in the diffusive regime. Formally, the
“non-Abelian” Boltzmann Eq. (37) can be solved just as in
the U(1) case. We expand the angular dependence of the
distribution f in harmonics, f={f)+2p-f+--- and use the ex-
pansion in Eq. (37) to obtain an explicit expression for f,

195316-5
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P &

P = 22V = 2T V(1)

2m

Tr A A
- ?t<P{-7'-' Vo 2D - D) = faigr + Laiee + Fan. - (51)

In the above 7, is the usual transport time

1 d(Pl ’ ’
—= ZWNOJ —W(e-¢')[1-cos(e-¢)], (52)
T, 2w

which depends on the energy {=¢€,— €y through the scatter-
ing probability W(e—¢')=W(£,&;¢0—¢')|~s. The diffu-
sion term fy; is related to the (covariant) derivative of the
angular average of the distribution function, i.e., to the de-
rivative of the charge and spin densities. The drift term £y
arises from the second term on the rhs of Eq. (51), in which
only the “electric” part of the Lorentz force, i.e.,
—[eE+ y&], contributes. The Hall component fy,;; comes in-
stead from the third term on the rhs of Eq. (51) and is due to
the “magnetic” part of the Lorentz force, —p A[eB+ yB]/m.
Using Eq. (51) into Eq. (40) one finally has

d’ )
.7=j(2:)2%[(f}+2p~f+-~]

_[rp
2m)>m
= Jditusion + Tasife + Ttall- (53)

The drift current is straightforwardly computed

2P - [faigr + Faris + Frran]

1
T aiife = E{O'(M)aeE +vE},  o(w) =-NyD(w), (54)

where N, is the density of states, D(u) the energy-dependent
diffusion constant, and u the (spin-dependent) electrochemi-
cal potential. Since we assume fields that are small compared
to the Fermi energy, it is often sufficient to replace D(u) by
its value at the Fermi energy and in the absence of the U(1)
and SU(2) fields. In the examples we discuss it will be im-
portant to go one step beyond this simple approximation, for
which we obtain

D(u) = D(eg) + 9eD(p — No€r)/ N, (55)
with
02 r T
D(ep) = % 9D =~"(1+ yy/2), (56)
m
2
Yol2 = @”agr,,. (57)

tr

The factor 7, is defined to make direct contact to Ref. 53.
Notice that due to the expansion in Eq. (55) the diffusion
constant D(w) becomes a spin-dependent object,

D(u) =D° + D" (58)

with D= D(ey) and D=~ 9:Ds"/Nj,.
The calculation of the diffusion current is slightly more
involved: the momentum integration is delicate, since the
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integrand has a nontrivial matrix structure and is out of equi-
librium. In order to “extract” such a structure we first write

1 —
T dittusion = — E{D’VP}’ (59)

thus defining a diffusion constant D which is now a matrix.
Extending the Einstein relation to the present non-Abelian
case will give D an explicit form. At equilibrium one has

peq=N0[e(D+ ’}/\I’]+N0€F, (60)

and as—again, at equilibrium—the diffusion current bal-
ances out the drift one

T arite = — T dittusion = %{Dﬁpeq} =- %{D,No[eE +yE]}
(61)
there follows:
D=D(u) (62)

as to be expected.
The Hall term fy,; can be obtained from the equation
implicit in Eq. (51)

Tr
fra = = —{eB + yBuf} (63)
2m
from which we find

1
T = {eB + yBu7,(1). T} (64)
with
Ttr(/'l’) =Tyt &thr(p - NOGF)/NO (65)

Yo T p=Noer

66
2mv% Ny (66)

=Tyt

To be more explicit we give the expressions for the particle
current j° and spin current j*

~ N,
j’==D(Vn+2eN,E) - 2D“([Vs]" + %S“)

YTir

jABY, (67)
m

€Ty,
__rJOAB—
m

1 ~ N,
ji=- ED“(Vn +2eNyE) — D([Vs]“ + 72 08“)

€Tir.g

-
- _]/\B—h
m

jOA B, (68)
m

Here we included the Hall current only in the leading ap-
proximation, i.e., 7,.(u) = 7,,(€x). The diffusion equations for
charge and spin are obtained by inserting Egs. (67) and (68)
into the continuity Eq. (41).
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V. TWO EXAMPLES
A. Effect of an in-plane magnetic field

As a first simple example that shows how the formalism
works, we obtain and solve the Bloch equations for a Rashba
two-dimensional electron gas (2DEG) driven by an electric
field along x and in the presence of an in-plane Zeeman field
along x. This is the same geometry considered in Refs. 47,
53, and 54.

The U(1) fields read

E=(E, 0,0, B=0 (69)

while, since the Zeeman field enters the Hamiltonian through
the scalar potential yW*o*/2=5b"c"/2, the SU(2) ones are

Y€ =2mab*(57/2,0,0), yB=-(2ma)*0,0,5772).
(70)

From the expressions for the currents derived in the previous
section, one obtains in the homogeneous limit a set of Bloch
equations which generalizes those appearing in Ref. 47 to the
case of angle-dependent scattering—but in the absence of
extrinsic effects—namely,

§=—TITs - bNy2 + ear,Nyi A E]
—[b-2ear, (1 + yy/2)i AE] As. (71)

Here I'=1/7pp diag(1,1,2) is the relaxation matrix with
1/ 7pp=(2ma)*D the Dyakonov-Perel relaxation rate. Notice
that the electric field in the first and in the second term on the
rhs of Eq. (71) has a different origin. While the first term is
traced back to the (spin) Hall current and therefore to the
SU(2) magnetic field, the second term can be traced back to
the drift current. The factor 7, that appears due to the energy
dependence of the scattering time has an important impact on
the static solution of the Bloch equations. When y,=0 we
find

S=bN0/2—eaT,rNOiAE, (72)

i.e., the effects of the Zeeman and the electric field on the
spin polarization are simply additive. This is not anymore the
case if y,#0, in which case we find in the limit of weak
electric and magnetic fields (in our geometry both in x direc-
tion)

eat, NoEb*
" 42ma)’D
(73)

s'=s5,, s’=-—ear,NE, s°=-

that is, in-plane fields generate an out-of-plane spin
polarization.”*>> In the above s, =b"Ny/2.

B. Charge current from time-dependent spin-orbit coupling

The Rashba spin-orbit coupling constant « arises from the
potential confining the 2DEG and is thus tunable by a gate
voltage: if the latter is time dependent so is the former. Let us
then consider the Rashba Hamiltonian for a time-dependent
Rashba parameter, «— «(T). In the non-Abelian language

PHYSICAL REVIEW B 82, 195316 (2010)

Vou“t Q)

FIG. 1. (Color online) The Rashba spin-orbit coupling constant
« is made time dependent by applying a time-dependent gate po-
tential V,,(r). The light (blue) area represents a two-dimensional
electron gas inside a heterostructure. When an in-plane magnetic
field along x, b*, is also switched on, a charge current jg flowing
along y and proportional to ¢ is generated, its actual sign depending
on the sign of &. The induced voltage drop in the transverse direc-
tion V,,,(¢) can then be used to measure the strength of the Rashba
interaction.

this means that the SU(2) vector potential becomes time de-
pendent, and therefore a spin-dependent electric field is gen-
erated. Explicitly we have

Y€ =2ma(a’/2,- d¥/2,0), (74)

yB =—- (2ma)*(0,0,0%/2) (75)

with @&=dya. The SU(2) electric field leads to the appearance
of in-plane spin currents, as discussed in Ref. 56. However, it
does not generate a charge current, since it acts with opposite
sign on particles with different spin: the net field obtained
after averaging over all particles is zero. This is not
anymore the case if a magnetic field is also present.
Say the latter points in x direction, then a nonzero
average electric field in the y direction appears, given by
KE)=-md{o,)=—2mdas*/n (here (---) denotes the average
over all particles). We then expect a particle current in
y direction of the order j,=—2DNyKE,). We now make the
argument quantitative. Let us apply an in-plane Zeeman field
along x, as shown in Fig. 1. Then the SU(2) electric and
magnetic fields are

vE =2m(ad’/2 + ab*o/2,— ao¥/2,0), (76)

B =—- (2ma)*(0,0,5%/2). (77)

Note that the structure of the Bloch Eq. (71) is not modified
so that the stationary spin density is

s = szq, s'=0, s°=0 (78)
with s;,=Nyb*/2 as before. As expected, the SU(2) electric
field generates a particle current flowing along y,
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N
== 21)-*70 YES = 1, aNgb (1 + ¥y/2), (79)

having used D*=1,./m(1+y,/2)s*. Finally, for a general di-
rection of the in-plane magnetic field b the charge current is
given by

j%=7,Nya(1 + y5/2)Z A b. (80)

Such an effect could provide an alternative way of estimating
the strength of the Rashba interaction, since other spin-orbit
mechanisms would not gain any time dependency from a
modulated confining potential.

VI. CONCLUSIONS

We showed how to microscopically derive the generalized
Boltzmann and Eilenberger equations in the presence of non-
Abelian gauge fields. In the SU(2) case such equations can
be used to describe spin-charge-coupled dynamics in two-
dimensional systems whose Hamiltonians include linear-in-
momentum spin-orbit coupling terms. All degrees of free-
dom are treated symmetrically and the proper identification
of the physical quantities follows naturally from the form of
the continuity equation. Considering elastic disorder, we ob-
tained results which hold as long as e>1/7,A,, and for ar-
bitrary values of A, 7. In particular, we showed that by using
the covariant quasiclassical Green’s function, the collision
integral in the kinetic equation is not affected by the gauge
fields, which only appear to modify the hydrodynamic de-
rivative. We expect that this nice disentanglement of gauge
fields and disorder effects in the Boltzmann and Eilenberger
equations may prove very useful when considering quantum
corrections.”’>® We also expect the approach to allow for a
generalization of the boundary conditions for the Eilenberger
equation to the case in which spin and charge channels are
coupled. When discussing the diffusive regime, we first ob-
tained Bloch-type equations for the spin and charge, and then
exploited them to predict a novel effect. Finally, we note that
by making the non-Abelian coupling constant momentum
dependent, y— y(p), it may be possible to extend the present
formalism to include Hamiltonians with more general forms
of spin-orbit interaction—i.e., not limited to being linear in
momentum.
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APPENDIX: QUASICLASSICAL NORMALIZATION
CONDITION AND THE COLLISION INTEGRAL

Consider a quantity F(1,2) which is nonlocally
covariant, i.e., which under the gauge-transformation
Eq. (15) transforms according to F'(1,2)=V(1)F(1,2)V(2).

Its locally covariant counterpart reads  F(1,2)

PHYSICAL REVIEW B 82, 195316 (2010)

=Ur(X,1)F(1,2)Ur(2,X), where X=([t,+1,]/2,[x,
+X,]/2). In Wigner coordinates, up to O(Ad,) accuracy, one
has

~ 1
F=F- E{Aap,F}. (A1)
We define the &-integrated functions
i
flee.X)= :Tf déF(p,eX), (A2)
- i -
flep.X)=—| déF(p.eX). (A3)
Let us start by assuming  for  simplicity

A=(0,.A%0"/2)—that is, we have neither electric nor mag-
netic fields, only spin-orbit coupling—and setting the SU(2)
coupling constant to one, y=1. Moreover, the functions F F
are assumed to be peaked at the Fermi surface £=0 or in its
vicinity. Thus, by &-integrating Eq. (A1) by parts one has

- 1JAp A @
f=f+ E{ - &p’f}
PF Pr

(A4)

with pp the Fermi momentum in the absence of spin-orbit
coupling. The presence of a U(l) vector potential can be
handled just the same way whereas the inclusion of the scalar
potentials e®+W*0*/2 is trivial and amounts to a shift of the
energy argument of f

F=f-le®+ Wi, (A3)

Therefore, in the presence of a general four-potential
A=(eD+V, eA+.A%“/2), one has

~ 1
f:f— 5{(6(13 + \I,)ge»f}

+l{(€A+‘A) 2. (eA+A)'¢ﬁ‘P,f}. (A6)
2 PF PF

We now use Egs. (Al)-(A6) to show (a) how the
&-integrated Green’s functions g and g are related, and what
this implies for the latter’s normalization (b) that the colli-

sion integral Eq. (36) is equivalent to the one appearing in
Ref. 12.

1. About g and g

Take F=G. From Eq. (A4) one obtains

v 1 Aﬁ A¢ .
g8=8+= - 0’)¢7g >

(A7)
20 pr Pr

where we did not write down explicitly all the dependencies,
since no confusion should arise. Direct calculations show!?

ghA= =+ (1—A'p),
PF

(A8)
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A-p
8oy =2 tanh(e/2T)<1 - p),
PF

(A9)

where T being the temperature and the result for the Keldysh
component being valid at equilibrium. It follows that to order
|Al/p—i.e., A,,/e—the locally covariant E&-integrated
Green’s function has no SU(2) (spin) structure

gR’A: +1,

(A10)

g5, =2 tanh(e/27) (A11)

and satisfies the standard normalization condition g2= I. Re-
call this has the meaning of a boundary condition satisfied by
§ and so is not affected by the introduction of driving elec-
tromagnetic [U(1)] fields* or of a Zeeman term. Indeed, we
saw that including the scalar potentials e® and W simply
“shifts” the energy argument of gfq

1
Zeg=|1- 5{(eCI)+\I’)(7E,-} 2 tanh(e/27). (A12)

2. Collision integral

Take F=—i[3,§]X=C and so F=—i[3,G]¥=C. The ¢
integration delivers

1
&=-—[(K)g" - (Kg")] (A13)
with the kernel K(¢—¢’)=27N,™W(¢—¢'), and where (- )
is shorthand for angular average. One then uses the inverse
of Eq. (A6) to calculate the corresponding expression in the
standard (“nontilde”) language. We consider separately the
effects of spin-orbit (LA) and of a Zeeman field (V), since
they add linearly.

First, spin-orbit. Starting from

_1JAp A
c=Cc—— — g C
2( pr PFr
A ¢

A-p _
- —ﬁwg_<K§> 5

1
27\ pr PFr

= [~ (kD)

(A14)

the translation from g to g is done by means of Eq. (A4). The
calculation is easy but some care is needed, so this is done
step by step. First recall that

_ 1{A~p A-Q ~}
§-5 - 008 (=8

(A15)
20 pr PF
so that Eq. (A14) becomes
1 1JAp A @
C=__[g_<K§>]+_{ - a(p’<Kg> .
T 27 F Pr
(A16)

Then consider the (Kg) term, where K=K(¢—¢’)

PHYSICAL REVIEW B 82, 195316 (2010)
do'
(Kg)= J ——zl¢")
2T

1 (do ) AP A- ¢
+—J' i{ L K+ L K,(?wrg(qo’)}
P

2 277 PF F
! A 5’ A (? /A’
:(Kg)+ljdi{{ L (¢¢)]K
2) 2w PF PF
A
+ [d,K].8(¢")
F
1 (de') A-¢ ,
_<Kg>+ ZJ 217_{ Dr ’[&go’K]g(QD )}’

having performed a partial integration and used that g(¢
=0)=g(¢=2m), d,¢'=—p'. This way Eq. (A16) reads

A-p
p,<1<g>}

PFr

1fdg| A ,
- 27_f 271_{ Dr ,((9¢/K)g(¢ )}

1 {A~ ¢&¢,(Kg>}.
p

_;- ;

1 1
c=- ;[g—<Kg>] + 2—7{

(A17)

Now work on the last term. Recall the assumption that the
scattering amplitude depend only on the momentum transfer,
ie., K(p,p')=K(p—p’'). This implies
@ Pr . Pr . @'
—d,K=——"pdK - [—p’é’ +—3 ,}K. (A13)
Pr ® m K m ¢ Pr ®

From the last term of Eq. (A17) one therefore has

1] A ¢ 1] A-pg
_27'{ pF azp9<Kg>}_27{ m ’<(9§Kg>}

)

1 (de' )| A-¢
+= i{ ) ,[%rK]g(fp')}-

27) 2w F
(A19)
Substitution back into Eq. (A17) gives
1 1JA-p
c=-—[g—(Kg)]+ - (Kg)
T 27| pr

1]JA-p 1 A-p
+Z’{ - 0,((9§Kg>}+;_<{ - O,é?gKg}>.

(A20)

This expression can also be obtained by a direct £ integration
of the collision integral in the standard (nontilde) language.
It agrees with the one appearing in Ref. 12 for the case of
parabolic bands when one identifies b-o/2=.A-p/m, b be-
ing the internal spin-orbit field in the language of Ref. 12.
Besides the first two terms, in which no spin-orbit contribu-

195316-9



GORINI et al.

tion appears, the third term corresponds to corrections due to
the spin-dependent density of states whereas the fourth and
fifth arise from the energy dependence of the scattering am-
plitude. In the notation of Ref. 12, the former corrections are
due to M¢ and the latter to M¥—notice that some of the M¢
and M" contributions cancel each other because of Eq.
(A18).

Let us now consider a Zeeman field described by the sca-
lar potential W. Shifting from covariant to noncovariant
quantities is done according to Eq. (A5) and its inverse. No-
tice that the kernel K is a function of & evaluated at é=¢€. The
energy € is actually sent to zero during the ¢ integration,
though since we now have to shift back to the noncovariant
language it is better to explicitly keep track of this depen-
dency. At the end it will be as usual é=€—0. From the
inverse of Eq. (A5)

cle)=cle) + %{‘If,&j(e)}. (A21)

The first term on the rhs gives

c=- lT[<K>g —(Kg)]- ZLTRK){‘I’,g'} —(K{W.g'})]

(A22)

whereas the second one leads to

PHYSICAL REVIEW B 82, 195316 (2010)

0= KT+ 0T ~ (KD~ (KEN, (A2

where K'=d.K, g'=d.g. Plugging both expressions into Eq.
(A21) one has

(0=~ T[(K)g ~ (K) )+ 5[,/ — (K (W D]

KW )+ KW'} (KW )
(K'Y

= kg - (ke WK Yg— (K'g)}) (A24)
T 27

with g=g(e), g¢'=d.g and K,K' are evaluated at the Fermi
surface é=€=0. The full expression for the scattering kernel
in the presence of spin-orbit coupling and a Zeeman field is
given by the sum of Egs. (A20) and (A24). It leads to results
in agreement with Ref. 53.
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