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ABSTRACT

Motivation: For biological pathways, it is common to measure a gene

expression time series after various knockdowns of genes that are

putatively involved in the process of interest. These interventional

time-resolved data are most suitable for the elucidation of dynamic

causal relationships in signaling networks. Even with this kind of data it

is still a major and largely unsolved challenge to infer the topology and

interaction logic of the underlying regulatory network.

Results: In this work, we present a novel model-based approach invol-

ving Boolean networks to reconstruct small to medium-sized regulatory

networks. In particular, we solve the problem of exact likelihood

computation in Boolean networks with probabilistic exponential time

delays. Simulations demonstrate the high accuracy of our approach.

We apply our method to data of Ivanova et al. (2006), where RNA inter-

ference knockdown experiments were used to build a network of the

key regulatory genes governing mouse stem cell maintenance and dif-

ferentiation. In contrast topreviousanalyses of that dataset, our method

can identify feedback loops and provides new insights into the interplay

of some master regulators in embryonic stem cell development.

Availability and implementation: The algorithm is implemented in the

statistical language R. Code and documentation are available at

Bioinformatics online.

Contact: duemcke@mpipz.mpg.de or tresch@mpipz.mpg.de

Supplementary information: Supplementary Materials are available

at Bioinfomatics online.
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1 INTRODUCTION

The inference of signaling networks from biological data is of fun-
damental importance for a systemic understanding of regulatory

processes. The statistical methods that have been developed for
that purpose can be grouped according to the type of data that

they expect as input. Many approaches use gene expression data.

Some methods are based solely on static observations of the
unperturbed system; they exploit the fact that fluctuations of

interacting components are dependent (Basso et al., 2005;

Van Driessche et al., 2005). The use of perturbation data greatly

improves network reconstruction (Fröhlich et al., 2008;

Niederberger et al., 2012; Tresch et al., 2008). To resolve the

order of events in a signaling cascade, time-resolved measure-

ments after perturbation yield further improvements (Friedman

et al., 2000; Grzegorczyk et al., 2008). Boolean networks are an

appropriate tool for dealing with this type of data (Ideker et al.,

2000; Kauffman, 1969; Shmulevich et al., 2002; Silvescu and

Honavar, 2001). The most difficult problem lies in accounting

for the mostly unknown time delays with which the signal is

propagated through the network (Papin et al., 2005).
In this work, we propose Boolean networks with probabilistic

time delays as a novel statistical network inference method. There

have been attempts to calculate the likelihood of a Boolean net-

work in special cases by using Markov Chain Monte Carlo

(MCMC) sampling (Anchang et al., 2009) and for dynamic

nested effects models (Failmezger et al., 2013; Fröhlich et al.,

2011). Exact results were so far obtained only under strong restric-

tions on the logic functions involved, as in the context of conjunc-

tive Bayesian networks (Beerenwinkel and Sullivant, 2009;

Beerenwinkel et al., 2007). By analytically marginalizing over

the unknown delay times, we derive our main result, an exact

and efficient recursive likelihood formula for a broad class of

Boolean networks with exponentially distributed time delays

that may include feedback loops.We evaluate our method in vari-

ous simulation scenarios for its ability to recover the unknown

topology. Themethod is then applied to amurine stem cell knock-

down data set by Ivanova et al. (2006), which consists of a set of

whole genomegene expression time series after the knockout of six

genes (Essrb, Sox2, Nanog, Tcl1, Oct4 and Tbx3) that are con-

sidered key regulators in the maintenance and differentiation of

mouse embryonic stem cells. Our analysis reveals more feedback

loops than previously detected.

2 METHODS

We aim to model central aspects of dynamic signaling networks, namely,

combinatorial regulation, and time delayed responses in gene activity.

All signaling components are considered either active or inactive, i.e.

they are represented as binary variables. The activity of each component

is modeled as a Boolean function of its parent variables in the network.
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Signaling in biological networks occurs with time delays, which are suit-

ably modeled by the Boolean networks introduced later in the text.

2.1 Boolean networks with unknown time delays and

interventions

Let G ¼ f1, . . . ,Ng be a set of N signaling components that dynamically

interact with each other via transcriptional regulation, and let F ¼ f0, 1g

be a Boolean field. Our model represents intracellular gene regulation by

a directed graph given by an adjacency matrix � 2 F
G�G. It is understood

that �ij ¼ 1 whenever i is a parent, i.e. a regulator of j. At each time point

t, a gene j 2 G is characterized by two Boolean variables AjðtÞ and BjðtÞ.

The induction state variable AjðtÞ tells us whether gene j is either tran-

scribed at its basic rate or whether it exhibits altered transcription

(AjðtÞ ¼ 0 or 1, respectively). The activity state variable BjðtÞ reports

whether the signaling molecule j is in its basic functional state or whether

its function is altered at time point t (BjðtÞ ¼ 0 or 1, respectively, see

Fig. 1). It helps to think of the induction states as genes and their expres-

sion, and the activity states as the corresponding gene products (proteins)

and their activity as transcription factors. Although protein activity

can be measured in some instances, it is generally hard to obtain time-

resolved data. Therefore, we will infer the activity variables from the

expression of their known target genes. The induction state AjðtÞ of j at

time t is determined instantaneously by the activity states BiðtÞ of its

parents i 2 pa ðjÞ � G via a Boolean function fj : F
paðjÞ
! F,

AjðtÞ ¼ fjðBiðtÞ; i 2 pa ðjÞÞ , j 2 G, t 2 ½0,1Þ ð1Þ

If paðjÞ ¼ ;, fj is a constant. The family ffjjj 2 Gg of Boolean functions

is denoted by F . The changes in the activity state of gene j are

transmitted to changes in the corresponding activity state with a constant

time delay dj 2 ½0,1Þ,

BjðtÞ ¼
Ajðt� djÞ for t � dj
Ajð0Þ else

�
, j 2 G, t 2 ½0,1Þ ð2Þ

Let � ¼ fdjjj 2 Gg. The graph �, together with F and � define the

dynamics of all binary variables in the model.

To completely specify the Boolean network, we need to initialize the

values of AjðtÞ at t ¼ 0. Through an intervention experiment, some induc-

tion states are actively set to 1, Ajð0Þ ¼ 1 (e.g. by a gene knockdown),

whereas the rest of the variables are initialized by 0. At the same time, all

feedback to an actively perturbed induction state variable Aj is blocked,

which is reflected by the removal of all incoming edges to Aj.

In practical situations the delay times � are rarely known. We account

for this fact by considering the delay times as unknowns for which we

specify their prior distribution. The prior is a product of independent

exponential distributions, one for each individual delay time,

�ð�; �Þ ¼
YN
j¼1

�jðdj; �jÞ , �jðdj; �jÞ ¼
�j expð��jdjÞ if dj � 0
0 otherwise

�
ð3Þ

Here, � ¼ ð�jÞ is a tuple of appropriately chosen positive hyperparam-

eters, and a complete parametrization of the model is given by the tuple

M¼ ð�,F ,L,�Þ.

2.2 The likelihood function

Let B ¼ fBjð�kÞ; j 2 G, k ¼ 0, . . . ,Kg the observations of the binary state

variables Bj at K þ 1 time points 0 ¼ �05�15�25 . . .5�K. Given a

parametrization M of the model and some initial activation pattern,

one seeks to calculate the probability of observing B, by integration

over the unknown delay times,

PðBj�,F ,�Þ ¼

Z
�

PðBj�,F ,�Þ � �ð�; �Þ ð4Þ

The major technical achievement of this article is the closed-form solu-

tion of the integral in Equation (4) for arbitrary Boolean networks (pos-

sibly including cycles) that satisfy a rather general admissibility condition

(Supplementary Material S1). The class of Boolean networks that can be

inferred includes all acyclic networks, and all networks that allow each

node to switch only once, yet it is substantially larger. As the derivation of

this result requires tedious calculations and elaborate notation, we just

give the algorithm for the likelihood calculation in Algorithms 1 and 2

and refer to Supplementary Methods S2 for details. We also prepared

a table of all symbols as Supplementary Materials S6. Some quantities

arising during the calculation become extremely small, which bears the

risk of underflow errors. Therefore, all necessary computations were per-

formed in log space instead of using standard floating point arithmetic

(Supplementary Material S3). Having scored a Boolean network, we

search the space of all admissible signaling graphs by Markov Chain

Monte Carlo as outlined inHusmeier (2003) (SupplementaryMaterial S5).

Our framework easily allows the modeling of a series of intervention

experiments. Each intervention will produce its own sequence of state

observations B, and each sequence will be evaluated separately by actively

initializing the expression states of perturbed variables with 1 and block-

ing all feedback to this state by the removal of all incoming edges.

Fig. 1. Schematic of the model for a fixed time point t: Ai and Bi are the

induction and activity states, respectively, of each regulator f1, 2, 3g. The

delays in signaling between an alteration of the gene state and an ensuing

alteration of the activity state are given by � ¼ ðdiÞ. Given all parent–

child relationships of the network, F ¼ ff1, f2, f3g is the family of Boolean

functions. Functions for nodes with52 parents (A1 and A2) are constant
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3 RESULTS

3.1 Performance on synthetic data

Having in mind the application to stem cell differentiation

data with six genes (see Section 3.2), we manually chose five repre-

sentative topologies with six nodes for our simulation studies with

an OR as sole Boolean function. The delay times dg for each gene

g were sampled uniformly from the interval [1, 30] min. The

measurements were generated after t ¼ f0, 15, 30, 45, 60g min.

For each topology, we then calculated the binary activity patterns

BgðtÞ for each single gene knockout g. The local probability dis-

tributions L ¼ fPðDjjBjÞ; j 2 Gg are taken as

PðDjjBjÞ � N ðDj;� ¼ Bj, �
2Þ

for � 2 f0:006, 0:12, 0:24, 0:36, 0:46, 0:58g. We assume that

vague prior knowledge about the delay times is available by

choosing the hyperparameter �g of the exponential delay time

prior such that their expected value equals the respective true

delay time dg.
For each topology, we started 100 MCMC runs with 2000

steps (see Supplementary Material S3 for details on the

MCMC method). The likelihood requires the summation over

all possible state sequences B 2 F
N�K. This makes calculations

infeasible even for medium-sized networks. We address this

problem by restricting the model space search to state sequences

that are in the immediate vicinity of the best scoring state

sequence Bmax. To find Bmax, we exploit the fact that in our

model, the hidden state variables Bj change their value from 0

to 1 at most once in their time course (due to the monotonicity

of the chosen Boolean function, OR). This means that for each

Bj we can summarize its time course by denoting the time at

which the state change occurs by the random variable Tj called

change point. The contribution of the hidden state Bj to

PðDjB,LÞ is

YK
k¼1

P Djð�kÞjBjð�kÞ
� �

¼
YK
k¼1

PðDjð�kÞjBj ¼ �ð�k4TjÞÞ ð5Þ

where �ð�k4TjÞ ¼
1 if �k4Tj

0 else

�
is the indicator function.

Thus, there are at most K þ 1 different time courses for

Bj [(0,0, . . . ,0), (0,0, . . . ,0,1), . . . (0,1,1, . . . ,1), (1,1, . . . ,1)].
Enumerating these, we find the time course for Bj that maximizes

the term in (5). Doing so for all j 2 G, we find the best scoring
state Bmax. Figure 2 shows the results for all five topologies. The

model shows a good overall performance for low and moderate
noise levels. It performs best on tree topologies (Fig. 2E), which

are often encountered in biological pathways. Another frequent
pathway motif is the feed-forward loop, as modeled in Figure 2B.

The addition of feedback to the linear topology in Figure 2A
decreases performance, but it still remains at a reasonable level.

Figure 2F shows the results on a biological network from litera-
ture [of the stem cell differentiation pathway from Anchang et al.

(2009)]. Specificity and sensitivity are comparable with the
simpler topologies A–E.

3.2 Application to stem cell differentiation data

Our model calls for time series measurements of protein activities
after single gene knockouts. Data of that kind are still sparse.

We circumvented this problem and increase the applicability
of the method by treating the binary activity state variables

as hidden variables. Our data consist of time series of measure-
ments D ¼ ðDjð�kÞÞ of the activity states Bjð�kÞ, j 2 G, at a finite

number of K þ 1 time points 0 ¼ �05�15�25 . . .5�K.

Algorithm 2: Scoring a Single State Sequence B, Given � and 	. The RecursionWill Split into Two Separate Cases Whenever Bk and Its Predecessor BKðkÞ

Switched Values within the Same Observation Interval. If This Happens Too Often, Network Reconstruction Will Be Impossible Anyway. In Practice,

A Sufficient Temporal Resolution Will Imply That Scaling of the Algorithm is Roughly Linear in the Number of State Switches

Function score(B, �,	 ¼ �):

input: state sequence B,

switch time �,

parameter of the integral 	
For each k, find the interval ½�ik , �ikþ1 � where the switch in the state sequence B happens calculate:

Fð j,
,	; �Þ ¼

Z �i1þ1

t1¼�i1

. . .

Z �ikþ1

tk¼�ik

expð
tjÞ
Yk
i¼1

�iðti � t�ðiÞ;	iÞ

" #
dtkdtk�1 . . . dt1

This is done using the following recursion formula:

Fðk, 
,	; �Þ ¼

1 if 	 ¼ ;
ĉðk,
; 	Þ � Fðk, 0, 	̂ðk,
;	Þ; �Þ if 	 6¼ ;, 
40
Fð0, 0, ð	1, . . . , 	k�1Þ; �Þ � expð�	k�ikþ1Þ � Fð�ðkÞ,	k, ð	1, . . . ,	k�1Þ; �Þ if 	 6¼ ;, 
 ¼ 0, t�ðkÞ � �ik
½expð�	k�ik Þ � expð�	k�ikþ1Þ� � Fð�ðkÞ,	k, ð	1, . . . ,	k�1Þ; �Þ if 	 6¼ ;, 
 ¼ 0, t�ðkÞ5�ik

8>><
>>:

Here, 	̂ð j, 
;	Þ and ĉð j,
;	Þ are constants defined as

	̂ð j,
;	Þ ¼ ð	̂ið j,
;	ÞÞi¼1, ..., k, 	̂ið j,
;	Þ ¼
	i if i 62 fj, �ð j Þ, �2ð j Þ, . . .g
	i � 
 if i 2 fj, �ð j Þ, �2ð j Þ, . . .g

�

ĉð j,
;	Þ ¼
Y

s2fj, �ð j Þ, �2ð j Þ, ...g

	s
	s � 
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S.Dümcke et al.

 at U
niversitaetsbibliothek R

egensburg on July 31, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

b
utes
utes
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt696/-/DC1
(
)
(
)
to
-
is
s
_
_
intergal
http://bioinformatics.oxfordjournals.org/


A

B

C

D

E

F

Fig. 2. Results of the simulations study on five topologies (first column). The second column shows the performance as percentage of correctly predicted

edges (presence and absence) for different noise levels � added to the binary activity patterns as a box plot over all 100 runs of the MCMC. The third and

fourth columns show the distribution of sensitivity and specificity of network reconstruction across all runs. (A) Linear graph. This topology can be

predicted with high accuracy up to noise level 0.36. (B) Linear graph with feed-forward loop. This topology is also correctly predicted up to noise level

0.36, although we lose 0.1 performance points compared with the linear graph without shortcut. (C) Linear graph with forward-jump to the last node.

The model can better predict this case than the intra-node forward-jump in B. (D) Full cycle. This difficult topology can be predicted by the model with

accuracy480% up to noise level 0.36. Performance then rapidly degrades. This topology has a high variance in sensitivity/specificity values between the

different runs even for low levels of added noise. (E) Tree structure. The model is well adapted to this topology and shows a high performance until noise

level 0.36. Its performance is comparable with the linear topology (A). (F) Network of stem cell differentiation as reconstructed by Anchang et al.
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The data Djð�kÞ can be thought of as a noisy possibly repli-

cate quantification of the hidden activity states B ¼ fBjð�kÞ;

j 2 G, k ¼ 0, . . . ,Kg. We relate measurements to their underlying

activity state through time-independent local probability

distributions L ¼ fPðDjjBjÞ; j 2 Gg. Given the hidden induction

states B and the local probabilities L, the probability of obser-

ving D is

PðDjB,LÞ ¼
YN
j¼1

YK
k¼1

PðDjð�kÞjBjð�kÞÞ ð6Þ

Equation (6) assumes independence of observations. The likeli-

hood then becomes

PðDj�,L,F ,�Þ ¼
X

B2FN�K

PðDjB,LÞðBj�,F ,�Þ ð7Þ

Thus, we can apply the method to the dataset of Ivanova et al.

(2006) who used short hairpin RNA loss of function techniques

to downregulate genes whose expression patterns suggest self-
renewal regulatory functions in mouse embryonic stem cells.

Genome-wide gene expression time series measurements after

t ¼ 0, 1, . . . , 7 days were obtained after knockdown of each of

the following genes: Nanog, Oct4, Sox2, Tbx3, Esrrb and Tcl1.

These genes are known to play a major role in stem cell differ-

entiation and are therefore called ‘major genes’. Anchang et al.

(2009) built a model with this knockdown data using dynamic

nested effect models.
The major genes represent the nodes in our network. The vari-

ables AjðtÞ and BjðtÞ correspond to their gene and protein activ-

ities, respectively. Because the activity states BjðtÞ are not directly

measured by Ivanova et al. (2006), we use the expression activity
of gene groups under the regulatory control of the major genes

[the E-Genes in the nested effect model of Anchang et al. (2009)]

as a proxy for their protein activity. To get the local probabilities

PðDjjBjÞ needed in the case of assuming hidden BjðtÞ, we use data

from 122 genes given as discretized time series representing ad-

missible patterns [see the Supplementary Materials of Anchang

et al. (2009) for details]. In accordance with our definition, genes

in their basic state were assigned the value 0, and assumed the
value 1 on activation. We kept the grouping of the 122 genes into
six groups of genes depending on Nanog, Oct4, Sox2, Tbx3,

Esrrb or Tcl1 discovered from the E-Genes graph from
Anchang et al. Because the data contain time series representing
the undifferentiated cell culture (the negative control), and the

cell culture undergoing normal differentiation (the positive con-
trol), we filtered for genes whose expression differed more than
two-fold at the last time point between the two control experi-

ments. Then, we assigned to each gene at each time point a
probability to belong to the basal or the active state, according
to whether its expression resembled more the negative or positive

control (a likelihood ratio was calculated under the assumption
of Gaussian expression distributions). Using the gene groups
defined earlier, we calculated a likelihood ratio for each major

gene to be active versus inactive as the product of the corres-
ponding likelihood ratios of the assigned genes (this was done
separately for each time point and each knockout). The likeli-
hood ratios are then converted into a probability of being active

(at a certain time point, in a certain knockdown experiment),
which corresponds to the input required for our model.
In this application, we only use the Boolean function

AND, leading to monotonic activity states B. As described in
Section 3.1, we chose the state sequence Bmax that maximizes
PðDjB,LÞ.

Using the same MCMC procedure as in the simulation setting
(SupplementaryMaterial S5), the stationary chain comprised 155
unique models. We used model averaging and calculated the

weighted frequencies of each edge. Each model was weighted
by its number of occurrences in the Markov chain, resulting in
a probabilistic adjacency matrix (Fig. 3A). Tcl1 has the lowest

connectivity, whereas Nanog has the highest. To compare the re-
sults of our model with the model from Anchang et al. (Fig. 3C),
we converted the probabilistic adjacency matrix into a graph by

drawing all edges with a probability40.5 (Fig. 3B). The most
striking difference of Figure 3B compared with Figure 3C is the
presence of cycles. In particular, the major genes Oct4, Sox2,

Nanog and Esrrb form a maximal clique of the graph.

A B C D

Fig. 3. (A) Adjacency matrix of the result of the network inference on the biological dataset. Each entry corresponds to the observed frequency and

is colored accordingly with lighter colors representing lower frequencies (B) Network obtained from A by setting a threshold of 0.5 on the edge

probability (C) Network inferred by Anchang et al. (2009) (D) Extract from the network published in Zhou et al. (2007). The authors did not include

Tbx3 and Tcl1 in their findings. Dashed edges in B and C represent edges that are not present in our model (A). All other edges from B and C are also

found in model A
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The two graphs essentially agree on the position of Tcl1, which in
both cases is targeted by Tbx3 and Esrrb. Also, Tbx3 is located
mostly upstream of the Oct4, Sox2, Nanog, Esrrb clique in both
graphs. Still, it is puzzling why our method finds a highly inter-

connected feedback-loop rich structure, whereas Anchang et al.
find a sparser solution. The method in Anchang et al. assumes an
acyclic graph structure, and hence by definition cannot find

cycles. As our simulation studies have shown that the model
can accurately predict circular structures in regulatory graphs,
the feedback in this network might be higher, and the signaling

hierarchy less pronounced than previously thought. This is
confirmed by a different approach to mouse embryonic stem
cell network reconstruction (Zhou et al., 2007) that also discovers

a large amount of interplay between the key regulators of stem
cell differentiation. Zhou et al. have also reconstructed a mouse
embryonic stem cell network based on transcription factor
binding sites, protein interactions and literature annotation.

They show bidirectional interactions of Oct4 with Nanog and
Sox2 coinciding with our finding (Fig. 3D).

4 CONCLUSION

In this work, we developed an algorithm that permits us to
analyze gene knockdown time series experiments, which have
high dimensional readouts (such as gene expression). To elucidate

the interplay of the major regulators, all of them need to be per-
turbed and measured individually. On the side of methods devel-
opment, we have solved the problem of calculating the likelihood

function for data generated from a Boolean network with prob-
abilistic exponentially distributed time delays (Algorithm 2). The
likelihood function can be used for network reconstruction, as has
been demonstrated in our simulation studies. Having a closed

form solution for the likelihood has several further applications
that we did not mention so far. It is possible to sample the joint
distribution PðBj�,F ,�Þ rather efficiently, because many obser-

vations B can be excluded a priori knowing � and F . This allows
for accounting for some hidden variables Bk among the observed
B by integrating them out. Furthermore, it is possible to calculate

the expectation of a certain Bj to be on or off in a given time
interval. As an application, we have devised a method to apply
it to data in which the values of the Boolean network can only be

observed indirectly (Algorithm 1). We analyzed murine stem cell
differentiation data of Ivanova et al. (2006) for the purpose of
signaling network reconstruction. Comparison with a previous
reconstruction attempt in Anchang et al. (2009) revealed a

much richer feedback structure than expected. Our method sug-
gests regulatory feedback loops that lead to a better understand-
ing of the dynamic interplay of some master regulators in murine

embryonic stem cell development. We expect our method to find
numerous applications, as protein abundance data become
increasingly available (Fröhlich et al., 2009).
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Fröhlich,H. et al. (2011) Fast and efficient dynamic nested effects models.

Bioinformatics, 27, 238–244.

Grzegorczyk,M. et al. (2008) Modelling non-stationary gene regulatory processes

with a non-homogeneous bayesian network and the allocation sampler.

Bioinformatics, 24, 2071–2078.

Husmeier,D. (2003) Sensitivity and specificity of inferring genetic regulatory

interactions from microarray experiments with dynamic Bayesian networks.

Bioinformatics, 19, 2271–2282.

Ideker,T.E. et al. (2000) Discovery of regulatory interactions through perturb-

ation: inference and experimental design. Pac. Symp. Biocomput., 2000,

305–316.

Ivanova,N. et al. (2006) Dissecting self-renewal in stem cells with RNA interference.

Nature, 442, 533–538.

Kauffman,S.A. (1969) Metabolic stability and epigenesis in randomly constructed

genetic nets. J. Theor. Biol., 22, 437–467.

Niederberger,T. et al. (2012) Mc eminem maps the interaction landscape of the

mediator. PLoS Comput. Biol., 8, e1002568.

Papin,J.A. et al. (2005) Reconstruction of cellular signalling networks and analysis

of their properties. Nat. Rev. Mol. Cell Biol., 6, 99–111.

Shmulevich,I. et al. (2002) Probabilistic boolean networks: a rule-based uncertainty

model for gene regulatory networks. Bioinformatics, 18, 261–274.

Silvescu,A. and Honavar,V. (2001) Temporal Boolean network models of genetic

networks and their inference from gene expression time series. Complex Syst.,

13, 54–70.

Tresch,A. et al. (2008) Structure learning in nested effects models. Stat. Appl. Genet.

Mol. Biol., 7, 9.

Van Driessche,N. et al. (2005) Epistasis analysis with global transcriptional pheno-

types. Nat. Gen., 37, 471–477.

Zhou,Q. et al. (2007) A gene regulatory network in mouse embryonic stem cells.

Proc. Natl. Acad. Sci. USA, 104, 16438–16443.

419

Exact likelihood computation in signal network reconstruction

 at U
niversitaetsbibliothek R

egensburg on July 31, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

,
Note that t
,
In order t
,
to
s
http://bioinformatics.oxfordjournals.org/

