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Abstract

microRNAs (miRNAs) are short non-coding RNAs with regulatory functions in various biological processes including cell
differentiation, development and oncogenic transformation. They can bind to mRNA transcripts of protein-coding genes
and repress their translation or lead to mRNA degradation. Conversely, the transcription of miRNAs is regulated by proteins
including transcription factors, co-factors, and messenger molecules in signaling pathways, yielding a bidirectional
regulatory network of gene and miRNA expression. We describe here a least angle regression approach for uncovering the
functional interplay of gene and miRNA regulation based on paired gene and miRNA expression profiles. First, we show that
gene expression profiles can indeed be reconstructed from the expression profiles of miRNAs predicted to be regulating the
specific gene. Second, we propose a two-step model where in the first step, sequence information is used to constrain the
possible set of regulating miRNAs and in the second step, this constraint is relaxed to find regulating miRNAs that do not
rely on perfect seed binding. Finally, a bidirectional network comprised of miRNAs regulating genes and genes regulating
miRNAs is built from our previous regulatory predictions. After applying the method to a human cancer cell line data set, an
analysis of the underlying network reveals miRNAs known to be associated with cancer when dysregulated are predictors of
genes with functions in apoptosis. Among the predicted and newly identified targets that lack a classical miRNA seed
binding site of a specific oncomir, miR-19b-1, we found an over-representation of genes with functions in apoptosis, which
is in accordance with the previous finding that this miRNA is the key oncogenic factor in the mir-17-92 cluster. In addition,
we found genes involved in DNA recombination and repair that underline its importance in maintaining the integrity of the
cell.
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Introduction

miRNAs are small endogenous RNAs with a length of about

22 nt with gene regulatory functions and are found in plants and

animals [1]. Unlike other classes of small RNAs, miRNAs undergo

a characteristic biogenesis which consists of a transcript folding

back on itself to form a distinctive hairpin structure [2]. After

processing, miRNAs form a complex with an Argonaute protein,

pair with the target mRNA and induce post-transcriptional

repression of the gene product [1]. Since more than half of the

human protein-coding genes seem to have conserved miRNA

pairing sites in their 39-UTR [3], it is difficult to find a biological

process or pathway which is not at all influenced by regulation

from miRNAs [1]. It is most likely that the interactions of miRNAs

and mRNAs are context-specific as miRNAs are known to play

important roles in differentiation, development, cancer and more

[4–8]. Knowing which miRNA regulates which gene at a certain

time and location is crucial not only to understand gene regulation

but also for a systems biology account of the cell. Two mechanisms

of post-translational repression of mRNAs by miRNAs are well-

described for metazoans: 1) at sites with high complementarity

between mRNA and miRNA, a miRNA can bind to the mRNA

and induce mRNA cleavage with the help of an Argonaute protein

[1,9]; 2) the miRNA induces translational repression or mRNA

destabilization, e.g., by inhibition of translation initiation and

poly(A) shortening, or both [1,10]. In animals, the second

mechanism, which requires less sequence complementarity

between mRNA and miRNA, is used more often [1].

Approaches to elucidate miRNA-mRNA associations can be

classified into two principal classes: 1) solely sequence-based

approaches and 2) expression data-based approaches which often

include sequence features. While the sequence-based approaches

focus on one-to-one relationships, the data-based methods are

more flexible to also search for many-to-one or one-to-many

relationships. The sequence-based miRNA target prediction

algorithms focus on predicting direct targets of miRNAs based

on sequence similarities, especially the seed sequence, and

evolutionary conservation. The target prediction problem is hard

and the prediction accuracy is currently still low. The shortness of

seed sequences leads to high numbers of false positive predictions

[1] and low sensitivity. State-of-the-art target predictors include

features additional to the seed region in the 39-UTR of the

mRNA, e.g., conservation of the site across related species

[3,11,12]. However, this seems to be insufficient in reducing the

number of false-positives, plus, in the case of sequence conserva-

tion, misses species-specific poorly conserved candidate sites.

Beyond sequence complementarity, Grimson and co-authors

[13] report five features of site context that improve binding site
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efficacy and others have also reported on the impact of structural

factors on target recognition [14,15]. Very recently, additional

mechanisms of miRNA-mRNA interactions have been shown to

affect mRNA expression levels [16]. While Elefant et al. showed

that seed pairing is the dominant mechanism in down-regulating

miRNA target genes (81% of binding sites), they also found

predicted functional 39-compensatory binding sites in a consider-

able fraction of target genes (18.6%). 39-compensatory binding

sites are characterized by insufficient 59 seed pairing which is

compensated by extensive 39 end pairing. An additional 0.5% of

down-regulated targets were predicted to host centered sites.

These sites lack both perfect seed pairing and 39-compensatory

binding, but allow for extensive pairing (11–12 contiguous pairs) at

the center of the miRNA. Non-canonical binding mechanisms are

not yet considered by current miRNA target prediction algorithms

and thus raise hope that prediction accuracies will improve in the

near future.

Expression data-based approaches usually start from high

dimensional miRNA and mRNA expression data. While mere

negative correlations do recover some miRNA-mRNA regulatory

relationships, more powerful approaches have been developed to

make use of paired mRNA-miRNA expression profiles [17,18].

Huang et al. proposed a Bayesian model based on predicted

miRNA targets from TargetScan and miRNA and mRNA

expression data, which tries to account for mRNA expression

given the miRNA expression. This comes down to a feature

selection problem in determining the miRNAs which best predict

the observed mRNA expression profile. A similar approach is

taken by the LASSO, and indeed it has also been shown to be a

valuable approach for deriving functional miRNA-mRNA inter-

actions from expression data, outperforming plain correlations

[19].

Another elegant approach has been proposed by Betel et al.

[20]. Therein, support vector regression is used to score the local

and global context of a miRNA binding site after having been

trained on miRNA transfection experiments. The algorithm can

predict non-canonical (lacking perfect seed binding), non-evolu-

tionary conserved sites and allows for multiple regulators of the

same gene. However, it requires a negative association between

miRNA and mRNA and needs experimental data for training.

Even in the absence of miRNA expression data, Radfar et al.

[21] showed that intronic miRNA expression can be inferred from

host gene expression. They classify miRNAs into the ones tightly

co-regulated with their host gene, those transcribed from the same

promotor but the mRNA itself is targeted by one or several

miRNAs and those which have independent promotors.

Two advantages of the expression data-based, and expression

data- and sequence integrating approaches are a) they allow to

study regulatory feedback, and b) they can account for multiple

regulators for the same gene. With respect to a), miRNAs regulate

the expression of genes via mediating the degradation or

translational repression of mRNAs. Vice versa the expression of

the miRNAs themselves is under the control of genes like

transcription factors and their mediators. Together this yields a

bidirectional regulatory interplay of gene expression and miRNA

expression. Complementary target binding based on sequence

features can at most explain one direction. With respect to b),

regulators often work in teams. Early computational approaches to

uncover regulation of gene expression by miRNAs on a large scale

have focused on one-to-one relationships between a gene (mRNA)

and a miRNA [22–24]. This simplification does not reflect the true

state of nature. It is known that one miRNA can regulate the

expression of several genes that have the same miRNA binding site

in their 39-UTR, and that some genes carry predicted binding sites

for more than one miRNA [25]. Therefore it is likely that these

genes are also regulated by more than one miRNA. Whether

several miRNAs regulate the expression of a gene in concert or

whether individual miRNAs are used context- and/or time-

specific has not yet been studied extensively. More recent

approaches consider multiple miRNAs regulating the same gene

[18,19].

Two further points remain to be addressed: a) miRNAs can also

increase gene expression. While most research focused on

regulation where the miRNA decreases the amount of mRNA

or protein, there is evidence that a miRNA can also increase the

amount of mRNA or protein, e.g in quiescent cells, while in

proliferating cells they are more likely to repress translation

[26,27]. Current approaches neglect this possibility and restrict

themselves to negative associations of miRNAs and mRNAs. b)

Indirect regulation. Besides the direct interaction of a miRNA and

a gene, a miRNA can also act on an intermediate regulatory

molecule which then affects a functional target mRNA. Thus,

increased miRNA levels may lead to repression or elevation of

gene expression levels when intermediate players are involved.

This type of regulation is also neglected when focusing on negative

interactions. Therefore, data-driven methods to identify functional

miRNA-mRNA interactions should not only focus on perfect seed

pairing and negative associations but allow for the full spectrum of

regulatory mechanisms.

In this manuscript, we first show that entire mRNA expression

profiles or large parts of them can be reconstructed only from the

expression of miRNAs and vice versa, a precondition that has not

been shown in previous regression based approaches. Next, we

propose a two-step computational model that in its first step uses

binding site information from miRNA target prediction algorithms

(TargetScan [3], microCosm [12], PicTar [28], and DIANA/

microT [29]) and in the second step, we release this constraint and

allow all remaining miRNAs as predictors of gene expression. In

this procedure, we give preference to the miRNAs having a

matching seed sequence, but also allow for mechanisms that do

not rely on perfect seed binding. Thus we are able to discover new

interactions which would be overlooked by data-driven computa-

tional models described so far. In addition, we also compute a

reverse model where genes predict the expression of miRNAs,

which allows to build bi-directional networks of miRNA-mRNA

regulation.

Results

Predicting Gene from miRNA Expression
We exemplify our method using the NCI-60 panel of human

cancer cell lines. It holds 59 samples for which both gene and

miRNA expression profiles are available. After a filtering step to

remove genes and miRNAs that vary little across samples, we used

311 miRNA expression levels and 4,878 gene expression levels to

study the functional interactions between both types of molecules.

First, we identified miRNA predictors for the expression of all

4,878 genes in the analysis. We applied least angle regression

(LARS) [30], a computationally efficient method that combines

predictive linear regression in high dimensions with the selection of

small sets of predictors. Independently for all 4,878 genes, one

regression model was learned using all 311 miRNAs as possible

predictors. We generated predictions of gene expression in 10-fold

cross-validation, and recorded mean squared errors (cv-MSE)

along with all miRNAs identified as predictors.

The procedure produces regression models and lists of

candidate predictors for all mRNAs. However, some of the

regression models have a poor predictive performance in cross-
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validation. In order to identify genes whose expression can be

predicted only from miRNA expression we contrasted observed

prediction errors (cv-MSEs) with simulated distributions of cv-

MSEs that arise, if the expression profiles are not properly

paired. We did this by running the regression analysis on data

where the samples are randomly permuted in one data set such

that ‘‘paired’’ samples no longer stem from the same cell line. In

other words, we predicted the expression profile of a cell line

from the miRNA profile of another cell line, which can only

result in random predictions. For every predicted gene, we

learned 100 models with permuted pairings yielding 487,800

randomized models. The cv-MSE was recorded across the 100

permutations and an empirical p-value was calculated by

counting the relative frequency of permutation based cv-MSEs

that were smaller than the cv-MSE of the correctly paired data.

False Discovery Rates (FDR) were estimated from the

distributions of p-values [31] and a list of top ranking models

with FDR ,0.01 was considered for further analysis. This resulted

in a total of 928 genes whose expression could be predicted from

miRNA expression alone (File S1). More statistical details of the

regression modeling and permutation testing are given in the

Methods section below.

Since regression is a prediction algorithm, and least angle

regression tackles the variable selection problem, we first check its

prediction and later the variable selection capabilities. Figures 1

(A) and 1 (B) contrast the observed expression values of the 928

predictable genes with their cross-validation predictions from the

miRNA data. Not only do we see a good agreement of predictions

and observations for each gene individually but also a good

agreement of the clustering structure between measured and

predicted gene expression values. This is further supported by

Figures 1 (C) and 1 (D) that contrast all pairwise correlation

coefficients across measured expression values (left) and predicted

expression values (right). This is remarkable, because the

regression models have been learned for all predicted genes

independently from each other. A more quantitative assessment of

prediction accuracies is given in Figure 2. It shows the distribution

of mean squared cross validation prediction errors across genes.

To make the cv-MSE comparable across genes, it was divided by

the variance of the respective gene, yielding a scaled mean squared

prediction error (cv-SMSE). The figure shows distributions of the

cv-SMSE of the original models (green line) and that of the

corresponding permuted models (black line), while the individual

cv-SMSE values are shown as green respectively black vertical

stripes below the density curves. For the prediction accuracy see

also Table 1 where we refer to the models as unconstrained

models.

Interestingly, the expression of none of the genes could be

optimally predicted by a single miRNA. For all 928 predictable

genes, combinations of several miRNAs (at least 2) improved

prediction emphasizing the extent and importance of functional

miRNA-mRNA interactions in gene regulation.

Integration of Target Sequence Information
Using predictions from four different algorithms (microCosm

[12], TargetScan [3], DIANA/microT, [29], and doRiNA

(formerly PicTar) [28]), we searched for miRNA-gene interactions

predicted by at least two of the four algorithms in our models.

Only 4.9% of predictors included a target sequence. The

observation suggests that functional gene regulation through

miRNAs can not be reduced to direct miRNA-mRNA interac-

tions. However, this observation may also result from modeling

limitations. The expression of modules of miRNAs strongly

correlate suggesting that the expression of these miRNAs

themselves are jointly regulated. In the context of LARS regression

this can lead to the replacement of a functionally regulating

miRNA by a co-expressed but functionally uninvolved miRNA as

predictor [32]. To follow up on this problem, we integrated

sequence based target information in our analysis by allowing only

miRNAs with an annotated target sequence for the predicted

genes as possible predictors. For 4,820 of the 4,878 selected genes,

we found at least one miRNA with a complementary target

sequence. The dimensionality of the regression problems now

strongly varies across predicted genes ranging from only one

miRNA with a matching target sequence to 261 possible

predictors.

The prediction accuracy of the constrained models was lower

than for the unconstrained models, see Table 1, where we refer to

the models as direct target models (DTM). However, we still found

480 genes for which the constrained models yielded significant

predictions (File S2). Interestingly, only 4.8% of genes were

optimally predicted with a single miRNA, for all others

complementing expression information from several miRNAs

increased cross-validated prediction accuracy. The significant

DTMs suggest that in many cases the correlation between gene

and miRNA expression can be attributed to direct interactions.

However, the data also suggests that many miRNAs operate in

concert.

Identification of New Regulators
The reduced predictive performance also indicates that

important predictive information is missed. This is further

supported by a third set of models that is trained on all miRNAs

except those used in the DTMs. These residual models are not

used to predict the measured gene expression values but to predict

the residuals of the DTM. Our intention is to find complementary

predictors to the miRNAs that contain a matching target

sequence. Table 1 indicates that again we found 581 models with

significant predictions of residuals, or gene expression values if no

targeting miRNAs were reported for the gene in the database.

This second step allows for the identification of new regulating

miRNAs, which have not yet been reported to regulate the

response mRNA, and thus creates hypotheses on so far unknown

regulators. Note that the combination of DTMs and residual

models does not reflect the same information as the unconstrained

models. While the predictors of the unconstrained models replace

direct target miRNAs, the predictors of the residual models

complement the predictive information held in the predictors of

the direct target models. In the supporting information section we

provide a list of de novo identified candidate regulator miRNAs for

all 581 genes with significant residual models (File S3).

Focusing on Negative Regulatory Interactions
In the prevalent conception of miRNA-mediated gene regula-

tion, the miRNA is negatively regulating the expression of the

gene. This should be reflected in regression models by negative

regression coefficients. However, in all models discussed so far we

observed both positive and negative coefficients. This might in

part be explained by the observation of Vasudevan and coworkers

[26,27], who report that a miRNA can also increase the amount of

mRNA or protein, and by indirect regulation where an

intermediate regulator is negatively affected by the miRNA which

then leads to an increase of mRNA levels.

However, predictive information does not always reflect that a

miRNA regulates a gene. It can also arise when a gene is co-

expressed with a miRNA. While the second mechanism is

functionally as important as the first, one might still want to focus

on miRNA mediated regulation. This can be done by only

Modeling miRNA-mRNA Interactions

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40634



allowing negative regression coefficients in the direct target

models, yielding a fourth set of models that we call negative

regulation models (NRM). We found 716 significant NRM with a

predictive accuracy that is comparable to that of the original DTM

(Table 1, File S4). Also for the NRM we learned residual models

and provide candidate lists of newly identified functional

regulator-target interactions in the supporting information section

(File S5).

Functional Targets of Oncogenic miRNAs
The NCI-60 data set consists of human cell lines originating

from different cancers. Therefore, we expected to find functional

interactions between oncogenic miRNAs and genes involved in

the genesis and progression of cancer. For a selection of

13 miRNAs with known functions in cancer development

described by Esquela-Kerscher [33], we selected significant

models from the negative regulation and residual models

described above where at least one of these onco-miRNAs

Figure 1. Gene expression can be predicted from miRNA expression with high accuracy. A) Gene expression values. B) Gene expression
values predicted from miRNA expression. C) Correlation of gene expression values. D) Correlation of predicted gene expression values. Besides the
gene expression structure, the correlation structure is well-preserved. Predictions are from unconstrained gene models. In subfigures A and B,
samples are in rows and genes are in columns. Expression values were centered and scaled and color-coded with blue representing low and yellow
high expression values. The subfigures C and D show the gene-by-gene correlation structure of the genes displayed in subfigures A and B. Here,
yellow indicates high correlation and red indicates anti-correlation of genes. The order of genes and samples is the same for all subfigures.
doi:10.1371/journal.pone.0040634.g001
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served as a predictor. Interestingly, on their own these miRNAs

did not predict the expression of their potential targets. This was

only accomplished in concert with other miRNAs. These

complementing predictors are newly identified candidates of

oncogenic miRNAs. They are listed in the supporting informa-

tion section (File S5).

We tested the list of genes that were predicted to be regulated by

individual onco-miRNAs from the negative regulation and

residual models for enrichment of Gene Ontology terms [34].

The results are summarized in Table 2. Most interestingly, genes

that are involved in programmed cell death, regulation of the

apoptotic process and other processes that play a role in tumor

development are significantly over-represented among the pre-

dicted functional targets of many onco-miRNAs, reinforcing their

association with tumorigenesis. Table 2 summarizes enrichment of

GO terms for the predicted targets of all onco-miRNAs.

Among the five most significant Gene Ontology terms which are

over-represented in at least two miRNA target gene sets are

‘programmed cell death’, ‘death’, ‘regulation of apoptotic process’

and ‘DNA recombination’. The target gene sets of miR-19b-1 are

enriched for four of these terms. This miRNA and its targets are

examined in more detail below.

The Onco-miRNA miR-19b-1
miR-19b-1 belongs to the mir-17-92 cluster which is frequently

amplified and over-expressed in lymphomas [33]. miR-19b has

been shown to be the key oncogenic miRNA within the mir-17-92

cluster. It is both necessary and sufficient to promote c-myc

induced B-cell lymphomagenesis through the repression of

apoptosis [35].

We identified 9 genes where miR-19b-1 is one of possibly many

predictors in models that have either positive or negative

coefficients and predictors with complementary seed sequences

(direct target models). Interestingly, in most cases, miR-19b-1 was

not chosen as a single predictor but as a co-predictor that needs to

be complemented with further miRNAs in order to predict gene

expression.

In models that were learned on the residuals of the direct target

models, we found 14 genes with miR-19b-1 in their list of

predictors, suggesting that the prominent role of miR-19b-1 in

oncogenesis might not be restricted to its direct action as a

silencing miRNA. This also becomes apparent in Figure 3 that

compares the observed expression of functional miR-19b-1 targets

(left) to their predicted expression using only miR-19b-1 as

predictor (middle) and predictions using miR-19b-1 together with

the identified complementary miRNA predictors (right). Whereas

the prediction of gene expression values with miR-19b-1 alone is

very poor, the prediction using all predictors from the regression

models is good.

Bidirectional Regulatory Networks
Until now, we focused on the regulation of genes via the

expression of miRNAs. The expression of the miRNAs themselves

is under the control of genes, such as transcription factors and their

mediators. Together this yields a bidirectional regulatory interplay

of gene expression and miRNA expression.

We complemented our analysis by running the same analysis to

predict miRNA expression from mRNA expression, yielding

modules of mRNAs as predictors of miRNA expression. We

identified 93 miRNAs whose expression could be significantly

predicted from gene expression (File S6). The reverse models also

exploit the joint information of multiple predictors. A summary of

the prediction performance of the reverse models is given in

Table 1.

Restricting gene models to the direct target and residual models

where only negative coefficients are permitted and leaving the

reverse models (genes predicting miRNA expression) uncon-

Figure 2. Scaled mean squared cross-validated prediction error
(cv-SMSE) of unconstrained models with correct sample lables
(green) and of models with permuted sample labels (black). The
range of the cv-SMSE is shown on the horizontal axis, while the density
is shown on the vertical axis. The lines indicate the density of the data
distributions, and small vertical stripes display individual data points.
doi:10.1371/journal.pone.0040634.g002

Table 1. Performance of the different types of gene and miRNA models.

Gene models
number of sign.
models

cv-SMSE (0.05, 0.5,
0.95 quantile)

difference in r (0.05
and 0.95 quantile)

number of predictors,
median

Unconstrained 928 0.3998 0.6488 0.7871 20.1719 0.1533 2–55; 31

Direct target (DTM) 480 0.5739 0.7637 0.8743 20.3541 0.3552 1–45; 6

Residual 581 0.3564 0.6305 0.7903 20.1641 0.1687 1–57; 29

Negative regulation and direct target 716 0.6777 0.8936 0.9717 20.4552 0.4073 1–26; 3

Negative regulation, residual 689 0.2052 0.7039 3.9824 20.6058 0.5700 1–54; 24

miRNA model, unconstrained 93 0.3493 0.5844 0.7872 20.1099 0.1139 8–54; 37

Number of significant models, scaled mean squared prediction error from cross-validation (cv-SMSE), 0.05 and 0.95 quantile of the differences in gene-wise correlation
between original and predicted gene expression, and range and median of number of predictors for each model type.
doi:10.1371/journal.pone.0040634.t001
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strained, yields a bidirectional regulatory network comprised of

2,985 nodes and 23,513 edges in total. This large network can be

best browsed by focusing on subnetworks centered around specific

genes or miRNAs.

Focusing on the subnetwork around miR-19b-1, some of the

genes for which miR-19b-1 serves as a predictor are known to

have binding sites (11 genes), but the majority of the genes were de

novo identified (50 genes).

The three most significant GO terms from the target gene over-

representation analysis of miR-19b-1 are ‘DNA recombination’,

‘DNA repair’ and ‘programmed cell death’ (Table 3). This

confirms the known role of miR-19b-1 in apoptosis and points to

further functions of miR-19b-1 targets in DNA recombination and

repair which are also often dysregulated in cancer. Figure 4 shows

the subnetwork of genes involved in the three GO categories

mentioned above. Interestingly, only three of the genes are

predicted to be targets of miR-19b-1 based on sequence

information (rectangular nodes), the others are not in the

databases (ellipsoid gene nodes) and stem from the residual

models. Therefore, the GO term enrichment analysis was driven

by the newly identified genes. Among these genes, TFPT (alias

FB1, ‘TCF3 (E2A) fusion partner (in childhood Leukemia)’) is

annotated with all three of the GO terms selected and a known

proto-oncogene in childhood pre-B acute lymphoblastic leukemia

[36]. RUVBL1 (alias TIP49) has been shown to be a co-factor of

Myc and as such modulates apoptosis in c-Myc-mediated

oncogenesis, e.g., in lymphomas [37].

Co-transcription of Genes and miRNAs
Several miRNAs are located within the coding region of a gene.

These miRNAs are under the same transcriptional control as their

host genes and therefore, if at all, we expect a positive regulatory

effect. One does not need regression modeling to identify these

miRNAs. Nevertheless, they constitute a small but good test

framework for our models; we expect to find these pairs of genes

and miRNAs and the resulting correlation coefficients to be

positive.

Using positional information from the ensembl database

(http://www.ensembl.org), we selected genes hosting one or

several miRNAs and kept those pairs for which the mRNA is

represented on the HGU133A microarray and the miRNA on the

custom microarray used here. In unconstrained gene models in

which a miRNA from the same locus as the gene served as one of

the predictors, we only found positive coefficients. Likewise, in

miRNA models, the coefficients of genes serving as one of the

predictors for a miRNA from the same locus were always positive.

Discussion

The NCI-60 data set is one of the most extensively studied data

sets available and has emerged as a well recognized resource for

cancer research and the development of computational tools.

miRNA expression was first assessed by Blower [38] using custom

spotted microarrays and by Gaur [39] using qPCR. Later, Liu

[40], and Søkilde [41] used commercial platforms for miRNA

profiling. Comparing the aforementioned platforms, Søkilde [41]

found high concordance between the miRNA platforms, especially

compared to a similar analysis on mRNA data of the NCI-60 data

panel [42]. All analyses showed tissue specific expression of

characteristic miRNAs which led to a separation of samples

according to their tissue of origin in hierarchical clustering. Søkilde

[41] defined tissue-specific miRNAs as the ones with significantly

higher expression in the respective tissue compared to the

remaining tissues. They found miR-19b tissue-specific for leuke-

mias and colon and these two tissues of origin also show highest

and second highest expression in the miRNA expression data of

Blower [38], which we use.

From the perspective of target prediction, data-based regression

approaches are complementary to existing sequence-based

approaches. Sequence-based approaches are limited to direct

interactions between miRNAs and mRNA transcripts, they might

identify functionally inactive interactions, and they can not capture

regulatory interplay through the co-expression of genes and

miRNAs. The regression approaches on the other hand do not

suffer from any of these limitations. First, it is more likely to

capture functional interactions by taking expression profiles into

account. Second, regression captures indirect regulation where the

miRNA has an effect on an intermediate player, which then affects

the mRNA levels observed. Third, regulation by mechanisms not

yet described can be captured. This is advantageous from the

systems biology perspective but disadvantageous from the

perspective of understanding regulatory mechanisms on the level

of molecular interactions. It is important to note that there is a

conceptual difference between the notion of a predictor and that of

Figure 3. Gene expression of genes for which miR-19b-1 serves as one of the predictors. A) Gene expression values. B) Gene expression
predicted from miR-19b-1 only. C) Gene expression predicted from all predictors of the gene models. Gene expression can only be predicted if all
predictors of the direct target and the residual model are used. If only miR-19b-1 is allowed as a predictor in the LARS model, the prediction is poor. In
all subfigures, samples are in rows and genes in columns. Expression and predicted expression values were centered and scaled and color-coded with
blue representing low and yellow high expression values. The order of genes and samples is the same for all sub-figures.
doi:10.1371/journal.pone.0040634.g003
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a regulator. Although regression is directional in the sense that the

role of predicting variables and predicted variables is different, this

must not be interpreted as modeling causal interactions. Regres-

sion captures correlation of expression values, which can arise in

many ways. A gene can regulate a miRNA, the miRNA can

regulate the gene, or a third molecule, miRNA or gene, can

regulate both of them. The picture becomes even more

complicated when several molecules regulate a target in concert.

While it is an advantage of the regression-based approach to be

sensitive to all these forms of functional regulation, it is a

disadvantage that regression can not distinguish between them.

This in contrast is a strength of the sequence based target

prediction approach. It builds on the molecular mechanisms of

mRNA degradation at the RISC complex [43] and hence captures

causal regulation mechanisms.

A general advantage of expression data-based approaches is that

they are more likely to capture context specific functional

interactions. miRNA mediated gene regulation can change during

cell differentiation and oncogenic transformation, while sequence

patterns do not. Regulation events require that a miRNA and an

mRNA are expressed at the same time in the same compartment

of a cell, since the miRNA must physically bind to the mRNA.

This may be the case in one type of cells and not in another.

Moreover all necessary proteins to form a RISC complex need to

be present, which might also not be given at all times and

locations. In addition, cell specific alternative splicing and

polyadenylation can remove regulatory sites from the gene

transcript and lead to different gene regulation, as observed in

proliferating cells which have shorter 39-UTRs with less miRNA

binding sites [44]. Furthermore, examples show that miRNA-

Table 3. Most frequent GO terms over-represented in targets of miR-19b-1.

GOBPID p-value odds ratio expected count count size term

GO:0006310 0.0033 8.48 0.67 4 14 DNA recombination

GO:0006281 0.0071 4.96 1.27 5 27 DNA repair

GO:0012501 0.0074 2.37 7.87 15 164 programmed cell death

GO:0006513 0.0128 20.55 0.19 2 4 protein monoubiquitination

GO:0016064 0.0128 20.55 0.19 2 4 immunoglobulin mediated immune
response

GO:0016574 0.0128 20.55 0.19 2 4 histone ubiquitination

GO:0022408 0.0128 20.55 0.19 2 4 negative regulation of cell-cell adhesion

GO:0030325 0.0128 20.55 0.19 2 4 adrenal gland development

GO:0051385 0.0128 20.55 0.19 2 4 response to mineralocorticoid stimulus

GO:0000209 0.0130 5.27 0.96 4 20 protein polyubiquitination

GO:0042981 0.0136 2.37 6.10 12 127 regulation of apoptotic process

GO:0016265 0.0158 2.13 8.54 15 178 death

GO:0070507 0.0169 6.94 0.58 3 12 regulation of microtubule cytoskeleton
organization

GO:0043525 0.0206 13.69 0.24 2 5 positive regulation of neuron apoptosis

GO:0033554 0.0212 2.28 5.71 11 121 cellular response to stress

GO:0010564 0.0216 3.14 2.26 6 47 regulation of cell cycle process

GO:0010942 0.0289 2.65 3.07 7 65 positive regulation of cell death

GO:0010557 0.0296 2.23 5.23 10 109 positive regulation of macromolecule
biosynthetic process

GO:0007052 0.0300 10.25 0.29 2 6 mitotic spindle organization

GO:0031328 0.0315 2.12 6.05 11 126 positive regulation of cellular biosynthetic
process

GO:0009893 0.0319 1.96 8.45 14 176 positive regulation of metabolic process

GO:0045935 0.0351 2.15 5.38 10 112 positive regulation of nucleobase-
containing compound metabolic process

GO:0052548 0.0366 3.64 1.30 4 27 regulation of endopeptidase activity

GO:0009416 0.0384 8.48 0.33 2 7 response to light stimulus

GO:0002449 0.0407 8.20 0.34 2 7 lymphocyte mediated immunity

GO:0007613 0.0407 8.20 0.34 2 7 memory

GO:0009411 0.0407 8.20 0.34 2 7 response to UV

GO:0007093 0.0441 4.44 0.82 3 17 mitotic cell cycle checkpoint

GO:0033043 0.0468 2.55 2.69 6 56 regulation of organelle organization

GO:0065009 0.0469 1.84 8.88 14 185 regulation of molecular function

GOBPID stands for the Gene Ontology Biological Process identifier. P-value, odds ratio, expected and observed count are taken from the hypergeometric test for each
GO term.
doi:10.1371/journal.pone.0040634.t003
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mediated repression can be altered in response to changing

environmental conditions [45]. There might be even more cell

specific factors influencing the interplay between miRNA and

mRNA which are waiting to be discovered. In many cases, it is still

unclear in which context a miRNA can functionally bind to a gene

transcript. While in some contexts, all necessary factors might be

present, in others, binding could be prevented because conditions

are not adequate. Here lies an additional strength of the paired

profiles approach. It can take cellular contexts into account by

selecting gene and miRNA expression datasets from cells or tissues

under different conditions. Although the NCI-60 data hold

samples from many diverse cellular contexts, these subsets are

too small to be analyzed separately. Nevertheless, the approach

can be used once larger paired gene-miRNA data sets are

available. This will allow for finding functional interactions in

specific contexts.

In principle, the LARS approach shown here is very similar to

the Bayesian modeling approach by [17]. These authors use gene

expression profiles of mRNAs and miRNAs, plus miRNA seed

sequence information in a Bayesian model. In a follow-up

publication [18], they also include mRNA sequence features in

the model, but this added little to the total accuracy of their

predictions. Very recently, Lu et al. ([19]) proposed a LASSO

regression model considering miRNA and mRNA expression

profiles, miRNA binding site information, and availability of the

RISC complex. They could show that the LASSO regression

model is powerful in refining sequence based miRNA target

predictions. However, constraining on the occurrence of a seed

Figure 4. Interaction network of miR-19b-1. Interactions of miR-19b-1 with genes with functions in ‘DNA recombination’ (orange), ‘DNA repair’
(pink), ‘programmed cell death’ (green), all three categories (yellow), in ‘DNA recombination’ and ‘DNA repair’ (purple) and in ‘DNA recombination’
and ‘programmed cell death’ (red). miR-19b-1 is located in the center of the network, around it are genes for which miR-19b-1 is one of the predictors
from the negative restricted models (NRM) and the third layer consists of miRNAs for which the genes from the second layer are predictors
(unconstrained models). Genes from direct target NRM models (miR-19b-1 is predicted to target the gene by at least two miRNA target prediction
algorithms) are represented by rectangular nodes. Genes from residual models have ellipsoid nodes. TFPT: TCF3 (E2A) fusion partner (in childhood
Leukemia) [HGNC:13630]; POLR2E: polymerase (RNA) II (DNA directed) polypeptide E, 25 kDa [HGNC:9192]; MDK: midkine (neurite growth-promoting
factor 2) [HGNC:6972]; PSMA2: proteasome (prosome, macropain) subunit, alpha type, 2 [HGNC:9531]; SWAP70: SWAP switching B-cell complex
70 kDa subunit [HGNC:17070]; PLK2: polo-like kinase 2 [HGNC:19699]; CTGF: connective tissue growth factor [HGNC:2500]; UBE2B: ubiquitin-
conjugating enzyme E2B [HGNC:12473]; NGFRAP1:nerve growth factor receptor (TNFRSF16) associated protein 1 [HGNC:13388]; TPX2: TPX2,
microtubule-associated, homolog (Xenopus laevis) [HGNC:1249]; PRKCD: protein kinase C, delta [HGNC:9399]; RUVBL1: RuvB-like 1 (E. coli)
[HGNC:10474]; AGRN: agrin [HGNC:329]; NR3C1: nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) [HGNC:7978]; HUWE1:
HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase [HGNC:30892]; RRAGA: Ras-related GTP binding A [HGNC:16963]; USP1:
ubiquitin specific peptidase 1 [HGNC:12607]; RPS6KA3: ribosomal protein S6 kinase, 90 kDa, polypeptide 3 [HGNC:10432]; DUSP1: dual specificity
phosphatase 1 [HGNC:3064]; PHLDA3: pleckstrin homology-like domain, family A, member 3 [HGNC:8934].
doi:10.1371/journal.pone.0040634.g004
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sequence in both approaches did not allow finding interactions

based on non-canonical, not perfectly matching target site reliant,

mechanisms.

In summary, we have presented a regression analysis of paired

gene and miRNA profiles. We have shown that miRNA

expression can predict gene expression with high accuracy and,

likewise, that miRNA expression can be predicted from gene

expression. Moreover, we provide lists of potential functional

targets for a large set of miRNAs including both known targets

with one or several miRNA binding sites, and previously

unidentified targets lacking a canonical seed binding site. In

almost all instances multiple miRNA predictor models yielded

better predictive performances than single miRNA models. This

observation suggests that miRNA mediated regulation can not be

reduced to individual miRNA-mRNA interactions.

Methods

Data Analysis and Computational Approach
Data preprocessing. We used data from 59 cell lines of

the NCI-60 panel for which paired mRNA and miRNA

expression profiles were available. The mRNA expression raw

data (Affymetrix hgu133a microarrays) was downloaded from

the ArrayExpress database (http://www.ebi.ac.uk/microarray-

as/ae/, accession number E-GEOD-5720) and normalized using

the VSN algorithm [46]. Internal control probe sets (identifiers

starting with ‘AFFX’ and probe sets mapping multiple different

transcripts (ending with ‘_x_at’) were removed and remaining

probe sets were mapped on to entrez identifiers. Whenever

more than one probe set mapped to the same entrez identifier,

the one with higher mean expression across samples was

retained. This procedure yielded 12,196 probe sets targeting one

entrez gene each. We then discarded probe sets that showed

little variation across samples and kept those 40% of probe sets

with the highest inter-quartile range (4,878 probe sets).

The miRNA data set from Blower et al. [38] was used. miRNA

preprocessed expression data was also obtained from ArrayEx-

press, accession number E-MEXP-1029, and quantile normalized

[47]. (Note: until March 2012, preprocessed data was available

under the mentioned accession number. After Mar 2012, only raw

data is provided. The preprocessing procedure is described in

Blower et al. [38]). For the miRNA probes, a non-specific filtering

step requiring at least 20 of the 59 samples to have unique

measurements excluded all miRNA probes with constant expres-

sion levels across the majority of samples (443 of 627 miRNA

probes remained). Whenever there was more than one probe

targeting the same miRNA, the probe with the higher mean

expression across samples was retained. This procedure yielded

expression values for 311 different miRNAs that went into

modeling. All analyzes were performed in R [48] and Biocon-

ductor [49]. For simplicity of presentation, we describe our

statistical analysis for the case of predicting gene expression from

miRNA expression. Predicting miRNA expression from gene

expression is done analogously.

Least Angle Regression
We applied least angle regression [30], a computational efficient

variant of linear regression with an L1-regularization term

(LASSO variant, [50]). L1-regularization does not only avoid

over-fitting of high-dimensional regression models but also yields a

selection of miRNA predictors, since the sum of the absolute

values of the regression coefficients is constrained to be below t.

The constraining L1-regularization can be represented by the

following inequality:

Xpj

k~1

Db̂bjk Dvt ð1Þ

In the unconstrained models, pj consists of all k miRNAs

irrespective of sequence information. In the constrained models,

the set of miRNAs potentially predicting a mRNA is different for

each mRNA, and the set of potentially targeting miRNAs pj ,

depends on mRNA j (response variable). Thus b̂bjk denote the fitted

regression coefficients of miRNAs k in the set of miRNAs

potentially targeting mRNA j, and t is the constraint value.

Introducing a Lagrange multiplier into linear regression, the

estimate for b̂bjk becomes:

b̂bjk~
1

2

XN

l~1

yj{bj0{
Xpj

k~1

bjkxl
jk

 !2

zl
Xpj

k~1

bjk

� �
ð2Þ

Furthermore, yj indicates the expression level of the j-th mRNA,

xl
j,k represent the expression level of the k-th miRNA in sample l

potentially targeting the j-th mRNA.

The constraint shrinks coefficients toward zero and many of

them turn out to be exactly zero, which are subsequently filtered

out. The shrinking parameter l tunes the number of miRNAs

remaining in the model. If it is small, many miRNAs are left. If it is

large, most of them are filtered out.

For each regression model, we tuned l by minimizing the mean

squared prediction error (MSE) in a 10-fold cross-validation. One

separate model was learned for every predicted gene thus

identifying a set of predictor miRNAs for it. Predictors which

had entered a model are reported as candidate regulators. All

predictions were merged to a predicted expression profile.

In the prevalent conception of miRNA-mediated gene regula-

tion the miRNA is negatively regulating the expression of a gene.

We reflect this in the NRM regression models by only allowing

negative regression parameters except for the intercept. In view of

the results of Vasudevan and coworkers [26,27] we also ran our

analysis without the parameter restriction.

Lars-LASSO regression models were implemented with the

help of the R package ‘lars’ [51].

Integration of targeting information. In order to integrate

miRNA targeting information in the regression modeling, we

implemented a two step procedure. First we restricted the set of

possible predictors for a specific mRNA to the miRNAs reported

in a collection of miRNA target databases: TargetScan [3], version

6.1, microCosm (based on miRBase) version 5 [12], doRiNA

(formerly PicTar), downloaded all miRNA targets using the web

server on Mar 30, 2012 [28], and DIANA-microT, version 3.0

[29] as potential binding partners of the mRNA. All miRNAs

predicted to target a specific gene by at least two of the four

algorithms were taken as potential regulators, and a model was fit

as discussed above. An overview over the number of interactions

predicted by the four miRNA target prediciton algorithms for the

genes and miRNAs of the NCI-60 dataset used in this analysis, and

the overlap between the different algorithms can be found in

Figure S1. For the negative constraint models, the ‘lars’ and

‘cv.lars’ functions of the ‘lars’ R package were modified

analogously to the positive constraint lars described in Efron et

al. [30]. In principle, when searching for the next predictor to

enter the model, instead of using absolute current correlations,
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only negative current correlations were considered. This proce-

dure yielded negative coefficients (bjk) only. The code of the

modified functions is provided in the supporting information

section (File S7).

Finding interactions based on alternative regulatory

mechanisms. In order to discover new regulators beyond those

annotated in the miRNA target databases, we trained a second

class of models on the residuals of the first. This time we used all

but the miRNA probes from the first run as potential predictors.

For the genes without any regulating miRNAs reported in the

database, a model without targeting restrictions was fitted at this

time.

Evaluation. Our method generates lists of candidate regula-

tors even if the data holds no information on them. However, in

this case the regression models have a very poor predictive

performance. In order to evaluate predictive performance, we

contrasted the observed cv-MSE with a simulated distribution of

cv-MSEs that the same procedure generates if the expression

profiles are not properly paired.

We did this by running our procedure on data where the

samples were randomly permuted in one data set such that

‘‘paired’’ samples no longer stem from the same cell line. In other

words, we tried to predict the expression profile of a cell line from

the miRNA profile of another cell line, which can only result in

random predictions. For every gene and each modeling approach,

we learned 100 models with permuted pairings. For every

predicted gene, we recorded the cv-MSE across the 100

permutations of each type of model and calculated an empirical

p-value for the observed cv-MSE by counting the relative

frequency of permutation based cv-MSEs that were smaller than

the cv-MSE of the correctly paired data. Optimization of the

shrinkage parameter l was repeated for every permutation and the

optimal value could be different to the original one and varied

across permutations.

We did not see major differences in p-values when comparing

two sets of 100 permutations and thus limited permutations in

view of the high computational cost of calculating hundreds of

thousands of regression models (about 12 hours per permutation

on a dual-core AMD with 2.2 GHz and 32 GiB RAM cluster

node when modeling all genes).

From the distributions of p-values, False Discovery Rates (FDR)

were estimated [31] and a list of top ranking models with FDR

,0.01 was considered for further analysis.

Graphical Representation of Expression Matrices
For Figures 1 (A) and 1 (B), gene expression values and gene

expression values predicted with miRNA expression using the

unconstrained LARS regression model were centered and scaled,

and genes and samples of the gene expression data were

hierarchically clustered using Manhattan distance and average

linkage. The gene expression values predicted with miRNA

expression (Figure 1 (B)) were plotted in the same order as the

original gene expression data. The gene-wise correlation matrix of

gene expression (Figure 1 (C)) was hierarchically clustered using

Manhattan distance and average linkage and the correlation

matrix of the gene expression values predicted with miRNA

expression (Figure 1 (D)) was plotted using the same order of genes.

In Figure 3 (A), the expression values of all genes for which miR-

19b-1 served as a predictor in either the direct target or the

residual models were centered and scaled and then clustered with

Euclidean distance and Ward linkage. The gene expression values

of these genes were then predicted with either miR-19b-1 alone

(Figure 3 (B)) or with all predictors included in the direct target and

residual models (Figure 3 (C)).

Over-representation of Functional Groups among
Oncomir Targets

miRNA probes for the oncomirs presented in table 1 of Esquela-

Kerscher [33] were selected from the NCI-60 miRNA microarray.

For finding over-represented GO terms in potential oncomir

targets, a conditional hypergeometric test from the Bioconductor

package ‘GOstats’ [52] was applied to the targets of each

individual oncomir probe. The conditional test takes into account

the graph structure of Gene Ontology terms and conditions on all

child nodes when testing a specific node, therefore requiring

significance of the node beyond what is provided by the child

nodes. P-value histograms of the conditional and the regular

hypergeometric test can be found in Figure S2. Both show

significance by an accumulation of low p-values, but the

frequencies are lower for the conditional test because the overlap

of terms has been accounted for. The ontology ‘Biological Process’

was used. GO categories with size smaller than 10 were excluded.

All 1364 genes (from 716 negative regulation and 689 residual

models, minus the duplicate genes and genes without a GO term)

for which we found significant prediction models served as the

gene universe, conceptually representing the collection of genes

from which genes could be selected to be predicted by individual

miRNAs. mRNA probes had to be mapped to entrez identifiers

and duplicate entrez identifiers were removed prior to the

hypergeometric test.

For each oncomir probe, we considered GO terms with a p-

value ,0.05 as significant. The most frequently occurring GO

terms over all models are summarized in Table 2. GO term

enrichment analysis for the genes from negative regulation and

residual models where miR-19b-1 served as a predictor was done

analogously. All genes from the negative regulation and residual

models served as the gene universe. Small categories (,10 genes)

were not excluded.

Supporting Information

Figure S1 Overlap of miRNA target gene predictions.
Overlap of predicted miRNA target genes from four different

prediction algorithms (microCosm/miRBase, TargetScan, DI-

ANA/microT, PicTar/DoRiNA) Numbers show miRNA-gene

pairs represented in the NCI-60 dataset used here.

(PDF)

Figure S2 p-value histograms of GO term analysis. p-

value histograms of hypergeometric testing of oncomirs for over-

representation of GO terms. Left: standard hypergeometric test,

right: conditional test. Both histograms show enrichment of terms

with low p-values, but the one of the conditional test has lower

numbers because terms called significant because of child terms

are omitted.

(PDF)

File S1 Unconstrained gene models. miRNA predictors

and coefficients for genes with a significant unconstrained model

in tabular format (csv). Coefficients were estimated from the

centered and scaled miRNA expression data.

(CSV)

File S2 Direct target gene models. miRNA predictors and

coefficients for genes with a significant DTM in tabular format

(csv). Coefficients were estimated from the centered and scaled

miRNA expression data.

(CSV)

File S3 Residual gene models. miRNA predictors and

coefficients for genes with a significant residual model in tabular
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format (csv). Coefficients were estimated from the centered and

scaled miRNA expression data.

(CSV)

File S4 Negative regulation direct target gene models.
miRNA predictors and coefficients for genes with a significant

negative regulation direct target model in tabular format (csv).

Coefficients were estimated from the centered and scaled miRNA

expression data.

(CSV)

File S5 Negative regulation residual gene models.
miRNA predictors and coefficients for genes with a significant

negative regulation residual model in tabular format (csv).

Coefficients were estimated from the centered and scaled miRNA

expression data.

(CSV)

File S6 Unconstrained miRNA models. Gene predictors

and coefficients for miRNAs with a significant unconstrained

model in tabular format (csv). Coefficients were estimated from the

centered and scaled mRNA expression data.

(CSV)

File S7 R code of all analyses. zip archive of R scripts to

compute the models and analyses as well as modified lars

functions.

(ZIP)
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