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I. THEORY

A. Electrostatic model for the device

We apply the parallel-plate capacitor model to deduce the

top- and back-gate efficiencies for our bilayer graphene (BLG)

device. The thicknesses of the top and bottom hexagonal

boron nitride (h-BN) layers are d
(top)
h-BN = 30nm and d

(bot)
h-BN =

23nm, respectively, and we adopt εh-BN
r = 3.0 as their dielec-

tric constant. The topgate capacitance for area C is then given

by

CTG

e
=

εh-BN
r ε0

ed
(top)
h-BN

= 5.53× 1011 cm−2 V−1. (S1)

Together with the SiO2 substrate with thickness dSiO2
=

285nm and dielectric constant εSiO2
r = 3.9, the backgate ca-

pacitance is given by

CBG

e
=

ε0

e

(

d
(bot)
h-BN

εh-BN
r

+
dSiO2

εSiO2
r

)−1

= 6.53× 1010 cm−2 V−1.

(S2)

Next, we deduce the intrinsic doping by inspecting the full

conductance map. We assume that in region X (X = L,C,R),

the residual carrier density is uniformly described by n0
X . In

Fig. 1(d) of the main text, the conductance dip at VTG =
−2.1V along the VBG = 0V horizontal line cut suggests

n0
C =

CTG

e
× 2.1V = 1.16× 1012 cm−2. (S3)

For the outer areas L and R, the residual density is deduced

from the two topgate-independent horizontal Dirac lines, one

at VBG =−7.6V, suggesting

n0
L =

CBG

e
× 7.6V = 4.97× 1011 cm−2, (S4)

and one at VBG =−14V, suggesting

n0
R =

CBG

e
× 14V = 9.15× 1011 cm−2. (S5)
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Collecting Eqs. (S1)–(S5), we obtain the gate-dependent car-

rier density:

nX(VTG,VBG) =



















CTG

e
VTG +

CBG

e
VBG + n0

X , X = C

CBG

e
VBG + n0

X , X = L,R

.

(S6)

B. Asymmetry parameter

To calculate the gate-dependent asymmetry parameter for

our device, we follow the review by McCann and Koshino

[1]. Let us temporarily suppress the area index X and con-

sider the total carrier density n = nt + nb + n0, where nt is the

topgate contribution, nb is the backgate contribution, and the

intrinsic doping is assumed to be equally distributed in the two

graphene layers: nb0 = nt0 = n0/2. This assumption allows us

to rewrite Eq. (65) of Ref. 1 as

Uext =
γ1

n⊥
Λ(nb − nt) , (S7)

where

Λ =
c0e2n⊥
2γ1εrε0

(S8)

is the screening parameter, and

n⊥ =
γ2

1

π h̄2v2
F

(S9)

is the characteristic carrier density. In Eqs. (S7)–(S9), γ1 =
0.39eV is the nearest-neighbor hopping for the interlayer cou-

pling, c0 ≈ 0.335nm is the interlayer spacing of the BLG,

εr = 1 is the effective dielectric constant between the two

layers of BLG, and vF is the Fermi velocity of graphene re-

lated to the tight-binding parameters through h̄vF = (3/2)ta,

t ≈ 3eV being the nearest-neighbor intralayer hopping and

a ≈ 0.142nm being the carbon-carbon bond length. Using

Eq. (S7), Eq. (74) of Ref. 1 reads

n⊥u

Λ(nb − nt)
≈



1− Λ

2
ln





|n|
2n⊥

+
1

2

√

(

n

n⊥

)2

+
(u

2

)2









−1

,

(S10)
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where u =U/γ1 is defined. Finally, we rewrite Eq. (S10) as

u=
Λ(nb − nt)

n⊥



1− Λ

2
ln





|n|
2n⊥

+
1

2

√

(

n

n⊥

)2

+
(u

2

)2









−1

(S11)

in order to avoid the divergence at nb = nt .

The nonlinear Eq. (S11) can be solved numerically to ob-

tain the asymmetry parameter U = γ1u, when the inputs nt ,

nb, and n0 are given. Using Eqs. (S3)–(S6) we obtain the

asymmetry parameters UX for the respective areas X = L,C,R
of our BLG device. Numerical results are shown in Fig. S1.

The actual size of the band gap Ug is related with U through

Ug = |U |γ1/
√

γ2
1 +U2.

C. Local energy band offset

From the calculated carrier density nX and asymmetry pa-

rameter UX based on the electrostatic model, the band offset

VX for area X is given by
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FIG. S1. Asymmetry parameter UX in region X = L,C,R of the de-

vice as a function top- and back-gate voltages. Panels (a)–(c) in the

upper row show the full range, where the white boxes mark zoom-in

range for panels (d)–(f) in the lower row.

VX =−sgn(nX)

√

√

√

√

γ2
1

2
+

U2
X

4
+ h̄2v2

F π |nX |−
γ1

2

√

γ2
1 +(2h̄vF)

2 π |nX |
(

1+
U2

X

γ2
1

)

, (S12)

which is obtained by replacing the two-dimensional wave vec-

tor k by
√

π |nX | in the energy dispersion E(k) for gapped

BLG [1] and by adding the minus sign. Application of Eq.

(S12) on the diagonal matrix elements of the model Hamilto-

nian for transport calculation therefore fixes the global Fermi

level at energy E = 0, at which the transmission function is

evaluated (linear-response transport).

D. Berry phase in gapped bilayer graphene

In order to take into account the characteristic band struc-

ture of the BLG, we incorporate the Berry phase into the reso-

nance condition of the Fabry-Pérot (FP) oscillations in Eq. (1)

of the main text. Therefore, we describe the low energy exci-

tations of BLG for a single valley by the Hamiltonian [1],

H =







U/2 h̄vF k− 0 0

h̄vF k+ U/2 γ1 0

0 γ1 −U/2 h̄vFk−
0 0 h̄vF k+ −U/2






, (S13)

using the layer coupling γ1, the asymmetry U and k± =
kx ± iky. Without losing generality we focus on a single val-

ley, as the results of the second one can be obtained by time

reversal, leading to an inverted Berry phase. The four eigen-

states ψσ (k) of H can be associated with the different bands,

which we label as σ = n2,n1, p1, p2 from high to low energy.

[For the present discussion, the relevant bands are the two in-

ner bands n1, p1 as those sketched in Fig. 1(f) of the main

text.] Using these eigenstates, we can calculate the Berry cur-

vature [2],

Aσ (k) =−i〈ψσ (k)|∇kψσ (k)〉 , (S14)

and the corresponding Berry phase

Φσ =
∮

k=const
Aσ (k) ·dk , (S15)

which describes the additional phase the state ψσ (k) picks up

upon traveling adiabatically one complete circle in momen-

tum space. Since transport within the central area C in the

pn’p regime is carried only by the n1 band as sketched in

Fig. 1(f) of the main text, FP oscillations pick up the Berry

phase ΦBerry = Φσ=n1. This additional phase changes upon

varying the top- and back-gate voltages in the whole possible

range from 0 to 2π , as shown in Fig. S2(a). Also for the ex-

perimental transport data presented in Fig. 2(a) of the main

text, the Berry phase ΦBerry is not constant but takes values
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FIG. S2. (a) Berry phase as a function of top- and back-gate voltages

for the state closest to the avoided crossing at the Dirac point within

the dual-gated area C of the device. (b) Zoom-in of the bipolar block

indicated by the white box in (a).

between 1.22π and 1.46π , as presented in Fig. S2(b). Conse-

quently, the Berry phase has to be included in the resonance

condition in order to achieve a precise prediction of the con-

ductance maxima.

II. EXPERIMENT

A. Oscillations: conductance VS transconductance signals

In the manuscript, we characterized the FP oscillations by

studying the measured transconductance signal. The reason

is a better visibility in the signal. However, the oscillations

are already visible in conductance, as shown in Fig. S3(a-c).

Their visibility is only weakened by the ascending slope (see

Fig. S3(c)). The same analysis as the one done in the main

manuscript could be performed with the conductance data.

B. Density dependence

As explained in [3], Fabry-Pérot interference should give

rise to oscillations spaced in density by ∆n = 2
√

πnC/LC,

where nC is the density in dual-gated area and LC the width

of the cavity. In this case, LC = 1.1 µm. To confirm the origin

of the oscillatory signal, we therefore study the peak spac-

ing dependence, as done in the main text with Fig. 2(c), but

on a broader range of voltages. To highlight the square root

dependence, we show in Fig. S4(a) more data points: each

color corresponds to a different backgate voltage value. We

see that the observed behavior follows the expected behavior,

represented with the black dashed line, reasonably well.

C. Temperature dependence of the Fabry-Pérot oscillations

We observed in Fig. 4(c) of the main text that, at high tem-

peratures, the oscillation amplitude saturates. This means that
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FIG. S3. (color online). (a) Conductance map corresponding to the

measurement shown in Fig. 2(a) of the main text: the oscillations are

already visible. (b) Normalized transconductance map (same as Fig.

2(a) of the main text, for comparison): the oscillations appear more

clearly. (c)/(d) Cut taken from (a)/(b) at VBG =−26 V.

part of the oscillations have a non-coherent origin and for fur-

ther analysis, we subtract the highest temperature curve from

each temperature signal.

To get a better insight in the observed temperature depen-

dence, we consider the derivative of the Fermi-Dirac distribu-

tion:

∂ f

∂EF
=

1

4kBT

1

cosh2

(

E −EF

2kBT

) , (S16)

where T is the fixed temperature (estimated from the recorded

Allen-Bradley resistance value) and E = h̄2πnC/2m∗.
Convoluting each measured trace with the derivative of the

Fermi-Dirac distribution at T = Tmeasured, we notice that we

do not recover the full amplitude of the measured signal. This

can be due to a wrong evaluation of the energy (maybe due

to screening or deformation of the band structure by trigonal

warping, which are not taken into account here). To correct

this parameter, we fit the convoluted curve using the tempera-

ture as a free parameter. The result is shown in Fig. S5(a).

Using these corrected temperatures, we now compare the

standard deviation of each curve with the thermal damping

term:

dG

dVTG

∼ A
2π2kbT

∆E

1

sinh

(

2π2kbT

∆E

) , (S17)
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FIG. S4. (color online). (a) Dependence of the peak spacing as a

function of density for different backgate voltages (different colors).

The expected behavior is displayed in black dashed line.
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FIG. S5. (color online). (a) Result of the temperature fit compared to

the measured temperature. (b) Using the fitted temperature value, we

compare the behavior of our signal with the thermal damping (black

dashed line).

with A a scaling parameter and ∆E is the averaged period of

the oscillations on the studied interval. The result is displayed

in Fig. S5(b), with A = 0.2 and ∆E = 1.2 meV. We find good

agreement between the data points and the model and there-

fore attribute the damping of the oscillations as a function of

temperature to thermal averaging.
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