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Abstract

Age-related macular degeneration (AMD) is the leading cause of severe vision impairment in Western populations over 55
years. A growing number of gene variants have been identified which are strongly associated with an altered risk to develop
AMD. Nevertheless, gene-based biomarkers which could be dysregulated at defined stages of AMD may point toward key
processes in disease mechanism and thus may support efforts to design novel treatment regimens for this blinding disorder.
Circulating microRNAs (cmiRNAs) which are carried by nanosized exosomes or microvesicles in blood plasma or serum, have
been recognized as valuable indicators for various age-related diseases. We therefore aimed to elucidate the role of
cmiRNAs in AMD by genome-wide miRNA expression profiling and replication analyses in 147 controls and 129 neovascular
AMD patients. We identified three microRNAs differentially secreted in neovascular (NV) AMD (hsa-mir-301-3p,
pcorrected = 5.6*1025, hsa-mir-361-5p, pcorrected = 8.0*1024 and hsa-mir-424-5p, pcorrected = 9.6*1023). A combined profile of
the three miRNAs revealed an area under the curve (AUC) value of 0.727 and was highly associated with NV AMD
(p= 1.2*1028). To evaluate subtype-specificity, an additional 59 AMD cases with pure unilateral or bilateral geographic
atrophy (GA) were analyzed for microRNAs hsa-mir-301-3p, hsa-mir-361-5p, and hsa-mir-424-5p. While we found no
significant differences between GA AMD and controls neither individually nor for a combined microRNAs profile, hsa-mir-
424-5p levels remained significantly higher in GA AMD when compared to NV (pcorrected,0.005). Pathway enrichment
analysis on genes predicted to be regulated by microRNAs hsa-mir-301-3p, hsa-mir-361-5p, and hsa-mir-424-5p, suggests
canonical TGFb, mTOR and related pathways to be involved in NV AMD. In addition, knockdown of hsa-mir-361-5p resulted
in increased neovascularization in an in vitro angiogenesis assay.
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Introduction

Age-related macular degeneration (AMD) is a highly prevalent

cause of severe vision impairment among people aged 55 years

and older [1]. It is a degenerative disorder of the central retina

involving predominantly the rod photoreceptors, the retinal

pigment epithelium (RPE), Bruchs membrane and the underlying

choriocapillaris [2]. The disease aetiology is complex and is

influenced by a combination of multiple genetic susceptibility

factors and environmental components.

An early sign of AMD is the appearance of drusen, yellowish

extracellular deposits of protein and lipid material within and

beneath the RPE. Advanced AMD manifests essentially as two

distinct late-stage lesions – geographic atrophy (GA) and

neovascular (NV) AMD. GA occurs in up to 50% of cases and

is clinically defined as a discrete area of RPE atrophy with visible

choroidal vessels in the absence of neovascularization in the same

eye [2–5]. It may or may not involve the fovea. NV AMD

describes the development of new blood vessels beneath and

within the retina and is characterized by serous or hemorrhagic

detachment of either the RPE or the sensory retina, the presence

of subretinal fibrous tissue and eventually widespread RPE

atrophy. Progression to visual loss can be rapid in NV AMD [1].

The precise aetiology of AMD is still not fully understood,

although risk factors such as age, smoking, and genetic compo-

nents are known to strongly contribute to disease development [2].

In Western societies, AMD reveals an age-dependent prevalence

of almost 1 in 5 people aged 85 and above [3–5]. Across a number

of epidemiological studies, smoking has consistently been associ-

ated with increased risk of developing advanced AMD with an

estimated odds ratio of approximately 2 [6]. The exact mecha-

nism, however, by which smoking affects the retina is unknown.
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Twin studies and familial aggregation studies suggested a

significant genetic contribution of up to 70% in disease risk [7].

Subsequently, several genes have been implicated in AMD

pathology by candidate gene studies as well as genome wide

association studies. Genetic variants in complement factor H

(CFH) and ARMS2/HtrA Serine Protease 1 (HTRA1) were found

to be strongly associated with odds ratios over 2.5 per risk allele. In

addition, multiple medium to low effect size gene variants were

discovered in a large number of loci across the genome. A recent

meta-analysis of genome wide association studies found a total of

19 independently associated loci by comparing over 17,000 cases

and 60,000 controls [8].

The combined effect of the major risk variants on AMD was

estimated by modelling risk scores [9]. The multiple logistic

regression model was found to have an area under the curve

(AUC) of about 82%, which is suitable for classifying individuals in

high and low risk groups. Accordingly, roughly 50% of AMD cases

and 50% of healthy controls can now reliably be predicted.

However, a large proportion of AMD cases do not have the

expected genetic risk profile despite their given disease status.

Consequently, other components, genetic or environmental, may

influence disease development. This makes it crucial to identify

these components possibly by defining disease biomarkers

correlating with the underlying genetic or environmental factors

and eventually reflecting a defined disease stage.

Recently, circulating microRNAs (cmiRNAs) were found in

blood plasma or blood serum where they are carried by nanosized

exosomes or microvesicles [10,11]. Origin and effects of these

cmiRNAs are unclear although some studies suggested functional

involvement in cell-to-cell signalling [12]. In general, cmiRNAs

are potential biomarkers which can be used for diagnostics and

prognostics of human diseases [13]. Additionally, synthetic

microRNAs in artificial exsosomes could be applicable for

therapeutic approaches by modulating cmiRNA levels.

In this study, we aimed to elucidate the role of cmiRNAs in

AMD and performed a genome-wide expression profiling in

patients affected by late stage neovascular manifestation. Such

analyses provide a promising approach to define biomarkers for

AMD which could be helpful to identify as of yet unknown gene

targets involved in defined aspects of AMD pathology. Such

biomarkers could also serve as the long sought-after variable

needed to monitor treatment effects in future clinical trials for

AMD.

Results

Study design
We applied a three stage design to identify significantly

associated cmiRNAs. First, RNASeq was performed to screen

for miRNA candidates in 9 cases and 9 controls from the

Regensburg study. The cmiRNAs with a nominal significance of

p.0.1 were then validated in an unrelated set of 45 NV cases and

68 controls from the Regensburg study (Table 1). Finally,

candidate cmiRNAs with a nominal significant association (p,

0.05, adjusted or unadjusted for glaucoma) and an odds ratio

above 2 or below 0.5 were then replicated in a population based

study (Cologne study, Table 1) consisting of 75 NV cases and 70

controls. In total, the combined study included 129 patients with

NV AMD and 147 AMD-free controls (Table 1). Additionally, 59

AMD patients with pure GA were assessed for candidate

cmiRNAs to test for specificity of the findings in NV AMD.

Identification of cmiRNAs in NV AMD (discovery study)
To search for candidate cmiRNAs, we first performed next-

generation sequencing of cmiRNAs extracted from plasma of 9

AMD NV cases and 9 matched controls. Overall, in the 18

samples we identified 203 different cmiRNA species. Of these,

10 cmiRNAs were significantly associated with late-stage NV

AMD (puncorrected,0.1) (Table 2).

Circulating miRNAs associated with NV AMD (replication
study)

To replicate the initial findings, qRT-PCR was performed for

the significant 10 cmiRNAs in 113 samples consisting of 45 NV

AMD cases and 68 controls. Three cmiRNAs were identified (hsa-

mir-301-3p, hsa-mir-361-5p, and hsa-mir-451a-5p) which showed

(1) an association signal in the same direction as in the discovery

study, (2) an odds ratio over 2 or under 0.5 and (3) an uncorrected

(one-sided) p-value below 0.1. These three cmiRNAs showed

reduced levels in the serum of CNV cases compared to AMD free

controls. The association was robust also when adjusting for

covariates such as age, gender, smoking (measured in packyears),

genetic risk score (GRS) or levels of the housekeeping cmiRNA

hsa-mir-451a-5p (Table 3). Of note, two cmiRNAs (hsa-mir-301-

3p and hsa-mir-361-5p) were strongly confounded by glaucoma

disease status and showed stronger association signals when

adjusting for glaucoma.

Circulating miRNAs hsa-mir-301-3p, hsa-mir-361-5p, and hsa-

mir-424-5p were then analyzed by qRT-PCR in an additional

replication study (Cologne study) consisting of 75 NV cases and 70

controls. In concordance with the Regensburg study, we also

found reduced levels of those three cmiRNAs in NV cases

compared to controls in the Cologne study. The results of the two

replications were pooled and jointly analyzed (Figure 1, Table
S1). We found raw (one-sided) p-values of 2.7861027, 4.0961026,

and 4.7561025 for hsa-mir-301-3p, hsa-mir-361-5p, and hsa-mir-

424-5p, respectively. The p-values were adjusted by a conservative

Bonferroni correction, assuming 203 statistical tests based on the

number of microRNAs detected in the serum of cases and

controls. After correction, the p-values for hsa-mir-301-3p, hsa-

mir-361-5p, and hsa-mir-424-5p were 5.6361025, 8.0361024,

and 9.6461023, respectively. A cmiRNA profile including hsa-

mir-301-3p, hsa-mir-361-5p, and hsa-mir-424-5p was significantly

associated with AMD in the combined study (129 NV AMD versus

147 controls, p = 1.17*1028) as well as in the Cologne study alone

(75 NV cases and 70 controls, p = 2.43*1025).

Testing of cmiRNAs specificity in NV and GA AMD
The expression of hsa-mir-301-3p, hsa-mir-361-5p, and hsa-

mir-424-5p was analyzed by qRT-PCR in the serum of 59 GA

AMD patients from the Cologne and Bonn study and compared to

all controls (Figure 1, Table S1). There was no statistically

significant association of cmiRNA levels with GA compared to

controls (pcorrected.0.05). We also found no significant association

of the cmiRNA profile including hsa-mir-301-3p, hsa-mir-361-5p,

and hsa-mir-424-5p with GA AMD versus controls (p = 0.084).

Circulating miRNA hsa-mir-424-5p showed significantly higher

levels in GA compared to NV (pcorrected,0.005), while hsa-mir-

301-3p and hsa-mir-361-5p were not significant (pcorrected .0.05).

Pathway analysis
Pathway enrichment analysis was performed for 3,516 genes

predicted by microT-CDS to be regulated by either hsa-mir-301-

3p, hsa-mir-361-5p, or hsa-mir-424-5p. A total of 410 genes was

predicted to be regulated by at least two of the three cmiRNAs and

Circulating MicroRNAs and Age-Related Macular Degeneration
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35 genes were regulated by the three cmiRNAs jointly (Figure
S1). Evaluation with miRSystem implicated the canonical TGF-b
and mTOR pathways as well as related pathways such as WNT

signaling, focal adhesion, neutrophin signaling and insulin

metabolism as the top regulated pathways. This is in agreement

with the results of mirPATH v2.0, which implicated mTOR

(KEGG ID: hsa04150, p,10213) and TGF-b pathways (KEGG

ID: hsa04350, p,10214) as top regulated pathways (Table 4).

Functional characterization of candidate miRNAs in
human endothelial cells

MicroRNA hsa-mir-361-5p was shown earlier to influence the

expression level of VEGFA [14] and thus should also influence

angiogenesis. In order to test this hypothesis in vitro, we designed

antisense oligoribonucleotides against hsa-mir-361-5p but also

against hsa-mir-301a-3p and hsa-mir-424-5p and performed tube

formation assays with human umbilical vein endothelial cells

(HUVEC). We show that a knockdown of hsa-mir-361-5p

significantly alters tube formation in vitro (pcorrected,0.05, Fig-
ure 2, Figure S2 and S3). Knockdown of hsa-mir-301a-3p and

hsa-mir-424-5p also showed elevated average tube lengths,

however, this was not statistically significant after adjustment for

multiple testing (pcorrected.0.05).

Classification
The raw AUC value for the cmiRNA profile was 0.727 for NV

AMD and controls from the Regensburg study and 0.802 when

restricting the analysis to NV AMD and controls from the Cologne

study. Additionally, we used the weights obtained from the

Regensburg study of each cmiRNA in the profile to predict the

outcome (case or no case) in the Cologne study and found an AUC

value of 0.722. To estimate non-parametric confidence intervals,

we performed a 2,000 fold bootstrap analysis in the pooled study.

The bootstrapped AUC value for the profile was 0.730 (95% CI:

0.544–0.877) indicating a good classification accuracy.

Discussion

To our knowledge, this is the first study to evaluate the relative

abundance of cmiRNAs in the serum of late stage AMD patients.

We identified three cmiRNAs (hsa-mir-301a-3p, hsa-mir-361-5p,

and hsa-mir-424-5p) which were significantly altered in NV AMD

patients compared to AMD-free controls. Even when conditioned

on covariates such as age, gender, smoking or genetic risk scores

computed from known AMD-associated variants, the three

cmiRNAs showed little alteration in their association strength,

indicating a true association with late stage NV AMD. In contrast,

Table 1. Summary characteristics of the study.

Regensburg Bonn Cologne

Study type Case/Control Case/Control Population based

Number of individuals 131 18 186

Controls 77 0 70

Cases 54 18 116

Geographic atrophy 0 18 41

Neovascular AMD 54 0 75

Mean age cases (S.D.) [years] 75.15 (6.75) 74.60 (8.70) 80.22 (9.24)

Mean age controls (S.D.) [years] 73.26 (8.00) - 78.44 (8.76)

Female cases [%] 59.3 61.1 56.9

Female controls [%] 54.5 - 55.7

Glaucoma in cases [%] 11.1 5.5 NA

Glaucoma in controls [%] 83.1 - NA

doi:10.1371/journal.pone.0107461.t001

Table 2. Association of circulating microRNAs with AMD in the Regensburg discovery study (9 NV cases and 9 controls).

microRNA uncorrected p-value mean cases (95% CI) mean controls (95% CI)

hsa-miR-142-5p 0.012 1.21 (1.14–1.28) 1.00 (0.93–1.07)

hsa-miR-192-5p 0.010 1.29 (1.20–1.38) 1.00 (0.91–1.09)

hsa-miR-194-5p 0.028 1.28 (1.19–1.38) 1.00 (0.89–1.11)

hsa-miR-26a-5p 0.082 0.90 (0.83–0.96) 1.00 (0.94–1.06)

hsa-miR-301a-3p 0.084 0.83 (0.72–0.93) 1.00 (0.90–1.10)

hsa-miR-335-5p 0.094 1.34 (1.17–1.50) 1.00 (0.84–1.16)

hsa-miR-361-5p 0.056 0.74 (0.56–0.91) 1.00 (0.85–1.15)

hsa-miR-424-5p 0.028 0.52 (0.30–0.73) 1.00 (0.84–1.16)

hsa-miR-4732-5p 0.086 1.24 (1.12–1.36) 1.00 (0.88–1.12)

hsa-miR-505-5p 0.048 1.29 (1.13–1.44) 1.00 (0.85–1.15)

doi:10.1371/journal.pone.0107461.t002

Circulating MicroRNAs and Age-Related Macular Degeneration

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107461



there was no association of cmiRNAs hsa-mir-301a-3p, hsa-mir-

361-5p, or hsa-mir-424-5p with GA AMD, suggesting subtype-

specific cmiRNA profiles for late stage AMD. A global screening

strategy similar to the one applied in this study may be suited to

eventually characterize a GA AMD specific cmiRNA profile.

Our initial discovery study comprised 9 NV AMD cases and 9

matched controls and identified several cmiRNA candidates with

altered expression levels although none reached statistical signif-

icance after adjustment for multiple testing (n = 203 equivalent to

the discovery of 203 cmiRNAs). A recent study compared

cmiRNA levels in long-surviving versus short-surviving patients

with lung cancer and found fold changes of significantly altered

cmiRNAs between 1.60 and 7.15 [15] and Cohen’s effect sizes

between 0.92 and 1.54 which are considered to be large [16].

Given the number of samples in our discovery study, we calculated

the power to detect comparable effect sizes after adjustment for

multiple testing between 4.2% and 33.2%. This would imply a

power to identify between 4 and 33 cmiRNAs out of 100 in our

discovery study at the assumed effect size or higher. To

compensate for lower effect sizes, we increased our sample size

to 276 individuals (129 NV cases and 147 AMD-free controls) in

the replication and retested individually the top 10 cmiRNAs hits

from discovery. This uncovered a statistically significant associa-

tion of NV AMD with cmiRNAs hsa-mir-301a-3p, hsa-mir-361-

5p, and hsa-mir-424-5p.

Bioinformatical pathway analysis for genes suggested to be

regulated by the NV AMD associated cmiRNAs were performed

with two independent programs including the miRSystem and

mirPATH v2.0. Both revealed concurring results and implicated

the TGF-b and mTOR pathways in neovascular AMD pathology.

Interestingly, this is in agreement with a recently published GWAS

which also implicated the TGF-b and the mTOR pathways in late

Table 3. Sensitivity analysis in the Regensburg study by multiple logistic regression models.

covariate hsa-miR-301a-3p hsa-miR-361-5p hsa-miR-424-5p

none 0.31 (0.10–0.86)* 0.50 (0.19–1.27) 0.28 (0.12–0.59)*

age [years] 0.33 (0.13–0.92)* 0.49 (0.19–1.26) 0.27 (0.12–0.59)*

packyears [years] 0.31 (0.10–0.86)* 0.50 (0.19–1.27) 0.27 (0.12–0.59)*

gender 0.29 (0.09–0.82)* 0.48 (0.18–1.23) 0.28 (0.12–0.59)*

genetic risk score 0.38 (0.10–1.33) 0.53 (0.13–2.12) 0.21 (0.07–0.56)*

glaucoma 0.15 (0.04–0.54)*1 0.23 (0.06–0.78)*1 0.24 (0.08–0.65)*

hsa-mir-451a-5p 0.38 (0.12–1.08) 0.68 (0.24–1.85) 0.35 (0.14–0.78)*

1strong increase in association signal by adjusting for glaucoma as a covariate.
*statistically significant association (p,0.05).
doi:10.1371/journal.pone.0107461.t003

Figure 1. Expression analysis of three cmiRNAs (hsa-mir-301a-3p, hsa-mir-361-5p and hsa-mir-424-5p) in 129 NV AMD cases, 59 GA
AMD cases and 147 healthy controls. Expression values for all samples were normalized by the median expression value in controls. Broad
horizontal bars represent the mean value in each group (NV cases, GA cases or controls) for each cmiRNA. Smaller horizontal bars represent the 95%
confidence intervals for each mean (see Table S1). Significant differences between means are indicated by asterix. * = pcorrected,0.05; ** = pcorrected,
0.005; *** = pcorrected,0.0005.
doi:10.1371/journal.pone.0107461.g001
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stage AMD by identifying risk associated genetic variants near or

within the genes encoding the transforming growth factor, beta

receptor 1 (TGFBR1) and the vascular endothelial growth factor

A (VEGFA) [8,17]. The TGF-b as well as the mTOR pathway are

involved in cellular responses to stress and injury and also regulate

angiogenesis. Consequently, we performed in vitro tube formation

assays and reduced the levels of hsa-mir-424-5p, hsa-mir-301a-3p,

and hsa-mir-361-5p by antisense oligoribonucleotides to evaluate

the impact of decreased miRNA levels on angiogenesis. Knock-

down efficiency reduced microRNA levels in the test system on

average by about two-fold. Antisense treatment of hsa-mir-361-5p

lead to a significant increase in tube formation and, thus,

angiogenesis in vitro. Results for hsa-mir-424-5p and hsa-mir-

301a-3p revealed a similar direction of effect but were not

statistically significant due to correction for multiple testing.

Together, the data are promising and support our bioinformatical

analyses.

Additionally, pathways closely related to the mTOR pathway

were implicated by our analysis including WNT signaling, focal

adhesion, neutrophin signaling and the insulin pathway. These

pathways are involved in (neural) cell survival and therefore are

reasonable candidate pathways for the pathogenesis of AMD.

However, so far no genetic association with late stage AMD was

observed for any genes associated with these signaling pathways.

In this context, it should be noted that until now only few studies

evaluated a genetic association for progression and severity of

AMD [18,19]. These studies mainly focused on strong (and

known) signals associated with increased risk for AMD and

therefore may have missed possible existing associations. The

present study has now identified cmiRNAs hsa-mir-301a-3p, hsa-

mir-361-5p, and hsa-mir-424-5p as new biomarkers for late stage

neovascular AMD. Furthermore, our data show that these

biomarkers are not associated with GA AMD implying that

different biomarkers and thus different biological pathways are

Table 4. Pathway enrichment analysis performed with miRSystem and mirPATH2.

genes observed/genes in pathway genetic association reported1

Canonical pathway (ID2) miRSystem mirPATH2

TGF-b signaling (hsa04350) 25/84 35/80 TGFBR1 [8]

mTOR signaling (hsa04150) 16/52 33/60 VEGFA [17]

Neutrophin signaling (hsa04722) 38/127 - -

WNT signaling (hsa04310) 48/150 -

Focal adhesion (hsa04510) 43/199 - VEGFA [17]

Insulin signaling (hsa04910) 35/137 -

Melanogenesis (hsa04916) 28/101 -

1genetic associations were reported in or near genes in this pathway by genome wide association studies.
2KEGG pathway ID (http://www.genome.jp/kegg/).
doi:10.1371/journal.pone.0107461.t004

Figure 2. In vitro tube formation assays in human endothelial cells. HUVEC cells were transfected with antagomirs for hsa-mir-301a-3p, hsa-
mir-361-5p or hsa-mir-424-5p or with control antagomirs (see Figure S2) and seeded on Geltrex/Matrigel. Cumulative tube length was quantified
with Angiogenesis Analyzer implemented in ImageJ. Each measurement point indicates one independent transfection. Low Serum Growth
Supplements (Life) were used as a positive inducer control. Representative images are shown in Figure S3. Significant differences between means
are indicated by asterix. * = pcorrected,0.05; *** = pcorrected,0.0005.
doi:10.1371/journal.pone.0107461.g002
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likely involved in subtype-specific manifestations of late stage

AMD. If confirmed, this could have major implications for

designing treatment regiments for AMD.

A recent study investigated a treatment option for patients with

stroke by increasing a disease-related reduction in plasma levels of

hsa-mir-424-5p [20]. In an inducible mouse model of acute stroke

which also revealed a down-regulation of hsa-mir-424-5p in

plasma as well as in brain, lentiviral overexpression of hsa-mir-

424-5p in the murine brain prior to induction of ischemic stroke

significantly lowered the infarct volume as well as the brain edema

levels [20]. A similar approach could be envisioned for treating

AMD lesions. The identification of cmiRNAs that are dysregulat-

ed in NV AMD patients, now offers a number of novel starting

points for therapeutic regimens. For example, such targets could

be the genes that are regulated by the cmiRNAs or, alternatively,

could directly address the dysregulated cmiRNAs itself. Specifi-

cally, the latter approach would initially entail prescreening of

patients for altered cmiRNAs levels. Reduced expression of a

diagnostic cmiRNA (as pre-microRNA or mature microRNA)

could be supplemented by lentiviral transduction, nano-particle

aided transfection or by delivery of the dysregulated cmiRNA via

synthetic microRNAs in artificial exsosomes. Therapies to modify

up- or down-regulated genes are also conceivable. This could be

done by using small molecules to influence gene activity [21],

protein activity and stability [22] or by targeting proteins or

interacting proteins with specific antibodies [23].

In summary, this study has identified three cmiRNAs with a

significantly altered expression profile in the serum of NV AMD

patients when compared to AMD-free control individuals. This

finding opens up a number of new avenues in understanding

disease mechanisms and designing targeted treatment options.

Another important aspect of our finding pertains to monitoring

treatment effects in clinical trial settings. Although proof of

concept is still waranted, measuring drug responses as a means of

measuring changes in the cmiRNA profil from blood samples of

AMD patients may proof a direct and little invasive approach in

the future.

Materials and Methods

Ethics statement
This study followed the tenets of the declaration of Helsinki and

was approved by the Ethics Review Board at the University of

Regensburg, Germany (ID: 12-101-0241), University of Bonn,

Germany and University of Cologne, Germany. Informed written

consent was obtained from each proband after explanation of the

nature and possible consequences of the study.

Recruitment of AMD cases and control individuals
The case-control sample included 54 individuals with seemingly

non-familial NV AMD and 77 age- and gender-matched AMD-

free controls from the Regensburg study, 116 cases and 70 controls

from the Cologne study, and 18 GA AMD cases from the Bonn

Eye Clinic (Table 1). Inclusion and exclusion criteria have been

described elsewhere [8,24–26].

Genotyping of samples
Genotyping was carried out as described elsewhere [9]. Briefly,

genomic DNA was extracted from peripheral blood leukocytes.

Ten single nucleotide polymorphisms (SNPs, Table S2) were

genotyped either by direct sequencing, restriction enzyme

digestion of PCR products (RFLP) or TaqMan SNP Genotyping

(Applied Biosystems, Foster City, USA).

Isolation of cmiRNAs from stabilized blood samples and
serum

To reduce degradation of microRNAs and other RNA species

[27], for the Regensburg and Bonn samples peripheral venous

blood was drawn in PAXgene Blood RNA tubes (PreAnalytiX

GmbH, Hombrechtikon, CH) and immediately stored at 280uC.

To isolate RNA, tubes were thawed at room temperature on a

rocker and centrifuged for 5 minutes at 1500 rcf at 4uC. The RNA

isolation was carried out with the mirVANA microRNA isolation

kit (Ambion, Austin, TX, USA) as described elsewhere [28].

Briefly, 300 ml of the supernatant were mixed with 600 ml of

binding/lysis buffer. Then, 90ml of microRNA homogenate

additive was added, thoroughly mixed for 30s and incubated on

ice for 10 minutes. An equal amount of acid/phenol/chloroform

(Ambion) was then added to each aliquot and vortexed for

1 minute at maximum setting. The solution was spun for

10 minutes at 10,000 g at room temperature. The resulting

aqueous (upper) phase was mixed with 1.25 volumes of 100% ACS

grade ethanol and passed through a mirVANA column in

sequential 700 ml steps. The columns were then washed according

to the manufactures protocol and the RNA was eluted with 50 ml

nuclease-free water (preheated to 95uC).

For the Cologne samples, RNA isolation from blood serum was

carried out with the miRNeasy Serum/Plasma kit (Qiagen)

according to the manufacturer’s recommendations. Typically, we

used 200 ul of serum and eluted the RNA in 24 ul of nuclease-free

water.

Sequencing of cmiRNAs and data analysis (discovery
study)

cDNA libraries were constructed using the Ion Total RNA-Seq

v2 kit (Life Technologies) according to the manufacturers

recommendations for 9 NV AMD cases and 9 control samples.

The resulting cDNA libraries were purified by AMPure beads

(Beckman Coulter), and their concentrations and sizes distribution

were determined on an Agilent BioAnalyzer DNA high-sensitivity

Chip (Agilent Technologies). Emulsion PCR and enrichment of

cDNA conjugated particles were performed with an Ion

OneTouch 200 Template Kit v2 DL (Life Technologies)

according to the manufacturer’s instructions. The final particles

were loaded on an Ion 316 chip and sequenced on a Personal

Genome Machine with 200 bp read length (Life Technologies).

The data obtained were analyzed with the mirDEEP2 package

[29]. Briefly, all reads were mapped to the human genome. Reads

that failed to align were excluded. Remaining reads were then

mapped to the pre-microRNA and microRNA sequences obtained

from mirbase.org (Release 19, August 2012) and quantified. Reads

per microRNA were normalized to the overall number of reads

and normalized to 100,000 reads. The data were transformed with

the natural logarithm to obtain a normal distribution of expression

values. In order to account for batch effects in the data, we

employed an empirical Bayesian batch effect correction algorithm

known as ComBat [30]. For each microRNA, mean values of cases

were compared to mean values of controls via t-test. Nominal

significant associations with a (two-sided) p-value,0.1 were

considered for replication.

Quantitative (q)RT-PCR and data analysis (replication
study)

Circulating miRNA was extracted from blood as described

above and reverse transcription followed by qRT-PCR was

performed according to Hurteau et al. [31]. Briefly, 10 ml of

purified cmiRNA solution were modified by E. coli Poly (A)
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Polymerase I (E-PAP) by the addition of a polyA tail (Ambion,

Austin, TX, USA). Reverse transcription was performed with

Superscript III reverse transcriptase (Invitrogen Carlsbad, CA) and

a Universal RT oligonucleotide primer, which contains a polyT

stretch of DNA that binds to the newly synthesized polyA tail

(Table S3). The RT solution was diluted 1:50, of which 4:ml were

used per qRT-PCR reaction. Each qRT-PCR master mix was

prepared according to the protocol of the Power SYBR Green

Master Mix (Applied Biosystems, Foster, CA, USA) and run on an

ABI Viia-7 (Applied Biosystems, Paisley, UK). Each microRNA

was assayed in triplicates. Primers that performed poorly (,50%

qRT-PCR efficiency) were excluded from further analysis. We

further excluded measurements with a standard deviation greater

than 0.4 Ct values in the triplicates. In order to normalize the Ct-

values according to the amount of isolated RNA and reverse

transcription efficiency, we used hsa-mir-451-5p as a housekeeping

cmiRNA. This microRNA showed the least variance between

cases and controls and within each group in our discovery study

and was therefore regarded suitable as a housekeeper. The

normalized Ct values of each individual were then normalized

versus the median of the Ct values of the controls. We considered

associated cmiRNAs with an odds ratio greater than 2 or lower

than 0.5 for further replication.

The standard student’s t-tests was applied to evaluate a

statistically significant association as implemented in R [32]. In

the final dataset, we adjusted the observed raw p-values

(puncorrected) by a conservative Bonferroni correction (pcorrected).

Adjusted p-values below 0.05 were considered significant. Sensi-

tivity analysis was carried out by fitting logistic regression models

adjusted for possible confounding variables.

Target prediction for cmiRNAs
We used miRSystem [33] and DIANA mirPATH v2.0 [34] to

identify canonical pathways involved in AMD pathogenesis based

on differentially regulated microRNAs. We used the default

settings in miRSystem to identify target genes and to find

canonical KEGG pathways. With mirPATH v2.0, targets

predicted by microT-CDS were selected with a threshold of 0.7.

The intersection of pathways which showed an involvement of all

investigated microRNAs (p-value threshold: 0.005, with Conser-

vative Stats) was considered. We excluded KEGG pathways with

more than 200 genes to increase specificity and to exclude

pathways considered to be too general. Furthermore, we excluded

validated cmiRNA targets as well as cancer pathways such as

prostate cancer (hsa05215) or glioma (hsa05214), as the majority of

the cmiRNA work has been in the field of oncology and thus

cancer pathways are expected by design to be among the top

findings.

Classification of cases and controls
Area under the curve (AUC) measurements were carried out

with the function lroc from the package ‘‘epicalc’’ [35]. We used a

bootstrap (n = 2000) approach to calculate robust mean and

confidence interval estimates for the AUC measurements by

randomly selecting half of the cases and half of the controls (with

replacement) and calculating the risk model with this sub-sample

(training data). A randomly selected sample of half of the cases and

half of the controls (with replacement) was then used to calculated

the AUC (test data).

In vitro angiogenesis assay
Pooled human umbilical vein endothelial cells (HUVECs) were

purchased from Life Technologies and cultured in Medium

200PRF with Low Serum Growth Supplement and Gentamicin/

Amphotericin Solution (Life Technologies). Transfection of

HUVECs was carried out as described in Bonauer et al. 2009

[36]. Briefly, cells were subcultured to passage 3 and grown until

70% confluent. 29O-methyl antisense oligoribonucleotides against

hsa-mir-424-5p (59-UUCAAAACAUGAAUUGCUGCUG-39),

hsa-mir-301a-3p (59-GCUUUGACAAUACUAUUGCACUG-

39) or hsa-mir-361-5p (59-ACAGGCCGGGACAAGUG-

CAAUA-39) or GFP (59-AAGGCAAGCUGACCCUGAAGUU-

39) were synthesized by VBC Biotech and 50 nM were transfected

with GeneTrans II (MoBiTec) according to the manufacturer’s

protocol. After 24 h the medium was changed to full growth

medium with supplements and antibiotics. 48 h after transfection,

3.56104 HUVECs of each transfection were sown onto one well of

a 24 well plate coated with 150 ml Geltrex (Life Technologies). As

a positive inducer control, cells were cultured in full growth

medium with supplements. Total tube length was quantified after

24 hours by measuring the cumulative tube length in four random

fields (area in each field: 2.25 mm2) using the Angiogenesis

Analyzer in ImageJ [37]. In total, we performed between 5 and 14

independent transfections for each knockdown or control exper-

iment. In order to assess the transfection efficiency, miRNAs were

isolated with the mirVANA microRNA isolation kit (Ambion,

Austin, TX, USA) according to the manufacturer’s protocol.

cDNA synthesis and qRT-PCR was carried out as described

above.

Supporting Information

Figure S1 Venn diagram of target genes predicted by
microT-CDS. Target genes were predicted with microT-CDS

with a microT threshold of 0.7. In total, 3,516 target genes were

predicted.

(TIF)

Figure S2 Knockdown of candidate miRNAs in human
endothelial cells. Mean relative reduction in miRNA levels

compared to control antagomir (mock). Whiskers represent the

standard error of the mean.

(TIF)

Figure S3 Representative images of in vitro tube for-
mation assays in human endothelial cells. The measured

cumulative tube length in each image was close to the mean

cumulative tube length measured in all images of the respective

treatment.

(TIF)

Table S1 Mean and 95% confidence intervals of log
transformed fold changes of cmiRNA levels in the
combined study.

(DOCX)

Table S2 Previously published associated variations
used to calculate the genetic risk score.

(DOCX)

Table S3 Primers and mature microRNA sequences.

(DOCX)
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