
The Semiclassical Propagator in Fermionic Fock Space
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Abstract We present a rigorous derivation of a semiclas-
sical propagator for anticommuting (fermionic) degrees of
freedom, starting from an exact representation in terms of
Grassmann variables. As a key feature of our approach the
anticommuting variables are integrated out exactly, and an
exact path integral representation of the fermionic propaga-
tor in terms of commuting variables is constructed. Since our
approach is not based on auxiliary (Hubbard-Stratonovich)
fields, it surpasses the calculation of fermionic determinants
yielding a standard form

∫
D [ψ,ψ∗]eiR[ψ,ψ∗] with real ac-

tions for the propagator. These two features allow us to pro-
vide a rigorous definition of the classical limit of interacting
fermionic fields and therefore to achieve the long-standing
goal of a theoretically sound construction of a semiclassical
van Vleck-Gutzwiller propagator in fermionic Fock space.
As an application, we use our propagator to investigate how
the different universality classes (orthogonal, unitary and
symplectic) affect generic many-body interference effects in
the transition probabilities between Fock states of interact-
ing fermionic systems.

Keywords Path integral · Semiclassical · Fermions ·
classical limit

1 Introduction

Semiclassical techniques attempt to describe quantum phe-
nomena using only classical information as input (besides
h̄), but keeping all the kinematical and interpretational as-
pects of quantum mechanics untouched. Semiclassical meth-
ods should therefore be distinguished from quasi-classical
approaches, which are based on the quantum-classical cor-
respondence and do not only use classical information, but

T. Engl
Institut für Theoretische Physik, Universität Regensburg, D-93040 Re-
gensburg, Germany
E-mail: thomas.engl@physik.uni-regensburg.de

also try to export classical concepts to approximate quan-
tum mechanics. The epitome of the quasi-classical approach
is the use of the Ehrenfest theorem to approximate the quan-
tum mechanical evolution of wave packets, with systematic
corrections given by the Wigner-Moyal expansion [1].

Semiclassical methods, as understood in this contribu-
tion, attempt to link classical and quantum mechanics in a
more abstract, less direct way. While for the quasi-classical
program, quantum mechanics is used to construct quantities
with a direct classical counterpart (like the trajectory defined
by the mean position and momentum of a wavepacket), the
semiclassical program employs information extracted from
classical trajectories (like their actions and stabilities) to con-
struct quantum mechanical objects. This difference becomes
very explicit when we use semiclassical methods to con-
struct quantum objects without classical analogue, such as
probability amplitudes.

A major goal of the semiclassical program is the con-
struction of the semiclassical propagator Ksc, the asymptotic
form (when h̄→ 0) of the quantum mechanical propagator

K(q,q′, t) = 〈q|e−
i
h̄ Ĥt |q′〉, (1)

defined as the matrix element of the time-evolution operator
[2].

As reviewed in [3], the challenge to construct a semiclas-
sical propagator has a long history. Although already in 1926
it was clear for Pauli, Dirac and van Vleck that the quantum
mechanical propagator can be approximated by an object of
the form Ksc∼ e

i
h̄ R with the classical action R appearing as a

phase, it took more than forty years before Gutzwiller com-
pleted the rigorous construction of the semiclassical propa-
gator from Feynman’s path integral [4]. In its final form it
reads [5]

Ksc(q,q′, t) = ∑
γ

Aγ(q,q′, t)e
i
h̄ Rγ (q,q′,t)+iµγ

π
2 (2)

ar
X

iv
:1

40
9.

41
96

v1
  [

ph
ys

ic
s.

ch
em

-p
h]

  1
5 

Se
p 

20
14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/33179813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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where the sum extends over the set of solutions γ of the clas-
sical problem to join the classical configurations q′ and q in
time t. As envisioned by Dirac, R is the classical action of
the trajectory, while A is related to its variations with respect
to the initial and final configurations, and µ is the number of
focal points of the trajectory γ .

The derivation of the van Vleck-Gutzwiller propagator
marks the starting point of modern semiclassical methods [1,
3,6]. They have been able not only to capture but also to suc-
cessfully describe interference phenomena, i.e. wave effects
impossible to describe using quasi-classical techniques.

By Fourier-transforming Ksc we get the semiclassical
(Gutzwiller) Green’s function, the starting point to describe
stationary properties of quantum systems in the semiclassi-
cal limit, and in particular to understand the emergence of
universal fluctuations in the spectra and eigenfunctions of
classically chaotic quantum systems [3,6]. Also, the early
semiclassical notion of the theory of molecular collisions
[7] and related approaches in mesoscopic condensed matter
to describe quantum transport [8,9] (for reviews see [10,11,
12]) connect the van-Vleck propagator, or the semiclassical
Green function, with the single-particle S-matrix in terms of
transition amplitudes for transmission and reflection.

The success of the semiclassical methods has been re-
stricted, however, predominantly to quantum systems that
admit a first-quantization description. In fact, the general-
ization of the van Vleck-Gutzwiller propagator to describe
systems of interacting particles does not pose any concep-
tual challenge, as the classical limit of the theory is very
well understood. The semiclassical propagator is now an es-
tablished tool to describe quantum dynamics of molecular
systems [13,14,15,16] and mesoscopic electronic systems
[17].

Technical, but not conceptual, problems arise when in-
distinguishability comes into play. Here, the semiclassical
calculation of ground and (doubly) excited states in helium
by Greg Ezra et. al. [18] marks a successful step in coping
with strongly interacting two-electron dynamics. The num-
ber of classical paths we need to construct to calculate the
transition amplitude between different (anti-) symmetrized
configurations of a quantum system however grows extremely
fast with the number of particles [19]. The same vast in-
crease of the number of classical trajectories that have to
be taken into account, affects the coupled coherent state ap-
proach [20], which has been developed for the treatment of
fermionic many-body systems in phase space. In this ap-
proach, the wave function is expanded in a (large) set of
Slater determinants of single-particle coherent states with
randomly selected intitial conditions. The coherent states are
then evolved along the corresponding classical trajectory.

Moreover, for fermionic systems with spin orbit interac-
tions, hybrid semiclassical approaches exist, which describe
the orbital motion of non-interacting particles in phase space,

while the spin is treated in a second quantized approach us-
ing spin coherent states [21,22,24,25,26,27,28]

Importantly, the emergence of mean-field behavior, an
expected simplification of the description when the number
of particles is large, cannot be rigorously included in a natu-
ral way if one sticks to the first-quantized picture where the
total number of particles N is not defined by the quantum
many body state but is an external parameter determining
the dimensionality D = Nd, where d is the spatial dimen-
sion, of the system and thereby fixing the structure of the
very space where the system lives.

These remarks indicate already a possible solution of
the problem. If a second-quantized picture in Fock space is
adopted instead, both quantum indistinguishability and flex-
ibility in the number of particles are automatically included
at the kinematic level: the Fock space of quantum states is by
definition spanned by states which are correctly (anti-) sym-
metrized, and the number of particles is simply another ob-
servable represented by a hermitian operator [29]. When in-
voking a Fock space description, this change of perspective
implies for the semiclassical program that particles appear
as an emergent concept, derived from the more fundamental
degree of freedom: the quantum field [30].

The development of a semiclassical program for bosonic
fields has received powerful impact from the experimental
realization of their discrete version in the context of cold-
atom physics [31]. In fact, the theoretical model that de-
scribes microscopically a system of interacting bosons on a
lattice, the so-called Bose-Hubbard model [32], is a special
realization of an interacting bosonic field. Here, again, the
complementarity between quasi-classical and semiclassical
approaches has been apparent. Quasi-classical methods as
the ones used in [33] work well as long as quantum interfer-
ence does not come into play and eventually dominates the
dynamics. However, a rigorous derivation of the van Vleck-
Gutzwiller propagator in bosonic Fock space was achieved
only recently [34].

It is fair to say that the situation in the fermionic case
is more desperate. Already a quasi-classical approach faces
a fundamental problem: how to define a sensible classical
limit if the fermionic fields must obey the Pauli principle and
therefore admit only non-commutative descriptions? The at-
tempts and achievements to associate commuting variables
to fermionic operators, that spans from the 1970’s well into
the 2010’s, are still lacking a rigorous microscopic deriva-
tion, indicating the complexity of the problem [35,36,37,
38]. The importance of the Chemical Physics community in
this program has been obvious: electronic degrees of free-
dom are fundamental in the realm of molecular reactions.
Moreover, chemical reactions require, in principle, simula-
tions with anticommuting variables.

In order to avoid these anticommuting variables, in a se-
ries of important papers, Miller and collaborators proposed
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to use a heuristic generalization of the Heisenberg prescrip-
tion [36,37,39] to construct the classical limit of fermionic
degrees of freedom (for recent applications see [40,41]). It is
a remarkable and valuable feature of this approach that it as-
sociates correct signs to expressions involving anticommut-
ing fermionic operators ĉ, ĉ† and respects the Pauli principle.
In the simplest example, these key features can be seen in the
mapping F → Fcl between operators F(ĉ, ĉ†) and classical
phase space functions Fcl(

√
neiθ ,

√
ne−iθ ), which gives for

i 6= j

ĉ†
i ĉ j →

√
nin j(1−ni)(1−n j)e−i(θi−θ j), (3)

ĉ j ĉ
†
i → −

√
nin j(1−ni)(1−n j)e−i(θi−θ j).

The (in general continuous) classical phase space variables
0≤ n≤ 1 are naturally interpreted as classical fermionic oc-
cupation numbers with the angles θ as their corresponding
canonically conjugated variables.

However, as it is obvious from eq. (3), the thus classi-
cal Hamiltonian obtained in this way has the physical Fock
states, defined by

ni = 0 or 1 for all i, (4)

as fixed points of the dynamics and the corresponding semi-
classical propagator is then trivially incorrect in the relevant
case where it connects physical Fock states. Moreover, as
discussed at length in Sec. 3, approaching the classical limit
from the quantum side by means of a formal path integral in
terms of the fermionic states (introduced by Klauder [35]),

|b〉= b|0〉+
√

1−|b|2ĉ†|0〉 , with complex b, (5)

shows that eq. (3) can be rigorously obtained from an exact
path integral representation in terms of the commuting fields
b. This indicates that in a representation where eq. (3) holds,
the quantum mechanical propagation between Fock states is
not supported by classical trajectories and the semiclassical
limit is problematic.

This complication may be due to the fact that in Klauder’s
representation the path integral is restricted, namely, the in-
tegration over the variables b are defined inside the unit disk
instead of over the whole complex plane. A heuristic incor-
poration of Langer corrections proposed in [39],

√
n(1−n)→

√(
n+

1
2

)(
3
2
−n
)
, (6)

lifts the problem and actually leads to a classical limit that
gives, for example, agreement with first-order quantum per-
turbation theory by using classical perturbation theory.

As this volume commemorates Greg Ezra’s contribu-
tions to the description of atomic and molecular dynamics,
we would like to mention that Ezra’s pioneering work on
the Langer correction to the semiclassical propagator [42]

could possibly provide the key to make rigorous the promis-
ing proposal presented in [37]. It is then tempting to check
whether Ezra’s insight into Langer corrections within the
path integral formalism in first-quantized systems with would
help to make Miller’s approach justified from first-principles
[43].

Here we follow a different route and present what we be-
lieve to be the first microscopic derivation of the exact prop-
agator between N-particle fermionic Fock states in terms of
path integrals over commuting, unrestricted classical fields.
Our path integral not only incorporates and generalizes Miller’s
mapping F → Fcl ”teaching” the classsical limit of large N
about anticommuting operators, but it is supported in the
semiclassical limit by classical paths. No extra assumptions
or corrections are required.

As we will discuss in Sec. 3, the thus derived classical
Hamiltonian corresponds to an approximation of the Holstein-
Primakoff transformation for a single particle in a two-level
system, used in [44].

After briefly introducing Grassmann variables in Sec. 2,
in Sec. 3 we present our derivation of the exact path integral
for fermionic systems. Armed with this object, in Sec. 4 we
follow the typical semiclassical program: we identify both
the effective Planck’s constant and the classical limit of the
theory from the phase of the path’s amplitude in the path in-
tegral, and evaluate the path integral in stationary phase ap-
proximation to obtain a van Vleck-Gutzwiller type propaga-
tor for interacting fermionic fields. The presentation will be
restricted to spin-1/2 systems, although a generalization to
higher spins is straight forward. Finally, in Sec. 5, we use the
thus derived semiclassical propagator to calculate the tran-
sition probability from one fermionic Fock state to another
one for systems without time reversal symmetry, for systems
diagonal in spin space but time reversal invariant, as well as
for time reversal invariant spin-1/2 systems non-diagonal in
spin space.

Technical details of the derivation of our main results,
namely the exact complex path integral representation of the
fermionic propagator in terms of commuting fields, eq. (19),
the classical Hamiltonian eq. (22) and the van Vleck propa-
gator, eqns. (56,64) can be found in the appendices.

2 Grassmann coherent states

In order to derive the path integral representation for the
fermionic propagator in Fock space, we will use Grassmann
coherent states in intermediate steps. They are defined as the
eigenstates of the fermionic annihilation operators [29],

ĉ j |ζ 〉= ζ j |ζ 〉 . (7)

Here, ĉ j and ĉ†
j annihilates and creates, respectively, a parti-

cle in the j-th single particle state, two states which coincide
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in the orbital degrees of freedom, but differ in the spin de-
gree of freedom are accounted for as different single particle
states, and are therefore labeled by different indexes j.

However, due to the antisymmetry and the Pauli exclu-
sion principle, the eigenvalues of the coherent states have
to be (complex) anticommuting numbers, called Grassmann
numbers [29,45], i.e. for two of these numbers ζ and χ

ζ χ =−χζ . (8)

They also anticommute with the creation and annihilation
operators,

ζ ĉ j =−ĉ jζ , ζ ĉ†
j =−ĉ†

jζ , (9)

while they commute with regular complex numbers. The an-
ticommuting property also implies ζ 2 = 0.

Integration over a complex Grassmann number is de-
fined by∫

dζ
∗dζ 1 =

∫
dζ
∗dζ ζ =

∫
dζ
∗dζ ζ

∗ = 0, (10)∫
dζ
∗dζ ζ ζ

∗ = 1. (11)

With the properties of the Grassmann numbers, it is possible
to show that the fermionic coherent states are given by [29]

|ζ 〉= exp
(
−1

2
ζ
∗ ·ζ

)
∏

j

(
1−ζ j ĉ

†
j

)
|0〉 , (12)

where |0〉 denotes the fermionic vacuum state. Moreover,
they satisfy

〈ζ |χ〉= exp

[
∑

j

(
−1

2
ζ
∗
j ζ j−

1
2

χ
∗
j χ j +ζ

∗
j χ j

)]
, (13)

〈n |ζ 〉= exp
(
−1

2
ζ
∗ ·ζ

)
∏

j

′
ζ

n j
j , (14)∫

dζ
∗
∫

dζ |ζ 〉〈ζ |= 1, (15)

with |n〉 being an arbitrary Fock state, such that n j ∈ {0,1}
is the occupation of the j-th single particle state. The prime
at the product indicates that the order of the individual fac-
tors is reversed, i.e. the factor corresponding to the largest
possible value is the most left one, while the j = 1 term is
the most right one.

3 The path integral in complex variables

3.1 Derivation

The aim of this part is to derive a path integral representation
of the propagator in Fock space,

K
(

n( f ),n(i); t f

)
=

〈
n( f )

∣∣∣∣exp
(
− i

h̄
Ĥt f

)∣∣∣∣n(i)
〉
, (16)

to which the stationary phase approximation can be applied.
Note that for simplicity of presentation, the Hamiltonian has
been chosen time independent, although the following cal-
culations are also valid for the time dependent case.

The path integral representation is usually achieved by
applying the Trotter Formula [46], which replaces the expo-
nential in eq. (16) by the product of infinitely many propa-
gators with an infinitesimally small time step and by insert-
ing the unit operator between two adjacent factors. Since the
resolution of unity for Fock states is given by a sum, rather
than an integral, they are not suitable for the construction of
a path integral. This makes the coherent states the natural
choice for the representation of the unit operator. However,
when applying the semiclassical approximation to the co-
herent state path integral, one ends up with grassmannian
equations of motion. On the other hand, it is desirable to
have complex equations of motion leading to a real action.
In order to achieve this, one has to find a way to replace the
integrals over Grassmann variables by integrals over com-
plex ones.

Here, we will give a rough description of the procedure,
which allows for such a transformation from Grassmann to
complex integrals. However, it turns out that some of the
steps contain a certain freedom of choice. The final path
integral will then depend on the individual choices made
during the derivation. The derivation for the specific choice
presented later in this publication, is then carried out in ap-
pendix A.

After applying Trotter’s formula [46] the first step is
to insert two unit operators in terms of fermionic coherent
states between two adjacent exponentials,

K
(

n( f ),n(i); t f

)
=

lim
M→∞

[
M

∏
m=0

(∫
dζ

(m)∗
∫

dζ
(m)
∫

dχ
(m)∗

∫
dχ

(m)

)]
[

M−1

∏
m=0

〈
ζ
(m+1)

∣∣∣∣exp
(
− iτ

h̄
Ĥ
)∣∣∣∣χ(m)

〉〈
χ
(m)
∣∣∣ζ (m)

〉]
〈

n( f )
∣∣∣χ(M)

〉〈
χ
(M)
∣∣∣ζ (M)

〉〈
ζ
(0)
∣∣∣n(i)

〉
, (17)

where τ = t f /M.
Next, in order to replace the Grassmann integrals by

complex ones, one has to insert complex integrals such that
the overlap 〈χ(m)|ζ (m)〉 can be written as an integral over a
product of two factors, with the first one depending only on
χ(m) and the second one on ζ

(m). Here, integrals of the form

∫
C

dφ

∫
C

dµ exp
(
−|φ |2−|µ|2 +φ

∗
µ

)
φ

k (µ∗)k′ = π
2k!δkk′

(18)
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will be used, since this choice allows us to construct a path
integral, which for intermediate times has the same form as
the one for bosons in coherent state representation [29] (see
appendix A).

After this insertion, we can decouple ζ
(m+1) and χ(m)

from ζ
(m) and χ(m−1) in eq. (17), such that the integrand for

the propagator becomes a product, in which the m-th factor
only depends on ζ

(m) and χ(m−1). Therefore the insertion

of these integrals allows us to integrate out the Grassmann
variables exactly after expanding the exponential up to linear
order in τ .

At this point, it is important to note that not only the
choice of the inserted integrals is not unique, but that, when
choosing e.g. integrals of the form (18), there is a certain
freedom in choosing the combinations of k and k′. With the
choices cf. appendix A, one arrives at

K
(

n( f ),n(i); t f

)
=

 ∏
j:n(i)j =1

2π∫
0

dθ
(0)
j

2π
exp
(
−iθ (0)

j

)
 ∏

j:n( f )
j =1

∫
C

dφ
(M)
j

π
φ
(M)
j


M−1

∏
m=1

∏
j

∫
C

dφ
(m)
j

π

×
×exp

{
M

∑
m=1

[
−
∣∣∣φ (m)

∣∣∣2 +φ
(m)∗ ·φ (m−1)− iτ

h̄
Hcl

(
φ
(m)∗,φ (m−1)

)]}
, (19)

where at final time the integrals over those φ
(M)
j cor-

responding to empty single particle states, i.e. for those j
where n( f )

j = 0, are already evaluated exactly and therefore
have to be set to zero in eq. (19). In fact, the integrals over
those components do not even have to be inserted right from
the beginning, since∫

dχ
(M)
j
∗ ∫

dχ
(M)
j exp

(
−χ

(M)
j
∗
χ
(M)
j

)(
1+χ

(M)
j
∗
ζ
(M)
j

)
= 1.

(20)

The exact integration over the finally unoccupied states is
necessary, since the stationarity conditions will not give so-
lutions for the phases of these components and therefore,
these integrals can not be performed in a stationary phase
approximation. For the same reason the integrations over
those φ

(0)
j with n(i)j = 0 are already performed exactly. This

means that effects due to vacuum fluctuations [47], i.e. the
spontaneous creation and annihilation of particles out of the
vacuum, are treated exactly. Furthermore, for m = 0, the in-
tegrations over the amplitudes J(0)j = |φ (0)

j |2 for the initially
occupied single particle states j are performed exactly (see
appendix A for details of this exact integration). As a matter
of fact, these integrals could also be included in the station-
ary phase approximation, which would eventually result in a
multiplication of our result for the semiclassical propagator
with a factor α = eN/(

√
2π)N , where N is the total number

of particles, which is the N-th power of Stirling’s approxi-
mation of n! for n = 1.

Now one might raise the question, why the initial am-
plitudes related to occupied states are integrated out, but not
the final ones. Actually, the amplitudes of φ

(M)
j for occupied

sites could also be integrated out, which would result in di-

viding the result for the semiclassical approximation by the
same factor α . However, we choose not to perform them,
in order to be in accordance with the usual first quantized
semiclassical approach, where the path integral, to which
the stationary phase approximation is applied, consists of
one integration (over the canonical variables chosen as ba-
sis) less than those over their canonical conjugate variables.
For instance, the path integral for the propagator in config-
uration space consists (before taking the limit M → ∞) of
M momentum integrals and M−1 position integrals. More-
over, our choice is supported by the fact that it leads to the
exact result if the quantum Hamiltonian is diagonal and non-
interacting.

When comparing the path integral with the correspond-
ing one in first quantization, eq. (2), the phases θ

(0)
j would

correspond to the initial momenta of the path. The role of
φ
(M), however, is much more sophisticated. Its phases again

correspond to the final momenta, while its amplitude should
somehow correspond to the final position. Yet, the value of
the latter is not fixed to n( f )

j = 1, which would be the ex-
pected boundary condition for the paths. This boundary con-
dition is hidden in the in the integration over φ

(M)
j is deter-

mined by the extra factor φ
(M)
j of the integrand. In a station-

ary phase analysis of the integrand, which will be performed
below, one finally recognizes that indeed both, the stationar-
ity condition of phase and amplitude of φ

(M)
j , are required

in order to get the correct boundary condition. Thus, the
boundary condition at final time is indeed hidden in the full
integral over φ

(M)
j .

Finally, it should be noted that the classical Hamiltonian
Hcl is not unique, but again depends on the way chosen to
construct the path integral in complex variables. There re-
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mains a certain freedom to weigh individual terms in the
classical Hamiltonian differently, which might help in study-
ing effects related to particular parts of the Hamiltonian.
For instance, in the Hamiltonian given in eq. (118) in ap-
pendix C.1, the interaction, single-particle energies and the
antisymmetry under particle exchange are weighted expo-
nentially, while the Pauli principle is given by an exponen-
tial suppression of hopping processes leading to occupations
of one single-particle state by more than one particle. How-
ever, due to the exponential factor in the diagonal term of
the single-particle part of the Hamiltonian, processes quan-
tum mechanically forbidden by the Pauli principle are fur-
ther suppressed energetically. This energetically suppression
essentially corresponds to the heuristic inclusion of a Pauli
potential [38,48,49,50,51], i.e. a potential, which hinders
two electrons to occupy the same single-particle state.

For the quantum Hamiltonian considered here,

Ĥ = ∑
α,β

hαβ ĉ†
α ĉ

β
+ ∑

α,β
α 6=β

Uαβ ĉ†
α ĉ†

β
ĉ

β
ĉα . (21)

one possible classical Hamiltonian is given by

Hcl (µ,φ) =

∑
α

hαα µα φα + ∑
α,β
α 6=β

Uαβ µα µβ φα φβ (22)

+ ∑
α,β
α 6=β

hαβ µα φβ exp
(
−µα φα −µβ φβ

)
∏

j

α,β
(1−2µ jφ j) ,

where the product in the last line runs only over those values
of j, which are lying between α and β , excluding α and β

themselves. The case µ = φ
∗, i.e.

Hcl (φ
∗,φ) =

∑
α

hαα |φα |2 + ∑
α,β
α 6=β

Uαβ |φα |2|φβ |2 (23)

+ ∑
α,β
α 6=β

hαβ φ
∗
α φβ exp

(
−|φα |2−|φβ |2

)
∏

j

α,β (1−2|φ j|2
)
,

will be of particular importance for the continuum limit.
It is instructive to compare it with the classical electron ana-
log model (CEAM) obtained from Miller’s mapping which
gives in this case

HCEAM
cl (φ ∗,φ) =

∑
α

hαα |φα |2 + ∑
α,β
α 6=β

Uαβ |φα |2|φβ |2 (24)

+ ∑
α,β
α 6=β

hαβ φ
∗
α φβ

√
(1−|φα |2)(1−|φβ |2)∏

j

α,β (1−2|φ j|2
)
,

in terms of the, now restricted, variables φα with |φα |2 ≤ 1.

In eq. (22), the factors 1− 2µ jφ j are a consequence of
the anticommutativity of the creation and annihilation oper-
ators (and the Grassmannians) and thus account for the anti-
symmetry of the fermions under particle exchange. Consider
for example the following two processes for the scattering of
two particles in the states 1 and 2 into the states 2 and 3: in
the first process, the particle in state 1 is scattered into state
3, with the second particle staying in state 2, while in the
second one the particle in state 2 is scattered into state 3 and
the particle in state 1 is scattered into state 2. These two pro-
cesses are the same up to an exchange of the two particles.
Therefore, these two processes have to yield the same con-
tribution, but with a different sign. On the other hand, if state
2 is empty, while a particle is scattered from state 1 to state
3, there is no corresponding process resulting from an odd
number of exchanges of particles, and thus, the contribution
has always to be the same. In general, a process where a par-
ticle is scattered from state α to state β with |α−β |> 1, has
to be multiplied by a factor of −1 for each occupied state j
between α and β . However, classically the occupations are
not restricted to 0 and 1, but can be any number, such that
one ends up with a factor interpolating between the two ex-
treme values +1 for the case without a particle in state j and
−1 for the case where state j is occupied. Furthermore, the
exponential in the non-diagonal part of the single particle
term accounts for the Pauli principle by the exponential sup-
pression of processes, which lead to an enhanced number of
particles within one single particle state.

A (certainly not complete) list of further possible clas-
sical Hamiltonians corresponding to the quantum Hamilto-
nian (21) can be found in appendix C.

It is furthermore instructive to see how our approach
treats the extreme case of a single electron, N = 1, where
the state space is spanned by two discrete states and anti-
commutation of the fermionic fields does not play a role.
In this situation, our results can be directly compared with
existing exact mappings between systems with n = 2 dis-
crete states and a quantum top with total angular momentum
s such that n = (2s+ 1)/2. In the Chemical Physics com-
munity these so-called Meyer-Miller-Stock-Thoss (MMST)
methods [36,41,52,44] have been successfully used to de-
scribe non-adiabatic transitions of the nuclear dynamics be-
tween two potential surfaces corresponding to two discrete
many-body states of the electrons. The MMST method maps
the dynamics of a two-level system into the problem of a
spinning particle, which can be in turn mapped into a set of
harmonic oscillators by means of the Schwinger representa-
tion of angular momentum (see [44]). In this way, a classical
picture for two-level systems is obtained, as a basis for stan-
dard (continuous) semiclassical approaches.

Our result for the classical limit of a single electron, in-
cluded in Eq. (23), appears naturally within the MMST ap-
proach as an approximate version of the Holstein-Primakoff
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transformation, see [44] for details and [21] for an applica-
tion to spin transport. As it is also shown there, this classi-
cal limit, however, gives unsatisfactory results when used as
starting point of a semiclassical calculation of the time evo-
lution of quantum observables. This apparent drawback is
fully resolved when taking into account, as shown in detail
here, that the semiclassical limit where our result holds is
defined by N → ∞. Therefore, the application of our meth-
ods to the limiting case N = 1 is expected to poorly com-
pare with exact quantum mechanical results. However, the
main motivation of the present work is to deal semiclassi-
cally with anticommuting variables, not with few discrete
degrees of freedom as in [44].

3.2 Comparison with CEAM and Klauder’s approach

Miller’s heuristic approach can actually be verified by ex-
tracting the classical Hamiltonian from another path integral
representation. This is by extending the b-fermionic states
introduced by Klauder in [35],

|b〉=
√

1−|b|2 |0〉+b |1〉 , (25)

to the case of multiple single-particle states and define (see
also [53])

|b〉= ∏
j

(√
1−|b j|21̂+b j ĉ

†
j

)
|0〉 . (26)

These states define an overcomplete basis for the fermionic
Hilbert space, as they form the identity∏

j

∫
D

db(m)
j

π

 |b〉〈b|= 1̂ (27)

where D denotes the unit disc in the complex plane, and
therefore can be used to construct a path integral representa-
tion of the propagator in terms of paths b(t) in the space of
commuting variables b.

The steps of the derivation of the path integral in this ba-
sis correspond to those one follows to construct the fermionic
path integral using coherent states [29,35]. After reaching a
form where the classical Hamiltonian can be read off from
an action functional giving the phase of the quantum propa-
gator, we obtain

HKlauder
cl (b∗,b) = 〈b|Ĥ|b〉. (28)

A short calculation finally shows that the classical Hamilto-
nian (28) obtained using Klauder’s representation is equal to
Miller’s, eq. (24), i.e.

HKlauder
cl (b∗,b) = HCEAM

cl (b∗,b). (29)

thus providing a rigorous construction of the classical limit
of the approach by Miller and coworkers [37].

In principle, having at hand a classical Hamiltonian as
the one in eq. (24), a semiclassical analysis of the path in-
tegral in b-representation along the lines presented bellow
can be carried out. The first step is to consider the classical
equations of motion

ih̄
d
dt

b(t) =
∂

∂b∗
HCEAM

cl (b∗,b), (30)

which can be canonically transformed into

ih̄
d
dt

n j(t) =
∂

∂θ j
HCEAM

cl (b∗,b)
∣∣∣∣
b=
√

nexp(iθ)
(31)

ih̄
d
dt

θ j(t) =−
∂

∂n j
HCEAM

cl (b∗,b)
∣∣∣∣
b=
√

nexp(iθ)
. (32)

Without loss of generality we consider the many-body Hamil-
tonian (21). Inspection of the associated equations of mo-
tion readily shows that the classical occupations n j = |b j|2
evolve in time only through the terms that depend on the
phases θ j. Here is where the classical limit HCEAM

cl (b∗,b)
is problematic: due to the presence of the ”Pauli” factors√

n(1−n) in eq. (24) we trivially obtain

d
dt

n j(t)
∣∣∣∣
n=0 or 1

= 0. (33)

Therefore the classical phase-space manifolds associated with
the physical Fock states, which are defined by precisely the
condition n = 0 or 1, do not evolve in time and there is no
way to connect the quantum and classical dynamics, neither
at the quasi-classical, nor at the semiclassical level. Remark-
ably, the classical limit as given for example in eq. (22) cir-
cumvents this problem by allowing arbitrarily high classical
occupation numbers, but penalizing them in a smooth (but
exponentially strong) manner.

It is important to stress that there is no reason why classi-
cal occupations must be bounded, exactly as there is no rea-
son why they have to take only integer values. In both cases
we are apparently violating what is just a classical picture
of the fermionic degrees of freedom. However, fermionic
fields are essentially non-classical objects and we are satis-
fied with being able to define a consistent classical limit by
pure formal manipulations. Adopting this pragmatical point
of view of defining the classical limit formally through the
exact path integral, the fields φα in eq. (23) do not need to
fit our expectations on how the classical limit should look
like. All that we ask them for is to correctly describe the
propagation between physical Fock states.
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4 Semiclassical approximation

The reason for the semiclassical approach to any quantum
system to be rooted in the path integral formulation is that
it accomplishes simultaneously three major goals. First, it
allows us to identify the classical limit of the theory. Sec-
ond, it serves as the starting point of a systematic station-
ary phase analysis that eventually leads to the semiclassical
propagator. Third, it is in the structure of the action func-
tional where h̄eff can be identified. The effective Planck con-
stant is not only the dimensionless parameter that defines the
classical limit h̄eff → 0, but also the small parameter that
makes the whole semiclassical approach valid. It appears
non-perturbatively, if the characteristic path integral repre-
sentation of the propagator,

K ∼
∫

D [·]e R[·]/h̄, (34)

is written in terms of a dimensionless action R̃,

K ∼
∫

D [·]e R̃[·]/h̄eff . (35)

Inspection of the exponents in eq. (19) shows that Planck’s
constant h̄ actually plays a minor role in our case. Clearly,
h̄ can be absorbed simply by a redefinition of the parame-
ters of the Hamiltonian (note that this is not the case in the
usual phase-space path integral). In order to identify h̄eff,
we rescale all the fields in such a way that the exponent ap-
pearing in eq. (19) takes the form R̃/h̄eff with R̃ = O(1).
Following this recipe, eq. (19) leads to

h̄eff = N−1, (36)

showing that in the present approach the classical limit cor-
responds to the limit of large number of particles. In the
following, we complete the stationary analysis of the exact
propagator valid in this N� 1 limit.

In eq. (19) all integrals, that can and should be carried
out exactly, are already performed, except for the integra-
tion over the initial phase of the first occupied single par-
ticle state. This integration has to be done exactly because
of the U(1) gauge symmetry, i.e. the freedom to multiply
the wave function by an arbitrary global phase. In order to
perform this integration, one first has to substitute the inte-
grations over the real and imaginary part of φ

(m)
j by those

over its modulus squared J(m)
j and phase ϕ

(m)
j and then has

to substitute the latter by θ
(m)
j −θ

(0)
j1

, where j1 denotes the
first initially occupied single particle state,

j1 = min
{

j ∈ {1,2, . . .} : n(i)j = 1
}
. (37)

These substitutions can be summarized as

φ
(m)
j =

√
J(m)

j exp
[
i
(

θ
(m)
j −θ

(0)
j1

)]
, (38)

for all j and m≥ 1, while for m = 0,

φ
(0)
j = n(i)j exp

[
i
(

θ
(0)
j −θ

(0)
j1

)]
if j 6= j1, (39)

φ
(0)
j1

= exp
(

iθ (0)
j1

)
. (40)

After these substitutions it is easy to see that the remaining
dependence of the path integral on the global phase θ

(0)
j1

is

given by exp[i(N f −Ni)θ
(0)
j1
], with Ni/ f = ∑ j n(i/ f )

j being the
initial, respectively, final total number of particles. There-
fore, the integration over the global phase simply yields a
factor 2πδN f ,Ni , which accounts for the conservation of the

total particle number. The remaining integrals over J(m)
j and

θ
(m)
j are then performed in stationary phase approximation,

where (similar to the derivation of Stirling’s approximation)
for consistency and in order to include the behavior of the
integrand especially for small occupations correctly, it is im-
portant to include the factors√

J(m)
j = exp

[
log
(

J(m)
j

)
/2
]

(41)

in the stationarity analysis. For intermediate times, 1≤m <

M, the stationarity conditions for J(m)
j and θ

(m)
j can be com-

bined to the conditions

ih̄
(

φ
(m)
j −φ

(m−1)
j

)
=τ

∂Hcl

(
φ
(m)∗,φ (m−1)

)
∂φ

(m)
j
∗ , (42)

−ih̄
(

φ
(m+1)
j

∗
−φ

(m)
j
∗)

=τ

∂Hcl

(
φ
(m+1)∗,φ (m)

)
∂φ

(m)
j

. (43)

In the same way, the conditions for m = M can be written
in the form of eq. (42) with m = M as well as the boundary
condition

J(M)
j = n( f )

j . (44)

Note that a linear combination of the stationarity conditions
for θ

(M)
j and J(M)

j is required to get the stationary phase con-
ditions in this form.

Since the integration over the initial phase is performed
only for occupied states, and the amplitude of φ

(0)
j is equal

to the initial occupation of the site n(i)j , the stationarity con-

dition for θ
(0)
j yields eq. (43) with m = 0. When finally tak-

ing the continuous limit τ→ 0, these conditions result in the
equations of motion

ih̄φ̇(t) =
∂Hcl (φ

∗(t),φ(t))
∂φ
∗(t)

, (45)

−ih̄φ̇
∗
(t) =

∂Hcl (φ
∗(t),φ(t))

∂φ(t)
, (46)
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along with the boundary conditions∣∣φ j(0)
∣∣2 = n(i)j ,

∣∣φ j(t f )
∣∣2 = n( f )

j (47)

with φ j1(0) = 1. It is important to note that the equations of
motion (45) and (46) are complex conjugates of each other,
such that for J single particle states we get J complex (or
correspondingly 2J real) equations of motion with 2J real
boundary conditions. Therefore one can always find at least
one solution without the complexification necessary for the
bosonic coherent state propagator [33,54]. Therefore, the
classical Hamiltonian and action will also be real.

We also point out the key difference in the role of the
boundary conditions in eq. (47) when compared with the
derivation of the classical limit from the path integral in the
standard first-quantized case. In the later, boundary condi-
tions are imposed at the level of the path integral and there-
fore are not subject to the stationary phase conditions. Con-
trary to the bosonic case where this observation remains
true [34], here again we encounter that the classical limit
of fermionic fields displays counter-intuitive features: the
boundary conditions (47) that allow for multiple solutions
of (45, 46) are themselves obtained from a stationary phase
argument, and the corresponding quantum fluctuations must
be considered at the same footing as the fluctuations around
the classical solutions.

Evaluating the exponent of the path integral along the
stationary point (including all additional phase factors orig-
inating from the boundary terms m = 1,M) then yields the
classical action

Rγ

(
n( f ),n(i); t f

)
=

t f∫
0

dt
[
h̄θ(t) · J̇(t)−Hcl (φ

∗(t),φ(t))
]
,

(48)

of the mean field trajectories defined by the equations of mo-
tion (45) and the boundary conditions (47). In eq. (48) the
real functions θ(t) and J(t) are defined through

φ j(t) =
√

J j(t)exp(iθ j(t)) . (49)

It is worth to note, that the equations of motion (45,46) in
these variables can also be written as the real equations

J̇(t) =
2
h̄

∂Hcl (φ
∗(t),φ(t))

∂θ(t)
, (50)

θ̇(t) =−2
h̄

∂Hcl (φ
∗(t),φ(t))

∂J(t)
, (51)

where φ ∗j (t) and φ j(t) should be understood as functions
of J j(t) and θ j(t) according to eq. (49). Thus, the classi-
cal trajectory lives on a symplectic manifold in phase space,
which is here defined as {(J,θ) : J j=1,2,... ∈ [0,∞),θ j=1,2,... ∈
[0,2π)}. Moreover, the theory of canonical transformations

[55] can be applied to show that the Poincaré-Cartan 1-form

θ ·dJ−Hdt (52)

is invariant under canonical transformations.
The derivatives of the action can be found by applying

the equations of motion to the integrand to read

∂Rγ

(
n( f ),n(i); t f

)
∂n(i)

=−h̄θ(0), (53)

∂Rγ

(
n( f ),n(i); t f

)
∂n( f )

= h̄θ(t f ), (54)

∂Rγ

(
n( f ),n(i); t f

)
∂ t f

=−Eγ , (55)

where Eγ = Hcl (φ
∗(0),φ(0)) is the energy of the trajectory.

Finally, the propagator eq. (16) reads

Ksc
(

n( f ),n(i); t f

)
= ∑

γ

Aγ exp
[

i
h̄

Rγ

(
n( f ),n(i); t f

)]
, (56)

where the sum runs over all “classical paths” γ which satisfy
the equations of motion (45) and the boundary conditions
(47), while Aγ is given by the still pending integrations over
the second variation of the paths. As is shown in appendix
B, Aγ can be written as

Aγ =
1

√
2π

N−1 exp

 i
2h̄

t f∫
0

dtTr
[

∂ 2Hcl

∂φ(t)2 X(t)
]

det
{

IN + exp
[
−2idiag

(
P f θ(t f )

)]
P f X(t f )PT

f
}− 1

2 ,

(57)

with N = Ni = N f being the total particle number and IN
the N ×N unit matrix. Moreover, P f is the matrix of the
projector onto the subspace of the states which are occupied
at final time, such that e.g.

P f n( f ) = (1, . . . ,1︸ ︷︷ ︸
N

)T. (58)

For later reference, we also define Pi, which is defined in
the same way as P f , but selecting the initially occupied sin-
gle particle states, as well as the complements P̄i/ f of Pi/ f .
With these matrices, one can also define the (orthonormal)
matrix

Qi/ f =

(
P̄i/ f
Pi/ f

)
, (59)

shifting all components of a vector corresponding to an ini-
tially (finally) unoccupied single particle state in front of all
the others.
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Finally in eq. (57) X(t) satisfies the differential equation

Ẋ(t) =
i
h̄

∂ 2Hcl

∂φ
∗(t)2 −

i
h̄

∂ 2Hcl

∂φ
∗(t)∂φ(t)

X(t)

− i
h̄

X(t)
∂ 2Hcl

∂φ(t)∂φ
∗(t)

+
i
h̄

X(t)
∂ 2Hcl

∂φ(t)2 X(t), (60)

with initial condition

X(0) = QT
i

(
0

exp [2idiag(P′iθ(0))]

)
Qi. (61)

The same differential equation, however with different ini-
tial conditions, was encountered previously in derivations
of a semiclassical propagator for bosonic many body sys-
tems in coherent state representation [33,54]. The solutions
given there indicate, how to find X(t): Consider a solution
ψ(t) of the equations of motion with initial conditions Y
and W, whereby each pair (Yj,Wj) are canonically conju-
gate variables. Possibilities for the choice of these pairs are
e.g. (ℜψ j(0),ℑψ j(0)), where ℜ and ℑ denote the real and
imaginary part, respectively, (

∣∣ψ j(0)
∣∣ ,argψ j(0)) with argψ

denoting the phase of ψ , or (ψ j(0),ψ∗j (0)). Then, the differ-
ential equation (60) is solved by the function

−∂ψ(t)
∂W

(
∂ψ∗(t)

∂W

)−1

, (62)

evaluated at the initial conditions corresponding to the tra-
jectory γ .

Finally, in order to find the solution for X(t), the vari-
ables Y and W need to be chosen such that for t = 0, eq. (62)
also satisfies the initial condition (61), which yields

(Yj,Wj) =

{
(ψ j(0),ψ∗j (0)), if n(i)j = 0 or j = j1
(n(i)j ,θ j), else.

(63)

Eventually, the semiclassical amplitude Aγ can be written as

Aγ =

√√√√√det

 1
2πih̄

∂ 2Rγ

∂

(
P′f n( f )

)
∂
(
P′in(i)

)


√
detQ f Qi exp

 i
2h̄

t f∫
0

dtTr
∂ 2Hcl

∂φ
∗
∂φ


exp

 i
2 ∑

j:n( f )
j =1

θ j(t f )−
i
2 ∑

j:n(i)j =1

θ j(0)


det
(
A−BC−1D

)− 1
2 . (64)

with P′i and P′f being the matrices resulting from Pi and
P f , respectively, by removing the first line. The determinant

consisting of the matrices

A =

∂

(
P̄ f φ

∗(t f ),Jmin
{

j∈{1,2,...}:n( f )
j =1

}(t f )

)
∂
(
P̄′iφ

∗(0)
) , (65)

B =

∂

(
P̄ f φ

∗(t f ),Jmin
{

j∈{1,2,...}:n( f )
j =1

}(t f )

)
∂ (P′iθ(0))

, (66)

C =
∂

(
P′f J(t f )

)
∂ (P′iθ(0))

, (67)

D =
∂

(
P′f J(t f )

)
∂
(
P̄′iφ

∗(0)
) . (68)

accounts for the vacuum fluctuations that have been treated
exactly. Note that in eq. (64) the Solari-Kochetov extra-phase

exp

 i
2h̄

t f∫
0

dtTr
∂ 2Hcl

∂φ
∗
∂φ

 (69)

typically arises in a semiclassical approximation of the prop-
agator in coherent state representation [33,56,57,58], while
in the standard (first quantized) van-Vleck-Gutzwiller prop-
agator [5], this phase is absent, due to the Weyl (symmetric)
ordering of the Hamiltonian with respect to position and mo-
mentum operators. For Bosons, the Solari-Kochetov phase
can be absorbed in the action by replacing the bosoinc cre-
ation and annihilation operators according to â†

j â j′→ (â†
j â j′+

â j′ â
†
j)/2 [33], which corresponds to Weyl ordering of the

quantum Hamiltonian. In the same way, for the propagator
in spin coherent states, this phase is absent in Weyl ordering
[59]. However, this vanishing of the Solari-Kochetov phase
in these cases is due to the fact that the classical Hamiltonian
is obtained out of the quantum one by the simple replace-
ments â†

j → φ ∗j and â j→ φ j, which is not valid here. There-
fore, it seems that here this phase can not be eliminated by
changing the chosen ordering of the fermionic creation and
annihilation operators.

Due to their definition eq. (59), the determinants detQi/ f
depend only on the choice of the initial and final occupations
and accept only the values ±1. Note that this sign also de-
pends on the definition of the Fock states, while the product
of both depends only on the relative changes between the
initial and final state and therefore is independent of the ex-
act choice of ordering of the single particle states.

It is important to notice that in eq. (64) the determinant
det(A−BC−1D) depends only on the derivatives of the val-
ues of the trajectory at final time with respect to the initial
conditions and should therefore be possible to calculate in
an actual application. Moreover, we expect that this deter-
minant is just the product of the exponentials of the final
and initial phases of the final unoccupied states, which can
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n(i)

n( f )

n( f ) =
n(i)

n(i)

n( f ) = T n(i)

GUE, GOE
& GSE GOE

GSE

γ

γ ′ = γ

γ

γ ′ = T γ

γ

γ ′ = T γ

Fig. 1 The quantum transition in a system of spin-1/2 particles in the
semiclassical limit. A trajectory γ is paired with a partner trajectory γ ′,
where γ ′ can be either γ itself, or its time reverse. The annotations at
the arrows indicate the symmetry class required for the corresponding
pairing to be present.

be set to zero. Thus, we assume this determinant to be equal
to one. However, up to now we did not succeed in proofing
this conjecture rigorously and therefore, we will keep this
determinant in the following.

5 Transition probability

5.1 General semiclassical treatment

Knowing the propagator enables us, in principle, to calcu-
late the quantum probability to measure the Fock state n( f )

after preparing the system of spin-1/2 particles in the initial
Fock state n(i) and letting it evolve for some time t. Com-
puting this probability is usually non-trivial, since the sin-
gle particle states can on the one hand be chosen arbitrarily,
and may thus not necessarily be eigenstates of the single-
particle Hamiltonian and on the other hand interactions in
general induce a coupling between different single particle
states. This probability is given by the modulus square of the
overlap between the time evolved state and |n( f )〉,

P
(

n( f ),n(i); t f

)
=
∣∣∣〈n( f )

∣∣∣ K̂ (t f
)∣∣∣n(i)

〉∣∣∣2 . (70)

Using the semiclassical approximation (56), it is given by a
double sum over trajectories,

P
(

n( f ),n(i); t f

)
≈∑

γ,γ ′
Aγ A ∗

γ ′ exp
[

i
h̄

(
Rγ −Rγ ′

)]
. (71)

Upon applying an energy or disorder average, the action dif-
ference gives rise to huge oscillations, such that most con-
tributions to the averaged double sum will cancel, except

if the paths γ and γ ′ are correlated. The types of trajectory
pairs, which we will consider in the following are depicted
in fig. 1. The simplest type of correlation arises for γ = γ ′.
This is known as the diagonal approximation [60]. The sec-
ond derivatives of the action with respect to the initial and
final Fock state in the prefactor can then be used to trans-
form the sum over trajectories into an integration over the
initial phases. Then the diagonal approximation yields,

Pcl

(
n( f ),n(i); t f

)
=

2π∫
0

dN−1
θ
(i) det

(
A−BC−1D

)−1
δ

(∣∣φ(t f )
∣∣2−n( f )

)
,

(72)

which we will refer to as classical probability. Here φ(t) is
the solution of the equations of motion eq. (45) with the ini-

tial condition φ j(0) =
√

n(i)j exp
(

iθ (i)
j

)
. It is worth to notice

that the exact treatment of the vacuum fluctuations gives rise
to a renormalization of the transition probability by the ad-
ditional factor det

(
A−BC−1D

)−1.
Further pairs of correlated trajectories are those given by

γ and its time reverse, γ ′ = T γ . However, the time reverse
of a trajectory exists only if the system is time reversal sym-
metric. Moreover, the initial and final occupations, respec-
tively, of both trajectories in the double sum of eq. (71) have
to be the same. On the other hand, if γ has initial occupa-
tions n(i) and final occupations n( f ), the initial occupations
of its time reverse are given by the time reverse of n( f ) and
the final ones by the time reverse of n(i). Therefore, in order
to pair γ with its time reverse, we need time reversal sym-
metry and also the final Fock state has to be the time reverse
of the initial one. To this end, one has to replace the sum
over trajectories from n(i) to n( f ) by a sum over trajectories
ending at the Fock state T n(i) originating from time revers-
ing the initial one. To this end, the actions in the exponential
need to be expanded in the final Fock state around T n(i) up
to linear order, while the prefactor is assumed to vary only
very slightly with n( f ), such that it can be simply replaced
by T n(i). For pairs γ ′ = T γ this procedure then gives the
contribution

∑
γ

Aγ A ∗
T γ exp

(
i
h̄

∆R
)
×

× exp
[
i
(

θ
(γ)(t f )−θ

(T γ)(t f )
)
·
(

n( f )−T n(i)
)]

, (73)

with the difference ∆R = Rγ −RT γ in the actions of γ and
T γ . Since for time reversal symmetric systems, the energy
of a trajectory and its time-reverse is the same, we easily get

∆R = h̄

t f∫
0

dt
(

θ
(γ) · J̇(γ)−θ

(T γ) · J̇(T γ)
)
. (74)
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In the next steps, we assume – in accordance with the cases
considered below – that the difference ∆R, is independent of
the trajectory. This is usually the case, since the second part
of the integral in the action difference can be related with
the first one by making use of the nature of the time reversal
operation. However, as we will see later, ∆R does not vanish
in general. Moreover, we can savely assume that θ

(T γ)(t f )

depends on the initial phases of γ , only (and through them
on the initial Fock state).

Upon disorder average, the phases θ
(γ)
j (t f ) behave, for

chaotic systems, like linearly distributed random variables
between 0 and 2π . Thus, treating them as random variables
and performing the average, yields a δn( f ),T n(i) , such that
one gets after utilizing the second derivative of the action
again

Pcl

(
n( f ),n(i); t f

)
δn( f ),T n(i) exp

(
i
h̄

∆R
)
. (75)

The action difference ∆R strongly depends on whether the
system is diagonal in spin space or not.

5.2 Systems diagonal in spin space

If the system is diagonal in spin space, i.e. the Hamiltonian
does not consist of terms giving rise to spin-flips, the time
reversal operation amounts to a complex conjugation only,
and therefore

T n(i) = n(i). (76)

It also implies that, on the classical level, the time reverse
of φ(t) is given by φ

∗(t f − t). With this information, it is
easy to prove that time reversed paths have the same action,
∆R = 0. Thus in semiclassical approximation the averaged
transition probability for a spin-diagonal system is given by

P
(

n( f ),n(i); t f

)
≈ Pcl

(
n( f ),n(i); t f

)(
1+δn( f ),n(i)

)
. (77)

This is, apart from apart from the renormalization of the
classical transition probability due to the exact treatment of
the vacuum (see eq. (72)), exactly the same result found pre-
viously for bosonic, spinless systems [34].

5.3 Systems non-diagonal in spin space

If the system’s Hamiltonian is non-diagonal in spin space,
the time reversal operation is not just complex conjugation,
but also demands an exchange of the spin-up and spin-down
components while at the same time introducing a relative
minus sign between them,

T̂ =

[
∏

j
(−iσ̂ j,y)

]
K̂. (78)

Here σ̂ j,y is the y-Pauli matrix for the j-th state and K̂ de-
notes complex conjugation. Important examples of systems
with such time reversal operations are for instance systems
with a Rashba spin-orbit coupling [61], whcih is of key im-
portance in semiconductor spintronics, but more recently
has also been realized using ultra-cold atoms [62].

On the classical level, this means that the time reversal
of φ = (φ ↑,φ ↓)

T, where φ ↑(↓) is the vector containing all
spin-up (spin-down) components of φ , is given by

T

(
φ ↑(t)
φ ↓(t)

)
=

(
−φ
∗
↓(t f − t)

φ
∗
↑(t f − t)

)
, (79)

and therefore also

T n(i) = T

(
n(i)
↑

n(i)
↓

)
=

(
n(i)
↓

n(i)
↑

)
. (80)

For the action difference, this yields

∆R = π h̄∑
j

[(
T n(i)

)
j,↑
−n(i)j,↑

]
= π h̄

(
N↓−N↑

)
, (81)

where N↑(↓) is the total number of spin-up (spin-down) par-
ticles in the initial state.

Thus, invoking the widely used nomenclature of the ran-
dom matrix symmetry classes and quantum chaos [6], one
finally finds for the averaged transition probability in semi-
classical approximation

P
(

n( f ),n(i); t f

)
=

P(cl)
(

n( f ),n(i); t f

)
1 , GUE[
1+δn( f ),n(i)

]
, GOE[

1+(−1)Nδ
n( f )
↓ ,n(i)↑

δ
n( f )
↓ ,n(i)↑

]
, GSE.

(82)

Here GUE (Gaussian Unitary Ensemble) means that the av-
erage runs over systems without time reversal symmetry,
while for GOE (Gaussian Orthogonal Ensemble) and GSE
(Gaussian Symplectic Ensemble) the average is over time
reversal invariant spin-1/2 systems, which are diagonal and
non-diagonal in spin space, respectively. This result and in
particular the origin of the deltas is illustrated in fig. 1.

It is important to note that, the probability to find n( f ) =

T n(i) is zero on average for the GSE case, if N is odd. How-
ever, the transition probability is a strictly positive quantity.
Therefore, in order to become zero on average, it has to be
zero for each disorder realization. In other words, for a time
reversal symmetric system, which is non-diagonal in spin
space, the transition from an initial Fock state to its spin re-
versed version is semiclassically prohibited,〈

T̂ n(i)
∣∣∣ K̂ (t f

)∣∣∣n(i)
〉
= 0 (83)
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for an odd total number of particles. This is consistent with〈
T̂ n
∣∣ Ĥ ∣∣n〉= 0. (84)

Similar to the proof of Kramer’s degeneracy [2], one can
show that eq. (84) implies that for an odd number of particles
and a symplectic time reversal symmetry, the transition from
a Fock state to its spin reversed version is exactly forbidden
quantum mechanically.

On the other hand, if the total number of particles is
even, and hence the total spin is integer, the transition prob-
ability is always enhanced by a factor of two compared to
the classical one, if the final Fock state is the time reversed
version of the initial one.

6 Conclusions

We presented a rigorous derivation of fermionic path inte-
grals representing quantum transition amplitudes in Fock
space in terms of unrestricted, commuting complex fields.
In the context of semiclassical approaches we believe that
this result represents an important improvement over previ-
ous approaches. First, we replace the anticommuting (Grass-
mann) variables, usually assumed to be the most natural rep-
resentation of a fermionic path integral, by complex vari-
ables in the path integral. In this way, the propagator can be
given a direct physical interpretation as a complex-valued
amplitude. Second, the path integral is unrestricted (defined
over the whole complex plane) and therefore avoids the com-
plications due to the definition of path integrals in compact
phase spaces.

Most notably, in the approach presented here a Hamilto-
nian classical limit can be identified which leads to real ac-
tions and therefore explicit interference. After applying the
stationary phase approximations to the path integral. In the
semiclassical limit (of large particle number), we are able
to derive as our major result a van Vleck-Gutzwiller type
propagator for fermionic quantum fields.

In contrast to the approaches of [37,39], here the semi-
classical approximation as well as the classical limit are ob-
tained from an exact path integral. However, there is still
a freedom of choice for the classical Hamiltonian, which
should be investigated further. Hence we do not exclude the
possibility, that by a certain choice, the classical limits of
[37,39] can be recovered. Moreover it remains to be ex-
plored, which classical limit is best suited for calculations
and simulations. This may actually even depend on the ac-
tual problem at hand.

In Sec. 5 we applied our results to the calculation of tran-
sition probabilities in the fermionic Fock space, and found
a rich dependence of many-body interference effects on the
universality class of the system. For systems with spin-orbit
interaction that belong to the symplectic class, our results

predict the exact cancellation of the transition probability
between time-reversed many-body states, if the total number
of particles is odd. This prediction that can be independently
demonstrated to be a consequence of Kramer’s degeneracy,
is a very stringent test for the correctness of our approach.
If the total particle number is even, however, the same tran-
sition is not only allowed, but its probability is enhanced by
a factor of two compared to the transitions to other states.
For systems without spin-flip mechanisms, we recover the
coherent backscattering previously found for bosons [34].
Upon destroying time reversal symmetry all this effects van-
ish, and the transition probability profile can be assumed to
be more or less constant for all Fock states.

Finally, we would like to note that, although the path
integral eq. (19) is restricted to the particle picture, i.e. to
the case that a particle is defined through an occupied single
particle state, it is also possible to construct a path integral in
the hole picture (for more details see appendix C.2), where
a particle is defined as an unoccupied single particle state.

The major principle restriction of applicability of our
approach is that the number of fermions N � 1 should be
large enough (our experience in the bosonic case indicates
that N ∼ 10 is enough). Therefore, within this regime, elec-
tronic systems such as quantum dots, coupled discrete sys-
tems like spin chains modeled by Heisenberg or Ising type
Hamiltonians, and molecular systems described by a dis-
crete set of single-particle orbitals can be addressed. Still,
then exist practical limitations of semiclassical approaches
in concrete applications, related, e.g., to the solution of the
shooting problem and the correct evaluation of amplitudes
and Maslov indexes. We hope that our approach is still ben-
eficial for the Chemical Physics community.

Finally, we remark that for treating emergent universal
quantum fluctuations in mesoscopic systems we only need
to verify that the classical limit displays chaotic behavior, a
substantially easier task.

Further applications of the semiclassical methods along
the lines presented here like the description of many-body
spin echoes [63] are presently under investigation.

Acknowledgements We thank T. Guhr, P. Schlagheck, S. Essert and
S. Smirnov for useful discussions. This work was financially supported
by the Deutsche Forschungsgemeinschaft wihtin FOR 760 and SPP
1666.

A Derivation of the path integral

For simplicity, in this section, we assume a quantum hamiltonian given
by

Ĥ = ∑
α,β

hαβ ĉ†
α ĉ

β
+ ∑

α,β
α 6=β

Uαβ ĉ†
α ĉ†

β
ĉ

β
ĉα . (85)

The result for a non-diagonal interaction Uαβγν , however, is given in
appendix C In order to get from eq. (17) to the complex path integral
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eq. (19), the following two integrals with j, j′ ∈ N0, will be inserted:
2π∫
0

dθ

∫
d2

φ exp
(
−|φ |2 + φ

∗ eiθ − i jθ
)

φ
j′ = 2π

2
δ j, j′ (86)

∫
d2

φ

∫
d2

µ exp
(
−|φ |2−|µ|2 + φ

∗
µ

)
φ

j (µ
∗) j′ = π

2 j!δ j, j′ , (87)

Thereby d2µ = dℜµdℑµ , i.e. the integrations over φ and, in the second
case, over µ run over the whole complex plane. One should notice,
that the first of these two integrals is just the second one, but with the
modulus of µ already integrated out.

The first of these two integrals is used to decouple ζ
(0) from ζ

(1)

by the following identity:

∫
d2J

ζ
(0) exp

(
− ζ

(0) ∗ ·ζ (0)
)[ J

∏
j=1

(
1+ χ

(0)
j
∗

ζ
(0)
j

)] J

∏
j=1

(
ζ
(0)
j
∗)n(i)j

=

∫ d2Ni φ (0)

πNi

2π∫
0

dNi θ (i)

(2π)Ni

∫
d2J

ζ
(0) exp

(
− ζ

(0) ∗ ·ζ (0)−
∣∣∣φ (0)

∣∣∣2 + φ
(0) ∗ ·µ(0)

)[ J

∏
j=1

(
1+ χ

(0)
j
∗

φ
(0)
j

)][J−1

∏
j=0

(
1+ζ

(0)
J− j µ

(0)
J− j
∗)] J

∏
j=1

(
ζ
(0)
j
∗)n(i)j

,

(88)

with µ
(0)
j = n(i)j exp

(
iθ (i)

j

)
for all j ∈ {1, . . . ,J}, where J is the

number of single particle states taken into account. Note that here, for
the initially unoccupied single particle states, the phases θ

(i)
j are arbi-

trary but fixed, e.g. to zero, while the integration runs only over those
initial phases θ

(i)
j , for which n(i)l = 1. In this way, the integrals, that

have to be performed exactly, in order to get a reasonable and correct
semiclassical approximation for the propagator are already done, and
do not have to be carried out later.

For the Ni = ∑
J
j=1 n(i)j initially occupied single particle states, the

identity follows directly from eq. (86), while for the unoccupied ones,

it is important to notice, that the term χ
(0)
j
∗

ζ
(0)
j does vanish when in-

tegrating over ζ
(0). This is because of the properties of the Grassmann

integrals eq. (10) and the fact, that there is no ζ
(0)
j
∗

for those compo-

nents, for which n(i)j = 0.
The thus obtained expression is the starting point for an iterative

insertion of integrals of the form of eq. (87). For 1 ≤ m < M, an eval-
uation of the overlaps and matrix elements of eq. (17) containing ζ

(m)

yields the following expression:

[
J

∏
j=1

(
1+ χ

(m)
j
∗

ζ
(m)
j

)][
1− iτ

h̄

J

∑
α,β=1

(
h(m−1)

αβ
ζ
(m)
α

∗
χ
(m−1)
β

+U (m−1)
αβ

ζ
(m)
α

∗
ζ
(m)
β

∗
χ
(m−1)
β

χ
(m−1)
α

)] J

∏
j=1

(
1+ ζ

(m)
j
∗

χ
(m−1)
j

)
=a(m)− iτ

h̄ ∑
α

h(m−1)
αα b(m)

α − iτ
h̄ ∑

α,β
α 6=β

h(m−1)
αβ

c(m)
αβ
− iτ

h̄ ∑
α,β
α 6=β

U (m−1)
αβ

d(m)
αβ

 J

∏
j=1

(
1+ ζ

(m)
j
∗

χ
(m−1)
j

)
. (89)

With the help of the integral eq. (87), the coefficients a(m), b(m), c(m) and d(m) can successively – starting from m = 1 – be written as

a(m) =
∫ d2J µ(m)

πJ

∫ d2Jφ (m)

πJ

[
J

∏
j=1

(
1+ χ

(m)
j
∗

φ
(m)
j

)]
exp
(
−
∣∣∣φ (m)

∣∣∣2− ∣∣∣µ(m)
∣∣∣2 + φ

(m) ∗ ·µ(m)

) J−1

∏
j=0

[
1+ζ

(m)
J− j

∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
]
,

(90)

b(m)
α =

∫ d2J µ(m)

πJ

∫ d2Jφ (m)

πJ exp
(
−
∣∣∣φ (m)

∣∣∣2− ∣∣∣µ(m)
∣∣∣2 + φ

(m) ∗ ·µ(m)

)
ζ
(m)
α

∗
χ
(m−1)
α

{
L−α−1

∏
j=0

[
1+ζ

(m)
J− j

∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
]}

[
1+ζ

(m)
α

∞

∑
k=1

c(1)k

(
φ
(m−1)
α

)(
µ
(m)
α

∗)k
]{

J−1

∏
j=J−α+1

[
1+ζ

(m)
J− j

∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
]}[

J

∏
j=1

(
1+ χ

(m)
j
∗

φ
(m)
j

)]
, (91)

c(m)
αβ

=
∫ d2J µ(m)

πJ

∫ d2Jφ (m)

πJ exp
(
−
∣∣∣φ (m)

∣∣∣2− ∣∣∣µ(m)
∣∣∣2 + φ

(m) ∗ ·µ(m)

)
ζ
(m)
α

∗
χ
(m−1)
β

{
J−max(α,β )−1

∏
j=0

[
1+ζ

(m)
J− j

∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
]}

[
1+ζ

(m)
max(α,β )

∞

∑
k=1

c(2)k

(
φ
(m−1)
max(α,β )

)(
µ
(m)
max(α,β )

∗)k
]{

J−min(α,β )−1

∏
j=J−max(α,β )+1

[
1+ζ

(m)
J− j

∞

∑
k=1

c(3)k

(
φ
(m−1)
J− j

)(
µ
(m)
J− j
∗)k
]}

[
1+ζ

(m)
min(α,β )

∞

∑
k=1

c(2)k

(
φ
(m−1)
min(α,β )

)(
µ
(m)
min(α,β )

∗)k
]{

J−1

∏
j=J−min(α,β )+1

[
1+ζ

(m)
J− j

∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
]}[

J

∏
j=1

(
1+ χ

(m)
j
∗

φ
(m)
j

)]
(92)
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d(m)
αβ

=
∫ d2J µ(m)

πJ

∫ d2Jφ (m)

πJ exp
(
−
∣∣∣φ (m)

∣∣∣2− ∣∣∣µ(m)
∣∣∣2 + φ

(m) ∗ ·µ(m)

)[ J

∏
j=1

(
1+ χ

(m)
j
∗

φ
(m)
j

)]
ζ
(m)
α

∗
ζ
(m)
β

∗
χ
(m−1)
β

χ
(m−1)
α{

J−max(α,β )−1

∏
j=0

[
1+ζ

(m)
J− j

∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
]}[

1+ζ
(m)
max(α,β )

∞

∑
k=1

c(4)k

(
φ
(m−1)
max(α,β )

)(
µ
(m)
max(α,β )

∗)k
]

{
J−min(α,β )−1

∏
j=J−max(α,β )+1

[
1+ζ

(m)
J− j

∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
]}[

1+ζ
(m)
min(α,β )

∞

∑
k=1

c(4)k

(
φ
(m−1)
min(α,β )

)(
µ
(m)
min(α,β )

∗)k
]

{
J−1

∏
j=J−min(α,β )+1

[
1+ζ

(m)
J− j

∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
]}

, (93)

with c(1)1 = c(2)1 = c(3)1 = c(4)1 = 1.
It is important to notice, that the integral over φ

(m) and µ(m) selects only the k = 1 terms of the occurring sums. Therefore, the terms with
k ≥ 2 can be varied, in order to modify the final path integral in the desired way.

Finally, for m = M, a similar argument as for m = 0 allows to restrict the integrals over φ
(M) again to those N f = ∑

J
j=1 n( f )

j components with

n( f )
j = 1, while setting all the other components of φ

(M) to zero.

After this the m-th factor in the product over the timesteps only depends on ζ
(m+1) and χ(m), such that one can easily integrate out the

intermediate Grassmann variables ζ
(1), . . . ,ζ (M) and χ(0), . . . ,χ(M−1) by using

∫
d2J

ζ

∫
d2J

χ exp
(
− ζ

∗ ·ζ − χ
∗ ·χ

)[J−1

∏
j=0

(
1+ζJ− j f (m)

J− j

)][ J

∏
j=1

(
1+ ζ j

∗
χ j
)][ J

∏
j=1

(
1+ χ j

∗
φ
(m)
j

)]
=

J

∏
j=1

(
1+ f (m)

j φ
(m)
j

)
, (94)

∫
d2J

ζ

∫
d2J

χ exp
(
− ζ

∗ ·ζ − χ
∗ ·χ

)[J−1

∏
j=0

(
1+ζJ− j f (m)

J− j

)][ J

∏
j=1

(
1+ ζ j

∗
χ j
)][ J

∏
j=1

(
1+ χ j

∗
φ
(m)
j

)]
ζα
∗

χβ =

f (m)
α φ

(m)
β

[
min(α,β )−1

∏
j=1

(
1+ f (m)

j φ
(m)
j

)][ J

∏
j=max(α,β )+1

(
1+ f (m)

j φ
(m)
j

)] max(α,β )−1

∏
j=min(α,β )+1

(
1− f (m)

j φ
(m)
j

)
, (95)

∫
d2J

ζ

∫
d2J

χ exp
(
− ζ

∗ ·ζ − χ
∗ ·χ

)[J−1

∏
j=0

(
1+ζJ− j f (m)

J− j

)][ J

∏
j=1

(
1+ ζ j

∗
χ j
)][ J

∏
j=1

(
1+ χ j

∗
φ
(m)
j

)]
ζα
∗

ζβ
∗

χβ χα =

f (m)
α f (m)

β
φ
(m)
β

φ
(m)
α

J

∏
j=1

j 6=α,β

(
1+ f (m)

j φ
(m)
j

)
. (96)

Moreover, the integrals over ζ
(0) and χ(M) yield

∫
d2J

ζ
(0) exp

(
− ζ

(0) ∗ ·ζ (0)
)[J−1

∏
j=0

(
1+ζ

(0)
J− j µ

(0)
J− j
∗)]

J

∏
j=1

(
ζ
(0)
j
∗)n(i)j

= ∏
j:n(i)j =1

µ
(0)
j
∗

(97)

∫
d2J

χ
(M) exp

(
− χ

(M) ∗ ·χ(M)
)[J−1

∏
j=0

(
χ
(M)
J− j

)n( f )
J− j

]
J

∏
j=1

(
1+χ

(M)
j φ

(M)
j
∗)

= ∏
j:n( f )

j =1

φ
(M)
j (98)

After performing these integrals, one notices, that the inserted integrals
have been chosen such, that the resulting sums can be performed and
yield exponentials, such that the propagator is, after integrating out
µ(1), . . . ,µ(M) as well as φ

(0) and undo the expansion in τ , given by
the path integral eq. (19), where the classical Hamiltonian is given by

Hcl (µ
∗ ,φ) =

∑
α

hαα µα
∗

φα f1 (µα
∗ ,φα )

+ ∑
α,β

α 6=β

hαβ µα
∗

φβ f2 (µα
∗ ,φα )exp

(
− µβ

∗
φβ

)
∏

l

α,β g(µl
∗ ,φl)

+ ∑
α,β

α 6=β

Uαβ µα
∗

µβ
∗

φα φβ f3 (µα
∗ ,φα ) f3

(
µβ
∗ ,φβ

)
, (99)

where f1, f2, f3 and g are arbitrary analytic functions satisfying the
following conditions:

f1 (0,φ) = f2 (0,φ) = f3 (0,φ) = 1 (100)

g(0,φ) = 1 (101)

∂

∂ µ∗
g(µ∗,φ)

∣∣∣∣
µ∗=0

=−2φ . (102)

Moreover, as in section 3, the product in the third line runs only over
those values of j, which are lying between α and β , excluding α and
β themselves,

∏
j

α,β
. . .=

max(α,β )−1

∏
j=min(α,β )+1

. . . (103)
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B The semiclassical amplitude

The semiclassical amplitude is given by the integral over the exponen-
tial of the second variation of the path integral around the classical path
wich can be written as,

Aγ = lim
M→∞

1

(2π)2N−1+(M−1)J

∫
dN−1

δθ
(0)
∫

dN
δJ(M)

∫
dN

δθ
(M)
∫

dJ
δJ(1)

∫
dJ

δθ
(1) · · ·

∫
dJ

δJ(M−1)
∫

dJ
δθ

(M−1)

exp

{
− 1

2
δθ

(0)P′i
∂φ

(0)

∂θ
(i)

[
−exp

[
−2idiag

(
θ
(i)
)]

+
iτ
h̄

∂ 2H(cl)(0)

∂φ
(0)2

]
∂φ

(0)

∂θ
(i)

P′i
T

δθ
(0)

− 1
2

(
δθ

(M)P f

δJ(M)P f

)
O(M)T

 exp
[
−2idiag

(
θ
(M)
)]

IJ

IJ
iτ
h̄

∂ 2H(cl)(M−1)

∂ φ (M) ∗2

O(M)

(
PT

f δθ
(M)

PT
f δJ(M)

)

− 1
2

M−1

∑
m=1

(
δθ

(m)

δJ(m)

)
O(m)T

 iτ
h̄

∂ 2H(cl)(m)

∂φ (m)2 IJ

IJ
iτ
h̄

∂ 2H(cl)(m−1)

∂ φ (m) ∗2

O(m)

(
δθ

(m)

δJ(m)

)

+

(
δθ

(1)

δJ(1)

)
O(1)T

(
0

IJ− iτ
h̄

∂ 2H(cl)(0)

∂ φ (1) ∗∂φ (0)

)
∂φ

(0)

∂θ
(i)

P′i
T

δθ
(i)

+

(
δθ

(M)P f

δJ(M)P f

)
O(M)T

(
0 0

IJ− iτ
h̄

∂ 2H(cl)(M−1)

∂ φ (M) ∗∂φ (M−1) 0

)
O(M−1)

(
δθ

(M−1)

δJ(M−1)

)

+
M−2

∑
m=1

(
δθ

(m)

δJ(m)

)
O(m)T

(
0 0

IJ− iτ
h̄

∂ 2H(cl)(m)

∂ φ (m+1) ∗∂φ (m)
0

)
O(m)

(
δθ

(m)

δJ(m)

)}
, (104)

with

O(m) =

 ∂φ (m)

∂θ
(m)

∂φ (m)

∂J(m)

∂ φ (m) ∗

∂θ
(m)

∂ φ (m) ∗

∂J(m)

 . (105)

Moreover, diag(v) is the diagonal d×d-matrix for which the ( j, j)-th
entry is equal to v j , where d is the dimensionality of the vector v and
Pi/ f and P′i/ f are defined as the N×J and (N−1)×J-matrices, respec-
tively, which project onto the subspace of initially and finally occupied
single particle states, with the latter excluding the first occupied one,(

Pi/ f
)

l j =δ
j(′)l , j

(106)(
P′i/ f

)
l j
=δ

j(′)l+1, j
, (107)

where j1 < .. . < jN ∈
{

j ∈ {1, . . . ,J} : n(i)j = 1
}

and j′1 < .. . < j′N ∈{
j ∈ {1, . . . ,J} : n( f )

j = 1
}

are the initially, respectively finally, occu-
pied single particle states.

For later reference, we also define P̄i/ f as the complement of Pi/ f
as well as

Qi/ f =

(
P̄i/ f
Pi/ f

)
, (108)

which are the (orthogonal) matrices, which put the components corre-
sponding to initially and finally unoccupied single particle states to the
first J−N positions, and those correspondig to occupied single particle
states to the last N positions, i.e.

Qi/ f n(i/ f ) = (0, . . . ,0︸ ︷︷ ︸
J−N

,1, . . . ,1︸ ︷︷ ︸
N

)T. (109)

The integral over δθ
(0) is given by

1

(2π)N−1

∫
dN−1

δθ
(0) exp

{
− 1

2
δθ

(0)P′i
∂φ

(0)

∂θ
(i)

(
−exp

[
−2idiag

(
θ
(i)
)]

+
iτ
h̄

∂ 2H(cl)(0)

∂φ
(0)2

)
∂φ

(0)

∂θ
(i)

P′i
T

δθ
(0)

+

(
δθ

(1)

δJ(1)

)
O(1)T

(
0

IJ− iτ
h̄

∂ 2H(cl)(0)

∂ φ (1) ∗∂φ (0)

)
∂φ

(0)

∂θ
(i)

P′i
T

δθ
(i)− 1

2

(
δθ

(1)

δJ(1)

)
O(1)T

 iτ
h̄

∂ 2H(cl)(1)

∂φ (1)2 IJ

IJ
iτ
h̄

∂ 2H(cl)(0)

∂ φ (1) ∗2

O(1)
(

δθ
(1)

δJ(1)

)}
=

1
√

2π
N−1

det

IJ−
∂ 2H(cl)(0)

∂

(
Piφ

(0)
)2 exp

[
2idiag

(
θ
(i)
)]


−1

exp

−1
2

(
δθ

(1)

δJ(1)

)
O(1)T

 iτ
h̄

∂ 2H(cl)(1)

∂φ (1)2 IJ

IJ X(1)

O(1)
(

δθ
(1)

δJ(1)

) , (110)
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where X(1) is defined as

X(1) =
iτ
h̄

∂ 2H(cl)(0)

∂ φ
(1) ∗2 +

(
IJ−

iτ
h̄

∂ 2H(cl)(0)

∂ φ
(1) ∗

∂φ
(0)

)
P′i

T

exp
[
−2idiag

(
P′iθ

(i)
)]
− iτ

h̄
∂ 2H(cl)(0)

∂

(
P′iφ

(0)
)2


−1

P′i

(
IJ−

iτ
h̄

∂ 2H(cl)(0)

∂φ
(0)

∂ φ
(1) ∗

)
(111)

It can be shown, that eq. (111) can also be written as

X(1) =
iτ
h̄

∂ 2H(cl)(0)

∂ φ
(1) ∗2 +

(
IJ−

iτ
h̄

∂ 2H(cl)(0)

∂ φ
(1) ∗

∂φ
(0)

)
X(0)

(
IJ−

iτ
h̄

∂ 2H(cl)(0)

∂φ
(0)2 X(0)

)−1(
IJ−

iτ
h̄

∂ 2H(cl)(0)

∂φ
(0)

∂ φ
(1) ∗

)
, (112)

with

X(0) = Qi
T

(
0

exp
[
2idiag

(
P′iθ

(i)
)])Qi. (113)

Now, consider the integral

1

(2π)J

∫
dJ

δJ(m)
∫

dJ
δθ

(m) exp

{
− 1

2

(
δθ

(m+1)

δJ(m+1)

)
O(m+1)T

 iτ
h̄

∂ 2H(cl)(m+1)

∂φ (m+1)2 IJ

IJ
iτ
h̄

∂ 2H(cl)(m)

∂ φ (m+1) ∗2

O(m+1)
(

δθ
(m+1)

δJ(m+1)

)

− 1
2

(
δθ

(m)

δJ(m)

)
O(m)T

 iτ
h̄

∂ 2H(cl)(m)

∂φ (m)2 IJ

IJ X (m)

O(m)

(
δθ

(m)

δJ(m)

)
+

(
δθ

(m+1)

δJ(m+1)

)
O(m+1)T

(
0 0

IJ− iτ
h̄

∂ 2H(cl)(m)

∂ φ (m+1) ∗∂φ (m)
0

)
O(m)

(
δθ

(m)

δJ(m)

)}
=

{
det

[
IJ−

iτ
h̄

∂ 2H(cl)(m)

∂φ
(m)2 X(m)

]}−1

exp

−1
2

(
δθ

(m+1)

δJ(m+1)

)
O(m+1)T

 iτ
h̄

∂ 2H(cl)(m+1)

∂φ (m+1)2 IJ

IJ X(m+1)

O(m+1)
(

δθ
(m+1)

δJ(m+1)

) (114)

with

X(m+1) =
iτ
h̄

∂ 2H(cl)(m)

∂ φ
(m+1) ∗2 +

(
IJ−

iτ
h̄

∂ 2H(cl)(m)

∂ φ
(m+1) ∗

∂φ
(m)

)
X(m)

(
IJ−

iτ
h̄

∂ 2H(cl)(m)

∂φ
(m)2 X(m)

)−1(
IJ−

iτ
h̄

∂ 2H(cl)(m)

∂φ
(m)

∂ φ
(m+1) ∗

)
. (115)

For m = 1 this is exactly the integral in eq. (104) after integrating out δθ
(0) and thus defines X(2). One then recognizes, that after the m-th

integration, the integral is again of the form of eq. (114) up to the (M− 1)-th integration. With this observation, the semiclassical amplitude is
given by

Aγ = lim
M→∞

1

(2π)
3N−1

2

∫
dNJ(M)

∫
dN

θ
(M)

M−1

∏
m=0

√√√√det

(
IJ−

iτ
h̄

∂ 2H(cl)(m)

∂φ
(m)2 X(m)

)−1

exp

{
−1

2

(
δθ

(M)P f

δJ(M)P f

)
O(M)T

(
exp
[
−2idiag

(
θ
(M)
)]

IJ

IJ X (M)

)
O(M)

(
PT

f δθ
(M)

PT
f δJ(M)

)}

= lim
M→∞

1
√

2π
N−1

M−1

∏
m=0

√√√√det

(
IJ−

iτ
h̄

∂ 2H(cl)(m)

∂φ
(m)2 X(m)

)−1√det
(

IN − exp
[
−2idiag

(
P f θ

(M)
)]

P f X(M)PT
f

)−1

. (116)



18 T. Engl, P. Plößl, J. D. Urbina and K. Richter

In the continuous limit, the discrete set of X(m) turns into a func-
tion of time X(t), and (by expanding it up to first order in τ) is given
by eq. (60), and the semiclassical amplitude can be written in the form
given in eq. (57).

C Possible Classical Hamiltonians

In this part, we state different possibilities for the classical hamiltonian
as can be derived out of similar calculations as in appendix A without
going furhter into detail.

C.1 Classical Hamiltonians in the particle picture

First, we present two possibilities arising directly from the derivation
presented in appendix A, but restrict ourselves to those, which contain
µ and φ in a symmetric way and omitting the one already stated in
sec. 3. These examples shall just illustrate, which kinds of classical
Hamiltonians are possible:

H(1)
cl (µ

∗ ,φ) =

∑
α

hαα µα
∗

φα cos(µα
∗

φα )+ ∑
α,β

α 6=β

Uαβ µα
∗

µβ
∗

φα φβ

+ ∑
α,β

α 6=β

hαβ µα
∗

φβ exp

(
−

max(α,β )

∑
l=min(α,β )

µl
∗

φl

)
, (117)

H(2)
cl (µ

∗ ,φ) =

∑
α

hαα µα
∗

φα exp(µα
∗

φα )

+ ∑
α,β

α 6=β

hαβ µα
∗

φβ exp
(
− µβ

∗
φβ − µα

∗
φα

)

×
max(α,β )−1

∏
l=min(α,β )+1

[1− sinh(2 µl
∗

φl)]

+ ∑
α,β

α 6=β

Uαβ µα
∗

µβ
∗

φα φβ cosh(µα
∗

φα )cosh
(

µβ
∗

φβ

)
, (118)

Next, consider the more general case, that the quantum Hamiltonian is
written in the form

Ĥ = ∑
α,β

hαβ ĉ†
α ĉ

β
+ ∑

α,β ,ρ,ν
α 6=β ,ρ 6=ν

Uαβρν ĉ†
α ĉ†

β
ĉρ ĉν . (119)

By splitting the interaction term also into (pairwise) diagonal and non-
diagonal terms, one can in a similar way as in sec. A construct the
following classical Hamiltonian

Hcl (µ
∗ ,φ) =∑

α

hαα µα
∗

φα f1 (µα
∗ ,φα )+ ∑

α,β
α 6=β

hαβ µα
∗

φβ f2 (µα
∗ ,φα )exp

(
− µβ

∗
φβ

) max(α,β )−1

∏
l=min(α,β )+1

g(µl
∗ ,φl)

+ ∑
α,β

α 6=β

Uαββα µα
∗

µβ
∗

φα φβ f3 (µα
∗ ,φα ) f3

(
µβ
∗ ,φβ

)
+ ∑

α,β ,ρ
α 6=β ,ρ 6=α,ρ 6=β

[Θ (β −α)Θ (β −ρ)+Θ (α−β )Θ (ρ−β )−Θ (α−β )Θ (β −ρ)−Θ (β −α)Θ (ρ−β )]

(
Uαββρ −Uαβρβ

)
µα
∗

µβ
∗

φβ φρ f1 (µα
∗ ,φα ) f2 (µα

∗ ,φα )exp
(
− µρ

∗
φρ

) max(α,ρ)−1

∏
j=min(α,ρ)+1

g(µ j
∗ ,φ j)

+ ∑
α,β ,ρ

α 6=β ,ρ 6=α,ρ 6=β

[Θ (β −α)Θ (ρ−α)+Θ (α−β )Θ (α−ρ)−Θ (α−β )Θ (ρ−α)−Θ (β −α)Θ (α−ρ)]

(
Uαβρα −Uαβαρ

)
µα
∗

µβ
∗

φα φρ f1 (µα
∗ ,φα ) f2

(
µβ
∗ ,φβ

)
exp
(
− µρ

∗
φρ

) max(β ,ρ)−1

∏
j=min(β ,ρ)+1

g(µ j
∗ ,φ j)

+ ∑
α,β ,ρ,ν

α 6=β ,α 6=ρ,α 6=ν ,β 6=ρ,β 6=ν ,ρ 6=ν

[Θ (β −α)−Θ (α−β )] [Θ (ρ−ν)−Θ (ν−ρ)]Uαβρν µα
∗

µβ
∗

φρ φν f2 (µα
∗ ,φα ) f2

(
µβ
∗ ,φβ

)

exp
(
− µρ

∗
φρ − µν

∗
φν

)min
{
{α,β ,ρ,ν}\{min(α,β ,ρ,ν)}

}
−1

∏
l=min(α,β ,ρ,ν)+1

g(µ j
∗ ,φ j)


 max(α,β ,ρ,ν)−1

∏
l=max

{
{α,β ,ρ,ν}\{max(α,β ,ρ,ν)}

}
+1

g(µ j
∗ ,φ j)

 ,
(120)

where f1, f2, f3 and g are again arbitrary analytic functions satis-
fying eqs. (100-102). Thereby, one should notice, that

min
{
{α,β ,ρ,ν}\{min(α,β ,ρ,ν)}

}
is the second smallest number out of the set {α,β ,ρ,ν} and

max
{
{α,β ,ρ,ν}\{max(α,β ,ρ,ν)}

}
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the second largest number out of the set {α,β ,ρ,ν}.

C.2 Classical Hamiltonians in the hole picture

The cases considered above, we call particle picture, since the bound-
ary conditions are such, that

∣∣φ j
∣∣2 = 1 corresponds to the j-th single

particle state beeing occupied, while
∣∣φ j
∣∣2 = 0 corresponds to the j-th

single particle state beeing empty. However, the role of occupied and
unoccupied states can be reversed, if eqs. (88) are replaced by

∫
d2J

ζ
(0) exp

(
− ζ

(0) ∗ ·ζ (0)
)[ J

∏
j=1

(
1+ χ

(0)
j
∗

ζ
(0)
j

)] J

∏
j=1

(
ζ
(0)
j
∗)n(i)j

=

∫ d2(J−Ni)φ (0)

πJ−Ni

2π∫
0

dJ−Ni θ (i)

(2π)J−Ni

∫
d2J

ζ
(0) exp

(
− ζ

(0) ∗ ·ζ (0)−
∣∣∣φ (0)

∣∣∣2 + φ
(0) ∗ ·µ(0)

)[ J

∏
j=1

(
φ
(0)
j + χ

(0)
j
∗)][J−1

∏
j=0

(
µ
(0)
J− j
∗
+ζ

(0)
J− j

)] J

∏
j=1

(
ζ
(0)
j
∗)n(i)j

,

(121)

where the integrations over θ
(i) and φ

(0) run over those components, which are initially empty µ
(0)
j =

(
1−n(i)j

)
exp
(

iθ (i)
j

)
, as well as

a(m) =
∫ d2J µ(m)

πJ

∫ d2Jφ (m)

πJ

[
J

∏
j=1

(
φ
(m)
j

)
+ χ

(m)
j
∗
]

exp
(
−
∣∣∣φ (m)

∣∣∣2− ∣∣∣µ(m)
∣∣∣2 + φ

(m) ∗ ·µ(m)

) J−1

∏
j=0

[
∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
+ζ

(m)
J− j

]
,

(122)

b(m)
α =

∫ d2J µ(m)

πJ

∫ d2Jφ (m)

πJ exp
(
−
∣∣∣φ (m)

∣∣∣2− ∣∣∣µ(m)
∣∣∣2 + φ

(m) ∗ ·µ(m)

)
ζ
(m)
α

∗
χ
(m−1)
α

{
L−α−1

∏
j=0

[
∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
+ζ

(m)
J− j

]}
[

∞

∑
k=1

c(1)k

(
φ
(m−1)
α

)(
µ
(m)
α

∗)k
+ζ

(m)
α

]{
J−1

∏
j=J−α+1

[
∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
+ζ

(m)
J− j

]}[
J

∏
j=1

(
φ
(m)
j + χ

(m)
j
∗)]

, (123)

c(m)
αβ

=
∫ d2J µ(m)

πJ

∫ d2Jφ (m)

πJ exp
(
−
∣∣∣φ (m)

∣∣∣2− ∣∣∣µ(m)
∣∣∣2 + φ

(m) ∗ ·µ(m)

)
ζ
(m)
α

∗
χ
(m−1)
β

{
J−max(α,β )−1

∏
j=0

[
∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
+ζ

(m)
J− j

]}
[

∞

∑
k=1

c(2)k

(
φ
(m−1)
max(α,β )

)(
µ
(m)
max(α,β )

∗)k
+ζ

(m)
max(α,β )

]{
J−min(α,β )−1

∏
j=J−max(α,β )+1

[
∞

∑
k=1

c(3)k

(
φ
(m−1)
J− j

)(
µ
(m)
J− j
∗)k

+ζ
(m)
J− j

]}
[

∞

∑
k=1

c(2)k

(
φ
(m−1)
min(α,β )

)(
µ
(m)
min(α,β )

∗)k
+ζ

(m)
min(α,β )

]{
J−1

∏
j=J−min(α,β )+1

[
∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
+ζ

(m)
J− j

]}[
J

∏
j=1

(
φ
(m)
j + χ

(m)
j
∗)]

(124)

d(m)
αβ

=
∫ d2J µ(m)

πJ

∫ d2Jφ (m)

πJ exp
(
−
∣∣∣φ (m)

∣∣∣2− ∣∣∣µ(m)
∣∣∣2 + φ

(m) ∗ ·µ(m)

)[ J

∏
j=1

(
φ
(m)
j + χ

(m)
j
∗)]

ζ
(m)
α

∗
ζ
(m)
β

∗
χ
(m−1)
β

χ
(m−1)
α{

J−max(α,β )−1

∏
j=0

[
∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
+ζ

(m)
J− j

]}[
∞

∑
k=1

c(4)k

(
φ
(m−1)
max(α,β )

)(
µ
(m)
max(α,β )

∗)k
+ζ

(m)
max(α,β )

]
{

J−min(α,β )−1

∏
j=J−max(α,β )+1

[
∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
+ζ

(m)
J− j

]}[
∞

∑
k=1

c(4)k

(
φ
(m−1)
min(α,β )

)(
µ
(m)
min(α,β )

∗)k
+ζ

(m)
min(α,β )

]
{

J−1

∏
j=J−min(α,β )+1

[
∞

∑
k=1

1
k!

(
µ
(m)
J− j
∗)k (

φ
(m−1)
J− j

)k−1
+ζ

(m)
J− j

]}
, (125)

Inserting the integrals like this results in the following path integral:

K
(

n( f ),n(i); t f

)
=

 ∏
j:n(i)j =0

2π∫
0

dθ
(0)
j

2π
exp
(
−iθ (0)

j

)
M−1

∏
m=1

∏
j

∫
C

dφ
(m)
j

π
exp
(
−
∣∣∣φ (m)

j

∣∣∣2)

 ∏

j:n( f )
j =0

∫
C

dφ
(M)
j

π
φ
(M)
j exp

(
−
∣∣∣φ (M)

j

∣∣∣2)


exp

{
M

∑
m=1

[
φ
(m)∗ ·φ (m−1)− iτ

h̄
Hcl

(
φ
(m)∗,φ (m−1)

)]}
, (126)
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with the classical hamiltonian

H(cl)(m)
(µ
∗ ,φ) =

J

∑
α=1

h(m)
αα exp(− µα

∗
φα )+

J

∑
α,β=1
α 6=β

U (m)
αβ

exp
(
− µα

∗
φα − µβ

∗
φβ

)
+

J

∑
α,β=1
α 6=β

h(m)
αβ

µβ
∗

φα exp(− µα
∗

φα ) f
(

µβ
∗ ,φβ

) max(α,β )−1

∏
j=min(α,β )+1

g(µ j
∗ ,φ j) ,

(127)

where f and g are arbitrary analytical functions satisfying

f (0,φ) = 1 (128)

g(0,φ) =−1 (129)

∂

∂ µ ∗
g(µ

∗ ,φ)

∣∣∣∣
µ ∗=0

= 2φ . (130)
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