-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by University of Regensburg Publication Server

The de Rham realization of the
elliptic polylogarithm in families

DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES
DER NATURWISSENSCHAFTEN (DR. RER. NAT.)
DER FAKULTAT FUR MATHEMATIK
DER UNIVERSITAT REGENSBURG

vorgelegt von
René Achim Scheider
aus Deggendorf
im Jahr 2014


https://core.ac.uk/display/33179548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Promotionsgesuch eingereicht am: 21. Januar 2014

Die Arbeit wurde angeleitet von: Prof. Dr. Guido Kings

Priifungsausschuss:

Prof. Dr. Helmut Abels (Vorsitzender)

Prof. Dr. Guido Kings (1. Gutachter)

Prof. Dr. Kenichi Bannai, Keio University, Japan (2. Gutachter)
Prof. Dr. Klaus Kiinnemann

Prof. Dr. Ulrich Bunke (Ersatzpriifer)



CONTENTS

Contents

Introduction

Overview
Acknowledgements

0 Preliminaries and notation

0.1 Abelian schemes: duality theory, universal vectorial extension and Poincaré bundle .
0.1.1 Introduction of the basicobjects . . . . . . ... ... ... ... . .....
0.1.2 Extension and biextension structures: generalities . . . . . . . ... ... ..
0.1.3 Extension and biextension structures: applications . . . . . . ... ... ..
0.2 Algebraic connections, de Rham cohomology and D-modules . . . . ... ... ..
0.2.1  Connections . . . . . . . ...
0.2.2 DeRhamcohomology . . . ... ... ... ... . ... ... ...,
0.23 D-modules . . . ... ...

0.3 Summary of the basicnotation . . . . . . ... ... ... ... ...

The formalism of the logarithm sheaves and the elliptic polylogarithm

1.1  The definition of the logarithm sheaves . . . . . . . ... .. ... ... .. .....

1.2 The de Rham cohomology of the logarithm sheaves . . . . . . ... ... .. .. ..
1.2.1  The computation of Hig (X/S, L) « o o oo v v v i i i i i
1.2.2  The computation of Hip (U/S, L) o v v v v v i
1.23 Proofof Lemma 1.2.5 . . .. ... .. ... ...

1.3 Unipotent vector bundles with integrable connection . . . . . .. ... ... ....
1.3.1 Thenotion of unipotency . . . . . . . . . . . v vt e
1.3.2  The universal property of the logarithm sheaves . . . . . ... ... ... ..
1.3.3 Anequivalence of categories . . . . . . . ... ... ...
1.3.4 Some categorical structureresults . . . . . . . ... ...,

1.4 The invariance results for the logarithm sheaves . . . . . . . ... ... ... .. ..
1.4.1 Atechnical preparation . . . . . . . . . .. ... Lo
1.42 Theinvarianceresults . . . . .. ... ... ... o oo L.

1.5 The elliptic polylogarithm and its D-variant . . . . . . ... .. ... ... .....
1.5.1 Theelliptic polylogarithm . . . . . ... ... ... ... .. ........
1.5.2 The D-variant of the elliptic polylogarithm . . . . ... ... ... .....
1.5.3 The relation between the elliptic polylogarithm and its D-variant . . . . . . .

12

20

21
21
21
28
31
35
35
38
39
44




4 CONTENTS
1.54 ProofofLemmal.53 . . ... ... ... .. .. ... 88

2 The logarithm sheaves and the Poincaré bundle 91
2.1 Apreliminary discussion . . . . . . ... Lo e 91
2.2 The Fourier-Mukai transformation . . . . . . .. ... ... ... ... ..., 96
2.2.1 The definition of the Fourier-Mukai transformation . . . . . . ... ... .. 96

2.2.2  WIT-sheaves on the universal vectorial extension . . . . .. ... ... ... 98

2.2.3 Categories of unipotent sheaves . . . . . . . .. ... ... ... .. .... 101

224 Proofof Lemma2.2.5 . .. .. ... ... 105

2.3 The first logarithm sheaf and the Poincaré bundle . . . . . . ... ... ... .... 108
2.3.1 The construction of the fundamentaldata . . . ... ... ... ... .... 108

232 Themainresult . . . . . ... L 110

2.4 The higher logarithm sheaves and the Poincarébundle . . . . . . ... ... ... .. 119
2.4.1 Anequivalence of categories . . . . . . . ... ... 119

2.4.2  The construction of the higher logarithm sheaves . . . . .. ... ... ... 122

2.5 The invariance under isogenies and the Poincaré bundle . . . . . . . . ... ... .. 126
2.5.1 The transpose endomorphism . . . . .. ... ... ... ... 126

2.5.2 Interpretation of the invariance property . . . . . . . . . ... .. ... ... 128

2.6 Motivic description of the first logarithm extensionclass . . . . ... ... ... .. 131
2.6.1 Generalities on 1-motivesoverascheme . . . . . . . . .. ... ... .... 131

2.6.2 The motivic GauB3-Manin connection and de Rham-Maninmap . . . .. . . 134

2.6.3 The first logarithm extension and the motivic de Rham-Maninmap . . . . . 136

264 Somecorollaries . . . . . ... 144

3 The explicit description on the universal elliptic curve 147
3.1 The birigidified Poincaré bundle for ellipticcurves . . . . . . ... ... ... ... 147
3.2 Automorphy matrices for holomorphic vectorbundles . . . . . . ... ... .. ... 148
3.3 The fundamental meromorphic Jacobi form and Eisenstein series . . . . . . . .. .. 151
3.3.1 From canonical to classical theta functions . . . . ... ... ... ..... 151

3.3.2 Notations for some classical functions . . . . . ... ... .. ... ..... 158

3.3.3 The elementary theta function and the fundamental meromorphic Jacobi form 159

3.3.4 The fundamental meromorphic Jacobi form and Fisenstein series . . . . . . 163

3.4 The analytic geometry of the basicobjects . . . . . .. ... ... ... ... ... 168
3.5 The analytification of the logarithm sheaves . . . . . . ... ... ... ... .... 176
3.5.1 The analytification of the first logarithm sheaf . . . . . . .. ... ... ... 178

3.5.2 The analytification of the higher logarithm sheaves . . . . . ... ... ... 184

3.5.3 The pullback along torsion sections . . . . . . . . . . . . ... 191

3.5.4 The analytification of the absolute connection . . . . . ... ... ...... 202

3.6 The two fundamental systems of sections . . . . . . ... ... ... ... ..... 213
3.6.1 Theconstruction . . . . . . .. ... ... 213

3.6.2 The pullback along torsion sections . . . . . . . . ... ... ... ..... 221

3.7 The analytic characterizationresult . . . . . . . . .. ... ... L. 225
3.7.1 Preliminaries: Algebraic . . . . . . . ... ... ... ... 226

3.7.2  Preliminaries: Analytic . . . . . . . . .. ... 229




CONTENTS 5

3.7.3 The construction of the fundamental commutative diagram . . . . . . . . . . 233
3.74 The characterizationresult . . . . . . . ... ... ... ... ... ..., 237
3.8 The D-variant of the polylogarithm for the universal family . . . . . . ... ... .. 238
3.8.1 The description of the analytified D-variant of the polylogarithm . . . . . . . 238

3.8.2  The specialization of the D-variant of the polylogarithm along torsion sections 252

Bibliography 271







INTRODUCTION 7

Introduction

Polylogarithms in their various manifestations provide a key instrument for modern arithmetic geom-
etry’s quest to determine special values of L-functions resp. to investigate these within the context of
algebraic K-theory and motivic cohomology.

[lustration of this principle is best woven into a general review of some major development steps that

led to the concept of the polylogarithm as it appears in the present work.

Classical polylogarithm

As a starting point, let us consider the classical polylogarithm functions which are defined at first for

|z| < 1 via the power series

n

Lim(z) =Y ;m (m>1)

and then extended to multivalued holomorphic functions on P! (C)\ {0, 1, oo} using the expressions

. RN , Zodt
le-i-l(z) = / Ll'rn(t)T (TTI > 1)a Lll (Z) = m
0 0

Let now F' be a number field of degree n = r; + 2r5 and with discriminant dp; write (r(s) for its
Dedekind zeta function. It is a highly nontrivial task and of fundamental arithmetic interest to find
information about the special values (r(m) for integers m > 2. The above polylogarithm functions
have a striking relevance for this problem:

In the 1980’s Zagier [Zal] used volume computations from 3-dimensional hyperbolic geometry to
prove that the number (z(2)7~2("+72)|d | 2 is a rational linear combination of products of the Bloch-
Wigner function D evaluated at algebraic arguments; this last function can be imagined as a single
valued version D(z) : P}(C) — R of the dilogarithm Lia(2).

Subsequently, a refined formulation of this result and a conjectural generalization for arbitrary m > 2
was given in the conceptual framework of K-theory (cf. [Za3], §1 and §8): Again, one introduces a
single valued version P,,,(z) : P1(C) — R of Li,, (z). Functional equations satisfied by P,,, model the
definition of a subquotient 5,,,(F’) of Z[F*] on which P, (and embeddings of F into C) gives rise to
a map into euclidean space of the same dimension, say j(m), as the target of the Borel regulator map
on Ko,,_1(F'). Zagier’s conjecture then claims that (up to torsion) there is a canonical isomorphism
between Ks,,_1(F) and B,,,(F') under which these two maps coincide. Using Borel’s theorem on the
covolume of the regulator lattice this would imply Q*- equivalence of (z(m) with 77("™)|d F|_‘l—

times the determinant of a matrix with entries given by P,, evaluated at F'-algebraic arguments.

In [Be-De] (part of) Zagier’s conjecture was reinterpreted in motivic and Hodge-theoretic formalism.
Important for the approach to polylogarithms is the observation that the monodromy and differential

equations of the Li,,(z) permit "sheafifying" them into an inverse system of Q-variations of mixed
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Hodge-Tate structures on P*(C)\{0, 1, 00}: the classical polylogarithm functions now appear as en-

tries in the period matrices of these variations.

Beilinson also introduced the ¢-adic version of the classical polylogarithm pro-sheaf and moreover
showed that the specialization of the Hodge-theoretic resp. ¢-adic polylogarithm to primitive roots of
unity gives the regulator to absolute Hodge cohomology of his cyclotomic elements in motivic coho-

mology resp. the Deligne-Soulé elements in /-adic cohomology (for references cf. [Hu-Wi], 2).

Following ideas of Beilinson and Deligne, Huber and Wildeshaus [Hu-Wi] revealed that the classes in
absolute Hodge and /-adic cohomology defined by the classical polylogarithm come from a "universal
motivic polylogarithm". A corollary of their motivic constructions is a compatibility for Beilinson’s
cyclotomic elements and the Deligne-Soulé elements, needed for the completion of Bloch’s and Kato’s
proof of the Tamagawa number conjecture for the Riemann zeta function (modulo powers of 2); for

an alternative solution of this problem, also using the machinery of polylogarithms, see [Hu-Ki].

Bannai [Bal] developed the syntomic formalism required to transfer the construction of the classical
polylogarithm pro-sheaf on the projective line minus three points to the category of filtered overcon-
vergent F'-isocrystals. He also described explicitly the so defined p-adic polylogarithm sheaves and
their specialization to roots of unity (cf. also [Ba2]), using p-adic polylogarithm functions which were
defined by Coleman as analogues of the Li,, (z) and whose values at roots of unity are related to spe-
cial values of Kubota-Leopoldt p-adic L-functions at positive integers. Analogous to the Hodge case

these specializations are the image of the motivic Beilinson elements by the syntomic regulator.

Elliptic polylogarithm

The concept of the polylogarithm pro-sheaf for elliptic curves was created by Beilinson and Levin in
the fundamental paper [Be-Le]. The formalism introduced there is applicable for any reasonable the-
ory of topological or mixed sheaves on a relative elliptic curve, and the elliptic polylogarithm appears
as a pro-one-extension on the complement of an étale closed subscheme of the curve, characterized by
a certain residue condition. Its specialization along torsion sections induces a collection of cohomol-
ogy classes on the base, the so-called Eisenstein classes, which in [Be-Le] are determined essentially
by a computation of their residue at infinity in the modular case.

The period matrix of the Q-Hodge elliptic polylogarithm is described in [Be-Le] by elliptic poly-
logarithm functions which are g-averaged versions of the above Li,,(z) and studied extensively in
[Lel]. In the R-Hodge case they use real analytic Eisenstein-Kronecker series by which one can fur-
ther express the specialization to torsion sections (cf. also [Wi2], V). These also appear in the elliptic
Zagier conjecture which predicts that the determinant of a matrix built by these functions applied to
certain divisors gives a special L-value of the symmetric power of the curve (cf. [Den2], [Go], [Wil]).
A different approach to compute the real Hodge polylogarithm sheaves on a single complex elliptic
curve can be found in [Ba-Ko-Ts], App. A. Its two crucial components are: the concrete knowledge
of the underlying modules with integrable connection, by which the variations of mixed R-Hodge
structures are in fact determined (a manifestation of "rigidity", cf. e.g. [Wi2], III); it is available from

the explicit description given in [Ba-Ko-Ts] for the de Rham realization of the polylogarithm on an
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elliptic curve over a general subfield of C; and second, based on this knowledge, the definition of the
real structures, which is achieved by constructing multivalued meromorphic functions Dy, », Dy, ,,

that solve certain iterated differential equations and give rise to sections inducing these structures.

By [Be-Le], similar to the classical situation the absolute Hodge and ¢-adic cohomology classes given
by the elliptic polylogarithm and the Eisenstein classes are the realizations under the respective regu-
lator of a single "motivic elliptic polylogarithm" and associated "motivic Eisenstein classes".

It is convenient to anticipate that the same is true when working on abelian schemes (see below).

At this point arises the fundamental meaning of the polylogarithm for Beilinson- and Bloch-Kato-
type conjectures: these essentially predict that the motivic cohomology of a smooth projective variety
over a number field contains elements by whose images under the Deligne and ¢-adic regulator one
can express the leading Taylor coefficient at zero of L-functions attached to the variety. Hence, the
need emerges to construct classes in motivic cohomology whose regulators are accessible to explicit
computations, and this is where the polylogarithm comes into play: the Eisenstein classes are gener-
ally expected to provide promising elements, and though a concrete description of their regulators is a
major nontrivial task, calculations are faciliated by a number of convenient properties enjoyed by the

polylogarithm sheaf (e.g. compatibility with base change, norm compatibility, rigidity).

A prime example in this context, illustrating the outlined philosophy, is Kings’ [Ki5] proof of the
(weak) Bloch-Kato conjecture for elliptic curves over an imaginary quadratic field K with CM by the
ring of integers O . It is based on considering the O -linear subspace in motivic cohomology gen-
erated by an element which is constructed in Deninger’s [Den1] proof of the Beilinson conjecture for
Hecke characters and which comes about by applying a variant of the Eisenstein symbol to a certain
torsion divisor of the curve. The task imposed by the Bloch-Kato conjecture then consists in deter-
mining the /-adic regulator on this subspace which in turn is known from [Hu-Ki] to express via the
{-adic Eisenstein classes (in fact, the Eisenstein symbol on torsion points and the Eisenstein classes
are expected to coincide up to a factor already on the motivic level). The explicit computation of these
{-adic Eisenstein classes is deduced in [Ki5] from a geometric construction of the ¢-adic elliptic poly-
logarithm as inverse limit over torsion points of 1-motives, and it shows that they are describable in
terms of elliptic units resp. elliptic Soulé elements. Results from Iwasawa theory concerning Soulé’s
elements finally enable to translate this description into a proof of the conjecture.

For an explicit treatment of the ¢-adic polylogarithm via Iwasawa theory and elliptic units cf. [Ki3].

The syntomic version of the elliptic polylogarithm was studied extensively by Bannai, Kobayashi
and Tsuji [Ba-Ko-Ts] for the situation of a single elliptic curve over an imaginary quadratic field K
with CM by Ok and a fixed Weierstral model over Ok having good reduction above an unramified
prime p > 5. The technical fundament for defining this p-adic elliptic polylogarithm is the theory of
rigid syntomic cohomology and its relation to filtered overconvergent F'-isocrystals as contained in
[Bal]. The p-adic polylogarithm sheaves appear as filtered overconvergent F'-isocrystals on the syn-
tomic datum provided by the curve minus its zero section, and the corresponding cohomology classes
are expected to be the image of the motivic elliptic polylogarithm classes by the syntomic regulator.

One of the main results in [Ba-Ko-Ts] is the explicit construction of these sheaves. As in the R-Hodge
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case the crucial ingredients for this are the knowledge of the de Rham realization of the polylogarithm
sheaves, by which their syntomic realization is in fact determined ("rigidity"), and the definition of
the Frobenius structures, the last achieved by constructing overconvergent functions Dg?n that satisfy
certain iterated differential equations imposed by the horizontality of the Frobenius isomorphisms.
Its motivic origin assumed, the relevance of this p-adic elliptic polylogarithm for the p-adic Beilinson
conjecture comes from the further result of [Ba-Ko-Ts] that it specializes along torsion sections to
the so-called p-adic Eisenstein Kronecker numbers which in the case of ordinary reduction over p are
shown to be directly connected to special values of p-adic L-functions.

So far, a description of the syntomic elliptic polylogarithm for the relative situation, that is to say:
for the universal family with level N structure, has not yet been established. Nevertheless, Bannai
and Kings [Ba-Ki2] were able to determine the syntomic Eisenstein classes on the ordinary locus
of the modular curve in terms of p-adic Eisenstein series constructed via a version of Katz’s p-adic
Eisenstein measure. A vital ingredient to prove this result is again the knowledge of the underlying
de Rham datum by which the syntomic data are in fact determined. The de Rham Eisenstein classes
in turn are shown to be given by certain holomorphic Eisenstein series with explicit formulas for their
g-expansions; this last fact is proven in [Ba-Ki2] by comparing the residues at the cusps of these mod-
ular forms with the residues of the de Rham Eisenstein classes which in turn are obtained by deducing
the motivic residues from the étale residues computed in [Be-Le] resp. [Hu-Ki].

For implications of the result of [Ba-Ki2] for the p-adic Beilinson conjecture see [Ba-Kil] and [Ni].

Before turning closer to the de Rham realization of the elliptic polylogarithm and outlining the ambi-

tions of this work, let us insert some brief remarks concerning more general geometric situations.

Results in higher dimension and genus

Wildeshaus [Wi2] constructed and studied the Hodge and ¢-adic polylogarithm in the context of mixed
Shimura varieties, from which one also obtains the definition for abelian schemes (cf. [Ki4]) with
associated Eisenstein classes (cf. [B12]). As in the classical and elliptic case the abelian polylogarithm
and Eisenstein classes in their realizations have a common motivic origin in K -theory (cf. [Ki4]).
Blottiere [BI2] described the Hodge polylogarithm for complex abelian schemes by proving that the
associated extension of C-pro-local systems - which determines the Hodge data ("rigidity") - can
be expressed via "polylogarithmic currents" on the underlying ¢ *°-manifold; these currents had been
constructed by Levin [Le2] as higher-dimensional analogues of Eisenstein-Kronecker series. Drawing
on this result, he also gave a (again topological) description of the Eisenstein classes for the situation
of a Hilbert-Blumenthal family of abelian varieties and showed that the residue of these classes along
the Baily-Borel boundary of the Hilbert modular variety is described by special values of L-functions
of the defining totally real field (cf. [B11]). For a different proof of the last result, resolving the residue
computation more functorially by a systematic use of the topological polylogarithm, cf. [Ki2].

The definition of the polylogarithm for arbitrary relative curves (originally part of [Be-Le], but then
excluded) can be found in [Kil], where it is shown that the latter induces the polylogarithm of the
asscociated Jacobian by taking cup-product with the fundamental class of the curve.

Apart from the mentioned results one can generally say that in dimension resp. genus greater than 1
the polylogarithm sheaves and the Eisenstein classes are - e.g. as to explicit description or as to the

latter’s non-vanishing and relation to L-functions - little understood and subject to active research.
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De Rham realization of the elliptic polylogarithm: the approach of [Ba-Ko-Ts]

Starting point and main inspiration for this work is the explicit description given in [Ba-Ko-Ts], 1,

for the de Rham realization of the polylogarithm on an elliptic curve E defined over a subfield F' of C.

In this situation, if U := E — [0],H := Hlz(E/F)Y and Hy := H @ Oy, the polylogarithm

classes poljj are by definition the components of an inverse system
(Polir)n>1 € Tlgnl HéR(U/Fa/H% ®oy Ln)

which is characterized by a certain residue condition along the divisor given by the zero point [0];
here, £,, is our notation for the n-th logarithm sheaf of E/F with a splitting for its fiber in [0] fixed
(in the sense of [Ba-Ko-Ts], Def. 1.22 and the subsequent explanations).

The first step in [Ba-Ko-Ts] to approach a description of poljjy is an explicit construction of £4 on an
open affine covering {Uy }i. of E, which is done by choosing differentials of the second kind {w*, w}
that give an F-basis {w*,w} of His (E/F) and by then glueing the free modules

OUk .Qk 69(/)Uk 'g*\/ @OUk 'gv

to the desired extension £; of O by H g, where the glueing maps, the effect of the connection on the
generator ¢;, and the splitting in [0] are defined essentially by using a suitable Cech cocycle for w*.
This also implies a construction of £,, = Sym, L1, where the underlying sheaf on Uy, is written as

n—i—j xVi, Vj

e WV
&
@ Ou - (n—i—j) ~
0<i+j<n 1)
0<i,j

One can then deduce a similar description of £,, on U. Taking Op-linear tensor combinations of
the sections w*, w with the thus obtained generators for £,y and with the differentials w*, w defines
elements of I'(U, H); ®op, Ln Qoy Q%J/F) and hence classes in H g (U/F, 1}, @0, Ln)-

The main result, Thm. 1.41, of [Ba-Ko-Ts], 1, then exhibits the class poljy as such a combination,
ingeniously constructing the coefficients L, € I'(U, Or) occurring in that combination as follows:
Writing E(C) as complex torus C/T", associated to the line bundle O/ ([0]) is a unique normalized
canonical theta function #(z) which one can express in terms of the Weierstra sigma function. It
gives rise to a meromorphic function in two variables, the so-called Kronecker theta function for I':
0(z + w)

O(z,w) = 22)0(w)

Modifying ©(z, w) by an exponential factor gives a function Z(z, w) whose Laurent expansion around
w = 0 yields coefficient functions Ly (%), k > 0, which turn out to come from F-algebraic rational
functions Ly, € I'(U, Op). These so-called "connection functions" L;, are the mentioned coefficients
that are used in [Ba-Ko-Ts], 1, for the indicated construction of poljjy; they can in fact be expressed
entirely in terms of the Laurent coefficient functions of ©(z, w) expanded around w = 0.

A technical inconvenience arises from the fact that in general the pole order of L in [0] is greater
than one (indeed, if k£ > 2 this order is exactly k), such that the proof of the mentioned main result re-
quires extensive Cech calculations to find representatives in logarithmic de Rham cohomology for the

constructed cohomology class, which is necessary for performing the required residue computation.
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Outline of the work

The purpose of this thesis is to establish a new geometric approach to the study of the de Rham real-
ization of the polylogarithm. Our central result in this context shows how to construct the logarithm
sheaves of rational abelian schemes from the birigidified Poincaré bundle with universal integrable
connection on the product of the abelian scheme and the universal vectorial extension of its dual. This
is done essentially by restricting the mentioned data of the Poincaré bundle along the infinitesimal
neighborhoods of the zero section of the universal extension. Our perspective also permits a useful
interpretation of fundamental formal properties of the logarithm sheaves within the standard theory
of the Poincaré bundle. For the situation of a relative elliptic curve we present in addition a related
viewpoint on the first logarithm extension in terms of 1-motives.

Having developed in detail the outlined geometric understanding of the logarithm sheaves, we pro-
ceed to exploit it systematically for an investigation of the polylogarithm for the universal family of
elliptic curves with level N structure. To be more precise, the object in the focus of our study here is a
slightly modified version of the usual small elliptic polylogarithm class that provides better access for
explicit computations but still contains all the information about the de Rham Eisenstein classes. A
main theorem of the work then gives an explicit analytic description for this variant of the polyloga-
rithm via the coefficient functions appearing in the one-variable Laurent expansion of a meromorphic
Jacobi form originally defined by Kronecker in the 19th century. Furthermore, using this result, we are
able to determine the specialization of the modified polylogarithm along torsion sections concretely
in terms of certain algebraic Eisenstein series. From this we regain in particular the already known
expressions of the de Rham Eisenstein classes by algebraic modular forms.

Our conceptual approach via the Poincaré bundle additionally brings light into the so far rather ob-
scure appearance of theta functions in the study of the elliptic polylogarithm.

Moreover and as a matter of future research, we expect our method to produce new insights also for

the syntomic resp. higher-dimensional case.

Overview

Let us now discuss the contents of this work in somewhat more detail.

The purpose of the preliminary Chapter O on the one hand is to recall the most basic vocabulary
required to develop the polylogarithmic formalism in its de Rham realization: this includes the notion
of modules with connection, its incorporation in the functorial language of D-modules as well as the
elementary definitions and facts concerning de Rham cohomology. On the other hand, as the universal
vectorial extension and the Poincaré bundle are the crucial objects for our geometric construction of
the logarithm sheaves on an abelian scheme, we present a thorough account of these concepts, thereby
also integrating the viewpoint of extensions and biextensions. Maybe our presentation is also of some
use for the non-expert striving for a unified picture of the different facets of the Poincaré bundle.
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In the subsequent Chapters 1 and 2 we fix the geometric setting of an abelian scheme X = S over

a connected base S which is smooth, separated and of finite type over Q; we write € for its zero section.

The major part of Chapter 1 is occupied with working out the basic formalism of the logarithm sheaves
for the given situation X/S/Q as it expresses in the framework of de Rham cohomology. Of course,
the formal structure of the definitions and proofs in this context can (and will) be extracted from their
counterparts articulated in other realizations (we will mainly use [Hu-Ki], App. A, and [Ki4]) and thus
are always an elaboration of the condensed exposition given in the original source [Be-Le]. Neverthe-
less, we have made the experience that a rigorous adjustment to the de Rham setting is at some points
not at all immediate and requires supplying a number of additional details and arguments. We have
therefore decided to give from the beginning on a thorough self-contained account with full proofs.
Specifically, we begin in 1.1 by defining the logarithm sheaves of X/S/Q, written as (L, Vi, ©n)
with V,, the integrable Q-connection of the O x -vector bundle £,, and ¢,, : HZ:O Sym]fg JH=eLy
the splitting of its zero fiber, where H := H}y (X/S)" is equipped with the dual of the Gau-Manin
connection relative Q. Their relative de Rham cohomology sheaves are computed in 1.2. In 1.3 we
elaborate in more detail the viewpoint on the logarithm sheaves as unipotent objects. For this purpose,
we introduce a suitable notion of unipotent vector bundles with integrable connection for our situation
X/S/Q and respective categories U, (X/S/Q), where n denotes the length of unipotency. We then
prove the universal property of the logarithm sheaves which states that with 1(") := @n(%) the pair
(L,,,10) is (up to unique isomorphism) the unique pair consisting of an object in U,,(X/S/Q) and
a global horizontal S-section of its zero fiber such that for any U in U, (X/S/Q) the map

mHomp  (Ln,U) = €U, [ e (f) (1)

is a horizontal isomorphism (Thm. 1.3.6). Subsequently, we show that the assignment I/ — €*U gives
an equivalence of U, (X/S/Q) with the category of Og-vector bundles with integrable Q-connection
that carry the structure of a [T;'_, Sym’é s H-module with certain compatibilities (Thm. 1.3.13). Side
corollaries are further non-evident informations about our categories of unipotent bundles (1.3.4).

In 1.4 we discuss the crucial invariance of the logarithm sheaves under isogenies. Finally, in 1.5, we
let X = F be an elliptic curve over S and define the elliptic polylogarithm for E/S/Q:

pOIdR = (polgR)nzl € 7111£nl HjR(U/Qv H& oy En)v
where U := FE — [0] and Hy := H ®o, Ov, as well as the D-variant of the elliptic polylogarithm:

_ n : 1
POlar D21y 15, = (pOIdR,D2~1{E}—1E[D]> € }g%HdR(UD/Q7£n)a

n>0

where D > 1 is a fixed integer and Up := E — E[D]. The investigation of this D-variant will be the
main goal of Chapter 3. The idea to introduce such a better behaved modification of the polylogarithm
and to use a formula connecting it with the latter in order to extract from it the Eisenstein classes can
be found (for the ¢-adic setting) in [Ki3], 4, and will be adopted in this work.

The heart of Chapter 2 consists in establishing the already indicated geometric construction of the
logarithm sheaves via the birigidified Poincaré bundle (P, 7, s, Vp) on X Xg Y%, where Y is the

universal extension of the dual abelian scheme Y and r resp. s is the rigidification along Y? resp. X.
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However, a basic difficulty arises when one aims at such a construction: the universal integrable con-
nection Vp of P being a relative connection (namely, relative to Y'%), we can construct the logarithm
sheaves only with their Q-connections restricted relative S. Our remedy for this problem is contained

in 2.1: there, we prove that given an extension of vector bundles on X with integrable S-connection
0—Hx — L] = Ox —0,

mapping to the identity under the natural projection

(1) Extp, . (Ox, Hx) = Homo, (Os, 1" @os M),

and a Og-linear splitting ¢ : Og & H ~ "L} for its pullback via ¢, then the S-connection on £
uniquely extends to an integrable Q-connection such that the previous data become the first logarithm
sheaf of X/S/Q (Prop. 2.1.4). Then, in 2.3, we proceed to construct such data from (P, r, s, Vp).
To be more precise, if Ylb is the first infinitesimal neighborhood of the zero section of ¥ and P; the
restriction of P along X X g Ylh — X x5 Y*, equipped with the induced integrable Ylh-connection,
then by adjunction along the natural morphism ¢; : X — X Xg Ylh together with the rigidification s
and the crucial identification Lie(Y®/S)" ~ H one obtains a horizontal exact sequence

0— (Ll)*HX — Pl — (Ll)*OX —0

whose pushout along the projection p; : X Xg Y1h — X gives the exact sequence of vector bundles

on X with integrable S-connection

(2) 0—Hx — (p1)«P1 = Ox — 0.

On the other hand, it is easy to construct from the rigidification r a natural Og-linear splitting
Os @ H >~ € (p1)P1.

Our main result in Chapter 2 (Thm. 2.3.1 resp. Cor. 2.3.2) proves that (2) maps to the identity in (1),
such that due to the above explanations we have achieved a construction of the first logarithm sheaf
of X/S/Q (with the mentioned limitation concerning our knowledge of the absolute connection).

Though we always work with the higher logarithm sheaves as the symmetric powers of the first, it is
natural to ask how also they can be obtained from the infinitesimal geometry of the data (P, r, s, Vp).
This is explained in detail in 2.4, where it also turns out that in our geometric perspective the comul-
tiplication of the logarithm sheaves expresses via the biextension structure of the Poincaré bundle.

Our constructions have a natural and appealing formulation within the language of the Fourier-Mukai
transformation for D-modules on abelian schemes as formulated in [Lau]. To illuminate this point in
full clarity we extend in 2.2 the basic theory developed in [Lau] by introducing (entirely in the spirit
of Mukai [Mu]) the notion of WIT-sheaves on Y, which permits to leave the derived categories and
consider honest sheaves. We also define categories of unipotent sheaves U, (Y?/S) and U,,(X/S) on
Y% and X, the last being analogous to the above U, (X/S/Q) but forgetting Q-structures, and prove
in particular that Fourier transformation establishes an equivalence between them (Thm. 2.2.12). This
and other results of 2.2 are of independent interest, but they were actually also our heuristic starting
point for the interpretation of the logarithm sheaves by the Poincaré bundle: noting that £,, defines an

object of U,,(X/S), one immediately obtains from Thm. 2.2.12 that it must be the Fourier transform
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of a sheaf on Y? which in fact lives on the n-th infinitesimal neighborhood of S in Y!. And indeed, as

is explained in 2.3 resp. 2.4, the standard exact sequences of O x-vector bundles with S-connection
0—Symp, Hx = Ln = Ly1—0
are simply the Fourier transforms of the canonical exact sequences of WIT-sheaves of index 0 on Y%
0= J"/T" T = Oy /T = Oy /T" — 0,

where 7 denotes the augmentation ideal of the zero section of Y.

In 2.5 we reveal that in our viewpoint the invariance of the logarithm sheaves under isogenies is the
manifestation of a symmetry isomorphism of the Poincaré bundle for the isogeny and its transpose
map on the universal extension. This will also be relevant for explicit computations in Chapter 3.
Finally, in 2.6 we elaborate the 1-motivic origin of the first logarithm extension Log'. For this one
needs at first to be able to equip the de Rham realization of a 1-motive over a base scheme in a natural
way with an integrable connection, which is a nontrivial problem. In a recent work of Andreatta
and Bertapelle [An-Ber] such a "motivic Gau3-Manin connection" is constructed in full generality by
using crystalline techniques. We apply their results in the following way: if X = E'is an elliptic curve
and FE x g F is considered as 1-motive over E via the second projection, the Barsotti-Rosenlicht-Weil

isomorphism and taking de Rham realizations with motivic Gau3-Manin connections produces a map
3) (E xs E)(E) = Extp, (M}, Og)

which is the negative of the "motivic de Rham-Manin map" investigated in [An-Ber] (cf. Rem. 2.6.2).
We then prove that Log! is the extension dual to the image of the diagonal A g under (3) (Thm. 2.6.3).
To achieve this we relate the extension Log' to the more explicit "classical Manin map" of [Co2] and
use the latter’s relation with the motivic de Rham-Manin map as established in [An-Ber] (to dispose
of that comparison is also the reason why we restrict to relative dimension one).

Explicating this further leads to another viewpoint on the relation between the first logarithm extension
and the Poincaré bundle: namely, the G,, gy ;(gv):-torsor P associated to the Poincaré bundle 7 on

E xg (EV)" naturally sits in an exact sequence of £-group schemes
0=Gppg—P—Exgs(EY) =0

whose associated sequence of Lie algebras relative E reads as

4 0 — Op — Lie(P/E) — Hy — 0.

One can equip all terms in (4) with motivic GauB-Manin connections relative Q, and the dual of the
thus obtained extension is Log' (Cor. 2.6.16).

We wish to remark that the basic idea that one should be able to obtain the logarithm sheaves as the
formal completion of the Poincaré bundle was pointed out to us by Guido Kings. An initial hint for a
relation between these objects can be seen in the observation that the Kronecker theta function used

in [Ba-Ko-Ts] is a meromorphic section of the Poincaré bundle (cf. [Ba-Ko], 1.2).

Chapter 3 uses the geometric approach towards the logarithm sheaves developed in Chapter 2 to find

a way of describing the D-variant of the polylogarithm for the universal elliptic curve with level N
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structure and to derive from the latter also a description for the specialization along torsion sections.

In 3.1 we fix for a general elliptic curve E/S with dual abelian scheme E /S the principal polarization
ESE
defined by the ample invertible sheaf Og([0]). The birigidified Poincaré bundle on E x g F then is
(5 (M @0y, 5 (1 x 7)"€" Op([0]), can, can),
where M denotes the Mumford bundle for O g ([0]):
M = Op([0]) @04, ;» PIOE(0) ™! Q04 Pr30EB([0) 7,

and where can means the obvious canonical rigidification along the second resp. first factor of Ex g F.

The Poincaré bundle on ' X g E" and its rigidifications arise from (5) by pullback via the natural map
(6) ExsE' 3 ExgE >y ExgE.

Large parts of our considerations will take place on the analytic side. As a convenient method to work
with vector bundles on complex manifolds we use the yoga of automorphy matrices, i.e. we fix a
trivialization for the pullback of the bundle to the universal covering, compute the matrix describing
the effect of deck transformations on the chosen trivializing sections and then express sections of
the bundle as vectors of holomorphic functions on the universal covering transforming under deck
transformations with this automorphy matrix. The details are explained in 3.2. The advantage of this
approach via the universal covering is that it avoids choosing open coverings and coordinate charts.

In 3.3 we introduce the function by whose inverse we will trivialize Ogan ([0]) (componentwise)
on the universal covering of the analytification £*" of the universal elliptic curve E with level N

structure (/N > 3) over the modular curve S: this is the "elementary theta function”

@ (e.7) = exp | S0(1.7)] -z,

where 7)(1, 7) is the quasi-period (equivalently: is —G5(7)). It differs from the theta function 6(z, 7)
used in [Ba-Ko-Ts] by an exponential factor; the crucial point is that 6(z, 7) does not vary holomor-
phically in both variables, whereas ¥(z, 7) does. What we do here is performing a shift from canonical
to classical theta functions, explained in detail in the first part of 3.3; we only remark that for 7 € H
fixed the function ¥(z; 7) is the unique holomorphic function on C whose inverse induces the classical
factor of automorphy for O¢,r_ ([0]) and such that its derivative in z = 0 is normalized to 1.

The trivialization via (the inverse of) (7) for Ogan ([0]) on the universal covering of E*™ induces a
trivialization for M“™ on the universal covering of E*" X gan E" (always meant componentwise):

it is given by (the inverse of) the "fundamental meromorphic Jacobi form"

Yz +w,T)
Iz, 7)Hw, 1)

o(z+w,T)

(8) J(z,w,T) = = explzw - n(1,7)] -

o(z,7)o(w, )

This function is an exponential term times the Kronecker theta function O(z, w, 7) of [Ba-Ko-Ts], it
is 27i-times the meromorphic Jacobi form F'(27iz, 2wiw, 7) used in [Za2] to construct a generating
function for the period polynomials of all Hecke eigenforms for the full modular group, it appears in

[Lel] to relate the Debye elliptic polylogarithm functions to Eisenstein functions and series, and it
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equals the function introduced in [Le-Ra], 2.2, to describe the relative nilpotent de Rham fundamental
torsor for a pointed family of elliptic curves. Its definition goes back to Kronecker (cf. [Le-Ra], 2.2.1).
In the rest of 3.3 we investigate some of the analytic properties of the functions (7) and (8) that will
become important for us; in particular, we examine the coefficient functions in the Laurent expansion
around w = 0 of J(z,w, 7) and reveal their connection to modular forms (Thm. 3.3.16).

From (7) we also get an induced trivialization on the universal covering for the second factor in (5):
(7 % ) (@) Opan ([0]) = (A7 X 7w 0n

which coincides with the trivialization induced by the dual of the canonical differential form.

In sum, the function (7) provides us with a trivialization for (5) on the universal covering; by taking
pullback via (6) we obtain a trivializing section ¢ on the universal covering for the Poincaré bundle
P on E* X gan (Eh )™ whose factor of automorphy we compute. We then express in this language
the birigidification of %" and give an explicit formula for V". The details are explained in 3.4.
With this explicit knowledge of (P*",r%", 5", V") and with the main result of Chapter 2 (which
constructs the first logarithm sheaf of £/S/Q from the data (P, r, s, Vp)) we can proceed in 3.5 to
give a description of the analytified logarithm sheaves (L™, V4™, p%™) on E*™.

Writing pr : C x H — E*" for the projection of the universal covering (£*" now means a fixed con-

nected component) we construct from ¢ a global section e of pr*£§™ which splits the exact sequence
0 — pr*HYen — pr*L{" — pr*Ogan — 0.

Trivializing pr*H %2, by the basic sections {f, g} defined by {n",w"} we obtain a trivialization
prLi" = Ocxm - € ® Ocxm - [ © Ocxm - g

and induced ones for the other logarithm sheaves (note the analogy with [Ba-Ko-Ts], Cor. 1.28):

7L l ]flg_]
>k
pr EZ" = @ Ocxm -
(n—i—j)l
0<itj<n
0<1i,j

Fixing these, we derive from our knowledge of (P¢", ", s*", V4") explicit formulas for the induced
automorphy matrices (Prop. 3.5.2 and Prop. 3.5.6), for the restrictions of the connections V™ relative
S™ (Prop. 3.5.3 and Prop. 3.5.7), for the splittings ™ (Prop. 3.5.8) and for the pullback of sections
of £2" resp. QL ®0an L™ along torsion sections (Cor. 3.5.13 resp. Prop. 3.5.14).

At this point one piece is still missing for a complete knowledge of the analytified logarithm sheaves:
a description for their absolute connections V™. We solve this problem by characterizing V™ anal-
ogously as in the algebraic situation (Prop. 3.5.20 resp. Prop. 2.1.4) and then prove that a reasonable
guess of a formula for V2" satisfies all required conditions of this characterization (Thm. 3.5.21).

With these preparations the next goal is to establish a concrete description for the system

an
9 olyn pe an :( ol ) € lim Hl, (U, £om
©)) (P dR,D -1(6}—1E[D]) p dR, D211y —1p ) n>0 - 130 aw(UD", L3")

which is defined as the image of poldR7D2,1{€} . under the natural analytification map
(10) lim Hir(Up/Q, L,) — lim Hig (U L),

We approach this problem by proving that (9) is characterized analytically in the same way as

Polyr, 2.1, g, is algebraically, i.e. it is the unique element in lim,, >0 Hig (U%", £2™) having a
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certain residue under an analytic residue map (Thm. 3.7.5). The reason why such a characterization is
possible is the regularity of the logarithm sheaves (Prop. 3.7.1); this regularity is also responsible for
the injectivity of (10), hence for the fact that polyg p2.; fer—1Ep, is determined by its analytification.
To construct the cohomology classes (9) we return to the fundamental meromorphic Jacobi form.

Namely, we consider the functions sf’(z, ) defined by the Laurent expansion
D? . J(z,—w,T) — D - J(Dz, —%,7) =Pz, 1)+ 5P (2, )w + ...

They are meromorphic functions on C x H, holomorphic on pr=! (U%"), and satisfy (cf. 3.3.3):

(1D
D . . . 2 (2mim)*
s has at worst simple poles along z = m7 + n (m,n € Z, 7 € H), with residue (D~ — 1) - o
m n . . R . . (27Ti%)k
and along z = i + D (with D not simultaneously dividing m and n), with residue — o

In 3.6 we construct from the functions s (z,7) a certain vector p2(z, 7) of functions (cf. (3.6.2))
and show in laborious calculations that this vector defines an element of I'(U%", Q}Eu ®0gan L)
which goes to zero in the de Rham complex (Thm. 3.6.2); here, we trivialize £&" on the universal
covering of each component of E%" as above and (L., by {dz,dr}. The p?(z,7) are compatible
for the transition maps of the logarithm sheaves and thus induce an inverse system

p? = (P >0 € lim Hag (UB", £37).
Our main result about the D-variant of the polylogarithm (Thm. 3.8.3) then is the equality

)an D

(12) (POlar, D21,y —15 =p".

(D]

Its proof is rather technical, but the crucial points are the already mentioned characterization of the left
side and a computation of the residue of the right side using (11); here, it is of enormous convenience
that the skD have at worst simple poles and hence already define a logarithmic de Rham class.

From now on assume (D, N) = 1 and that a, b are two integers not simultaneously divisible by N.
Via the Drinfeld basis (e1, e2) € E[N](S) for E[N] one obtains the N-torsion section

top:=aes +bey: S = Up CE.

We consider the specialization of poljg p2.4 (-1, (n > 0) along t, 5, in the following sense: let
: c b

]

(tz,b(pOIQR,D2-1{E} ~lmp, )) (n) IS H&R(S/Q, Symg, H&R(E/‘S))

be the de Rham cohomology class received by pulling back
pOlgR,DZl{g}flE[D] € Hir(Up/Q, Ly)
along ¢, 3, by using the (horizontal) identifications
thpLn ~ €Ly~ [ SympH
k=0

that come from the invariance of £,, under /N-multiplication (cf. 1.4.2) and from the splitting ¢,,, by

then taking the n-th component and by finally identifying

(13) Syme H ~ Symp Hig (E/S)
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via the following choice of the Poincaré duality isomorphism:

HIR(E/S) = H, zw{y—tr(zUy)}.
On the other hand, the Hodge filtration and Kodaira-Spencer map induce a canonical homomorphism
(14) (8, whve ) = Hig(S/Q, Symp, Hig(E/S))

defined on the space of weakly holomorphic algebraic modular forms of weight n + 2 and level V.
In our main result about the specialization of the D-variant of the elliptic polylogarithm (Thm. 3.8.15)

we show that (#7 ,(polir p2.1,,, g, ) ) i the image under (14) of the algebraic modular form

D]
. if n=0
NN

G N A )
NN

n!

where in general for £ > 1:

DF;:)L := D*F L)L _DZ_kFSDi;? Db -
NN N°N N N

The F( )b resp. F g,} By in turn are algebraic modular forms of weight k£ and level N constructed as
inCh. I, 73 of Kato’s Work [Ka], where they are used to define the Euler system of zeta elements in the
space of modular forms, related to operator-valued zeta functions via a period map. Essentially, they
are given as averaged sum of algebraic Eisenstein series won by specializing along torsion sections
certain iterated derivations of the logarithmic derivative of Kato-Siegel functions (at least for k& # 2,
otherwise one specializes an algebraic Weierstral p-element). Their analytic expressions as holomor-
phic functions in 7 can be found in 3.3.4, observing the explanations in Rem. 3.8.12 and Rem. 3.8.13.
For the proof of the theorem we first resolve the problem on the analytic side, using the crucial result
(12) and the fact that we can explicitly compute the analytic specialization of the section pZ (z, )
along ¢g", (Thm. 3.6.5). From this analytic result we can then in fact deduce the algebraic statement.
The detailed strategy of proof is explained at the beginning of 3.8.2.

With the already indicated relation between the polylogarithm and its D-variant the previous theorem

yields in particular a formula for the de Rham Eisenstein classes at ¢, p, the latter defined as
Bis™ (f0.0) = —N"~" - (contr, (¢ ypoliir ) " € Hin(S/Q, Symp, M),

where contr,, : Hlg (S/Q, HY @0 [T11e Symos?’-{) — Hlp (S/(@, [Teso Sym’fgs%> is a certain

contraction map. Namely, we show the equahtles

Bis® (tg) = —N "1+ (= F, ) in Hiy(S/Q)
NN
Eis" (to5) = —N"~ 10 pUt2 g gl (S/Q, Sym_ H), n> 0,
: NN

where here F'?), resp. Fglf) means the element of H}, (S/Q) resp. Hig(S/Q,Symg H) in-

N°'N N°*N

duced by the algebraic modular form F( ) 3 Tesp. F( "2 via (14) resp. via (14) and (13).
As was already explained in more detail durmg the Introductlon a very different way to determine the

de Rham Eisenstein classes can be found in [Ba-Ki2].
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Chapter 0
Preliminaries and notation

0.1 Abelian schemes: duality theory, universal vectorial
extension and Poincaré bundle

0.1.1 Introduction of the basic objects

Given an abelian scheme, the universal vectorial extension of its dual and the associated birigidified
Poincaré bundle with universal integrable connection will be key instruments for this work.

We therefore begin with an adequate review of all of these notions, striving to be as self-contained and
detailed as seems possible without going beyond the scope of preliminary remarks. Our presentation
consists in compiling and supplementing scattered material from the literature, whereby we mention
as our main sources [Ch-Fa], Ch. I, 1, [Lau], (1.1) and (2.1)-(2.2), and [Maz-Mes], Ch. 1.

Algebraic equivalence to zero and rigidifications

If A is an abelian scheme over an arbitrary base scheme B we denote by

ma: A— B

pa: AxpA— A

ea: B— A

(—D)a: A= A

Pry a4, Praga: AXpA— A

the structure map, the multiplication map, the zero section, the inverse map and the two projections.

Definition 0.1.1
A line bundle £ on A is algebraically equivalent to zero if the line bundle on A x g A given by

,ujlﬁ ®OA><BA prT,Aﬁil ®OA><BA pr;,Aﬁi1

is trivial over B, i.e. if it is isomorphic to (m4 X 74 )* M for some line bundle M on B.
Here, m4 x 4 : A xg A — B is the canonical map and £~} = Hom, , (£, O4) is the dual of L.

Remark 0.1.2

It is easy to check that algebraic equivalence to zero is compatible with base change in the following
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sense: if we have a morphism B’ — B, set A’ := A x g B’ and consider the cartesian square

then pulling back line bundles along A’ — A preserves the property of being algebraically equivalent
to zero. Of course, we regard A’ as abelian scheme over B’ in the natural way.
It is moreover clear that the property of being algebraically equivalent to zero is stable under the

formation of tensor product and dual, and that the line bundle O 4 has this property.

Definition 0.1.3

(i) Let £ be a line bundle on A. By a B-rigidification of £ we mean an isomorphism of O g-modules
a:0p = ey L.

(ii) Let (£1, 1) and (L2, az) be two B-rigidified line bundles on A. An isomorphism between them
is an isomorphism ¢ : £; =+ Ly of the line bundles which is compatible with the rigidifications in
the obvious sense, i.e. €% () becomes the identity on O when using the isomorphisms a1 and ao.
(iii) The tensor product of two B-rigidified line bundles (£, 1) and (L2, a3) on A is the pair
(L1 ®0, L2, a1 ® asz), where ai; ® ay means the obvious induced B-rigidification of £1 ®¢ , Lo.
(iv) The inverse of a B-rigidified line bundle (£, @) on A is the pair (L7, a™!), where a~! is the
B-rigidification of £~! naturally induced by dualizing «.

(v) The line bundle O 4 together with its canonical B-rigidification will be written (O 4, can).

Remark 0.1.4

Given the situation of Rem. 0.1.2 we have a commutative (in fact cartesian) diagram

;A /
A'<~—B

L

A< B

which shows that the pullback of a B-rigidified line bundle £ on A along the projection A’ — A is

naturally equipped with an induced B’-rigidification.

From now on we fix an abelian scheme X of relative dimension g over a locally noetherian base S.
We will write m, p, €, pry, pry instead of 7x, jix, €x, DIy x, DTy x, but we keep the notation (—1) x.
For S-schemes T we will often use the abbreviation X for the base extension X x s T and view it

as abelian scheme over T in the natural way.

Dual abelian scheme and Poincaré bundle

Consider the dual functor of X/S, i.e. the contravariant commutative group-functor on the category

of all S-schemes given by

T + Pic’(X7/T) := {Isomorphism classes of pairs (£, a)},
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where L is a line bundle on Xp which is algebraically equivalent to zero and where « is a T-
rigidification of £. The group law of PicO(XT /T) is defined by taking the tensor product of rep-
resentatives; its neutral element is the class of (Ox,., can), and the inverse of the class of (£, &) is
represented by (£~1,a~!). The assignment T' — Pic” (X7 /T') becomes contravariant functorial by
means of Rem. 0.1.2 and Rem. 0.1.4.

Lemma 0.1.5
Let L be an arbitrary line bundle on X . Then any automorphism of L which restricts to the identity
on €. L is already the identity on L.

In particular, there are no nontrivial automorphisms of a pair (L, ) € Pic®(X7/T), i.e. if
(£,0) = (L, )
is an isomorphism, then it must be the identity.

Proof. 1t suffices to show only the first claim, which is done by a well-known standard argument (cf.
e.g. [Kl], Lemma 9.2.10); in view of a later spot of the work we here recall it explicitly.

Namely, let ¢ : £ — £ be an automorphism of a line bundle £ on X7 with €%_(p) = id on € L.
Note that ¢ belongs to

(0'1'1) F(Tv OT) = F(XT7 OXT) = HomOxT (‘C’v ‘C’) EX'2

where the first arrow comes from the natural map Or — (7wx,)«Ox, which is an isomorphism
because O — m,Ox holds universally for the abelian scheme X /S (cf. [Maz-Mes], Ch. I, (1.9)).
The second isomorphism in (0.1.1) is defined by scalar multiplication.

The chain of identifications (0.1.1) says that ¢ is given by multiplication with a unit u of I'(T, Or).

To determine this unit observe that the composition
F(T, OT) = F(XT, OXT) — F(T, OT)

is the identity: here, the first arrow is as in (0.1.1) and the second arrow comes from the map on struc-
ture sheaves defined by the zero section ex,. : T — X. This implies that the induced isomorphism
of line bundles on 7"

(@) 1 €, L = ex, L
is given by u-multiplication. But by assumption €% () = id, hence v = 1 and the claim follows. [

We have the following deep theorem which can be deduced from a more general representability result

in the theory of algebraic spaces (cf. the discussion in [Ch-Fa], Ch. I, p. 2-7).

Theorem 0.1.6
The dual functor of X/S
T + Pic®(X7/T)

is representable by an abelian scheme Y of relative dimension g over S.

Definition 0.1.7
The abelian S-scheme of Thm. 0.1.6 is called the dual abelian scheme of X.

We denote by 7y, py, ey the structure map, the multiplication map and the zero section of Y/S.
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The scheme Y of Thm. 0.1.6 comes with a distinguished isomorphism class in Pic’(X x 5Y/Y") such
that Y together with this class forms a universal object for the dual functor. Each two representatives
of this distinguished isomorphism class are uniquely isomorphic, as follows from Lemma 0.1.5.

From now on we fix such a representative and denote it by (P, r?).

Remark 0.1.8
We explain the birigidification of P°.
By definition, P is a line bundle on the abelian Y-scheme X x g Y which is algebraically equivalent

to zero and 7° is a Y -rigidification of P, i.e. an isomorphism
0 Oy ~ (e x idy )*P?,
where € x idy defines the zero section of X xg Y/Y":
Y oS xgV Y x oy
The commutative diagram of group homomorphisms
Homg(Y,Y) = Pic®(X x5 Y/Y)

oeyl J{(idx)(ey)*

Homg(S,Y) —~— Pic’(X/9)

and Lemma 0.1.5 show that there is a unique isomorphism (idx x ey )*(P%,r%) ~ (Ox,can) in
Pic(X/S). In other words, there is a unique trivialization

sY: (idx xey ) P ~ Ox
of P? along the map
X~ X xg§ XXV, ¥ woy

such that the restriction of s” along € : S — X coincides with the restricition of 7° along ey : S — Y.
It is the existence of the two compatible rigidifications r° and s° which is meant by the common

parlance that PV is birigidified, and we may write (P, 7°, s°) to stress this fact.

Definition 0.1.9
We call (P9, 70, s9) the birigidified Poincaré bundle on X x5 Y.

Finally, let us mention the phenomenon of biduality:

For this one first recognizes that P° is algebraically equivalent to zero not only with respect to the
base scheme Y - which is true by definition - but also with respect to X (cf. [SGA7-I], exp. VII, Ex.
2.9.5 and Rem. 2.9.6; the substantial ingredient is the rigidity theorem for abelian schemes).

If we denote (only for a moment) by Z the dual abelian scheme of Y and by QU the birigidified

Poincaré bundle on Y x g Z there is then a unique S-morphism ¢ : X — Z inducing an isomorphism
0.1.2) (idy x 1)*Q° ~ o*P°

such that the Z-rigidification of Q" induces the X -rigidification s° of o*P°.

Here, 0 : Y xg X = X xgY denotes the shift automorphism and with the last s° we more precisely
mean the X -rigidification of o*P? naturally induced by s° noting that o o (ey x idx) = idx xey.
In shorter words, ¢ is the map corresponding to (0*P°, s°) under Homg(X, Z) ~ Pic’(Y x g X/X).




ABELIAN SCHEMES: DUALITY THEORY, UNIVERSAL VECTORIAL EXTENSION... 25

Theorem 0.1.10

The map v : X — Z defined above is an isomorphism of abelian schemes.

Proof. Cf. [Bo-Lii-Ray], 8.4, Thm. 5 (b).! O

It is easy to see that (0.1.2) also respects the Y -rigidifications of both sides, and hence altogether we

may identify Z with X as abelian schemes and Q° with o*P° as birigidified line bundles.

Corollary 0.1.11
The dual functor of Y/ S is represented by the abelian scheme X and (c*P°, s°,r0) is the birigidified
Poincaré bundle on'Y xg X. O

Universal vectorial extension and Poincaré bundle

In the following, we use the notion of an integrable connection and some associated standard con-

structions; for detailed explanations we refer to the review of algebraic connections given in 0.2.1.

Consider the contravariant commutative group-functor on the category of all S-schemes given by
T — Pic*(Xp/T) := {Isomorphism classes of triples (£, , V )},

where £ and « are as in the definition of Pic’(X7/T) and where V. : £ — Q_le/T ®ox, Lisan
integrable T-connection on £. We call it the §-dual functor of X/S.

For the precise definition of this functor one takes into account the following points:

First, an isomorphism between two such triples is by definition an isomorphism of the line bundles
which respects the T-rigidifications and the connections.

Second, the group law of Pic? (X7 /T') is defined by taking the tensor product of representing triples:
this means that one forms the tensor product of the line bundles, of the 7'-rigidifications and of the
integrable T-connections. The neutral element then is given by the class of (Ox,.,can,d) with
d: Ox, — Q;T /7 denoting the exterior derivative. The inverse of the class of (L,a,Vp) is
represented by (L7, a1, Vzl), where Vzl is the dual connection of V..

Finally, the assignment 7" — Pic”(Xp/T) is contravariant functorial via Rem. 0.1.2, Rem. 0.1.4 and

pullback of an integrable connection along the respective commutative diagram as in 0.2.1 (v).
From Lemma 0.1.5 it follows a fortiori that there are no nontrivial automorphisms of a triple (£, a, V z).

In the course of the work we will exclusively be concerned with the case that the base scheme S
is of characteristic zero, i.e. a QQ-scheme. In this case we can remove the requirement of algebraic

equivalence to zero in the definition of Pic" (X1 /T) by the following more general statement:

Lemma 0.1.12
If S is of characteristic zero, T an S-scheme and (L,V ) is a line bundle on X1 equipped with a

(not necessarily integrable) T-connection, then L is algebraically equivalent to zero.

I'The hypothesis made there that X /S is projective is of course not necessary for the argument: in the reference this
assumption has the sole purpose to guarantee representability of the dual functor and thus is superfluous in view of Thm. 0.1.6.
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Proof. 1t is a fact that a line bundle on X is algebraically equivalent to zero already if its restriction
to each geometric fiber of X /7 is algebraically equivalent to zero.> We may hence check the claim
after pullback of L to the fiber over a geometric point Spec (£2) of T'. This pullback has an induced
connection relative Spec (), given by the pullback of V. along the occurring fiber product diagram
(cf. 0.2.1 (v)). We are thus reduced to show that a line bundle with connection on an abelian variety
over an algebraically closed field of characteristic zero is algebraically equivalent to zero. This is

well-known, cf. e.g. [Brio], Prop. 2.18. O

Before stating the key theorem about the §-dual functor we remark that a commutative group scheme
over a base B will often be freely identified with its associated abelian fpp f-sheaf on the category of
all B-schemes and that a sequence of homomorphisms of commutative group schemes is said to be
exact if the corresponding sequence of abelian fpp f-sheaves is exact. Moreover, for a commutative
B-group scheme G we write Lie(G/B) to denote the Lie algebra of G/B which in most cases will be
treated as the O z-module given by (€5 Q, / )", where e is the zero section of G'/B; for its equiv-
alent definition as a functor and for basic facts about Lie algebras cf. [Li-Lo-Ray], 1. Finally, for a
Op-vector bundle £ the notation V(E) means the geometric vector bundle over B associated with £
(cf. [G6-We], Ch. 11, (11.4)).

Returning to our fixed situation of an abelian scheme X over a locally noetherian base S we have
the following fundamental theorem about the fj-dual functor; it is a recapitulation in inverse order of
the results proven in [Maz-Mes], Ch. I, §1-§4.

Theorem 0.1.13
The -dual functor of X /S
T — Pic* (X7 /T)

is representable by a S-group scheme Y ¥ sitting in a natural short exact sequence of S-group schemes
(0.1.3) 0 — V(Lie(X/S)) = Y =Y =0,

given in T-rational points (for an S-scheme T') by the exact sequence of abelian groups

(0.1.4) 0— H(X7,Q%, 7) = Pic"(Xp/T) — Pic®(X7/T),

where the injection maps a form w to the class of (Ox,,can,d + w) and the subsequent arrow is
defined by "forgetting the connection", i.e. by (L,a, V) — (L, &) on representatives.

The scheme Y'* in particular is of finite type, separated and smooth of relative dimension 2g over S
with geometrically integral fibers.

Moreover, there exists a canonical isomorphism of Og-vector bundles
(0.1.5) Lie(Y?/S) ~ Hlz (X/S)
such that the sequence of Lie algebras of (0.1.3) identifies with the exact sequence ("Hodge filtration")

0= mQy s = Hig(X/S) = R'm.0x =0

2There seems to be no place in the official literature where this is proven. It is nevertheless an easy formal consequence of
the deeper fact that the dual functor of X/S as we defined it is an open subfunctor of the relative Picard functor of X/S.
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induced by the degeneration of the Hodge-de Rham spectral sequence for X /S on the first sheet.?
The exact sequence (0.1.3) parametrizes all extensions of Y by S-vector groups W via pushout along

a unique S-vector group homomorphism V(Lie(X/S)) — W.

Definition 0.1.14
The S-group scheme Y of Thm. 0.1.13 is called the universal (vectorial) extension of Y.

We denote by 7, pf, €%, (—1)% the structure map, the multiplication map, the zero section and the

inverse map of Y?/S.

Remark 0.1.15

(i) Of course, the term "universal vectorial extension” refers to the property of the extension (0.1.3)
described in the last part of Thm. 0.1.13. This property is used to define more generally the universal
vectorial extension of an arbitrary 1-motive over S (cf. 2.6.1). Its existence is always guaranteed by
in fact purely formal arguments, and in the case of the 1-motive given by Y the preceding theorem

thus provides us with an explicit interpretation of this object in terms of the §-dual functor of X/S.

(ii) There are further equivalent viewpoints on Y# by means of rigidified extensions (cf. [Maz-Mes],
Ch. 1, §2) or by Grothendieck’s f-extensions (cf. ibid., Ch. I, §3-§4 resp. the account given in 0.1.3).
For its classical expression via differential forms of the third kind in the case of an abelian variety as
well as for its interpretation within the theory of generalized Picard varieties resp. jacobians cf. the
references in the introduction of [Maz-Mes], [Col], 1.7, and [Co4].

Y'" comes with a distinguished isomorphism class in Pic’ (X x g Y#/Y%) such that Y'¥ together with
this class forms a universal object for the f-dual functor. We now want to fix a representative for this
universal isomorphism class by using the Y -rigidified Poincaré bundle (P°,7%) on X x5 Y.

Write (P, r) for the pullback of (P°, r°) along the map X xsY® — X x 5Y induced by the canonical
arrow Y% — Y of (0.1.3): it is a Y-rigidified line bundle on the abelian Y*-scheme X x g Y'# which

is algebraically equivalent to zero. We then have:

Lemma 0.1.16
There is a unique integrable Y %-connection Vp on P such that (P,r,Vp) represents the universal
isomorphism class in Pic (X xg Y?/Y").

Proof. Fix some representative (Q, v, Vo) of this universal class. By definition of Y there is a unique
S-morphism f : Y% — Y such that the pullback of (P°,r%) underidy xf : X xg V! = X xgY
is isomorphic to (Q, ). We first claim that f is identical to the canonical map in (0.1.3): by Thm.
0.1.13 we need to check that for all S-schemes 7" the map f in T'-rational points

F(T) : Pic (X xg T/T) ~ YHT) = Y(T) ~ Pic>(X x5 T/T)

is given as in (0.1.4), i.e. "by forgetting the connection". This in turn is straightforwardly seen by
using the universality of (Q, v, Vo) and (P, rY) together with (idx x f)*(P°,r%) ~ (Q,v).
We thus have an isomorphism

(0.1.6) (P,r) = (idx x f)*(P° %) ~ (Q,v).

3General remarks about algebraic de Rham cohomology can be found in 0.2.2. For detailed information about the de Rham
cohomology of an abelian scheme cf. [Bert-Br-Mes], 2.5.
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Now we endow the left side of (0.1.6) with the connection V5 induced by V. Clearly, (P,r, Vp)
is a representative of the universal class in Pic*(X xg Y#/Y!) because (Q, v, Vo) is. Finally, the

uniqueness part is an application of Lemma 0.1.5 (note that (P, r) is assumed to be fixed). O

Remark 0.1.17

The commutative diagram of group homomorphisms

Homg (Y#, V) = Pic*(X xg Y1/Y")

oehi i(idx)(eh)*

Homg (S, V) —=— Picf(X/S)

and Lemma 0.1.5 show that there is a unique isomorphism (idx x €?)*(P,r, Vp) =~ (Ox,can,d) in

Pic?(X/S). In other words, there is a unique trivialization
s5: (idx x €)*(P,Vp) ~ (Ox,d)

of (P, Vp) along
i éf
X~ X xg§ XX x v sV
with the property that (on the level of line bundles) the restriction of s along € : .S — X coincides
with the restriction of r along € : S — Y%, One can further check that the trivialization s on the level
of line bundles is just the one induced by s° in the obvious sense.*
We may express these data simultaneously by writing (P, r, s, Vp).

Definition 0.1.18
We call (P, r, s, Vp) the birigidified Poincaré bundle with universal integrable Y%-connection
on X xgYH.

It is of course reasonable to speak about rigidifying a line bundle also along the zero section of a group

scheme, and in this sense we apply the term "rigidification" to s.

The reason why we decide to write (P, r, s, V) instead of the more consequential (P?, 7%, 5% Vpy)
is for convenience of notation: playing a crucial role in this work, these objects will occur a huge

number of times and will moreover need to be furnished with other super- and subscripts.

0.1.2 Extension and biextension structures: generalities

The language of G,,,-(bi-)extensions and f-structures on them permits to develop another perspective
on the objects introduced in the preceding subsection. We therefore insert a review of some of its
basic vocabulary, essentially summarizing material from the sources [SGA7-I], exp. VII, [De2], 10.2,
[Ber], 3, and [Po], II, 10.2-10.3.

“4The reason is that both give an isomorphism of (idx x €%)* (P, ) with (Ox, can): for s this holds by definition and for
the trivialization induced by s° because s° and 70 are compatible (cf. Rem. 0.1.8) and  is induced by r°. Now use Lemma
0.1.5 to conclude the desired equality.
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Extensions and t-extensions

We fix an arbitrary base scheme 7" and a commutative 7'-group scheme H with multiplication map
m : H xp H — H and projections py,ps : H x7 H — H.
Let us further write q1, 2,93 : H X0 H xp H — H for the three projections of the triple product.

Definition 0.1.19
A (commutative) G,,, r-extension of H is a line bundle £ on H together with an isomorphism of line
bundles on H x1 H:

(0.1.7) m* L~ piL @0y, u DL

such that the following two diagrams of isomorphisms of line bundles on H xp H X1 H resp. on
H xp H (expressing "associativity" and "commutativity") commute; note that we leave away the

index H X7 H X7 H resp. H X7 H in the tensor products.

* (a) * *
(1+@e+a)L—(1+@)LogL
(0.1.8) (b)i i(d)@id
* * id®(c) * * *
GLR (e + @) L —> G LOGLRGL

resp.
m*L ——pi L p5L
0.1.9) idl \Lcan
m*L ——ps LR pi L

The arrows in (0.1.8) are induced by pulling back the isomorphism (0.1.7) along the maps
H xp H xp H— H xp H defined by

(@) (z,y,2) = (@+y.2) (V) (@,9,2) = (2,9 +2)
(@) (z,9,2) = (y,2) (d): (z,y,2) = (2,y).
The upper arrow of (0.1.9) is (0.1.7) and the lower one comes from (0.1.7) by pullback via the shift

map H xp H — H xp H, defined by (z,y) — (y, ).

Remark 0.1.20
Let £ be a G, r-extension of H and write L for the G, g-torsor associated with the line bundle
L. By a purely formal procedure the datum (0.1.7) induces on L canonically the structure of a

commutative 7'-group scheme fitting into an exact sequence of T-group schemes
(0.1.10) 0—=-Gunr—L—H—=0.

Conversely, an extension as in (0.1.10) makes L into a G, g-torsor whose associated line bundle £
on H naturally carries the structure of a G,,, 7-extension of H.

For the explicit (entirely formal) constructions and for more details cf. [SGA7-I], exp. VII, 1.1-1.2.

Keeping the above notations let us further assume that H is smooth over 7.
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Definition 0.1.21

A -G, r-extension of H is a G, r-extension £ of H together with a (automatically integrable)

T-connection on £ such that the isomorphism of (0.1.7):
m*L ~piL ®On iy psL

is horizontal for the induced 7T'-connections on both sides.

Write Exth(H , Gy, 1) for the group of isomorphism classes of §-G,,, r-extensions of H, where an
isomorphism is of course an isomorphism of the line bundles which is compatible with the respective
isomorphisms (0.1.7) and with the connections; the group structure is induced by taking the tensor

product of line bundles, connections and isomorphisms (0.1.7).

Biextensions and f-structures

We fix a base scheme 7" and two commutative 7'-group schemes H1, H, with multiplication maps

M, , MH,. We write p;; for the projection of a triple product to the i-th and j-th factor.

Definition 0.1.22

A (commutative) G,, r-biextension of H; x7 Hs is a line bundle £ on H; xp H, together with

isomorphisms of line bundles on H1 X7 Hy X7 Hs and Hy X7 Hy X7 Hs:

(0.1.11) PisL @ pas L~ (mp, X idm,)* L
and
(0.1.12) ps{2£ ® stE >~ (ld]—[1 X mH2)*£

such that certain five induced diagrams of isomorphisms of line bundles on the fiber products
e Hy xp Hy Xp Hy Xp H2, Hy X Hy X7 Ha,

o Hy X7 Hy X7 Hy X7 Hy, Hy X7 Hy X7 Ha,
o Hy xp Hy xp Hy X7 Hoy
are commutative.’

Remark 0.1.23

Write H; 1, TESP. Hy s for the product Hy X Hs, considered as group scheme relative Hs resp. H;.
If £ is a G,,, p-biextension of H; X7 Hp, then £ has canonically an induced structure as a G, m,-
extension of H; o and as a G, g, -extension of Hj Y One gets these structures precisely from the
isomorphisms (0.1.11) and (0.1.12) (the two associativity and commutativity conditions are exactly
the meaning of the first four commutative diagrams of Def. 0.1.22). They are compatible in the sense
of [SGAT-1], exp. VII, Def. 2.1 (this is the meaning of the fifth commutative diagram of Def. 0.1.22).

One thus sees that the datum of such two compatible extension structures for a line bundle £ on

5These diagrams are intuitive to write down but would cost further notation and space, so we don’t explicate them here
and refer to the diagrams (2.0.5), (2.0.6), (2.0.8), (2.0.9), (2.1.1) in [SGA7-I], exp. VII, 2.0 and 2.1, for the precise

requirements.
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Hy x7 Hj is simply tantamount to have on L the structure of a G,,, p-biextension of H; X7 Hs.

Note that with Rem. 0.1.20 we then obtain exact sequences of group schemes relative Hs resp. Hy:

(0.1.13) 0 — Gm,Hg — L — H1H2 — 07

(0.1.14) 0= Gu,a, > L — Hapy — 0.
Keeping the above notations we further assume that H; and Hs are smooth over 7.

Definition 0.1.24

Let £ be a G, p-biextension of Hy x¢ Ho.

(i) A g-1-structure on L is the datum of a (automatically integrable) Hs-connection on £ such that
(0.1.11) is horizontal for the induced Ha-connections (i.e. £ becomes a -G, u,-extension of Hi,, )
and such that (0.1.12) is horizontal for the induced (Hs X1 Hj)-connections.

(ii) By working in (i) relative to H; instead of Hs one obtains the notion of a §-2-structure on L.

(iii) A g-structure on L is the datum of a §-1-structure and of a §-2-structure on L.

By the canonical decomposition Q}, .- iy © Q. i = Q. i /7 one easily sees that a
B-structure on £ is equivalent to the datum of a T-connection on £ such that (0.1.11) and (0.1.12) are

horizontal for the induced T'-connections.

0.1.3 Extension and biextension structures: applications

Let us return to the objects we have defined in 0.1.1 starting from the abelian scheme X over the
locally noetherian base S. The terminology developed in 0.1.2 will now provide us with a different
interpretation of the dual abelian scheme Y and its universal vectorial extension Y as parametrizing
schemes for the G,,- and §-G,,,-extensions of X. We finally apply the concept of biextension to the
Poincaré bundle and, following [Ber], 4, resp. [De2], 10.2, explain the construction of Deligne’s
pairing for the first de Rham cohomology of X and Y.

All of these viewpoints play a particularly basic and natural role when working within the framework

of 1-motives, which we will do extensively in 2.6.

Extensions and the dual abelian scheme

Let (£, «) be a line bundle on X7 which is algebraically equivalent to zero together with a T-
rigidification. The existence of this T-rigidification easily implies that any line bundle M on T as in

Def. 0.0.1 must be trivial, and hence we obtain some isomorphism of line bundles on X7 X7 Xr:
(0.1.15) pwrL = pri 7L @0y, . xp PrarL.

If we view X1 xp X as abelian T-scheme both sides of (0.1.15) carry a natural T-rigidification

(induced by « in the obvious way), and there is a unique isomorphism as in (0.1.15) respecting them.5

OThis is straightforward: first, choose any isomorphism as in (0.1.15). Then it can be changed by a constant in
I(T,0r)* = I'(X1,0x,)* such that it becomes compatible with the rigidifications: namely, restrict the chosen iso-
morphism (0.1.15) along the zero section of X1 X X7 and use the rigidifications to obtain an automorphism of O7 which
is given by an element of I'(T, O )*. The inverse of this element is the desired constant, as is easily checked. Finally, that
an isomorphism as in (0.1.15) which respects the rigidifications is unique follows from Lemma 0.1.5 applied to the abelian
T-scheme X7 X7 Xp.
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Lemma 0.1.25

With this choice of (0.1.15) we obtain on L the structure of a (commutative) G, p-extension of Xr.

Proof. We need to show that the diagrams (0.1.8) resp. (0.1.9) expressing associativity and com-
mutativity are commutative. All line bundles occurring in (0.1.8) resp. (0.1.9) carry a natural T-
rigidification (induced by «), and by the choice of (0.1.15) and the definition of the arrows in (0.1.8)
resp. (0.1.9) these rigidifications are respected by all isomorphisms in (0.1.8) resp. (0.1.9). Now use
Lemma 0.1.5, applied to the abelian T-scheme X7 x7 X1 X7 Xp resp. X7 X7 Xrp. O

Observing moreover Rem. 0.1.20 we see that the pair (£, «) thus yields in a natural way an extension
0= Gnr—L—Xr—0,

where L stands as usual for the G,,, x . -torsor associated with the line bundle L.

Conversely, given an exact sequence of abelian fpp f-sheaves
0=-Gpr—L—=Xr—=0

write £ for the line bundle on X7 corresponding to L; then £ naturally becomes a G, r-extension
of X (cf. Rem. 0.1.20), and the associated isomorphism (0.1.7) implies that £ is algebraically
equivalent to zero; moreover, restricting (0.1.7) along the zero section of X7 X7 Xr induces a T-

rigidification « of £ such that in sum we have obtained a pair (£, «) as before.

Theorem 0.1.26 ("Barsotti-Rosenlicht-Weil formula")

The assignments described above induce mutually inverse isomorphisms of abelian groups
(0.1.16) Pic’(Xr/T) ~ Exty,, (X7, Gpm.1)

which is functorial in T. In other words, the dual abelian scheme Y of X /S represents the functor on
the category of S-schemes
T v Ext, (X1, Gm.1).

In particular, we obtain an isomorphism of abelian fppf-sheaves
0.1.17) Y ~ Ext},, (X, Gm,s).

Proof. That we obtain an induced isomorphism of groups Ext}pp F (X1, Gpr) = Pic’ (X1 /T)
follows from [Oo], Ch. III, Thm. 18.1; observe that the additional hypotheses made there can be
completely removed: cf. the discussion in [Jo2], p. 7, footnote 1.

It is easy to see that assigning to a pair (£, ) an fppf-extension of X¢ by G,, 1 as outlined above
induces a well-defined map Pic’(X7/T) — Ext}ppf (X1, Gy ) which becomes the identity on
PicO(XT /T) when further composed with the previous isomorphism of groups. This suffices to

establish the isomorphism (0.1.16). The remaining claims are clear. 0

g-extensions and the universal vectorial extension

Recall that representatives of the abelian group Exth(XT, Gy, 1) are Gy, r-extensions £ of X to-

gether with an integrable T'-connection V . such that the isomorphism defining the extension structure

WL = PrirL @0s, g Pl
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is horizontal for the induced integrable T-connections. Pullback of the preceding isomorphism along
the zero section of X7 X7 X7 induces in the natural way a T'-rigidification « of £, and the triple
(L,a, V) yields a well-defined class in Pic? (X7 /T).

In this way we obtain a homomorphism

Ext*(X7, Gy r) = Pic! (X7 /T),

and an application of Lemma 0.1.5 (similar as in the proof of Lemma 0.1.25) shows its injectivity.

It is in fact also surjective: if a class (£, a, V) of Pic*( Xy /T) is given, then the construction and
isomorphy of (0.1.16) implies that there is a G, r-extension of X1 which - together with its induced
T-rigidification - is (uniquely) isomorphic to (£, ). Now, using this isomorphism, endow the line
bundle of that extension with the connection induced by V . One can then show that the isomorphism
defining the extension structure is in fact horizontal (cf. the argument in [Maz-Mes], Ch. I, proof of

Prop. 4.2.1), which thus shows the desired surjectivity.

In sum, this establishes the following result (cf. [Maz-Mes], Ch. I, (4.2)):

Theorem 0.1.27

The universal vectorial extension Y of Y represents the functor on the category of S-schemes

T — Ext? (X7, G 7).

Applications to the Poincaré bundle

Consider the birigidified Poincaré bundle (P°,7° s%) on X xg Y and recall that it is compatibly
rigidified and algebraically equivalent to zero with respect to each of the two factors of X xg Y
(cf. Rem. 0.1.8, Def. 0.1.9 and the subsequent discussion). Applying two times the construction of
Lemma 0.1.25 (the second time with X replaced by Y') we obtain on P naturally the structure of a
Gy, y- and of a G, x-extension of X xg Y. Denoting by PO the G, x x gy -torsor associated with

PY we may express this (by Rem. 0.1.23) via associated exact sequences

(0.1.18) 0= Gy — P° = Xy =0,

(0.1.19) 0= Gpx — P =Yy —0.
Their extension classes are the universal ones under the isomorphisms of functors given by (0.1.17):
Y o Extp,, 1 (X, Gm,s),

X = Extj, (Y, Gns),

where for the second we have made use of biduality (cf. Cor. 0.1.11).

The compatibility of ° and s° allow to show (as in the proof of Lemma 0.1.25) that the two extension
structures on P are compatible in the sense of Rem. 0.1.23, and thus PV is a G, s-biextension of
X xg Y. Itis often referred to as the canonical or universal G, g-biextension of X xg Y.
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We have furthermore introduced the birigidified Poincaré bundle with universal integrable Y ®-connection
(P,r,s,Vp)on X xg Y8 (cf. Def. 0.1.18). Pullback of the Gy, s-biextension structure of P9 makes

P a Gy, s-biextension of X X g Y% whose corresponding isomorphisms write as

(0.1.20) PisP @ phaP = (1 x idy:)*P on X xg X x5 Y,

(0.1.21) PP @pisP =~ (idx x u*)*P on X xg Y xgVHh

One checks that (0.1.20) is horizontal for the integrable Y #-connections induced by Vp on both
sides (use the argument of [Maz-Mes], Ch. I, proof of Prop. 4.2.1, applied to the abelian Y-scheme
X xg Y in particular, (P, Vp) becomes what in Def. 0.1.21 we have called a 1-G,,, ys-extension
of X x Y and its class in Ext’ (X xgY?t, G, y+) is the universal one with respect to Thm. 0.1.27.
Moreover, the isomorphism (0.1.21) is horizontal for the integrable (Y# x g Y'#)-connections induced
by Vp on both sides (cf. [Ber], proof of Prop. 3.9, or [De2], proof of Prop. (10.2.7.4)).

In the terminology of Def. 0.1.24 the horizontality of the two isomorphisms (0.1.20) and (0.1.21)
defining the G, g-biextension structure of P says that Vp induces on P a §-1-structure.

Finally, note that by Rem. 0.1.23 the extension structures on P provide us with exact sequences

(0.1.22) 0= Gy ys = P — Xy: — 0,
(0.1.23) 0= Gpux —P—YL—0

Deligne’s pairing

The objects introduced in this section can be used to construct a natural duality between the first de
Rham cohomology sheaves of an abelian scheme and its dual.

Let us denote by X! the universal vectorial extension of X

Observing biduality (cf. Cor. 0.1.11) and then proceeding analogously as for P (cf. Lemma 0.1.16
and the above arguments) one obtains that the pullback of P° along the canonical homomorphism
XixgY = X xgYisa birigidified G, g-biextension of X i % ¢ Y which carries a distinguished
integrable X -connection defining a -2-structure on it. One can then take its further pullback along
X8 x¢ Y% - X xgY and perform the analogous pullback for P and its §-1-structure.

Hence, writing 4Pl for the pullback of P° along X x5 Y% = X xgY we obtain a g-structure on

5P* which expresses as a S-connection
Vhph : h’])h — Qﬁ(hsth/S Ro h'Ph

Xlixgyh

The global 2-form on X% xg Y defined by the curvature of V:ps is checked to be invariant (cf.
[Co3], p. 636), thus giving rise to an alternating O g-bilinear form

Lie(X? x5 Y?/S) @ Lie(X% x5 Y?/S) = Og
which in view of the identifications provided by (0.1.5) writes as
R: (Hap(Y/S) & Hgn(X/S)) & (Hig(Y/S) & Hyp(X/S)) = Os.

The integrability of the relative connections summing to Vs implies that R vanishes on H (Y/5)
and on H} (X/S). Itis hence of the form

R((v,v"), (w,w")) = 2(v @ w') — 2(w ® V')
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with a Og-linear pairing
®: Hip(Y/S) ® Hig(X/S) = Os

which in terms of R is given by the formula
(v ®@w) = R((v,0), (0, w)).

The pairing @ is called Deligne’s pairing. That it is in fact perfect is a fundamental result which was
proven under additional assumptions on the base scheme S by Deligne and Coleman (cf. [De2] and
[Col]) and for arbitrary .S in the more general situation of Cartier dual 1-motives by Bertapelle in
[Ber]. We will come back to the motivic nature of Deligne’s pairing in 2.6.1.

0.2 Algebraic connections, de Rham cohomology and D-
modules

0.2.1 Connections

The algebraic theory of modules with connection is a basic tool used throughout this work, and we

here recall various of its elementary notions and constructions which will be needed in the future.
Let f : X — S be a smooth morphism of schemes.

(1) If M is a Ox-module a connection relative S or S-connection on M is a homomorphism of

abelian sheaves
VM—>Q§(/S®(’)XM

satisfying the Leibniz rule. For each i > 1 one has a f ~'Og-linear map defined on local sections by
\AE Qé{/s ®oy M — Qf;“/ls Roxy M, w@m—dw@m+ (—1)"-wAV(m).

The connection V is called integrable if its O x-linear curvature homomorphism

K(V):=V'oV: M _>Q§(/S®Ox M
vanishes, and in this case the maps V' extend V to a f~'(g-linear complex starting in degree zero
%/S(M) : [M_>Q§(/s ®OXM—>Q§(/S Rox M — ..,

called the de Rham complex of (M, V).

(ii) The datum of a S-connection on M is equivalent to a O x-linear map
A mffugs (Ox) — Endf71os (M)

from the sheaf of f~!(g-derivations on Ox into the sheaf of f~!Og-linear endomorphisms on M,
satisfying the Leibniz rule; note that the O x -module structures of Der ;-1 (Ox) and End -1 (M)

come from (outer) multiplication by sections of Ox.
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Observing that as O x-module Der 104 (Ox) identifies with the dual of Q}( /s the mentioned equiva-

lence is induced by composing a given S-connection V on M with sections 6 € I'(U, Der -1 (Ox)):
v o®id
A0) : My = Qs ©0p, My —= My

The inverse assignment comes from choosing open subsets U C X where a relative local coordinate

system {x;, O, }1<i<n is available (cf. 0.2.3 for this notion) and checking that the local formulas

V(m) = Zd% ® A(0z,)(m)

induce a well-defined S-connection globally on M.
Under this correspondence the integrability condition of V translates into compatibility of A with the

natural f~'Og-Lie algebra structures of Der ;-1 (Ox) and End -1 (M).

(iii) A morphism between two O x-modules with (integrable) S-connection is a O x-linear homo-

morphism that is compatible with the connections; such a map is also called horizontal.

(iv) If M and N are Ox-modules with (integrable) S-connections V o, and V ,, then the tensor
product M ®¢, N can be equipped with a (integrable) S-connection

VM®VN:M®0XN—>Q§(/S®0X (M@0, N),

the tensor product connection of V x4 and V. Using associativity and commutativity of the tensor

product it is induced by the following rule on local sections:
(VM OVa)(men) = Vuim)@n+me Va(n).
We can further endow the internal Hom-sheaf Hom,, . (M, ') with a (integrable) S-connection
Vmw i Home (M, N) = Q% s ©o, Home (M, N),

the internal Hom-connection. Using the canonical identification

Q%{/s ®ox Homy (M, N) ~ Homg, (M, Q%{/s ®ox N)
it is induced by the following rule on local sections:

Vo (p)(m) = Var(p(m)) — ([d @p)(Var(m)).

In the case that M is a vector bundle and N' = Oy, equipped with its canonical integrable S-
connection (exterior derivation), the resulting connection on the dual bundle MY = Hom, (M, Ox)
is called the dual connection of V . One checks that its tensor product with V s becomes the con-
nection V - under the natural identification Homy, (M, Ox) ®o, N ~ Homy (M, N).

If M is a line bundle the tensor product of V 4 with its dual connection becomes exterior derivation

under the canonical isomorphism M ®¢, MY ~ Ox.

Next, assume that we are given a commutative (not necessarily cartesian) diagram

X/ S/

0.2.1) ig lh
f
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with X /S and X’ /S’ smooth.

(v) For a O x-module M with (integrable) S-connection we define its pullback along (0.2.1).

Namely, we may canonically equip the (module) pullback g* M with a (integrable) S’-connection by

the following formula on local sections:
GM=0x @410, g 'M— Qk//S/ R0y g°M,

' ® g7 (m) — da’ @ g*(m) + 2’ - (can ® id) (g*(V(m))),

where can ® id : g*Qﬁ(/S Roy, M — Q&,/S, ®o,, g* M is the obvious canonical map.

By contrast to conventions sometimes made in the literature (cf. e.g. [Kat2], (1.1.4)) we won’t
work with an additional notation like (g, h)* M when referring to this construction but will simply
write ¢* M as it will be transparent or mentioned explicitly along which diagram we form the pullback.

We record the special case S’ = S and h = id, which says that we have a notion of pullback for
modules with (integrable) S-connection along a morphism of smooth S-schemes.
As further special case one sees that for a smooth map f : X — S as above and any Og-module M

the pullback f*M carries a canonical integrable S-connection, given by the rule

d®id: Ox @10, fM = Qx5 @p-10, M.
(vi) Assume in addition that (0.2.1) is cartesian. For a O x,-module M’ with (integrable) S’-connection
V : M/ — Qk//s/ ®OX’ MI

we then have the notion of its higher direct images along (0.2.1).

Namely, applying the ¢-th higher direct image functor for abelian sheaves to V and identifying
R'g.(Qx: /50 @0, M') = Rigu (9" U /s @0y, M') = Qx5 @0y R'gM'’

yields a homomorphism of abelian sheaves R'g, M’ — Q% /5 ®0x Rig, M’ which is a (integrable)
S-connection on the O x-module Rig, M’.

If we consider g, as a left exact functor from the abelian category of Ox/-modules with integrable
S’-connection to the same category with X’ S’ replaced by X, S, then the value of its i-th right de-
rived functor at M’ coincides with our previous construction, as one can easily show.

In terms of functors on derived categories it equals the i-th cohomology sheaf of (g, k) (M), where
(g9, h)+ = Ry is the triangulated functor of [Lau], (3.3) - to be precise, we here assume all schemes

locally noetherian, the map g quasi-compact and M’ quasi-coherent as O x/-module.

(vii) At some places of the work it will be convenient to adapt Grothendieck’s viewpoint on connections.

For this let Aﬁ( /s be the first infinitesimal neighborhood of the diagonal immersion X — X x g X and
P1,P2: Aﬁg /s X the maps induced by the projections of X x g X. Hence, the two compositions

. p1
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both are the identity, where ¢ is the natural nilpotent closed immersion of square zero. To give a

S-connection on the O x-module M then is equivalent to give an isomorphism
piM >~ py M

of O A;/S—modules which becomes the identity when restricted to X (cf. [Bert-Og], §2, Prop. 2.9).

As we won’t use it explicitly we only remark that the translation of integrability into this setting
expresses as a cocycle condition for certain isomorphisms, which is understood best by using the
concept of "stratifications" (cf. ibid., §4, Def. 4.3 and Thm. 4.8, resp. §2, Thm. 2.15, for Q-schemes).

0.2.2 De Rham cohomology

Algebraic de Rham cohomology is naturally associated to modules with integrable connection and
provides the cohomological framework in which most of this work will take place.

We briefly review its basic definitions and fix some standard notation. Some more details, especially
about the Gau-Manin connection whose construction we won’t repeat in detail here, can be found in
[Kat2], (2.0)-(3.3)7 and [Har], Ch. III, 4.

Let f : X — S be a smooth morphism of schemes.

For a O x-module M with integrable S-connection and 7 > 0 we define a Og-module
Hip(X/8, M) := R f.(Q% /5 (M)),

where as in 0.2.1 the notation 2% ¢ (M) means the f ~1Og-linear de Rham complex of M.
We call Hi (X/S, M) the i-th de Rham cohomology sheaf of X /S with coefficients in M.
As already done here we usually suppress in our notation the integrable connection underlying M.

For M := Ox with its canonical integrable S-connection (exterior derivation) we abbreviate
Hig(X/S) == Hir(X/S, Ox)

and call H)z (X/S) the i-th de Rham cohomology sheaf of X/S.

Assuming additionally that S is locally noetherian and f quasi-compact the spectral sequence of

hyperderived functors (use [Huy], Rem. 2.67)
0.2.2) EP? = RUf (O g ®ox M) = EPT1 = HYZ(X/S, M)

and standard cohomological results imply that all H, QR(X /S, M) are quasi-coherent O g-modules if
M is quasi-coherent, and that they are coherent Og-modules if f is proper and M coherent.

Now assume that S is smooth over another scheme 7.
x—1 .5
T

7In this reference all modules with integrable connections are assumed as quasi-coherent, an assumption which is superflu-

ous for the definitions and facts we provide here (cf. also the second mentioned source).
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If M is a Ox-module with integrable T-connection, then via the natural map
Ok 7 @0y M 2% QL R0, M
we obtain an induced integrable S-connection on M and associated de Rham cohomology sheaves

H fiR (X/S, M) as above. Each of them can then be equipped with a canonical integrable T-connection,

its GauB-Manin connection relative 7. The idea is to construct the whole de Rham complex of this

connection as the row £} " in the spectral sequence associated to the naturally finitely filtered complex

Q%7 (M) and the 0-th hyperderived functor of f,.

0.2.3 D-modules

Giving a module with integrable connection is equivalent to giving a left module over the sheaf D
of differential operators for the considered geometric situation. Therefore, when working with inte-
grable connections we will often freely switch into the language of D-modules, where a convenient

functorial formalism on the level of derived categories is available.

As it was the case for modules with integrable connection we will consider D-modules for a rela-
tive situation. In the present subsection it thus becomes at first necessary to briefly outline how we
will deal with the lack of references in the literature for a theory of relative D-modules. We then
introduce the sheaf of relative differential operators for a smooth map of schemes and explain that the
left modules over it correspond to modules with integrable connection. The definition of the functorial
machinery in a relative situation, for which we refer to [Lau], Rappels (3.3.1), happens completely
analogously as in the absolute case (cf. e.g. [Ho-Ta-Tan], Ch. 1); we therefore content ourselves with
introducing explicitly only the inverse and direct image functor for relative D-modules, which are in
fact the two derived functors mainly used in the course of this work. Finally, as these results will
be frequently needed, we record the statement of Kashiwara’s equivalence and the availability of the

localization sequence in the relative case.

In this subsection we assume that all occurring schemes are separated QQ-schemes.

General remarks

The literature known to us is almost exclusively restricted to the study of D-modules on smooth
varieties over the complex numbers. But, as was already said, in the course of this work we will
want to use D-module formalism for the situation of a scheme lying smooth over an arbitrary field of
characteristic zero or, more generally, over a base scheme defined over Q.

The fundamental functorial setup for such a general case is (very briefly) outlined in [Lau], Rappels
(3.3.1), and this is in fact the only source we know concerning relative D-modules.

Nevertheless, the basic formal results about D-modules that we will need entirely carry over from the
absolute to the relative situation. When making use of such a result in the progress of the work our
policy will be to cite the absolute statement, referring to the source [Ho-Ta-Tan], and briefly say that

resp. (if it is not immediately clear) why no problems arise in the transition to the relative situation.
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Basic concepts

Let S be a noetherian scheme and f : X — S a morphism which is of finite type and smooth of

relative dimension n.

The sheaf of differential operators of X/, denoted Dy g, is the f ~10g-subalgebra of End 105 (0x)
generated by Der ;1 (Ox) and Ox, where Ox is included in End 1o, (Ox) by multiplication.

Dx/s is a sheaf of Ox-algebras which is non-commutative as soon as n > 1. In the same way
as in the absolute case (cf. [Ho-Ta-Tan], 1.1) one has the following local description of Dy g:
As X/S is smooth of relative dimension n we can choose X-locally, say on U C X open affine,

sections {z1, ..., z, } of Oy such that {dx1, ..., dz, } forms a Oy -basis for Qb/s. We then have

Dys = @D Ovde  with 92 == 921..02"

Tn ?
aeNy

where {0y, , ..., 0z, } is the dual basis of {dz1,...,dz, }: recall that Der ;. (Ox) as Ox-module
identifies with the dual of Qﬁg /s In particular, Dy is a locally free Ox-module and thus quasi-

coherent.

Our above choice of sections {z;, 8$i}1§¢§n is the immediate generalization of what in the abso-
lute case is called "local coordinate system" (cf. [Ho-Ta-Tan], 1.1 resp. A.5). The existence of such a

relative local coordinate system for X /S together with the characteristic zero assumption is the main

reason why many of the basic formal results of the absolute situation carry over to relative D-modules.

By a (left) D-module for X /.S we understand a sheaf of left modules over the ring sheaf Dx /S-

The relation to the earlier defined modules with integrable connection (cf. 0.2.1) is as follows:
For a O x-module M the datum of an integrable S-connection on M is equivalent to the datum of a
left Dx /s-module structure on M which is compatible with the O x-module structure.

To see this recall from 0.2.1 (ii) that an integrable S-connection on M tantamounts to a map
A mf—los (OX) — Endf—los (M)

which is O x-linear, satisfies the Leibniz rule and is compatible with the natural f~'(g-Lie algebra
structures of Der ;-1 (Ox) and End -1 (M).
The equivalence with a Dxs-left module structure on M compatible with the given O x-module

structure then is established by the formula
0-m=V(0)(m), where 6 € Der; .o (Ox),m e M.

The verification is trivial (cf. also [Ho-Ta-Tan], Lemma 1.2.1).

Under this correspondence the D /g-linear homomorphisms between two (left) Dx /s-modules iden-
tify with the horizontal Ox-linear homomorphisms between them. Note furthermore that Ox with
its canonical Dx/g-module structure becomes equipped with the integrable S-connection given by

exterior derivation. Finally, observe that in the special case X = S we simply have Dx /g = Ox.
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Derived Categories

We write Mod(Dx/ ) for the abelian category of (left) D-modules for X/.S and Mod.(Dx ) for
the full subcategory of Mod(Dy, 5) consisting of those Dy, g-modules which are quasi-coherent over
Ox B It is a thick abelian subcategory of Mod(Dx/g). *

When considering the derived category of Mod(Dxs) we use the notation

D#(Dy/s) := D#(Mod(Dxs)),

where # is one of the boundedness conditions (), +, —, b.
We write Djfc(D x/s) for the full triangulated subcategory of D#(Dx ) consisting of those com-
plexes with cohomology sheaves in Modq(Dx/s).

Finally, we use the occasion to insert analogous notational conventions for modules over the structure
sheaf of a scheme!":

If (B, Op) is a scheme we write Mod(Op) for the abelian category of sheaves of modules over Op
and Mod.(Op) for the full subcategory consisting of those O g-modules which are quasi-coherent
over Op. Itis a thick abelian subcategory of Mod(Op).!!

Concerning the derived category of Mod(Op) we write

D#(Op) := D#(Mod(0p)),

where again # is one of the boundedness conditions (), +, —, b.
We denote with Djfc (Op) the full triangulated subcategory of D# (O p) consisting of those complexes
with cohomology sheaves in Modq.(Op).

Inverse and direct image for D-modules

We briefly record the two most important triangulated functors on derived categories of D-modules,
namely the inverse and direct image functor. We will adopt the notations of [Lau], Rappels (3.3.1),
where one can also find the definitions of the other basic functors for relative D-modules. But observe
that compared with [Lau] we impose more geometric conditions on the involved schemes, essentially
regularity and finite-dimensionality: in our view, these assumptions seem necessary to ensure that
the various triangulated functors are well-defined between bounded derived categories with quasi-

coherent cohomology; we don’t further elaborate on this technical issue here.'?

Let S be a noetherian, regular and finite-dimensional scheme and let X, Y be schemes which are
of finite type and smooth of relative dimensions dx, s, dy s over S; note that X, Y then have the

8For the notion of quasi-coherence for sheaves of modules on a ringed space cf. [EGAI], Ch. 0, (5.1.3). Furthermore, we
remark that for a Dx;g-module the conditions to be quasi-coherent over Dy, g and to be quasi-coherent over O x coincide:
use [EGAI], Ch. L, Prop. (2.2.4), and the already seen quasi-coherence of D x /s over Ox.

9This follows from [EGAI], Ch. I, Cor. (2.2.2).

100f course, for this short general insertion we deactivate the assumption that we are working with separated Q-schemes.

11 A5 before, this follows from [EGAI], Ch. I, Cor. (2.2.2).

120 et us only mention as a main reason that one needs the existence of bounded flat resolutions for D-modules, which is
guaranteed if the weak global dimensions of the stalks of the considered sheaf of relative differential operators are bounded;
under our additional assumptions one can indeed bound them, namely by the sum of the dimension of the scheme with the
relative dimension of the considered smooth morphism - this works similarly as in[Ho-Ta-Tan], p. 26 and Prop. 1.4.6.




42 PRELIMINARIES AND NOTATION

same geometric properties as S.

Assume that we are given an S-morphism g : X — Y.

X\"’—S/>Y

The inverse image functor associated with g is the triangulated functor

g : D.(Dyss) = Db (Dx/s)

given by
9'N* =Dxyys ®§71'Dy/s 9 N®dx/s — dyys]
for A'® an object of D (Dy;s).

The direct image functor associated with g is the triangulated functor

g+ : Db (Dx)s) — DE (Dy/s)

given by
g+ M*® = Rg.(Diyx)/s ®1L>X/S M?*)

for M® an object of D?.(Dx/s).

Here, D(x_,v)/s and Dy x),s are the two transfer bimodules associated with the morphism g.
For their definition cf. [Lau], (3.3.1) or [Ho-Ta-Tan], Def. 1.3.1, Def. 1.3.3 and Lemma 1.3.4.

We will frequently and tacitly use the following two easy facts about the inverse image functor:
First, if NV'is a locally free Oy -module with integrable S-connection, considered as object of Dgc (Dy/s)

in the natural way, then we have canonically
9N = g*"Ndx/s — dyss] in D’ (Dx/s),

where g*\ is equipped with the integrable S-connection given by pullback (cf. 0.2.1 (v)).!3
Second, if g is an open immersion, then the functor ¢' is given by the natural restriction g~ to the

open subset X of Y, and we simply write V| x for this restriction.

As we will cite results from the source [Ho-Ta-Tan] it should be remarked that in their notation the
functor g' is written as g' and the functor g, as [ (cf. ibid., p. 33 and p. 40).

Kashiwara’s equivalence and localization sequence

Going through the proofs of [Ho-Ta-Tan], Thm. 1.6.1 and Cor. 1.6.2, one checks that they can be

modified to yield the following relative version of Kashiwara’s equivalence:

3To verify this claim one first shows as in [Ho-Ta-Tan], proof of Prop. 1.5.8, that on the level of O-modules the functor
g' is derived pullback shifted by [dx;s — dy/g]. One then uses the local freeness of N to see that g!/\/’[dy/s —dx/g]is
concentrated in degree zero. Finally, as in [Ho-Ta-Tan], p. 22, one checks that the zeroth cohomology of g'\” [dy /s —dxy s]
canonically identifies with g* A as Dx /s-module.
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Let S be a noetherian, regular and finite-dimensional scheme and let X, Z be schemes which are
of finite type and smooth of some fixed relative dimensions over S.

Assume that we have a closed immersion ¢ : Z — X of a fixed codimension ¢ and write j for the
associated open immersion j : U := X\Z — X here, as in [Mi], Ch. VI, §5, we say that Z has

codimension c in X if for any s € S the fiber Z, has pure codimension c in Xj.

Kashiwara’s equivalence in its relative form says that then the functor % induces an equivalence

0.2.3) H, : Modqe(Dz/s) = ModZ.(Dx/s),
and that the functor 7. induces an equivalence
(0.2.4) iy 1 D! (Dzys) = D27 (Dxs).

Here, the superscripts mean the full subcategory of Mod,.(Dx/,s) consisting of those modules whose
support is contained in Z resp. the full triangulated subcategory of DgC(D x/s) consisting of those
complexes whose cohomology sheaves have support contained in Z.

The quasi-inverse of (0.2.3) resp. (0.2.4) is induced by the functor H%' resp. i'.

In particular, from (0.2.4) one deduces (along the same lines as in [Ho-Ta-Tan], Prop. 1.7.1) that
for every M*® ¢ DgC(DX /s) there is a canonical distinguished triangle in DgC(D X/8)

(0.2.5) i M= M = My,

which we will refer to as the localization sequence or the canonical distinguished triangle for M*.

Remark 0.2.1

(i) The essential point to prove the equivalences (0.2.3) and (0.2.4) is the following:

Our geometric assumptions imply that around points of X N Z the map f factorizes locally on X via
an étale morphism into Spec (Og[T1, ...T},]) such that Z is the inverse image of the closed subscheme
defined by 7},_c+1 = ... = T,, = 0. Here, c is again the codimension of Z in X, and n is the
relative dimension of X/S. The étale morphism comes from local sections {1, ..., z, } of Ox such
that {dz1, ...dz,, } is locally a basis of Qﬁ(/s. By dualizing we obtain a local basis {0y, , ...0,, } of the
tangent sheaf of X/S, and the set {x;, 95, }1<i<n then is a relative local coordinate system for X/,
directly generalizing the (absolute) "local coordinate system" of [Ho-Ta-Tan], 1.1 resp. A.5. With
this observation it is straightforward to generalize the proof of Kashiwara’s equivalence (and of many

other basic formal results for absolute D-modules) to the relative situation.

(i) In the course of the work we will need the localization sequence (0.2.5) almost exclusively in the

case that S is the spectrum of a field of characteristic zero.
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0.3 Summary of the basic notation

It seems convenient to collect in a list the most important and steadily used pieces of the notation
introduced so far. All further symbols appearing in the progress of this work and not ranging among

common standard notation will be introduced in situ.
o If (B, Op) is a scheme:

Mod(Op): the category of sheaves of O p-modules

Modg.(Op): the category of quasi-coherent sheaves of O g-modules

D#(Op): the derived category of Mod(Op) with boundedness condition # = (), +, —, b

D¥.(Op): the full triangulated subcategory of D# (O ) of complexes with cohomology in Modq(Op)
FY :=Homy,  (F,Op) for a Op-module F

L1 := £V for a Op-line bundle £

Lie(G/B): the Lie algebra of G/B for a commutative group scheme G over B

V(&): the geometric vector bundle associated with £ for a O g-vector bundle £
o If f: X — S is a smooth map of schemes and M is a O x-module with integrable S-connection:

Der;-10, (Ox): the sheaf of f~!(Og-derivations on Ox

End; 1 (M): the sheaf of f~'Og-linear endomorphisms on M

0% / g(M): the de Rham complex of M (starting in degree zero)

H(X/S, M): the i-th de Rham cohomology sheaf of X /S with coefficients in M
H!p(X/S): the i-th de Rham cohomology sheaf of X /.S

For the next two points all schemes are assumed to be separated Q-schemes.
e If X is of finite type and smooth (of a fixed relative dimension) over a noetherian scheme S

Dx/s: the sheaf of differential operators of X relative S

Mod(Dx/s): the category of sheaves of left Dy, g-modules

Modg.(Dx/g): the category of sheaves of left Dx,g-modules which are quasi-coherent over Ox
D# (Dx/s): the derived category of Mod(Dy,s) with boundedness condition # = (), 4+, —, b

D#C (Dx/s): the full triangulated subcategory of D#(Dx/g) of complexes with cohomology in
Modge(Dx/s)

o If X, Y are of finite type and smooth (of fixed relative dimensions) over a noetherian, regular and

finite-dimensional scheme S, and if g : X — Y is a S-morphism:

g': D!.(Dy;s) = D}.(Dx/s): the inverse image functor associated with g
g+ : D}.(Dx/s) = D}.(Dy/s): the direct image functor associated with g
D(xyv),s: the first transfer bimodule associated with g

Dy x),s: the second transfer bimodule associated with g
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o If S is a locally noetherian scheme and X an abelian scheme of relative dimension g over S:

7w : X — S: the structure map of X/S

i X xg X — X: the multiplication map of X/S

€ : S — X: the zero section of X /S

(=1)x : X — X: the inverse map of X/S

pry,pry ¢ X Xg X — X: the two projection maps

T + Pic’(X x5 T/T): the dual functor of X /.S on the category of all S-schemes
Y': the dual abelian scheme of X

(PO, r0): the fixed representative for the universal isomorphism class in Pic’(X x g Y/Y)
(P2, 70, s%): the birigidified Poincaré bundle on X x5 Y

T s Pic*(X x g T/T): the h-dual functor of X/S on the category of all S-schemes
Y'%: the universal vectorial extension of Y’

7% Y% — S: the structure map of Y/S

p Y xg Y? — Y the multiplication map of Y%/S

"1 S — Y the zero section of Y?/S

(—1)%: Y* — Y the inverse map of Y?/S

(P,r,s,Vp): the birigidified Poincaré bundle with universal integrable Y-connection on X x g Y?
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Chapter 1
The formalism of the logarithm sheaves and the
elliptic polylogarithm

For the whole chapter we let X be an abelian scheme of relative dimension g > 1 over a connected
scheme S which is smooth, separated and of finite type over Spec (Q).

As fixed in 0.1 the structure morphism resp. zero section of X /.S will be denoted by  resp. .

€

.

X ul S

N

Spec (Q)

Further remarks about de Rham cohomology

We briefly recall some additional information about the de Rham cohomology of X /S which will be
tacitly used in the future. For more details and for proofs we refer to [Bert-Br-Mes], 2.5.
Basic notations and facts concerning algebraic de Rham cohomology can be found in 0.2.2.

For the abelian scheme X /.S each cohomology sheaf H (X/S) is a vector bundle on S commuting
with arbitrary base change. In the lowest and top degree we have the following description:
The degeneration of the Hodge-de Rham spectral sequence

EP? = R'm, Q% o = EPT1 = Hit(X/S)
at the first sheet and the canonical isomorphism Og — m,Ox provides a natural isomorphism
HYR(X/S) ~ Os.

The same degeneration yields the identification R9m, Q% /s = H gﬁ(X /S) whose inverse can be

composed with the Grothendieck trace map (cf. [Conl], Ch. I, 1.1) to give the trace isomorphism
tr: H%(X/S) = Os.

Moreover, the cup product defines the structure of an alternating graded O g-algebra on @fi o Hir(X/5S),

and it induces for each © = 0, ..., 2g an isomorphism

N Hir(X/5) = Hig(X/5).
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From this we clearly obtain a Poincaré duality identification
Hip(X/S) ~ Hif '(X/S)Y, @ {y = tr(zUy)).

Let us finally point out that if all sheaves H (X/.S) are equipped with their Gau-Manin connection
relative Spec (Q), if duals resp. exterior powers are endowed with the naturally induced connection,
and if Og carries its canonical connection (exterior derivative), then all of the previous four isomor-

phisms become horizontal, as one would expect.!

1.1 The definition of the logarithm sheaves

We define the de Rham realization of the logarithm sheaves for our fixed geometric situation X/S/Q
and introduce some elementary features like the transition maps, the natural unipotent filtration and a
first remark about compatibility with base change. The general proceeding is analogous to [Hu-Ki],
Def. A. 1.3, where the ¢-adic setting is considered, with the difference that we need to fix a splitting

for the pullback of the first logarithm sheaf along the zero section as in our case it is not unique.

Let us write M for the dual of the Og-vector bundle Hjy (X/S) and endow it with the integrable
Q-connection given by the dual of the GauB-Manin connection on H, (X/S).
The O x-vector bundle

Hx =7"H

then carries the pullback connection relative Spec (Q) (cf. 0.2.1 (v)).

Definition of the logarithm sheaves
The Leray spectral sequence in de Rham cohomology (cf. [Kat2], (3.3.0)) for H x reads as
Ey" = Hijp (S/Q, Hip (X/5) @0, H) = EP* = HEL(X/Q Hx),

where Hip (X/S) ®p, H carries the tensor product connection.
Under the standard canonical identifications

EY? = Ext{iog. (py,0)(Os: Hip(X/S) ®os H) » EP* = Bxt{ih o (Ox, Hx)
it can be viewed as H x plugged into the spectral sequence for the composition of functors

HomDS/Q(OS, —)o HgR(X/S, —) : Modyc(Dx/q) —+ Modqc(Dg/q) — (Q-vector spaces),

noting that this composition equals Homp ,,(Ox, —).

The associated five term exact sequence yields the Q-linear exact sequence

(LLD) 0 Exth (05, H) " Exth_ (Ox,Hx) — Homp, o (Os, K" @0, H) = 0,

IFor the identification Hp (X/S) ~ Og this is obvious by [Kat2], (3.1.0). The horizontality of the trace isomorphism is
a well-known fact which will also come out as a side result later in 1.2.3. The claim for the fourth identification then becomes
clear if one further observes that the cup product Hip (X/S) ®o 4 ngR_i(X/S) — HigR(X/S) is horizontal. This in turn,
as well as the horizontality of the third of the above isomorphisms, is easily deduced from [Kat-Od], (11).
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where we have used the existence of the section e to deduce injectivity of the map Eg 0 R2?
and hence the surjectivity in (1.1.1). That the injection in (1.1.1) is given by pullback along 7 is
straightforwardly checked as well as the following description of the occurring projection:

For a class in Ext1DX 1o (Ox, M x), represented by a D q-linear extension
0—=Hx +M— Ox —0,

the first boundary map in the long exact sequence for the derived functors of Hy(X/S,—) (cf.
[Kat2], Rem. (3.1)) is a horizontal map

Os = HY ®o H,
and this is the image of our class in Homp, ,(Os, H" ®04 H).
We also remark that we will often tacitly identify Homp, (05, H" ®04 H) ~ Homp, , (H,H).
Now observe that the map 7* in (1.1.1) has a retraction defined by €*, and that hence our exact

sequence (1.1.1) splits. With this we are already prepared to introduce the logarithm sheaves.

Definition 1.1.1
(i) The class in Ext%;x 0 (Ox, Hx) mapping to the identity under the projection of (1.1.1) and to zero

under the retraction €* is called the first logarithm extension class of X/S/Q and written as Log'.

(ii) Suppose we are given a fixed pair consisting of an exact sequence of Dxq-modules

(1.1.2) 0—>Hx L1 —>0x —0

representing the first logarithm extension class together with the choice of a D /q-linear splitting
p1:0s®H ~e" Ly

for the pullback of (1.1.2) along .
Then the vector bundle £, on X together with its integrable Q-connection, denoted by V1, and with
the splitting 1 will be called the first logarithm sheaf of X /S/Q and denoted by (£1, V1, ¢1).

Remark 1.1.2

One can show that an extension representing Log' has a nontrivial automorphism if and only if the
sheaf H has a nonzero global horizontal section; if we however additionally require compatibility with
a fixed splitting for the pullback of the extension along €, then any such automorphism is the identity.
Such facts will be picked up and proven slightly more generally in Lemma 2.1.2 and Rem. 2.1.3.

From now on let (L1, V1, ¢1) be as in Def. 1.1.1 (ii).

For each n > 1 we define a vector bundle £,, on X by £, := Symg L. It is equipped with

the induced integrable QQ-connection, denoted by V,,, and ¢; induces the (horizontal) decomposition
on: [ Symb H ~ €L
k=0

For n = 0 we let £,, := Oy, equipped with its canonical integrable QQ-connection, and we let g be
the natural isomorphism ¢q : Og ~ €*Ox.
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Definition 1.1.3
For each n > 0 the so defined triple (£,,, V,,, ) is called n-th logarithm sheaf of X/S/Q.

Remark 1.1.4
We remark that although the connection V,, and the splitting ¢,, will frequently be suppressed in the
notation these data always remain fixed; they belong to the definition of the logarithm sheaves.

The transition maps

Let us denote for a moment with pr : £; — Ox the projection in (1.1.2).

For each n > 0 there is a natural exact sequence of Dy g-modules
(1.1.3) 0 — Sym@p " Hx = L1 — L, — 0.

Here, the first (nontrivial) arrow is induced by the map Hx — £ of (1.1.2), and the second is defined

to be the composition
Sym@t Ly — Symg (L1 ® Ox) — Symp L1

of the morphism on symmetric powers related to id @pr : £ — £1 & Ox with the map coming from

the decomposition of the symmetric power of a direct sum. Exactness of (1.1.3) is readily checked.

We briefly record how the previous transition maps of the logarithm sheaves express after pullback

along the zero section:

Lemma 1.1.5
Letn > 0. If we pull back the transition map L, 11 — Ly, of (1.1.3) via € and use the splittings ©p11
and ., then the induced Dg q-linear map

n+1 n

k k
H Syme H — H Symeg  H
k=0 k=0

is given on sections explicitly by
(80581, ey Snt1) = ((n+1) - S0, n - S1,...,8n), where sy € Sym’éS’H, k=0,..,n+ 1

Proof. The proof is a straightforward calculation with the definitions. O

The unipotent filtration

For the computation of their de Rham cohomology and the formulation of their universal property it
is crucial to consider the logarithm sheaves as unipotent objects. We will expose this in more detail

later (cf. 1.3) and for now content ourselves with the following basic observation:

Namely, the exact sequence
0—-Hx —>L1—0x —=0

of (1.1.2) implies that for each n > 0 we have a natural filtration

(1.1.4) L,=A, DAL, D..D AL, DAL, =0
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of £,, by subvector bundles stable under V,, and with quotients given by

(1.1.5) AL, JATL, ~ Sym), Hx ~7n"Symp H, i=0,..,n
For this one sets
(1.1.6) AL, = im(Symb Hx @0y Sympy L1 2% Symd L1),

which defines the filtration in (1.1.4). The (horizontal) isomorphisms
(1.1.7) Symp Hx —» AL, /AL,
are first defined locally by choosing a local section s of £1 mapping to 1 in (1.1.2) and then setting
sty st u mod AL, , for local sections st of Symgx Hx.
(n—i)—times

One can check that this is independent of the chosen splitting of (1.1.2) and that the so defined global
map (1.1.7) is indeed an isomorphism respecting the connections.

Remark 1.1.6
The filtration we have just constructed can equivalently be described as follows:
Set A°L,, := £, and
AL, = ker(L, = L;-1), i=1,.n+1,
where the arrow is given by iterated composition of the transition maps. These AL, are exactly those
defined in (1.1.6).
Furthermore, consider ﬁ—times the projection £,, — L£;. In view of the exact sequence (1.1.3) this

n—1i

map induces a surjective arrow A'L,, — Sym{, Hy with kernel A"*1£,,. The obtained isomorphism
AL, /AL, = Syml, Hx

then is precisely the inverse of (1.1.7).

Compatibility with base change

The logarithm sheaves as defined above behave naturally under base change in the following sense:
Let S’ be another connected scheme which is smooth, separated and of finite type over Spec (Q) and

f:8" — S aQ-morphism. In the induced cartesian diagram
X g
(1.1.8) gl l ¥
X—=5
we view X’ as abelian S’-scheme. Using the canonical horizontal isomorphism
frHaR(X/8) = Hig(X'/$")
we obtain by pullback of (1.1.2) resp. of 7 via g resp. via f a pair as in Def. 1.1.1 (ii) for the abelian

scheme X'/S’. This is straightforward to check. We thus see (cf. Prop. 1.4.7 for another viewpoint):

Lemma 1.1.7
The pullback of (L., V1, on) along the arrows of the cartesian diagram (1.1.8) induces the datum of
the n-th logarithm sheaf for X' /S’ /Q O
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1.2 The de Rham cohomology of the logarithm sheaves

1.2.1 The computation of H(X/S, L,)
We calculate the de Rham cohomology sheaves
Hgg (X/S, Ln)

forn > 1and 0 < ¢ < 2g. They are equipped with the GauB-Manin connection relative Spec (Q).

The formal frame of the subsequent arguments is essentially drawn from [Ki4], Prop. 1.1.3 (a), where
the higher direct images of the logarithm pro-sheaf in the ¢-adic setting are computed. We need to
adjust the formalism to our situation of de Rham realization and additionally evaluate the occurring
spectral sequence in more detail to get the de Rham cohomology of each L,,.

Recall (cf. [Kat2], Rem. (3.1) or the proof of [Har], Ch. IIL, Prop. (4.2)) that the functor between
abelian categories
HéR(X/S, —) : MOqu(Dx/Q) — MOqu(Ds/@)

may be viewed as the i-th right derivation of the left exact functor
Hgr(X/8, ) : Modge(Dx/q) — Modge(Ds/q)-
The filtration A®L,, of (1.1.4) then yields (cf. [EGAIII], Ch. 0, 13.6) a spectral sequence in Mod.(Ds/q)
EPY = HY(X/S, grP A°L,,) = EPT? = HEE(X/S, L),
where with (1.1.5) we see that E}*? ~ H2'(X/S)®0, Symg, H for 0 < p < n and zero otherwise.
The differential d2¢ : E?'? — EPT1% s given by the connecting morphism induced by applying
HYEY(X/S, —) to the exact sequence
0 — Symb "Hx — APL, JAPT2L, — Symb, Hx — 0.

This morphism in turn is equal to the composition

HYF(X/S) @0, Symby H — HYHH(X)S) ®0s H @04 Sym%, H

(1.2.1) ) )
— HIFTH(X/S) @0, Symb ' H

in which the first arrow comes from the canonical map Og — HY Qo4 H together with cup product
and the second is given by multiplication: one deduces this straightforwardly with the same argument
as in [Ki4], proof of Prop. 1.1.3 (a), observing the explicit construction of the filtration (1.1.4)-(1.1.7)
and the fact that (by definition) Log! goes to the canonical map under the surjection of (1.1.1).

Using the canonical (horizontal) identifications?

2g9—1

Hig(X/S)~ \ H

2For this one composes the isomorphism

2g—1 Vv
Hir(X/S) ~ ( /\ Hir X/S)>
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the differential d}’? writes as a map
29—p—q 29—p—q—1
&\ HeosSymb H— [\ Heo. SymblH,
and the ¢-th line of the first sheet of the spectral sequence thus becomes a complex of the form
29—q 29—q—1 29—q—n
0— /\ H— /\ H R0, Sym}gSH - /\ H @0 Syme H — 0.
With the explicit knowledge of the maps in (1.2.1) it is routinely verified that the preceding differen-
tials are precisely the Koszul differentials in the Koszul complex
29—q 29—q—1

0=+ A\ H— A HoosSymb,H — ... = Symyg “H -0

which is exact for all ¢ < 2g.3
This admits a detailed evaluation of the second sheet of the spectral sequence. The result is:

n,—n n

E2 >~ SymOSH

En,q ~ HSQQ(X/S)®OSSYH1%S7"
2 = im(Hgl'{q_l(X/S)®osSymggl?-L%Hgl;fq(X/S)®osSymgs?-t)

029
£y ~ Og

Vg €] —n;2g —n|

and zero for all other cases; the map appearing in the E5"?-term is given as in (1.2.1).

Of course, all the isomorphisms take place in the category Modc(Dg/q)-

We obtain that the spectral sequence degenerates at » = 2: note that there are only two nontriv-
ial columns, namely p = 0 and p = n, and that for p = 0 we only have a non-zero entry for
q = 2g; thus the only possible non-zero differential for » > 2 could appear if r = n, namely

d%29 : g9:29 — En.29—n+1: byt the last term is zero.

From this one deduces for each n > 1 the following

Theorem 1.2.1
(i) We have the following isomorphisms in Modq.(Dg/q):

e Symp H =~ HgR(X/S, L),

induced by the inclusion Symy, Hx — Ly, given as in (1.1.3).

Hir(X/8)®0 4 Symp (H
im(H 3 (X/S)®og SymgglﬂaHéR(X/S)@oS Symg  H)

~ Hix(X/S, L), wherei#0,2g,

from the beginning of this chapter with the usual natural identification

2g—1i Vv 2g—1i
( A HéR(X/S)> ~ A\ H,

locally defined as in [La], Ch. XIX, §1, Prop. 1.5.
3We refer to [La], Ch. XXI, §4, Thm. 4.13 and Cor. 4.14, for the explicit formula of the Koszul differential and the

acyclicity of the Koszul complex in the case of free modules of finite rank over a ring; this globalizes to our situation of a vector
bundle. To get the Koszul exact sequence of above one sets » = 2g and n = 2g — ¢ in ibid., Cor. 4.14.
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induced by the inclusion Symg,  Hx < Ly the lower map is defined as in (1.2.1).
o H(X/S,L,)=~0Os,
induced by the projection L, — L,,_1 — ... = Ox and the trace isomorphism for H, ji’?{ (X/9).

(ii) For all i < 2g the transition map L,, — L,,_1 induces the zero morphism
Hig(X/8,£n) = Hig(X/S, Ln ),

and for i = 2g it induces an isomorphism
HEG(X/S. L) = Hyf (X/S, La)

which becomes the identity when taking into account the identifications with Og in (i).

Remark 1.2.2

All the sheaves Hig(X/S, L,) are vector bundles on S: as the GauB-Manin connection relative
Spec (Q) operates on them it suffices to check their coherence (cf. [Bert-Og], §2, Note 2.17). This in
turn follows from the spectral sequence (0.2.2) and the properness of X /.S (cf. 0.2.2).

1.2.2 The computation of H(U/S, L,)

We set U := X — €(5) and write j : U — X for the associated open immersion. The structure

morphism of U as an S-scheme will be denoted by 7.

For an object £ € Modqc(Dx/q) we write £y € Modge(Dy ) forits restriction to U and Hiy (U/S, €) €
Modgc(Dg/q) for the i-th de Rham cohomology sheaf of £;;, equipped with the Gau-Manin con-
nection relative Spec (Q).

We now want to calculate
Hig(U/S, Ln)

forn >0and 0 <17 < 2g.
For each n > 0 we have the canonical distinguished triangle in DgC(D x/q) (cf. (0.2.5))
€r€ Ly — Ly = jiLlpu.
Applying 7 and observing €' £,, ~ €*L,,[—g] (cf. 0.2.3) gives the distinguished triangle in D (Dg/q)

€ Ly[—g] = 14 Ln = (Tv) 4 Lnju-
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The k-th cohomology sheaf of 7 L,, resp. (7)1 L,y is canonically isomorphic to H, (/;;{-g (X/S, L)
resp. H(]f;{g(U/S, L) in Modc(Dg/q) (the proof is as in [Dim-Ma-Sa-Sai], Prop. 1.4).

The long exact cohomology sequence for the preceding distinguished triangle hence shows

Lemma 1.2.3
Letn > 0. Then:

(i) For i # 2g — 1,2g the canonical map Hiy (X/S, L) — Hix(U/S, L,,) is an isomorphism.

(ii) One has an exact sequence of D q-modules
0— Hif N (X/S, L) = HIZ N(U/S, L) — € L = HIZ(X/S, Ly) < HIE(U/S, Ly) = 0
O

Definition 1.2.4
For each n > 0 we write

Res™ : Hyfy, '(U/S, Ln) = ] Symé,H
k=0

for the Dg/q-linear arrow induced by the exact sequence of Lemma 1.2.3 (ii) and by the splitting

On P €Ly H Sym’éSH.
k=0

The claim of the following lemma implies that for n > 1 the map Res"™ factors in the form
Res" : Hat " (U/S, L) — H Sym¢ H C H Symg H,
k=1 k=0

and we write Res'" also for the first of these arrows.

Lemma 1.2.5
Let n > 0. Then, under the identifications €*L,, ~ [[,_, Sym]éSH and Hj%(X/S, L) = Og given
by the splitting resp. by Thm. 1.2.1 (i), the map o, appearing in Lemma 1.2.3 (ii) is n!-times the

natural projection.

As the proof is a bit long and technical we postpone it to the next subsection.

With this result at hand we deduce from Lemma 1.2.3 (ii) that iji(U/ S,Ly,) = 0forall n > 0,
that the map Hﬁf{l (X/9) =% H29 Y(U/S) is an isomorphism and that for n > 1 there is an exact
sequence of Og-vector bundles with integrable (Q-connection:

(1.2.2) 0— B2 YX/S, L) < HAHU/S, £,) 25 H Symé,_H — 0.

k=1

The long exact sequence for the derived functors of Hg (U/S, —) applied to the restriction
0 — Symg  Hy = Losajy — Loy — 0

of (1.1.3) to U and the vanishing of H % (U/S, SymgH Hy) ~ H(U/S) @04 SymgtH shows:
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Lemma 1.2.6
For eachn > 0 the transition map H33 "(U/S, L, 41) — H3% ' (U/S, L,,) is surjective.
O

As the transition map Hg '(X/S, L, 41) — Hak "(X/S,L,) is zero (cf. Thm. 1.2.1 (ii)) the
surjection of Lemma 1.2.6 vanishes on the subobject ij{l(X /S, Ln+1), from which by (1.2.2)

(used for n + 1 instead of n) we get an induced horizontal surjection of Og-vector bundles:

n+1

(1.2.3) 1 Symé " — HIH(U/S, Ln).
k=1

Lemma 1.2.7

For each n > 0 the surjection of (1.2.3) is an isomorphism.

Proof. As a surjection between two Og-vector bundles of the same rank is an isomorphism we only
need to show that both involved bundles have the same Og-rank. In view of the exact sequence (1.2.2)
it is enough to show that Hj%ﬁl(X /S, Ly,) has the same rank as Sym%ﬁl’H. But these two sheaves
are indeed isomorphic. We give two arguments for this fact:

First, look at the final terms of the de Rham cohomology sequence for the exact sequence

0 — Symp ' Hx = L1 — L, — 0.

of (1.1.3). Then Thm. 1.1.1 (ii) implies that the connecting arrow
HdQI%L_l(X/S, L) — Hiﬂ(X/S) R®og Symggl’H ~ Symg‘gl’H

is an isomorphism, which shows the claim.
Alternatively, it follows from Thm. 1.1.1 (i) that H3% ' (X/S, L,,) identifies for n > 1 with
H ®og Syme SH
im(A\* H ®o, Sympy'H — H @0y Symp H)’

where the map in the denominator is the Koszul differential and hence fits into an exact sequence

2

/\'H ®og Symggl’}-[ — H ®og Symp H — Sym%ZLH — 0.
This shows the claim for n > 1, and for n = 0 we know it from the beginning of this chapter. O
The proof of Lemma 1.2.7 has in particular shown the following supplement to Thm. 1.2.1:

Corollary 1.2.8

For each n > 1 we have a horizontal isomorphism
19, ~ 1729—1
Sym%‘g H— Hif (X/S, L),

determined by the commutative diagram

H ®o0, Symp H H3N(X/S, L)
m /

n+1
Syme,
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where the upper arrow is induced by the map Symg, Hx — L, in (1.1.3) and the canonical identi-
fication H3% ' (X/S) ~ H.
O

Observing Lemma 1.1.5 in part (iv) we deduce in sum for every n > 0 the following

Theorem 1.2.9
(i) For each i # 2g — 1, 2g the canonical map H'g (X/S, L) — Hix (U/S, L,,) is an isomorphism.

(i) H3%(U/S, L,,) = 0.
In particular, the transition map in de Rham cohomology
Hgg(U/S, Lot1) = Hig(U/S, Ln)
is zero for all i # 2g — 1.
(iii) The canonical map H3% ' (X/S) — H3% "' (U/S) is an isomorphism.

(iv) We have an isomorphism

n+1
[ Symé 1 = HIH(U/S, L)
k=1

determined by the commutative diagram

HN(U/S, Losr) 297N (U/S, L)
\\\\Jyfzii& ////://///7
il Symé H

Under these identifications the transition map in de Rham cohomology for n > 1
2g—1 2g—1
H T (U/S Ly) — Hiy (U/S, Ln—1)

resp. the map Res” induces an arrow

n+1 n
H Sym’és’H — H Symlés?’-l
k=1 k=1

which is given explicitly as

(hi,hay ooy Bng1) = (0 ha, (R — 1) - hay .o hyy)  with hy € Symg H, k=1,...,n+ L.

Remark 1.2.10
The preceding theorem and Rem. 1.2.2 imply that the sheaves H' (U/S, L,,) are all vector bundles.
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1.2.3 Proof of Lemma 1.2.5

We recall what we have to show:
Let n > 0 and consider the arrow in D} (D /q)
e Ly[—g] = Ln
appearing in the localization triangle for £,,. By application of 7 we get the arrow in DgC(DS /Q)

(1.2.4) € Lp[—9g] = 14 Ly,

and we need to verify that under the identifications

€Ly~ [[ Symb,H, HImpL, ~ Hif(X/S,Ln) = Os
k=0
we obtain n!-times the natural projection when taking g-th cohomology in (1.2.4).
The isomorphism Hii'?{(X/S, L,) = Osg is induced by the composition £,, — L,,_1 — ... = Ox
together with the trace map H % (X/S) =+ Og, and for the identification H (7 £,,) ~ Ha%(X/S, L,,)
cf. [Dim-Ma-Sa-Sai], Prop. 1.4. To show the claim we don’t need to assume the horizontality of the

trace map; in fact, this will come out as a side result below.

Proof:
We first explain that it suffices to verify the lemma for n = 0:

The functoriality of the localization triangle induces a commutative diagram in Dgc (Dx/q)

e Lp|—g] —= L,

L

€4 Ogl—g] — Ox

from which we obviously get commutative diagrams in D,.(Dgq) resp. Modg.(Ds/q)

L — 14 Lng] [T o Symb H—— HI(X/S, L)
l l n!-canl l’\'
Os —— 1, Ox|g] Os H%(X/S)

In the right diagram the right vertical arrow is precisely the morphism in de Rham cohomology in-
duced from £, — £,-1 — ... = Ox (and is an isomorphism by Thm. 1.2.1 (i)). The left vertical
arrow is given by n!-times the canonical projection, as follows from Lemma 1.1.5.

Knowing the claim for n = 0 means that we may add a lower commutative diagram in Mody.(Os)

[Tieo Symb H —= H3%(X/S, Ly)

m.pri lw

(1.2.5) Og H%(X/S)

OS OS
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such that also the frame diagram commutes. But this frame commutativity is the claim of the lemma,

and thus we are indeed reduced to the case n = 0.

It hence remains to show the commutativity of the lower diagram

05—~ H2(X/S)

(1.2.6) idl ltr

id
Og -

Os
of Os-linear maps in (1.2.5). As the occurring arrow % is (by construction) Dg/g-linear, the commu-

tativity of (1.2.6) then clearly also implies the horizontality of the trace isomorphism.

The D /g-linear map 1 is given by applying the functor 7 : Dgc (Dx/q) — Dgc (Ds,q) to the arrow
€+O0s]|—g] — Ox of the localization triangle for O, shifting the obtained map Og[—g] — 74+ Ox
by [g], taking 0-th cohomology and identifying HO (7 Ox[g]) ~ HY(m1Ox) ~ H % (X/S).

If we replace Q by S in the procedure of the previous passage and observe the identification

HY9(m1Ox) = H'Rm.(D(sex)/s ®7L3X/S Ox) = HYRm.(Q% /5 ®%>X/S Ox)

(1.2.7)
~ HYRm. (/s ®ox Dx/s)lg)) @b, Ox) = H* R (0% s) ~ Hifi(X/S),

then the obtained Og-linear arrow Og — H, 31‘3{ (X/S) is again the map 1) in (1.2.6), only that we have

forgotten the Dg/q-linear structures (one can check this).
We now define arrows
Ade 1,05 — Oxlg] in DgC(DX/S)

resp.
Ady : 7;Ox[g] = Os in D! (Os)

as follows: Ad. comes from shifting by [g] the map ¢, ¢'Ox — Ox appearing in the localization
triangle (relative S) for Ox. Hence, if we apply 7+ to Ad,, take O-th cohomology and identify
HO(n,Ox|g]) = HY(n1Ox) ~ H3%(X/S) as we just did, then we get the morphism 1.

The map Ad, has the important property that if we take 0-th cohomology and use H°(7, Ox|[g]) ~
Hj%(X /.S) it becomes the trace isomorphism; namely, it is constructed as follows:

Asin (1.2.7) we have canonically in Modq.(Og)
H'(n, Ox[g]) = H2T (X/5).
From the degeneration of the Hodge-de Rham spectral sequence at the first sheet we further have
H3%(X/S) ~ RIm. Q% /5
and composition with the Grothendieck trace isomorphism (cf. [Conl], Ch. I, 1.1)

RIm 5 > Os
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yields altogether a canonical Og-linear arrow
H°(1,0x[g]) = Os.

As 71 Ox|[g] has no cohomology above 0 there is a canonical morphism 7 Ox[g] — H® (7. Ox]g])
in DZC(OS) which is the identity when taking O-th cohomology. We define Ad to be the composition

Ady : 74 Ox[g] = H(7.Oxg]) = Os in D2 (Os),

and by construction it has the announced property to be the trace map when taking 0-th cohomology
and using the identification H°(mOx|[g]) ~ Hﬁ%(X/S).

Now consider the following composition in DY (Os)
(1.2.8) OS — 7T+(9X [g] — OS

in which the first arrow is 7 applied to Ad, and the second is Ad,. If it is the identity then by taking

0-th cohomology and using the property of Ad, explained above the remaining claim follows.

In the case that S = Spec (k), with k a field of characteristic zero, the morphisms Ad. and Ad
coincide precisely with the adjunctions (of the same notation) constructed for morphisms between
quasi-projective algebraic varieties of characteristic zero in [Me], Thm. (7.1)*, and these adjunctions
are functorial in the morphism (cf. [Ho-Ta-Tan], 2.7.2, where the notation is T'r instead of Ad). This
functoriality and 7 o ¢ = id then imply that (1.2.8) is indeed the identity.

For general S the integrality’ of S and a standard compatibility of the occurring arrows with base
change (for the case of the Grothendieck trace map cf. [Conl], Ch. I, 1.1) reduce the commutativity
of (1.2.6) without problems to the situation of S = Spec (k). O

1.3 Unipotent vector bundles with integrable connection

1.3.1 The notion of unipotency

In 1.1 we saw that there exists a filtration
L,=AL, DAL, D ... DAL, DAL, =0
of L,, by subvector bundles stable under V,, and with quotients given by
AL, /AL, ~7*Symlp H, i=0,..,n
We now take this observation as a model to give a general definition of unipotency for vector bundles
with integrable connection, adapted to our fixed geometric setting
X B S
\ /
Spec (Q)

4That these adjunctions coincide with our constructions follows from their alternative description given in [Me], p. 95,

combined with ibid., p. 69 and p. 72.
3Qur general assumptions imply that S is a regular scheme and hence its local rings are integral domains. As it is moreover

connected and (locally) noetherian we can readily conclude its integrality (cf. also [Go-We], Ch. 3, Ex. 3.15 and Ex. 3.16 (b)).
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We further record the behaviour of unipotent bundles under some basic operations.

Let us denote by VIC(X/Q) the category whose objects are the vector bundles on X with integrable
@Q-connection and whose morphisms are the Ox-module homomorphisms respecting the connec-
tions. The fact that a coherent O x-module with integrable Q-connection is already a vector bundle
(cf. [Bert-Og], §2, Note 2.17) readily implies that VIC(X/Q) is abelian.

Replacing X by S in what we just said defines the abelian category VIC(S/Q).

By pullback via X =+ S we obtain an exact functor 7* : VIC(S/Q) — VIC(X/Q).

Definition 1.3.1
Letn > 0.
(i) An object U of VIC(X/Q) is called unipotent of length n for X /S/Q if there exists a filtration

U=AUDAUD..DA"UD A" U=0

by subvector bundles stable under the connection of I/ such that for all 7 = 0, ..., n there are objects
Y; of VIC(S/Q) and isomorphisms in VIC(X/Q):

AUJATUY ~ 7Y,

(i) We write U,,(X/S/Q) for the full subcategory of VIC(X/Q) consisting of those ¢/ in VIC(X/Q)
which are unipotent of length n for X/S/Q.

(iil) We write U (X/.S/Q) for the full subcategory of VIC(X/Q) consisting of those U in VIC(X/Q)
which are unipotent of some length for X/S/Q. In other words, U(X/S/Q) is the union of the
U, (X/S/Q) for the canonical embeddings

Uo(X/S/Q) = Ur(X/5/Q) — Uz(X/S/Q) — ... = VIC(X/Q).

Note that the zero vector bundle on X with its unique Q-connection is an object of each U,,(X/S/Q).
Note further that Uy (X/S/Q) is just the essential image of the functor 7* : VIC(S/Q) — VIC(X/Q).

In particular, £,, with its integrable Q-connection V,, becomes an object of U, (X/S/Q).

The following lemma gives some first easy properties of unipotent bundles with integrable connection;

for the dual and tensor product of modules with integrable connection cf. 0.2.1 (iv).

Lemma 1.3.2
(i) If
0O—-U —-U—-U"—=0

is an exact sequence in VIC(X/Q) with U in Uy, (X/S/Q) and U" in U, (X/S/Q), then U is in
Unm4n+1(X/S/Q).

(ii) If U is in U,,(X/S/Q), then its dual U" is also in U, (X/S/Q).

(iii) If V is in U, (X/S/Q) and W is in U,(X/S/Q), then the tensor product V Qo, W is in
Unin(X/5/Q).
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Proof. (i) is straightforward and (ii) follows easily from (i) by induction on the length of /.
For (iii) define foreach k = 0,....m +n + 1:

AEV @0, W)= Y (AV @0y AW) in Vo, W,
itj=k
ie.
ARV ®0, W) = im( B AV o, AIW) V@0, W),
itj=k
viewed as submodule of V @, W.
We may endow these coherent subsheaves with the induced integrable Q-connection such that they

are vector bundles. There clearly is a chain of inclusions
Vo, W = A (V@o, W) 2 AL (V@0 W) 2 ... 2 A" (Ve W) 2 A" (Voo W) = 0,
and it is not hard to check that the quotients are given for each kK = 0, ..., m + n by
AV B0, WA Vo, W)= @) ((AV/ATY) @o, (AW/ATHW))
i+j=k

and hence obviously of the desired form. O

1.3.2 The universal property of the logarithm sheaves

The main goal is to show that the logarithm sheaves (£,,,V,) € U,(X/S/Q) together with a dis-
tinguished section of their zero fiber are characterized by a universal property. This is well-known in
other realizations (cf. [Be-Le], Prop. 1.2.6, or [Hu-Ki], Lemma A.2.3), from which we may extract
the formal structure of the arguments; adjusting them properly for our case of de Rham realization and
supplying all necessary details will be the task in what follows. The essential ingredient for the proof
then consists in our knowledge of the de Rham cohomology of the logarithm sheaves (cf. 1.2.1).

An auxiliary lemma

To show the main theorem we will need the following duality result which is of independent interest.

Lemma 1.3.3
Let V be in U, (X/S/Q) and Z in VIC(S/Q). Then for each 0 < i < 2g we have a canonical
isomorphism in VIC(S/Q)

H ™' (X/8, Homo, (V.7 2)) = Homo, (Hig(X/S, V), 2),
functorial in'V and in Z.

Remark 1.3.4

We explain how to consider both sides in the preceding lemma as objects of VIC(S/Q):

On the left side observe that we endow the O x-vector bundle Hom, (V,7*Z) with the natural in-
tegrable Q-connection (cf. 0.2.1 (iv)) which becomes the tensor product connection when identifying
the bundle with V¥ ®o, 7*Z. The de Rham cohomology on the left side of the lemma is then

equipped with the GauB8-Manin connection relative Spec (Q) and indeed is a vector bundle on S (by
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the same argument as in Rem. 1.2.2).
On the right side Hr (X/S,V) is a vector bundle on S (cf. again Rem. 1.2.2) and equipped with the
GauB-Manin connection relative Spec (Q). The internal Hom of the right side then clearly is a vector

bundle on S and carries its usual integrable (Q-connection.

We now prove Lemma 1.3.3.
Proof. The left side canonically identifies with
H3f ' (X/8, Homo, (V. 7" 2)) = HiE ™ (X/S, VY ©o, 7" 2) = HE™ (X/8, V") @o, 2
in VIC(S/Q), whereas for the right side we have
Home (Hir(X/S, V), 2) ~ Hip(X/S. V)" ®os 2
in VIC(S/Q), and hence it suffices to show that for each 4 there is a functorial horizontal isomorphism
Hin(X/8,V) = Hif ™ (X/9, V)",
For this consider the composition
Hig(X/8,V) ®@os Hif (X/S,VY) = HIZ(X/S,V @0, V) = Hij(X/S) = Os,

where the first arrow is given by cup product, the second is induced by the canonical map V®p, VY —
Ox and the last is the trace isomorphism. All three arrows are horizontal: for the second it is clear
and for the two other maps cf. footnote 1 (the argument used there for the horizontality of the cup
product carries over to the present situation of de Rham cohomology with coefficients).

We thus obtain an induced (and in fact functorial) map in VIC(S/Q):

(1.3.1) Hig(X/8,V) — H'(X/S, V)Y,

and by what we already said it only remains to show that (1.3.1) is an isomorphism.

Indeed, this isomorphism should be valid for arbitrary V in VIC(X/Q), but we only need it for unipo-
tent )V where the arguments are easier: we proceed by induction over the length n of V.

For n = 0 one writes V ~ 7*)) for some Y in VIC(S/Q) and identifies the left side of (1.3.1) with

Hip(X/S,7*Y) = Hig(X/S) ®0s Y,
the right side with
Hi ' (X/S,m VY)Y = Hyf ' (X/S)Y @0, Y,
and uses the canonical isomorphism H) (X/5) ~ Hjlg{i(X /S)V (given precisely by cup-product
and the trace isomorphism) in order to deduce the claim for n = 0.

If n > 1 we perform the induction step by considering an exact sequence in VIC(X/Q)
(1.3.2) 0 AV =V X =0

in which AV is unipotent of length n — 1 and 7* X’ is unipotent of length 0 (where X is of course a
suitable object of VIC(S/Q)).
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There is a diagram of exact sequences of finite length in VIC(S/Q):

0 —— H{g (X/S, AWV) ——— H3 (X/S,V) —— HIx (X/S,7m* X) —— Hlz (X/S, AlV) —— ...

P | : :

0 —= H2%(X/S, (A"W)Y)Y —= H3%(X/S, VW)Y —= H%(X/S,m*xV)Y —= H3% " (X/S, (A'V)V)Y — ...

The upper row is given by the long exact sequence of de Rham cohomology (cf. [Kat2], Rem. (3.1))
for (1.3.2). The lower row comes from dualizing (1.3.2), applying to this dual sequence the long
exact sequence of de Rham cohomology and finally dualizing the obtained long exact sequence in
VIC(S/Q). The vertical arrows are the maps defined in (1.3.1) for the various bundles, where for the
indicated isomorphisms we have already taken into account the induction hypothesis.

The squares in which no connecting homomorphism is involved are commutative by the (easily seen)

functoriality of (1.3.1). The squares in which the upper row is a connecting morphism
Hip(X/S,m*X) — HiE (X/S, A'Y)

commute up to a sign as one can indeed verify.®

This obviously yields the claim by pursuing the big diagram successively until its end. 0

The comments of the following remark will frequently (and often tacitly) be used in what follows.

Remark 1.3.5
(i) Let V and W be objects in VIC(X/Q).
We then have a canonical identification of Og-modules

(1.3.3) Hig(X/S,Home, (V,WV)) =~ mHomyp, (VW)
which comes about by noting that
HY%(X/S, Hom, (V, W)) = . (Homox v, W)VX/S) = m.Homp (V).

The superscript in the middle term means that we take the subsheaf of Hom, (), W) consisting of
those sections which are horizontal for the connection restricted relative S (cf. [Kat2], Rem. (3.1)).

Observe that via the Gau-Manin connection relative Spec (Q) on the left side of (1.3.3) we may and
will equip m, Homp,  (V, W) with the induced connection and thus view it as object of VIC(S/Q).

OThis rests on a straightforwardly checked naturality property of the cup product: If
0—-+F—=G—>H—0

is a short exact sequence in VIC(X/Q), then for each j the diagram

HIL (X/S,H) HEH(X/S,F)

| |

Hom e, (H3 7 (X/S,HY), Hi% (X/S)) —= Hom, (H3% 7~ (X/S, FV), H3§(X/S))

is commutative up to a sign. Here, the upper horizontal arrow is the connecting morphism on level j for our sequence, and the
lower horizontal map comes from applying Hom, _ (—, ngR(X/S)) to the connecting morphism on level 2g — 7 — 1 of the
dualized sequence. The vertical arrows are defined analogously to (1.3.1), but without identifying Hj?{(X /S) ~ Og.
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(ii) In particular, in the situation (and with the result of) Lemma 1.3.3 we obtain isomorphisms in

VIC(S/Q):
(134) mHomp  (V,7"Z)~ Hip(X/S, Homy, (V,7"Z)) =~ Home, (H3%(X/S,V), Z).

On sections this composition is given as follows: if V — 7* Z is a morphism which is horizontal for
the connections restricted relative .S, one applies ng{(X /S, —) to it and uses H(zif;’{(X /S, m*Z) ~
H3%(X/S) ®0s Z =~ Z, where the last isomorphism is given by the trace map.

The universal property

We now show how morphisms of £,, into another unipotent bundle ¢/ € U,,(X/S/Q) are parametrized
via the fiber €*U, which is a direct expression of the universal property as we will then explain.
The reader acquainted with other realizations (cf. [Be-Le], Prop. 1.2.6, or [Hu-Ki], Lemma A.2.3)

should - after a correct translation of the formalism - expect an isomorphism of the form
Hig(X/S, Home (L, U)) ~ €U
resp., by using the identification of (1.3.3), an isomorphism
mHomp (L, U) >~ €U.
This is indeed the case, and the precise statement in the case of de Rham realization is as follows:

Theorem 1.3.6
Let n > 0 and U be an object of U,,(X/S/Q).

(i) For each k > n we then have an isomorphism in VIC(S/Q)
(1.3.5) mHomp (Li,U) = €U,

Sfunctorial in U and compatible with the projections Li, — L; of the logarithm sheaves for k > 1 > n.

It is defined on sections by
. 1
Froe ()

where we use the identification
k

Ok : HSym%S"H ~ e L.
i=0
(ii) A section [ : Ly, — U of the left side of (1.3.5) is Dx jq-linear (and not only Dx g-linear) if and
only if its image €* (f)(7;) under (1.3.5) is a horizontal section of €*U.

Proof. (i) The formal frame of the proof is as in [Hu-Ki], Lemma A.2.3.

We proceed by induction over the length n of .

For n = 0 we have U ~ 7*Z with an object Z of VIC(S/Q). By (1.3.4) we then have a chain of
isomorphisms in VIC(S/Q):

(1.3.6) m.Homp, _(Ly, 7" Z) ~ Hip(X/S, Home, (Lx, 7 Z)) =~ Home, (Hf (X/S, Lk), Z).
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Because of the identification H gf{(X /S, Ly) — Og, induced by the projection £, — Ox and the
trace map (cf. Thm. 1.2.1 (i)), we get from (1.3.6) an isomorphism in VIC(S/Q) of the desired form

1.3.7) W*HomDX/S(Ek, TrZ)~ Z o~ et 2.

We claim that for a section f : £, — m* Z of the left side it really acts as f — €*(f)(7;). To see this

we evoke the following diagram of Og-vector bundles:

Ok

15, Symp H —"— €Ly, H?.(X/S, Ly) —— HX.(X/S) ~ Og

o

Z ot Z —> H%(X/S, 7 7) = Hi%(X/S) @0y 2~ Z

Here, the vertical arrows of the square are the naturally induced ones and its horizontal arrows come
about as follows: if G is Ly, or 7* Z, then one restricts its Q-connection relative S, applies the func-
tor my : DA .(Dxs) — DP.(Os) to the map e e*G[—g] — G in its localization triangle relative
S, takes g-th cohomology and canonically identifies H9(7wG) ~ Hﬁ%(X/S, G) asin (1.2.7). The
square commutes by functoriality of the localization triangle. The other maps in the diagram are clear.
By Rem. 1.3.5 (ii) the image of f under (1.3.6) is the composition of the right vertical arrow of the
square with the two lower right arrows of the diagram. In order to get the desired image of f under
(1.3.7) we need to precompose this last composition with the inverse of the upper right isomorphism.
But the whole upper row of the diagram maps the section 1 of Og C Hf:o Symlb JHto k!,” and the
whole lower row is the identity.?

With this the claim follows directly from the diagram, and we hence conclude the case n = 0.

If n > 1 we find an exact sequence in VIC(X/Q)
07"y —->U—->U/TY =0
withid /n*Y € U,_1(X/S/Q). We then obtain the exact sequence
(1.3.8) 0 — Home, (Ly, V) — Home, (Lx,U) — Home  (Lx,U/7*Y) — 0

in VIC(X/Q) and the commutative diagram of exact sequences of Og-vector bundles

6
00— Tr*HomDX/S (L, m*Y) —= ﬂ*HomDX/S(ﬁk,M) — Tr*HomDX/S (L, U/T*Y) L Hlp(X/5, Homy , (Lk,7*Y))

I l I |

0 Yy U e“U/T*Y) 0

where we define the first three vertical arrows on sections by the rule f — ¢*(f)(%;) and where

we have already used the induction hypothesis. The upper row comes from applying the long exact
sequence of de Rham cohomology to (1.3.8) and usage of (1.3.3).

To show that the second vertical arrow is an isomorphism it suffices to see that dy, is the zero map.

"The proof of this is as for Lemma 1.2.5 (cf. 1.2.3), only that one works with Q replaced by S from the beginning on.
80ne can derive this pretty straightforwardly from the preceding assertion applied for k = 0.
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For this we use the commutative diagram

Ok—1
m.Homp  (Ly1,U/7*Y)) == Hlp(X/S, Home  (Lx—1,7*Y))

i can l can

E
F*Hompx/s(ﬁk,l/{/ﬂ'*y) " Hi (X/S, Homgy  (Lk, 7))

and show that the right vertical arrow is zero. This yields the claim J§; = 0 because the left vertical
arrow becomes the identity if we identify both terms with €* (U /7*))) via the induction hypothesis

(use Lemma 1.1.5). But according to Lemma 1.3.3 the right vertical map identifies with an arrow
Homo, (Hyh ' (X/8, Lx-1),¥) — Homo  (HE ' (X/S, £4).)

which is induced by the transition map £ — L;_1. Thm. 1.2.1 (ii) then implies that this arrow is

indeed the zero morphism.

We now know that the map of (1.3.5):

* * 1
mHomp  (Li,U) = €U, fre (f>(ﬁ)
is an isomorphism of Og-vector bundles. The left side carries an integrable QQ-connection via
Hir(X/S, Homy  (Ly,U)) ~ m.Homp  (Li,U)

(cf. Rem. 1.3.5 (i)), and with the easy explicit knowledge of the Gauf3-Manin connection in 0-th
cohomology (cf. [Kat2], Rem. (3.1)) one checks by hands that (1.3.5) is indeed horizontal: when
doing this the essential point is the horizontality of % for the pullback of the connection of Ly, viae.
That (1.3.5) is functorial in U is clear, and that it is compatible with the transition maps of the loga-

rithm sheaves follows from Lemma 1.1.5. This finishes the proof of (i).

(ii) Consider HomDX/S (L, U) with its integrable Q-connection induced by the identification
Hc(i)R(X/&MOX (Ln,U)) =~ w*@px/s(ﬁk,u)
of (1.3.3). Let us compute its global horizontal S-sections: they are given by
HgR(S/@7 HgR(X/57 Hom, (Ln,U))) = HgR(X/Qv@OX (Lx,U)) = Home/@(‘Ck’u)v

and the analogous calculation holds on open subsets of .S, showing that the subsheaf of horizontal
sections of W*HomDX/S(Ek,U) is given by m.Homp (Lx,U). As the isomorphism (1.3.5) is
horizontal by (i) the claim of (ii) follows. ]

Definition 1.3.7
For each n > 0 we denote by 1(") the image of % under the (horizontal) splitting

©On : H Sym}ésH ~ e Ly,

k=0

such that 1(™) is a global horizontal S-section of €*L,,.
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By Thm. 1.3.6 (i) we may view (L,,, 1)) as a pair consisting of an object £,, in U,,(X/S/Q) and a
global horizontal S-section 1(™) of €*£,, with the property that for any ¢/ in U,,(X/S/Q) the map

mHomp (Lo, U) = €U, [ e(f)(1T)

is a horizontal isomorphism. Using an analogous claim as in Thm. 1.3.6 (ii) it is routinely checked
that a pair consisting of an object in U, (X/S/Q) and a global horizontal S-section of the fiber in
€ with the preceding property is unique up to unique isomorphism; here, isomorphism means an
isomorphism in VIC(X/Q) which respects the distinguished sections after pullback via e.

This is the manifestation of the universal property of the n-th logarithm sheaf.

Remark 1.3.8
According to Lemma 1.1.5 the transition map £,, 11 — £,, is then given by 1(»*+1) — 1(7),

1.3.3 An equivalence of categories

As a further fundamental result we show that passage to the zero fiber identifies U, (X/S/Q) with a
certain category C,, of Og-vector bundles with integrable QQ-connection carrying a (compatible) mod-
ule structure over the sheaf of rings [}'_, Sym’é < H. This is the analogue in the de Rham realization
of [Be-Le], 1.2.10 (v) (cf. also [Hu-Ki], Thm. A.2.5). Our goal for what follows is to give the proper
definition of the category C,,, to explicitly construct and give sense to the quasi-inverse of the men-
tioned fiber functor and to then prove the equivalence result in full detail. This is a somewhat laborious
and technical task to do, but the theorem will be rather useful in our further study of unipotent bundles

and the logarithm sheaves.

The category C,,

For all n > 0 consider [[;_, Sym’é < H as a commutative sheaf of rings on S with multiplication

defined on components by

ko m=K)n-0D!,
(1.3.9) s 08§ = ms .S
if s is a section of Sym¢, # and s' is a section of Symf, # such that k +1 < n resp. by s* o s =0
in the case k + [ > n. Note that on the right side of (1.3.9) we mean multiplication in symmetric
powers, hence s* o s is a section of Sym’ézl'H. We extend the multiplication to the whole product by
linearity. The multiplicative identity is then given by %

We get an Og-algebra structure inducing the original Og-module structure on [, _, Sym’é < H by

n
k S
(1.3.10) Os = [[ Symo,H, s+ —
k=0
Definition 1.3.9
For each . > 0 we write R (™) to denote the so defined sheaf of commutative O g-algebras HZ:O Sym]fg JH.

Using Lemma 1.1.5 one sees that the map
R(n+1) — 7?,("'7’)7

induced by £,,+1 — £, via the splittings ¢,, 1 and ¢,,, then becomes a morphism of Og-algebras.
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Remark 1.3.10

As for any sheaf of quasi-coherent Og-algebras we may consider the spectrum of R (™) which gives
an affine morphism Spec (R(”)) — S. In our later geometric interpretation of the logarithm sheaves
we will identify this spectrum with the n-th infinitesimal thickening YT? of the zero section of Y,
where Y? is the universal vectorial extension of the dual abelian scheme.

For each U in U,,(X/S/Q) the Os-vector bundle ¢*I/ carries a structure of R(")-module by

( I1 Sym’éS’H) 90, €U =~ mHomp  (Ln, La) ®o, mHomp (Lo, U)
(13.11) o

can
— W*HomDX/S(,Cn,Z/{) ~ 'U,

where the isomorphisms are due to Thm. 1.3.6 (i).
In other words: if r is a section of R(™ and £ is a section of €*I/, then the multiplication is given by

r-&=e(f)r),

where f : £, — U is the unique Dy g-linear arrow with

. 1
€ (f) (E) =¢.
For U = L,, the rule (1.3.11) yields precisely the previously defined multiplication of A0N
The so defined R(™-module structure on ¢*/ satisfies:
(1) It is compatible with the Og-module structure of €*U/, i.e. the restriction of the multiplication via

the arrow Og — R(™ of (1.3.10) gives the original Og-multiplication on ¢*I/.

(ii) The map R @0 ¢ €U — €U is horizontal for the respective integrable Q-connections.

Definition 1.3.11
We let C,, be the category whose objects are the Og-vector bundles £ with integrable Q-connection
which carry the structure of a sheaf of R(")-modules satisfying (i) and (ii) (with e*U replaced by &).

Morphisms in C,, are defined to be the R(")-linear and horizontal sheaf homomorphisms.
With what we have already said it is clear that we obtain a covariant functor
(1.3.12) F, : U, (X/S/Q) — C,, U~ €U,

and we set out to prove that F, is an equivalence of categories. This is the manifestation in the de
Rham realization of [Be-Le], 1.2.10 (v) (cf. also [Hu-Ki], Thm. A.2.5).

Some additional structures

Before we prove the announced theorem we need to discuss some more formalities which will be

helpful for a clean definition of the quasi-inverse of F,.
Let n > 0. First, it is clear that

H Sym]éX’HX =rRM =771 ( H Sym’ésH) ®nr-104 Ox
k=0 k=0
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becomes a sheaf of rings on X with unit given by % and multiplication analogously as for R(™); it
becomes a sheaf of commutative O x-algebras, inducing the original O x-module structure, via
4
(1.3.13) Ox - mRM™, ¢t —.
n!

Consider for each 0 < k& < n the map
Sym]g’)XHX ®OX ‘C’n« — 'Ck ®OX ’C’nfk — £n7

where the first arrow is induced by the inclusion Hx < £ in (1.1.2) together with projection and
the second by multiplication in symmetric powers.

If we let each component Sym]éX Hx acton L, by (n — k)!-times this composition, then we get on
L,, the structure of 7*R(™-module’ giving the earlier defined multiplication on R("™) after pullback

via e. In what follows we will consider £,, with the 7*R(")-module structure just explained.

Furthermore, if £ is a R("™-module on S, the pullback 7*& is a 7*R (™ -module.
Hence, the tensor product 7*€ ® . ) L, makes sense and is itself a *R (™ -module.

Lemma 1.3.12

Assume that & is a R -module on S and a Og-vector bundle in the induced O g-module structure
(i.e. via (1.3.10)). Then the R module 7*& ®Rp-rn) Ly is coherent over Ox in the induced
Ox-module structure (i.e. via (1.3.13)).

Proof. We have a canonical epimorphism of O x-modules
(1.3.14) € Rox L, — 1€ QxR (n) L

induced by the map Ox — 7*R ™).

If we know that the right side of (1.3.14) is O x-quasi-coherent, then the claim follows from the fact
that the left side is a vector bundle on X (use [Li], Ch. 5, Prop. 1.11).

Note that £,, is quasi-coherent over 7*R(™) and that & is quasi-coherent over R("), both by [EGAI],
Ch. I, Prop. (2.2.4). Hence, 7*& is quasi-coherent over 7R and as the same holds for L
the 7*R(™)-quasi-coherence of 7*E @ ..z L, follows (cf. the comment after the proof of ibid.).
Another application of ibid. yields the O x-quasi-coherence of 7*E ® .« ) Ly, and by what we said

above thus also its coherence. O

The quasi-inverse functor

We now construct a functor

Gr : Cp = Un(X/5/Q)

which will turn out to provide a quasi-inverse for the functor F;, of (1.3.12).

Assume that £ is an object of the category C,, (cf. Def. 1.3.11). We first define an integrable Q-
connection on the coherent O x-module 7*€ ® . ) Ly, (cf. Lemma 1.3.12) as follows:

Let 7V ¢ be the pullback of the connection V¢ on £ and V,, as usual the connection on L,,. Then

(1.3.15) T*E Qregn) Ln = Qx /g ®0x (1€ Operiny Ln)

9To check the associativity requires some basic combinatorics.
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is determined on local sections f resp. [ of 7*& resp. L,, by
fole (mVe)(f) @I+ Vo) ® f,
where the first resp. second summand is to read in
(/g ®ox TE) @regim Ln

resp. in
(Q%{/Q ®0X En) ®7T*R(7L) W*g,

both canonically isomorphic to the right side of (1.3.15).
That (1.3.15) is well-defined is straightforwardly checked by using that the multiplication maps

T*R™ @0, L — Ln

and
T*RM @, 7 — 7*E

are horizontal, the first by definition of the 7*R (™ -module structure of £,, and the second by defini-
tion of C,,. In this way we make 7*€ @ . Ly an object of VIC(X/Q) (it is coherent by Lemma

1.3.12 and carries an integrable Q-connection, hence is indeed a vector bundle).

Next, we define a unipotent filtration of length n on 7*E ® vy Ln:
For this recall from 1.1 the filtration making £,, into an object of U, (X/S/Q):

L,=AL, DAL, D..DA"L, DAL, =0

with

AL, = im(Symb, Hx ®o, Sympy L1 20 Sym L))
and quotients given by
AL, /AL, ~ Symlp, Hyx, i=0,..,n.

In terms of the 7*R(™)-module structure of £,, we may write the filtration objects as
ALy = (T]Symb Hx) - Lo, i=0,m,
k=i

where [[;_; Sym]éx H x is considered as a sheaf of ideals in 7*R (™). In this way the A°L,, and with
them also their quotients Syméf)x Hx become 7*R(™-modules such that via (1.3.13) the original
O x- module structure is induced. For each ¢ = 0, ..., n we then have the exact sequence of T*RM =

HZ:() Sym’éx H x-modules
(1.3.16) 0— AL, — A'L, — Sym{ Hx — 0.

Note that the [],_, Sym’é  Hx-module structure of Symlb « Hx is given by (usual) multiplication

with n!-times the O x-component; this implies that the functor

(7*R™-modules) — (7*R™-modules), M — M @ .z SymégX’HX
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is exact: observe that when considering M ® . ) Symiox Hx as Ox-module via (1.3.13) it can
be identified with M ®o Sym%x Hx, where M is an O x-module via (1.3.13).

With this we see that (1.3.16) remains exact after tensoring with 7*&:
1317) 0= 7°E @pegy AL, = T°E o) ALy — T°E @ Symp Hx — 0.

The 7€ @,y AL, viewed as Ox-modules by (1.3.13), thus define a filtration of length n of
T*E Qe Ly by Ox-submodules with quotients given by

T5E Qpeg(n) SyméngX ~ 71" Qoy SymﬁgX’HX ~ 7€ ®og SyméSH);

note that 7*& in the previous chain is an Ox-module via (1.3.13) and that this is exactly its original
O x-structure because of property (i) in the definition of the category C,,.

Exactly the same argument as in Lemma 1.3.12 shows that the 7*E ® .« () AL, are O x-coherent.
Moreover, they are stable under the integrable Q-connection of 7€ ® .« x) Ly, hence locally free.

Altogether, it follows that the defined filtration makes 7*E ® g m) Ly, an object of U, (X/S/Q).

In this way we obtain a covariant functor

(1.3.18) G i Cp = Un(X/S/Q), &5 1°E @ pepin) Lon.

The equivalence result

With all these preparations we are finally in the position to make sense of and prove the statement of

Theorem 1.3.13
The functor
F,:U,(X/S/Q) = C,, U~ €U

is an equivalence of categories with quasi-inverse
G,:C,— Un(X/S/Q), Er Qe R(n) L.

Proof. Ttis easy to check that F}, o G;, =~ id, hence it remains to show G,, o F,, ~ id.
For this we explicate the argument sketched very briefly in [Hu-Ki], proof of Thm. A.2.5.
Let us start with an object U of U,,(X/S/Q) and define an arrow in VIC(X/Q)

(1.3.19) T €U Qpegin) Ln = U

as follows:
Note that 7" ¢l identifies by Thm. 1.3.6 (i) with 7*m, Homp,  _(Ly,U). Let us define an arrow

(1.3.20) 7T*7T*HOH1DX/S (Ln,U) Qpeggny Ln = U,
or in other words
(ﬂflﬁ*HomDX/S (Ln,U) Qr-104 Ox) Qe Ln —U.

Noting that 7 is an open map we define the last morphism at the level of presheaves on open subsets
V C X by the rule

(Home_l(w(V))/w(V)(Cn’u) Qo5 (m(V)) Ox (V)) ®[72(”)(7T(V))®os<w(v>)ox(v)] E”(V) - U(V)’
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(fetel=t- (fiv)),

which is easily seen to be well-defined and which induces a O x-linear map (1.3.20). It is a routine
calculation to check that (1.3.20) is horizontal for the Q-connections of both sides. This finishes the
definition of the arrow (1.3.19) in VIC(X/Q). What remains to show is that it is an isomorphism
(naturality is clear). As (1.3.19) induces (by construction) the identity on e*U/f after pullback via € and
as its cokernel is a vector bundle (recall once more that VIC(X/Q) is abelian) we may conclude the

proof by the following general argument: 0

Lemma 1.3.14
Lettp : V — W be a morphism of vector bundles on X such that the induced map €* () : €V — €W

is an isomorphism and such that the cokernel of 1) is a vector bundle. Then ) is an isomorphism.

Proof. At first, it is an easy application of the Nakayama lemma (together with [EGAI], Ch. I, Prop.
(3.4.6)) to see that 1) is an isomorphism if and only if for all s € S the induced map

¢S : V\XS — VV‘XS

on the fiber X over s is an isomorphism. We may hence assume from the beginning that we are in
the situation of an abelian variety X over a field k. The hypothesis that ) induces an isomorphism
after pullback to Spec (k) via € immediately shows that the vector bundles V and W must have the
same rank (which is constant as X is connected). By a standard argument we thus only need to see
that 1 is an epimorphism. Now consider the pullback of coker(¢) along € to Spec (k) and use the
hypothesis that €*(¢)) is an isomorphism together with the Nakayama lemma to see that the stalk of

coker (1)) vanishes in the zero point; as coker(¢)) is a vector bundle on X it must hence be zero. [

1.3.4 Some categorical structure results

The preceding theorem can in particular be used to obtain non-trivial information about categories of

unipotent vector bundles with integrable connection.

Corollary 1.3.15
For eachn > 0 the category U, (X/S/Q) is abelian.

Proof. One checks without problems that the category C,, is abelian. Now use Thm. 1.3.13. O

Corollary 1.3.16
The category U(X/S/Q) is abelian.

Proof. Note that U(X/S/Q) is a full subcategory of the abelian category VIC(X/Q) and that then
the only potentially nontrivial task is to see that for each morphism &/ — V of objects of U(X/S/Q)
its kernel and cokernel is again in U (X/S/Q). But of course there is a suitable n > 0 such that & and
V both are in U,,(X/S/Q). Now use Cor. 1.3.15 to conclude. O

Using the vocabulary of tensor categories (for which we refer to [Sh], Ch. 1, 1.1) we may view
VIC(X/Q) as rigid abelian tensor category (with unit object (Ox,d) and the usual tensor product
resp. internal Hom-objects). With Cor. 1.3.16 and Lemma 1.3.2 we may summarize the knowledge
we have won about U(X/S/Q):
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Theorem 1.3.17

The category U(X/S/Q) is a rigid abelian tensor subcategory of VIC(X/Q) which is closed under
extensions. O
Remark 1.3.18

Let us mention what we get in the special case that S is the spectrum of a field k.

Our general assumptions on S/Spec (Q) tantamount to requiring that k is a number field.

As Spec (k) — Spec (Q) then is étale we note that connections relative Spec (Q) are the same as
connections relative Spec (k). It is easy to see that U(X/S/Q) then becomes the category of vector
bundles on X with integrable k-connection which have a filtration of finite length by subbundles stable
under the connection and quotients isomorphic to (Ox,d); write U(X/k) for this category.

Denoting by Vecyq(k) the category of finite-dimensional k-vector spaces the functor
€ U(X/Ek) = Vecyq(k)

then is exact and faithful: exactness is obvious and faithfulness easily follows from Thm. 1.3.13 by
choosing for two objects of U(X/k) a common length of unipotency.

Because of the standard fact & = I'(X, Ox) it is also clear that Endy(x/x)((Ox,d)) = k.

Together with Thm. 1.3.17 this shows that U (X /k) is a (neutral) Tannakian category over k with fiber
functor given by €* (for the notion of a Tannakian category cf. [Sh], Ch. 1, Def. 1.1.7).

1.4 The invariance results for the logarithm sheaves

1.4.1 A technical preparation

The zero fiber €*U of a bundle U € U;(X/S/Q) carries a module structure over Og @ H whose
restriction to Og coincides with the usual Og-multiplication on ¥/ (cf. (1.3.11) and (1.3.12)).
In addition to the explanations subsequent to (1.3.11) the following auxiliary result gives another

description of how the multiplication coming from the #-component looks like.

Lemma 1.4.1
Let U be an object of VIC(X/Q) and Yo, Y1 objects of VIC(S/Q) sitting in an exact sequence of
Dx jq-modules

(1.4.1) 0=V —-UL 7Y — 0.

Denote by ¥ : Yo — HY Qog V1 the Ds q-linear map induced by the first edge morphism in the
long exact sequence of de Rham cohomology relative S for (1.4.1); define a Dgq-linear map T as
the composition

eval®id
e

id ®y
T:H Qo yo—”>H®os HY ®os V1 V.

On the other hand, by pullback of (1.4.1) via € one obtains the exact Dg q-linear sequence

€ (p)

(1.4.2) 0=V = e€U —— )Yy — 0.

Let & € T'(S,e*U) and consider the section (e*(p))(§) € T'(S, o), together with T it defines the
Og-linear map

M=, s T(s@(N(p)(€)):
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Then, if f : L1 — U is the unique Dx g-linear map with €*(f)(1) = £ (¢f. Thm. 1.3.6 (i), the
restriction of
e(f): OsdH — U

to the direct summand H (which defines the multiplication of € by sections of H) is equal to ) com-
posed with the inclusion of (1.4.2).

Proof. We define a Dx /g-linear map

9:0x =7, 1=a"((€(p)(€))
and observe that we then have a commutative square

£14>OX

Tl

U——=1"

in which the upper map is given by the projection in (1.1.2); the commutativity follows because
both arrows £1 — 7*)) are D/ g-linear with the property that after pullback via € they send 1 to
(e*(p)) (&), hence by Thm. 1.3.6 (i) must be equal.

The induced commutative square of Og-linear maps

6*£1 I OS

6*(f)J/ lE*(g)
*(p)

* cw
eU—— o

then permits a unique commutative continuation

0 2" Ly Oq 0
hl e*(f)l le*w)
0 » eu Py, 0

such that the upper resp. lower row is given by pullback along € of (1.1.2) resp. by (1.4.2).

We next consider the diagram of D /g-linear maps

0 Hx Ly Ox 0
w*(lz)l fl lg
0——7*Y; u—2> Vo 0

with upper resp. lower row given by (1.1.2) resp. by (1.4.1). The claim is that it commutes.

With what we have already said above it only remains to prove the commutativity of the left square,
which tantamounts to showing that a certain Dy g-linear arrow Hx — U (namely the difference of
the two maps in the square) which is zero after pullback via e is already zero. Taking into account
that X is integral'® and that I/ is a vector bundle one easily reduces the question to the situation
S = Spec (k) with k a field of characteristic zero. In this case [Bert-Og], §2, Prop. 2.16, yields that

10yse that S is integral (cf. footnote 5) and [Li], Ch. 4, Prop. 3.8, to conclude that X is integral.
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the considered map H x — U is zero not only in the fiber, but already in the stalk of the zero point
of X. As X is integral and U/ is a vector bundle one can conclude from this that Hx — I/ is indeed
zero. The desired commutativity is thus shown.

From the long exact sequence of de Rham cohomology (cf. [Kat2], (2.0)), applied to the preceding
commutative diagram, we obtain the commutative square of Og-linear morphisms

O —=HY ®ogs H

l Jiaen

Yo oy ®ogs M1

in which the left vertical arrow is given by 1 — (¢*(p))(§) (by definition of g) and where the above
horizontal arrow is the standard map (as follows from the definition of £;).

Tensoring with H and composing the horizontal arrows with eval ® id we obtain the diagram

H id ®can H ®OS H\/ ®OS H cval@idH

lid@id@h lh
id @ v i
H®os Yo —HR0s HY ®og 1 —= 1

in which the two small squares commute, implying commutativity of the whole. If we note that the
upper horizontal composition is the identity, the lower horizontal composition is 7 and the left vertical

map is given by s — s ® (¢*(p))(§), we get h = 1. This implies the claim of the lemma. O

1.4.2 The invariance results

We now prove the fundamental fact that the logarithm sheaves of two abelian schemes become canon-
ically identified under pullback by isogenies, from which we derive in particular the invariance of £,
under translation by torsion sections. This implies that the fiber of £,, in a torsion section is canoni-
cally isomorphic to its zero fiber, a property that will be important later when we define and compute
the specialization of the polylogarithm along torsion sections.

We finally append a brief observation concerning compatibility of the logarithm sheaves under base
change, supplementing the content of Lemma 1.1.7.

Invariance under isogenies
Let us asssume that u : X — X’ is an isogeny'! of abelian schemes over S and use primed notation

7' €, H', L), etc. for the usual objects when they refer to the abelian scheme X' /S.

Pullback via u of the exact sequence associated with £
0— (7"V*H — L] - Ox =0
gives an exact sequence of Dx/g-modules

(1.4.3) 0—mH - u L] = Ox =0,

1By an isogeny we mean a surjective and finite homomorphism over S; it is automatically flat and hence finite locally free.
We thus have the notion of its degree deg(u), defined as the rank of the O x/-vector bundle u+Ox. A priori, deg(u) is a
locally constant function on X’ and hence constant in our setting because X" is connected (X' is integral by the same argument
as in footnote 10). Moreover, as we are in characteristic zero each isogeny is an étale morphism.
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exhibiting u* L] as object of U1(X/S/Q). By Thm. 1.3.6 (i) we may determine a D g-linear map
(1.4.4) f1 Ly — U*Ell

by choosing a global S-section of e*u* L] ~ (¢')*L}] ~ Og & H’, for which we take the section 1.

By part (ii) of the same theorem we know that f; is even Dx q-linear.

Theorem 1.4.2
The canonical Dx jq-linear map f1 : L1 — u* L defined in (1.4.4) is an isomorphism.
The induced morphism ¢*(f1) : Os ® H — Og ® H' is given by

€ (f1) =id®(ugr)”,

where
UJR H5R<X//S) - H&R(X/S)

denotes the canonical morphism on de Rham cohomology induced by wu.

Proof. For the isomorphy of f; it suffices - by the equivalence of categories in Thm. 1.3.13 - to show
that the map
€(f1) : Os®H = OsdH,

induced by f7 and the identification e*u* L] ~ (¢')*L] ~ Og & H’, is an isomorphism.

We will determine €*(f1) explicitly, see that it is given as stated in the second claim of the theorem
and then argue that this is indeed an isomorphism.

By definition €*(f1) sends the global S-section 1 of Og to itself.

What it does on the direct summand H can be determined accurately with the help of Lemma 1.4.1:
The map 7 in the claim of that lemma writes in the present situation asn : H — H',s — 7(s ® 1),
where 7 is given by the composition

id @

71 H R0, Os =29 H o, HY @0, H <22,

H.
Butthe map v : Og — HY Q@04 H' was defined to be the first edge morphism of de Rham cohomology
for the exact sequence (1.4.3). One can check that v is nothing else than the map associated with the
canonical arrow

wlp : Hig(X'/S) = Hir(X/S),

and hence 7 : H — H’ is obviously equal to (uz)".
Altogether, by Lemma 1.4.1 we conclude that €*(f1) is given on the summand # by (ujg )" followed

by the canonical inclusion, hence
e (f1) =ida(uig)” :Os®H — Os D H'.

But the map (ujz)" - and hence ¢*(f1) - is an isomorphism:
For this let v : X’ — X denote the isogeny characterized by u o v = [deg(u)],v o u = [deg(u)],
where [deg(u)] means the multiplication map(s) by the degree deg(u) of u. Then the compositions

ey (USR)V H/ (U;R)v ey
Hl (USR)V ey (UQR,)V H/

are isomorphisms because they are given by multiplication with deg(u) which is invertible on S this

suffices to conclude. O
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Taking for each n > 0 the n-th symmetric power of the isomorphism f; in Thm. 1.4.2 we obtain an
induced D g-linear isomorphism
L, = u*L].
Its pullback via e gives the Dg,g-linear isomorphism
H Symg H ~ € L, = e ut L], ~ () L], ~ H Symg H'
k=0 k=0

which is the n-th symmetric power of the map id ®(ujjz)" : Os & H = Og ® H’ in the theorem.
As this symmetric power sends the section % of Og to itself we see in particular:

Corollary 1.4.3
The canonical Dx jq-linear map
f‘n : ‘cn — U'*‘C;p

characterized by the condition 1) — (1) in the induced map
€ (fn) 1 € Ly — L], ~ ()L,

(cf Thm. 1.3.6 '2), is an isomorphism. Under the splittings of the logarithm sheaves the arrow

e (fn) : [ Symb H — [ Symb #'

k=0 k=0
is given on each factor as the map
Symé H — Symg H'
induced on symmetric powers by (u}g)" : H — H'. O

A special kind of isogenies are the /N-multiplication endomorphisms of the abelian scheme X. We

note this important case separatedly:

Corollary 1.4.4
Let N # 0 be an integer and [N] : X — X the N-multiplication isogeny of X.

Then for each n > 0 the canonical Dx jq-linear map
L, — [N]*L,,
characterized by 1) — 1Y) after pullback via e:
€Ly — €[N|*Ly =€ Ly,

is an isomorphism. The induced morphism on the product of symmetric powers is given on each factor

as the N*-multiplication map"

Nk
Symf H - Symb,_H.

O

120f course, u* £, is an object of Uy, (X/S/Q): simply take the pullback via u of the natural unipotent filtration for £/, .
3Note the standard fact (which one can also deduce from the later Prop. 2.5.1) that [N |4r is multiplication by N.
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Invariance under translation by torsion sections

The preceding result implies another crucial invariance property of the logarithm sheaves:
For this let ¢ : S — X be a torsion section, i.e. t € X(S) and N - ¢t = 0 for some integer N # 0.
Denote with

T, X = X

the translation by ¢: for each S-scheme Z it is defined in Z-rational points as the map X (Z) — X (Z)
given by id +tZ, where tZ means the element in X (Z) naturally induced by ¢ € X ().

For any N as above we have [N] o T; = [N], and combining this with the natural identification
L, ~[N]"L,
of Cor. 1.4.4 we obtain the following isomorphism of Dx g-modules
(1.4.5) T L, ~TF[N)" L, ~[N]"L, ~ L,.
The composite isomorphism expresses the fundamental fact that £,, is invariant under translation with

torsion sections; let us note that this invariance is indeed canonical:

Lemma 1.4.5

For each torsion section t € X (S) the Dx jq-linear isomorphism
T/ Ln ~ L,

in (1.4.5) is canonical, i.e. independent of the choice of the integer N # 0 annihilating t.

In particular, after pullback via € we have a canonical D q-linear identification
t"L, ~eL,.

Proof. Let M be another non-zero integer with M - ¢ = 0. Then M N has the same property, and
we show that the isomorphism 73 L,, ~ L,, in (1.4.5) constructed by using N coincides with the one
constructed by using M N; by exchanging N and M we thus conclude that the isomorphisms (1.4.5)
for N and for M coincide.

Consider the following diagram in which all arrows are Dy /o-linear isomorphisms:

L, —— TF[N*"L, —— [N]*L, ——— L,
id Ty [N [M]* L., [N]*[M]*L, id
L, — T} [MN}*L, —— [MN|*L, — L,

The outer lines are (1.4.5) for N resp. M N, the arrows denoted with can are the obvious standard
identifications and the two vertical arrows without label are the maps induced by the isomorphism
L, ~ [M]*L,, of Cor. 1.4.4 by applying T, [N]* resp. [N]*.

The right square commutes: by Thm. 1.3.13 this may be checked after pullback via €, where it is
straightforwardly seen. The left square comes from the right by applying the functor 77, hence also
commutes. The commutativity of the middle square easily boils down to the functoriality of the
standard isomorphism ¢g* f*F ~ (f o g)*F for morphisms of schemes f, g and sheaves of modules

F. We deduce that the whole diagram commutes, which is what we wanted to show. O
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Remark 1.4.6

The isomorphism t*£,, = €*L,, recorded in the preceding lemma can also be obtained as follows:
Apply t* to £, = [N]*L,, to get t*L,, = €*L,,; then compose this isomorphism with the map
€*L, — €*L,, given by applying €* to [N]*L,, = L,,.

Invariance under base change

We consider the situation
X/ g Sl
X—"-89
of (1.1.8) and use the notations €/, ', £/, for the usual objects when they refer to the abelian scheme

X'/S’. Further, let us recall that the canonical (horizontal) map
(1.4.6) f*Hag(X/S) — Har(X'/S")

is an isomorphism.
It is clear that for each n > 0 the bundle g*£,, defines an object of U, (X’/S’/Q), and by Thm. 1.3.6

we may hence determine a Dx/ q-linear map
(1.4.7) L, = gLy

by choosing a global horizontal S’-section of (¢/)*g*L,, ~ f*€*L,, for which we take f*(1(™).

In complete analogy to the arguments that led to Cor. 1.4.3 one arrives at

Proposition 1.4.7
The canonical Dx jg-linear map L), — g*L,, defined in (1.4.7) is an isomorphism.

Under the splittings of the logarithm sheaves the associated morphism in the zero fibers

n n

k ’ k *
H Symg  H — H Syme_, f*H
k=0 k=0

is given on each factor as the map
k k *
SymOS,H/ — Symos, f H

induced on symmetric powers by the dual of (1.4.6). O

1.5 The elliptic polylogarithm and its D-variant

In the whole present section we assume that the relative dimension g of X/S equals 1, i.e. that X is

an elliptic curve over S. For this situation we write F instead of X.

As in 1.2.2 we denote by U the open complement of the zero section of E/S.
If T is an open subscheme of E or a closed subscheme of E which is smooth over Q the notation Hp
means the Op-vector bundle with integrable QQ-connection given by the pullback of # to 7T'.




80 THE FORMALISM OF THE LOGARITHM SHEAVES AND THE ELLIPTIC...

1.5.1 The elliptic polylogarithm

We construct the elliptic polylogarithm associated to our fixed geometric setting £'/S/Q as an inverse
system of de Rham cohomology classes with components in Hy (U/Q, HY; ®0,, L), characterized
by a certain natural residue property. It is the de Rham realization of the general formalism provided
in 1.3.13 in the original source [Be-Le]; cf. also [Ba-Ko-Ts], Def. 1.39.

Recall that in (1.2.2) we obtained for each n > 1 the exact sequence of Dg,qg-modules

(1.5.1) 0 = Hip(E/S, Lq) <% Hip(U/S, £,) 225 T Symb H — 0.
k=1
These sequences are compatible with respect to the morphisms induced by the transition maps of the

logarithm sheaves. Note that by Lemma 1.1.5 the associated transition morphism

n+1 n

k k
| I Symg H — I | Symg H
k=1 k=1

is given explicitly as
(h1,h2, .oy hng1) ¥ (- hy, (n—1) - ha, ... hy)  with by, € Symé H, k=1,..,n+ 1.

It follows that we have a well-defined system

(15.2) (ﬁ ~id7{> _, € lim Homp (H I1 sym’(gsy).
: nzl " k=1

The exact sequence (1.5.1) and Thm. 1.2.1 (ii) readily imply that the maps Res” induce an isomor-

phism of Q-vector spaces

(15.3) lim Homop, ., (K, Hig (U/S, £4)) = lim Homa, (H, 11 sym’(gsﬂ) .
- - k=1

We have Leray spectral sequences (cf. [Kat2], (3.3.0))
EP? = HY (S/QHY ®os Hig(U/S, Ly)) = EPY1 = HYY(U/Q, 1Y ®oy, Ln),
and one can conclude from Thm. 1.2.9 (ii) that the edge morphisms
Hig(U/Q,Hyy ®@oy Ln) = Hig(S/Q.HY ©os Hig(U/S, Ln))
give an isomorphism
(1.5.4) lim Hip (U/Q. 1) @0y Ln) = lim Hip(S/Q 1’ ©o5 Hig(U/S, Ln))-
Combined with the natural identification
Hgr (S/Q,H" ®0s Hir(U/S, L4)) = Hompy o (H, Hig (U/S, Ln))

and with (1.5.3) we obtain from (1.5.4) the isomorphism

. 1 ~ 1 k
(15.5) lim Hjy (U/Q. @0, £2) > lim Homp, (H, k]:[l SymOS”H) .
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Definition 1.5.1
(i) The elliptic polylogarithm cohomology system for E/S/Q is the system

polyr = (PoliRr)n>1 € ,13?11 Hir(U/Q,Hy; @0y Ln)

which under (1.5.5) is mapped to the system (ﬁ . idy> N of (1.5.2).
: n>1

(ii) The elliptic polylogarithm extension system for £/S/Q is the system

pol = (pol™),>1 € lim Extp,,  (Hu, Ln)
corresponding to polr under the standard canonical identification
lim Extp,, , (Hu, £n) = lim Hig (U/Q, Hi ®0y Ln).

We append a remark which one can use to show that our definition of the elliptic polylogarithm

coincides with the one given in [Ba-Ko-Ts], Def. 1.39, in the case that S is the spectrum of a field.

Remark 1.5.2
We may define a morphism in Mod(Dg/q)

(15.6) lim [T Sym¢,# — [] symo, #
T k=1 k=1

by requiring that the composition with the n-th projection (n > 1) is the chain of canonical maps

n n
. k k
}llg k|,|1 Symgp H — lil Symep H — Symg H.

n

By the already mentioned formula for the transition morphisms HZI; Sym’f’g H—= Tl Sym’é JH
it becomes clear that (1.5.6) is an isomorphism. Then, under the composition

%igi Hompy , (’H, H Sym]("gs’}-[) ~ Hompy , (’H,rlgnl H Sym’éS"H)
- k=1 = k=1

~ Homp, , (’H, H Sym’és’H),
k=1

the system (ﬁ . idH) of (1.5.2) maps to idy, € Homp, . (#, [T5=, Sym’és’H).

>1

1.5.2 The D-variant of the elliptic polylogarithm

The elliptic polylogarithm (pol{jy),>1 was defined as a certain system of de Rham cohomology
classes on U = E — ¢(S) with coefficients in H); ®o,, L.

Our main interest in the future, however, will focus on a variant of this object which we introduce
now. For its construction we need to remove some more points of the curve, namely the D-torsion
subscheme F[D)] for a fixed integer D > 1, and then apply a formally analogous procedure as in 1.5.1.
The outcome is an inverse system of de Rham cohomology classes on E — E[D] with coefficients
in £,, which again is determined by a prescribed residue along E[D]. In the formalism of [Be-Le]

it would be obtained essentially by pulling back the extension considered in ibid., 1.3.12, along the
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morphism induced by the section D? - 1{ey — 1g(pj to be defined below.

This "D-variant" of the elliptic polylogarithm turns out to provide a much better access for concrete
description and computations than the original object. We remark that in explicit terms it was intro-
duced and studied (for the ¢-adic realization) in the recent work [Ki3], where it serves as a crucial tool
to derive the relation between the elliptic Soulé elements and ¢-adic Eisenstein classes (cf. ibid., 4).

Some additional notation

We fix an integer D > 1 and write [D] : E — F for the D-multiplication endomorphism of E.
By the cartesian diagram

TE[D]

E[D] S

EFE——F
we define the closed subgroup scheme E[D] of E whose T-rational points (for an S-scheme T') are
given by ker(E(T) L FB (T')). The corresponding well-known properties of the morphism [D] imply
that E[D] is a finite locally free S-group scheme of rank D2, and as we are in characteristic zero it is
moreover étale over S (cf. also [Kat-Maz], Thm. 2.3.1).

We let jp : Up — E be the open immersion of Up := E — E[D] and set 7y, := 7o jp.

Jjp Up
Q)

E[D] -2~ E

i
.

Construction of the D-variant of the elliptic polylogarithm

We start by using the machinery of the localization sequence analogously as at the beginning of 1.2.2.

Namely, for each n > 0 we have the canonical distinguished triangle in D% (D q) (cf. (0.2.5))
(ip)+(ip) " Ln[-1] = Ly = (jp)+Lnjup
from which we obtain by applying the functor 7 the distinguished triangle in DZC (Dsyq)
(mE()+ipLn[—1] = T4 Lo = (Tup )+ Lajuy -

Taking cohomology and using [Dim-Ma-Sa-Sai], Prop. 1.4, we obtain the exact sequence of vector

bundles on S with integrable (Q-connection

SD O'D
(157) 0= Hig(B/S,Lo) <5 Hi(Up /S, Ln) =55 (mpip))sitLon =5 H2q(E/S, L) — 0,
where all sheaves are equipped with their Gau-Manin connection relative Spec (Q). For (7g(p))«iHLn
this means nothing else than applying (7 z[p;)« and the projection formula to the (pullback) connec-
tion

Z*D'Cn — QlE[D]/Q ®0E[D] ’L*D'C'n ~ TE[D]Q.:‘[S/Q ®0E[D] 'L*D,Cn
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For the outmost right zero in (1.5.7) one observes H3, (Up/S, L) = 0: use the spectral sequence

(0.2.2) and that 7y, : Up — S is affine and of relative dimension one.
We continue with constructions analogous to those which in 1.5.1 led to (1.5.5).

Namely, from (1.5.7) and Thm. 1.2.1 (ii) one derives that the maps Res” induce an isomorphism
(1.5.8) }g% Homp,,,(Os, Hig(Up/S, Ln)) = }g% Homp,,, (Os,ker(a})).

Prolonging (1.5.7) to the left one sees that for all n > 0 the canonical maps Hy(E/S,L,) —
H3%:(Up/S, L)) are isomorphisms, which by application of Thm. 1.2.1 (ii) implies that the transition
morphisms H (Up /S, Ln+1) = HIx(Up/S, L,,) are zero. From this one readily deduces that the
edge morphisms in the Leray spectral sequences (cf. [Kat2], (3.3.0))

EYY = Hip(S/Q, Hig(Up /S, La)) = EP* = Hig"(Up /Q, L)
yield an isomorphism
(1.5.9) }g}) Hir(Up/Q, L) = }g% HiR(S/Q, Hig(Up/S, Ly)).
Combined with the natural identification
Hyg (S/Q, Hgp(Up/S, L)) = Homp, o (Os, Hig (Up /S, L))
and with (1.5.8) we obtain from (1.5.9) the isomorphism

(1.5.10) lim Hir(Up/Q, L) = lim Homp, , (Os, ker(o2)).
We continue by defining a certain distinguished system in }lig(l) Homp, , (Os, ker(c2)).

First, note that an element of Homp, , (Os, ker(c2)) tantamounts to a section in H(E[D],i%L5,)
which is horizontal for the Q-connection on i%,£,, and which goes to zero under the map o2 of (1.5.7)

in global S-sections:

ol (8): HY(E[D], it L,) — HO(S, H3R(E/S, L,)).

n

We have an injection
(1.5.11) H°(E[D],Og,,) — H°(E[D],iHLy),

coming about by taking global E[D]-sections in the chain
(1.5.12) OE[D] > (ﬂ—E[D])* H Sym’éS’H ~ (ﬂ'E[D])*g*,Cn ~ ZB[D]*ﬁn ~ Z*Dﬁna
k=0

where the monomorphism is %-times the obvious inclusion, the first isomorphism is the splitting of
L., the second uses the diagram defining F[D] and the last comes from Cor. 1.4.4.

Note that we need the normalization by 2; to obtain from the injections of (1.5.11) an induced map

(1.5.13) HY(E[D],0p,,) < lig% HY(E[D], i} L)
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into the inverse limit, as one can check with Lemma 1.1.5.

The zero section € of E/.S induces the zero section of E[D]/S which we likewise denote by e.
As E[D] is étale and separated over S it follows that € : S — F[D] is an open and closed immersion
(cf. [EGAIV], Ch. IV, Cor. (17.9.3)). One obtains the schematic decomposition

E[D] = (E[D] —{e}) I {e}.
We may hence define a section 1{; € H°(E[D], Og|p;) by determining it to be 0 on E[D] — {e}
and to be 1 on {e}; we further write 15p; for the section 1 € H°(E[D], O py).
We thus have a well-defined section

D? 14 — lgp) € H*(E[D], Og(p)).

Its image under (1.5.11) gives a horizontal section in H(E[D],i5L,,).

Let us now make the following assumption which will be proven in 1.5.4:

Lemma 1.5.3
Under the composition of (1.5.11) with the map o2 (S) the section D*-1{.;—1g(p] € H°(E[D], Og(p))
goes to zero in HO(S, Hig (E/S, L))

Then, by what we said about how elements of Homp , (Og, ker(c?)) look like, we conclude:
Lemma 1.5.4
The image of D? - 1{ey — 1g(p) under the injection

H°(E[D],Og,,, ) = lim H*(E[D],i},L,)

n>0

of (1.5.13) is already contained in lig(l) Homp, ,(Os, ker(o2)). O

Definition 1.5.5
(i) The D-variant of the elliptic polylogarithm cohomology system for F/S/Q is the system

ol = (por; ) . €lim Hig(Up/Q.£
POlAR, D21y ~15 (P AR, D2 1 Ly, ) oo € 1 ar(Up/Q, L)

which under the isomorphism of (1.5.10)
lim Hz (Up/Q, £,,) = lim Homp,,,_ (Og, ker(a?))
n>0 n>0 5/Q

is mapped to the image of D? - 1¢,4 — 15(p; under the inclusion of (1.5.13)

H°(E[D],Og,,) = }g% HY(E[D),i%L,).

Note that by Lemma 1.5.4 this image is contained in lig(l) Hompy ,(Os, ker(aP)).

(ii) The D-variant of the elliptic polylogarithm extension system for £/S/Q is the system

_ n . 1
Polpey 1y = (pOIDQ-l{érlE[D])nm € 7111;1) ExtDUD/Q(OUD,En)

corresponding to polyg p2.q ter—1epp) under the standard canonical identification

lim Extp, . (Oup, Ln) = lim HY(Up/Q, Ln).
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1.5.3 The relation between the elliptic polylogarithm and its D-variant

We connect the elliptic polylogarithm classes poliy € Hig (U/Q, HY, ®o, L) with the D-variant

o € Hi(Up/Q, L),
To formulate their relation we apply an elementary change of coefficients

classes polig p2.1,., -1

mult,, : Hig(Up/Q, Ln) = Hig(Up/Q, HY, ®oy, Ln)

to polir p2.1 ter L, whose result then has a direct expression in terms of poljjy.
: . D
All of this is a direct translation of [Ki3], Prop. 4.3.3, to our setting, only adding a bit more details.

A change of coefficients

For each n > 1 we define
mult,, : £,, — HE ®og Ln

to be the composition
L = Mp R0y HE®0y Ln = M ®0y L1 R0, Ln = Hi Q0 L1 Q0 L1 — HE @0y Ln,

where the first arrow is given by the standard map, the second by the inclusion H g <— L7 (cf. (1.1.2)),
the third by the transition map £,, — £,,_1 and the last by multiplication in symmetric powers.

The morphisms mult,, are checked to be compatible with the transition maps of the logarithm sheaves
and horizontal for the respective Q-connections on £,, and H} ®0,, L.

We get an induced homomorphism of Q-vector spaces, also denoted by mult,,:

mult,, : Hig (Up/Q, L,) = Hag(Up/Q, Hy,, ®0u,, Ln);

compatible with respect to the transition maps of the logarithm sheaves.

Hence, by applying the maps mult,, to the D-variant of the elliptic polylogarithm, we obtain a system

(multn (pOIZiLR,D2-1{E} _1E[D] ))n21 G }lléri H&R(UD/Q, H%p ®OUD ETL)
which we will be able to relate with the elliptic polylogarithm of Def. 1.5.1 (i).

Remark 1.5.6

Under the standard identification of de Rham- and Ext-spaces mult,, writes as homomorphism
mult,, : ExtlpUD/@(OUD JLy) — EX‘E%;UD/@(’HUD,EH).

One can check that the preceding map is alternatively obtained as follows: tensor a given extension
with H;,, and take the pushout of the resulting extension along the map

multy, : Hu, ®oy, Ln = Ln
which is defined as the composition of the (by now obvious) arrows

HUD ®(9UD Ly, — L4 ®(9UD L, — L1 ®OUD Lp_1—L,.
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The comparison result

Recall from Def. 1.5.1 (i) that the system of the elliptic polylogarithm

polyr = (PoliRr)n>1 € }gnl Hir(U/Q,Hy; @0y Ln)

is defined by mapping to the system (ﬁ . idH) of (1.5.2) under the isomorphism of (1.5.5):
: n>1

713;111 Hip(U/Q, 1y @0y L) = gnl Homp, (7—[, kli[l Sym’éSH>.

We have Up C U, an induced morphism [D] : Up — U, and hence for each n > 1 the classes
(pOHiLR)IUD € HéR(UD/Qa H&p ®OUD ‘Cn)a

[D]*p()lgR € HéR(UD/Qngp ®OUD ‘Cn)v

where for the second class we have used the isomorphism [D]*L,, ~ L, of Cor. 1.4.4 and the

canonical identification [D]*Hy; ~ Hy; . Finally, for each n > 1 we also have the class
multn (pOIQR,Dz-l{E} _1E[D] ) S HCI{R(UD/Q, HE/]D ®OUD ﬁn)
The relation between the previous three classes is given by

Proposition 1.5.7
For all n > 1 we have the following equality in Hjp (Up /Q, Hy; ®0oy, Ln):

mult,, (polZRDg‘l{E}_le]) — D? - (polli) vy, — D - [D]"pollis.

Proof. Note that the isomorphism of (1.5.10) in particular establishes an injection
}ng(l) H&R(UD/Qﬂ En) - }ngtl) HomDS/Q(OS7 (WE[D])*Z'EEH)'
By an analogous procedure'# one obtains an injection

lim Hig (Up/Q, My, ®0u,, L£n) < lim Hompy (M, (Tp(p))«ipLn)

~ }gr(l) HOI?(I'DE[D]/Q (HE[D} 5 Z*D‘Cn)v

where ip : E[D] — E and 7g(p) : E[D] — S are still the morphisms fixed at the beginning of 1.5.2.
If we further use the identification

(1.5.14) inLn = [ Symé,,,, Hew),
k=0
coming about by the chain of (by now obvious) maps

iHLn = DI Lo = whpye” Lo = wpy [ [ SymoH =~ [ [ Symg,, , Heipl,
k=0 k=0

14To be precise, one replaces Og by H in (1.5.8) and L, by H[V]D ®OUD L, in the subsequent Leray spectral sequence.
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then in sum we obtain an injection

n

- : k
}ng% Hag(Up/Q 1, @0y, Ln) < }g% Homp pp, g (HE[D]’ kl:[o Sym@E[D]HE[D])

which we will consider in components 7 > 1 only:

n
(1515) lim Hig (Up/Q HY,, @0y, £a) = lim Homo, o (Hep), [] Symb,,, Hein)).
- - k=0

Note that the transition maps on the right side are given analogously as in Lemma 1.1.5.

We now show that the images of

(multn (pOIQR’Dz'l{G} —LEp) )>n>1

and
(D2 : (pOKiLR)‘UD — D - [D]*polir)n>1

under the injection (1.5.15) are equal, which then proves the theorem.

This follows by explicating the definitions of the three involved systems and all the identifications
we have made to define them and the map (1.5.15); it is the variety of these which makes the detailed
verification of the desired equality rather lengthy. It seems reasonable if we here only record the main

steps and results of this laborious task.

Recalling the decomposition E[D] = (E[D] — {e}) II {e} it follows by tracing back the defini-
tion of the polylogarithm system and of the map (1.5.15) that the image of (D? - (polyg ) v, )n>1

under 1.5.15) is given by D - <D2 . ﬁ -idy {6}) oy The additional factor D appears because of
: n>1

the isomorphism £,, = [D]*L,, involved in (1.5.15) (cf. (1.5.14)) and because of Cor. 1.4.4.

In a similar way one checks that the image of (D-[D]*poljg )»>1 is given by (D- ﬁ 'idHE[D]) o
- : n>1
This time no additional factor D comes in because in the definition of the class D - [D]*polgy the

isomorphism [D]*L,, = L,, is used and eliminates the inverse isomorphism involved in (1.5.15).

Finally, the system (multn <pol§R,D2_1{€},1E[D] )) . is mapped under (1.5.15) to

n

. k
. € }g% Homp, 0 (HE[D]a H SymoE[D]HE[DJ>'

1 . .
D (o gy (0% i, i),
k=0

n—1) >

This can be verified as follows:

Observe that (by definition) the component polgm D21y ~1p, is mapped under the composition

lim Hig(Up/Q, L,) = lim Homp, 4 (Os. ker(a},))

- }gr} HomDS/Q(OS, (TE[D))+ipLn) =~ lig% Homp, 1, o (OE[D}, H Sym?’QE[D]HE[D])
> n> Pl
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to the section % (D% 1y} — 1gipp) of ITrso Sym’éE[D]’HE[D].

A careful analysis shows that the previous map and (1.5.15) fit into a commutative diagram

lim,>1 Hig (Up/Q, L) lim,,>1 Homp,, ) o (Opip), [Tieg Symo,, , o))

(multy, ), >1 l J/

lim,, > Hig (Up/Q, ), ®0y,, Ln) —=lim,>1 Homp,, . (HEep)s | SymléE[D]'HE[D])

where the right vertical arrow is given under the canonical identification

Homp,p, (”HE[D]’ II Sym'éE[D]HE[Dl) =~ Homp, ;o (OE[D]v M0 ©0pm | | Sym’éE[D]HE[D])
k=0 k=0

by composition with D-times the following chain of maps:

H Sym’éE[D]HE[m = M) ®0p HE[D] @0 H Syng[DJ%E[D]

k=0 k=0
n—1 n
k k
—H 10 @00 HoD] @0pm || SYME 410 Heun) = Hip) ©0pm | [ SYm6 ., Hein)-
k=0 k=0

Here, the first arrow is the standard map, the second is given by the transition map of the symmetric
power - hence acts on Og(p; by n-multiplication (cf. Lemma 1.1.5) - and the third is multiplication
in symmetric powers. The additional factor D comes in essentially because an inclusion of the form
Hp — L1 — [D]*L; appears when one constructs (by using the maps mult,,) the right vertical
arrow of the above diagram such that it really commutes; then one applies again Cor. 1.4.4.

The image of the section % -(D?- Ltey — 1gp)) under the previous chain multiplied with D is indeed

equal to D- ﬁ -(D?-idy oy —idwg ), as one readily checks. This clearly finishes the proof. [J

Remark 1.5.8

In terms of extension systems Prop. 1.5.7 expresses as the following equality in Ext%)UD e (Hup, Ln):

mult,, (polgz_l{ﬁ}_lE[D]) = D?- (pol")y, — D - [D]*pol”,

where mult,, is the map of Rem. 1.5.6; analogously as before, to define the extension class of the
right side one uses the identifications [D]*Hy ~ Hy, and [D]*L,, ~ L,,.

1.5.4 Proof of Lemma 1.5.3

We have to show the following statement:
Let n > 0 and consider the composition

(1.5.16) HO(B[D], Op,p,) = HY(ED],ip L) 2 HO(S, HE(E/S, L)

of the inclusion (1.5.11) with the morphism o2 of (1.5.7) in global S-sections. Then the element
D? .14 — 1gp) € HY(E[D], Ogp)) is mapped to zero under (1.5.16).

Proof:
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We will show that D? - 1{ey — 1gp) is mapped to zero when we further compose (1.5.16) with the
identification H(S, H3x (E/S, L)) = H°(S, Og) coming from Thm. 1.2.1 (i):

O’D ~
(1.5.17) H°(E[D],Og|p)) < H°(E[D],i}L,) In (8, HY(S, Hiz(E/S, L)) = H°(S,Og).
First Step:
We claim that the section 1g(p) € H°(E[D], Ogpj) maps to D* € H°(S, Og) under (1.5.17).
For this we begin by observing that the following diagram commutes:

) (S, B2 (E/S, £n)) — > HO(S, Os)

l lid
a5 (S)

HY(E[D], Op|p)) ——= H"(S, Hg(E/S)) HY(S, Os)

HY(E[D], i3 L)

(1.5.18) ican
tr(S)

Here, ® is the last arrow of (1.5.17) and tr(.S) denotes the trace isomorphism in global S-sections.
The morphisms can are induced by the composition £,, — Op of transition maps. The two small
diagrams commute by the definition of ¢ and functoriality of the procedure that led to (1.5.7).

We may prolong the previous diagram on the left by the following commutative diagram:

H°(E[D],ipLn)

/

(1.5.19) HO (E[D], OE[D]) can

H°(E(D], Opp))

Here, the upper left arrow is the map (1.5.11), and the diagram indeed commutes: when check-
ing this one has to observe the factor % used in the definition of (1.5.11) and that the projection
| Sym’éS'H — Og induced by £,, — Og is given by n! - idp, according to Lemma 1.1.5.

From the commutativity of (1.5.18) and (1.5.19) we see that the claim of the first step reduces to

verifying that 1 z[p) maps to D? under the composition

(15.20) HO(ED], Opip) ™% HO(S, 13 (B/5)) " HO(S, 05).

It suffices to show that this holds after transition to an étale covering (S; — S); of S, as one checks
without difficulties.!® Further, we can choose an étale covering of S with affine schemes S; and the

property that over S; the divisor E[D] becomes equal to a divisor of the form [P}] + ... 4+ [P},,] with

150ne uses that the assignment T' +— HO(T, Or) defines a sheaf on the étale site of S (cf. [Mi], Ch. II, §1, Cor. 1.6) and
that the maps in (1.5.20) are compatible with base change over S in the sense that when setting E; := E X g S; we have a
commutative diagram

o (s) tr(S)
HO(E[D),Ogp)) —— H°(S,H3y (E/S)) ———

\L o (8) l

HO(E;[D], O, p)) ——= H(Si, Hip (Ei/S:))

HO(S,05)

tr(S;) \L

— H%(8i,0s,)
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sections P} € (E xg95;)(S;), as follows from [Kat-Maz], Thm. 2.3.1, Prop. 1.10.12 and Thm. 1.10.1.

Altogether, we may hence assume from the beginning that S is affine and that
E[D] = [Pi] + ... 4+ [Pp2]

with sections Pj, € E(S). Now consider again the composition (1.5.20):

The image of 1(p) under o () is the fundamental class of the divisor E[D] = [Pi] 4 ... + [Ppe]
(essentially, this is [Co2], Lemma 1.5.1). As tr(S) maps this class precisely to D? (cf. [Kat1], 7.4!%)
the claim of the first step of proof is shown.

Second Step:
We claim that the section 1y € H(E[D],Ogpj) mapsto 1 € H°(S,Og) under (1.5.17).

As in the first step one is reduced to show that the image of 1.} under (1.5.20) equals 1 € HO(S,Og).

To see this one considers the composition
(TD
(1.5.21) HO(S,05) = HY(ED], Opp) 5% HO(S, B2 (E/S))

in which the first arrow is given in the natural way by the decomposition E[D] = (E[D] —{e})II{e},
i.e. by extending functions to zero on E[D] — {e}. Itis clear that (1.5.21) is just the map o((S) of

Lemma 1.2.3 (ii). From Lemma 1.2.5 it then follows that the composition
0 0 95 (S). 170 2 tr(S). 170
H”(S,05) — H (E[D],Ogp)) — H (S, Hjr(E/S)) —= H" (S, Os)

is the identity. As the image of 1 € HY(S, Os) under the first of these arrows is 1 € H°(E[D], Og1p))
we deduce the claim of the second step of proof.

Combining the two steps of proof yields the statement of Lemma 1.5.3. O

16The projectiveness assumption made there is unnecessary.
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Chapter 2
The logarithm sheaves and the Poincaré bundle

We resume the general geometric setting

€

/\

X T

N

Spec

fixed at the beginning of the previous chapter, i.e. X is an abelian scheme of relative dimension g > 1
over a connected scheme S which is assumed smooth, separated and of finite type over Spec (Q).

All notation introduced so far remains valid for the present chapter.

2.1 A preliminary discussion

We provide a clean articulation of the heuristic which will stand as a guiding principle behind all
further progress of the present chapter. Pointedly formulated it says that we can fully reconstruct the
first logarithm sheaf of X/S/Q if we know "the first logarithm sheaf of X/S". The last might be
defined in complete analogy to the first logarithm sheaf of X/S/Q, but by considering D - resp.
Ogs-linear structures instead of Dy /q- resp. Dg/q-linear structures.

In again more immediate terms: when searching for a (conceptual or explicit) description of the
logarithm sheaves of X/S/Q we may at first safely forget that the connections are in fact absolute,
i.e. Q-connections, and instead try to find the adapted connections relative .S: the reason is that these
prolong uniquely to the desired Q-connections, which will be the content of the crucial Prop. 2.1.4.
Let us finally remark already now that, of course, at a certain future stage it will become inevitable to
leave the lines of this policy and to interpret conceptually resp. compute explicitly those completely
abstract prolongations. This will happen essentially in 2.6 resp. (in the universal elliptic case) in 3.5.4.

From absolute to relative connections

In 1.1 we introduced the first logarithm sheaf of X/S/Q as a triple (£1, V1, 1) consisting of a O x -

vector bundle £; with integrable Q-connection V1, sitting in an exact sequence of Dy g-modules
(2.1.1) 0—>Hx L1 —-0x =0
which represents the first logarithm extension class, together with the choice of a Dg /g-linear splitting

01:0s@H~e Ly
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for the pullback of (2.1.1) along the zero section e.
By the first logarithm extension class of X/S/Q we understood the class in Ext%)x /Q(O x, Hx)

projecting to the identity and retracting to zero in the split exact sequence
212) 0 EBxth_ (05, H) " Exth_ (Ox,Hx) — Homp, (05, H' ®o, H) — 0

which is part of the five term exact sequence associated with the Leray spectral sequence for H x.
Throughout, the vector bundle Hx = 7*H was endowed with the pullback of the dual of the GauB-

Manin connection relative Spec (Q) and Ox with the connection defined by exterior Q-derivation.

We now consider the restriction relative S of these connections such that Hx = 7*H is equipped
with its canonical S-connection (given by d ® id, cf. 0.2.1 (v)) and Ox with exterior S-derivation.
For Q% / s(Hx), the de Rham complex relative S for H, we have a Leray spectral sequence of

hypercohomology (use [Dim], Thm. 1.3.19 (ii)):

EY? = HP(S, HiR (X/S) ©0s H) = EPYT = HPT(X, Q% /5(Hx)) ~ Ext%t{q/s((’)X,HX).

The beginning of its five term exact sequence and (2.1.2) fit into the following commutative diagram

with exact rows' which are both split via the retraction induced by ¢*:

0 —= Exth_ (Os,H) "> Exth_ (Ox,Hx) —> Homng o (Os, H" ®o; H) —= 0

(2.1.3) can l can l can l

00— Extés (Os,H) LA Ext%jx/s((’)x,Hx) —— Homog (05, HY ®og H) —=0

Here, the vertical arrows are the forgetful ones, i.e. given by restricting (Q-connections to S-connections,
the pullbacks via 7 in the lower line are equipped with their canonical S-connections, and the projec-

tion in this line is given by mapping the class of a Dx,g-linear extension
0—+Hx = M—=0x—0

to the first boundary map Og — H" Qo H in the long exact sequence for the derived functors of
HYR(X/S, =) (cf. [Kat2], (2.0)).
Two auxiliary results

We will need the following two lemmas.

Lemma 2.1.1

Suppose we are given two extensions of Dx s-modules

M: 0—=Hx 24 MPL 0050

N: 0= Hx XN 204 50

IFor the surjectivity in the lower line observe that the five term exact sequence continues with the arrow H2(S,H) —
Ext?DX/S (Ox,Hx) which is in fact injective: note that (by compatibility of the Leray spectral sequences for Q% / S(’H x)

2 can

Dx/S(OX7HX) —>EXt?DX(OX)HX) =~

H?(X,Hx) is the map on cohomology induced by 7 which in turn is injective because of the existence of e.

and for H x ) the composition of this arrow with the canonical morphism Ext




A PRELIMINARY DISCUSSION 93

with Og-linear splittings

or Os @H~ M
oN 05 DH ~ N

and the property that the classes of M and N in Ext%;x /s (Ox,Hx) are equal - e.g. if they both map
to the identity under the lower projection of (2.1.3).

Then there exists a unique isomorphism of M and N which respects the splittings.

Proof.
Existence:

As the classes of M and N in Ext%x/s (Ox,Hx) are equal there exists a D, g-linear isomorphism
M ER N which is compatible with the extension structures. For any Og-linear morphism Qg <> H
the map f + jy o () o par : M — N defines a Dx/g-linear isomorphism compatible with the
extension structures. It additionally respects the splittings if we choose p in the following way:
Define an isomorphism of Og-modules 1 : Og & H — Og @ H by the commutative diagram

em L e

OsaH -1 05 H

and set u to be the composition
p—1 a
p:0s S Os o H 2 05 OH S .

Then f + jny o 7* () o pas indeed respects the splittings, as one can verify in a calculation.

Uniqueness:

It clearly suffices to show that the following is true: if (M, ¢ys) is an extension with splitting as in
the claim of the lemma, then any automorphism A of this pair is the identity.

Note that by assumption h : M = Misa Dy /s-linear isomorphism such that €*(h) is the identity.
That then already h = id holds follows by an argument already used in the proof of Lemma 1.4.1.:
Namely, we have to show the vanishing of the Dx/s-linear arrow h — id : M — M which we know
to be zero after pullback via e. By the integrality of X and the fact that M is a vector bundle one
is reduced to consider from the beginning the situation S = Spec (k) with & a field of characteristic
zero. In this case [Bert-Og], §2, Prop. 2.16, yields that h — id is zero not only in the fiber, but already
in the stalk of the zero point of X. As X is integral and M is a vector bundle one can conclude from
this that indeed h — id vanishes. O

Lemma 2.1.2

Suppose we are given two extensions of Dx jq-modules

M: 0—Hx 24 M2 00 50

N: 0—oHx 2NN 00 50
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with Dgq-linear splittings

oM O0s @ H~e'M
(pNZOS@H’l’E*N

and the property that the classes of M and N in Ext%)x /o (Ox,Hx) are equal - e.g. if they both map
to the identity under the upper projection of (2.1.3).

Then there exists a unique isomorphism of M and N which respects the splittings.

Proof. The existence is shown completely analogously as in Lemma 2.1.1 by noting that the Og-
linear map y which was chosen there is now D q-linear and that hence the map f + jy o 7*(u) o pas
is Dx/q-linear. For the uniqueness part it suffices to show that a pair (M, ¢y/) as in the claim has
no nontrivial automorphisms. For this one restricts the Q-connections to S-connections and then uses

the same proof as in Lemma 2.1.1. O

Remark 2.1.3

It is easy to also extract from the preceding two proofs that if (M, yy) is as in the claim of Lemma
2.1.1 resp. Lemma 2.1.2, then the extension M has a nontrivial automorphism if and only if the sheaf
‘H has a nonzero global section resp. a nonzero global horizontal section.

Reconstruction of the first logarithm sheaf from relative structures

We can now come to the essential point of this preliminary discussion.

Proposition 2.1.4

Assume that we are given an exact sequence of Dx;g-modules
(2.1.4) 0= Hx = L] = 0O0x =0,

whose extension class maps to the identity under the lower projection of (2.1.3), together with a

Og-linear splitting
(2.1.5) 01 0s DH ~ € L]

for its pullback along the zero section €. Then the following is true:

(i) The integrable S-connection on L) has a unique prolongation to an integrable Q-connection V'
on L such that the following property holds:

If we endow L7 with V', then the exact sequence in (2.1.4) becomes Dx jq-linear and the splitting
@1 in (2.1.5) becomes Dg q-linear.

(ii) The class of the Dx jq-linear extension given by (2.1.4) via (i) projects to the identity and re-
tracts to zero in the upper row of (2.1.3).

In other words: (L1, NV, }) is the first logarithm sheaf of X /S/Q.

Proof. In view of our assumptions, part (i), and the commutativity of (2.1.3) part (ii) is obvious. It

hence remains to show part (i), i.e. the existence and uniqueness of the connection V.
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Existence:
Fix atriple (L1, V1, ¢1) as in Def. 1.1.1 and consider all involved D x /@~ resp. Dg q-linear structures
restricted to Dx/g- resp. Og-linear structures. The diagram (2.1.3) and Lemma 2.1.1 then imply that

there exists a D x/g-linear isomorphism
n: L]~ L

which respects the extension structures belonging to £} and £, as well as the splittings ¢} and ;.
Via n and V; we obtain an integrable Q-connection V on £} which is easily checked to prolong the
integrable S-connection on £ and to satisfy the property formulated in (i).

Uniqueness:

Assume that V] and 571 are two integrable Q-connections on £} which prolong the integrable S-
connection on £} and fulfill the property described in (i).

Endowing £} one time with V and the other time with VN’l we are given in (2.1.4) two Dx q-linear
extensions (by assumption). The images of their classes under the upper projection of (2.1.3) are
both times the identity: observe the diagram (2.1.3) and that the image of (2.1.4), considered as
Dy s-linear extension, under the lower projection of (2.1.3) is the identity, as was assumed from the
beginning on. Furthermore, both of these classes retract to zero in Ext%)S/Q (Og, M) (by assumption).
Altogether, we can thus conclude from the splitting of the upper row of (2.1.3) that the two Dy q-
linear extension classes we obtain from (2.1.4) via V| and 671 are equal in Ext%)X 10 (Ox,H).

By Lemma 2.1.2 we conclude that there exists a D x,q-linear isomorphism
v (£, V1) =~ (L1, V1)

which respects the extension structure of £7 and the splitting ¢7. Now restrict all involved Dy q-
linear structures to Dy / s-linear structures: then, as V/ and %v’l are equal when considered as S-
connections, v yields an automorphism of the Dx /s-linear extension (2.1.4) with its Os-linear split-
ting ). The uniqueness part of Lemma 2.1.1 then implies that v = id. But v is Dx q-linear , i.e.

horizontal for the Q-connections V| and VN’I This shows V| = 571 O
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2.2 The Fourier-Mukai transformation

Recall from 0.1.1 that we denote by Y the dual abelian scheme of X and by (P°, 70, s%) the birigidi-
fied Poincaré bundle on X x g Y; the last means that we keep fixed a representative (P°, %) for the
universal isomorphism class in Pic’(X x g Y/Y) and note the existence of a unique X -rigidification
59 of P° which is compatible with the Y -rigidification r° of P°.

Recall furthermore that Y stands for the universal vectorial extension of Y and (P,r,s,Vp) for
the birigidified Poincaré bundle with universal integrable Y'!-connection on X X S Y'!: the last was
obtained by first taking the pullback (P,7) of (P°,r°) along the canonical morphism X xg Y% —
X xg Y, by then observing that there is a unique integrable Y-connection V» on P such that
(P, r, Vp) represents the universal isomorphism class in Pic(X xg Y/Y") and by finally noting
the existence of a unique trivialization s for the pullback of (P, V) along the diagram

idx Xéh

X 255 X xg Y0

|,

S—° sy

which (on the level of modules) is compatible with the Yu-rigidiﬁcation r of P; in fact, the isomor-

phism s is the one induced by s in the natural way.

The focus of the present and subsequent sections will lie on the quadruple (P,r, s, Vp) and the
information it contains infinitesimally around the zero section of the X-group scheme X xg Y.

The reason is that the named information comprises a construction of the logarithm sheaves of X/5/Q
with their connections relative S. To ensure that this construction really produces the logarithm
sheaves and to reconcile us with the fact that at first we only have access to the relative connec-

tions is the role of the preceding Prop. 2.1.4.

In the following, we will denote by p : X xgY? — X and ¢ : X xg Y — Y the two projections:

X xgVi—L oyt

X—T .9

The results of the whole present section hold for the general situation of an abelian scheme X /S

over an arbitrary noetherian base scheme S of characteristic zero.

2.2.1 The definition of the Fourier-Mukai transformation

Our geometric construction of the first logarithm sheaf from the Poincaré bundle, at which we are
ultimately aiming, naturally embeds in the formalism of the Fourier-Mukai transformation between
sheaves on Y and D X/ s-modules on X, as introduced by Laumon in [Lau], 3. This transformation
was studied independently by Rothstein (cf. [Ro]) who uses an approach by rather explicit formulas,
assuming S as the spectrum of an algebraically closed field. For our purposes, the perspective adopted

in [Lau] is more profitable, and we begin by recalling and explicating the definition of the relevant
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Fourier-Mukai functor given there as well as the result that this functor is in fact an equivalence.

Of course, the origin for this circle of ideas stems back to Mukai’s seminal work [Mu].

Recall from 0.2.1 (v) that O-module pullback via g induces a functor
q" : Mod(Oy+4) = Mod(Dx x sy /vt ),

defined by endowing such a pullback with its canonical integrable Y *-connection. The left derivation
Lq* is part of a commutative diagram (with lower horizontal arrow given by the usual left derivation

on the level of O-modules)

Lo*
D~ (Oyns) s D(Dx gy ve)

idi lcan

L
D™ (Oys) — 2> D(Ox  svt)

and yields a triangulated functor
(2.2.1) Lq* : D}(Oys) = Dl(Dxxgyi/yve)-

Note that Lg* is actually given by termwise pullback of complexes as ¢ is flat and thus ¢* is exact.

Moreover, taking tensor product with the Poincaré bundle PP and its universal integrable Y %-connection
gives a functor (cf. 0.2.1 (iv))

P ®o (-) : Mod(Dx ysyt/ye) — Mod(Dx i gys/ye)-

XxgYh
Its left derivation P ®5 . (.) sits again in a commutative diagram (with lower horizontal arrow
XXgY

given by the usual left derivation on the level of O-modules)

PRE ()
_ XxgYh
D™ (Dxxsyijys) — = D(Dxxgys/ve)
canl ican
PG )

XxgYh

D™ (Oxxgyn)

and induces a triangulated functor

D(Oxxsv+)

() : DZC(DXXSYWY”) - DZC(DXXSYh/Yh)7

yh

(2.2.2) P b
Xxg

given in fact by tensoring a complex termwise with P because the line bundle P is flat over O x,  yt

and thus P ®o (.) is exact.

xgYh
Finally, recall from 0.2.1 (vi) that taking direct image of O-modules gives rise to a functor
Dx ¢ MOd(DXXSY:l/Yu) — MOd(DX/S)

Its right derivation Rp, sits in a commutative diagram (with lower horizontal arrow given by the usual
right derivation on the level of O-modules)

Rp.
DT (Dxxgya/ve) s D(Dx/s)

cani \LC&D

Rp.
D (Ox ygys) ——— D(Ox)
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and is checked to induce a triangulated functor

(2.2.3) Rp. : Dge(Dx x gyiyvi) = Doo(Dxys)-

Composition of (2.2.1), (2.2.2) and (2.2.3) yields the triangulated functor

(2.2.4) ®p : Db.(Oys) = Db.(Dxys), F*— Rp.(P ®éxw Lq* F*)

which one can view as a "Fourier-Mukai transformation with kernel (P, Vp)".
We record the following fundamental insight about the Fourier-Mukai functor ®p, proven (using

different notations) in [Lau], (3.2), by explicit exhibition of the quasi-inverse:

Theorem 2.2.1
The triangulated functor ®p : DgC(Oyn) — D! (Dx/s) of (2.2.4) is an equivalence of categories.

Let us append that for a single sheaf the cohomology of its Fourier-Mukai transformation has the

following description, as one sees from the above definitions and from what was said in 0.2.1 (vi):

Remark 2.2.2

If F is a quasi-coherent Oy4-module, considered as object of DSC(OW) in the natural way, the i-th
cohomology sheaf H(®p(F)) of its Fourier-Mukai transformation is the quasi-coherent O x -module
with integrable S-connection given as follows: Consider P ®o _— q* F which is endowed with the
tensor product of Vp with the canonical integrable Y ®-connection on ¢*F. Apply the i-th higher
direct image functor R'p, to this connection and identify

R'po(Q o sye )y ®0y, i (PO0,, . €'F)) = O /s ®ox R'p(P 20y, _ye 0°F)

1
XxgYt/Yh

way one obtains a homomorphism of abelian sheaves on X:

via the canonical isomorphism {2 o~ p*Qﬁ( /s together with the projection formula. In this

Rp.(P B0, v ¢ F) = Qx5 ®ox R'p.(P B0y, v g F)

which defines an integrable S-connection. The cohomology sheaf H(®p(F)) is then given by the

quasi-coherent O x-module Rip, (P ®0 *F), equipped with this integrable S-connection.

XxgYh q

2.2.2 WIT-sheaves on the universal vectorial extension

To make the Fourier-Mukai transformation fertile for our aims we need a way to leave the derived
setting and work with honest sheaves. The most convenient way to do this is by force and can already
be found in Mukai’s classical notion of a WIT-sheaf (WIT = weak index theorem) on an abelian
variety (cf. [Mu], Def. 2.3). We here define its analogue for our given Fourier-Mukai functor on the

universal vectorial extension and then present a rather important class of WIT-sheaves of index 0.

Definition 2.2.3
A quasi-coherent Oyy-module F is called WIT-sheaf of index ¢ if

HI(®p(F)) =0 forall j #i.

In this case we write
Fim H'(@p(F)

for the remaining cohomology sheaf in Mody.(Dx/g) and call it the Fourier-Mukai transform of F.
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Remark 2.2.4

(i) If F is a WIT-sheaf of index ¢, then ®p (F) ~ f"[—z] in DZC(DX/S).

(ii) Taking the Fourier-Mukai transform defines a covariant functor from the full subcategory of
Mody(Oy) given by the WIT-sheaves of index i into the category Mod.(Dx/s). It is fully faith-
ful, as one can easily deduce from part (i), Thm. 2.2.1 and the standard fact that Mody.(Oy+ ) resp.
Modgc(Dx/s) are fully faithfully embedded in D, (Oy+) resp. DS (Dx/s).

As is common for the classical Fourier-Mukai transformation we will frequently need the base change
and projection formula. As in our situation integrable connections are involved we need an auxiliary
statement ensuring horizontality of these identifications in an adapted sense. The precise form in

which this will be used is recorded in the following lemma whose proof we postpone to 2.2.4.

Lemma 2.2.5
Let

T —==T
be a cartesian diagram of schemes with a closed immersion o and a smooth morphism .
If€ € Modge(Dz)r), F € Modge(Dyzr jp/) and G € Modqc(O1), then:

(i) The base change isomorphism (cf. [EGAI], Ch. I, Cor. (9.3.3))
V.G = B.0°G

is horizontal if one considers both sides as objects in Moqu(DZ/T) in the natural way (via 0.2.1 (v)
and (vi)).

(ii) The projection formula isomorphism (cf. [EGAI], Ch. I, Cor. (9.3.9))
E®o, BF = B(B*E ®o,, F)

is horizontal if one considers both sides as objects in Modq.(D /1) in the natural way (via 0.2.1 (vi),
(iv) and (v)).

With this observation we can now compute the Fourier-Mukai transforms for an important class of
WIT-sheaves of index 0: these are those Oy4-modules that come from quasi-coherent Og-modules
via the zero section € : S — Y&,

One will note from its proof that the identification recorded in the following proposition crucially
uses (apart from standard canonical isomorphisms) the D/ g-linear trivialization s of (P, Vp). We

nevertheless call it "canonical" because the quadruple (P, r, s, Vp) is always regarded as fixed.

Proposition 2.2.6
Let G be a quasi-coherent Og-module. Then eig is a WIT-sheaf of index O for whose Fourier-Mukai

transform we have a canonical identification in Mod.(Dx/s):

—

(eig) ~ G,

where 7*G is endowed with its canonical integrable S-connection.




100 THE LOGARITHM SHEAVES AND THE POINCARE BUNDLE

Proof. Consider the following cartesian diagram, where we abbreviate 3 := id x x¢’.

X~ X xS X xg Y

S < Yyt

By Lemma 2.2.5 (i) we have a canonical isomorphism of Dy, y+/ys-modules:
q*eig ~ B, 7°G.
Together with Lemma 2.2.5 (ii) and the D/ g-linear trivialization s : 3*(P,Vp) ~ (Ox,d) (be-

longing to the quadruple (P, 7, s, Vp)) we obtain the isomorphism of D , .ys /y:-modules:

P QO syt G =P o , B G ~ Bum*G.

XxgY

Computing the 0-th cohomology sheaf of @p(eig ) then means applying to 5, 7*G the functor
Px : Modge(Dx x gva/ys) — Modge(Dx/s), such that in sum we get the D /g-linear isomorphism

p(P®o, ., ¢"€lG) = (poB)ur"G =G

We finally need to verify
HI (®p(é£G)) = 0 forall j # 0,

for which we show that the j-th higher direct image
Rip.(P@o,, _,, q"€¢G) = Rip.(B.7*G)
vanishes for all j # 0. But as a closed immersion f3 is affine, such that the Leray spectral sequence
EJ* = Rip,R*B,(7*G) = EITF = RITF(idx ), (7*G)
implies for each j an isomorphism
Rip,(8.7G) ~ RI(idx).(7"G).
This shows the remaining claim. O

We finally append the following easy observation:

Lemma 2.2.7

If
0>F -F—=F" =0

is an exact sequence in Modgc(Oy+) and F', F " are WIT-sheaves of index 1, then the same holds for

F and the sequence of Fourier-Mukai transforms in Modq.(Dx/s)
0 F 5 F—=F'—=0
is exact.
Proof. By general theory of derived categories the given exact sequence naturally defines a distin-
guished triangle
F = F—=F"— F'1]

in DgC(OYh ). Applying the triangulated functor ®» to it and then taking the long exact sequence of

cohomology yields both claims of the lemma. O
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2.2.3 Categories of unipotent sheaves

The present geometric situation X /.S permits to define the notion of unipotency for vector bundles
with integrable S-connection on X and to collect such bundles, dependent on their length, in cat-
egories U, (X/S) - analogously as we did in 1.3.1 for integrable Q-connections by considering a
setting X/S/Q. Our motivation to study unipotency now in a purely relative situation is twofold:
First, the category of unipotent vector bundles (without connections) on an abelian variety already
appears in the study of the classical Fourier-Mukai transformation, where one proves its equivalence
with the category of coherent modules on the dual variety which are supported in the zero point
(cf. [Mu], Ex. 2.9). It is thus natural and of its own interest to ask for an analogue of this result
for the present Fourier-Mukai transformation which involves connections and is defined over a base
scheme. We will answer this problem by revealing the category of Oy-:-modules which corresponds
to U,,(X/S) under Fourier-Mukai transformation; the essential ingredients here are the observation
of Prop. 2.2.6 and Laumons derived equivalence result of Thm. 2.1.1. We will remark that over a field
this category coincides precisely with the category of coherent modules on Y# which are supported in
the zero point, as one would expect from the mentioned result in the classical case.

Second, if we want to construct the logarithm sheaves for a setting X/S/Q, then by the discus-
sion in 2.1 it essentially suffices to work with S-connections, which means moving in the categories
U,(X/S). But as was just explained we will prove that the objects of these categories are realizable
as Fourier-Mukai transforms of sheaves on Y. Looking at the definition of the Fourier functor we
thus get the guarantee that there is a way to obtain the logarithm sheaves from the geometry of the
Poincaré bundle on X x g Y. The successive sections 2.3 and 2.4 will then explore this way in detail.
A final result of this subsection is concerned with describing for a Fourier-Mukai transform its pull-
back along the zero section €. By what we just said it is clear that we should address this question

because a construction of the first logarithm sheaf always involves the choice of a splitting along e.

Unipotency and the equivalence result

Let us denote by VIC(X/S) the category whose objects are the vector bundles on X with integrable
S-connection and whose morphisms are the horizontal O x -module homomorphisms. We write V' (.S)
for the category of vector bundles on S. By endowing pullbacks via X =+ S with their canonical
integrable S-connection (cf. 0.2.1 (v)) we obtain an exact functor 7* : V(S) — VIC(X/S).

Definition 2.2.8
Letn > 0.
(i) An object U of VIC(X/S) is called unipotent of length n for X /S if there exists a filtration

U=AUDAUD..DA"UD A U=0

by subvector bundles stable under the connection of ¢/ such that for all ¢ = 0, ..., n there are objects
Vi of V(S) and D g-linear isomorphisms
AUJATUY ~ 7Y,

(if) We write U,,(X/S) for the full subcategory of VIC(X/S) consisting of those U/ in VIC(X/S)
which are unipotent of length n for X /5.
(iil) We write U (X/.S) for the full subcategory of VIC(X/S) consisting of those ¢ in VIC(X/S)
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which are unipotent of some length for X/S. In other words, U (X/.S) is the union of the U, (X/S)

for the canonical embeddings
Uop(X/S) — Uy (X/S) = Ua(X/S) — ... = VIC(X/S).

Note that the zero vector bundle on X with its unique S-connection is an object of each U, (X/S)
and that Uy (X/S) is just the essential image of the functor 7* : V(S) — VIC(X/S).

Remark 2.2.9

By contrast to the categories VIC(X/Q), VIC(S/Q), U, (X/S/Q) and U(X/S/Q), which were all
recognized as abelian (cf. the comment preceding Def. 1.3.1 and the results in 1.3.4) the categories
VIC(X/S), V(S), U,(X/S) and U(X/S) are in general not abelian.

One can demonstrate this easily by a rather general type of example for which one actually only needs
that the morphism 7 : X — S is smooth and surjective and that S is an integral scheme whose ring
of global sections T'(.S, Og) is not a field.

Namely, in this situation one first observes (by flatness and surjectivity of ) that the pullback 7*IC of
a coherent Og-module IC which is not a vector bundle on .S neither is a vector bundle on X.

Now choose a non-zero non-unit element £ € I'(S, Og) and note (by integrality of .S) that it induces
an exact sequence

O—>Osi>(’)5—>lC—>0

with a non-zero coherent Og-module C which then can’t be a vector bundle on S. Endowing pull-

backs with their canonical integrable S-connection we obtain an exact Dx,s-linear sequence
0—-0x - 0x 7K —0,

where 7*C can’t be a vector bundle on X, as was already remarked.
We have thus constructed a morphism in V' (S) resp. in VIC(X/S), U,(X/S), U(X/S) whose cok-
ernel in Mod(Og) resp. in Mod(Dx /g) does not belong to these categories.

Definition 2.2.10
Letn > 0.
An object F of Mod.(Oy+) is called unipotent of length n for Y%/ if there exists a filtration

F=A"FOAFDO. . DA"FOA"™MF=0

by quasi-coherent Oy--submodules such that for all ¢ = 0, ..., n there are objects ); of V(S) and
Oy -linear isomorphisms
ATFJAFLF ~ &y,

The categories U,,(Y?/S) and U (Y /S) are defined analogously as in Def. 2.2.8 (ii) and (iii).
Note that the zero sheaf on Y lies in all U,,(Y%/S) and that Uy(Y?/9) is the essential image of the
functor € : V(S) — Modge(Oy).

Remark 2.2.11
It is easy to see that a Oy;-module F which belongs to U(Y?/S) is actually coherent.

We write J C Oy for the ideal sheaf defined by the zero section S =Yl
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Theorem 2.2.12
Letn > 0. Then:

(i) If F is an object of U, (Y?/S) then it is a WIT-sheaf of index 0 and satisfies J"' - F = 0.
The Fourier-Mukai transform F is a vector bundle and belongs to U,,(X/8S).

(ii) Taking the Fourier-Mukai transform induces equivalences of categories

() Un(YH/8) = Un(X/S),
() UY")S) = UX/S).

Proof. Part (i) is easily shown by induction over n and usage of Prop. 2.2.6 and Lemma 2.2.7.

As to part (ii) recall from Rem. 2.2.4 (ii) that the Fourier-Mukai transform defines a fully faithful
functor from the category of WIT-sheaves of index 0 into the category Mod,.(Dx/s). Together with
(i) we can then conclude that the functors in (ii) are well-defined and fully faithful. It remains to show
their essential surjectivity, and it is sufficient to do this for the functors (/\) U (YR)S) — U, (X/S),
where n > 0. The proof proceeds by induction over n as follows:

For n = 0 the claim clearly follows from Prop. 2.2.6.

Let now n > 1 and U be an object of U,,(X/S). We find an exact sequence in VIC(X/.S)

(2.2.5) 0—AU—-U—- 7Y =0

for some Og-vector bundle ) and AU an object of U,,_1(X/S). By induction hypothesis there
exists F in U,,_1(Y?/S) such that F ~ A%, and together with Prop. 2.2.6 we obtain from (2.2.5)
an exact sequence in VIC(X/S):

o —

0= F—U— (EY)—0.

This naturally provides a distinguished triangle in Dgc (Dx/s):

—

(2.2.6) F U — () — F[1].

From part (i) and Prop. 2.2.6 we know that F and ¢ ) are WIT-sheaves of index 0, such that (2.2.6)
writes in view of Rem. 2.2.4 (i) as a distinguished triangle in DgC(DX/S):

(2.2.7) Dp(F) = U — Op(2Y) — Op(F)[1].

By Thm. 2.2.1 the functor ®p : DgC(Oyh) — DZC(DX/S) has a quasi-inverse <I>7§1. Applied to
(2.2.7) it yields a distinguished triangle in DY (Oy+):

F = o5 U) — Y — F[1].
Going into the long exact sequence of cohomology we obtain that H7(®5' (U)) = 0 for j # 0 and an

exact sequence in Modyc(Oy+):
(2.2.8) 0— F — HY (@' (U)) — €Y — 0.

As ®3'(U) has cohomology only in degree zero we have HO(®5"'(U)) ~ &5 (U) in Dl (Oys).
In particular, we obtain ®»(H(®,'(U))) ~ U in DSC(DX/S). If we know that H%(®5' (1)) is
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an object of U, (Y?/S) the preceding observation and Rem. 2.2.4 (i) imply that the Fourier-Mukai
transform of HO(®,'(U)) is isomorphic to U in DZC(DX/S) and then also in Mody.(Dx,g) (by
general theory of derived categories), which proves the claim. But as F is in U,,_1(Y?/S) the exact
sequence (2.2.8) clearly shows that H(®5' (1)) belongs to U, (Y#/S). O

Remark 2.2.13

From part (i) of the previous theorem we see in particular that sheaves of U (Y#/S) are supported in
the zero section of YH, If S = Spec (k), with k a field of characteristic zero, we can show that a
coherent Oy;-module is in U (Y% /k) already if its support is concentrated in the zero point e? of Y.

Hence:
U(Y*®/k) = (Coherent Oy;-modules with support in e?) ~ (Oy es-modules of finite length),

where the right equivalence is induced by taking the stalk in €. Herunder, the category U,, (Y /k)
corresponds to those Oy - resp. Oy .:-modules which are annihilated by J "+1 resp. by Je’;“.

By part (ii) of the previous theorem these categories are equivalent to U (X/k) (resp. to U, (X/k)),
and one can also check that the length of a Oy .s-module of finite length equals the rank of the
corresponding unipotent vector bundle with integrable k-connection on X.

These are analogues of the results for the classical Fourier-Mukai transformation in [Mu], Ex. 2.9.

The pullback along the zero section

Definition 2.2.14

We keep denoting by J C Oy the (coherent) ideal sheaf of the zero section ¢ : S — Y5,

For each n > 0 we write YTE for the closed subscheme of Y defined by the (coherent) ideal sheaf
J"H C Oye.

The following two diagrams (whose hitherto undefined arrows are always the evident ones) introduce

some relevant notation associated with V7.

<-:><idYq
. & /‘\
S Y - & X xgYi——>Y]
\ J/ri - idx Xin < J{pn lﬁl
S X i S

Finally, we denote by (P, Vp, ) the pullback (cf. 0.2.1 (v)) of (P, Vp) along the diagram

‘d h
X xgYi—2"" X xg Y

Y - \&

o

and by r, resp. s, the Oy :-linear trivialization of P along € x idy s induced by r resp. the D, g-
linear trivialization of (P,,, Vp, ) along idx X1, induced by s.

We collect these data in the quadruple (P, 7y, Sn, VP, )-

Remark 2.2.15

One can check that 7%, : Y;% — S is a finite locally free morphism.
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The canonical identification in the following proposition makes (apart from standard canonical iso-
morphisms) essentially use of the trivialization 7,, induced by r, as will be seen in its proof. Like in
Prop. 2.2.6, where the analogous situation with the trivialization s occurred, we speak of a "canonical”

identification because the Poincaré quadruple (P, r, s, Vp) is always fixed.

Proposition 2.2.16

Forn > 0 and F in U, (Y"/S) there is a canonical functorial isomorphism of vector bundles on S:
& F ~ (78) 4 F,
where F is naturally considered as Oy,s-module due to T F =0(cf Thm. 2.2.12 (i)).

Proof. Observing the cartesian diagram

idx Xe€E

b
X xg Vi X xg Ve

o] | I

yi oy

and Lemma 2.2.5 one deduces a canonical D s-linear isomorphism

~

(2.2.9) F o~ (pn)*(Pn ®OX><Syh q:r]:)v

where on the right side the sheaf in brackets is endowed with the tensor product of Vp_ with the
canonical integrable Y,?-connection on ¢ F; taking direct image along the second (cartesian) diagram
of Def. 2.2.14 gives the integrable S-connection on the right side of (2.2.9) (cf. 0.2.1 (vi)).

Moreover, abbreviating h,, := € X idy s, the cartesian diagram of affine maps

yi—" o8

J ]

X xgVf s X
yields the canonical Og-linear base change isomorphism (cf. [EGAI], Ch. I, Cor. (9.3.3)):
€ (pa)e(Pu B0, GiF) = () i(Pao . G F)
By combination with (2.2.9) we obtain

EF = (pa)e(Pa®o, o i F) = ()i (Pa o o a1 F) = (m).F,

xgYh

using in the last step the trivialization r, : hy, Py, ~ O, induced by the Yi-rigidification  of P. [J

2.2.4 Proof of Lemma 2.2.5

Recall that the lemma in question is occupied with a cartesian diagram of schemes

7Lz




106 THE LOGARITHM SHEAVES AND THE POINCARE BUNDLE

with a closed immersion o, a smooth morphism y and sheaves £ € Modyc(Dz/r), F € Modgc(Dzr /77)
and G € Modgc(Orv).

Proof of (i):
Let ¢ be the base change isomorphism for G on the level of O-modules. We have to show that the
diagram

VG ——= Q. ®o, Vg
WL iid@w

is commutative, where the horizontal arrows are the integrable T-connections on v* .G resp. 3,0*G.
We may assume that Z is affine and thus also that 7" is affine (by starting with an open affine covering
of T, taking inverse images in Z and covering these by open affines). But as « and [ are closed
immersions (hence affine maps) we are reduced to the situation where all involved schemes are affine.

Our cartesian diagram of schemes then expresses as a diagram

Spec (B/aB) £, Spec (B)
% J{v
Spec (A/a) —*— Spec (A)

with rings A, B, an ideal a C A and with aB the ideal generated by a in B via A — B.
The quasi-coherent sheaf G corresponds to a A/a-module G.

One checks that §*G with its canonical integrable T”-connection is given by the A/a-linear map

The sheaf 5,6*G with its integrable T-connection then arises from this by using the isomorphism
Q%B/QB)/(A/a) o~ QlB/A ®p B/aB and considering B/aB ®,4,/, G as B-module. In brief, one

checks that the integrable T-connection on 5,0*G is given by the A-linear map
(2.2.10) B/aB®4/a G — Qp/a @p (B/aB®4saG), bog—dbe1®y,

where B/aB ® 4/, G has the obvious B-structure (i.e. via the first factor) and where with b we mean

some representative of b in B. But as B-modules we have canonically
B/aB®4/qG~B®sG bgb®yg,
which is precisely the base change isomorphism. Under this identification (2.2.10) translates into
B@aG— 05,03 (BRAG), bg—d®1®y,
which corresponds to v* .G with its integrable T-connection. This shows (i).
Proof of (ii):

We may again assume that all schemes are affine and adapt notations as in the proof of (i).

Let F correspond to the B/aB-module F' with integrable 7’-connection given by the A/a-linear map

Vr: F = Qpjap)jaje) @8/an F
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as well as £ to the B-module E with integrable T-connection given by the A-linear map
VE FE— QlB/A XB E7

such that the integrable 7T-connection on (3, F is given by using the map V  and the B-linear isomor-

phist%B/aB)/(A/a) ®@pap F ~ QlB/A ®p F.

If we have e € E and f € F we write
VE(G):er'dtj®ej; VF(f):Z’L_le'l_h@fZ,
J i

with r;,t; € B,e; € E and with 4;,7; € B/aB, f; € F. Note that we use the description of the dif-
ferential module Q7 /438 free B-module over the symbols db (b € B) modulo the usual equivalence

. . . 1
relations, and similar for Q(B/uB)/(A/u).

Then the tensor product connection on £ ®p,, B.F is given by the A-linear map
E@pF — Qp,, @ (E@p F)

J i

(2.2.11)

On the other hand, 8*£ corresponds to the B/aB-module B/aB ® g E with integrable 7”-connection
given by a A/a-linear map
B/aB Xp E — Q:(I-B/GB)/(A/CI) ®B/aB (B/GB XB E)

Under the identifications B/aB ~ A/a ®4 B and Q%B/QB)/(A/Q) ay Q}B/A ®p B/aB this writes as
Afa®@sE = Qp, @p (AJa@aE), a@er » rj-dt;@awe;.
J

Note that the B/aB-structure on A/a ® 4 E is given in the natural way, i.e. by multiplying represen-
tatives into the B-module E.

If we again use the identification Q% B/aB)/(A/a) B/aB®pQj /A> then it is easily checked that the
integrable 7"”-connection on 3*£ ®e,,, F writes as the A/a-linear map

(AJa®a E) ®pjap F — ng/A ®p ((A/a®a E) ®p/ap F)),

Qe [y rjd;0a@e;® f+Y u-dy@aged f.
J 4

(2.2.12)

Now observe that the operation 3, applied to "€ ®p,, F just means that we have to regard the

modules in (2.2.12) as B-modules. But we have the canonical isomorphism of B-modules
(A/a®a E)®pjap F' ~ (A/a®s B®p E) ®4/aw,p) F ~ E®p F.
As 1® e ® f corresponds to e ® f under this identification we see that (2.2.12) becomes
E@pF —Qp,,®p (E®p F),

c@frry rdt;@e; @ f+) ui-dvi®e® f,
j A

(2.2.13)

which by construction is the integrable T'-connection on £ ® o, 8.F obtained from the connection on
B+(B*E ®0,, F) via the projection formula. Comparing (2.2.13) and (2.2.11) proves (ii).
O
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2.3 The first logarithm sheaf and the Poincaré bundle

We return to the geometric situation X/S/Q fixed at the beginning of this chapter and recall the
crucial observation made at the end of 2.1: Equip H x with its canonical integrable S-connection and

Ox with exterior S-derivation. Assume we have an exact sequence of Dx/g-modules
0—Hx — L] = Ox —0,
mapping to the identity under the lower projection in (2.1.3):
Ext};x/s(ox, Hx) — Home, (05, 1" @04 H),

together with a Og-linear splitting
01 Os®H ~ e L]

for its pullback along the zero section € : S — X. Then, by Prop. 2.1.4, the integrable S-connection
on £} extends uniquely to an integrable Q-connection such that the previous data become the first
logarithm sheaf of X/S/Q.

We are now prepared to construct such data from the first infinitesimal restriction (Py, 71, $1, Vp, ) of
the quadruple (P, r, s, Vp) - for the definition of this restriction recall Def. 2.2.14.

It is also useful to dispose of an equivalent viewpoint provided by the more hermetic machinery of the

Fourier-Mukai transformation, with which we begin.

2.3.1 The construction of the fundamental data
Construction via the Fourier-Mukai formalism

Consider the canonical exact sequence of Oy;-modules:

(2.3.1) 0= T/T* = Oy:/T* = Oy: /T — 0.

Noting that 7 /77 is the conormal sheaf of the regularly embedded section €? : S — Y we have a
natural isomorphism of Oy-;-modules (cf. [Fu-La], Ch. IV, Lemma 3.8):

TIT? ~ (). (Lie(Y/5)").
Together with the fundamental canonical identification Lie(Y*®/S) ~ H} (X/S) of (0.1.5) we get
(2.3.2) T/ T? ~ (). H.

Moreover, we clearly have
Oy /T ~ (9),0s,

such that (2.3.1) translates into the Oy;-linear exact sequence
(2.3.3) 0— (9)H = Oy:/T? = (¢1),05 — 0.

By Prop. 2.2.6 and Lemma 2.2.7 its terms are WIT-sheaves of index O and the associated exact

sequence of Fourier-Mukai transforms writes as a Dx, s-linear sequence

2.3.4) 0— Hx — Oy /T2 — Ox — 0,
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where H x is equipped with its canonical integrable S-connection and O x with exterior S-derivation.
Observe furthermore that by Prop. 2.2.16 the pullback of (2.3.4) along € : S — X identifies with the

exact sequence (2.3.3), where now all its terms are to be considered as Og-modules:
(2.3.5) 0—H— (ﬂ)*oylh — Og — 0.

Note that the morphism 775 : Ylh — S obviously provides a section for the sequence (2.3.5) and thus
a Og-linear splitting

(2.3.6) Os & H = (r}).0y.
Altogether, we obtain a Og-linear splitting for the pullback of (2.3.4) along e : S — X:
(2.3.7) Os & H = € (Oy:/T?).

Let us now illustrate how the data (2.3.4) and (2.3.7) are explicitly induced by the quadruple (P;, 71, 51, Vp, ).

Construction via the Poincaré bundle
It is useful to have in sight the following diagram of cartesian squares:
X—" =9
idx Xis i1
X xg Vi L5 v
idx xel el
X xgYti Lyl

P il

X il S
Associated with the closed immersion 41 is the canonical exact sequence of (’)Yu—modules
(2.3.8) 0— (i1)«H — Oy — (11)+O0gs — 0,

where we have identified the ideal sheaf of 41 with (i1).H by (0.1.5).
Pullback of (2.3.8) along the (flat) projection g; gives the exact sequence

(2.3.9) 0— (ldX X il)*HX — OXXSYIH — (ldX X il)*OX —0

which identifies with the canonical exact sequence associated to the closed immersion idx x?;: note
that the ideal sheaf of idyx xi; is the pullback of the ideal sheaf of i;. The sequence (2.3.9) is
horizontal for the integrable Yf-connections given by the direct image along the upper square of the
canonical integrable S-connections on H x resp. Ox and by exterior Yf—derivation on O XxsYE"
Tensoring with (1, Vp, ) and using Lemma 2.2.5 (ii) together with the Dx, g-linear trivialization

81t (ldX X il)*(P17 Vpl) ~ (Ox,d)
yields the exact sequence of D SYE/YS -modules

(2.3.10) 0— (ldx X il)*HX — P = (ldX X il)*OX — 0;
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the surjection comes alternatively from the adjunction P; — (idx X i1).(idx x 41)*P; and from s;.
Finally, taking direct image of (2.3.10) along the digram

X xg Vi y?

Ik

X—" o9
gives the exact sequence of Dx,s-modules
(2.3.11) 0—Hx — (pl)*Pl — OX — 0.

Note that we have a canonical isomorphism between the extensions (2.3.4) and (2.3.11):

OAHX%O;/\‘YQAOX —0
(2.3.12) idi ~l idl

0—Hx — (p1)+P1 —=Ox —0
which is induced by the chain of natural identifications

Oy+/T? = pi(P®o, ., 0" (Oy:/T*) = pu(P @0, ., d"(€).0y:)

~ p.(P ®o, (idx x eﬁ)*oXXsyln ~ p.(idy x €1), Py ~ (p1). Py

xgYh

whose horizontality is guaranteed by Lemma 2.2.5.
The pullback of (2.3.11) along € : S — X is Og-linearly split by

(2.3.13) € (p1)«P1 = (79), (e x idys)" Py = (ﬂ),ﬁoylh ~ 05 ®H,

where the first map is the base change isomorphism along the cartesian diagram of affine maps

vi—" o8
EXidylu \L Le
g P
X x S Yl —X
the second is induced by the trivialization
r1: (e X idylu)*Pl ~ Oylu

and the third is given by (2.3.6). Under (2.3.12) the splittings (2.3.7) and (2.3.13) correspond.

2.3.2 The main result

With the explanations at the outset of this section our goal must now clearly consist in proving

Theorem 2.3.1
The class of the extension (2.3.11) maps to the identity under the lower projection in (2.1.3):

(2.3.14) Extp, o (Ox,Hx) = Homoy (H, H).
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Proof. Let us write  : H — H for the image of the class of (2.3.11) under (2.3.14) and recall from
(2.3.12) that ¢ is also equal to the image of the class of (2.3.4) under (2.3.14).

We now proceed in several steps.
Step 1: (Reduction to the case S = Spec (k))

As H is a vector bundle and S is integral the map ¢ is the identity on H = HJz(X/S)" already
if for all points s € S its pullback along the canonical morphism f : Spec (k(s)) — S is the identity
on Hlg (Xs/k(s))Y. Here, we set X := X x g Spec (k(s)), viewed as abelian variety over k(s), and
recall that H ) (X/S) is compatible with arbitrary base change (cf. the beginning of Chapter 1).

X, —> Spec (k(s))

X—" =59
Now observe that clearly everything we said in 2.3.1 applies equally well for the situation of an abelian
variety over a field of characteristic zero and that in this situation we also have the map (2.3.14),
defined in the same way as done in 2.1 under different assumptions on the base scheme S. This is
important to note because in the following we will reduce to and work in this situation.
Indeed, in our previous consideration of the fibers X over points s € S the respective maps (2.3.14)

are checked to fit into a commutative diagram

Extp, o (Ox, 7 Hig(X/S)") Homo (Hig (X/S)Y, Hig(X/S))
gil lf:
Exth, . (Ox., 7 Hig (X, /k(s))") —= Hompo)(Hig (X, /k(s))", Hig (Xo/k(3)¥)

Moreover, it is straightforward to see that under the left vertical arrow (2.3.11) maps to the class of the
extension obtained by performing the construction that led to (2.3.11) with the Poincaré quadruple for
X, x Y? naturally induced by (P, r, s, Vp). From this one easily concludes that from the beginning

on one may assume S = Spec (k) with k a field of characteristic zero, which we will henceforth do.
Step 2: (The situation on the universal vectorial extension)

Claim: There exists a canonical isomorphism of k-vector spaces
(2.3.15) Ext}jyh (Oy:/T,T|T?) = Homo (T /T, T/ T?)

under which the class of (2.3.1) maps to the identity.

Proof of the claim: From the natural exact sequence

02T = Oyt = Oys/T =0
we obtain? from the long exact sequence for Homo_, (—, Oy:/J) an isomorphism

HOHlOYh (j7 OYh/j) % EXt%Dyh (OYh/j7 OYh/j)

2Note that
Exty , (Oyy, Oye/T) = HY (Y, Oy /T) = H (Spec (), Ospec (k) = 0
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We precompose it with the isomorphism

Homo , (J/J?,Oy:/T) = Homo_, (T, Oy:/T),
induced by the natural map J — J/J 2, in order to obtain an isomorphism
(2.3.16) Homo , (7 /J% Oys/T) = Exto_, (Oy:/T, Oy:/T).
The desired isomorphism (2.3.15) is then defined to be the composition

Exto ,(Oy:/T,T/T?) =~ Exte_, (Oy:/T,0y:/T) @ T/ T
~ Homo_,(J/T? Oy:/T) @ T/ T* ~Homo_,(T/T* T|T?)

in which the second identification is given by (2.3.16) and the others are the canonical ones. Let us
remark that here and henceforth in this proof 7 /7?2 and Oy /J are often freely viewed either as
OEY—modules or as k-vector spaces. We have thus defined a canonical isomorphism as in the claim.

In terms of a k-basis {e1, ..., e94 } for J /T2, if we are given an extension
0= J/J* = F — Oy:/T =0,
then by pushout along the projections corresponding to the e;:
i T)T* = Oy:/T, i=1,..2g

and by using the inverse of the isomorphism (2.3.16) we get an element in

29
PHomo, (T/T? Oy:/T) - e; ~ Homo,, (T /T* T | T?)
i=1
which is the image under (2.3.15) of the class of the given extension.

Now consider the canonical exact sequence of (2.3.1):

0—J/T* = Oys/T* = Oys/T — 0
and write
(2.3.17) 0= O0yi/T = Fi = Oy:/T —0

for the pushout of this extension via the above projection p;. The second assertion of the claim follows
if we can verify that p; maps to (2.3.17) under the isomorphism of (2.3.16):

Homo_, (7/J%, Oy+/T) = Extp_, (Oy:/T,Oy:/T).

and that the map Oy-y — Oy /J induces an isomorphism

Hom(’)yu (OYh/jv OYh /J) l} HOmOYh (OYMOYh/j)'
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This in turn is easily seen as follows: observe the commutative diagram

0 J Oy Oy:/T —0

(2.3.18) 0 —J/J?>—=0y:/T? —Oy:/T —0
Pk

0 —= Oy:/T F; Oy:/TJ —0

can

in which the second row is the pushout of the first along J — J/J 2 (obvious) and the third is the
pushout of the second along p; (by definition) such that the third row is the pushout of the first along
the map p; o can. Now recall that the isomorphism (2.3.16) was defined as the composition

Homo , (J/J? Oy+/T) = Homo,, (T, O0y:/T) = Exte_, (Oy:/T,Oy:/J)

can

in which the first map is induced by the arrow J — J/J?2 and the second is given by pushing out
the top row of (2.3.18) along morphisms J — Oy /J. This clearly implies the remaining claim.

Step 3: (A reduction step)

As S = Spec (k) the kernel Ext¢,, (Og, H) of the projection (2.3.14) vanishes, and hence (2.3.14)
is in fact an isomorphism:
EXt%)X/k (Ox, 7‘[)() = Homk(H, 7‘[)

By Step 2 the claim of the theorem is proven if the following diagram commutes:

~

Extlpx/k (Ox, Hx)

Homy, (H, H)
(2.3.19) (A)T ~

Exté , (Oy:/J,J/J?) > Homo (T /T T/ T?)

Here, the upper resp. lower horizontal arrow is (2.3.14) resp. (2.3.15), the right vertical map is
induced by (2.3.2) and the left vertical map is given as follows: analogously as explained in (2.3.1)-
(2.3.4) an extension of Oy« /J by J/J? writes as exact sequence of Oy--modules

0= ()H = F = (61O pec (k) — 0
whose terms are WIT-sheaves of index 0, providing an exact sequence of Fourier-Mukai transforms
0—Hx - F = Ox —0,

where H x resp. Ox has the canonical integrable k-connection (cf. Prop. 2.2.6 and Lemma 2.2.7).

It is a routine task to deduce commutativity of (2.3.19) if the following diagram is known to commute:

Extp, , (Ox,Ox) = Hig(X/k)
(2.3.20) O T o
Exty_, (Oy: /T, Oy:/T) == Homo (T /T? Oyt /T) =~ Homy(Tes | T3, k)
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where with ¢f € Y we denote the zero point of Y%, The left vertical arrow is defined analogously
as in (2.3.19) by taking Fourier-Mukai transforms, the right vertical arrow is induced by (2.3.2), the
lower horizontal map is given by (2.3.16) and the upper horizontal map is defined in the same way as
(2.3.14), with H x replaced by Ox.

It is clear that to prove commutativity of (2.3.20) we will need a better understanding of its right

vertical arrow and thus of the canonical isomorphism of k-vector spaces induced by (2.3.2):
(2.3.21) (Tt /T3 =~ Hig(X/E).
Step 4: (The identification (2.3.21))

Abbreviating the scheme of dual numbers over k with D := Spec (k[e]/(€?)), the identification in

question comes about as the composition
(2.3.22) (T /) T3)Y ~ker(YH(D) — Y(k)) ~ Hig(X/k),

where the first identification is standard (cf. e.g. [Go-We], Ch. 6, (6.4)) and the second is described
in [Maz-Mes], Ch. I, § 4, as follows:
By definition (cf. 0.1.1) and Lemma 0.1.12 for a k-scheme T the T-valued points of Y% are given by

Pic*(Xr/T) = {Isomorphism classes of triples (£, o, V)},

where L is a line bundle on X7 = X x; T with T-rigidification « and integrable T-connection V .
If T has trivial Picard group, then the assignment (£, o, V) — (£, V) is easily checked to induce

an isomorphism of groups
Pic?(Xp/T) ~ {Isomorphism classes of pairs (£, V )},
and (as in [Maz-Mes], Ch. I, Prop. (4.1.2)) we identify the last group with H! (X, Q}T/T), where
}T/T b [O%x, 8, Q§<T/T 4, ngT/T 4 -]
denotes the multiplicative de Rham complex for X7 /T (starting in degree zero). We thus obtain:
(2.3.23) ker(YH(D) = Y*(k)) ~ ker(H' (Xp, Q% /) — H' (X, Q% 1))-

The long exact sequence for hypercohomology associated with the canonically split natural short exact

sequence of complexes of abelian sheaves on X
0—= Q% = Uy, /p = Uy, =0

identifies Hip (X/k) with ker(H'(Xp, Q% ,p) — H'(X,Q%/,)). Combined with (2.3.23) we
obtain in sum an isomorphism of groups as in (2.3.22) which is in fact k-linear.

A final remark:

With Ox, = Ox ®e-Ox, 0%, = Ox ®e-Ox and Q}D/D ~ Qfx/k ®oy Oxp Qfx/k@c'Q&/k




THE FIRST LOGARITHM SHEAF AND THE POINCARE BUNDLE 115

the previous split exact sequence of complexes writes as

0 —Ox ——> 0% ®e-Ox —> 0% —>0
d 0 dlog

0 —= Q) — Dy @ Q) — Ny ), —0
(2.3.24)

d d+ed d

0 %—Q?X/kﬁﬂg(/k@e'ﬂﬁ(/k%flg(/k%()

d d+e-d d

where 6(u + € - v) = dlog(u) + € (42 — £ - dlog(u)), n(v) = 1 + € - v, the other left horizontal ar-

u
rows are given by multiplication with € and inclusion into the second component, the right horizontal

arrows by projection to the first component and the sections by inclusion into the first component.
Step 5: (The map K.S)
Denote by pr, prp the projections of Xp = X X D and by ix : X — Xp the nilpotent closed im-

mersion of square zero induced by base change of the canonical closed immersion ¢ : Spec (k) — D.

X —" = Spec (k)

-

(2.3.25) al xXp o id
-]
X —" > Spec (k)
Moreover, observe the (k[e]/(¢)?)-linear exact sequence
0—k-Skle/(e?—k—0

with maps a — € - a tesp. a + € - b — a and (k[e]/(¢)?)-module structure of k defined by the second
map. The associated O p-linear exact sequence writes as

(2.3.26) 0 = i+ Ospec (k) — Ob = 1:O08pec (k) — 0,

the second arrow belonging to the closed immersion %.
Now assume that we are given an element f : D — Y% of ker(Y#(D) — Y5(k)).
The Ox,-line bundle (idx x f)*P carries the integrable D-connection induced by Vp by pullback

along the lower square of the diagram

X Spec (k)
-
(2.3.27) idexe | X xp D—22 oD o

iidxxf fl

X xp Yl — Y8
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Pull back the sequence (2.3.26) along prp, (the pullbacks endowed with the canonical integrable D-
connections), then tensor with (idx x f)*P and finally push out along the lower square of (2.3.25):

(pry)«((idx X f)*P @0y, prp(-))-

Observing Lemma 2.2.5 and the D/ -linear trivialization s of (P, Vp) along idx x €f this procedure
transforms (2.3.26) into an exact sequence of D /;,-modules:

0— Ox — (pry)«(idx x f)*P — Ox — 0,

where O is endowed with exterior k-derivation and (pr y )« (idx x f)*P with the pushout connection
along the lower square of (2.3.25).
This assignment yields a k-linear arrow

(2.3.28) KS :ker(Y¥(D) - Yi(k)) — Extp, . (Ox,Ox).

If we forget the integrable connections, then this is precisely the usual Kodaira-Spencer map at the
zero point el € Y! associated to the sheaf P (cf. e.g. [Bri], 3.4, for this notion).

It fits into a commutative diagram

XS ker(YH(D) — Y(k))

Extp,(Ox,Ox)
(2.3.29) @T o
Exté , (Oy:/T,0y:/T) ——— (T /T3)Y

where the left vertical and lower horizontal arrow is as in (2.3.20) and the right vertical identification
is the canonical one, already mentioned in (2.3.22).

For the commutativity of (2.3.29) one first checks (rather straightforwardly from the definitions) that
the composite of the right vertical and lower horizontal identification

ker(YH(D) — Y*(k)) = (Jes/T5)" = Exto, (Oy4 /T, Oys/T)
maps an arrow f : D — Y to the direct image of (2.3.26) along the (affine) map f:
0— Ovi/TJ = fOp = Oy: /T — 0.

That K S(f) is isomorphic to the extension given by Fourier-Mukai transformation of the previous
sequence is a simple consequence of the definitions together with Lemma 2.2.5. A slightly different
argument for this compatibility of the Kodaira-Spencer map and the Fourier-Mukai transformation

(without considering integrable connections) can be found in [Bri], Lemma 4.2.3.
Step 6: (A further reduction step)

Recall from Step 3 that the theorem is proven as soon as (2.3.20) is seen to commute. But as (2.3.29)

is commutative a brief reflection shows that this is the case as soon as we know commutativity of

~

EXt%X/k(OX’OX) H i (X/k)

(2.3.30) X /

ker(Y4(D) — Yi(k))
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where the upper arrow is as in (2.3.20) and the identification on the right is as explained in Step 4.

Our remaining task thus consists in verifying that (2.3.30) commutes.
Step 7: (Some preparations for the final step of proof)

By Step 4 (and the definition of the Poincaré bundle on X x g Y'?) the right arrow in (2.3.30) is given as
follows: for a (henceforth fixed) element f : D — Y of ker(Y¥(D) — Y¥(k)) the Ox ,-line bundle
(idx x f)*P with its integrable D-connection (induced by Vp) defines a class in H' (X p, Q}D/D)
which maps to zero under the projection in the exact sequence

(2.3.31) 0 — H'(X, Q%)) = H' (Xp, Qx,/p) = H' (X, Q%) = 0

induced by the split short exact sequence of complexes of abelian sheaves on X recorded in (2.3.24).
The thus obtained class in H' (X, Q% / «) gives the desired image of f.
On the other hand and as explained in Step 5, applying (prx ).((idx x f)*P ®oy pri(.)) to

0— i*OSpcc (k) —€> Op — i*OSpcc (k) — 0
yields the Dx/-linear exact sequence
(2.3.32) 0— Ox — (pry)«(idx x f)*P — Ox — 0.

The image of 1 € k under the map & — H' (X, QS / ) Which appears in the long exact sequence of
hypercohomology for the associated sequence of de Rham complexes is then the image of f under the
composition of the left with the upper arrow of (2.3.30).
For the following, observe that the topological spaces of Xp and X are the same and that taking
direct image of a Ox,,-module along pry : Xp — X just means considering it as O x-module via
the morphism of ring sheaves Ox — Ox,, = Ox ®e-Ox given by inclusion into the first component.
As it will be clear which structure is meant we will thus henceforth leave away the notation (pry ).
From now on let us abbreviate

L:=({dx x f)*P

which is an abelian sheaf on the topological space X p resp. X and can be viewed as invertible Ox, -
module with integrable D-connection resp. as O x-vector bundle with integrable k-connection. If we

then write the exact Dx/j-linear sequence (2.3.32) as

(23.33) 05 0x HLEOx -0

itis easy to see that the Ox,, = Ox @ e- Ox-structure of L is recovered from (2.3.33) by the formula

(2.3.34) (at+e-b)-l=a-14+b- (o).

The D-connection and the k-connection on L translate into each other via the canonical identification
Ok, /b ®ox,, £ (D), ®ox Oxp) Qo L= Q) Qo L,

and we will denote both of them with V.
Finally, one checks that if a local section s : Oy — Ly of ¢ over an open subset U C X is given,

then £ as Ox,-module is trivialized on U by means of the map

(2.3.35) Liy = Oy ®e-Oy, l—=o(l)+e-(I—(sop)l)),
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where we tacitly view Ox as included into £ via 1.
Step 8: (Conclusion of the proof)

Choose an open covering {U; };cr of X with local sections s; : Oy, — £|U,; of  and write
l; == Si(l) S F(Ui, E)

Consider
(I —1;, V(i) € Hr Uij, L) @Hr Ui, Q% k. ®ox L)

1,J

Then there clearly exists

(uij,wi) € [[T (U35, 0x) @Hr Ui, V1)

4,J

with 9 (u;;) = 1; — I; and (id @) (wi) = V£ (1), where id @y : Q% ), — QY @0, L7

Note that (u;;,w;) is a cocycle which represents in H* (X, Q% /%) the image of f under the composi-
tion of the left with the upper arrow of (2.3.30) (cf. Step 7).

On the other hand, we now represent the class of (£, V) in H' (X p, %, /p) by acocycle in

Hr Uij, O%,) @Hr (U, %, ) = [[T(U;, 0% @ ¢ Ox) @Hr (Ui, s ® € Q)

4,

Recall from (2.3.35) that we have a trivialization on U; of £ as Ox,-module, defined by
(2.3.36) ti: Liy, = Oy, ®e-Ou,, L o(l)+e-(I—(s;00)(1)).
A representative of (£, V) in H (X p, %, /p) is then given by the expression

((tiot;1)(1),m) € [T (U3, 0% @ e - Ox) @Hr Ui,  , @ € O 1),
where 7); is the image of 1 under the composition

ti_l \v4
2337 Ou, ® ¢ - Oy, == Ly, == (Qx,/p ®ox, L)ju,
id ®t;
~ ((Qﬁg/k De- Q%(/k) Roxeeox L)y, — O, /e De- QlU/k

Observe that the section /; corresponds to 1 in (2.3.36). We obtain
(10t 1)(1) = o) e (1~ (s:09)(1;)) = Le-(s;(1) —(si0008,) (1)) = e (1;—1) = Leus.
Furthermore, as section of Qﬁ( Ik ®o, L over U; we have
Ve(l) = (idey)(w) =w @P(1) =w; @ (Yo p)(li) =w; ®e- 1,
the first three equations by definition and the last by (2.3.34). But under the identification

Qe ®ox L=y p Qox, £ Uy @ e Qxyp) Qoxaeox £

3For the final result of our Cech hypercohomology computations in this last step of proof it is irrelevant which sign con-
vention is adopted for the hyperdifferentials resp. for the cocycle representing the class of (£, V), as long as this is done
consistently.
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the section w; ® € - I; corresponds to € - w; ® l;, as one can readily check. We conclude that the image
of 1 under the chain (2.3.37) is the section € - w; of Qllj/k Pe- Qllji/k.
Altogether, we have shown that the class of (£, V) in H! (X p, Q% ,p) is represented by

((t; 0 t;l)(l),m) = (14 €-uij,€e-w;).

From (2.3.24) it then obviously follows that the preceding class comes from the class of the cocycle

(u;5,w;) under the inclusion in (2.3.31):
H'(X, Q%K) = H' (Xp, Xb/D)-

Hence, (u;;,w;) represents the image of f under the right arrow in (2.3.30) (cf. Step 7). But - as
remarked at the beginning of the present step of proof - it also represents the image of f under the
composition of the left with the upper arrow in (2.3.30). The commutativity of (2.3.30) is thus shown,
which according to Step 6 concludes the proof of the theorem. O

Corollary 2.3.2

Consider the exact sequence of D xs-modules constructed in (2.3.11):
0—Hx = (p1)sP1 = Ox =0
together with the Og-linear splitting for its pullback along € : S — X constructed in (2.3.13):
Os @ H ~ € (p1)«P1.

Then the integrable S-connection on (p1).P1 has a unique prolongation to an integrable Q-connection

such that the previous data become the first logarithm sheaf of X/S/Q in the sense of Def. 1.1.1.

Proof. As already explained this follows by combining Prop. 2.1.4 and Thm. 2.3.1. O

2.4 The higher logarithm sheaves and the Poincaré bundle

2.4.1 An equivalence of categories

The following auxiliary result is analogous to [Lau], (2.3). For our purposes, however, it is convenient

to give a different and direct proof, without introducing an intermediate equivalent category.

Lemma 2.4.1
Let Y be a vector bundle on S and denote by (Yx,Vy, ) its pullback via m : X — S together with

its canonical integrable S-connection. Then the following categories are equivalent:

(1) The category of Dxs-linear extensions of (¥Vx,Vy, ) by (Ox,d):
0— (OXad) — (uvvu) - (vava) — 0.
(2) The category consisting of (associative, commutative, unital) quasi-coherent (Ox ,d)-algebras

with integrable S-connection (B,Vg)* together with an exhaustive filtration by locally free Ox-
submodules of finite rank with integrable S-connection (B,,,Vp, ),n > 0:

(0) € (Bo, Vis,) € (B1,Vs,) € (B2, Vi,) € .. € (B, V)

4This shall mean that B is a quasi-coherent (O x -algebra such that the structure map @x — 13 and the multiplication map
B ®oy B — B are horizontal.
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such that B, - By, C Bpym, and together with an isomorphism of graded (Ox,d)-algebras with

integrable S-connection
d}O : gI‘.(B, VB) = Syngx (va vyx)'

Proof. We define functors S : (1) — (2),7 : (2) — (1) which will be quasi-inverse to each other.
Definition of T:

Given an object in (2) the exact sequence of Dy, g-modules
0— (Bo,Vg,) = (B1,Vgs,) = (B1,V5,)/(Bo,Vg,) = 0
identifies by means of ¢y and ¢); with an exact sequence
0— (Ox,d) = (B1,V5,) = (Vx,Vyy) =0

which shall be the associated object in (1).
Definition of S:
Let an extension
0 (Ox,d) 2 U, Vi) 5 (Vx, Vyy) = 0

be given and note that I/ is a O x-vector bundle.
For n > 0 set (B, V3, ) := Symg,, (U, Vi) with horizontal monomorphisms resp. epimorphisms

jn+1 : Bn — Bn+1 resp. pPn41: Bn+1 — Symg;l (yx)7
given locally by
UP * e s Uy > UL+ e Uy - G1(1) TESP. Up - e s U1 > P1(ur) < oo D1 (Ung1),
from which one gets exact sequences
Jn Pn n
(2.4.1) 0= (B, V5,) == (Bay1,Vp,.,) = Symp [ (Vx, V) = 0.

Define a quasi-coherent O x-module B := Symg, (U)/ (1 — ji(1)). Note that 3 is the direct limit of
the 13,, for the above maps j, 1. Endow it with the O x-algebra structure coming from Symg, ()
and with the induced integrable S-connection, denoted by V. Together with the filtration and the
isomorphism 1, : gr, (B, V) ~ Symg,  (Vx, Vy, ) induced by (2.4.1) we obtain an object in (2).
That T' o S ~ idy) is clear. To see that S o T" ~ id 2y we let an object of (2) be given.

The functor 7" maps it to the extension
0= (Ox,d) 2 (B1,Vg,) 2 (Vx. Vyy) = 0,

where we have already taken into account the identifications of ¥y and ;.
If we set B := Symg, (B1)/ (1 — j1(1)), then the functor S maps the preceding extension to (B, Vz)
together with filtration

(0) - (OXad) c (BlavBl) - Sym??x (BleBl) c..C (Ev Vg)

and isomorphism {pv. :gr, (B, Vi) =~ Symg,  (Vx, Vyy ) induced by the exact sequences

0 — Symp  (Bi, Vi,) =5 Symp By, Vi, ) 2 Symp ! (Vx, V) = 0
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whose maps are defined by

Jnt1(b1 e v by) =b1 o by - J1(1) and prga(by - .- bpg1) = p1(b1) - oo p1(bpg1).
For all n > 0 we define O x-linear morphisms
24.2) Symg, By — By

by by - ... - by > by - ... - by, where on the right side multiplication in B is meant.
These morphisms are horizontal (because the multiplication map for B is horizontal) and fit into
commutative diagrams

0 —— Sym%, (B, Vp,) —> Sym L (B1, Vi, )~ SymB T (Vx, Vyy ) — 0

| |

0 (Bna vl’)’n)

(Bn-‘rla VBn+1) - Symg—;l (yX7 vyx) —0

n+1

where we identify (B, 11, Vs, ,)/(Bn, Vs, ) with Symg' " (Vx, Vy, ) by means of ¢y, 1.

The maps (2.4.2) are isomorphisms: use induction over n and the previous commutative diagrams.

We thus obtain isomorphisms between the exhaustive filtrations
(0) € (Ox.,d) C (B1,Vp,) C Symg  (B1,V3g,)... € (B, Vy),
(O) g (OX7d) g (Bl7v51) g (627v52) g g (Ba VB)7
compatible with 4 and 1, and thus also between the (Ox,d)-algebras (B, Vg)and (B,Vg). O

The preceding proof shows:

Corollary 2.4.2
Suppose we are given data

(B, Va),
(0) € (Bo, Vi,) € (B1,Vg,) € (B2,Vg,) € ... € (B, Va),
Yo 1 8T (B, V) ~ Symp  (Vx, Vyy)
as in the definition of the category (2) in Lemma 2.4.1. We then have horizontal isomorphisms
Symg, Bi = By,

Sym, (B1)/ (1= j1(1)) = B,

induced by the rule by - ... - b, — by - ... - b,, where on the right side multiplication in B is meant.
Here, j1 : Ox — By is the inclusion coming from By C By via the identification 1. ]
Remark 2.4.3

As X is a Q-scheme one has for each O x-vector bundle ¢/ and n > 0 a canonical isomorphism
Symg, (UY) = Symp  (U)Y
induced by
G g {1 F D Go)(F1) o oy (Fa) }-
o€,
If U carries an integrable S-connection this isomorphism is horizontal for the naturally induced con-

nections on Symg,, (U") and Symg, ().
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2.4.2 The construction of the higher logarithm sheaves

By considering the first infinitesimal restriction to X X g Ylh of the Poincaré quadruple (P, r, s, Vp)
we have achieved in 2.3 a completely geometric construction of £1, ¢ and the restriction of V;
relative S (cf. Cor. 2.3.2). The higher logarithm sheaves (L, V., ¢,,) of X/S/Q are defined as the
symmetric powers of (L1, V1, 1) (cf. 1.1), and in all our later applications we will only need this
approach. Nevertheless, the question naturally arises if one can recover also the data £,,, ¢,, and the
restriction of V,, relative S from the Poincaré bundle on X x g Y'f, expectably from its n-th infinites-
imal restriction (P, 7, 85, Vp,) on X x5 V5.

The answer we will give subsequently can be summarized as follows. By means of the rigidification
r,, the zero fiber of the O x-vector bundle with integrable S-connection (p,,).P,, identifies with the
structure sheaf of Y} as Og-module and thus disposes of a distinguished section given by 1. We
define a (unique) D/ g-linear isomorphism (p;, ). Py = L£,, under which this section corresponds to
1) = % and from which we obtain the desired interpretation of the higher logarithm sheaves by the
Poincaré bundle. The construction of the isomorphism uses an infinitesimal comultiplication which is
in turn naturally induced by the §-1-structure of the G,,, s-biextension (P, Vp).

The proper verification of these assertions involves the technicality of dualizing the situation, using

the auxiliary results in 2.4.1 and then redualizing.

At first, letn > 2. Asél : S — Yiisa regular embedding the sheaf \7"/‘7"+1 as Og-module
naturally identifies with Symg,  (J/J 2) (cf. [Fu-La], Ch. IV, Lemma 3.8 and Cor. 2.4) and hence by
(2.3.2) with Symg,  H. Observing this one can apply an entirely analogous procedure as in (2.3.8)-
(2.3.11), now with the diagrams

X xgYi , —Y2 X xgYi—>Y3

-

X——S5

¥

XXSY;EHY

n

XXSYhHYh

X——S

and obtains an exact sequence of O x-vector bundles with integrable S-connection
(2.4.3) 0 — Symyp, Hx — (Pn)«Pn = (Prn-1)+Pn-1 =0

which (with Lemma 2.2.5 and Prop. 2.2.6) can also be viewed as the Fourier-Mukai transformation

of the following natural Oy-linear exact sequence whose terms are WIT-sheaves of index O:
0— J"/J" T = Oye /T = Oy /T — 0.

Note that the trivialization s,, is essential for the construction of (2.4.3).

Setting By := Ox, equipped with exterior S-derivation, and for each n > 1:

B, = ((pn)*Pn)va
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equipped with the dual integrable S-connection of (p,, )Py, we get from dualizing (2.3.11) and the

sequences (2.4.3) horizontal monomorphisms
(24.49) B 1:=(0)CByCBCB C ...
and (with Rem. 2.4.3) for each n > 0 a horizontal isomorphism

(2.4.5) Ut Bn/Bno1 = Symg (HX).

Next, let an ordered tuple (n, m) with n, m > 0 be fixed and write
Prmiz: X Xs Vi xs Vi — X xg YVl tesp. ppmaz: X xs Vi xg Vi — X xg Y},

for the projections and
b Vi X YV Y

n+m

for the morphism naturally induced by the multiplication map zf : Y% xg V! — Y4,

The horizontal isomorphism of (0.1.21) then induces by pullback via the canonical closed embedding
X xgVixgVi - X xgVixgYh

aD -linear isomorphism

XxsYExsYh/YixsYh

(idX X /JJEL,m)*Pner = (pn,m;12)*7)n ®o (pn,m;13)*7)m'

Xxsyygxsyyhn

Together with adjunction we obtain a D -linear morphism

b b
XxsY, /Y

Pner — (ldX X MEz,m)* [(pn,m;lQ)*,Pn ®O (pn,m;lB)*’Pm} .

XxgVRxgVh

Taking its direct image along p,, 1, : X Xg Y,E+m — X, noting pp, 1m0 (idx x b, ) = pp O D12

n,m

as well as the projection formula and base change along the cartesian diagram of affine maps

X xgYixg Vi M2 X xg YV

pn,m;12l lpm

X xgY? X

then yields a Dx/ g-linear morphism

(pn,m;13)*Pm]

(pn,m;12)*(pn,m;13)*7)m} l> (pn)* [Pn ®OX><SY75 (pn)*(pm)*Pm]

(pn+m)*Pn+m — (pn)*(pn,m;lQ)* [(pn,m;lQ)*,Pn ®(9

XxgVixgVh

~

- (pn)* [Pn X0

Xx gV
’N—> (pn)*Pn ®OX (pm)*Pm~

We only remark that compatibility with the connections can be checked similarly as in Lemma 2.2.5
and that the resulting map of the previous chain is the same if one uses p, 4., o (idx X uELm) =
D © Pn,ms13 instead of py, 4y, o (idx X UEL,m) = Dp, © Pn,m;12 and then proceeds analogously.

In sum, for a fixed ordered tuple (n, m) with n,m > 0 we have constructed from the isomorphism

(0.1.21) - which is part of the g-1-structure on P (cf. 0.1.3) - in a canonical way a horizontal map

(2'4'6) g(n,m) : (pn+m)*Pn+m — (pn)*Pn ®ox (pm)*Pm~
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The fact that P is a commutative G,,, x-extension of X xg Y, ie. the corresponding commutative
diagrams (0.1.8) and (0.1.9), implies the commutativity of the diagrams

E(n,m)
(pn+m)*Pn+m (pn)*Pn Rox (pm)*Pm
idl \Lcan
E(nl,n)
(pm+n)*Pm+n (pm)*Pm Rox (pn)*Pn
and
E(ntm,)

(pn+m+l)*Pn+nL+l (pn+m.)*7)n+m ®(’)X (pl)*Pl

&(n,vu«#l)i i&(n,‘nt)@id
id @ (m,1)

(pn)*Pn ®OX (pm—l—l)*Pm—l-l (pn)*Pn ®(’)X (pm)*Pm ®(’)X (pl)*Pl

The morphisms in (2.4.6) are compatible with the transition maps arising from the projections in
(2.4.3) and for m = 0 become the identity on (py, ). P, under the Dy g-linear trivialization s of P.

Let B be the quasi-coherent Ox-module with integrable S-connection defined as the direct limit
over the B,, = ((pn)«Px)" in (2.4.4). By dualizing the maps of (2.4.6) it becomes (according to the
previous remarks) a well-defined associative, commutative and unital quasi-coherent (Ox, d)-algebra

with integrable S-connection.

n+m

Moreover, the arrow (2.4.6) induces on the subsheaf Symg,’ " H x of (pn4m)«Pntm @ map
Symg;m’HX — Symg  Hx ®ox Symp, Hx
which under the identification of Rem. 2.4.3 equals precisely the dual of the morphism

Symg, (Hx) ®oy Symp, (Hx) — Symp" (H)

given by multiplication in symmetric powers; one can verify this by calculating on the one hand the
dual of the previous multiplication map under the isomorphism of Rem. 2.4.3 and by using on the
other hand the definition of (2.4.6) and the infinitesimal group law of Y@ to check the claimed equality.
Altogether, we see that B together with the filtration

(0)CB,CB CB,C...CB
induced by (2.4.4) and the isomorphism
e : gr B = Symg, (HY)
induced by (2.4.5) provides data as in the hypothesis of Cor. 2.4.2. We thus conclude that the map
Symg, Bi — Bn

defined by multiplication in B is a Dx g-linear isomorphism. With the isomorphism obtained from
the previous map by dualizing and using Rem. 2.4.3 one can verify that the following composition in

which the first arrow comes from the maps (2.4.6) is a Dx /g-linear isomorphism:

2.4.7) (Pn)+Pn = (01)+P1 @0y - R0y (P1)=P1 22 SymZb_((p1)«P1)-
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Recall from Cor. 2.3.2 and Def. 1.1.1 that the right side with its integrable S-connection is the n-th
logarithm sheaf £,, of X/S/Q with V,, restricted relative S. We have the Og-linear identification

(2.4.8) € (pn)«Pn — (ﬂ-Ez)*(e X idyj)*Pn = (WEL)*Oyﬁa

where the first map is the base change isomorphism along the cartesian diagram of affine maps

ﬂ.h

Vi —"—

S
6><idyul l
X

X Xs Yh H
and the second is induced by the trivialization
T (€ X idyﬁ)*Pn ~ OYTT‘

With the identifications induced by (2.4.8) the pullback of the isomorphism (2.4.7) along e is checked
to translate into the Og-linear isomorphism

(2.4.9) Oy: /T = Oy /T? @04 ... ®0s Oy | T? s - Symos(oyu/j )s

where the first arrow is induced by n-fold multiplication Ylh Xg ... Xg Y1 — Y5, The splitting ¢,, of
€* Ly, is induced by identifying the Og-module Oy /J? in Symg, _(Oy:/JT?) with Og & H.

Proposition 2.4.4

The isomorphism (2.4.7) is the unique D x s-linear isomorphism

whose pullback along ¢ maps 1 € T(Y}, Oys) =T'(S, (WEL)*OYﬁ) ~ T(S, € (pn)«Pn) to 1M = L.
Under this identification the splitting

On €Ly H Sym’és'H
k=0
corresponds to the composition of (2.4.8) with (2.4.9), where one observes Oy /J? ~ Og ® H as
Og-modules (cf. (2.3.6)):

€ (pn)«Pn =~ (’)ya/J"H = Symg, ( qu/jz H SymoS

Finally, the transition maps of the L,, correspond to those of the (py, )« Py, as given in (2.4.3).

Proof. Tt only remains to check the uniqueness claim and the statement about the transition maps.
The first follows from the observation that a Dy, g-linear automorphism of £,, which in the zero fiber
maps 1(™) to itself is the identity because of the isomorphism Homp o (Ln, Ln) = T(S,€°Ly,)
induced by (1.3.5). We finally prove the assertion about the transition maps.
By what we already remarked about the morphisms (2.4.6) we know that we have a commutative
diagram

(Pn)+Pn ——= (p1)+P1 ®oy - @0y (p1)+P1

l |

(Pr—=1)+Pn-1 —= (p1)+P1 Q0x -.- Q0% (P1)+P1
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in which the left vertical arrow is the transition map in (2.4.3), the horizontal arrows are given by
(2.4.6) and the right vertical arrow is induced by tensoring (n — 1)-fold the identity map on (p1).P1
with the transition morphism pr : (p1).P; — Ox in the i-th component, where 1 < i < n. This

implies that the diagram is still commutative if we replace the right vertical arrow by the map

1
~(proide.. @id+.. +ide.. @id@pr).

But this map obviously sits in a commutative diagram

1, -can

(P1)«P1 ®0x -+ @0y (P1)xP1 —————Symgp, ((p1)+P1) = Ly,

| N

(P1)+P1 ®ox - ®ox (P1)+P1 T Sym%}l((pl)*Pl) =Ly

with right vertical arrow given by the usual transition morphism of the logarithm sheaves (cf. (1.1.3)).

Recalling the definition of the maps (2.4.7) the remaining claim obviously follows. O

Hence, if we prolong the integrable S-connection of (py, ). Py, to the integrable Q-connection provided
by V,, via the isomorphism in Prop. 2.4.4, the sheaf (p,).P, becomes an object of U, (X/S/Q),
where the filtration A*((p,,)«Py) := ker((pn)«Pn — (pi—1)«Pi—1) corresponds to the canonical fil-
tration on £,, (cf. also Rem. 1.1.6). Together with the section 1 € T'(Y;2, Oy:) =T(S, (WEL)*(’)Yﬁ) ~
I'(S, € (pn)«Py) it becomes the n-th logarithm sheaf of X/S/Q as characterized at the end of 1.3.2.
The mentioned prolongation is the unique one with this property.

Via the Os-linear isomorphism induced by (2.4.9) and the usual decomposition Oy /J? ~ Og & H:
(2.4.10) Oy /T™ T = Symp_ (Oys /T?) H Symf, H

we obtain on []}_, Sym]é s M the structure of a finite locally free Og-algebra: this structure is pre-
cisely the one introduced in (1.3.9) and (1.3.10), as one can check explicitly. The 7* ( [[_, Sym¢  H)-
module structure on (py, )« Py, given by O XxsY -multiplication on P,, and (2.4.10), becomes under
the isomorphism of Prop. 2.4.4 the 7* ( ITiso Sym]é < 7—[) -module structure on £,, defined in 1.3.3.

In this interpretation the morphism in the pro-category of U(X/S/Q) induced by the above maps

f(n,m) : (pn+m)*Pn+m — (pn)*Pn R®ox (pm)*Pm

is nothing else than the comultiplication on the projective system of the logarithm sheaves, defined as

in [Be-Le], 1.2.10 (i), via their universal property (1.3.5).

2.5 The invariance under isogenies and the Poincaré bun-
dle

2.5.1 The transpose endomorphism

We begin with some general theory and recall how a homomorphism of abelian schemes induces

(in the other direction) a homomorphism between the respective universal vectorial extensions of the
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duals. As in the end only the case of /N-multiplication will be relevant for us we here focus on endo-

morphisms, which slightly reduces notation (for the analogous general case cf. Rem. 2.5.3 (i)).

Let S be an arbitrary locally noetherian scheme and X/S an abelian scheme, Y* /S the universal
vectorial extension of its dual abelian scheme Y/S and (P, r, Vp) the Y -rigidified Poincaré bundle

on X xg Y with its universal integrable Y %-connection (cf. 0.1.1).

Let u : X — X be an endomorphism of X over S.

Consider the endomorphism u x idy-; of the abelian Y #-scheme X x g Y'? and the pullback line bundle
(u x idy+)*P: it is algebraically equivalent to zero with respect to Y%, as one easily deduces from the
corresponding fact about 7. Moreover, equip this line bundle with the Y-rigidification r,, naturally
induced by 7 and with the integrable Y #-connection (Vp), arising from Vp by pullback.

Then, by definition of Y%, there exists a unique S-morphism

(2.5.1) LD G v
such that
(2.5.2) (idx x u®)*(P,r,Vp) =~ ((u x idy:)* P, 70, (Vp)u),

where the left side is equipped with the Y ¢-rigidification and integrable Y #-connection given by pull-
back of (P, r, Vp) along the cartesian diagram

2 ul
X xg YU X oy

Lo,

vyt

The S-morphism u : Y% — Y% of (2.5.1) is an endomorphism and called the transpose endomorphism

of u. For an S-scheme 7" it is given on 7'-rational points by sending the isomorphism class of a triple
(L,a,Vz) € Pic!(X xg T/T) to the class of the pullback (u x idp)*£ which is endowed with
T-rigidification and integrable T-connection as performed above for (u x idy+s)*P.

Recall also (cf. Lemma 0.1.5) that the isomorphism of (2.5.2) is unique.

Working with Y and (P°, ) instead of Y% and (P, r, Vp) one defines in a completely analogous
way the transpose endomorphism Y — Y associated with u.

To conclude this general part, we determine the transpose endomorphism in the important case of
multiplication by integers. The result is what one would expect, its proof however not entirely trivial.

Proposition 2.5.1

For the N-multiplication endomorphism [N] : X — X, where N is an integer, the transpose endo-
morphism [N ]h : Y! — YU equals the N-multiplication map of the S-group scheme Y. The same
statement holds if Y? is replaced by Y .

Proof. At first, let (£, ) be any S-rigidified line bundle on X which is algebraically equivalent to

zero with respect to S. The existence of « and the definition of algebraic equivalence to zero imply
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that there is some isomorphism of line bundles on X xg X:
(2.5.3) WL R0y, . PILT @0y, x PELT" > Oxxsx,

where u, pri, pry 1 X xg X — X denote the multiplication map resp. the two projections.
By restricting (2.5.3) via the morphism idx x(—1)x : X — X xg X, where (—1)x is the inverse
map of X/S, and by taking into account the S-rigidification «, one obtains an isomorphism

(2.5.4) (—D)%L~Lt

In the following, if M and A are two line bundles on X which are isomorphic up to a tensor factor
given by the pullback of a line bundle on S, we will write M ~g N.
Combining (2.5.4) with the addition formula for N-multiplication:
2 2_
INJ"L g L3 @0, (—1)5%LE7 7,
which is an easy consequence of the theorem of cube (cf. [Ch-Fa], Thm. 1.3), yields

(2.5.5) [N]*L ~g L&V,

Equip each side with the S-rigidification naturally induced by «. The existence of such rigidifications

and (2.5.5) imply that there is some isomorphism
(2.5.6) [N]* L ~ L&V

which moreover can be chosen uniquely such that it respects these S-rigidifications.

This implies that the transpose endomorphism Y — Y of [N] : X — X evaluated in S-rational
points equals the N-multiplication map Y'(S) — Y'(S). As the previous arguments work unalteredly
in the situation X x g T'/T (with an S-scheme T) the second claim of the proposition follows.

Now assume in addition that £ is endowed with an integrable S-connection V¢, i.e. (£, , V) de-
fines a class in Pic?(X/S). Equip the line bundles in (2.5.6) with the integrable S-connections given
by pullback resp. by tensor product. If we can show that (2.5.6) is horizontal for these connections,
then we have verified that [N]%(S) : Y5(S) — Y#(S) is the N-multiplication map. As everything we
do works equally in the situation X x g T'/T (with an S-scheme T') the remaining first claim of the
proposition follows.

The horizontality of (2.5.6) can be shown with the same trick as used in [Maz-Mes], proof of Prop.
(4.2.1) - in our situation applied to the isomorphism (2.5.6). Only note the following: to make the
argument of [Maz-Mes] work we need to see that also in our situation "i(V) depends only on £ and
not on the integrable connection V chosen" (cf. ibid., p. 49). As in [Maz-Mes] we want to deduce this

fact from ibid., Lemma (3.2.6) - in the completely analogous way as is illustrated there after the proof

of that lemma. The reasoning given there carries over to our situation, i.e. the equality "6(V) = §(V)"
(cf. ibid., p. 42) holds also in our case, because the morphism [/N] : X — X acts as N-multiplication

on invariant differential forms. O

2.5.2 Interpretation of the invariance property

We resume our familiar geometric setting X/S/Q and show that in our geometric interpretation of
the logarithm sheaves via the Poincaré bundle their invariance under (endomorphic) isogenies is en-
coded in the symmetry isomorphism (2.5.2). We explicate full details only for the case which will

5The argument is the same as in footnote 6 of Chapter 0.
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be concretely needed in the future, namely that of an isogeny endomorphism and the first logarithm

sheaf. A brief outline of the (completely analogous) general case is included in a final remark.

Let u : X — X be an isogeny (cf. footnote 11 of Chapter 1) and u? : Y — Y its transpose.
Write
ul Y = Y]

for the morphism naturally induced by u?, where as usual Ylh is the first infinitesimal neighborhood
of the zero section of Y?/S with associated closed immersion ehl : Ylh — Y (cf. Def. 2.2.14).

We will abbreviate with ¢; : X Xg Ylb — X xg Y the closed immersion id x xali.

Recall from Cor. 2.3.2 how the first logarithm sheaf £; of X/S/Q was constructed as (p1).P1,
where P; is the restriction of P via ¢; and py : X Xg Ylh — X the projection.

We have the following chain of canonical O x-linear isomorphisms:
u* Ly = u(p1)Pr 2 (pr)s(u x idy) P (pr)tf (u X idye) P = (pr).af (idx x uf)*P

~ (p1)»(idx xul )Py ~ (1)« (idx xul), (idx xul)*Py ~ (pl)*[(idxxui)*OXXSYf@o Pyl

Xxgvf
The isomorphisms after the equality all are easy standard identifications coming from flat base change,
commutative diagrams and the projection formula - except for the one decorated with the exclamation
mark: this is the crucial identification of (2.5.2).

The map on structure sheaves
(2.5.7) Oy oy = (idx xu}) Oy v

induced by
idy xu?: X xg V= X xg Y]

is an isomorphism because the corresponding morphism of quasi-coherent O x -algebras is the map
id®(uip)x : Ox ®Hx — Ox @ Hx

and thus an isomorphism. Here, we denote as in 1.4.2 with u : Hig(X/S) — H}z(X/S) the map
on de Rham cohomology induced by u, which is an isomorphism (cf. the proof of Thm. 1.4.2), and
with (u’g)% : Hx — Hx the morphism obtained from it by dualizing and pullback to X.

With the identification (2.5.7) we can conclude the above chain of isomorphisms and in sum receive
(2.5.8) w Ly =u (p1)eP1 . = (p1)P1 = L1

One checks that (2.5.8) respects the integrable S-connections of both sides, where u*L; carries the
pullback connection (apart from standard verifications one observes in particular the horizontality of
(2.5.2)). It is a further routine affair to see that under pullback via € it maps the global S-section
1M = 1 of e u*Ly ~ €Ly ~ Og & H to the global S-section 1) = 1 of €L, ~ Og & H
(for this one has to recall how the splitting of £; = (p1).P1 was defined explicitly in terms of the
rigidification r; of Py, cf. (2.3.13), and in particular observe the compatibility of (2.5.2) with the

occurring rigidifications). We have thus defined in (2.5.8) a Dx/g-linear isomorphism

(2.5.9) L1 = u* Ly
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which in the zero fiber sends 11 to 1(1), and by Thm. 1.3.6 (ii) we know that it is in fact Dxq-linear.

By comparison of the associated maps in the zero fiber we conclude:

Proposition 2.5.2
The Dx jq-linear isomorphism constructed in (2.5.9) is the invariance isomorphism of Thm. 1.4.2.
O

Leaving away the unessential formal ballast in the chain of isomorphisms (2.5.8) we thus see that
after interpreting the logarithm sheaf £, geometrically via the Poincaré bundle its invariance under

(endomorphic) isogenies expresses as the isomorphism
(idx x u®)*(P,r, Vp) = ((u x idy:) P, 7w, (Vp)u)
of (2.5.2). This is the crucial insight of the above discussion.

Let us finally indicate some obvious generalizations of the preceding line of arguments:

Remark 2.5.3
(i) If u : X — X'’ is a homomorphism of abelian schemes over a locally noetherian base S its trans-

pose homomorphism u? : (Y”)% — Y is characterized by the existence of a (unique) isomorphism
(2.5.10) (idx x u?)*(P, 7, Vp) = ((u x id(yns)* P, 7, (Vpr)u),

where 7/, resp. (Vpr), is the (Y”)¢-rigidification resp. integrable (Y”)-connection induced by 7/
resp. Vpr. In T-rational points (with an S-scheme T) it is given by pulling back the class of a triple
(L', o/, V) inPich (X' xg T/T) viau x idp : X xgT — X' xgT.

(ii) Resuming the usual situation S/Q one can then construct for an isogeny of abelian S-schemes
u : X — X’ in an entirely analogous way (but with more notational demand) a chain of isomorphisms
as in (2.5.8) whose crucial part is the identification (2.5.10) and obtains a D /q-linear isomorphism

~ ’
£1 — 'LL*,Cl

which is precisely the (general) invariance isomorphism of Thm. 1.4.2.

(iii) Finally, in the situation of (ii), when working with the n-th infinitesimal neighborhoods Y,E resp.

(Y')% for n > 1 one deduces from (2.5.10) in the same way as before a D/ g-linear isomorphism

w*(p),)« P, = (Pn)+Pn

which in the zero fiber sends 1 to 1 in the induced isomorphism of O g-modules O(Y,)u =~ Oy (recall
the identification (2.4.8)). If we identify (p/,).P), =~ L resp. (pn)«Pn =~ Ly, as in Prop. 2.4.4, then
we obtain a Dy g-linear isomorphism

~ * p/
Ly, —u L,

which sends 1(") = % to (10M) = % in the zero fiber, hence is Dx/q-linear and coincides with the

invariance isomorphism defined in Cor. 1.4.3.
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2.6 Motivic description of the first logarithm extension class

2.6.1 Generalities on 1-motives over a scheme

We begin by recollecting fundamental definitions and facts concerning 1-motives over a base scheme,
fixing at the same time notation used in the further progress.

As main sources for our exposition we will use [BaVi], 2.2, [An-BaVi], 1.1-1.2 and [Ber], 2 and 4.
The theory goes back to the seminal work [De2], 10, which is focused on 1-motives over an alge-

braically closed field but also contains the definition over an arbitrary scheme (cf. ibid., (10.1.10)).

Basic definitions

Fix alocally noetherian base scheme S. The category of commutative S-group schemes will be tacitly

viewed as a full subcategory of the category of abelian fpp f-sheaves over S.

By definition, a (smooth) 1-motive M = [X % G] over S is the datum of commutative S-group
schemes X, G and a homomorphism u between them, where we require that:

(i) X is alattice over S, i.e. étale locally on S isomorphic to the constant S-group scheme defined by
a finitely generated free abelian group;

(ii) G is a semi-abelian scheme over S, i.e. an extension
0-T—>G—>A—=0

of an abelian scheme A by a torus 7".°

Note that any semi-abelian scheme (and a fortiori: any abelian scheme or torus) over S naturally

becomes a 1-motive over S by setting X = 0; the analogous comment applies to a lattice over .S.

A morphism M; — Mo between two 1-motives over .S is a commutative diagram of homomorphisms

X, L)Gl

"

Xo —2 5 Gy
We remark that the so-defined morphisms respect the extension structures of G; and Gs: the reason
for this is that any homomorphism of a torus into an abelian scheme is zero (cf. [Berto], Lemma 1.2.1).

The obtained category of 1-motives over S is additive but not abelian. By considering a 1-motive
M =X X G] as complex in degree —1 and 0 we may view the category of 1-motives as a full
subcategory of the bounded complexes of abelian fppf-sheaves over S, and we still obtain a full
embedding when further passing to the bounded derived category D°(Sy,,s) of these sheaves (cf.
[BaVi], Scholium 2.2.4). These viewpoints will be adopted several times in what follows.

By a torus 7' we mean an S-group scheme which is étale locally on S isomorphic to finitely many copies of Gm,s-
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Universal vectorial extension and de Rham realization

By an extension [X > E] of a 1-motive M = [X % G] by a vector group T over S we mean an
extension
0O—=W—=E—=G—=0

of G by W together with a homomorphism v : X — E which lifts u.

v

A universal (vectorial) extension E(M) = [X — E(M)g] of M is then defined to be an exten-
sion of M by an S-vector group V(M) which parametrizes all extensions of M by S-vector groups

W via pushout along a unique vector group homomorphism V(M) — W.

A universal extension exists for every 1-motive M and is determined up to canonical isomorphism
(cf. [An-BaVi], 2.2-2.3, or [Ber], 2, for a proof).

We only record the following two special cases: if M is an abelian scheme A over S, then its uni-
versal extension is given by the S-group scheme A" introduced in Thm. 0.1.13. Further, if M is a
semi-abelian scheme G, extension of A by T, then its universal extension identifies with AP x 4G, ie.

we take the pullback of the universal extension sequence (0.1.3) for A via the homomorphism G — A.

v

Given a 1-motive M over S with universal extension E(M) = [X — E(M)¢], its de Rham re-
alization Tqgr (M) is defined to be the Og-vector bundle

Tar(M) := Lie(E(M)c/S),

where the last means the Lie algebra relative S of the (smooth) S-group scheme E(M)¢.

We recall from Thm. 0.1.13 that for M = A an abelian scheme over .S we have canonically
Tar(A) ~ Hip(A"/S),
where A denotes the dual abelian scheme of A.

Taking universal extensions as well as de Rham realizations is covariant functorial and exact with

respect to short exact sequences of 1-motives over S (cf. [An-Ber], Lemma 4.1).”

Cartier duality
We briefly recall the construction of the Cartier dual for a 1-motive. Full details can be found in [Jol1],
1.3 (where more general motives with torsion are admitted) and in [BaVi], 2.2.7.
If M = [X % G]is a 1-motive over S we define abelian fppf-sheaves over S
XY =Homy,,(T,Gms), G := m}ppf([X — A,Gm,s), TV :=Homp,, (X,Gm.s),

which are all recognized as being represented by commutative S-group schemes. XV resp. TV

becomes a lattice resp. torus over S. By applying RHom ,, :(—, Gyn,s) to the distinguished triangle

A= X - Al - [X =0,

7 A morphism between universal extensions is defined analogously as for 1-motives; exactness for sequences of 1-motives
and universal extensions is to be understood on the level of complexes of abelian fpp f-sheaves.
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going into cohomology and using the isomorphism of Barsotti-Rosenlicht-Weil (cf. Thm. 0.1.26).
AY ~ m}ppf (Aa Gm,S)

yields an exact sequence TV — GV — AV that this is in fact an extension of A by T follows from
the vanishing of Homfppf(A,Gm,S) and M}ppf(X, Gm,s) (cf. [SGAT-I], exp. VIIL, (3.2.1) and
[Berto], Lemma 1.1.4).

Similarly, the canonical distinguished triangle
T - M—[X — 4]

induces a homomorphism u¥ : XV — GV.

u\/

The 1-motive MY = [XY — G"] over S obtained in this way is the Cartier dual of M. Its forma-
tion is contravariant functorial in 1-motives over .S and satisfies a natural double duality isomorphism,

such that it defines an antiautomorphism of the category of 1-motives over S.

We remark that it is possible to interpret M" as representing the G, s-biextension functor asso-
ciated with M on the category of 1-motives over S (cf. [BaVi], 2.2.24).

As an easy example, the Cartier dual of the 1-motive [Zg — 0] is given by G,,, s, where we write Zg
for the constant S-group scheme associated with the abstract group Z.
Deligne’s pairing
A canonical construction for Cartier dual 1-motives over S
M=[X%G), MY=[XY2sGY

is the Deligne pairing
®: Tagr(M) ®og Tar(M") — O,

between their de Rham realizations, already explained at the end of 0.1.3 for the special case of
M = A an abelian scheme, where it writes as

®: Hiz(AY/S) ®os Hig(A)S) — Og.

We recall from [Ber], 4, that in the general motivic setting ¢ is obtained as follows: The canonical
S-connection of the Poincaré biextension on E(M)g X s E(M")gv induces via its curvature (which

is an invariant 2-form) an alternating Og-bilinear form on Lie algebras relative S, writing as
R: (Tqr(M) ® Tar(M")) ® (Tar(M) & Tar(M")) = Os.
The Deligne pairing is then defined by
P(v@w) := R((v,0), (0, w)),

and it is a fundamental fact, proven in full generality in [Ber], Thm. 4.3, that ® is perfect.
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2.6.2 The motivic GauB-Manin connection and de Rham-Manin map

The recent results in [An-Ber] permit the definition of various realization maps on the sections of a
1-motive. In the case of the de Rham realization, which we are interested in, this produces exten-
sions of vector bundles with integrable connection and thus provides the suitable tool for a motivic

interpretation of the logarithm extension. Let us hence review the relevant constructions of [An-Ber].

Motivic GauB-Manin connection

Let B be a locally noetherian scheme and M = [X % G] a 1-motive over B with universal extension
E(M) =[X % E(M)¢]. Further, let ¢ : B — T be a smooth morphism with 7" locally noetherian.

Then, following [An-Ber], 4.2, an integrable motivic Gau3-Manin connection for M and ¢ : B — T

Var s Tar(M) = Q7 ®0,, Tar(M)

on the de Rham realization of M can be constructed as follows:
If A}B /T denotes the first infinitesimal neighborhood of the diagonal immersion B — B X1 B, we
have natural morphisms

B5 ALy~ BxrB
composing to the diagonal, where 7 is a nilpotent closed immersion of square zero.
Write p1, po : A}s T B for the maps induced by the projections of B x B and let M, M, be the
1-motives over the (locally noetherian) scheme Ag /T obtained by base extension of M via p1, ps.
Then, the crucial point for the construction of the connection on Tygr (M) = Lie(E(M)g/B) is the

existence of a canonical isomorphism of AlB /-group schemes
Eay,,(ida) : E(Mi)g, ~ E(Ms)q,

which becomes the identity on E(M )¢ after further base change to B via i. Passing to Lie algebras
relative AlB /T in this isomorphism yields the desired connection on Tqg (M) (cf. 0.2.1 (vii)). Its
integrability is a consequence of the smoothness of g : B — T (cf. [An-Ber], 4.2 (d)).

The existence of E AL L (idps) follows from a more general motivic deformation result for locally
nilpotent P D-thickenings, proven by interpreting the universal extension in the framework of the
crystalline site (cf. ibid., Thm. 2.1 and section 3).

The connection V), enjoys a number of natural functorial properties and turns out to be the ex-
pectable connection in special cases: e.g. if M = G, p it equals the exterior derivation on Op, and
for M = A an abelian scheme it coincides with the usual GauB-Manin connection on Hi(AY/B)
(cf. ibid., Ex. 4.3 and Lemma 4.5).

Remark 2.6.1

When working with Z-flat schemes any isomorphism of A} /-group schemes
E(Mi)e, ~ E(Ms)a,

restricting under ¢ to the identity on E(M )¢ is already the canonical isomorphism ENB/T (idps) of

above (cf. the argument in [An-Ber], beginning of 6).
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Motivic de Rham-Manin map

As in [An-Ber], 7.1, we define the group M (B) of B-rational points of M by
M(B) = HOme(prpf)(ZB, M)

and the motivic de Rham-Manin map for M andq: B = T

Marar : M(B) = Extp,  ((Tar(M"), Varv), (Op,d))
as the following composition:
Hompu(p,, ) (Zp, M) =5 Ext] 0 (MY, Gy, ) — Extp L (Tar(MY), Vv ), (Op, d)).
Here, the first arrow comes from the chain of natural identifications (cf. ibid., (16))
(2.6.1) Hompe(p,, 1(Zp, M)~ Exty 50, (Z[1], M) ~ Ext] 0 (MY, Gy ),

and the second is given by passage to de Rham realizations, which are viewed as Dp,r-modules via
the associated motivic Gauf3-Manin connection.

The map M s qr is a group homomorphism behaving functorially in A/ and also in B when working
with Z-flat schemes (cf. ibid., Prop. 7.2).

Note that for M = A an abelian scheme over B the above group A(B) identifies with the usual
group of B-rational points Homp (B, A), which we will also denote by A(B), not distinguishing be-
tween a section s of A/B and its associated homomorphism Z g 125 A

Observe further that the motivic de Rham-Manin map for A and g : B — T writes as

Maar : A(B) — Extp,  (Hir(A/B), Op),
where (according to [An-Ber], Lemma 4.5) H (A/B) carries its usual GauB-Manin connection.
Let us point already now to the subtle appearance of a sign, which becomes important when inter-
preting the subsequent motivic results geometrically by the Poincaré bundle at the end of the section.

Remark 2.6.2
If M = A is an abelian scheme over B and A denotes its dual, then the composite

A(B) ~ Ext]_ 0 (AY,Gu,p) ~ Ext},, 1 (AY, G, 5)

of (2.6.1) with the obvious identification differs from the Barsotti-Rosenlicht-Weil isomorphism in
Thm. 0.1.26 - biduality of Thm. 0.1.10 tacitly implied - by a minus sign (cf. [An-BaVi], 1.2, 1)).8

In view of this it might seem more natural to modify the motivic de Rham-Manin map and precompose

it with the inversion automorphism of M (B). The resulting homomorphism

Marar : M(B) = Bxth, (Tar(M"), Varv), (Op,d))

8The cited sign change is based on the fact that in the chain (2.6.1) one is actually using an intermediate identification

Home(prpf)(ZB, M) ~ Ext!

Db(prpf>(Z7 M[il}) = EthDb

(prpf>(Z[1]7M)’

such that a shift of distinguished triangles appears (cf. also once again [An-Ber], (16)).
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then equals —M s qr and in the case of M = A an abelian scheme is now given by composing the

Barsotti-Rosenlicht-Weil identification
A(B) = EXt}ppf(Av7 (GW%B) = EXt}f]Wot (Av7 Gm’B)
with the de Rham realization map (motivic Gau-Manin connections implied)

Exty por(A", Gm,p) = Extp,,  (Hig(A/B),Op).

2.6.3 The first logarithm extension and the motivic de Rham-Manin
map

In the following we show how the dual of the elliptic logarithm extension can be realized as image
under a suitably chosen motivic de Rham-Manin map.

With our above preparations the precise statement is quickly given, but its detailed proof will require
some work and occupy the whole of this subsection. The basic idea consists in first relating the
logarithm extension to the so-called "classical Manin map" of [Co2] and in then using a comparison
theorem between this last map and the motivic de Rham-Manin map, established in [An-Ber] by a

translation of the whole situation into (log-) crystalline cohomology.’

Formulation of the main result and a first step towards its proof

If S is a connected scheme which is smooth, separated and of finite type over Spec (Q) and if £ = S
is an elliptic curve, we may view E x g E as abelian scheme relative E via the second projection
pry. The motivic de Rham-Manin map for F X ¢ F and the smooth morphism E — Spec (Q) then
expresses as a homomorphism

Mpxspyar i (E xs E)(E) = Extp, (7" Hig(E/S), Og),

where Of; carries the trivial connection and 7* H} (E/S) is endowed with the pullback of the GauB-
Manin connection on H} (E/S).
Writing A € (E xg E)(E) for the inverse of the diagonal section A g, i.e. for the section given in

rational points by & — (—z, x), our main goal is to show

Theorem 2.6.3
The dual extension OfM(ExsE),dR(AE) is equal to Log" in ExtlpE/Q(OE, Hpg).
Equivalently: The dual extension of/T/lJ(EXSE)_,dR(AE) is equal to Log" in Ext%)E/@ (O, HE).

Let us write £ € ExtlpE/m (O, HE) for the dual extension of M(EXSE)7dR(AE)a such that we need
to show the equality of extension classes & = Log'.

At first, we can prove without difficulty that & splits on S:

Lemma 2.6.4

& maps to zero under the retraction

Extp, o (Op, HE) = Extp_  (Os,H)

9A different and very explicit proof for the equality of the two maps was found by Bertapelle and the author:
For this the realization sequence coming from the motivic map is described purely in terms of g-extension sheaves of various
motives by G, whereas the sequence induced by the classical map is interpreted (as in [Co2]) via Cech hypercohomology.
The required isomorphism is then obtained by using the cocycle data to construct in a natural way corresponding f-extensions.
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of the exact sequence (1.1.1).
Proof. Observe the cartesian diagram
E—" =8
(2.6.2) id x ei le
ExgE- 22 |

Functoriality of the motivic de Rham-Manin map with respect to Z-flat base schemes (cf. [An-Ber],
Prop. 7.2) yields the commutative diagram with horizontal motivic de Rham-Manin maps (the lower
one is with respect to the abelian scheme £ — S and the smooth morphism S — Spec (Q))

(E x5 E)(E) — Extp, (7" Hig (E/S), Op)

lcan \Le*

E(S) Extp,, (Hir(E/S), Os)

where can stands for the canonical arrow induced by (2.6.2).
The image of Ag under can is € € E(S), but the lower horizontal arrow is a homomorphism (cf.

[An-Ber], Prop. 7.2), hence M gy 4 E)7dR(A ) maps to zero under ¢*. This suffices to conclude. [J

The main effort to prove Thm. 2.6.3 consists in showing that the image of £ under the projection
Extp,  (Op, Hp) — Homp, , (H,H)

in (1.1.1) is the identity. This is nothing at all clear if one recalls the construction of the motivic
de Rham-Manin map. We will achieve the proof by relating the logarithm extension to Coleman’s
classical Manin map in [Co2], which is defined rather explicitly, and by then using a comparison
result in [An-Ber] between the motivic de Rham-Manin map and the classical Manin map.

A reduction step

Recall from (2.1.3) the commutative diagram of split exact sequences with vertical forgetful arrows

0 —= Exth,_ (05, H) > Exth,_ (Op,Hp) — Homp, o (H, H) —= 0

(2.6.3) ican icam J{can

0 —= Bxtf, (Os, H) —=Exth_ (Op, Hp) —= Homog (H, H) —= 0

Then, by the previous lemma it obviously suffices to show that can(&) gives the identity when pro-
jected to Homep, (H, ). But an easy application of [An-Ber], Thm. 2.1 (iii), shows that the element
can(€) is nothing else than the dual of the image of A g under the motivic de Rham-Manin map

ZE‘SXSE),dR D (Exs E)(E) = EXt%)E/S(W*HéR(E/S)vOE)

for the abelian scheme E x g E —2 E and the smooth morphism E = S. Note the difference of

TES

(ExsE)dR © the previous de Rham-Manin map

Mgxsp)ar i (E xs E)(E) = Extp, (7" Hi(E/S),Og)
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and observe that now 7* H i (E/S) is equipped with the trivial S-connection (by ibid., 4.2 (c)).
Writing Log*"* for the element in Ext%)E /s (Og, Hg) which maps to zero under the retraction and

to the identity under the projection in the lower row of (2.6.3) we have shown:

Lemma 2.6.5
In order to prove Thm. 2.6.3 it suffices to verify that

(Mz‘gsxsE),dR(AE))v = 'COgl)Tes in EthDE/s(OEVHE)a

where ¥ means the dual extension class.
We have in fact shown that we only need to verify that res AR))Y projects to the identi
Y (ExsE),dR proj

in the lower row of (2.6.3), but it is convenient to formulate the lemma as we just did.) O

But for an elliptic curve E over any connected, separated, noetherian, regular and finite-dimensional
scheme S of characteristic zero (not necessarily smooth and of finite type over Q) we can define
an element ExtlpE /s (Og,HE), characterized by mapping to zero resp. to the identity under the

retraction resp. projection in the split exact sequence
0 — Extp, (Os,H) * Extp,, (O, Hg) — Homo, (H, H) — 0.

Let us write Sogl for this element. If S happens to be smooth of finite type over Q, then Eogl is
the class Log>"** of Lemma 2.6.5. But we will from now on - until we have finished the proof of
Thm. 2.6.3 - work with an elliptic curve E over a general connected, separated, noetherian, regular
and finite-dimensional Q-scheme S.
We then have the motivic de Rham-Manin map for the abelian scheme £/ x g E/ %2, E and the smooth
map E 5 S

M(pxspyar : (B xs E)(E) = Extp, (1" Hir(E/S), OR),

which in the case of QQ-smooth S is the map M’(”ESXS B),dR of Lemma 2.6.5.

With these definitions, what we will do in the following (until Cor. 2.6.14) is to show that for an
elliptic curve E Iy S, with S a connected, separated, noetherian, regular and finite-dimensional

Q-scheme, we have
(2.6.4) Log' = (M(pxsp)ar(Ar))Y in EX%E/S(OE,HE)~

With Lemma 2.6.5 and our remarks this will in particular prove Thm. 2.6.3.

An auxiliary description for £og’

Write U for the open complement of the zero section of F, v : V C U x g U for the embedding of the
open complement of the diagonal Ay : U — U xgU and pY : U xsU — U for the second projection.

We have the canonical distinguished triangle in DZC(DUX suys) (cf. (0.2.5))
(AU)+OU[—1] — OUXSU — U+Ov.
Applying (p5')4 gives the distinguished triangle in D’ (Dy/s)

(p2U o Ay)+O0py[-1] = (pg)JrOUXsU — (PzU ov); Oy,
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from which we obtain the exact sequence of vector bundles on U with integrable S-connection
(2.6.5) 0— Hig(U xsU/U) = Hig(V/U) = H3R(U/U) — 0,

where we have used that H3, (U xg U/U) = 0 (cf. Thm. 1.2.9 (ii)).

If we canonically identify Hz (U x s U/U) ~ Hig(E x5 U/U) ~ Hy (cf. Thm. 1.2.9 (iii) and the
beginning of Chapter 1) and observe that p§ o Ay = idy, such that H3, (U/U) equals Oy, we arrive
at

(2.6.6) 0— Hy — Hig(V/U) = Oy — 0.

Note that H; is equipped with the trivial S-connection, O with the exterior derivative and H, OllR( V/U)

U
. . . . . . p
with the GauB-Manin connection relative S, where V is an U-scheme via V - U x sU =2 Ul

Lemma 2.6.6
The extension class of (2.6.6) in Ext%)ws (O, Hy) is the restriction of £og* to U, i.e. its image

under the canonical map
Exth/S(OE,HE) - Ext%,U/S(OUﬂU),

Proof. The proof is entirely formal and (up to some minor supplements) a reproduction of the argu-
ments in [Ki4], proof of Prop. 2.3.2, where the statement is shown in the case of /-adic sheaves. [

In fact, we will need the previous lemma only in the case where S = Spec (k) with k a field of
characteristic zero (namely for the proof of Cor. 2.6.11).

Remark 2.6.7

Assume that S = Spec (k), such that U is affine and irreducible.

In [Co2], p. 404 (before and in the proof of Lemma 1.5.1), I'(U, H{x (U/U)) is then interpreted as the
group of divisors in U X U defined over U and supported on Ay (U) C U X U. The identification
H3: (UJ/U) ~ Oy we made above then represents HJ (U/U) as the free Op-module generated
by the global section corresponding to the divisor Ay (U). We will need this trivial remark in the

following when working with Coleman’s classical Manin map.

The classical Manin map

If U is a smooth irreducible affine curve over a field k£ of characteristic zero and A is an abelian
scheme over U, then by the classical Manin map we mean the homomorphism

Ma s A(U) = Extp, , (Hir(4/U), Ov)

defined in [Co2], 4. The investigation of its kernel is a major tool in Coleman’s account of Manin’s
proof of the Mordell conjecture over function fields. We don’t recapitulate its construction here (cf.

ibid., 3 and 4), but instead record the following crucial comparison result of [An-Ber], Prop. 1.1:

10This is a general fact concerning the functor (—)+: Let T be a noetherian, regular and finite-dimensional Q-scheme,

and let X L> Y — T be smooth arrows of finite type such that X resp. Y has relative dimension dx /7 resp. dy,r

over T. Let f4 : DSC(DX/T) — Dgc(Dy/T) be the triangulated functor introduced in 0.2.3 and M € Modgc(Dx/1)-
. i+d —d
Then H*(f+ M) ~ H;; X/rmeYyT (X/Y, M) canonically as Dy ,p-modules, where the right side is equipped with its

GauB3-Manin connection relative 7" as in 0.2.2.. The proof is analogous to [Dim-Ma-Sa-Sai], Prop. 1.4.
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Theorem 2.6.8
For all s € A(U) we have the equality

Ma(s) = Madr(s),
where M 4 qr is the motivic de Rham-Manin map for A and U — Spec (k).

For the following, the strategy to prove Thm. 2.6.3 consists in relating the logarithm extension to the
classical Manin map by a certain intermediate extension and the description given in Lemma 2.6.6;
the preceding theorem will then give the desired realization via the motivic de Rham-Manin map.

When doing this, the restriction to irreducible affine curves as base schemes in the classical Manin
map and in Thm. 2.6.8 will force us to consider the logarithm extension at first on a pointed single

elliptic curve and to then, by appropriate techniques, haul the result up to the entire curve and families.

An intermediate extension

Assume that U is as above and that 7 : A = C' — U is a family of elliptic curves.
Let s : U — C be a section disjoint from the unit section e. Write z : Z — C for the closed
subscheme of C defined by e U s and v : V' — C for the open immersion of its complement V. As Z

is smooth over U (and hence over k) we have the localization sequence in D%, (D¢ yy,) (cf. (0.2.5)):
21 0z[-1] = O¢c — 9,0y

By applying 7, and taking cohomology we recover the exact Dy -linear sequence of [Co2], (5.2):

(2.6.7) 0 — Hig(C/U) = Hig(V/U) = HR(Z/U) — Hiz(C/U) = 0.

From the fact that H{;; (Z/U) consists of two copies of Oy, generated by the divisors s and € of C
as in Coleman’s interpretation of H{y (Z/U) (cf. ibid., p. 404) and from the canonical identification

H2,(C/U) ~ Oy (cf. the beginning of 2) one obtains an exact Dy, /i-linear sequence
Bsc: 0— Hig(C/U) = Hig(V/U) — Oy — 0,
where Oy is identified with the free O -module over the divisor D = s — € (cf. ibid., p. 406).

Lemma 2.6.9
Under the Poincaré duality identification H}p (C/U) ~ H}z (C/U)V the extension class of Bs . in
Ext%ju/k_ (Ou, Hig (C/U)Y) becomes equal to the opposite of the dual extension of M¢ (s).

Proof. This follows from [Co2], Lemma 1.5.5 and Prop. 1.3.1, together with the definition of the
classical Manin map (cf. ibid., p. 402). O

Motivic description of the logarithm on a pointed single elliptic curve

We consider a single elliptic curve E =+ Spec (k) over a field k of characteristic zero.

The open complement U = E\[0] of its zero point is a smooth irreducible affine curve over k.

We consider E x U as abelian scheme over U via the second projection, and we define a section
s € (E x3 U)(U) to be the composition

s: U L5 Ux UL Ex,U
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with j the canonical open immersion. Note that s is disjoint from the unit section € of E x;, U.
Write z : Z — E X U for the closed subscheme defined by e Us and let v : V — E Xy U be the
open immersion of its complement. Note that the last coincides precisely with the open complement
in U xj U of the diagonal Ay : U — U X, U, embedded into E¥ X, U viaU x, U — E x; U.

If we apply the procedure in our previous exposition about the intermediate extension for the case

C := E x;, U, then we obtain the exact sequence of Dy;/;-modules

Byc: 0— Hig(E xx U/U) = Hig(V/U) = Oy — 0,

)

where again Oy actually is the free Oy -module generated by the divisor D = s — e of E X, U.

On the other hand, by Lemma 2.6.6 we can describe the restriction Sog‘lU of Eogl to U by iden-
tifying Hjp (U x U/U) ~ Hip (E % U/U) ~ Hy in the Dy ;,-linear exact sequence

(2.6.8) 0 — Hiz (U x, U/U) = HIR(V/U) = Oy — 0,

which was won from the localization triangle for the closed immersion Ay : U — U X, U.

The following theorem relates the logarithm extension Sog|1U on U with the classical Manin map
Mgy, v for the elliptic curve E' X, U over U. The section s € (E X U)(U) is as defined above.

Theorem 2.6.10
When identifying H (E x U/U) ~ H}z (U xy, U/U) the extensions Bs . and (2.6.8) coincide. In
particular, the class Sog‘lU in Ext%;u/k (Ou, Hu) equals the opposite of the dual of Mgy, u(s).

Proof. We only need to show the first statement: the second then follows with Lemma 2.6.9.

We have commutative (in fact cartesian) squares

U-2% U, U<V

O

Z—L>Ex,U<"—V

where v is the open embedding of the complement of Ay and k denotes the canonical open immersion
(note that j o Ay = s and that Z is the disjoint union of € and s).

There are canonical (obvious) adjunction arrows'! in D? (D) resp. D}.(Dgyx, v /k) resp. Di.(Dy )
Oz = k+Ov, Ogpx,u = j+Ovux,v, Ov — (id)1 Oy,

and it is easily seen that we obtain a morphism of distinguished triangles in DZC(D ExU/k)

Z+Oz[—1] OEXkU 77+OV
J+((Av)+0v)[-1] —= j+ Ovx,,u —= j+(v4+:Ov)

where the upper line is the localization triangle for z : Z — E xj U, the lower one is j; applied

to the localization triangle for Ay : U — U X, U and the vertical arrows are induced by the three

11Observe [Ho-Ta-Tan], Ex. 1.5.22 and App. C, Prop. C. 2.4.
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adjunction arrows and the above commutative diagram.
Applying the "lower plus" functor for the second projection of E' x; U and going into cohomology

yields the commutative diagram of Dy;/,-modules with exact rows:

0 —> Hlu(E x3, UJU) —= HA, (V/U) —= HO4(Z/U) —> H24 (E x3, UJU) —= 0

S

0—= Hiz(Ux, U/U)—= Hiz (V/U) — H3R (U/U) 0 0

Note that by construction the upper row is the sequence (2.6.7) and the lower row is (2.6.5).

It is clear that the arrow H, (Z/U) — H3: (U/U) is given by restriction to the s-component of Z.
Hence, the divisor D = s — ¢, which is the fixed generator for the kernel of 7, hereunder maps to Ay,
which is the fixed Oy -generator of H{g (U/U) (cf. Rem. 2.6.7). This shows that the diagram

0—>H5R(E Xk U/U) %H&R(V/U) —>OU —0
N\Lcan lid \Lid
0—= Hiz(Ux, U/U) — H}x (V/U) — Oy —0

is commutative, where the upper row is B; . and the lower one is (2.6.8); this shows the theorem. [

Corollary 2.6.11

If s € (E x3 U)(U) is the section s : U 2% U xx U L E x U, then the dual extension of
M (Ex,v),ar(8) is equal to —SogllU in ExtlDU/k (Ou,Hv)-

Here,

Mzx,vy.ar : (B x, U)(U) = Extp, | (75 Hig(E/k), Ov)

is the motivic de Rham-Manin map for the abelian U-scheme E x U and the map 7y : U — Spec (k).

Proof. Combine Thm. 2.6.8 and Thm. 2.6.10. O

Motivic description of the logarithm on a single elliptic curve

In Cor. 2.6.11 we had to work on the complement of the zero section of £ in order to apply the

comparison result of Thm. 2.6.8. The next step consists in removing this restriction.

Let again E ™+ Spec (k) be an elliptic curve over a field k of characteristic zero. We view E xj, E as

abelian E-scheme via the second projection and consider the motivic de Rham-Manin map
Mgx,p)ar : (E %), E)(E) = Extp, (7" Hig(E/k), Op).

Write Ap € (E X, E)(E) for the diagonal section.

Proposition 2.6.12
The dual extension of M (g, p),ar(AE) is equal to —Logtin ExtlpE/k (Or,HE).

Proof. We have an obvious cartesian diagram

EXkUHU

|

EXkE*>E
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As E and U are flat over Z we obtain from [An-Ber], Prop. 7.2, the commutativity of the diagram
(E x), E)(E) — Extp,  (v*Hig (E/k), Op)

(B x) U)(U) — Extp,, (15 Hig (E/k), Ov)

The vertical arrows are the canonical ones and the horizontal arrows are the respective motivic de
Rham-Manin maps.

It is readily checked that the image of A under the left vertical arrow is precisely the section s of
Cor. 2.6.11. The same corollary and the commutativity of the preceding diagram imply that —£og'

and the dual of Mg, g),ar(Ag) map to the same element under the restriction arrow
EXt%)E/k (Or, HEg) — EXtIDU/k (Ou,Hv).
But as we are working over a field this arrow is an isomorphism, as one easily sees by writing
Extp, . (Op, Hi) ~ Hig(E/k) @, H ~ Hip (U/k) @), H ~ Extp,, , (Ov, Hu),
where we have used that the restriction map HJy (E/k) — Hig (U/k) is an isomorphism (cf. Thm.
1.2.9 (iii)). This proves the desired equality. O
Motivic description of the logarithm for families of elliptic curves

We now generalize Prop. 2.6.12 to relative elliptic curves.

Let S be a connected, separated, noetherian, regular and finite-dimensional Q-scheme and F/ Iy San
elliptic curve with zero section €. Again, we view E X g E — FE as abelian F-scheme via the second
projection and consider the motivic de Rham-Manin map for £ x ¢ F and the morphism E = S:

M(pxsp)ar : (B xs E)(E) = Extp, (v Hig(E/S), Op).

Theorem 2.6.13
The dual extension of Mgy ¢ ),ar (Ar) is equal to —Logtin ExtlpE/S (O, HE).

Proof. Letus write xy € EthpE/S (Op, Hp) for the negative of the dual extension of M gy s g),ar (AE),
such that we need to show y = £og’.

That the image of x under the retraction
Exth, (Op. Hp) < Exth, (0s,H)

is zero follows by the completely analogous argument as applied for the proof of Lemma 2.6.4.

It remains to verify that x maps to the identity under the projection
(2.6.9) pr: Ext%)E/S((’)E, Hp) — Home, (H,H).

By the integrality of S (cf. footnote 5 of Chapter 1) one is reduced to show that for all s € S the
image of pr(y) under the canonical arrow

Homoy (H, H) — Homys) (Hap (Es/k(s))", Hig (Es/k(s))")
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is the identity; here, we set F; := E x g Spec (k(s)), considered as elliptic curve over Spec (k(s)),
and recall that H g (E'/S) commutes with arbitrary base change (cf. the beginning of Chapter 1).

Consider the following diagram with horizontal motivic de Rham-Manin maps

(2.6.10) T T
(E x5 E)(E) ———=Extp, (7" Hig(E/S),OF)

and observe that the right vertical arrow is understood to be given by pullback along

E

Spec (k(s)) —

&

-
S

h<—ro
3

as explained in 0.2.1 (v); the left vertical arrow is the obvious one.

Assuming that (2.6.10) commutes the theorem clearly follows from our above remarks together with
Prop. 2.6.12, noting that (2.6.9) respects the base change.

The commutativity of (2.6.10) in turn is a straightforward application of the third functoriality state-
ment of [An-Ber], Prop. 7.2, combined with ibid., Thm. 2.1 (iii). O

Recall that we write A € (E x 5 E)(E) for the antidiagonal section, given in rational points by z
(=, x). Asitis the inverse of A in the group (E xs E)(E) and Mg, g),qar is @ homomorphism
(cf. [An-Ber], Prop. 7.2) the preceding theorem yields:

Corollary 2.6.14
The dual extension of Mgy ;) ar(AE) is equal to Logtin Ext%)E/S (Or, HE). O

We have thus shown (2.6.4) and hence, according to the explanations given there, also Thm. 2.6.3

finally is proven.

Remark 2.6.15

From the beginning on we have considered E x g F as abelian E-scheme via the second projection.
The results of Cor. 2.6.14 and Thm. 2.6.3 hold verbatim if one changes the convention and uses the
first projection, such that A then is given by = + (x, —z) in points. A quick way to see this consists
in applying the functoriality of the motivic de Rham-Manin map (cf. [An-Ber], Prop. 7.2) to the shift

automorphism of £ xg F.

2.6.4 Some corollaries

We outline how our main theorem leads to a geometric interpretation of the logarithm extension by
the Lie algebra of the Poincaré bundle. We finally give an equivalent approach using Deligne duality.
Description via the Poincaré bundle

Let E = S be an elliptic curve, where S is a connected scheme which is smooth, separated and of

finite type over Spec (Q).
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By Thm. 2.6.3 the logarithm extension class Log' € EXt%)E/n(OE7 Hg) is the dual of the image

of the diagonal section A g under the modified motivic de Rham-Manin map
Mgxsmyar i (E xs E)(E) = Extp, (7" Hig(E/S), Op).

Let us write EV for the dual abelian scheme of E and recall that M, (ExsE),dR 18 the composite

(E x5 E)(E) %5 Ext}_yyp(EY x5 B,Gpi) 2 Exth (x*Hln(E/S),0p),

in which the first arrow comes from the Barsotti-Rosenlicht-Weil isomorphism (cf. Rem. 2.6.2).

It follows from the discussion in 0.1.3 that under this first arrow the section Ag maps to the fppf-
extension (0.1.19) induced by the Poincaré bundle P° on E x g EV:

(2.6.11) 0= Gmp—P'—EYxsE—0,

which we view as an extension of 1-motives over FE in the obvious way. To compute M (ExsE),dr(AE)
we then apply the realization functor Tqg(—) to this extension and equip the terms in the obtained

sequence of O g-vector bundles with their motivic Gau3-Manin connections relative Q.

The sequence of universal extensions related to (2.6.11) is (e.g. by [An-BaVi], Lemma 2.2.1) pre-
cisely the extension of E-group schemes (0.1.23) coming from the Poincaré bundle P on E'x 5 (EY)*:

0= Gpp— P— (EV) xgE—0.
The associated exact sequence of Lie algebras relative E writes as
(2.6.12) 0 — Op — Lie(P/E) — m*Hiz(E/S) — 0,

where all terms are viewed as equipped with their motivic GauB-Manin connection relative Q; re-
call that for the outer terms this is just the exterior derivative resp. the pullback of the usual Gaul-
Manin connection. As the obtained class in Ext%;E/@ (m*Hix (E/S), Op) is by construction equal to

/K/IV(EXSE)AR(AE) we conclude from Thm. 2.6.3:

Corollary 2.6.16
The class in EXt%)E/Q (Og, HE) obtained from dualizing (2.6.12) coincides with Log*. O

Remark 2.6.17

One can show that the restriction to an S-connection of the motivic Gau3-Manin connection relative
Q on Lie(P/E) is induced by the universal (EV)-connection on 7 in a natural way, as one would
expect. The full (absolute) connection on Lie(P/E), however, does not have an intrinsic expression
via the geometry of the Poincaré bundle.

Another description via Deligne’s pairing

Finally, consider another time the (non-modified) motivic de Rham-Manin map

Maxspyar i (E x5 E)(E) = Exti_yu(EY X5 E,Gp,p) = Extp, (7" Hig(E/S), Op).
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Cartier dualizing the image of A ;; under the first arrow yields the extension of 1-motives over E:

(2.6.13) 0= ExsE—[Zp 225 F xg E| = [Zr — 0] — 0,

where Z g denotes the constant F-group scheme and the maps of the sequence are the natural ones.
Taking de Rham realizations in (2.6.13) yields an exact sequence of Opg-vector bundles, which we
equip with the motivic GauBB-Manin connections relative Q. The realizations of the outer terms in
(2.6.13) are m* Hx (EVY/S), equipped with the pullback of the usual GauB-Manin connection, resp.
Opg, equipped with exterior derivation (cf. [An-Ber], 4.2 (c), Ex. 4.2 and Ex. 4.4).

By the perfect Deligne pairing we have a canonical isomorphism of Og-vector bundles

Hgp(E"/S) ~ Hap(E/S)",

which is in fact horizontal (cf. ibid., Cor. 2.8).

We thus obtain the natural identification of O g-vector bundles with integrable Q-connection
(2.6.14) TdR(E Xs E) ~ HE

Let us write ¢ for the thus obtained D /g-linear extension of O by H g, coming about by taking de

Rham realizations with motivic Gau-Manin connections in (2.6.13) and using (2.6.14).

From the fact that Deligne’s duality behaves functorially'?, that it respects the motivic Gau-Manin
connections (cf. [An-Ber], Cor. 2.8) and that for the motive [Zg — 0] it just gives the identity on O
(cf. [Ber], Ex. 4.4) we can hence conclude from Thm. 2.6.3:

Corollary 2.6.18
For the extension ¢ € Ext%)E/@ (O, HE) induced by (2.6.13) as described we have ¢ = Log'. O

12This means that for a morphism ¢ : M — N of 1-motives we have a commutative diagram
Tar(NY) —— Tar(N)"
Tar(t") Tar ()Y
Tar(MY) —— Tar(M)Y

with horizontal maps induced by the respective Deligne pairing. The statement can be viewed as a special case of [An-Ber],
Rem. 2.7 (b) and (c) resp. the preceding Cor. 2.6.
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Chapter 3
The explicit description on the universal elliptic
curve

3.1 The birigidified Poincaré bundle for elliptic curves

We explain how to obtain from the zero divisor of an elliptic curve an explicit construction of the
birigidified Poincaré bundle (P°, 70, s%) if one takes into account the self-duality of the curve.

Let S be a locally noetherian scheme and 7 : £ — S an elliptic curve with multiplication map
u: E xg E — E,zero section € : S — E and projections pry,pry, : E Xg E — E.
Let E denote the dual abelian scheme of E.

Recall that the S-scheme E represents the dual functor of E/S on the category of all S-schemes:
(3.1.1) T s Pic’(Er/T) = {Isomorphism classes of pairs (£, @)},

where L is a line bundle on £ = E xg T which is algebraically equivalent to zero and v a T'-

rigidification of £ (cf. 0.1.1). The abelian group Pic®(Er /T is canonically isomorphic to the group
{[£] € Pic(Er)/Pic(T)|L is algebraically equivalent to zero},

where Pic(T') becomes a subgroup of Pic(Er) by pullback along the structure map 7, : Ep — T
and [£] denotes the residue in the quotient group of the isomorphism class of a line bundle £ on Er;
note that [£] = [£'] implies that £ is algebraically equivalent to zero if and only if £’ is.

The identification of Pic®(F7/T) with this group arises by mapping the class of (£, @) to [£] and by
conversely sending [£] to the class of (£ ®o,,, Th, €5, L1, can), where can denotes the canonical
T-rigidification of £ ®oy, . Tf, €5, L7, That one obtains well-defined homomorphisms which are

inverse to each other is easy to check and indeed holds for E replaced by any abelian scheme over S.

We can now explain the self-duality of E: for this we define for each S-scheme 7" a map

E(T) = {[£] € Pic(Er) /Pic(T)|£ is algebraically equivalent to zro}.
Q — Class of Og,.([—-Q] — [0]).

(3.1.2)

Here, note that for Q € E(T) its inverse —(Q) € E(T') defines a section —@Q of the abelian T-scheme
E7, which in turn induces an effective relative Cartier-Divisor [-Q] of E1 /T (cf. [Kat-Maz], Lemma
1.2.2.). Write I([—Q]) C Og,. for the associated invertible ideal sheaf and Og..([-Q] — [0]) for
I([-Q)) ™" ®0p, I(]0]), with [0] the effective relative Cartier divisor of the zero section of Er/T.
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It is well-known that (3.1.2) is an isomorphism of groups: this follows from [Kat-Maz], p. 64; cf.
also [Kat5], p. 292. Note that our identification (3.1.2) differs from the cited ones by the sign in [—Q)].

Combining (3.1.1) and (3.1.2) provides an isomorphism of S-group schemes
(3.1.3) ESE

which becomes the identification of [Kat5], p. 292, only after precomposition with the inverse map of
E. As aside note, let us remark here that from a conceptual viewpoint (3.1.3) is decisively the better
self-duality isomorphism to use: we direct the interested reader to the discussion in [Con2], Ex. 2.5.

The identification (3.1.3) will henceforth be fixed and referred to as the principal polarization of E/S.

In the terminology of [Ch-Fal, p. 3-4, the morphism (3.1.3) is the polarization A(Og([0])) : E — E
associated with Og([0]). Under E(E) ~ Pic’(E x g E/E) it corresponds to the class of the pair

(3.14) (M ®0op, p (T x 7)€" Op([0]), can),

where M is the Mumford bundle for Og([0]) on E x g E:
M = p* Og([0]) @0, PriOL(0)) " @0y, Pr3OL((0])

and where can means the canonical rigidification along the second factor of £ x g F.

Hence, now always identifying E with E via (3.1.3), the pair (3.1.4) represents the universal class in
Pic’(E x g E/E). Observe furthermore that M ®0p, o (T X 7)€" Op([0]) also carries a canonical
rigidification along the first factor of E' x g F, equally denoted by can, which is obviously compatible
with the canonical rigidification along the second factor after further restriction to S.

From the discussion in Rem. 0.1.8 we thus obtain that

(3.1.5) (M @0y, (1 x 1) Op([0]), can, can)

is what we called in Def. 0.1.9 the birigidified Poincaré bundle on £ x g E.

3.2 Automorphy matrices for holomorphic vector bundies

Throughout the subsequent sections we will use the yoga of automorphy matrices for vector bundles
on complex manifolds. Such a matrix is obtained as soon as a trivialization for the pullback of the
bundle to the universal covering exists and is chosen. One then has a convenient way of writing down
the sections of the bundle as certain vectors of holomorphic functions on the universal covering.

We here give a brief self-contained account of the required techniques and fix conventions that will
freely be used in the further proceeding. Despite slightly different priorities the material of this sec-
tion is basically found in [Ie], 2 and 3, or obtained by generalizing [Bi-Lan], App. B, to vector bundles.

Let X be a connected complex manifold with universal covering p : X — X and write Deck(X /X)
for the group of deck transformations of X /X.
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(i) Assume we have a O x-vector bundle V of rank n and a (henceforth fixed) trivialization

dn ~ o *
05" ~pV

with associated trivializing sections {e1, ..., e, } € T'(X, p*V).
Let v € Deck(X/X) and write for each j = 1, ..., n the section v (ej) € I'(X,p*V) as

v (es) =D ol
i=1

i=1,...,n"

with uniquely determined 7, € (X,0 <) which we collect in the matrix ((p;y])
Jj=1,...,n

Hence
(v (e1), .., v"(en)) = (€1, ..y €n) - (907])1:171

Jj=1,...,n

We refer to the map

A:Deck(X/X) x X = GL,(C), (,%) — ((w?j(f))i_l,.,.,n)
j=1,....,n

as the automorphy matrix for V with respect to the (ordered) trivializing sections {eq, ..., e, } of p*V.

If n = 1 we call the automorphy matrix the factor of automorphy and use a small letter to denote it.

The automorphy matrix A satisfies the relation
Aly-+.%) = A(y,7 - %) - A(Y, %) forally, € Deck(X/X)and € X.
(i1) For an open subset U of X we will tacitly use the canonical identification
P T(UY) S T (U),p V)P X = (5 € D(p~  (U),p™V) [17(s) = 5 ¥ € Deck(X/X)}.

Then, if we express an element s € I'(p~1(U), p*V) in terms of the trivializing sections
n
5= Zsz -e;, 8 € F(p_l(U),(’));)7
i=1

it is invariant under Deck()? /X) and hence defines a section of V over U if and only if

(v*51)(@) 51(2)
: = A>y,7) | for all v € Deck(X/X), & € p~ ' (U).
(7" sn)(T) 5n(T)
s1
We will often directly write s as the vector | : | if the underlying trivialization of p*V is clear.
Sn

(iii) Consider the dual of the previously fixed trivialization of p*V:

Oil%n ~ p* V\/
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with associated trivializing sections {eY, ...,eY} € ['(X, p*VV). If

A :Deck(X/X) x X = GLn(C), (7,%) — A(v, %)

is the automorphy matrix for V with respect to {e1, ..., €, }, then the automorphy matrix for VV with

respect to {eY, ..., e } is given by

(AN Deck(X/X) x X = GLo(C), (3,7) = (A(y, D))"

(iv) Next, if we have a Ox-vector bundle W of rank m whose pullback to X is trivialized by the
sections {¢}, ..., ¢/, }, then the tensor product ¥ ® o, W will be trivialized on X by the sections (in
this order)

I ! ! ! / /
{e1®@e],..,e1®e€,,e2@€],...,ea @€, ...... Jen Q€. en®e }.

We will tacitly adopt this convention in the future. If the automorphy matrix of V resp. WV is given by
Aresp. B, then V ®0, W has the automorphy matrix A ® B, notation by which we mean the map

A® B :Deck(X/X) x X = GLpm(C), (7,%) = A(7, %) @ B(v, %),

where
all(Vvi) B(W?i‘i) aln('%'%) B(’ya%)
A(7,7) ® B(v,7) : ’ :

an1 (7,T) - B(7,Z) ... ann(v,7) B(y,T)

is the Kronecker product of A(~,Z) = (aij(*y, 5)) i1 With B(v, ).

(v) Let now Y be another connected complex manifold with universal covering q : Y 5Y.
Fix base points yg € Y resp. g € X with images yo resp. xo under q resp. p.
Let g : Y — X be a holomorphic map with g(yg) = zp and g : Y — X the unique holomorphic map

fitting into a commutative diagram

(Y, 50) —— (X, 7o)

(Y, %0) e (X, z0)

The standard isomorphisms Deck(X /X) ~ 71 (X, z¢), Deck(Y /Y) ~ (Y, yo) and the canonical
map g, : 71 (Y, yo) — 71 (X, o) provide a homomorphism g, : Deck(Y/Y) — Deck(X /X) with

G- 7) = gu(p) - §(7) forall u € Deck(Y/Y)andj €Y.

By pullback along g we obtain from {ey, ..., e, } trivializing sections { f1, ..., f, } for ¢*g*V.
If p € Deck(f//Y),w :=g.(p) and for j =1, ..., n:

n

vie) =Dl e

=1

then we have
n

W) =@ (@) - fie

i=1




THE FUNDAMENTAL MEROMORPHIC JACOBI FORM AND EISENSTEIN SERIES 151

In this way one obtains the automorphy matrix for g*) with respect to { f1, ... f,} from the automor-
phy matrix for V with respect to {es, ..., e,, }. If the underlying trivializing sections {e1, ..., e, } and
the base points are fixed we will always work with the indicated trivialization of ¢*¢g*)’ and associated

automorphy matrix for g*V.

S1
If (as explained above) s € I'(U, V) is given with respect to {e1, ..., } by | © | ,s, € T(p~'(U),0%
Sn
satisfying
(7751)(7) 51(7)
= A(y,7) - for all v € Deck(X/X), & € p~ ' (U)
(7" sn)(2) sn ()
g*(s1)
then g*(s) € T'(g~1(U), g*V) is given with respect to { f1, ..., fn} by :
g"(sn)

3.3 The fundamental meromorphic Jacobi form and Eisen-
stein series

3.3.1 From canonical to classical theta functions

A main goal of the future sections will consist in describing the analytified logarithm sheaves on the
universal elliptic curve via automorphy matrices. The results of Chapter 2, the buildup of the Poincaré
bundle (3.1.5) and the techniques developed in 3.2 clearly suggest to carry this out first of all for the
line bundle associated with the zero divisor of the curve. Trivializing this bundle on the universal cov-
ering corresponds to choosing a holomorphic function on the covering with the appropriate divisor,
and hence the question arises which one we will want to choose.

The present subsection illustrates this question in the case of a single complex elliptic curve. Here,
one possible trivialization is provided by the so-called canonical theta function associated to the zero
divisor: In [Ba-Ko-Ts], 1, this function is the starting point for an explicit description of the polylog-
arithm on the curve minus its zero section; the induced trivializing section for the Poincaré bundle
(3.1.5) on the universal covering is the Kronecker theta function which is studied in depth in [Ba-Ko].
After a review of these functions in the context of 3.2 we point to the main problem of the canonical
theta function: when varying the elliptic curve it no longer defines a holomorphic function and thus
also no trivialization as before. As a substitute, we then present the so-called classical theta function
for the zero divisor: it arises from the previous by multiplication with an exponential factor which
erases the anti-holomorphic part but preserves a normalization property for its derivative by which it
may also be characterized. Still working on a single curve we obtain the induced trivialization of the
Poincaré bundle (3.1.5) on the universal covering in the form of a meromorphic function .JJ which will
turn out to play the main role in all subsequent sections. We finish this subsection with the fundamen-
tal observation that the function J, to which we were directed in the outlined natural way, coincides

precisely with 27ri-times the meromorphic Jacobi form introduced in [Za2], 3.
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The canonical theta function and factor of automorphy

Fix a point 7 € H in the upper half plane H of the complex numbers C. Let I'; := Z7 @ Z be the
associated lattice in the complex plane and E, := C/T"; the complex torus defined by I".. Moreover,
set A(t) := A(T';) := 5% (7 — 7), which is the fundamental area of I divided by .

Consider the line bundle Og_([0]) associated with the divisor given by the zero point [0] of E;.
For its pullback along the canonical projection p, : C — E; we have p(Og, ([0])) ~ Oc(T;).
Trivializing the previous line bundle amounts to giving a meromorphic function on C of divisor —I';.

Such a function is provided for example by z — ﬁ with
3.3.1) 0(z;7) := exp { — 62;7—)22] co(z;7),

where 3(7) := lim, 0+ 2o cp \ {0y 7 27| 7" is an Eisenstein-Kronecker number' and o(z;7) is
the WeierstraB sigma function for the lattice I"-. Expressing the behaviour of (3.3.1) under the deck

transformations v € I'; of C over E; as
0(z +v;7) = aly,2) - 0(z;7),
then it is clear from the definition that

a: ', xC—C*

is the factor of automorphy for Og_([0]) with respect to the trivializing section z + -1~ of

0(z;7)
pE(Og.([0])). This factor is well-known (cf. [Ba-Ko], Ex. 1.9), namely we have
3.3.2) a:T; xC—=C* (v,2)— a(y)- exp |7H(z,7v)+ gH(’y, M,

where H : C x C — C is a hermitian form whose imaginary part is integral-valued on I'; x I"; and

a:T'; = {z € C||z| = 1} is a semicharacter for H, given explicitly by

172 1 forvye2l';
and «f(y) =
TA(T) —1  otherwise.

Remark 3.3.1
The pair (H, o) is associated to Og_ ([0]) via the Appell-Humbert theorem, the factor of automorphy a

in (3.3.2) is the so-called canonical factor of automorphy for Og_([0]), and the function z — 6(z;7)

in (3.3.1) is a canonical theta function for Og_([0]). Details about this terminology can be found in
[Bi-Lan], 2.2, 2.3 and 3.2, and also in [Ba-Ko], 1.2.

The function z — 6(z; 7) is the unique holomorphic function on C with the property that its inverse
defines a trivialization of p%(Og_([0])) =~ O¢(I';) which induces the canonical factor of automorphy

for Og_ ([0]) and such that its derivative at z = 0 is normalized to 1.

Fix the base points (0,0) € C x C and 0 € C. Then (according to the conventions recorded in 3.2
(iii)-(v)) we obtain a trivialization for the pullback of the Mumford bundle M. of Og_(]0]) along

Namely, in the notation of [Ba-Ko], Def. 1.5 resp. p. 238, it is the number 6672(0, 0; ;) resp. 6872 (Tr).
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the projection C x C — E,. x E; = (C x C)/('; x T';) . With 3.2 (v) the associated factor of
automorphy is straightforwardly computed from (3.3.2) as

(333) T, x Ty x Cx C—C*, (7,1, 2,w) — exp {wwwv]

A(T)

One obtains the same factor for the Poincaré bundle (3.1.5) on E; x E.

Note that M., is given by Op_x g, (Ag,. — ([0] x E,) — (E; x [0])), where Ag_ denotes the antidi-
agonal, that a trivialization of its pullback to C x C means giving a meromorphic function on C x C
of divisor —{(z,w) e Cx C|z+w €'} + (I'; x C) + (C x I';.) and that the above trivialization

then is the one defined by the function (z, w) — , where

1
O(z,w;T)

0(z + w;T)

(3.3.4) @(Z,w,T) = W

is the so-called Kronecker theta function (cf. [Ba-Ko], 1.10).

Setting
Fi(z;7) = dlog,0(z7) = ((2,7) — e5(7) - 2

we obtain from O(z, w; ) the function
(3.3.5) E(z,w;T) = exp|—F1(z; 7)w] - O(z, w;7)

of [Ba-Ko-Ts], Def. 1.5. This function, in particular the coefficient functions obtained from it by
Laurent expansion around w = 0, lies at the center of the description given in [Ba-Ko-Ts], 1, for the
polylogarithm on the single elliptic curve defined by E'-.

Observe that we have the equalities

L
A(7)’

a(mt + n) = exp[rimn + wim + win] forallm,n € Z and e5(7) = —n(l;7) —

where
n(mt +n;7) :=((z;7) = ((z+m7+n;7) forallm,n € Z

is the quasi-period defined via the WeierstraB zeta function ((z; ) for the lattice I';; the formula for

e5(7) may be deduced from the more general

Lemma 3.3.2
For each v € I'; we have B
* _ . gl
e3(1) v =-n(y;7) — m

Proof. By [Ba-Ko-Ts], 1.1, we have

Fi(z+7;71) = Fi(%7) = A’

from which the claim follows. O
With the formula for a(m7 +n) and 7 = 7 — 2mi - A(7) resp. with the formula for e} (7) one verifies

L . +(m7+n)2
Ay~ T AR T 240

a(mt 4+ n, z) = exp |mim + Tin — mim2r +
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resp.
22 1

(3.3.6) 0(z;7) = exp [2 <A(7‘) +n(L; 7'))] co(z;7),
such that moreover

L 1 ) ‘ o(z+w;T)
3.3.7) O(z,w;T) = exp {zw(A(T) + n(l,T))} P
and
(3.3.8) 2(z,w;T) = exp[—((z; T)w] - oz +wiT)

o(z;m)o(w;T)

We see in particular that the function 6(z;7) of (3.3.1), which we initially started with, does not
vary holomorphically if the (so far fixed) parameter 7 € H is moved: the obstruction comes from
the antiholomorphic part of the normalized area function A(7) in (3.3.6). This presents very soon an
overt problem when dealing with families of elliptic curves. Besides, also the fact that the naturally
induced function ©(z, w; T) needs to be altered in (3.3.5) by an auxiliary exponential factor to obtain

the central function Z(z, w; 7) in [Ba-Ko-Ts], 1, strongly hints at the following heuristic guideline:
We should search from the beginning on a different trivialization for p:(Og_([0])) ~ Oc(T';).

The classical theta function and factor of automorphy

Instead of 6(z; 7) let us consider - at first still for a fixed 7 € H - the holomorphic function on C:

PSRN RN ) [T T SR [P

Its inverse z — ﬁ obviously provides again a trivialization for p}(Og_([0])) =~ Oc¢(I';), and its
derivative in z = 0 is again normalized to the value 1. But now we have indeed defined a holomorphic

function in both variables (z,7) € C x H; a more detailed analysis of ¥} will follow in 3.3.3.

The factor of automorphy for Og_([0])
a: T, xC—C*
induced by z — ﬁ is given by

h(z)

R 0T,

a(mr +mn,z) =

where a is still the factor of automorphy defined by z — ﬁ and where

22
Explicitly, one computes

_ 1
h(z+m7+n) xp { B 2A(T)

((m7)2 +n? 4+ 2zm7T 4 22n + 2mn7’>}
and hence

(3.3.10) a(mr +n,z) = exp [ﬂ'im + min — 2wizm — wim? } )
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Remark 3.3.3

(i) In the terms of [Bi-Lan], App. B, we have altered the cocycle in Z'(I';, H?(O}.)) defined by the
canonical factor of automorphy a by the coboundary in B! (I";, H°(OF)) which is obtained from
(m7+n,2)— %

(ii) The new factor of automorphy @ in (3.3.10) is exactly the so-called classical factor of automorphy
for the positive definite line bundle Og_([0]) and its standard decomposition C = R -7 @ R - 1; the

function z — J(z;7) in (3.3.9) then is a classical theta function for Op_([0]). Details about this

terminology can be found in [Bi-Lan], 3.2.
The function z — ¥(z; 7) is the unique holomorphic function on C with the property that its inverse
defines a trivialization of p*(Og_([0])) ~ O¢(T';) which induces the classical factor of automorphy

for Og_ ([0]) and such that its derivative at z = 0 is normalized to 1.

Fixing as before (0,0) € C x C and 0 € C as base points we obtain (with the conventions of 3.2) a
trivialization for the pullback to C x C of the Mumford bundle M. associated with Og_([0]) resp.
for the pullback to C x C of the Poincaré bundle (3.1.5) on E. x E,. The associated factors of
automorphy are computed (with 3.2 (v)) from (3.3.10) both times as

(3.3.11)

I, xT, xCxC—C* (mr+nm7t+n,2z,w)—exp | — 2mimm/rt — 2mim’z — 2mimuw|.

If we write again M, as Og_« g, (Ag. — ([0] x E;) — (E; x [0])), then the trivialization on C x C

is defined by the function (z, w) — where

_1
J(z,w;T)’

Wz 4+ w;T)
I(z; 1) w; T)

oz +w;T)

(3.3.12) J(z,w;7) = = explzw - n(1;7)] -

o(z;m)o(w;T)

The function J in (3.3.12) will be the key instrument for our explicit description of the D-variant
of the elliptic polylogarithm in families. We have seen that it is the analogue for the Kronecker
theta function © in (3.3.4) when one performs the shift from the canonical to the classical factor
of automorphy for Og_([0]) (cf. Rem. 3.3.1 and Rem. 3.3.3). The classical theta function ¥ of
(3.3.9), as characterized in Rem. 3.3.3 (ii), instead of the canonical theta function 0 of (3.3.1) is
the appropriate theta function to start with. The use of such a theta function is that it provides a

Jactor of automorphy (and thus a way of writing down sections) for the Poincaré bundle (3.1.5).

Let us conclude this more preliminary subsection by showing that with the function J in (3.3.12)

we have not defined anything new to the existing literature.

The relation to Zagier’s meromorphic Jacobi form

We keep working with a fixed 7 € H.
In [Za2], 3, Zagier introduces a meromorphic function (z,w) — Fr(z,w) on C x C by analytic
continuation of the function

—nw mz | JW

(&3 € €
(Z’w) = Z 6727rin7' .e? — 1 - Z 6727rim7' —ew

n>0 m>0
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which is defined on a certain domain of C x C.
In the cited work the function F;(z,w) is shown to induce a generating function for the (adequately
normalized) period polynomials of all Hecke eigenforms for the full modular group (cf. ibid., (17)).

As explained in ibid., 3, Remark, F.(27miz, 2miw) is a two-variable meromorphic Jacobi form.

A number of fundamental properties of the function F; (z, w), including a determination of its poles
and residues and of its behaviour under modular transformations, are given in ibid., 3, Theorem.

The proof of the next lemma will make use of these results.

Lemma 3.3.4

With notation as above we have an equality of meromorphic functions in (z,w) € C x C:

O(z,w;T) = 27i - exp [j(w)] - Fr(2miz, 2miw).
T

Proof. As above let I'; = Z7 @ Z and write 2mil"; := Z2mwit ® Z2wi. If A(2wil';) denotes the

fundamental area divided by 7 of the lattice 27¢I", then we have

(%) A(2mil';) = 2miT — 2miT,
(%) A(2miT,) = 4m2 A(T).
Let

0(z + w; 2mil';)
0(z; 2mil')0(w; 2mil,)
be the Kronecker theta function for the lattice 27iI", where the function 6(—; 27iI";) is defined as in
(3.3.1) by using the lattice 27iI"; instead of I';.

O(z,w; 2mil',) :=

The canonical factor of automorphy for the Poincaré bundle on (C/2miT"; x C/2mil';) is given (by

the same computation as in the deduction of (3.3.3)) as

2mily X 2mily X Cx C = €, (7,4, 2,w) + exp [WW]

A(2mil,)

Using () in the numerator of this expression (and observing e2mim'n — 1) one calculates that it equals

(2mimT + 2min, 2mim/T + 2min’ | z, w) > exp [ (4r?mm/ 12 + 4x*mn'T + 4x’m/nr

1
A(2mil;)
+4n’nn’ — 2mim/ 27 — 2nimwT — 27in’z — 2minw) — 2mimm/T —m’z — mw] .

Now set

9 (z,w) = Fy (z,0) - exp [— A(Q;‘}J

which is a meromorphic function in (z, w) because this holds for Fi.(z,w) by [Za2], 3, Theorem, (ii).
Then

g-(z + 2mimT + 2min, w + 27im/T + 27in’)

Zw

precie] Rl premr et

= F.(z + 2mim7 + 2min, w + 2mim/7 + 2min’) - exp [ - (4 mm’r

+4rn?mn/T + An*m/nT + dnPnn’ — 2mim/ 27 — 2mimwT — 2min’z — 27rinw)] ,
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and the formula
F (2 + 2mimT + 2min, w + 2wim/1 + 2min') = F.(z,w) - exp | — 2mimm/T — m'z — mw

thus implies that (z,w) — g¢,(z,w) defines a meromorphic section of the Poincaré bundle over
(C/2mil’; x C/2miT';); for the preceding formula we use [Za2], 3, Theorem, (v).

The functions g,(z,w) and O(z,w;2mil';) moreover both have simple poles in z = 2mim7t +
2min (m,n € Z) and in w = 2mim’T + 2min’ (m/,n’ € Z) and are holomorphic elsewhere: for
F;(z,w) - and hence for g, (z, w) - this is [Za2], 3, Theorem, (ii), and for ©(z, w; 27il';) this is clear
by definition and by the zeroes of 6(—; 2wil’;).

Let us calculate residues:
With [Za2], 3, Theorem, (ii), we obtain

(2mimT + Qﬁin)w}

Resz—Qm’mT-‘rQﬂ'in{ QT(Z; w)} = eXp[_wm] " OXP |:_ A(ZTFZP )

On the other hand,

) —2mimT — 2min)w
Resz—27rim7+27rin{ @(Z, w; 27T’LF.,—)} = exp |:( ) :|

A(2mil;)
2mimwT + 2minw -
A(2mil;) ’

:exp[—

where the first equation follows from [Ba-Ko], Lemma 1.15, and the second from (x). In the same way

one shows that the residues of g, (z,w) and ©(z, w; 2mil’;) coincide also in w = 2wim’T + 2mwin’.

In sum, we deduce that the difference of g,(z,w) and ©(z, w;2miI';) is a holomorphic section of
the Poincaré bundle over (C/2miI", x C/2miI';). By [Ba-Ko], Lemma 1.11, it must already be zero.
We hence get

zZw

(* * *) O(z,w; 2mil;) = g-(z,w) = exp { A2mily)

] - Fr(z,w).
Now observe (e.g. by directly going into the definitions) the relation
. . z
0(z; 2mil';) = 2mi - 9(,;7’),
274

such that

T 2’ 2mi’

1
O(z,w; 2mil;) = 307 @( S 7'>

and hence

472 zw

O(z,w;T) = 2mi - ©(2miz, 2mwiw; 2mil';) = 27i - exp [A(QZF)
mil',

] - Fr(2miz, 2miw)
= 277 - exp [z(w)} - Fr(2miz, 2miw).
4 T

Here, the second equality comes from (x**) and the third one is (x). This establishes our claim. [
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We now deduce the fundamental relation between the function J(z,w; 7) of (3.3.12) and the mero-

morphic Jacobi form F (2wiz, 2miw):

Proposition 3.3.5
We have the equality

J(z,w;T) = 2mi - Fr(2miz, 2wiw).
Proof. As

52

¥(z;7) = exp [— QA(T):l -0(z;7)

we have
J(z,w;T) = exp {— AZZ:)] - O(z,w;T).

Now use Lemma 3.3.4. O
Remark 3.3.6
We have the equality

J(z,w;T) = exp[wl(z;7) + zwn(1;7)] - 2(z,w; 7).

Namely, as F'y (z;7) = ((z;7) — €5(7) - z this follows by combining the last equation in the proof of
Prop. 3.3.5 with Lemma 3.3.2.

3.3.2 Notations for some classical functions

We briefly introduce notations for some well-known functions appearing in the complex theory of
elliptic curves. The conventions adopted here will remain valid until the end of the work.

Details and basic properties concerning these functions can be found in [Sil], Ch. I, [Kat3], Ch. I,
[Kat4], A 1.3, [Po], I, App. A, and [Bi-Lan], 8.5.

We use the abbreviations g, := e2™%%, ¢, := 2™7,

(i) Asin 3.3.1 we let
A(r) = 1 (tr—7)

T 2mi

be the fundamental area of I', = Z7 & Z divided by 7, now viewed as a function in 7 € H, as well as

coms T (2) el

ver,\{o}

resp.

C(z,r):z%—i— Z <1+i+;2>

veroy N7

the Weierstra} sigma resp. zeta function, now viewed as functions in (z,7) € C x H.

(ii) For each 7 € H the quasi-period n(—, ) : T'; — C for the lattice T is again defined via

n(mr 4+ n,7) :=((z,7) — ((z + m7 + n, 7).
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We stress that our definition of the quasi-period follows the sign convention of [Kat3], 1.2.4 and
[Kat4], A 1.3, which usually differs by the factor (—1) from the definition in other sources.

The quasi-period in particular yields the functions in 7 € H given by 7(1,7) and n(7, 7) which are
connected via the Legendre relation (cf. [Kat4], A 1.3.4):

n(r,7) =2mi+7-n(1,7).
We also remark the equality

n#0 m#0n€Z n>1

( > d) a7
d|n
d>0

of —n(1, 7) with the holomorphic Eisenstein series of weight two G2 () (cf. [Kat4], Lemma A 1.3.9).

(iii) Furthermore, let

denote the Dedekind eta function in 7 € H.

]by

(iv) We introduce the two-variable classical Riemann theta function of characteristic [

011(2,7) = > _exp [m’<n+ ;>2T+27Ti<n+ ;) (z+ ;)}

neE”Z

N D=

following in our notation [Po], I, App. A. It is also often denoted by [

D= N|—=

] (z,7),e.g. in [Bi-Lan], 8.5.

(v) Finally, we write
F(z,w, ) := Fr(z,w)

for the function defined in [Za2], 3, which we have already introduced prior to Lemma 3.3.4 and now

view as a function in (z,w,7) € C x C x H.

3.3.3 The elementary theta function and the fundamental meromor-
phic Jacobi form

In 3.3.1 we explained at some length the motivation to consider the functions ¥(z; 7) and J(z, w; 7)

which we now officially introduce with also the parameter 7 € H varying. Before we explicitly apply

them in the context of the universal elliptic curve we want to use the present and following subsection

to record the most important analytic properties of these functions that will be needed later.

The elementary theta function

Definition 3.3.7

The elementary theta function is the function in (z,7) € C x H given by

¥(z,T) == exp [22277(1,7)} co(z,7).
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Remark 3.3.8
As recorded in (3.3.9) the relation between 9(z, 7) and the function (z, 7) of (3.3.1) is given by

22

(3.3.13) 9(z,7) = exp { 2,4(7)] - 0(z, 7).

Lemma 3.3.9

We have the following two alternative expressions for the elementary theta function:

L s\ o L—qre) (1 —gigrh)
(3.3.14) I(zm) = o (qZ 4 ) nl;[l (1—qp)?
and
- 011(2, T)
(3.3.15) Iz, 7) = 27

Proof. For (3.3.14) use [Sil], I, §6, Thm. 6.4, and observe that the quasi-period used there differs
from ours by a minus sign.

To derive (3.3.15) use [Po], I, App. A, Thm. 3.9; note again the different sign of the quasi-period. [

As the functions (z, 7) + 611(2,7) and T — 7)(7) are holomorphic? we see from (3.3.15) that ¥(z, 7)
varies holomorphically in C x H. Its zeroes cut out the divisor {(m7 + n,7)|7 € H,m,n € Z} C
C x H, and its one-variable Taylor expansion around z = 0 has the form

(3.3.16) ¥(z,7) = z + higher terms.

Finally, we will need the behaviour of ¥(z, 7) under modular transformations:

Proposition 3.3.10
b
For allm,n € Z and (a d> € SLy(Z) we have
c
z+mr+n ar+b 1 mic(z +mr +n)? _ ) g
, = -exp +rim+min—2mwimz—mim°T|-9(z, 7).
cT+d ct+d cT+d ct+d
Proof. Consider formula (3.3.15):
911 (Z, T)
VY =——.
T

One checks that —611(z, 7) is equal to what in [Si], p. 30, is denoted by 9 (z, 7). The transformation
formulas for ¥4 (z, 7) and for n(7) given in ibid., p. 34, then imply

>
19< z a7+b): 1 exp[mcz ]-ﬁ(z,r).

cr+d er+d c7'+d. ct+d

For the proof of the proposition it thus remains to show that

19(2’ +mr+ n’,]_) _ eﬂim+7rin727rimz77rim27 . 19(2’7_).

2The product in the Dedekind eta function converges absolutely and uniformly on compact subsets of H, hence is holomor-
phic. For the holomorphicity of 611 (z,7) inC x Hsetecy = ¢ = % in [Bi-Lan], Prop. 8.5.4.
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Taking into account Def. 3.3.7, the last formula is equivalent to the claim that o(z +m7+n, 7) equals

7rim+7rin727rimz77rim2'rfn(1,7‘)< [%m272+%n2 +mzT+nz+mnrt| |

e o(z,7),

or, written differently, equals

mimn+mim4min e—n(l,‘r) . [%m272+%n2 +mzT+nz+mnt]| —2mimz—mim2T—mimn

e ~o(z,7)

Timn4mim-tmwin —n(1,7)-(m74+n)—2mim]-[z2+ i n+ 1 m7]

=e el co(z,T)

mimn4mwim4mwin efn(mr+n,r)-[z+%(m'r+n)] .

=e o(z,7),

where for the last line we have used the Legendre relation (cf. 3.3.2 (ii)):
n(r,7) =2mi+7-n(1,7).

But that the last line is equal to o(z + m7 + n, 7) is well-known: this is [Sil], Ch. I, Prop. 5.4 (c):
one only has to take into account that the quasi-period used there differs from ours by a minus sign
and that the factor ¢)(m7 + n) appearing there equals e™‘mn+mim+min, O

The fundamental meromorphic Jacobi form

The holomorphic function ¥(z, 7) induces the following meromorphic function in three variables:

Definition 3.3.11

We define a meromorphic function in (z,w,7) € C x C x H by setting

Iz +w,T)

T ) = e o)

and call it the fundamental meromorphic Jacobi form.

Remark 3.3.12
The relation between J(z, w, 7) and the function ©(z, w, 7) of (3.3.4) is given by
(3.3.17) J(z,w,T) =exp | — o O(z,w, 7).
A(T)
Let us also recall from (3.3.12) that
(3.3.18) J(z,w,T) = explzw - n(1,7)] - olz+w,7)

o(z,7)o(w, )’
In Prop. 3.3.5 we have already established the following relation between J(z,w,7) and the mero-

morphic Jacobi form F'(27iz, 2miw, T) of [Za2], 3:

Proposition 3.3.13
We have the equality

J(z,w,7) = 2mi - F(2miz, 2miw, 7).

O

In view of [Za2], 3, Theorem, (i)-(viii), this yields a number of non-trivial properties for J(z, w, 7).

The following transformation formula can be viewed as a corollary of Prop. 3.3.10 or be deduced
from Prop. 3.3.13 and [Za2], 3, Theorem, (v) and (vi).
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Corollary 3.3.14

a
Forall m,n,m',n’ € Z and <
c

b
d) € SLy(Z) we have

z+mr+n w+m't+n’ ar+b (J( ))71
(J(z,w, T
cr+d cr+d  er+d B
2mic

ct +d

= (et +d)-exp { “(z+mT+n)(w+m't+n'") = 2mim'z — 2mimw — 2rimm/ T |.

O
It follows e.g. from Prop. 3.3.13 and [Za2], 3, Theorem, (ii), that J(z, w, 7) has simple poles in
z=m7+n(m,n€Z,1eH)
with residue e~ and simple poles in

w=m't+n" (m',n' €Z,7 € H)

. . — y / . .
with residue e =27 # and is holomorphic elsewhere.

We consider its Laurent expansion with respect to the variable w around w = 0:
1

3.3.19 J == Lwk.

( ) (z,w,7) " + k§>0 re(z,7) - w

From the mentioned knowledge about the residues of JJ and comparison of expansions one easily
deduces the following information about the meromorphic coefficient functions r(z, 7) for all k > 0,
where we use the convention 0° := 1 and trivially remark that having residue 0 at a pole of order at

worst one means holomorphicity:

(3.3.20)
(—=1)*(2mim)*

7} has at worst simple poles along z = m7 4+ n (m,n € Z, 7 € H), with residue il

From (3.3.17), [Ba-Ko-Ts], p. 191, and Lemma 3.3.2 one finds
(3.3.21) ro(z,7) = ((2,7) +n(1,7) - 2.

For later purposes we note as a consequence of (3.3.19) and (3.3.20) that for each D € Z\{0} we

have a Laurent expansion around w = 0:
(3.3.22) D?* . J(z,—w,T) — D - J(Dz, —%, T) =Pz, 1) + 5P (2, 1w+ ..,

where for all k£ > 0 the s§’(z, 7) are meromorphic functions on C x H with the property:

(3.3.23)
.k
s¥ has at worst simple poles along z = m7 + n (m,n € Z, 7 € H), with residue (D2 -1)- (QW]ZTL) ,
m n . . L. . . (27Ti%)k
and along z = o7 + D (with D not simultaneously dividing m and n), with residue — -

From (3.3.21) we see:

(3.3.24) s8(z,7) = D?*-{(z,7) — D -{(Dz,7).
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3.3.4 The fundamental meromorphic Jacobi form and Eisenstein se-
ries

We continue the investigation of the function J(z, w, 7) by revealing that its Laurent expansion around
w = 0 involves as coefficients Eisenstein functions ey (z, 7) which are obtained from the Eisenstein-
Kronecker-Lerch series (resp. its analytic continuation) defined in [Ba-Ko-Ts], 2.1 or [Ba-Ko], 1.1.
It will turn out later that the analytified D-variant of the polylogarithm on the universal elliptic curve
can be constructed from the w-expansion of J(z, w, 7). Hence, already in prevision of determining
the specialization of the D-variant along torsion sections, we here evaluate the ey (z,7) at points
z =357+ %. The result, which is also of independent interest, represents the obtained functions
T e (%T + %, T) by the modular forms P (1) defined and studied in [Ka], Ch. L

a b
N'N

The two-variable Eisenstein functions

For 7 € H we will again write I'; = Z7 @ Z for the associated lattice in the complex plane and
A(1) := A(T;) := 5= (7 — 7), which is the fundamental area of T, divided by 7.

211

For each k& > 0 we define a two-variable Eisenstein function by
ek(zv T) = Kl: (Oa Z, k; 7_)7

where K (—, —, —; 7) denotes the Eisenstein-Kronecker-Lerch function (with asterisk) associated to
the lattice T';; for its definition and basic properties cf. [Ba-Ko-Ts], 2.1, or [Ba-Ko], 1.1. The ex(z, 7)
define €>°-functions for (z, 7) in (C x H)\{(m7 +n, )| € H, m,n € Z}, see the argument below.

The Eisenstein functions have an important relation to the expansion of J(z, w, 7) in w = 0; namely,

we have the following equation (in which we don’t write out the expansion of the exponential term):
_ ZW — Zw 1 k b
(3.3.25) J(z,w,T) = exp [277@7_%} . (w + Z(—l) cept1(z,T) - w )
k>0
This is deduced from the symmetry property J(z,w, 7) = J(w, z, T) together with the formulas

2W — ZWw

T—T

J(z,w,T) = exp [27ri } - Kq(z,w, 1;7),

1
Ki(z,w,1;7) = (2 + Z(—l)’C epg1(w, ) - zk>,
k>0

where for the first equality one uses (3.3.17) and [Ba-Ko], Thm. 1.13, and the second follows from the
formula in [Ba-Ko-Ts], p. 226, noting ibid., Def. A.2 and Rem. A.5. Here, K (z,w, 1;7) is a certain
Eisenstein-Kronecker-Lerch function (without asterisk) for I' -, as defined and studied in [Ba-Ko], 1.1.

From (3.3.25) and the properties of the Laurent w-expansion of J(z, w, 7) (cf. (3.3.19) and (3.3.20))
we see that the e (z, 7) are ¥"°°-functions for (z,7) in (C x H)\{(m7 + n,7)|r € H,m,n € Z}.
Specializing the Eisenstein functions to modular forms

Fix N > 3 and two integers a, b which are not simultaneously multiples of V, in other words: setting
o= £ B:=2 wehave (a, ) # (0,0) in (§Z/Z)>.
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We want to relate for each k£ > 1 the function 7 — ey, (%T + %, 7) with the modular form F(ik[)a (1) of
weight & and level N defined in [Ka], Ch. I, 3.6. For the reader’s convenience, we quickly review the
definition of these modular forms, for the present purpose understood in the classical analytic sense;
for more details, in particular for their purely algebraic construction, we refer to ibid., Ch. I, 3.6-3.10.
In fact, their algebraic origin won’t play a role before 3.8.2, where we will also precisely describe
the relation between the algebraic and the analytic approach (cf. Rem. 3.8.12 and Rem. 3.8.13).
Until then, we will exclusively treat them as modular forms in the classical sense, working with their
expressions as holomorphic functions in 7 given in ibid., Ch. I, 3.8.

27
~ , then

Namely, if we (now and in the following) write ( := e

FMm =Nt S v BY, (1), k#£2

) NN
(z,y)€(Z/NZ)?

FOm =N 3 T EY,
(z,y)€(Z/NZ)?

(7).

The B (1) resp. E(f)i(r), associated to (%, %) € (3-Z/Z)?, are modular forms of weight k
N

X z Y NN
N NN N> N

and level N of algebraic origin. As functions in 7 they are given as follows:

In the case k > 3 one has

EW (1) = (=) (k — 1)/(2mi)~* ! for (z, 0,0) in (Z/NZ)2,
2.2 (1) = (=1)"(k - 1)!(2mi) (m;)ezg(ﬁf+]yv+mf+n)k (,y) # (0,0) in (Z/NZ)
E(7) = (=D = Dl(2mi)~* s

(m,n)€Z2\{(0,0)}

where (7, 7)) represents (z,y) in (Z/NZ)2.
To obtain E(ﬁk)% (1), where (z,y) # (0,0) € (Z/NZ)?, resp. E(()’fo) (1) for the cases k = 1,2
one proceeds by Hecke summation: this means that one takes the value at s = 0 of the analytic

continuation of the - in Re(s) > 2 — k absolutely convergent - series

1

(%T—l—%—l—mT—l—n)k-‘%T—l—

(=DF(k = Dl2m) ™

(m,n)€z?

+mT 4+ n|

2l

resp.

(=1)*(k — 1)!(2mi) " > !

k. 5"
(m,n)eZ2\{(0,0)} (mT + n) |m7‘ + n|

E(j)i (7) then is given by E(_j)i (1) — EéQ(g (7).
NN

N°'N ’

For more details and for proofs of tacitly assumed facts we refer the reader to [Sc], Ch. VII; see

also the following remark.

Remark 3.3.15
Let (z,y) € (Z/NZ)?. Then in [Sc], Ch. VII, for each k > 1 functions G . (s (7) are defined as
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the value at s = 0 of the analytic continuation of the - in Re(s) > 2 — k absolutely convergent - series

1
S = )
(m n)e;;{(o o) (mt + n)E - |m7 + n|®
(m,n)=(z,y) mod N

One can check that the following relation with the above defined Eisenstein series holds:

(DR pw

_ —k
GN,k,(.r,y) (T) =N (k‘ . 1)] £.¥

From [Sc], Ch. VII, (6) and (30), we also get the following formulas for any (z,y) € (Z/NZ)*\{(0,0)}:

(k) — (oK. k=2 (F Yy -
E%7%(T)—(27TZ) © (NT—FN,T) ifk >3,
~(2) o N2 xz Y
E%7%(T) = (2mi) p(—NT + —N,T),

with p(z, 7) resp. p(F~2) (2, 7) the WeierstraB p-function resp. its (k — 2)-th derivative in z-direction.
We can now describe the specialization of the Eisenstein functions as follows:

Theorem 3.3.16
Let N,a,b,«, B be as above. Then for each k > 1 we have the equality

a b (=) (2mi)*
r(§7+5T) = (k—1)! Fa3(m):

Proof. We need to distinguish three cases.
Let us start with the case k£ > 3:

Under this assumption we have the series representation

Zy—z2y| 1 ZXT + ZYy — 2xT — 2y 1
ex(z,7) = Z exp [QWZﬁ} i Z exp {2771 P (aT +y)k
y€ET-\{0} (z,)€22\{(0,0)}

following from the definition of e, and the fact that Re(k) > £ -+1 holds for k > 3, such that we have

an expression of K (0, z, k; 7) by the preceding absolute convergent series (cf. [Ba-Ko-Ts], Def. 2.1).

We get
a b xb—ya 1
ek(NT+N7T): Z N R

(z,y)€Z2\{(0,0)}

= 1 R
- Z { Nb Z ((§+mN)T+§+nN)k}+ Z (mNT 4+ nN)*

(z,y)E€(Z/NZ)?\{(0,0)} (m,n)ez? (m,n)€Z2\{(0,0)}

R e L)

z U k
(2,4)€(Z/NZ)>\{(0,0)} (mmyezz (NT+ N +m7+n) (m,n)€22\{(0,0)}

On the other hand, we have by definition
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Fo(ry=n"* S v BY, ()

(2,y)E(Z/NZ)?2 n

:N_'“< 3 { S C VRN CLA R - }+EE§,>0><T>)

T Y k
(2,y)€(Z/NZ)>\{(0,0)} (mmyezz (NT+x§ +m7+n)
1

Dk —-1)! ob—ya
= ()27(ri)k )Nk( > {Nb Y

x U k }
(@.9)€(Z/ND)2\{(0,0)} (mmezz (NT+ % tm7+n)

fS )

(m,n)€22\{(0,0)}

Hence a b (—1)F(2mi)*
w(frewn) = T

—T+—,T 7o 1) Fo(tkg(T) forall k > 3.

N N

‘We now treat the case k = 1:

By definition and [Ka], p. 140, we have

FHO=8 Y g 0+ BR)
(2,9)€(Z/N2)2\{(0,0)} o

= —(27iN)™* Z ¢hrmay. { Anal. cont. of
(z,9)€(2/NZ)*\{(0,0)}

Z ! ins= O} + { Anal. cont. of

(m,n)€z? (%T+%+mT+n)|%T+%+mT+n|s

1 _
Z T B e—— ins= 0}) = —(2miN) ™" ( Anal. cont. of
(m,n)€Z2\{(0,0)}

{ > D D 1 7

(@,9)€(Z/NDY2\{(0,0)} (mmezz (NT+ & tmT +0) [ FT + & +m7 +nf*

1 .
+ Z (m7'+n)~|m7'+n|s}m870)'

(m,n)€Z2\{(0,0)}

The series are absolutely convergent for Re(s) > 1, and there the expression in {...} is equal to

N S bemey. 30 1

(@4+mN)T+y+nN) - [(T+mN)T+7y+nN|*

(z,y)€(Z/NZ)?\{(0,0)} (m,n)ez?
1
D>
mNT+nN) - |mNT+nN|®
(m,n)€Z2\{(0,0)} ( )| |
s r—a 1
— Nt Z bu—ay : f(s).

T - leT s
(@) 22N (0,0} (@7 +9)-ler +y]

On the other hand, we have for Re(s) > 1:

* a b S br—a 1
Kl(O,*T“r*,l‘F*;T): v. ,
N N 2 y y)eZzz\{(O o N (z1 +y) - |oT +y|*

absolutely convergent (by applying the definition, cf. [Ba-Ko-Ts], Def. 2.1). We then have:

b
a7+ﬁ,1+§;7> ins =0,

(*) e1(z, T)‘Z=%7+% = Anal. cont. of K7 (O, i
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again by definition.
The equality N'** - K7(0, 7+ 2,1+ £;7) = f(s) in Re(s) > 1 implies the equality
N K*(o LAY )—f(o)
1 9 NT N7 L] T -
for the analytic continuations in s = 0. Now, (*) together with the above computation for F (21}3(7)
yields, as desired:

o b a0
el (NT + N,T) = —2mi- F, 5(7).

We finally turn to the case k = 2:

By definition and [Ka], p. 140, we have:

FOO=N2(Y B o)

(z,y)€(Z/NZ)?

vy a B 0830

(,9)E€(Z/NZ)?\{(0,0)}

- —(47r2N2)*1( T ba—ay [E(Z,T, %T+%,0) —Eo,o(Q,T,O)D
(x,9)€(Z/NZ)2\{(0,0)}

_ 2 772 —1 br—ay g g
— _(4n%N?) ( 3 B2+ £,0) +E0,0(2,T,0)>
(z,9)€(Z/NZ)?\{(0,0)}
+ (47r2N2)*1( > bray . By 0(2,7,0) + Eoo(2,T, 0)).
(x,9)€(Z/NZ)2\{(0,0)}
The first summand is by definition
1
— (4r*N?)7! ( Anal. cont. of{ Z bo—ay Z = = = -
(2,4)E(Z/NZ)2\{(0,0)} (mimezz (NT+ X +mT +0)2 - |FT + § +mT + 0
1
DY 2 fins=o0),
(e gooy (M7 ImT 4l
and the term in {...} is absolutely convergent in Re(s) > 0, where it equals
1
NEEY T =t g(s).
xT 2. er s
(2. 9)€22\((0,0)} (27 +9)° - o7+
On the other hand, by definition:
. a b 5 )
(%) ea(z, T)‘Z=%7+% = Anal. cont. of K3 (0, N7 + N 2+ 2’ 7') ins=0.
For Re(s) > 0 we have
e R R I e s e e
NN N Tyl e ol ’

(z,y)€22\{(0,0)}
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absolutely convergent (cf. [Ba-Ko-Ts], Def. 2.1).

Altogether, we obtain from (xx) and the above computation of F| 052[)3:

( * %) eg(gT—i- b

S T) = ARES AN S Eae(2m,0),

(z,y)€(Z/NZ)?

But

Z ?Gy( Z exp[QNmbx}>'( Z exp{ivmay})

(z,y)€(Z/NZ)? z€Z/NT y€EZ/NZ

By hypothesis, we have that N Y a or N 1 b. If N { a we get

N
2mi
e )
Z exp | — Way = = 0
yEZ/NZ 1 —exp [ - QNMG]

and if N 1 b we get

g el

x€Z/NZL

With this, (x * x) writes as
b
2 (gT + *77) = —4n’F 2 (7),
which is what we wanted to show. ]

Thm. 3.3.16 and (3.3.25) will serve as an important computational tool when determining the spe-
cialization of the D-variant of the polylogarithm along torsion sections of the universal elliptic curve.

k)

More precisely, we will see that this specialization expresses in terms of the modular forms p F’ CE 3 (1)

defined in [Ka], Ch. I, p. 143; they are obtained from the above Fo(lkg(r) in the following way:

Definition 3.3.17
Let N, a,b, «, 8 be as above and let D be an integer with (D, N) = 1.
Then we define for each k£ > 1 the modular form DFL(J%(T) of weight k and level IV by setting

k k — k
DFC(E”(%(T) = DQF((%’?(T) - D? kFJ(D&DB(T),

3.4 The analytic geometry of the basic objects

The main goals for the rest of the work will be the following: to describe analytically the D-variant of
the polylogarithm for the universal family of elliptic curves with level N-structure, and to determine
its (algebraic) specialization along torsion sections.

In the following, we first review the definition of the universal elliptic curve over the modular curve
of level N (introduced as schemes over Q) and the description of their associated complex manifolds.
We also derive a suitable expression for the analytification of the universal vectorial extension of
the dual elliptic curve. Then, as already illustrated in 3.3.1 for a single complex elliptic curve, the

elementary theta function resp. the fundamental meromorphic Jacobi form is used to trivialize the
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pullback of the analytified Poincaré bundle to the universal covering, which provides us with a factor
of automorphy. Expressing in this way sections of the Poincaré bundle via holomorphic functions on

the universal covering, we finally deduce an explicit formula for its universal integrable connection.

Conventions and notations

Assume that X is a scheme which is locally of finite type over C or over Q.

We will denote by X*" the complex analytic space associated with the C-valued points X (C) =
Homgc (Spec(C), X) resp. (X xg C)(C) = Home (Spec(C), X xg C) = Homg(Spec(C), X).
The assignment X — X" is functorial for morphisms in the respective category of schemes.

If F is a Ox-module we write 7" for the O xan-module given by pullback of F via the canonical
map of locally ringed spaces X" — X; as this map is flat we get an exact functor F +— F*" which
preserves coherence by Oka’s theorem and [EGAI], Ch. 0, (5.3.11).

For more details about the transition from the algebraic to the analytic category cf. [SGA1], exp. XIL.

Furthermore, in view of 3.2 (v) we want to choose base points for the universal coverings of vari-

ous manifolds (resp. their connected components) which will be encountered. Here is our convention:

Until the end of the work we fix the base point O for C, the base point i for H and the induced
base points for factors, e.g. (0,1) for C x Hor (0,0,0,i) for C x C? x H etc.

From now on let an integer N > 3 be given.

The universal elliptic curve with level N-structure

Consider the (contravariant) set-valued functor on the category of Q-schemes

& +— {Iso classes of pairs (&, a) | &/ elliptic curve, « : (Z/NZ){Qy =5 &[N]iso of .7-groups},
where (Z/NZ) ; means the constant .%”-group scheme associated with the abstract group (Z/NZ) 2,
An isomorphism « as in the definition of the functor, called "level N-structure", is tantamount to
give an ordered pair of N-torsion sections of & /. inducing on each geometric fiber over . a basis
for the (usual) (Z /N Z) -module of N-torsion points: we obtain this pair of sections as the images of
(1,0) and (0, 1) under the homomorphism (Z/N Z)2 — &[N](F) of abstract groups corresponding
to o and call it the associated "Drinfeld basis" for &[N].?

It is a well-known fundamental theorem that the above functor is representable by a 1-dimensional
affine scheme S which is smooth, separated and of finite type over Spec (Q), the (open) modular
curve of level N (cf. [Kat-Maz], Cor. 4.7.2, (4.3), (4.13) and (1.2.1)). One can check that S is
irreducible.*
We write

m:E— S, (e1,e2) € E[N](S)

3To see the equivalence between the isomorphy of « and the condition about the geometric fibers one may use [Kat-Maz],
Prop. 1.10.12, (1.10.5) and Lemma 1.8.3.
4One may use e.g. the remarks at the beginning of [Hi], 2.9.3, together with [Li], Ch. 4, Prop. 3.8.
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for the universal elliptic curve over the modular curve and the related Drinfeld basis for E[N].
We want to have explicit expressions for the complex manifolds S and E*™.

For this let IT'(N) := ker(SLy(Z) — SLy(Z/NZ)) act as a group of automorphisms on H by lin-
ear fractional transformations. The action is properly discontinuous and as N > 3 it is also free; the
orbit space I'( V) \H, endowed with the quotient topology, naturally becomes a complex manifold.
Moreover, one checks that the set Z2 x I'(IV) obtains the structure of a group by

()= (6 )= () o () )

and that it then acts properly discontinuously and freely as a group of automorphisms on C x H via

() 8)en= (i)

We can thus again naturally form the quotient manifold (Z? x I'(IV))\(C x H).

In the following, we usually won’t indicate it in the notation when actually working with orbits and
will simply write down representatives, tacitly implying well-definedness of everything we do.
Because of N > 3 the natural projection
(34.1) (Z/NZ)* x (Z* x T(N))\(C x H) L (Z/NZ)* x T(N)\H
with the section
(3.4.2) (7,0,7) <= (4, 7)
defines an analytic family of elliptic curves.’ Furthermore, the two ordered sections
j 1
(3.43) (35 7) <G (GyeT) < G,

define an analytic Drinfeld basis for the N-torsion of this family.®

For each (j,7) € (Z/NZ)* x T'(N)\H the complex elliptic curve pr=*((j, 7)), equipped with the

level N-structure induced by this Drinfeld basis, identifies with ((C /(Zr @), I, %) by
C/(ZroZ) = pr= (7)), 2w (,27),

and this is the only such isomorphism because of N > 3.

5By an analytic family of elliptic curves we understand a proper flat morphism of analytic spaces together with a section,
satisfying that each fiber is a compact Riemann surface of genus 1 which is then viewed as complex elliptic curve via the
distinguished point induced by the section. In our situation, (3.4.1) and (3.4.2) define such a family: for every (j,7) €
(Z/NZ)* x T(N)\H the fiber pr—1((j, 7)) is (non-uniquely) isomorphic to the complex torus C/(Z7 @ Z), e.g. by the map

C/(Zr®Z) =5 pr= (5, 7)), 2+ (j,2,7).

Here it is essential that I'(V) acts without fixed points on H, i.e. that we have N > 3.
®For an analytic family of elliptic curves this means that the two sections fiberwise yield a basis for the N-torsion of the

respective complex elliptic curve. For our situation this is clear by using the isomorphism of the previous footnote.
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(3.4.1)-(3.4.3) parametrizes all analytic families of elliptic curves with Drinfeld basis for the N-
torsion (cf. [Ha], Thm. 5.2.297). In particular, applying this to the analytification of (E/S, ey, e2) we
obtain unique holomorphic maps constituting the vertical arrows of a commutative diagram

E" — (ZJNZ)* x (Z* x T(N))\(C x H)
(3.4.4) T \L lpr

gan 2 . (Z/NZ)* x T(N)\H

such that for each s € 5" the induced map (7%")~!(s) — pr=!(®(s)) is an isomorphism of elliptic
curves with level N-structure. With this information® one sees that the upper arrow of (3.4.4) is an
isomorphism if the lower one is; that the last in turn is true follows easily from the knowledge of the

C-valued points of S by considering the functor which it represents.

In view of (3.4.4) we will henceforth always identify the analytification of (E/S, ey, e3) with the
analytic family of elliptic curves with Drinfeld basis for the /N-torsion defined by (3.4.1)-(3.4.3).
The universal vectorial extension

In a next step we describe the analytification of the universal vectorial extension E" of the dual elliptic
curve E of E. For this we consider the following canonical exact sequence of abelian sheaves on S*"
(cf. [Maz-Mes], Ch. 1, (4.4)):

(3.4.5) 0 — R'7%(2miZ) — Hlp (E"/S") — (E%)* — 0.

We then trivialize the Ogan-vector bundle H}y (E*"/S*") on the universal covering H of each con-

nected component of S*” by using the cartesian diagram

72\(C x H) —= (Z2 x T(N))\(C x H)

T

H—=T(N)\H

and the Op-basis {p(z, 7)dz,dz} for the de Rham cohomology of the left analytic family of elliptic

curves in (3.4.6). This trivialization induces the 2-dimensional factor of automorphy

a b L 0
(3.4.7) I['(N) x H — GLy(C), ( < d) ,7') — <”0+d N d)
C CT

for Hig (E"/S") on each connected component I'(N)\H of S°". The geometric vector bundle
associated with Hlp (E"/S%") is then given by
(Z/NZ)* x T(N)\(C? x H)
(3.4.8) ican
(Z/NZ)* x T(N)\H

7One easily checks that our quotient object identifies canonically with the curve (O}N considered in the cited reference.
8and with the well-known fact that bijective holomorphic maps of complex manifolds already are isomorphisms
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with (V) acting (properly discontinuously and freely) on C? x H by the rule

a b w at +b
<C d) . (w,u,T) = (M,(CT+d)U, CT—|—d>.

From (3.4.5), (3.4.8) and [Kat5], p. 301, one easily deduces the following description for (E“)“"/S‘””:

(Z/NZ)* x (Z* x T(N))\(C? x H)
(3.4.9) ican
(Z/NZ)* x T(N)\H

with Z2 x T'(N) acting (properly discontinuously and freely) on C? x H by the rule

m’ a b [ wA+m/T+n , , at +b
<<n’> , (C d)) (w,u,T) = <cr—i—d’(CT+d)(un(m7+n’7))’cr+d>'

Under the principal polarization E ~ E in (3.1.3) the analytification of the canonical arrow in (0.1.3)

E' 5 E
becomes the morphism (E“)“” — E%" which is checked to be given as
(Z/NZ)* x (Z* x T(N))\(C* x H) — (Z/NZ)* x (Z* x T(N))\(C x H),
(J,w,u, 1) = (4, —w, 7).
Taking the product with id g we obtain the map FE X g Ef > E x S E~Ex s E with analytification

(3.4.10)
(ZJNZ)* x (Z* x Z* x T(N))\(C x C? x H) — (Z/NZ)* x (Z* x Z* x T(N))\(C x C x H),
(J, z,w,u, 7) — (J, 2, —w, T),

where the action of Z2 x Z2 x T'(N) on C x C? x Hresp. on C x C x H is given by

m m’ a b z+mr+n w+m/t+n , , ar +b
(z,w,u,T) 1= ) ) d)(u— 1y T))s
< <n> ’ (n’) ’ <c d)) (2 w,u,7) ( et +d cr+d (er+d)(u—n(m'r+n’,7)) et +d

resp.
m m/ a b z+mr+n w+m't+n' ar+b
; ) '(Z7w7T) = ) ; .
n n’ c d ct+d ct+d cr+d

With (3.4.10) we have a good analytic access to the objects over which the Poincaré bundle is defined.

The next task is to find a suitable description for the analytification of this bundle and of its universal
integrable connection. In view of its buildup (cf. (3.1.5)) it is clear that we first treat:
The line bundle defined by the zero section

Consider again the analytification of the universal elliptic curve with level N-structure (cf. (3.4.4)):

(Z/NZ)* x (22 x T(N)\(C x H)

_n,u,ni ;Ean

(Z/NZ)* x T(N)\H
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where 7" ((j, z,7)) = (4, 7) and €**((4,7)) = (4,0, 7).

Fix j € (Z/NZ)* and let E{" resp. S§" be the connected component of E" resp. S*" belong-
ing to j. The structure morphism resp. zero section for the analytic family of elliptic curves E7™ / Sy
is given by 74" ((2,7)) = 7 resp. €}"(7) = (0,7). The line bundle Og.~ ([0]) on E*" associated
to the analytic effective relative Cartier divisor defined by the zero section of E%"/S%" becomes the
analogous line bundle Ogan ([0]) for £ /S5™ when restricted to the component E7". Trivializing
Ogan ([0]) on the universal covering C x H of E¥™ amounts to giving a meromorphic function on
C x Hof divisor —{(m7 +n,7)|r € H,m,n € Z}. Sucha function is given by (z,7) > 57— with
¥(z, T) the elementary theta function (cf. 3.3.3). Fix this trivialization.

The associated factor of automorphy is then read off from Prop. 3.3.10 as

Z? xT(N) x C x H — C*, <<m> ; (a b) ,(Z,T)>
3.4.11) n)o\e d

1 mic(z +mt +n)?
— - ex
cT+d cT+d

+ mim + min — 2mimz — 7r7lm27'} .

Remark 3.4.1
The line bundle Opan (—[0]) is trivialized on C x H by the function J(z, 7). With 3.2 (v) we obtain a

trivialization on H of
(6?")*015;"(—[0]) = (6?")*9};?/5? = (W;n)*ﬂ}ayn/sgrna

i.e. of the co-Lie algebra Wgan /gan of B§™/S%m.

On the other hand, there is a natural trivialization of w Bon /e ON H, namely the one induced by
(3.4.6) and the standard differential form dz on Z?\(C x H); we remark that this trivialization (or
rather: this trivialization multiplied by 27¢) allows the interpretation of modular forms as sections in
the tensor powers of the co-Lie algebra of E*"/S*™ (for details cf. [Ka], Ch. I, 3.8).

The two described trivializations of w Bon /e ON H, i.e. the one coming from ¥(z,7) and the one
induced by dz, indeed coincide: to see this requires chasing through many identifications, but in the
end boils down precisely to the fact that 9,9(0, 7)dz = dz (cf. (3.3.16)).

The Poincaré bundle |

Recall from (3.1.5) that under the fixed principal polarization (3.1.3) the birigidified Poincaré bundle
(PY,7r°,5%) on E x5 E is given by

(M @0y, » (1 x 1) Op([0]), can, can),

where

M =1 Op([0]) ®@0py . PrIOB(0]) ™" ®0py ,x Pr3OB((0]) 7

and can is the canonical rigidification along the second resp. first factor.

By 3.2 (iii)-(v) we get from the above fixed trivialization of O Bon ([0]) on C x H a trivialization
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of (PO)?” on C x C x H whose associated factor of automorphy is computed from (3.4.11) as

7P x7Z* xT(N) x C x C x H — C*, <<m>7<m/>7<a b),(z,w,7)>
(3.4.12) n)oAm) e d

2mic

+d

— exp (z4+mr+n)(w+m'T+n') - 2rim’ 2 — 2wimw — 27Timm’7'] .

Explicitly, the trivialization of

(PO)?” ~ OE}MLXS;” E;‘zn (AE?n — [0] X E;’n _E;ln X [O]) ®OE.;.”"><S;“¢ E;‘In (7‘[‘5’” X W?”)*(WE;‘”L/S_?")V

on C x C x H is given by the section

1 0

4.1 0 ———— v
(3.4.13) = S © )

with J(z, w, 7) the fundamental meromorphic Jacobi form (cf. 3.3.3) and (w2, )" defined as follows:

Definition 3.4.2

. O \/ . . . . . \/ . .
We write (wg,,,) " for the trivializing section of (74" x 7" )* (w Fen/ S}ln) on C x C x H induced via

proj

CxCxH H
EOn 5 qun Bon 2 T gan
j sgm Ly j

from the trivialization of (w Ban/gan )V on H given by the dual of the standard differential form - cf.
Rem. 3.4.1.

The Poincaré bundle Il

Denoting as usual by (P, r, s) the birigidified Poincaré bundle on E X g E" we obtain an induced
trivialization of P§™ on C x C? x H whose factor of automorphy is given in view of (3.4.10) by

/
72 x 72 xT(N) x C x C*> x H — C*, mn ) m/ ; a b (2, w,u,T)
(3.4.14) n n c d

2mic
ct +d

—exp | — (z+mr+n)(w+m'T +n') + 2mim 2 + 2mimw + ZWimm'T} .

Write

P~ OE;'"XS;W(EH);’" (K) ®0E5”xsqn<ﬁ:u>;" (5" % (Wh)?n)*(“’E?"/S.?")v
J

with K the pullback divisor of A pan = [0] X EJ™ — E5" x [0] via EJ™ X gan (Eh);m — Ej" X gan EJ".
The trivialization of P} on C x C? x H then is given by the section

1
3.4.15 ti=——— M
( ) J(z,—w,T) % Wean:

where (z,w,u,T) + J(z, —w, ) is considered as meromorphic function on C x C? x H and:
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Definition 3.4.3

We write we,, for the trivializing section of (" x (wh)‘;”)*(w pensgen)” on C x C? x H induced
P . J J

via
proj

CxC?xH

l 7O (m8)an

an w oon (FiYan 7 " gan
E] ng 2 (E )] SJ

H

from the trivialization of (w Ban/gan )V on H given by the dual of the standard differential form - cf.
Rem. 3.4.1.

Remark 3.4.4

Let us finally record how the birigidification (r, s) of P expresses now analytically. An analogous
comment applies to (P°, r9, s0).

Assume we have a section of P defined on some open subset of E7" x gan (Eh)?” It is given
by a holomorphic function f(z,w,u,7) which is defined on the inverse image of this subset under
CxC*xH — E§" xgen (E\“)?" and transforms under the effect of Z? x Z? x T'(N) in the way

“er+d

f z+mr+n w+m't+n
er+d cr+d

(er + d)u - n(m'r +n',7)), T b)

2mic
ct+d

= exp [ - (z+m7r+n)(w+m't+n') + 2mim'z + 2rimw + 2m’mm’7’} f(zyw,u, 7).
The function (w,w,7) — f(0,w,u,7) resp. (z,7) — f(z,0,0,7) (defined on the appropriate open
subset of C2 x H resp. C x H) is then invariant under the effect of Z? x I'(N) on C? x H resp.

C x H and represents the section of (9( resp. O Eon given by pullback of the given section via

Eq)?n
€57 X id s )an Tesp. idpgn X ()%™ and using r§" resp. s7".

With the definition of ¥ (cf. (3.4.13)) the verification of these facts is easy if one first observes that
(r, s) is induced by (77, s°) (cf. 0.1.1), recalls how (7, s°) expresses for elliptic curves (cf. (3.1.5))

and then takes into account Rem. 3.4.1.

The universal integrable connection

Recall that the Poincaré bundle P on F x g Efis equipped with the universal integrable connection

. 1
Vp: P = QExsEh/Eu ®ngsﬁsu P.

We now want to give a formula for the analytification® of this connection:

an . an 1 an
Vp P = QE‘”"XsawL(ED)"r"/(Eh)ﬂrn ®0Eanxsm<ﬁ;a>an P,
which we do again by restricting to a fixed j € (Z/NZ)*:
(V) : P — Q) ®o Pim.

E;.””xsém(ﬁh)‘;“/(ﬁh)‘;" B X gan (B ]
. . : g

9The formally clean way to analytify connections is to interpret them equivalently in terms of O-linear structures which one
can then analytify as usual (cf. e.g. the viewpoint on connections outlined in 0.2.1 (v) or the approach via differential operators
in [Mal], p. 152, whose formalism of course generalizes to a smooth relative situation of Q-schemes).
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. . . an 1 2 .
We trivialize the pullback of P§" resp. of QE_?"XS;M (B#yan /(Be)on to C x C* x Has in (3.4.15) resp.

by the standard differential form {dz}'°, with associated factor of automorphy (3.4.14) resp.

! b
72 x 72 xT(N) x C x C* x H — C*, <<m> , <m/> , (a d) ,(z,w,u,7)> — e +d.
n n c

Assume then that a section of P} on some open subset U of E7" x san (E“)?" is given: as usual,
it is described by a holomorphic function f(z,w,u,7), defined on the inverse image of U under
the canonical map pr : C x C2 x H — E§™ X gan (Eh)?" and transforming under the effect of
77 x Z? x T(N) with the factor of automorphy for P¢" in (3.4.14).

The section (V") ;(f(z, w,u, 7)) of O ®o

an ; 3
_ _ I is given by a

E;.l" ><S]c_m (Eh);,m
holomorphic function on pr=!(U) transforming with (c7 + d)-times the factor in (3.4.14).
By considering the situation fiberwise over points of S;‘” and noting [Kat5], App. C, Thm. C. 6 (1),

one straightforwardly derives the following formula for this function:'!

(3.4.16) (VS (f(z,w,u, 7)) = 0. f(z,w,u, 7) + (n(1, 7)w + u) - f(z,w,u,T).

Remark 3.4.5
The horizontality of 57" : (idgan X (e“)‘;”)*P]a” ~ Opan (cf. Rem. 0.1.17) is reflected by (3.4.16) in
the fact that this formula becomes (relative) exterior derivation on the (Z? x T'(V))-invariant function

(z,7) — f(2,0,0,7) after plugging in w = 0 = u (cf. also Rem. 3.4.4).

3.5 The analytification of the logarithm sheaves

Preliminary remarks and conventions: generalities

In the following, we will as usual write # for the dual of the Og-vector bundle H} (E/S).

The canonical map

Hgp(E/S)™" — Hap(E*"/S*")

100bserve that the pullback of 2!

2 s danti : 1
EJ‘?”XS;W (Eh)}l"/(ﬁh);n to C x C# x H naturally identifies with 2

CxC2xH/C2xH"
""'When verifying the computation in fibers the reader should observe the following equality:

J(z,w,u;7) fz,w,u;T)

oz J(z, —w;T) et J(z,—w;T) (C(z —w;T) = ¢(%7) + u)dz
! [ azJ(Z» 7w;7-)
= —— | 0:f(zw,uym)dz — f(z,w,u;7) - —————=dz + f(z,w, 4 7)(((z —w; ) — ((2;7) 