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Abstract

The quasiclassical Green function formalism is used to describe charge and spin dynamics in the presence of spin—orbit coupling. We review
the results obtained for the spin Hall effect on restricted geometries. The role of boundaries is discussed in the framework of spin diffusion

equations.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A transverse (say along the y-axis) z-polarized spin current
flowing in response to an applied (say along the x-axis)
electrical field

Ji, = oEx, (1)

is referred to as the spin Hall effect, and oy is called spin Hall
conductivity [1,2]. This effect allows for the generation and
control of spin currents by purely electrical means, which is a
great advantage when operating electronic devices. Physically,
the possibility of a non-vanishing oy is due to the presence of
spin—orbit coupling, which in semiconductors may be orders of
magnitude larger than in vacuum. Clearly, two key issues are (i)
how sensitive is the spin Hall conductivity to various solid state
effects like disorder scattering, electron—electron interaction
etc. and (ii) how the spin current can actually be detected
experimentally. About the first issue, there is now a consensus
that the effect of disorder scattering depends on the form of the
spin—orbit coupling. In the case of the two-dimensional electron
gas with a Rashba type of spin—orbit coupling, arbitrarily weak
disorder leads to the vanishing of the spin Hall conductivity
in the bulk limit [3-9].Concerning the second issue, the first
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experimental observations [10,11] of the spin Hall effect have
been achieved by measuring, optically, the spin polarization
accumulated at the lateral edges of an electrically biased wire.
Hence, the understanding of the spin Hall effect involves the
description of boundaries. In order to address the two issues
mentioned above, we develop in the following a quasiclassical
Green function approach for the description of charge and spin
degrees of freedom in the presence of spin—orbit coupling.

2. The Eilenberger equation

In this section we sketch how to derive the Eilenberger
equation for the quasiclassical Green function in the presence
of spin—orbit interaction [12]. We consider the following
Hamiltonian

2
P

2m

where b(p) is an effective internal magnetic field due to the
spin—orbit coupling. For instance, in the Rashba case we have
b = ap x &,. The Green function é,l (X1, X2) is a matrix
both in Keldysh and spin space and obeys the Dyson equation
(h=1)

. 1 . -
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A quasiclassical description is possible when the Green
function depends on the center-of-mass coordinate, x = (X1 +
X2)/2, on a much larger scale than on the relative coordinate,
r = X; — Xp. In this situation, by going to the Wigner
representation

Gxi, %) =Y PG (p,x) )
P

and subtracting from Eq. (3) its complex conjugate, one obtains
a homogeneous equation for G (p, X)

00,6 + % {% n %ap(b .0), axé}
_[b.a,é]:[z,é], )

where only the center-of-mass time, t = (f; + #2)/2, appears.
On the right-hand side of Eq. (5) we have also introduced the
self-energy

1 y
EZ G ] ) 6
hNOT; (p, X) (6)

which takes into account disorder scattering at the level of
the self-consistent Born approximation. In the spirit of the
quasiclassical approximation, we make the following ansatz
for G

o=(% o)=al(¥ o) (6 2l o

where we assume that g does not depend on the modulus of
p but at most on its direction. In this way we have separated
the fast variation of the free Green function in the relative
coordinate r from the slow variation of g in the center-of-mass
coordinate x. The quasiclassical Green function is defined as

y o U Baly”

g(p.x) = —/ dsG(p. x), ®)
T J 00

where £ = p?/2m — u and p = p/p. Using the ansatz

above, the &-integration can be done explicitly. By assuming
that b = b(p)b(p) and

R _ P, _! b -
=Y —rw@ror PzliEbe) O

v:ie_
we find
i [ N4 N_
— dsGR = =P, + —P_ =gk, 10
n/_m § 0 No ++ No 80 (10)

where N4 and N_ are the densities of state of the spin-split
bands. In the absence of spin—orbit coupling, N+ = Ny, and
the function g coincides with the &-integrated Green function
£. In the present case, however,

U T
g§= 5{80 , 8} (11)
By inverting Eq. (11) one has

g = %{(g§)_1, g+ % [(gg)“, [g(’f,g]]

1 Ni—N_, §
- l1———b- , , 12
2{( 2Ny a) g} (12

where the last approximation, to be used in the following, holds
for b « ef. The &-integration of G multiplied by a momentum
dependent function leads to

o o
L / dEmp)C = ~(Mgk, 7) (13)
T J) 2

where M = m(p, )Py + m(p_)P_, and p, are the Fermi
momenta in the two bands. To first order in b/€r one obtains

1 5 1 . . .
5{Mg§, g~ S M, &} = mp)g +mp)g-, (14)

where g+ = %{Pi, g}. Hence the standard procedure to obtain
the Eilenberger equation for g via the &-integration of Eq. (5)
yields

E 08 +1 Py | 0 (b, - o) 9
— — — 'U,_
= t8v 21 m ap v axg”

+ i[b, - o, gm]) =-i[5.g]. (15)

Eq. (15) holds even for internal fields b for which the
factorization b = b( p)f)(f)) is not possible, as long as one can
assume |b| < €. For more details see [12].

From the above Eilenberger equation the expression for the
charge and spin currents are readily obtained, since the Fermi
surface average (---) of Eq. (15) has the form of a continuity
equation

v

8y(gc) +x - Je =0 (16)

0(g) +0x -y =2 (by x &), a7
v==%

B(gy) +ox T, =2 (b, x 8,)y (18)
=+

B (g:) +ox Iy =2 (b, x &,)-. (19)
v=d%

where we expanded the Green function in charge and spin
components, § = g. + g - o. The physical charge and
spin densities are obtained by integrating over € the Keldysh
component

N
p=—= f de(gX (e x, 1) (20)

N . .
s; = —TO/de(giK(e; X, 1) i=x,y,2. 20
The charge and spin currents are derived in a similar way. For

instance, the spin current with spin polarization along the e,
axis reads

Ji(x, 1) = —%/de{jj(E;X, n1¥, (22)

with ji(e; X, 1) = (Vrgz).
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3. Spin Hall effect

Before considering explicitly the role of the boundaries, it
is useful to see how the spin Hall effect in the bulk may be
analyzed in the present formalism. For a stationary and space
independent case the equation for the Keldysh component can
be written in the following way (a = 2aprt)

10 0 0 /e
0 1 0 ape||ef
0 0 1 apy || gX
0 —apy —ap, 1 gZK
I —apy/vr ape/vr 0
—apy/vr 1 0 0
| apy/vr 0 1 0
0 0 0 1
<gc’;>
w | & 4 s (23)
(gy)
(¢X)

In the above we have introduced the mean free path [ = vpt.
The presence of the electric field, along the €, axis, is accounted
for by the source term Sg

Px 0
0 a | —2pypy
Sg = —4le|ELf' (e +—=1. 11, 24
E lelELf () | | or P)%—Pi (24)
0 0

which has been introduced in the Eilenberger equation by
exploiting the gauge invariance in the derivative terms. In the
above f(e) is the Fermi function. Notice that spin-charge
coupling effects arise at the order of o/vr. From the angular
average of Eq. (23) one observes immediately that (p, gZK ) =
( ﬁngK) = 0, i.e. no spin current with polarization along €,
flows in the system. It is also instructive to first express gZK in
terms of the angle-averaged quantity (gX) and then multiply by
py and take the angular average. The spin current reads then

- VFOPFT

s = m (a|e|rN0E + sy) . 25)

When comparing to a calculation of the spin-Hall conductivity
within the standard Kubo-formula approach, one realizes that
the first term in brackets corresponds to the simple bubble
diagram, while the second term accounts for vertex corrections
due to the spin-dependent part of the velocity operator. This
second term is related to a voltage induced spin polarization
in the éy direction that was first obtained by Edelstein [13],
sy = —lelaTt Ny E.

In summary, we find that under the very special conditions
we considered here the spin-Hall current is zero. We started
from the Rashba Hamiltonian, that has a linear-in-momentum
spin—orbit coupling, we assumed that elastic scattering is spin-
conserving, and finally we considered the stationary solution
in the bulk of the two-dimensional electron system so that the

spin density neither depends on space nor time. Relaxing one or
more of these conditions finite spin-Hall currents are expected.

4. Boundary conditions and diffusion equation

The derivation of the boundary conditions for the
quasiclassical Green function is a delicate task, due to the fact
that the boundary potential typically varies on a microscopic
length scale which is shorter than the quasiclassical resolution.
Therefore one must include the boundary effect in the very
process of the derivation of the Eilenberger equation. This
is especially important for interfaces between two different
materials, where transport occurs through a tunnel junction
or a point contact. Often a boundary with vacuum is simpler
to describe since one couples only one incoming with one
outgoing channel. In the presence of spin—orbit coupling, the
non-conservation of spin and in particular the beam splitting,
i.e., one incoming channel with direction p;, can be scattered
into two outgoing channels p,,, makes the problem more
difficult and there is not yet a complete derivation of boundary
conditions for the quasiclassical Green function.

In the following we limit to two special types of boundary
conditions and discuss their role as far as spin relaxation and the
spin Hall effect are concerned [14]. The first type of boundary
conditions requires spin conservation, i.e. the spin currents
normal to the interface are zero. We refer to them in the
following as hard-wall boundary conditions (see also [15,16]).
For a smooth confining potential it has been pointed out that
specular scattering involves some spin rotation in such a way
to keep the scattered particle in the eigenstate of the incoming
one [17]. We refer to this situation as soft-wall boundary
conditions.

The matching condition for the quasiclassical Green
function can be obtained following the approach of Ref. [18]
and reads

$(Pou) = SEBin)ST, (26)

where the matrix S describes the scattering at the boundary. For
hard-wall boundary conditions, the conservation of charge and
spin currents implies that S is a unit matrix. In the case of soft-
wall boundary conditions, one has S = cos(¢) + isin(¢)o,,
where ¢ is the angle that p;, makes with the €, axis.

To illustrate the role of boundaries, we consider the diffusive
limit where a detailed analytical treatment is possible and which
is also relevant for actual experiments. We assume that our two-
dimensional electron gas is limited to the half-space y > 0 and
that there is a uniform electric field along the €, direction, see
Fig. 1. Since the system is translational invariant along the €,
direction, we consider only space dependence with respect to
the &, direction. The diffusion equation reads

(a, — Daf) p =2Biys, 27)
) 1
(a, — Day) Sp = ——sy +2Bd,p (28)
5 ’

1
(a, _ D8y2> sy = = —(sy = 50) + 2C0ys; (29)
)
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Fig. 1. Orientation of the boundary and the electric field.
5 2
(0 — Do})s. = — s = 2Cys, (30)
s

with D = %v%r, Ty = r/[2(appr)2], B = 4a3p12,r2, C =
vraprt and 5o = —|e|lat NoE is the bulk spin polarization in
the presence of an electric field, mentioned at the end of the
previous section. A general solution of the diffusion equations
(27)-(30) can be found in the form

Jo
—yt gy | S
s(y,t) =e Ve | ], (31)
Sy
Sz
where a static solution requires y = 0. In the absence of electric
field (i.e., sp = 0), as in optical spin excitation experiments,
the solution with longest lifetime has a finite wave vector in
contrast to standard diffusion. The presence of boundaries does
affect this result. With hard-wall boundary conditions

—Ddysy =mn-j, =0, (32)
—Dadysy —Cs; =mn-j, =0, (33)
—D3dys, + C(sy —s0) =n-j, =0, (34)

where n is in the y-direction, the mode with longest lifetime is
localized at the boundary. With soft-wall boundary conditions,
one has

sy =0 and s, =50, 35)

while the z-component of the spin is still conserved and
therefore Eq. (34) remains valid. Due to the decoupling, at
the boundary, of the three spin components, the mode with
longest lifetime is no longer confined to the boundary and has
sy o sin(gy), sy — so o sin(qy), s; o cos(gy) with g ~ L;l
(as in the bulk), where Ly = /Dt is the spin diffusion
length. Although the two types of boundary conditions have
a different effect in a time-dependent optical spin-relaxation
experiment, both imply that, in the absence of an electrical
field, the only static solution of the diffusion equation is with
vanishing polarization (see Ref. [14] for further details).

The presence of an electric field does not change this result
provided the polarization in the €, direction is replaced by
the difference s, — so, which enters both the diffusion Eqgs.
(27)-(30) and the boundary conditions (32)—(35). Hence, in the
presence of an electric field, the only static solution has sy = so,
sy = 0 and s, = 0. Furthermore, the second condition in (35)

means that, with soft-wall boundary conditions and at the level
of diffusive accuracy, the time-dependent approach to the static
solution becomes infinitely fast at the boundary, in contrast to
what happens in the bulk where relaxation occurs in a finite
time.

5. Numerical results

In this section we give a brief overview of numerical
results for both spin Hall effect and spin accumulation in finite
systems. In the following we consider the Rashba Hamiltonian
on a rectangular strip of length L, and width L, which is
connected to reservoirs at x = 0 and x = L,. We impose soft-
wall boundary conditions at y = Oand y = L. Att = 0O the
electrical field E is applied in the x-direction. In order to solve
the time-dependent Eilenberger equation (15) numerically we
introduce the discretization Ax and At for space and time,
respectively. Our algorithm is exact to order (A% and (Ax)*
and yields stable solutions for arbitrary long times provided At
is chosen small enough. The boundary conditions are imposed
such that at the border for incoming momenta the Green
function is calculated from the Eilenberger equation while for
outgoing momenta the scattering condition equation (26) is
applied. Fig. 2 shows the time evolution of the spin polarization
on a line across the strip at x = L, /2, the Rashba parameter
is «/vp = 1073. In the upper part of the figure the elastic
scattering rate T is chosen such that eprt = 1 which is already
beyond the reach of the diffusion equation approach. The y-
component s, of the spin polarization (left panel) increases
monotonically from zero to the bulk value sy while s, (right
panel) shows strong oscillations close to the boundaries which
decay after a few periods. These oscillations are associated
with a spin current polarized in z-direction and flowing in y-
direction. The magnitude of this spin current corresponds to
a spin Hall conductivity osq ~ e/8m which however persists
only on a short time scale after switching on the electrical field.
In the stationary limit only the bulk polarization of sy survives
while the polarization of s, and s, is restricted to a small region
around the corners of the strip [3,12]. In addition, the shape
of these corner polarizations depends strongly on the details of
the coupling between the reservoirs and the strip. In the lower
part of Fig. 2 we choose aprt = 0.1, i.e. the spin dynamics
is diffusive. Note that at the boundaries s, approaches so on a
much shorter time scale than in the bulk, in accordance with
the boundary condition (35). Due to the overdamped dynamics
of the spins there are neither in s, nor in s, time dependent
oscillations.

To summarize, the quasiclassical approach provides a
versatile theoretical framework for the description of the
coherent spin dynamics in confined electron systems in the
presence of spin—orbit coupling.
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Fig. 2. Voltage induced spin polarization as a function of y and ¢ at x = Ly /2 on a strip of length Ly = 20 / and width Ly = 10/ for a/vp = 1073, The upper
figures are obtained for appt = 1, whereas in the lower figures ap gt = 0.1. Left panel: sy, right panel: sz, both in units of the bulk polarization sg.
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