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Introduction
Polylogarithms in their various manifestations provide a key instrument for modern arithmetic geom-
etry’s quest to determine special values of L-functions resp. to investigate these within the context of
algebraic K-theory and motivic cohomology.
Illustration of this principle is best woven into a general review of some major development steps that
led to the concept of the polylogarithm as it appears in the present work.

Classical polylogarithm

As a starting point, let us consider the classical polylogarithm functions which are defined at first for
|z| < 1 via the power series

Lim(z) =

∞∑
n=1

zn

nm
(m ≥ 1)

and then extended to multivalued holomorphic functions on P1(C)\{0, 1,∞} using the expressions

Lim+1(z) =

∫ z

0

Lim(t)
dt

t
(m ≥ 1), Li1(z) =

∫ z

0

dt

1− t
.

Let now F be a number field of degree n = r1 + 2r2 and with discriminant dF ; write ζF (s) for its
Dedekind zeta function. It is a highly nontrivial task and of fundamental arithmetic interest to find
information about the special values ζF (m) for integers m ≥ 2. The above polylogarithm functions
have a striking relevance for this problem:
In the 1980’s Zagier [Za1] used volume computations from 3-dimensional hyperbolic geometry to
prove that the number ζF (2)π−2(r1+r2)|dF |

1
2 is a rational linear combination of products of the Bloch-

Wigner function D evaluated at algebraic arguments; this last function can be imagined as a single
valued version D(z) : P1(C)→ R of the dilogarithm Li2(z).
Subsequently, a refined formulation of this result and a conjectural generalization for arbitrary m ≥ 2

was given in the conceptual framework of K-theory (cf. [Za3], §1 and §8): Again, one introduces a
single valued version Pm(z) : P1(C)→ R of Lim(z). Functional equations satisfied by Pm model the
definition of a subquotient Bm(F ) of Z[F ∗] on which Pm (and embeddings of F into C) gives rise to
a map into euclidean space of the same dimension, say j(m), as the target of the Borel regulator map
on K2m−1(F ). Zagier’s conjecture then claims that (up to torsion) there is a canonical isomorphism
between K2m−1(F ) and Bm(F ) under which these two maps coincide. Using Borel’s theorem on the
covolume of the regulator lattice this would imply Q∗- equivalence of ζF (m) with πmj(m)|dF |−

1
2 -

times the determinant of a matrix with entries given by Pm evaluated at F -algebraic arguments.

In [Be-De] (part of) Zagier’s conjecture was reinterpreted in motivic and Hodge-theoretic formalism.
Important for the approach to polylogarithms is the observation that the monodromy and differential
equations of the Lim(z) permit "sheafifying" them into an inverse system of Q-variations of mixed
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Hodge-Tate structures on P1(C)\{0, 1,∞}: the classical polylogarithm functions now appear as en-
tries in the period matrices of these variations.

Beilinson also introduced the `-adic version of the classical polylogarithm pro-sheaf and moreover
showed that the specialization of the Hodge-theoretic resp. `-adic polylogarithm to primitive roots of
unity gives the regulator to absolute Hodge cohomology of his cyclotomic elements in motivic coho-
mology resp. the Deligne-Soulé elements in `-adic cohomology (for references cf. [Hu-Wi], 2).

Following ideas of Beilinson and Deligne, Huber and Wildeshaus [Hu-Wi] revealed that the classes in
absolute Hodge and `-adic cohomology defined by the classical polylogarithm come from a "universal
motivic polylogarithm". A corollary of their motivic constructions is a compatibility for Beilinson’s
cyclotomic elements and the Deligne-Soulé elements, needed for the completion of Bloch’s and Kato’s
proof of the Tamagawa number conjecture for the Riemann zeta function (modulo powers of 2); for
an alternative solution of this problem, also using the machinery of polylogarithms, see [Hu-Ki].

Bannai [Ba1] developed the syntomic formalism required to transfer the construction of the classical
polylogarithm pro-sheaf on the projective line minus three points to the category of filtered overcon-
vergent F -isocrystals. He also described explicitly the so defined p-adic polylogarithm sheaves and
their specialization to roots of unity (cf. also [Ba2]), using p-adic polylogarithm functions which were
defined by Coleman as analogues of the Lim(z) and whose values at roots of unity are related to spe-
cial values of Kubota-Leopoldt p-adic L-functions at positive integers. Analogous to the Hodge case
these specializations are the image of the motivic Beilinson elements by the syntomic regulator.

Elliptic polylogarithm

The concept of the polylogarithm pro-sheaf for elliptic curves was created by Beilinson and Levin in
the fundamental paper [Be-Le]. The formalism introduced there is applicable for any reasonable the-
ory of topological or mixed sheaves on a relative elliptic curve, and the elliptic polylogarithm appears
as a pro-one-extension on the complement of an étale closed subscheme of the curve, characterized by
a certain residue condition. Its specialization along torsion sections induces a collection of cohomol-
ogy classes on the base, the so-called Eisenstein classes, which in [Be-Le] are determined essentially
by a computation of their residue at infinity in the modular case.

The period matrix of the Q-Hodge elliptic polylogarithm is described in [Be-Le] by elliptic poly-
logarithm functions which are q-averaged versions of the above Lim(z) and studied extensively in
[Le1]. In the R-Hodge case they use real analytic Eisenstein-Kronecker series by which one can fur-
ther express the specialization to torsion sections (cf. also [Wi2], V). These also appear in the elliptic
Zagier conjecture which predicts that the determinant of a matrix built by these functions applied to
certain divisors gives a special L-value of the symmetric power of the curve (cf. [Den2], [Go], [Wi1]).
A different approach to compute the real Hodge polylogarithm sheaves on a single complex elliptic
curve can be found in [Ba-Ko-Ts], App. A. Its two crucial components are: the concrete knowledge
of the underlying modules with integrable connection, by which the variations of mixed R-Hodge
structures are in fact determined (a manifestation of "rigidity", cf. e.g. [Wi2], III); it is available from
the explicit description given in [Ba-Ko-Ts] for the de Rham realization of the polylogarithm on an
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elliptic curve over a general subfield of C; and second, based on this knowledge, the definition of the
real structures, which is achieved by constructing multivalued meromorphic functions Dm,n, D

∗
m,n

that solve certain iterated differential equations and give rise to sections inducing these structures.

By [Be-Le], similar to the classical situation the absolute Hodge and `-adic cohomology classes given
by the elliptic polylogarithm and the Eisenstein classes are the realizations under the respective regu-
lator of a single "motivic elliptic polylogarithm" and associated "motivic Eisenstein classes".
It is convenient to anticipate that the same is true when working on abelian schemes (see below).

At this point arises the fundamental meaning of the polylogarithm for Beilinson- and Bloch-Kato-
type conjectures: these essentially predict that the motivic cohomology of a smooth projective variety
over a number field contains elements by whose images under the Deligne and `-adic regulator one
can express the leading Taylor coefficient at zero of L-functions attached to the variety. Hence, the
need emerges to construct classes in motivic cohomology whose regulators are accessible to explicit
computations, and this is where the polylogarithm comes into play: the Eisenstein classes are gener-
ally expected to provide promising elements, and though a concrete description of their regulators is a
major nontrivial task, calculations are faciliated by a number of convenient properties enjoyed by the
polylogarithm sheaf (e.g. compatibility with base change, norm compatibility, rigidity).

A prime example in this context, illustrating the outlined philosophy, is Kings’ [Ki5] proof of the
(weak) Bloch-Kato conjecture for elliptic curves over an imaginary quadratic field K with CM by the
ring of integers OK . It is based on considering the OK-linear subspace in motivic cohomology gen-
erated by an element which is constructed in Deninger’s [Den1] proof of the Beilinson conjecture for
Hecke characters and which comes about by applying a variant of the Eisenstein symbol to a certain
torsion divisor of the curve. The task imposed by the Bloch-Kato conjecture then consists in deter-
mining the `-adic regulator on this subspace which in turn is known from [Hu-Ki] to express via the
`-adic Eisenstein classes (in fact, the Eisenstein symbol on torsion points and the Eisenstein classes
are expected to coincide up to a factor already on the motivic level). The explicit computation of these
`-adic Eisenstein classes is deduced in [Ki5] from a geometric construction of the `-adic elliptic poly-
logarithm as inverse limit over torsion points of 1-motives, and it shows that they are describable in
terms of elliptic units resp. elliptic Soulé elements. Results from Iwasawa theory concerning Soulé’s
elements finally enable to translate this description into a proof of the conjecture.
For an explicit treatment of the `-adic polylogarithm via Iwasawa theory and elliptic units cf. [Ki3].

The syntomic version of the elliptic polylogarithm was studied extensively by Bannai, Kobayashi
and Tsuji [Ba-Ko-Ts] for the situation of a single elliptic curve over an imaginary quadratic field K
with CM by OK and a fixed Weierstraß model over OK having good reduction above an unramified
prime p ≥ 5. The technical fundament for defining this p-adic elliptic polylogarithm is the theory of
rigid syntomic cohomology and its relation to filtered overconvergent F -isocrystals as contained in
[Ba1]. The p-adic polylogarithm sheaves appear as filtered overconvergent F -isocrystals on the syn-
tomic datum provided by the curve minus its zero section, and the corresponding cohomology classes
are expected to be the image of the motivic elliptic polylogarithm classes by the syntomic regulator.
One of the main results in [Ba-Ko-Ts] is the explicit construction of these sheaves. As in the R-Hodge
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case the crucial ingredients for this are the knowledge of the de Rham realization of the polylogarithm
sheaves, by which their syntomic realization is in fact determined ("rigidity"), and the definition of
the Frobenius structures, the last achieved by constructing overconvergent functionsD(p)

m,n that satisfy
certain iterated differential equations imposed by the horizontality of the Frobenius isomorphisms.
Its motivic origin assumed, the relevance of this p-adic elliptic polylogarithm for the p-adic Beilinson
conjecture comes from the further result of [Ba-Ko-Ts] that it specializes along torsion sections to
the so-called p-adic Eisenstein Kronecker numbers which in the case of ordinary reduction over p are
shown to be directly connected to special values of p-adic L-functions.
So far, a description of the syntomic elliptic polylogarithm for the relative situation, that is to say:
for the universal family with level N structure, has not yet been established. Nevertheless, Bannai
and Kings [Ba-Ki2] were able to determine the syntomic Eisenstein classes on the ordinary locus
of the modular curve in terms of p-adic Eisenstein series constructed via a version of Katz’s p-adic
Eisenstein measure. A vital ingredient to prove this result is again the knowledge of the underlying
de Rham datum by which the syntomic data are in fact determined. The de Rham Eisenstein classes
in turn are shown to be given by certain holomorphic Eisenstein series with explicit formulas for their
q-expansions; this last fact is proven in [Ba-Ki2] by comparing the residues at the cusps of these mod-
ular forms with the residues of the de Rham Eisenstein classes which in turn are obtained by deducing
the motivic residues from the étale residues computed in [Be-Le] resp. [Hu-Ki].
For implications of the result of [Ba-Ki2] for the p-adic Beilinson conjecture see [Ba-Ki1] and [Ni].

Before turning closer to the de Rham realization of the elliptic polylogarithm and outlining the ambi-
tions of this work, let us insert some brief remarks concerning more general geometric situations.

Results in higher dimension and genus

Wildeshaus [Wi2] constructed and studied the Hodge and `-adic polylogarithm in the context of mixed
Shimura varieties, from which one also obtains the definition for abelian schemes (cf. [Ki4]) with
associated Eisenstein classes (cf. [Bl2]). As in the classical and elliptic case the abelian polylogarithm
and Eisenstein classes in their realizations have a common motivic origin in K-theory (cf. [Ki4]).
Blottière [Bl2] described the Hodge polylogarithm for complex abelian schemes by proving that the
associated extension of C-pro-local systems - which determines the Hodge data ("rigidity") - can
be expressed via "polylogarithmic currents" on the underlying C∞-manifold; these currents had been
constructed by Levin [Le2] as higher-dimensional analogues of Eisenstein-Kronecker series. Drawing
on this result, he also gave a (again topological) description of the Eisenstein classes for the situation
of a Hilbert-Blumenthal family of abelian varieties and showed that the residue of these classes along
the Baily-Borel boundary of the Hilbert modular variety is described by special values of L-functions
of the defining totally real field (cf. [Bl1]). For a different proof of the last result, resolving the residue
computation more functorially by a systematic use of the topological polylogarithm, cf. [Ki2].
The definition of the polylogarithm for arbitrary relative curves (originally part of [Be-Le], but then
excluded) can be found in [Ki1], where it is shown that the latter induces the polylogarithm of the
asscociated Jacobian by taking cup-product with the fundamental class of the curve.
Apart from the mentioned results one can generally say that in dimension resp. genus greater than 1

the polylogarithm sheaves and the Eisenstein classes are - e.g. as to explicit description or as to the
latter’s non-vanishing and relation to L-functions - little understood and subject to active research.
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De Rham realization of the elliptic polylogarithm: the approach of [Ba-Ko-Ts]

Starting point and main inspiration for this work is the explicit description given in [Ba-Ko-Ts], 1,
for the de Rham realization of the polylogarithm on an elliptic curveE defined over a subfield F of C.

In this situation, if U := E − [0],H := H1
dR(E/F )∨ and HU := H ⊗F OU , the polylogarithm

classes polndR are by definition the components of an inverse system

(polndR)n≥1 ∈ lim
n≥1

H1
dR(U/F,H∨U ⊗OU Ln)

which is characterized by a certain residue condition along the divisor given by the zero point [0];
here, Ln is our notation for the n-th logarithm sheaf of E/F with a splitting for its fiber in [0] fixed
(in the sense of [Ba-Ko-Ts], Def. 1.22 and the subsequent explanations).
The first step in [Ba-Ko-Ts] to approach a description of polndR is an explicit construction of L1 on an
open affine covering {Uk}k of E, which is done by choosing differentials of the second kind {ω∗, ω}
that give an F -basis {ω∗, ω} of H1

dR(E/F ) and by then glueing the free modules

OUk · ek ⊕OUk · ω∗∨ ⊕OUk · ω∨

to the desired extension L1 ofOE byHE , where the glueing maps, the effect of the connection on the
generator ek and the splitting in [0] are defined essentially by using a suitable Čech cocycle for ω∗.
This also implies a construction of Ln = Symn

OEL1, where the underlying sheaf on Uk is written as

⊕
0≤i+j≤n

0≤i,j

OUk ·
en−i−jk ω∗∨iω∨j

(n− i− j)!
.

One can then deduce a similar description of Ln on U . Taking OU -linear tensor combinations of
the sections ω∗, ω with the thus obtained generators for Ln|U and with the differentials ω∗, ω defines
elements of Γ(U,H∨U ⊗OU Ln ⊗OU Ω1

U/F ) and hence classes in H1
dR(U/F,H∨U ⊗OU Ln).

The main result, Thm. 1.41, of [Ba-Ko-Ts], 1, then exhibits the class polndR as such a combination,
ingeniously constructing the coefficients Lk ∈ Γ(U,OU ) occurring in that combination as follows:
Writing E(C) as complex torus C/Γ, associated to the line bundle OC/Γ([0]) is a unique normalized
canonical theta function θ(z) which one can express in terms of the Weierstraß sigma function. It
gives rise to a meromorphic function in two variables, the so-called Kronecker theta function for Γ:

Θ(z, w) :=
θ(z + w)

θ(z)θ(w)
.

Modifying Θ(z, w) by an exponential factor gives a function Ξ(z, w) whose Laurent expansion around
w = 0 yields coefficient functions Lk(z), k ≥ 0, which turn out to come from F -algebraic rational
functions Lk ∈ Γ(U,OU ). These so-called "connection functions" Lk are the mentioned coefficients
that are used in [Ba-Ko-Ts], 1, for the indicated construction of polndR; they can in fact be expressed
entirely in terms of the Laurent coefficient functions of Θ(z, w) expanded around w = 0.
A technical inconvenience arises from the fact that in general the pole order of Lk in [0] is greater
than one (indeed, if k ≥ 2 this order is exactly k), such that the proof of the mentioned main result re-
quires extensive Čech calculations to find representatives in logarithmic de Rham cohomology for the
constructed cohomology class, which is necessary for performing the required residue computation.
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Outline of the work

The purpose of this thesis is to establish a new geometric approach to the study of the de Rham real-
ization of the polylogarithm. Our central result in this context shows how to construct the logarithm
sheaves of rational abelian schemes from the birigidified Poincaré bundle with universal integrable
connection on the product of the abelian scheme and the universal vectorial extension of its dual. This
is done essentially by restricting the mentioned data of the Poincaré bundle along the infinitesimal
neighborhoods of the zero section of the universal extension. Our perspective also permits a useful
interpretation of fundamental formal properties of the logarithm sheaves within the standard theory
of the Poincaré bundle. For the situation of a relative elliptic curve we present in addition a related
viewpoint on the first logarithm extension in terms of 1-motives.
Having developed in detail the outlined geometric understanding of the logarithm sheaves, we pro-
ceed to exploit it systematically for an investigation of the polylogarithm for the universal family of
elliptic curves with levelN structure. To be more precise, the object in the focus of our study here is a
slightly modified version of the usual small elliptic polylogarithm class that provides better access for
explicit computations but still contains all the information about the de Rham Eisenstein classes. A
main theorem of the work then gives an explicit analytic description for this variant of the polyloga-
rithm via the coefficient functions appearing in the one-variable Laurent expansion of a meromorphic
Jacobi form originally defined by Kronecker in the 19th century. Furthermore, using this result, we are
able to determine the specialization of the modified polylogarithm along torsion sections concretely
in terms of certain algebraic Eisenstein series. From this we regain in particular the already known
expressions of the de Rham Eisenstein classes by algebraic modular forms.
Our conceptual approach via the Poincaré bundle additionally brings light into the so far rather ob-
scure appearance of theta functions in the study of the elliptic polylogarithm.
Moreover and as a matter of future research, we expect our method to produce new insights also for
the syntomic resp. higher-dimensional case.

Overview

Let us now discuss the contents of this work in somewhat more detail.

The purpose of the preliminary Chapter 0 on the one hand is to recall the most basic vocabulary
required to develop the polylogarithmic formalism in its de Rham realization: this includes the notion
of modules with connection, its incorporation in the functorial language of D-modules as well as the
elementary definitions and facts concerning de Rham cohomology. On the other hand, as the universal
vectorial extension and the Poincaré bundle are the crucial objects for our geometric construction of
the logarithm sheaves on an abelian scheme, we present a thorough account of these concepts, thereby
also integrating the viewpoint of extensions and biextensions. Maybe our presentation is also of some
use for the non-expert striving for a unified picture of the different facets of the Poincaré bundle.
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In the subsequent Chapters 1 and 2 we fix the geometric setting of an abelian scheme X π−→ S over
a connected base S which is smooth, separated and of finite type over Q; we write ε for its zero section.

The major part of Chapter 1 is occupied with working out the basic formalism of the logarithm sheaves
for the given situation X/S/Q as it expresses in the framework of de Rham cohomology. Of course,
the formal structure of the definitions and proofs in this context can (and will) be extracted from their
counterparts articulated in other realizations (we will mainly use [Hu-Ki], App. A, and [Ki4]) and thus
are always an elaboration of the condensed exposition given in the original source [Be-Le]. Neverthe-
less, we have made the experience that a rigorous adjustment to the de Rham setting is at some points
not at all immediate and requires supplying a number of additional details and arguments. We have
therefore decided to give from the beginning on a thorough self-contained account with full proofs.
Specifically, we begin in 1.1 by defining the logarithm sheaves of X/S/Q, written as (Ln,∇n, ϕn)

with∇n the integrable Q-connection of the OX -vector bundle Ln and ϕn :
∏n
k=0 Symk

OSH ' ε
∗Ln

the splitting of its zero fiber, where H := H1
dR(X/S)∨ is equipped with the dual of the Gauß-Manin

connection relative Q. Their relative de Rham cohomology sheaves are computed in 1.2. In 1.3 we
elaborate in more detail the viewpoint on the logarithm sheaves as unipotent objects. For this purpose,
we introduce a suitable notion of unipotent vector bundles with integrable connection for our situation
X/S/Q and respective categories Un(X/S/Q), where n denotes the length of unipotency. We then
prove the universal property of the logarithm sheaves which states that with 1(n) := ϕn( 1

n! ) the pair
(Ln, 1(n)) is (up to unique isomorphism) the unique pair consisting of an object in Un(X/S/Q) and
a global horizontal S-section of its zero fiber such that for any U in Un(X/S/Q) the map

π∗HomDX/S (Ln,U)→ ε∗U , f 7→ ε∗(f)
(
1(n)

)
is a horizontal isomorphism (Thm. 1.3.6). Subsequently, we show that the assignment U 7→ ε∗U gives
an equivalence of Un(X/S/Q) with the category of OS-vector bundles with integrable Q-connection
that carry the structure of a

∏n
k=0 Symk

OSH-module with certain compatibilities (Thm. 1.3.13). Side
corollaries are further non-evident informations about our categories of unipotent bundles (1.3.4).
In 1.4 we discuss the crucial invariance of the logarithm sheaves under isogenies. Finally, in 1.5, we
let X = E be an elliptic curve over S and define the elliptic polylogarithm for E/S/Q:

poldR = (polndR)n≥1 ∈ lim
n≥1

H1
dR(U/Q,H∨U ⊗OU Ln),

where U := E − [0] andHU := H⊗OS OU , as well as the D-variant of the elliptic polylogarithm:

poldR,D2·1{ε}−1E[D]
=
(

polndR,D2·1{ε}−1E[D]

)
n≥0
∈ lim
n≥0

H1
dR(UD/Q,Ln),

where D > 1 is a fixed integer and UD := E − E[D]. The investigation of this D-variant will be the
main goal of Chapter 3. The idea to introduce such a better behaved modification of the polylogarithm
and to use a formula connecting it with the latter in order to extract from it the Eisenstein classes can
be found (for the `-adic setting) in [Ki3], 4, and will be adopted in this work.

The heart of Chapter 2 consists in establishing the already indicated geometric construction of the
logarithm sheaves via the birigidified Poincaré bundle (P, r, s,∇P) on X ×S Y \, where Y \ is the
universal extension of the dual abelian scheme Y and r resp. s is the rigidification along Y \ resp. X .
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However, a basic difficulty arises when one aims at such a construction: the universal integrable con-
nection ∇P of P being a relative connection (namely, relative to Y \), we can construct the logarithm
sheaves only with their Q-connections restricted relative S. Our remedy for this problem is contained
in 2.1: there, we prove that given an extension of vector bundles on X with integrable S-connection

0→ HX → L′1 → OX → 0,

mapping to the identity under the natural projection

(1) Ext1
DX/S (OX ,HX)→ HomOS (OS ,H∨ ⊗OS H),

and a OS-linear splitting ϕ′1 : OS ⊕ H ' ε∗L′1 for its pullback via ε, then the S-connection on L′1
uniquely extends to an integrable Q-connection such that the previous data become the first logarithm
sheaf of X/S/Q (Prop. 2.1.4). Then, in 2.3, we proceed to construct such data from (P, r, s,∇P).
To be more precise, if Y \1 is the first infinitesimal neighborhood of the zero section of Y \ and P1 the
restriction of P along X ×S Y \1 → X ×S Y \, equipped with the induced integrable Y \1 -connection,
then by adjunction along the natural morphism ι1 : X → X ×S Y \1 together with the rigidification s
and the crucial identification Lie(Y \/S)∨ ' H one obtains a horizontal exact sequence

0→ (ι1)∗HX → P1 → (ι1)∗OX → 0

whose pushout along the projection p1 : X ×S Y \1 → X gives the exact sequence of vector bundles
on X with integrable S-connection

(2) 0→ HX → (p1)∗P1 → OX → 0.

On the other hand, it is easy to construct from the rigidification r a natural OS-linear splitting

OS ⊕H ' ε∗(p1)∗P1.

Our main result in Chapter 2 (Thm. 2.3.1 resp. Cor. 2.3.2) proves that (2) maps to the identity in (1),
such that due to the above explanations we have achieved a construction of the first logarithm sheaf
of X/S/Q (with the mentioned limitation concerning our knowledge of the absolute connection).
Though we always work with the higher logarithm sheaves as the symmetric powers of the first, it is
natural to ask how also they can be obtained from the infinitesimal geometry of the data (P, r, s,∇P).
This is explained in detail in 2.4, where it also turns out that in our geometric perspective the comul-
tiplication of the logarithm sheaves expresses via the biextension structure of the Poincaré bundle.
Our constructions have a natural and appealing formulation within the language of the Fourier-Mukai
transformation for D-modules on abelian schemes as formulated in [Lau]. To illuminate this point in
full clarity we extend in 2.2 the basic theory developed in [Lau] by introducing (entirely in the spirit
of Mukai [Mu]) the notion of WIT-sheaves on Y \, which permits to leave the derived categories and
consider honest sheaves. We also define categories of unipotent sheaves Un(Y \/S) and Un(X/S) on
Y \ and X , the last being analogous to the above Un(X/S/Q) but forgetting Q-structures, and prove
in particular that Fourier transformation establishes an equivalence between them (Thm. 2.2.12). This
and other results of 2.2 are of independent interest, but they were actually also our heuristic starting
point for the interpretation of the logarithm sheaves by the Poincaré bundle: noting that Ln defines an
object of Un(X/S), one immediately obtains from Thm. 2.2.12 that it must be the Fourier transform
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of a sheaf on Y \ which in fact lives on the n-th infinitesimal neighborhood of S in Y \. And indeed, as
is explained in 2.3 resp. 2.4, the standard exact sequences of OX -vector bundles with S-connection

0→ Symn
OXHX → Ln → Ln−1 → 0

are simply the Fourier transforms of the canonical exact sequences of WIT-sheaves of index 0 on Y \:

0→ J n/J n+1 → OY \/J n+1 → OY \/J n → 0,

where J denotes the augmentation ideal of the zero section of Y \.
In 2.5 we reveal that in our viewpoint the invariance of the logarithm sheaves under isogenies is the
manifestation of a symmetry isomorphism of the Poincaré bundle for the isogeny and its transpose
map on the universal extension. This will also be relevant for explicit computations in Chapter 3.
Finally, in 2.6 we elaborate the 1-motivic origin of the first logarithm extension Log1. For this one
needs at first to be able to equip the de Rham realization of a 1-motive over a base scheme in a natural
way with an integrable connection, which is a nontrivial problem. In a recent work of Andreatta
and Bertapelle [An-Ber] such a "motivic Gauß-Manin connection" is constructed in full generality by
using crystalline techniques. We apply their results in the following way: ifX = E is an elliptic curve
and E×S E is considered as 1-motive over E via the second projection, the Barsotti-Rosenlicht-Weil
isomorphism and taking de Rham realizations with motivic Gauß-Manin connections produces a map

(3) (E ×S E)(E)→ Ext1
DE/Q(H∨E ,OE)

which is the negative of the "motivic de Rham-Manin map" investigated in [An-Ber] (cf. Rem. 2.6.2).
We then prove thatLog1 is the extension dual to the image of the diagonal ∆E under (3) (Thm. 2.6.3).
To achieve this we relate the extension Log1 to the more explicit "classical Manin map" of [Co2] and
use the latter’s relation with the motivic de Rham-Manin map as established in [An-Ber] (to dispose
of that comparison is also the reason why we restrict to relative dimension one).
Explicating this further leads to another viewpoint on the relation between the first logarithm extension
and the Poincaré bundle: namely, the Gm,E×S(E∨)\ -torsor P associated to the Poincaré bundle P on
E ×S (E∨)\ naturally sits in an exact sequence of E-group schemes

0→ Gm,E → P → E ×S (E∨)\ → 0

whose associated sequence of Lie algebras relative E reads as

(4) 0→ OE → Lie(P/E)→ H∨E → 0.

One can equip all terms in (4) with motivic Gauß-Manin connections relative Q, and the dual of the
thus obtained extension is Log1 (Cor. 2.6.16).
We wish to remark that the basic idea that one should be able to obtain the logarithm sheaves as the
formal completion of the Poincaré bundle was pointed out to us by Guido Kings. An initial hint for a
relation between these objects can be seen in the observation that the Kronecker theta function used
in [Ba-Ko-Ts] is a meromorphic section of the Poincaré bundle (cf. [Ba-Ko], 1.2).

Chapter 3 uses the geometric approach towards the logarithm sheaves developed in Chapter 2 to find
a way of describing the D-variant of the polylogarithm for the universal elliptic curve with level N
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structure and to derive from the latter also a description for the specialization along torsion sections.
In 3.1 we fix for a general elliptic curveE/S with dual abelian scheme Ê/S the principal polarization

E
∼−→ Ê

defined by the ample invertible sheaf OE([0]). The birigidified Poincaré bundle on E ×S E then is

(5) (M⊗OE×SE (π × π)∗ε∗OE([0]), can, can),

whereM denotes the Mumford bundle for OE([0]):

M := µ∗OE([0])⊗OE×SE pr∗1OE([0])−1 ⊗OE×SE pr∗2OE([0])−1,

and where can means the obvious canonical rigidification along the second resp. first factor ofE×SE.
The Poincaré bundle on E×S Ê\ and its rigidifications arise from (5) by pullback via the natural map

(6) E ×S Ê\ → E ×S Ê
∼−→ E ×S E.

Large parts of our considerations will take place on the analytic side. As a convenient method to work
with vector bundles on complex manifolds we use the yoga of automorphy matrices, i.e. we fix a
trivialization for the pullback of the bundle to the universal covering, compute the matrix describing
the effect of deck transformations on the chosen trivializing sections and then express sections of
the bundle as vectors of holomorphic functions on the universal covering transforming under deck
transformations with this automorphy matrix. The details are explained in 3.2. The advantage of this
approach via the universal covering is that it avoids choosing open coverings and coordinate charts.
In 3.3 we introduce the function by whose inverse we will trivialize OEan([0]) (componentwise)
on the universal covering of the analytification Ean of the universal elliptic curve E with level N
structure (N ≥ 3) over the modular curve S: this is the "elementary theta function"

(7) ϑ(z, τ) := exp

[
z2

2
η(1, τ)

]
· σ(z, τ),

where η(1, τ) is the quasi-period (equivalently: is −G2(τ)). It differs from the theta function θ(z, τ)

used in [Ba-Ko-Ts] by an exponential factor; the crucial point is that θ(z, τ) does not vary holomor-
phically in both variables, whereas ϑ(z, τ) does. What we do here is performing a shift from canonical
to classical theta functions, explained in detail in the first part of 3.3; we only remark that for τ ∈ H
fixed the function ϑ(z; τ) is the unique holomorphic function on C whose inverse induces the classical
factor of automorphy for OC/Γτ ([0]) and such that its derivative in z = 0 is normalized to 1.
The trivialization via (the inverse of) (7) for OEan([0]) on the universal covering of Ean induces a
trivialization forMan on the universal covering of Ean ×San Ean (always meant componentwise):
it is given by (the inverse of) the "fundamental meromorphic Jacobi form"

(8) J(z, w, τ) :=
ϑ(z + w, τ)

ϑ(z, τ)ϑ(w, τ)
= exp[zw · η(1, τ)] · σ(z + w, τ)

σ(z, τ)σ(w, τ)
.

This function is an exponential term times the Kronecker theta function Θ(z, w, τ) of [Ba-Ko-Ts], it
is 2πi-times the meromorphic Jacobi form F (2πiz, 2πiw, τ) used in [Za2] to construct a generating
function for the period polynomials of all Hecke eigenforms for the full modular group, it appears in
[Le1] to relate the Debye elliptic polylogarithm functions to Eisenstein functions and series, and it
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equals the function introduced in [Le-Ra], 2.2, to describe the relative nilpotent de Rham fundamental
torsor for a pointed family of elliptic curves. Its definition goes back to Kronecker (cf. [Le-Ra], 2.2.1).
In the rest of 3.3 we investigate some of the analytic properties of the functions (7) and (8) that will
become important for us; in particular, we examine the coefficient functions in the Laurent expansion
around w = 0 of J(z, w, τ) and reveal their connection to modular forms (Thm. 3.3.16).
From (7) we also get an induced trivialization on the universal covering for the second factor in (5):

(πan × πan)∗(εan)∗OEan([0]) = (πan × πan)∗ω∨Ean/San

which coincides with the trivialization induced by the dual of the canonical differential form.
In sum, the function (7) provides us with a trivialization for (5) on the universal covering; by taking
pullback via (6) we obtain a trivializing section t on the universal covering for the Poincaré bundle
Pan on Ean×San (Ê\)an whose factor of automorphy we compute. We then express in this language
the birigidification of Pan and give an explicit formula for∇anP . The details are explained in 3.4.
With this explicit knowledge of (Pan, ran, san,∇anP ) and with the main result of Chapter 2 (which
constructs the first logarithm sheaf of E/S/Q from the data (P, r, s,∇P)) we can proceed in 3.5 to
give a description of the analytified logarithm sheaves (Lann ,∇ann , ϕann ) on Ean.
Writing pr : C×H→ Ean for the projection of the universal covering (Ean now means a fixed con-
nected component) we construct from t a global section e of pr∗Lan1 which splits the exact sequence

0→ pr∗HanEan → pr∗Lan1 → pr∗OEan → 0.

Trivializing pr∗HanEan by the basic sections {f, g} defined by {η∨, ω∨} we obtain a trivialization

pr∗Lan1 = OC×H · e⊕OC×H · f ⊕OC×H · g

and induced ones for the other logarithm sheaves (note the analogy with [Ba-Ko-Ts], Cor. 1.28):

pr∗Lann =
⊕

0≤i+j≤n
0≤i,j

OC×H ·
en−i−jf igj

(n− i− j)!
.

Fixing these, we derive from our knowledge of (Pan, ran, san,∇anP ) explicit formulas for the induced
automorphy matrices (Prop. 3.5.2 and Prop. 3.5.6), for the restrictions of the connections∇ann relative
San (Prop. 3.5.3 and Prop. 3.5.7), for the splittings ϕann (Prop. 3.5.8) and for the pullback of sections
of Lann resp. Ω1

Ean ⊗OEan Lann along torsion sections (Cor. 3.5.13 resp. Prop. 3.5.14).
At this point one piece is still missing for a complete knowledge of the analytified logarithm sheaves:
a description for their absolute connections ∇ann . We solve this problem by characterizing ∇ann anal-
ogously as in the algebraic situation (Prop. 3.5.20 resp. Prop. 2.1.4) and then prove that a reasonable
guess of a formula for∇ann satisfies all required conditions of this characterization (Thm. 3.5.21).
With these preparations the next goal is to establish a concrete description for the system

(9) (poldR,D2·1{ε}−1E[D]
)an =

(
polndR,D2·1{ε}−1E[D]

)an
n≥0
∈ lim
n≥0

H1
dR(UanD ,Lann )

which is defined as the image of poldR,D2·1{ε}−1E[D]
under the natural analytification map

(10) lim
n≥0

H1
dR(UD/Q,Ln) ↪→ lim

n≥0
H1

dR(UanD ,Lann ).

We approach this problem by proving that (9) is characterized analytically in the same way as
poldR,D2·1{ε}−1E[D]

is algebraically, i.e. it is the unique element in limn≥0H
1
dR(UanD ,Lann ) having a
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certain residue under an analytic residue map (Thm. 3.7.5). The reason why such a characterization is
possible is the regularity of the logarithm sheaves (Prop. 3.7.1); this regularity is also responsible for
the injectivity of (10), hence for the fact that poldR,D2·1{ε}−1E[D]

is determined by its analytification.
To construct the cohomology classes (9) we return to the fundamental meromorphic Jacobi form.
Namely, we consider the functions sDk (z, τ) defined by the Laurent expansion

D2 · J(z,−w, τ)−D · J
(
Dz,−w

D
, τ
)

= sD0 (z, τ) + sD1 (z, τ)w + ...

They are meromorphic functions on C×H, holomorphic on pr−1(UanD ), and satisfy (cf. 3.3.3):

(11)

sDk has at worst simple poles along z = mτ + n (m,n ∈ Z, τ ∈ H),with residue (D2 − 1) · (2πim)k

k!
,

and along z =
m

D
τ +

n

D
(with D not simultaneously dividing m and n),with residue −

(2πim
D

)k

k!
.

In 3.6 we construct from the functions sDk (z, τ) a certain vector pDn (z, τ) of functions (cf. (3.6.2))
and show in laborious calculations that this vector defines an element of Γ(UanD ,Ω1

Ean ⊗OEan Lann )

which goes to zero in the de Rham complex (Thm. 3.6.2); here, we trivialize Lann on the universal
covering of each component of Ean as above and Ω1

Ean by {dz,dτ}. The pDn (z, τ) are compatible
for the transition maps of the logarithm sheaves and thus induce an inverse system

pD = (pDn )n≥0 ∈ lim
n≥0

H1
dR(UanD ,Lann ).

Our main result about the D-variant of the polylogarithm (Thm. 3.8.3) then is the equality

(12) (poldR,D2·1{ε}−1E[D]
)an = pD.

Its proof is rather technical, but the crucial points are the already mentioned characterization of the left
side and a computation of the residue of the right side using (11); here, it is of enormous convenience
that the sDk have at worst simple poles and hence already define a logarithmic de Rham class.
From now on assume (D,N) = 1 and that a, b are two integers not simultaneously divisible by N .
Via the Drinfeld basis (e1, e2) ∈ E[N ](S) for E[N ] one obtains the N -torsion section

ta,b := ae1 + be2 : S → UD ⊆ E.

We consider the specialization of polndR,D2·1{ε}−1E[D]
(n ≥ 0) along ta,b, in the following sense: let(

t∗a,b(polndR,D2·1{ε}−1E[D]
)
)(n) ∈ H1

dR(S/Q,Symn
OSH

1
dR(E/S))

be the de Rham cohomology class received by pulling back

polndR,D2·1{ε}−1E[D]
∈ H1

dR(UD/Q,Ln)

along ta,b, by using the (horizontal) identifications

t∗a,bLn ' ε∗Ln '
n∏
k=0

Symk
OSH

that come from the invariance of Ln under N -multiplication (cf. 1.4.2) and from the splitting ϕn, by
then taking the n-th component and by finally identifying

(13) Symn
OSH ' Symn

OSH
1
dR(E/S)
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via the following choice of the Poincaré duality isomorphism:

H1
dR(E/S)

∼−→ H, x 7→ { y 7→ tr(x ∪ y)}.

On the other hand, the Hodge filtration and Kodaira-Spencer map induce a canonical homomorphism

(14) Γ
(
S, ω

⊗(n+2)
E/S

)
→ H1

dR(S/Q,Symn
OSH

1
dR(E/S))

defined on the space of weakly holomorphic algebraic modular forms of weight n+ 2 and level N .
In our main result about the specialization of theD-variant of the elliptic polylogarithm (Thm. 3.8.15)
we show that

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n)

is the image under (14) of the algebraic modular form
−DF (2)

a
N ,

b
N

if n = 0

(−1)n

n! · DF
(n+2)
a
N ,

b
N

if n > 0,

where in general for k ≥ 1:

DF
(k)
a
N ,

b
N

:= D2F
(k)
a
N ,

b
N

−D2−kF
(k)
Da
N ,DbN

.

The F (k)
a
N ,

b
N

resp. F (k)
Da
N ,DbN

in turn are algebraic modular forms of weight k and level N constructed as
in Ch. I, 3, of Kato’s work [Ka], where they are used to define the Euler system of zeta elements in the
space of modular forms, related to operator-valued zeta functions via a period map. Essentially, they
are given as averaged sum of algebraic Eisenstein series won by specializing along torsion sections
certain iterated derivations of the logarithmic derivative of Kato-Siegel functions (at least for k 6= 2,
otherwise one specializes an algebraic Weierstraß ℘-element). Their analytic expressions as holomor-
phic functions in τ can be found in 3.3.4, observing the explanations in Rem. 3.8.12 and Rem. 3.8.13.
For the proof of the theorem we first resolve the problem on the analytic side, using the crucial result
(12) and the fact that we can explicitly compute the analytic specialization of the section pDn (z, τ)

along tana,b (Thm. 3.6.5). From this analytic result we can then in fact deduce the algebraic statement.
The detailed strategy of proof is explained at the beginning of 3.8.2.
With the already indicated relation between the polylogarithm and its D-variant the previous theorem
yields in particular a formula for the de Rham Eisenstein classes at ta,b, the latter defined as

Eisn(ta,b) := −Nn−1 ·
(
contrn(t∗a,bpoln+1

dR )
)(n) ∈ H1

dR(S/Q,Symn
OSH),

where contrn : H1
dR

(
S/Q,H∨ ⊗OS

∏n+1
k=0 Symk

OSH
)
→ H1

dR

(
S/Q,

∏n
k=0 Symk

OSH
)

is a certain
contraction map. Namely, we show the equalities

Eis0(ta,b) = −N−1 ·
(
− F (2)

a
N ,

b
N

)
in H1

dR(S/Q)

Eisn(ta,b) = −Nn−1 (−1)n

n! · F
(n+2)
a
N ,

b
N

in H1
dR(S/Q,Symn

OSH), n > 0,

where here F (2)
a
N ,

b
N

resp. F (n+2)
a
N ,

b
N

means the element of H1
dR(S/Q) resp. H1

dR(S/Q,Symn
OSH) in-

duced by the algebraic modular form F
(2)
a
N ,

b
N

resp. F (n+2)
a
N ,

b
N

via (14) resp. via (14) and (13).
As was already explained in more detail during the Introduction, a very different way to determine the
de Rham Eisenstein classes can be found in [Ba-Ki2].
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Chapter 0

Preliminaries and notation

0.1 Abelian schemes: duality theory, universal vectorial
extension and Poincaré bundle

0.1.1 Introduction of the basic objects

Given an abelian scheme, the universal vectorial extension of its dual and the associated birigidified
Poincaré bundle with universal integrable connection will be key instruments for this work.
We therefore begin with an adequate review of all of these notions, striving to be as self-contained and
detailed as seems possible without going beyond the scope of preliminary remarks. Our presentation
consists in compiling and supplementing scattered material from the literature, whereby we mention
as our main sources [Ch-Fa], Ch. I, 1, [Lau], (1.1) and (2.1)-(2.2), and [Maz-Mes], Ch. I.

Algebraic equivalence to zero and rigidifications

If A is an abelian scheme over an arbitrary base scheme B we denote by

πA : A→ B

µA : A×B A→ A

εA : B → A

(−1)A : A→ A

pr1,A, pr2,A : A×B A→ A

the structure map, the multiplication map, the zero section, the inverse map and the two projections.

Definition 0.1.1
A line bundle L on A is algebraically equivalent to zero if the line bundle on A×B A given by

µ∗AL ⊗OA×BA pr∗1,AL−1 ⊗OA×BA pr∗2,AL−1

is trivial over B, i.e. if it is isomorphic to (πA × πA)∗M for some line bundleM on B.
Here, πA × πA : A×B A→ B is the canonical map and L−1 = HomOA(L,OA) is the dual of L.

Remark 0.1.2
It is easy to check that algebraic equivalence to zero is compatible with base change in the following
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sense: if we have a morphism B′ → B, set A′ := A×B B′ and consider the cartesian square

A′ //

��

B′

��
A

πA // B

then pulling back line bundles along A′ → A preserves the property of being algebraically equivalent
to zero. Of course, we regard A′ as abelian scheme over B′ in the natural way.
It is moreover clear that the property of being algebraically equivalent to zero is stable under the
formation of tensor product and dual, and that the line bundle OA has this property.

Definition 0.1.3
(i) Let L be a line bundle on A. By a B-rigidification of L we mean an isomorphism of OB-modules

α : OB
∼−→ ε∗AL.

(ii) Let (L1, α1) and (L2, α2) be two B-rigidified line bundles on A. An isomorphism between them
is an isomorphism ϕ : L1

∼−→ L2 of the line bundles which is compatible with the rigidifications in
the obvious sense, i.e. ε∗A(ϕ) becomes the identity on OB when using the isomorphisms α1 and α2.
(iii) The tensor product of two B-rigidified line bundles (L1, α1) and (L2, α2) on A is the pair
(L1 ⊗OA L2, α1 ⊗ α2), where α1 ⊗ α2 means the obvious induced B-rigidification of L1 ⊗OA L2.
(iv) The inverse of a B-rigidified line bundle (L, α) on A is the pair (L−1, α−1), where α−1 is the
B-rigidification of L−1 naturally induced by dualizing α.
(v) The line bundle OA together with its canonical B-rigidification will be written (OA, can).

Remark 0.1.4
Given the situation of Rem. 0.1.2 we have a commutative (in fact cartesian) diagram

A′

��

B′
εA′oo

��
A B

εAoo

which shows that the pullback of a B-rigidified line bundle L on A along the projection A′ → A is
naturally equipped with an induced B′-rigidification.

From now on we fix an abelian scheme X of relative dimension g over a locally noetherian base S.
We will write π, µ, ε, pr1, pr2 instead of πX , µX , εX , pr1,X , pr2,X , but we keep the notation (−1)X .
For S-schemes T we will often use the abbreviation XT for the base extension X ×S T and view it
as abelian scheme over T in the natural way.

Dual abelian scheme and Poincaré bundle

Consider the dual functor of X/S, i.e. the contravariant commutative group-functor on the category
of all S-schemes given by

T 7→ Pic0(XT /T ) := {Isomorphism classes of pairs (L, α)},
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where L is a line bundle on XT which is algebraically equivalent to zero and where α is a T -
rigidification of L. The group law of Pic0(XT /T ) is defined by taking the tensor product of rep-
resentatives; its neutral element is the class of (OXT , can), and the inverse of the class of (L, α) is
represented by (L−1, α−1). The assignment T 7→ Pic0(XT /T ) becomes contravariant functorial by
means of Rem. 0.1.2 and Rem. 0.1.4.

Lemma 0.1.5
Let L be an arbitrary line bundle on XT . Then any automorphism of L which restricts to the identity

on ε∗XTL is already the identity on L.

In particular, there are no nontrivial automorphisms of a pair (L, α) ∈ Pic0(XT /T ), i.e. if

(L, α) ' (L, α)

is an isomorphism, then it must be the identity.

Proof. It suffices to show only the first claim, which is done by a well-known standard argument (cf.
e.g. [Kl], Lemma 9.2.10); in view of a later spot of the work we here recall it explicitly.
Namely, let ϕ : L ∼−→ L be an automorphism of a line bundle L on XT with ε∗XT (ϕ) = id on ε∗XTL.
Note that ϕ belongs to

(0.1.1) Γ(T,OT )
∼−→ Γ(XT ,OXT )

∼−→ HomOXT (L,L) 3 ϕ,

where the first arrow comes from the natural map OT → (πXT )∗OXT which is an isomorphism
because OS

∼−→ π∗OX holds universally for the abelian scheme X/S (cf. [Maz-Mes], Ch. I, (1.9)).
The second isomorphism in (0.1.1) is defined by scalar multiplication.
The chain of identifications (0.1.1) says that ϕ is given by multiplication with a unit u of Γ(T,OT ).
To determine this unit observe that the composition

Γ(T,OT )
∼−→ Γ(XT ,OXT )→ Γ(T,OT )

is the identity: here, the first arrow is as in (0.1.1) and the second arrow comes from the map on struc-
ture sheaves defined by the zero section εXT : T → XT . This implies that the induced isomorphism
of line bundles on T :

ε∗XT (ϕ) : ε∗XTL
∼−→ ε∗XTL

is given by u-multiplication. But by assumption ε∗XT (ϕ) = id, hence u = 1 and the claim follows.

We have the following deep theorem which can be deduced from a more general representability result
in the theory of algebraic spaces (cf. the discussion in [Ch-Fa], Ch. I, p. 2-7).

Theorem 0.1.6
The dual functor of X/S

T 7→ Pic0(XT /T )

is representable by an abelian scheme Y of relative dimension g over S.

Definition 0.1.7
The abelian S-scheme of Thm. 0.1.6 is called the dual abelian scheme of X .
We denote by πY , µY , εY the structure map, the multiplication map and the zero section of Y/S.
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The scheme Y of Thm. 0.1.6 comes with a distinguished isomorphism class in Pic0(X×S Y/Y ) such
that Y together with this class forms a universal object for the dual functor. Each two representatives
of this distinguished isomorphism class are uniquely isomorphic, as follows from Lemma 0.1.5.
From now on we fix such a representative and denote it by (P0, r0).

Remark 0.1.8
We explain the birigidification of P0.
By definition, P0 is a line bundle on the abelian Y -scheme X ×S Y which is algebraically equivalent
to zero and r0 is a Y -rigidification of P0, i.e. an isomorphism

r0 : OY ' (ε× idY )∗P0,

where ε× idY defines the zero section of X ×S Y/Y :

Y ' S ×S Y
ε×idY−−−−→ X ×S Y.

The commutative diagram of group homomorphisms

HomS(Y, Y )
∼

◦εY
��

Pic0(X ×S Y/Y )

(idX×εY )∗

��
HomS(S, Y )

∼
Pic0(X/S)

and Lemma 0.1.5 show that there is a unique isomorphism (idX × εY )∗(P0, r0) ' (OX , can) in
Pic0(X/S). In other words, there is a unique trivialization

s0 : (idX ×εY )∗P0 ' OX

of P0 along the map
X ' X ×S S

idX×εY−−−−−→ X ×S Y

such that the restriction of s0 along ε : S → X coincides with the restricition of r0 along εY : S → Y .
It is the existence of the two compatible rigidifications r0 and s0 which is meant by the common
parlance that P0 is birigidified, and we may write (P0, r0, s0) to stress this fact.

Definition 0.1.9
We call (P0, r0, s0) the birigidified Poincaré bundle on X ×S Y .

Finally, let us mention the phenomenon of biduality:
For this one first recognizes that P0 is algebraically equivalent to zero not only with respect to the
base scheme Y - which is true by definition - but also with respect to X (cf. [SGA7-I], exp. VII, Ex.
2.9.5 and Rem. 2.9.6; the substantial ingredient is the rigidity theorem for abelian schemes).
If we denote (only for a moment) by Z the dual abelian scheme of Y and by Q0 the birigidified
Poincaré bundle on Y ×S Z there is then a unique S-morphism ι : X → Z inducing an isomorphism

(0.1.2) (idY × ι)∗Q0 ' σ∗P0

such that the Z-rigidification of Q0 induces the X-rigidification s0 of σ∗P0.
Here, σ : Y ×SX

∼−→ X×S Y denotes the shift automorphism and with the last s0 we more precisely
mean the X-rigidification of σ∗P0 naturally induced by s0 noting that σ ◦ (εY × idX) = idX ×εY .
In shorter words, ι is the map corresponding to (σ∗P0, s0) under HomS(X,Z) ' Pic0(Y ×SX/X).
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Theorem 0.1.10
The map ι : X → Z defined above is an isomorphism of abelian schemes.

Proof. Cf. [Bo-Lü-Ray], 8.4, Thm. 5 (b).1

It is easy to see that (0.1.2) also respects the Y -rigidifications of both sides, and hence altogether we
may identify Z with X as abelian schemes and Q0 with σ∗P0 as birigidified line bundles.

Corollary 0.1.11
The dual functor of Y/S is represented by the abelian scheme X and (σ∗P0, s0, r0) is the birigidified

Poincaré bundle on Y ×S X .

Universal vectorial extension and Poincaré bundle

In the following, we use the notion of an integrable connection and some associated standard con-
structions; for detailed explanations we refer to the review of algebraic connections given in 0.2.1.

Consider the contravariant commutative group-functor on the category of all S-schemes given by

T 7→ Pic\(XT /T ) := {Isomorphism classes of triples (L, α,∇L)},

where L and α are as in the definition of Pic0(XT /T ) and where ∇L : L → Ω1
XT /T

⊗OXT L is an
integrable T -connection on L. We call it the \-dual functor of X/S.
For the precise definition of this functor one takes into account the following points:
First, an isomorphism between two such triples is by definition an isomorphism of the line bundles
which respects the T -rigidifications and the connections.
Second, the group law of Pic\(XT /T ) is defined by taking the tensor product of representing triples:
this means that one forms the tensor product of the line bundles, of the T -rigidifications and of the
integrable T -connections. The neutral element then is given by the class of (OXT , can,d) with
d : OXT → Ω1

XT /T
denoting the exterior derivative. The inverse of the class of (L, α,∇L) is

represented by (L−1, α−1,∇−1
L ), where ∇−1

L is the dual connection of∇L.
Finally, the assignment T 7→ Pic\(XT /T ) is contravariant functorial via Rem. 0.1.2, Rem. 0.1.4 and
pullback of an integrable connection along the respective commutative diagram as in 0.2.1 (v).

From Lemma 0.1.5 it follows a fortiori that there are no nontrivial automorphisms of a triple (L, α,∇L).

In the course of the work we will exclusively be concerned with the case that the base scheme S
is of characteristic zero, i.e. a Q-scheme. In this case we can remove the requirement of algebraic
equivalence to zero in the definition of Pic\(XT /T ) by the following more general statement:

Lemma 0.1.12
If S is of characteristic zero, T an S-scheme and (L,∇L) is a line bundle on XT equipped with a

(not necessarily integrable) T -connection, then L is algebraically equivalent to zero.

1The hypothesis made there that X/S is projective is of course not necessary for the argument: in the reference this
assumption has the sole purpose to guarantee representability of the dual functor and thus is superfluous in view of Thm. 0.1.6.
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Proof. It is a fact that a line bundle on XT is algebraically equivalent to zero already if its restriction
to each geometric fiber of XT /T is algebraically equivalent to zero.2 We may hence check the claim
after pullback of L to the fiber over a geometric point Spec (Ω) of T . This pullback has an induced
connection relative Spec (Ω), given by the pullback of ∇L along the occurring fiber product diagram
(cf. 0.2.1 (v)). We are thus reduced to show that a line bundle with connection on an abelian variety
over an algebraically closed field of characteristic zero is algebraically equivalent to zero. This is
well-known, cf. e.g. [Brio], Prop. 2.18.

Before stating the key theorem about the \-dual functor we remark that a commutative group scheme
over a base B will often be freely identified with its associated abelian fppf -sheaf on the category of
all B-schemes and that a sequence of homomorphisms of commutative group schemes is said to be
exact if the corresponding sequence of abelian fppf -sheaves is exact. Moreover, for a commutative
B-group scheme G we write Lie(G/B) to denote the Lie algebra of G/B which in most cases will be
treated as the OB-module given by (ε∗GΩ1

G/B)∨, where εG is the zero section of G/B; for its equiv-
alent definition as a functor and for basic facts about Lie algebras cf. [Li-Lo-Ray], 1. Finally, for a
OB-vector bundle E the notation V(E) means the geometric vector bundle over B associated with E
(cf. [Gö-We], Ch. 11, (11.4)).

Returning to our fixed situation of an abelian scheme X over a locally noetherian base S we have
the following fundamental theorem about the \-dual functor; it is a recapitulation in inverse order of
the results proven in [Maz-Mes], Ch. I, §1-§4.

Theorem 0.1.13
The \-dual functor of X/S

T 7→ Pic\(XT /T )

is representable by a S-group scheme Y \ sitting in a natural short exact sequence of S-group schemes

(0.1.3) 0→ V(Lie(X/S))→ Y \ → Y → 0,

given in T -rational points (for an S-scheme T ) by the exact sequence of abelian groups

(0.1.4) 0→ H0(XT ,Ω
1
XT /T

)→ Pic\(XT /T )→ Pic0(XT /T ),

where the injection maps a form ω to the class of (OXT , can,d + ω) and the subsequent arrow is

defined by "forgetting the connection", i.e. by (L, α,∇L) 7→ (L, α) on representatives.

The scheme Y \ in particular is of finite type, separated and smooth of relative dimension 2g over S

with geometrically integral fibers.

Moreover, there exists a canonical isomorphism of OS-vector bundles

(0.1.5) Lie(Y \/S) ' H1
dR(X/S)

such that the sequence of Lie algebras of (0.1.3) identifies with the exact sequence ("Hodge filtration")

0→ π∗Ω
1
X/S → H1

dR(X/S)→ R1π∗OX → 0

2There seems to be no place in the official literature where this is proven. It is nevertheless an easy formal consequence of
the deeper fact that the dual functor of X/S as we defined it is an open subfunctor of the relative Picard functor of X/S.
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induced by the degeneration of the Hodge-de Rham spectral sequence for X/S on the first sheet.3

The exact sequence (0.1.3) parametrizes all extensions of Y by S-vector groups W via pushout along

a unique S-vector group homomorphism V(Lie(X/S))→W .

Definition 0.1.14
The S-group scheme Y \ of Thm. 0.1.13 is called the universal (vectorial) extension of Y .
We denote by π\, µ\, ε\, (−1)\ the structure map, the multiplication map, the zero section and the
inverse map of Y \/S.

Remark 0.1.15
(i) Of course, the term "universal vectorial extension" refers to the property of the extension (0.1.3)

described in the last part of Thm. 0.1.13. This property is used to define more generally the universal
vectorial extension of an arbitrary 1-motive over S (cf. 2.6.1). Its existence is always guaranteed by
in fact purely formal arguments, and in the case of the 1-motive given by Y the preceding theorem
thus provides us with an explicit interpretation of this object in terms of the \-dual functor of X/S.

(ii) There are further equivalent viewpoints on Y \ by means of rigidified extensions (cf. [Maz-Mes],
Ch. I, §2) or by Grothendieck’s \-extensions (cf. ibid., Ch. I, §3-§4 resp. the account given in 0.1.3).
For its classical expression via differential forms of the third kind in the case of an abelian variety as
well as for its interpretation within the theory of generalized Picard varieties resp. jacobians cf. the
references in the introduction of [Maz-Mes], [Col], I.7, and [Co4].

Y \ comes with a distinguished isomorphism class in Pic\(X ×S Y \/Y \) such that Y \ together with
this class forms a universal object for the \-dual functor. We now want to fix a representative for this
universal isomorphism class by using the Y -rigidified Poincaré bundle (P0, r0) on X ×S Y .
Write (P, r) for the pullback of (P0, r0) along the mapX×SY \ → X×SY induced by the canonical
arrow Y \ → Y of (0.1.3): it is a Y \-rigidified line bundle on the abelian Y \-scheme X ×S Y \ which
is algebraically equivalent to zero. We then have:

Lemma 0.1.16
There is a unique integrable Y \-connection ∇P on P such that (P, r,∇P) represents the universal

isomorphism class in Pic\(X ×S Y \/Y \).

Proof. Fix some representative (Q, ν,∇Q) of this universal class. By definition of Y there is a unique
S-morphism f : Y \ → Y such that the pullback of (P0, r0) under idX ×f : X ×S Y \ → X ×S Y
is isomorphic to (Q, ν). We first claim that f is identical to the canonical map in (0.1.3): by Thm.
0.1.13 we need to check that for all S-schemes T the map f in T -rational points

f(T ) : Pic\(X ×S T/T ) ' Y \(T )→ Y (T ) ' Pic0(X ×S T/T )

is given as in (0.1.4), i.e. "by forgetting the connection". This in turn is straightforwardly seen by
using the universality of (Q, ν,∇Q) and (P0, r0) together with (idX × f)∗(P0, r0) ' (Q, ν).
We thus have an isomorphism

(0.1.6) (P, r) = (idX × f)∗(P0, r0) ' (Q, ν).

3General remarks about algebraic de Rham cohomology can be found in 0.2.2. For detailed information about the de Rham
cohomology of an abelian scheme cf. [Bert-Br-Mes], 2.5.
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Now we endow the left side of (0.1.6) with the connection ∇P induced by ∇Q. Clearly, (P, r,∇P)

is a representative of the universal class in Pic\(X ×S Y \/Y \) because (Q, ν,∇Q) is. Finally, the
uniqueness part is an application of Lemma 0.1.5 (note that (P, r) is assumed to be fixed).

Remark 0.1.17
The commutative diagram of group homomorphisms

HomS(Y \, Y \)
∼

◦ε\
��

Pic\(X ×S Y \/Y \)

(idX×ε\)∗
��

HomS(S, Y \)
∼

Pic\(X/S)

and Lemma 0.1.5 show that there is a unique isomorphism (idX × ε\)∗(P, r,∇P) ' (OX , can,d) in
Pic\(X/S). In other words, there is a unique trivialization

s : (idX × ε\)∗(P,∇P) ' (OX ,d)

of (P,∇P) along

X ' X ×S S
idX×ε\−−−−−→ X ×S Y \

with the property that (on the level of line bundles) the restriction of s along ε : S → X coincides
with the restriction of r along ε\ : S → Y \. One can further check that the trivialization s on the level
of line bundles is just the one induced by s0 in the obvious sense.4

We may express these data simultaneously by writing (P, r, s,∇P).

Definition 0.1.18
We call (P, r, s,∇P) the birigidified Poincaré bundle with universal integrable Y \-connection
on X ×S Y \.

It is of course reasonable to speak about rigidifying a line bundle also along the zero section of a group
scheme, and in this sense we apply the term "rigidification" to s.

The reason why we decide to write (P, r, s,∇P) instead of the more consequential (P \, r\, s\,∇P\)
is for convenience of notation: playing a crucial role in this work, these objects will occur a huge
number of times and will moreover need to be furnished with other super- and subscripts.

0.1.2 Extension and biextension structures: generalities

The language of Gm-(bi-)extensions and \-structures on them permits to develop another perspective
on the objects introduced in the preceding subsection. We therefore insert a review of some of its
basic vocabulary, essentially summarizing material from the sources [SGA7-I], exp. VII, [De2], 10.2,
[Ber], 3, and [Po], II, 10.2-10.3.

4The reason is that both give an isomorphism of (idX × ε\)∗(P, r) with (OX , can): for s this holds by definition and for
the trivialization induced by s0 because s0 and r0 are compatible (cf. Rem. 0.1.8) and r is induced by r0. Now use Lemma
0.1.5 to conclude the desired equality.
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Extensions and \-extensions

We fix an arbitrary base scheme T and a commutative T -group scheme H with multiplication map
m : H ×T H → H and projections p1, p2 : H ×T H → H .
Let us further write q1, q2, q3 : H ×T H ×T H → H for the three projections of the triple product.

Definition 0.1.19
A (commutative) Gm,T -extension of H is a line bundle L on H together with an isomorphism of line
bundles on H ×T H:

(0.1.7) m∗L ' p∗1L ⊗OH×TH p
∗
2L

such that the following two diagrams of isomorphisms of line bundles on H ×T H ×T H resp. on
H ×T H (expressing "associativity" and "commutativity") commute; note that we leave away the
index H ×T H ×T H resp. H ×T H in the tensor products.

(q1 + q2 + q3)∗L
(a) //

(b)

��

(q1 + q2)∗L ⊗ q∗3L

(d)⊗id

��
q∗1L ⊗ (q2 + q3)∗L

id⊗(c) // q∗1L ⊗ q∗2L ⊗ q∗3L

(0.1.8)

resp.

m∗L //

id

��

p∗1L ⊗ p∗2L

can

��
m∗L // p∗2L ⊗ p∗1L

(0.1.9)

The arrows in (0.1.8) are induced by pulling back the isomorphism (0.1.7) along the maps
H ×T H ×T H → H ×T H defined by

(a′) : (x, y, z) 7→ (x+ y, z) (b′) : (x, y, z) 7→ (x, y + z)

(c′) : (x, y, z) 7→ (y, z) (d′) : (x, y, z) 7→ (x, y).

The upper arrow of (0.1.9) is (0.1.7) and the lower one comes from (0.1.7) by pullback via the shift
map H ×T H → H ×T H , defined by (x, y) 7→ (y, x).

Remark 0.1.20
Let L be a Gm,T -extension of H and write L for the Gm,H -torsor associated with the line bundle
L. By a purely formal procedure the datum (0.1.7) induces on L canonically the structure of a
commutative T -group scheme fitting into an exact sequence of T -group schemes

(0.1.10) 0→ Gm,T → L→ H → 0.

Conversely, an extension as in (0.1.10) makes L into a Gm,H -torsor whose associated line bundle L
on H naturally carries the structure of a Gm,T -extension of H .
For the explicit (entirely formal) constructions and for more details cf. [SGA7-I], exp. VII, 1.1-1.2.

Keeping the above notations let us further assume that H is smooth over T .
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Definition 0.1.21
A \-Gm,T -extension of H is a Gm,T -extension L of H together with a (automatically integrable)
T -connection on L such that the isomorphism of (0.1.7):

m∗L ' p∗1L ⊗OH×TH p
∗
2L

is horizontal for the induced T -connections on both sides.
Write Ext\(H,Gm,T ) for the group of isomorphism classes of \-Gm,T -extensions of H , where an
isomorphism is of course an isomorphism of the line bundles which is compatible with the respective
isomorphisms (0.1.7) and with the connections; the group structure is induced by taking the tensor
product of line bundles, connections and isomorphisms (0.1.7).

Biextensions and \-structures

We fix a base scheme T and two commutative T -group schemes H1, H2 with multiplication maps
mH1 ,mH2 . We write pij for the projection of a triple product to the i-th and j-th factor.

Definition 0.1.22
A (commutative) Gm,T -biextension of H1 ×T H2 is a line bundle L on H1 ×T H2 together with
isomorphisms of line bundles on H1 ×T H1 ×T H2 and H1 ×T H2 ×T H2:

(0.1.11) p∗13L ⊗ p∗23L ' (mH1 × idH2)∗L

and

(0.1.12) p∗12L ⊗ p∗13L ' (idH1
×mH2

)∗L

such that certain five induced diagrams of isomorphisms of line bundles on the fiber products

• H1 ×T H1 ×T H1 ×T H2, H1 ×T H1 ×T H2,

• H1 ×T H2 ×T H2 ×T H2, H1 ×T H2 ×T H2,

• H1 ×T H1 ×T H2 ×T H2

are commutative.5

Remark 0.1.23
Write H1H2

resp. H2H1
for the product H1×T H2, considered as group scheme relative H2 resp. H1.

If L is a Gm,T -biextension of H1 ×T H2, then L has canonically an induced structure as a Gm,H2
-

extension of H1H2
and as a Gm,H1

-extension of H2H1
. One gets these structures precisely from the

isomorphisms (0.1.11) and (0.1.12) (the two associativity and commutativity conditions are exactly
the meaning of the first four commutative diagrams of Def. 0.1.22). They are compatible in the sense
of [SGA7-I], exp. VII, Def. 2.1 (this is the meaning of the fifth commutative diagram of Def. 0.1.22).
One thus sees that the datum of such two compatible extension structures for a line bundle L on

5These diagrams are intuitive to write down but would cost further notation and space, so we don’t explicate them here
and refer to the diagrams (2.0.5), (2.0.6), (2.0.8), (2.0.9), (2.1.1) in [SGA7-I], exp. VII, 2.0 and 2.1, for the precise
requirements.
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H1 ×T H2 is simply tantamount to have on L the structure of a Gm,T -biextension of H1 ×T H2.
Note that with Rem. 0.1.20 we then obtain exact sequences of group schemes relative H2 resp. H1:

(0.1.13) 0→ Gm,H2 → L→ H1H2
→ 0,

(0.1.14) 0→ Gm,H1
→ L→ H2H1

→ 0.

Keeping the above notations we further assume that H1 and H2 are smooth over T .

Definition 0.1.24
Let L be a Gm,T -biextension of H1 ×T H2.
(i) A \-1-structure on L is the datum of a (automatically integrable) H2-connection on L such that
(0.1.11) is horizontal for the induced H2-connections (i.e. L becomes a \-Gm,H2 -extension of H1H2

)
and such that (0.1.12) is horizontal for the induced (H2 ×T H2)-connections.
(ii) By working in (i) relative to H1 instead of H2 one obtains the notion of a \-2-structure on L.
(iii) A \-structure on L is the datum of a \-1-structure and of a \-2-structure on L.

By the canonical decomposition Ω1
H1×TH2/H2

⊕ Ω1
H1×TH2/H1

' Ω1
H1×TH2/T

one easily sees that a
\-structure on L is equivalent to the datum of a T -connection on L such that (0.1.11) and (0.1.12) are
horizontal for the induced T -connections.

0.1.3 Extension and biextension structures: applications

Let us return to the objects we have defined in 0.1.1 starting from the abelian scheme X over the
locally noetherian base S. The terminology developed in 0.1.2 will now provide us with a different
interpretation of the dual abelian scheme Y and its universal vectorial extension Y \ as parametrizing
schemes for the Gm- and \-Gm-extensions of X . We finally apply the concept of biextension to the
Poincaré bundle and, following [Ber], 4, resp. [De2], 10.2, explain the construction of Deligne’s
pairing for the first de Rham cohomology of X and Y .
All of these viewpoints play a particularly basic and natural role when working within the framework
of 1-motives, which we will do extensively in 2.6.

Extensions and the dual abelian scheme

Let (L, α) be a line bundle on XT which is algebraically equivalent to zero together with a T -
rigidification. The existence of this T -rigidification easily implies that any line bundleM on T as in
Def. 0.0.1 must be trivial, and hence we obtain some isomorphism of line bundles on XT ×T XT :

(0.1.15) µ∗TL ' pr∗1,TL ⊗OXT×TXT pr∗2,TL.

If we view XT ×T XT as abelian T -scheme both sides of (0.1.15) carry a natural T -rigidification
(induced by α in the obvious way), and there is a unique isomorphism as in (0.1.15) respecting them.6

6This is straightforward: first, choose any isomorphism as in (0.1.15). Then it can be changed by a constant in
Γ(T,OT )∗ = Γ(XT ,OXT )∗ such that it becomes compatible with the rigidifications: namely, restrict the chosen iso-
morphism (0.1.15) along the zero section of XT ×T XT and use the rigidifications to obtain an automorphism ofOT which
is given by an element of Γ(T,OT )∗. The inverse of this element is the desired constant, as is easily checked. Finally, that
an isomorphism as in (0.1.15) which respects the rigidifications is unique follows from Lemma 0.1.5 applied to the abelian
T -scheme XT ×T XT .
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Lemma 0.1.25
With this choice of (0.1.15) we obtain on L the structure of a (commutative) Gm,T -extension of XT .

Proof. We need to show that the diagrams (0.1.8) resp. (0.1.9) expressing associativity and com-
mutativity are commutative. All line bundles occurring in (0.1.8) resp. (0.1.9) carry a natural T -
rigidification (induced by α), and by the choice of (0.1.15) and the definition of the arrows in (0.1.8)

resp. (0.1.9) these rigidifications are respected by all isomorphisms in (0.1.8) resp. (0.1.9). Now use
Lemma 0.1.5, applied to the abelian T -scheme XT ×T XT ×T XT resp. XT ×T XT .

Observing moreover Rem. 0.1.20 we see that the pair (L, α) thus yields in a natural way an extension

0→ Gm,T → L→ XT → 0,

where L stands as usual for the Gm,XT -torsor associated with the line bundle L.
Conversely, given an exact sequence of abelian fppf -sheaves

0→ Gm,T → L→ XT → 0

write L for the line bundle on XT corresponding to L; then L naturally becomes a Gm,T -extension
of XT (cf. Rem. 0.1.20), and the associated isomorphism (0.1.7) implies that L is algebraically
equivalent to zero; moreover, restricting (0.1.7) along the zero section of XT ×T XT induces a T -
rigidification α of L such that in sum we have obtained a pair (L, α) as before.

Theorem 0.1.26 ("Barsotti-Rosenlicht-Weil formula")
The assignments described above induce mutually inverse isomorphisms of abelian groups

(0.1.16) Pic0(XT /T ) ' Ext1
fppf (XT ,Gm,T )

which is functorial in T . In other words, the dual abelian scheme Y of X/S represents the functor on

the category of S-schemes

T 7→ Ext1
fppf (XT ,Gm,T ).

In particular, we obtain an isomorphism of abelian fppf -sheaves

(0.1.17) Y ' Ext1
fppf (X,Gm,S).

Proof. That we obtain an induced isomorphism of groups Ext1
fppf (XT ,Gm,T )

∼−→ Pic0(XT /T )

follows from [Oo], Ch. III, Thm. 18.1; observe that the additional hypotheses made there can be
completely removed: cf. the discussion in [Jo2], p. 7, footnote 1.
It is easy to see that assigning to a pair (L, α) an fppf -extension of XT by Gm,T as outlined above
induces a well-defined map Pic0(XT /T ) → Ext1

fppf (XT ,Gm,T ) which becomes the identity on
Pic0(XT /T ) when further composed with the previous isomorphism of groups. This suffices to
establish the isomorphism (0.1.16). The remaining claims are clear.

\-extensions and the universal vectorial extension

Recall that representatives of the abelian group Ext\(XT ,Gm,T ) are Gm,T -extensions L of XT to-
gether with an integrable T -connection∇L such that the isomorphism defining the extension structure

µ∗TL ' pr∗1,TL ⊗OXT×TXT pr∗2,TL
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is horizontal for the induced integrable T -connections. Pullback of the preceding isomorphism along
the zero section of XT ×T XT induces in the natural way a T -rigidification α of L, and the triple
(L, α,∇L) yields a well-defined class in Pic\(XT /T ).
In this way we obtain a homomorphism

Ext\(XT ,Gm,T )→ Pic\(XT /T ),

and an application of Lemma 0.1.5 (similar as in the proof of Lemma 0.1.25) shows its injectivity.
It is in fact also surjective: if a class (L, α,∇L) of Pic\(XT /T ) is given, then the construction and
isomorphy of (0.1.16) implies that there is a Gm,T -extension of XT which - together with its induced
T -rigidification - is (uniquely) isomorphic to (L, α). Now, using this isomorphism, endow the line
bundle of that extension with the connection induced by∇L. One can then show that the isomorphism
defining the extension structure is in fact horizontal (cf. the argument in [Maz-Mes], Ch. I, proof of
Prop. 4.2.1), which thus shows the desired surjectivity.

In sum, this establishes the following result (cf. [Maz-Mes], Ch. I, (4.2)):

Theorem 0.1.27
The universal vectorial extension Y \ of Y represents the functor on the category of S-schemes

T 7→ Ext\(XT ,Gm,T ).

Applications to the Poincaré bundle

Consider the birigidified Poincaré bundle (P0, r0, s0) on X ×S Y and recall that it is compatibly
rigidified and algebraically equivalent to zero with respect to each of the two factors of X ×S Y
(cf. Rem. 0.1.8, Def. 0.1.9 and the subsequent discussion). Applying two times the construction of
Lemma 0.1.25 (the second time with X replaced by Y ) we obtain on P0 naturally the structure of a
Gm,Y - and of a Gm,X -extension of X ×S Y . Denoting by P 0 the Gm,X×SY -torsor associated with
P0 we may express this (by Rem. 0.1.23) via associated exact sequences

(0.1.18) 0→ Gm,Y → P 0 → XY → 0,

(0.1.19) 0→ Gm,X → P 0 → YX → 0.

Their extension classes are the universal ones under the isomorphisms of functors given by (0.1.17):

Y ' Ext1
fppf (X,Gm,S),

X ' Ext1
fppf (Y,Gm,S),

where for the second we have made use of biduality (cf. Cor. 0.1.11).
The compatibility of r0 and s0 allow to show (as in the proof of Lemma 0.1.25) that the two extension
structures on P0 are compatible in the sense of Rem. 0.1.23, and thus P0 is a Gm,S-biextension of
X ×S Y . It is often referred to as the canonical or universal Gm,S-biextension of X ×S Y .
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We have furthermore introduced the birigidified Poincaré bundle with universal integrable Y \-connection
(P, r, s,∇P) on X ×S Y \ (cf. Def. 0.1.18). Pullback of the Gm,S-biextension structure of P0 makes
P a Gm,S-biextension of X ×S Y \ whose corresponding isomorphisms write as

(0.1.20) p∗13P ⊗ p∗23P ' (µ× idY \)
∗P on X ×S X ×S Y \,

(0.1.21) p∗12P ⊗ p∗13P ' (idX × µ\)∗P on X ×S Y \ ×S Y \.

One checks that (0.1.20) is horizontal for the integrable Y \-connections induced by ∇P on both
sides (use the argument of [Maz-Mes], Ch. I, proof of Prop. 4.2.1, applied to the abelian Y \-scheme
X ×S Y \); in particular, (P,∇P) becomes what in Def. 0.1.21 we have called a \-Gm,Y \ -extension
of X×S Y \, and its class in Ext\(X×S Y \,Gm,Y \) is the universal one with respect to Thm. 0.1.27.
Moreover, the isomorphism (0.1.21) is horizontal for the integrable (Y \×S Y \)-connections induced
by∇P on both sides (cf. [Ber], proof of Prop. 3.9, or [De2], proof of Prop. (10.2.7.4)).
In the terminology of Def. 0.1.24 the horizontality of the two isomorphisms (0.1.20) and (0.1.21)

defining the Gm,S-biextension structure of P says that∇P induces on P a \-1-structure.
Finally, note that by Rem. 0.1.23 the extension structures on P provide us with exact sequences

(0.1.22) 0→ Gm,Y \ → P → XY \ → 0,

(0.1.23) 0→ Gm,X → P → Y \X → 0.

Deligne’s pairing

The objects introduced in this section can be used to construct a natural duality between the first de
Rham cohomology sheaves of an abelian scheme and its dual.
Let us denote by X\ the universal vectorial extension of X .
Observing biduality (cf. Cor. 0.1.11) and then proceeding analogously as for P (cf. Lemma 0.1.16
and the above arguments) one obtains that the pullback of P0 along the canonical homomorphism
X\ ×S Y → X ×S Y is a birigidified Gm,S-biextension of X\ ×S Y which carries a distinguished
integrable X\-connection defining a \-2-structure on it. One can then take its further pullback along
X\ ×S Y \ → X\ ×S Y and perform the analogous pullback for P and its \-1-structure.
Hence, writing \P\ for the pullback of P0 along X\ ×S Y \ → X ×S Y we obtain a \-structure on
\P\ which expresses as a S-connection

∇\P\ : \P\ → Ω1
X\×SY \/S ⊗OX\×SY \

\P\.

The global 2-form on X\ ×S Y \ defined by the curvature of ∇\P\ is checked to be invariant (cf.
[Co3], p. 636), thus giving rise to an alternating OS-bilinear form

Lie(X\ ×S Y \/S)⊕ Lie(X\ ×S Y \/S)→ OS

which in view of the identifications provided by (0.1.5) writes as

R : (H1
dR(Y/S)⊕H1

dR(X/S))⊕ (H1
dR(Y/S)⊕H1

dR(X/S))→ OS .

The integrability of the relative connections summing to∇\P\ implies that R vanishes on H1
dR(Y/S)

and on H1
dR(X/S). It is hence of the form

R((v, v′), (w,w′)) = Φ(v ⊗ w′)− Φ(w ⊗ v′)
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with a OS-linear pairing

Φ : H1
dR(Y/S)⊗H1

dR(X/S)→ OS

which in terms of R is given by the formula

Φ(v ⊗ w) = R((v, 0), (0, w)).

The pairing Φ is called Deligne’s pairing. That it is in fact perfect is a fundamental result which was
proven under additional assumptions on the base scheme S by Deligne and Coleman (cf. [De2] and
[Co1]) and for arbitrary S in the more general situation of Cartier dual 1-motives by Bertapelle in
[Ber]. We will come back to the motivic nature of Deligne’s pairing in 2.6.1.

0.2 Algebraic connections, de Rham cohomology and D-
modules

0.2.1 Connections

The algebraic theory of modules with connection is a basic tool used throughout this work, and we
here recall various of its elementary notions and constructions which will be needed in the future.

Let f : X → S be a smooth morphism of schemes.

(i) If M is a OX -module a connection relative S or S-connection on M is a homomorphism of
abelian sheaves

∇ :M→ Ω1
X/S ⊗OX M

satisfying the Leibniz rule. For each i ≥ 1 one has a f−1OS-linear map defined on local sections by

∇i : ΩiX/S ⊗OX M→ Ωi+1
X/S ⊗OX M, ω ⊗m 7→ dω ⊗m+ (−1)i · ω ∧∇(m).

The connection ∇ is called integrable if its OX -linear curvature homomorphism

K(∇) := ∇1 ◦ ∇ :M→ Ω2
X/S ⊗OX M

vanishes, and in this case the maps∇i extend∇ to a f−1OS-linear complex starting in degree zero

Ω•X/S(M) : [M→ Ω1
X/S ⊗OX M→ Ω2

X/S ⊗OX M→ ...],

called the de Rham complex of (M,∇).

(ii) The datum of a S-connection onM is equivalent to a OX -linear map

∆ : Derf−1OS (OX)→ Endf−1OS (M)

from the sheaf of f−1OS-derivations on OX into the sheaf of f−1OS-linear endomorphisms onM,
satisfying the Leibniz rule; note that theOX -module structures of Derf−1OS (OX) and Endf−1OS (M)

come from (outer) multiplication by sections of OX .
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Observing that asOX -module Derf−1OS (OX) identifies with the dual of Ω1
X/S the mentioned equiva-

lence is induced by composing a given S-connection∇ onMwith sections θ ∈ Γ(U,Derf−1OS (OX)):

∆(θ) :M|U
∇−→ Ω1

U/S ⊗OU M|U
θ⊗id−−−→M|U .

The inverse assignment comes from choosing open subsets U ⊆ X where a relative local coordinate
system {xi, ∂xi}1≤i≤n is available (cf. 0.2.3 for this notion) and checking that the local formulas

∇(m) =

n∑
i=1

dxi ⊗∆(∂xi)(m)

induce a well-defined S-connection globally onM.
Under this correspondence the integrability condition of∇ translates into compatibility of ∆ with the
natural f−1OS-Lie algebra structures of Derf−1OS (OX) and Endf−1OS (M).

(iii) A morphism between two OX -modules with (integrable) S-connection is a OX -linear homo-
morphism that is compatible with the connections; such a map is also called horizontal.

(iv) If M and N are OX -modules with (integrable) S-connections ∇M and ∇N , then the tensor
productM⊗OX N can be equipped with a (integrable) S-connection

∇M ⊗∇N :M⊗OX N → Ω1
X/S ⊗OX (M⊗OX N ),

the tensor product connection of ∇M and ∇N . Using associativity and commutativity of the tensor
product it is induced by the following rule on local sections:

(∇M ⊗∇N )(m⊗ n) 7→ ∇M(m)⊗ n+m⊗∇N (n).

We can further endow the internal Hom-sheaf HomOX (M,N ) with a (integrable) S-connection

∇M,N : HomOX (M,N )→ Ω1
X/S ⊗OX HomOX (M,N ),

the internal Hom-connection. Using the canonical identification

Ω1
X/S ⊗OX HomOX (M,N ) ' HomOX (M,Ω1

X/S ⊗OX N )

it is induced by the following rule on local sections:

∇M,N (ϕ)(m) = ∇N (ϕ(m))− (id⊗ϕ)(∇M(m)).

In the case that M is a vector bundle and N = OX , equipped with its canonical integrable S-
connection (exterior derivation), the resulting connection on the dual bundleM∨ = HomOX (M,OX)

is called the dual connection of ∇M. One checks that its tensor product with ∇N becomes the con-
nection∇M,N under the natural identification HomOX (M,OX)⊗OX N ' HomOX (M,N ).
IfM is a line bundle the tensor product of ∇M with its dual connection becomes exterior derivation
under the canonical isomorphismM⊗OX M∨ ' OX .

Next, assume that we are given a commutative (not necessarily cartesian) diagram

X ′

g

��

// S′

h

��
X

f // S

(0.2.1)
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with X/S and X ′/S′ smooth.

(v) For a OX -moduleM with (integrable) S-connection we define its pullback along (0.2.1).
Namely, we may canonically equip the (module) pullback g∗M with a (integrable) S′-connection by
the following formula on local sections:

g∗M = OX′ ⊗g−1OX g
−1M→ Ω1

X′/S′ ⊗OX′ g
∗M,

x′ ⊗ g−1(m) 7→ dx′ ⊗ g∗(m) + x′ · (can⊗ id)(g∗(∇(m))),

where can⊗ id : g∗Ω1
X/S ⊗OX′ g

∗M→ Ω1
X′/S′ ⊗OX′ g

∗M is the obvious canonical map.

By contrast to conventions sometimes made in the literature (cf. e.g. [Kat2], (1.1.4)) we won’t
work with an additional notation like (g, h)∗M when referring to this construction but will simply
write g∗M as it will be transparent or mentioned explicitly along which diagram we form the pullback.

We record the special case S′ = S and h = id, which says that we have a notion of pullback for
modules with (integrable) S-connection along a morphism of smooth S-schemes.
As further special case one sees that for a smooth map f : X → S as above and any OS-moduleM
the pullback f∗M carries a canonical integrable S-connection, given by the rule

d⊗ id : OX ⊗f−1OS f
−1M→ Ω1

X/S ⊗f−1OS f
−1M.

(vi) Assume in addition that (0.2.1) is cartesian. For aOX′ -moduleM′ with (integrable) S′-connection

∇ :M′ → Ω1
X′/S′ ⊗OX′ M

′

we then have the notion of its higher direct images along (0.2.1).
Namely, applying the i-th higher direct image functor for abelian sheaves to∇ and identifying

Rig∗(Ω
1
X′/S′ ⊗OX′ M

′) ' Rig∗(g∗Ω1
X/S ⊗OX′ M

′) ' Ω1
X/S ⊗OX R

ig∗M′

yields a homomorphism of abelian sheaves Rig∗M′ → Ω1
X/S ⊗OX R

ig∗M′ which is a (integrable)
S-connection on the OX -module Rig∗M′.
If we consider g∗ as a left exact functor from the abelian category of OX′ -modules with integrable
S′-connection to the same category with X ′, S′ replaced by X,S, then the value of its i-th right de-
rived functor atM′ coincides with our previous construction, as one can easily show.
In terms of functors on derived categories it equals the i-th cohomology sheaf of (g, h)+(M′), where
(g, h)+ = Rg∗ is the triangulated functor of [Lau], (3.3) - to be precise, we here assume all schemes
locally noetherian, the map g quasi-compact andM′ quasi-coherent as OX′ -module.

(vii) At some places of the work it will be convenient to adapt Grothendieck’s viewpoint on connections.
For this let ∆1

X/S be the first infinitesimal neighborhood of the diagonal immersionX → X×SX and
p1, p2 : ∆1

X/S → X the maps induced by the projections of X ×S X . Hence, the two compositions

X
i−→ ∆1

X/S

p1 //
p2
// X
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both are the identity, where i is the natural nilpotent closed immersion of square zero. To give a
S-connection on the OX -moduleM then is equivalent to give an isomorphism

p∗1M' p∗2M

of O∆1
X/S

-modules which becomes the identity when restricted to X (cf. [Bert-Og], §2, Prop. 2.9).
As we won’t use it explicitly we only remark that the translation of integrability into this setting
expresses as a cocycle condition for certain isomorphisms, which is understood best by using the
concept of "stratifications" (cf. ibid., §4, Def. 4.3 and Thm. 4.8, resp. §2, Thm. 2.15, for Q-schemes).

0.2.2 De Rham cohomology

Algebraic de Rham cohomology is naturally associated to modules with integrable connection and
provides the cohomological framework in which most of this work will take place.
We briefly review its basic definitions and fix some standard notation. Some more details, especially
about the Gauß-Manin connection whose construction we won’t repeat in detail here, can be found in
[Kat2], (2.0)-(3.3)7 and [Har], Ch. III, 4.

Let f : X → S be a smooth morphism of schemes.

For a OX -moduleM with integrable S-connection and i ≥ 0 we define a OS-module

Hi
dR(X/S,M) := Rif∗(Ω•X/S(M)),

where as in 0.2.1 the notation Ω•X/S(M) means the f−1OS-linear de Rham complex ofM.
We call Hi

dR(X/S,M) the i-th de Rham cohomology sheaf of X/S with coefficients inM.
As already done here we usually suppress in our notation the integrable connection underlyingM.
ForM := OX with its canonical integrable S-connection (exterior derivation) we abbreviate

Hi
dR(X/S) := Hi

dR(X/S,OX)

and call Hi
dR(X/S) the i-th de Rham cohomology sheaf of X/S.

Assuming additionally that S is locally noetherian and f quasi-compact the spectral sequence of
hyperderived functors (use [Huy], Rem. 2.67)

(0.2.2) Ep,q1 = Rqf∗(Ω
p
X/S ⊗OX M)⇒ Ep+q = Hp+q

dR (X/S,M)

and standard cohomological results imply that all Hi
dR(X/S,M) are quasi-coherent OS-modules if

M is quasi-coherent, and that they are coherent OS-modules if f is proper andM coherent.

Now assume that S is smooth over another scheme T .

X
f //

��

S

��
T

7In this reference all modules with integrable connections are assumed as quasi-coherent, an assumption which is superflu-
ous for the definitions and facts we provide here (cf. also the second mentioned source).
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IfM is a OX -module with integrable T -connection, then via the natural map

Ω1
X/T ⊗OX M

can⊗id−−−−→ Ω1
X/S ⊗OX M

we obtain an induced integrable S-connection on M and associated de Rham cohomology sheaves
Hi

dR(X/S,M) as above. Each of them can then be equipped with a canonical integrable T -connection,
its Gauß-Manin connection relative T . The idea is to construct the whole de Rham complex of this
connection as the rowE•,i1 in the spectral sequence associated to the naturally finitely filtered complex
Ω•X/T (M) and the 0-th hyperderived functor of f∗.

0.2.3 D-modules

Giving a module with integrable connection is equivalent to giving a left module over the sheaf D
of differential operators for the considered geometric situation. Therefore, when working with inte-
grable connections we will often freely switch into the language of D-modules, where a convenient
functorial formalism on the level of derived categories is available.

As it was the case for modules with integrable connection we will consider D-modules for a rela-
tive situation. In the present subsection it thus becomes at first necessary to briefly outline how we
will deal with the lack of references in the literature for a theory of relative D-modules. We then
introduce the sheaf of relative differential operators for a smooth map of schemes and explain that the
left modules over it correspond to modules with integrable connection. The definition of the functorial
machinery in a relative situation, for which we refer to [Lau], Rappels (3.3.1), happens completely
analogously as in the absolute case (cf. e.g. [Ho-Ta-Tan], Ch. 1); we therefore content ourselves with
introducing explicitly only the inverse and direct image functor for relative D-modules, which are in
fact the two derived functors mainly used in the course of this work. Finally, as these results will
be frequently needed, we record the statement of Kashiwara’s equivalence and the availability of the
localization sequence in the relative case.

In this subsection we assume that all occurring schemes are separated Q-schemes.

General remarks

The literature known to us is almost exclusively restricted to the study of D-modules on smooth
varieties over the complex numbers. But, as was already said, in the course of this work we will
want to use D-module formalism for the situation of a scheme lying smooth over an arbitrary field of
characteristic zero or, more generally, over a base scheme defined over Q.
The fundamental functorial setup for such a general case is (very briefly) outlined in [Lau], Rappels
(3.3.1), and this is in fact the only source we know concerning relative D-modules.
Nevertheless, the basic formal results about D-modules that we will need entirely carry over from the
absolute to the relative situation. When making use of such a result in the progress of the work our
policy will be to cite the absolute statement, referring to the source [Ho-Ta-Tan], and briefly say that
resp. (if it is not immediately clear) why no problems arise in the transition to the relative situation.
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Basic concepts

Let S be a noetherian scheme and f : X → S a morphism which is of finite type and smooth of
relative dimension n.

The sheaf of differential operators of X/S, denotedDX/S , is the f−1OS-subalgebra of Endf−1OS (OX)

generated by Derf−1OS (OX) and OX , where OX is included in Endf−1OS (OX) by multiplication.

DX/S is a sheaf of OX -algebras which is non-commutative as soon as n ≥ 1. In the same way
as in the absolute case (cf. [Ho-Ta-Tan], 1.1) one has the following local description of DX/S :
As X/S is smooth of relative dimension n we can choose X-locally, say on U ⊆ X open affine,
sections {x1, ..., xn} of OU such that {dx1, ...,dxn} forms a OU -basis for Ω1

U/S . We then have

DU/S =
⊕
α∈Nn0

OU∂αx with ∂αx := ∂α1
x1
...∂αnxn ,

where {∂x1 , ..., ∂xn} is the dual basis of {dx1, ...,dxn}: recall that Derf−1OS (OX) as OX -module
identifies with the dual of Ω1

X/S . In particular, DX/S is a locally free OX -module and thus quasi-
coherent.

Our above choice of sections {xi, ∂xi}1≤i≤n is the immediate generalization of what in the abso-
lute case is called "local coordinate system" (cf. [Ho-Ta-Tan], 1.1 resp. A.5). The existence of such a
relative local coordinate system for X/S together with the characteristic zero assumption is the main
reason why many of the basic formal results of the absolute situation carry over to relativeD-modules.

By a (left) D-module for X/S we understand a sheaf of left modules over the ring sheaf DX/S .
The relation to the earlier defined modules with integrable connection (cf. 0.2.1) is as follows:
For a OX -moduleM the datum of an integrable S-connection onM is equivalent to the datum of a
left DX/S-module structure onM which is compatible with the OX -module structure.
To see this recall from 0.2.1 (ii) that an integrable S-connection onM tantamounts to a map

∆ : Derf−1OS (OX)→ Endf−1OS (M)

which is OX -linear, satisfies the Leibniz rule and is compatible with the natural f−1OS-Lie algebra
structures of Derf−1OS (OX) and Endf−1OS (M).
The equivalence with a DX/S-left module structure on M compatible with the given OX -module
structure then is established by the formula

θ ·m = ∇(θ)(m), where θ ∈ Derf−1OS (OX),m ∈M.

The verification is trivial (cf. also [Ho-Ta-Tan], Lemma 1.2.1).

Under this correspondence theDX/S-linear homomorphisms between two (left)DX/S-modules iden-
tify with the horizontal OX -linear homomorphisms between them. Note furthermore that OX with
its canonical DX/S-module structure becomes equipped with the integrable S-connection given by
exterior derivation. Finally, observe that in the special case X = S we simply have DX/S = OX .
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Derived Categories

We write Mod(DX/S) for the abelian category of (left) D-modules for X/S and Modqc(DX/S) for
the full subcategory of Mod(DX/S) consisting of thoseDX/S-modules which are quasi-coherent over
OX .8 It is a thick abelian subcategory of Mod(DX/S). 9

When considering the derived category of Mod(DX/S) we use the notation

D#(DX/S) := D#(Mod(DX/S)),

where # is one of the boundedness conditions ∅,+,−, b.
We write D#

qc(DX/S) for the full triangulated subcategory of D#(DX/S) consisting of those com-
plexes with cohomology sheaves in Modqc(DX/S).

Finally, we use the occasion to insert analogous notational conventions for modules over the structure
sheaf of a scheme10:
If (B,OB) is a scheme we write Mod(OB) for the abelian category of sheaves of modules over OB
and Modqc(OB) for the full subcategory consisting of those OB-modules which are quasi-coherent
over OB . It is a thick abelian subcategory of Mod(OB).11

Concerning the derived category of Mod(OB) we write

D#(OB) := D#(Mod(OB)),

where again # is one of the boundedness conditions ∅,+,−, b.
We denote withD#

qc(OB) the full triangulated subcategory ofD#(OB) consisting of those complexes
with cohomology sheaves in Modqc(OB).

Inverse and direct image for D-modules

We briefly record the two most important triangulated functors on derived categories of D-modules,
namely the inverse and direct image functor. We will adopt the notations of [Lau], Rappels (3.3.1),
where one can also find the definitions of the other basic functors for relativeD-modules. But observe
that compared with [Lau] we impose more geometric conditions on the involved schemes, essentially
regularity and finite-dimensionality: in our view, these assumptions seem necessary to ensure that
the various triangulated functors are well-defined between bounded derived categories with quasi-
coherent cohomology; we don’t further elaborate on this technical issue here.12

Let S be a noetherian, regular and finite-dimensional scheme and let X,Y be schemes which are
of finite type and smooth of relative dimensions dX/S , dY/S over S; note that X,Y then have the

8For the notion of quasi-coherence for sheaves of modules on a ringed space cf. [EGAI], Ch. 0, (5.1.3). Furthermore, we
remark that for a DX/S -module the conditions to be quasi-coherent over DX/S and to be quasi-coherent over OX coincide:
use [EGAI], Ch. I, Prop. (2.2.4), and the already seen quasi-coherence of DX/S overOX .

9This follows from [EGAI], Ch. I, Cor. (2.2.2).
10Of course, for this short general insertion we deactivate the assumption that we are working with separated Q-schemes.
11As before, this follows from [EGAI], Ch. I, Cor. (2.2.2).
12Let us only mention as a main reason that one needs the existence of bounded flat resolutions for D-modules, which is

guaranteed if the weak global dimensions of the stalks of the considered sheaf of relative differential operators are bounded;
under our additional assumptions one can indeed bound them, namely by the sum of the dimension of the scheme with the
relative dimension of the considered smooth morphism - this works similarly as in[Ho-Ta-Tan], p. 26 and Prop. 1.4.6.
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same geometric properties as S.
Assume that we are given an S-morphism g : X → Y .

X
g //

��

Y

��
S

The inverse image functor associated with g is the triangulated functor

g! : Db
qc(DY/S)→ Db

qc(DX/S)

given by
g!N • = D(X→Y )/S ⊗Lg−1DY/S g

−1N •[dX/S − dY/S ]

for N • an object of Db
qc(DY/S).

The direct image functor associated with g is the triangulated functor

g+ : Db
qc(DX/S)→ Db

qc(DY/S)

given by
g+M• = Rg∗(D(Y←X)/S ⊗LDX/SM

•)

forM• an object of Db
qc(DX/S).

Here, D(X→Y )/S and D(Y←X)/S are the two transfer bimodules associated with the morphism g.
For their definition cf. [Lau], (3.3.1) or [Ho-Ta-Tan], Def. 1.3.1, Def. 1.3.3 and Lemma 1.3.4.

We will frequently and tacitly use the following two easy facts about the inverse image functor:
First, ifN is a locally freeOY -module with integrable S-connection, considered as object ofDb

qc(DY/S)

in the natural way, then we have canonically

g!N ' g∗N [dX/S − dY/S ] in Db
qc(DX/S),

where g∗N is equipped with the integrable S-connection given by pullback (cf. 0.2.1 (v)).13

Second, if g is an open immersion, then the functor g! is given by the natural restriction g−1 to the
open subset X of Y , and we simply write N|X for this restriction.

As we will cite results from the source [Ho-Ta-Tan] it should be remarked that in their notation the
functor g! is written as g† and the functor g+ as

∫
g

(cf. ibid., p. 33 and p. 40).

Kashiwara’s equivalence and localization sequence

Going through the proofs of [Ho-Ta-Tan], Thm. 1.6.1 and Cor. 1.6.2, one checks that they can be
modified to yield the following relative version of Kashiwara’s equivalence:

13To verify this claim one first shows as in [Ho-Ta-Tan], proof of Prop. 1.5.8, that on the level of O-modules the functor
g! is derived pullback shifted by [dX/S − dY/S ]. One then uses the local freeness of N to see that g!N [dY/S − dX/S ] is
concentrated in degree zero. Finally, as in [Ho-Ta-Tan], p. 22, one checks that the zeroth cohomology of g!N [dY/S − dX/S ]

canonically identifies with g∗N as DX/S -module.
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Let S be a noetherian, regular and finite-dimensional scheme and let X,Z be schemes which are
of finite type and smooth of some fixed relative dimensions over S.
Assume that we have a closed immersion i : Z → X of a fixed codimension c and write j for the
associated open immersion j : U := X\Z → X; here, as in [Mi], Ch. VI, §5, we say that Z has
codimension c in X if for any s ∈ S the fiber Zs has pure codimension c in Xs.

Z

  

i // X

f

��

U

~~

joo

S

Kashiwara’s equivalence in its relative form says that then the functor H0i+ induces an equivalence

(0.2.3) H0i+ : Modqc(DZ/S)
∼−→ ModZqc(DX/S),

and that the functor i+ induces an equivalence

(0.2.4) i+ : Db
qc(DZ/S)

∼−→ Db,Z
qc (DX/S).

Here, the superscripts mean the full subcategory of Modqc(DX/S) consisting of those modules whose
support is contained in Z resp. the full triangulated subcategory of Db

qc(DX/S) consisting of those
complexes whose cohomology sheaves have support contained in Z.
The quasi-inverse of (0.2.3) resp. (0.2.4) is induced by the functor H0i! resp. i!.

In particular, from (0.2.4) one deduces (along the same lines as in [Ho-Ta-Tan], Prop. 1.7.1) that
for everyM• ∈ Db

qc(DX/S) there is a canonical distinguished triangle in Db
qc(DX/S)

(0.2.5) i+i
!M• →M• → j+M•|U

which we will refer to as the localization sequence or the canonical distinguished triangle forM•.

Remark 0.2.1
(i) The essential point to prove the equivalences (0.2.3) and (0.2.4) is the following:
Our geometric assumptions imply that around points of X ∩ Z the map f factorizes locally on X via
an étale morphism into Spec (OS [T1, ...Tn]) such that Z is the inverse image of the closed subscheme
defined by Tn−c+1 = ... = Tn = 0. Here, c is again the codimension of Z in X , and n is the
relative dimension of X/S. The étale morphism comes from local sections {x1, ..., xn} of OX such
that {dx1, ...dxn} is locally a basis of Ω1

X/S . By dualizing we obtain a local basis {∂x1 , ...∂xn} of the
tangent sheaf of X/S, and the set {xi, ∂xi}1≤i≤n then is a relative local coordinate system for X/S,
directly generalizing the (absolute) "local coordinate system" of [Ho-Ta-Tan], 1.1 resp. A.5. With
this observation it is straightforward to generalize the proof of Kashiwara’s equivalence (and of many
other basic formal results for absolute D-modules) to the relative situation.

(ii) In the course of the work we will need the localization sequence (0.2.5) almost exclusively in the
case that S is the spectrum of a field of characteristic zero.
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0.3 Summary of the basic notation

It seems convenient to collect in a list the most important and steadily used pieces of the notation
introduced so far. All further symbols appearing in the progress of this work and not ranging among
common standard notation will be introduced in situ.

• If (B,OB) is a scheme:

Mod(OB): the category of sheaves of OB-modules
Modqc(OB): the category of quasi-coherent sheaves of OB-modules
D#(OB): the derived category of Mod(OB) with boundedness condition # = ∅,+,−, b
D#

qc(OB): the full triangulated subcategory ofD#(OB) of complexes with cohomology in Modqc(OB)

F∨ := HomOB (F ,OB) for a OB-module F
L−1 := L∨ for a OB-line bundle L
Lie(G/B): the Lie algebra of G/B for a commutative group scheme G over B
V(E): the geometric vector bundle associated with E for a OB-vector bundle E

• If f : X → S is a smooth map of schemes andM is a OX -module with integrable S-connection:

Derf−1OS (OX): the sheaf of f−1OS-derivations on OX
Endf−1OS (M): the sheaf of f−1OS-linear endomorphisms onM
Ω•X/S(M): the de Rham complex ofM (starting in degree zero)
Hi

dR(X/S,M): the i-th de Rham cohomology sheaf of X/S with coefficients inM
Hi

dR(X/S): the i-th de Rham cohomology sheaf of X/S

For the next two points all schemes are assumed to be separated Q-schemes.

• If X is of finite type and smooth (of a fixed relative dimension) over a noetherian scheme S:

DX/S : the sheaf of differential operators of X relative S
Mod(DX/S): the category of sheaves of left DX/S-modules
Modqc(DX/S): the category of sheaves of left DX/S-modules which are quasi-coherent over OX
D#(DX/S): the derived category of Mod(DX/S) with boundedness condition # = ∅,+,−, b
D#

qc(DX/S): the full triangulated subcategory of D#(DX/S) of complexes with cohomology in
Modqc(DX/S)

• If X,Y are of finite type and smooth (of fixed relative dimensions) over a noetherian, regular and
finite-dimensional scheme S, and if g : X → Y is a S-morphism:

g! : Db
qc(DY/S)→ Db

qc(DX/S): the inverse image functor associated with g
g+ : Db

qc(DX/S)→ Db
qc(DY/S): the direct image functor associated with g

D(X→Y )/S : the first transfer bimodule associated with g
D(Y←X)/S : the second transfer bimodule associated with g
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• If S is a locally noetherian scheme and X an abelian scheme of relative dimension g over S:

π : X → S: the structure map of X/S
µ : X ×S X → X: the multiplication map of X/S
ε : S → X: the zero section of X/S
(−1)X : X → X: the inverse map of X/S
pr1,pr2 : X ×S X → X: the two projection maps
T 7→ Pic0(X ×S T/T ): the dual functor of X/S on the category of all S-schemes
Y : the dual abelian scheme of X
(P0, r0): the fixed representative for the universal isomorphism class in Pic0(X ×S Y/Y )

(P0, r0, s0): the birigidified Poincaré bundle on X ×S Y
T 7→ Pic\(X ×S T/T ): the \-dual functor of X/S on the category of all S-schemes
Y \: the universal vectorial extension of Y
π\ : Y \ → S: the structure map of Y \/S
µ\ : Y \ ×S Y \ → Y \: the multiplication map of Y \/S
ε\ : S → Y \: the zero section of Y \/S
(−1)\ : Y \ → Y \: the inverse map of Y \/S
(P, r, s,∇P): the birigidified Poincaré bundle with universal integrable Y \-connection on X ×S Y \
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Chapter 1

The formalism of the logarithm sheaves and the

elliptic polylogarithm

For the whole chapter we let X be an abelian scheme of relative dimension g ≥ 1 over a connected
scheme S which is smooth, separated and of finite type over Spec (Q).
As fixed in 0.1 the structure morphism resp. zero section of X/S will be denoted by π resp. ε.

X
π //

!!

S

ε

yy

}}
Spec (Q)

Further remarks about de Rham cohomology

We briefly recall some additional information about the de Rham cohomology of X/S which will be
tacitly used in the future. For more details and for proofs we refer to [Bert-Br-Mes], 2.5.
Basic notations and facts concerning algebraic de Rham cohomology can be found in 0.2.2.

For the abelian scheme X/S each cohomology sheaf Hi
dR(X/S) is a vector bundle on S commuting

with arbitrary base change. In the lowest and top degree we have the following description:
The degeneration of the Hodge-de Rham spectral sequence

Ep,q1 = Rqπ∗Ω
p
X/S ⇒ Ep+q = Hp+q

dR (X/S)

at the first sheet and the canonical isomorphism OS
∼−→ π∗OX provides a natural isomorphism

H0
dR(X/S) ' OS .

The same degeneration yields the identification Rgπ∗Ω
g
X/S

∼−→ H2g
dR(X/S) whose inverse can be

composed with the Grothendieck trace map (cf. [Con1], Ch. I, 1.1) to give the trace isomorphism

tr : H2g
dR(X/S)

∼−→ OS .

Moreover, the cup product defines the structure of an alternating gradedOS-algebra on
⊕2g

i=0H
i
dR(X/S),

and it induces for each i = 0, ..., 2g an isomorphism

i∧
H1

dR(X/S)
∼−→ Hi

dR(X/S).
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From this we clearly obtain a Poincaré duality identification

Hi
dR(X/S) ' H2g−i

dR (X/S)∨, x 7→ { y 7→ tr(x ∪ y)}.

Let us finally point out that if all sheaves Hi
dR(X/S) are equipped with their Gauß-Manin connection

relative Spec (Q), if duals resp. exterior powers are endowed with the naturally induced connection,
and if OS carries its canonical connection (exterior derivative), then all of the previous four isomor-
phisms become horizontal, as one would expect.1

1.1 The definition of the logarithm sheaves

We define the de Rham realization of the logarithm sheaves for our fixed geometric situation X/S/Q
and introduce some elementary features like the transition maps, the natural unipotent filtration and a
first remark about compatibility with base change. The general proceeding is analogous to [Hu-Ki],
Def. A. 1.3, where the `-adic setting is considered, with the difference that we need to fix a splitting
for the pullback of the first logarithm sheaf along the zero section as in our case it is not unique.

Let us write H for the dual of the OS-vector bundle H1
dR(X/S) and endow it with the integrable

Q-connection given by the dual of the Gauß-Manin connection on H1
dR(X/S).

The OX -vector bundle
HX := π∗H

then carries the pullback connection relative Spec (Q) (cf. 0.2.1 (v)).

Definition of the logarithm sheaves

The Leray spectral sequence in de Rham cohomology (cf. [Kat2], (3.3.0)) forHX reads as

Ep,q2 = Hp
dR(S/Q, Hq

dR(X/S)⊗OS H)⇒ Ep+q = Hp+q
dR (X/Q,HX),

where Hq
dR(X/S)⊗OS H carries the tensor product connection.

Under the standard canonical identifications

Ep,q2 ' ExtpModqc(DS/Q)(OS , H
q
dR(X/S)⊗OS H) , Ep+q ' Extp+qModqc(DX/Q)(OX ,HX)

it can be viewed asHX plugged into the spectral sequence for the composition of functors

HomDS/Q(OS ,−) ◦H0
dR(X/S,−) : Modqc(DX/Q)→ Modqc(DS/Q)→ (Q-vector spaces),

noting that this composition equals HomDX/Q(OX ,−).

The associated five term exact sequence yields the Q-linear exact sequence

(1.1.1) 0→ Ext1
DS/Q(OS ,H)

π∗−→ Ext1
DX/Q(OX ,HX)→ HomDS/Q(OS ,H∨ ⊗OS H)→ 0,

1For the identification H0
dR(X/S) ' OS this is obvious by [Kat2], (3.1.0). The horizontality of the trace isomorphism is

a well-known fact which will also come out as a side result later in 1.2.3. The claim for the fourth identification then becomes
clear if one further observes that the cup product Hi

dR(X/S)⊗OS H
2g−i
dR (X/S)→ H2g

dR(X/S) is horizontal. This in turn,
as well as the horizontality of the third of the above isomorphisms, is easily deduced from [Kat-Od], (11).
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where we have used the existence of the section ε to deduce injectivity of the map E2,0
2 → E2

and hence the surjectivity in (1.1.1). That the injection in (1.1.1) is given by pullback along π is
straightforwardly checked as well as the following description of the occurring projection:
For a class in Ext1

DX/Q(OX ,HX), represented by a DX/Q-linear extension

0→ HX →M→ OX → 0,

the first boundary map in the long exact sequence for the derived functors of H0
dR(X/S,−) (cf.

[Kat2], Rem. (3.1)) is a horizontal map

OS → H∨ ⊗OS H,

and this is the image of our class in HomDS/Q(OS ,H∨ ⊗OS H).
We also remark that we will often tacitly identify HomDS/Q(OS ,H∨ ⊗OS H) ' HomDS/Q(H,H).

Now observe that the map π∗ in (1.1.1) has a retraction defined by ε∗, and that hence our exact
sequence (1.1.1) splits. With this we are already prepared to introduce the logarithm sheaves.

Definition 1.1.1
(i) The class in Ext1

DX/Q(OX ,HX) mapping to the identity under the projection of (1.1.1) and to zero
under the retraction ε∗ is called the first logarithm extension class of X/S/Q and written as Log1.
(ii) Suppose we are given a fixed pair consisting of an exact sequence of DX/Q-modules

(1.1.2) 0→ HX → L1 → OX → 0

representing the first logarithm extension class together with the choice of a DS/Q-linear splitting

ϕ1 : OS ⊕H ' ε∗L1

for the pullback of (1.1.2) along ε.
Then the vector bundle L1 on X together with its integrable Q-connection, denoted by ∇1, and with
the splitting ϕ1 will be called the first logarithm sheaf of X/S/Q and denoted by (L1,∇1, ϕ1).

Remark 1.1.2
One can show that an extension representing Log1 has a nontrivial automorphism if and only if the
sheafH has a nonzero global horizontal section; if we however additionally require compatibility with
a fixed splitting for the pullback of the extension along ε, then any such automorphism is the identity.
Such facts will be picked up and proven slightly more generally in Lemma 2.1.2 and Rem. 2.1.3.

From now on let (L1,∇1, ϕ1) be as in Def. 1.1.1 (ii).

For each n ≥ 1 we define a vector bundle Ln on X by Ln := Symn
OXL1. It is equipped with

the induced integrable Q-connection, denoted by∇n, and ϕ1 induces the (horizontal) decomposition

ϕn :

n∏
k=0

Symk
OSH ' ε

∗Ln.

For n = 0 we let Ln := OX , equipped with its canonical integrable Q-connection, and we let ϕ0 be
the natural isomorphism ϕ0 : OS ' ε∗OX .
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Definition 1.1.3
For each n ≥ 0 the so defined triple (Ln,∇n, ϕn) is called n-th logarithm sheaf of X/S/Q.

Remark 1.1.4
We remark that although the connection ∇n and the splitting ϕn will frequently be suppressed in the
notation these data always remain fixed; they belong to the definition of the logarithm sheaves.

The transition maps

Let us denote for a moment with pr : L1 → OX the projection in (1.1.2).
For each n ≥ 0 there is a natural exact sequence of DX/Q-modules

(1.1.3) 0→ Symn+1
OX HX → Ln+1 → Ln → 0.

Here, the first (nontrivial) arrow is induced by the mapHX → L1 of (1.1.2), and the second is defined
to be the composition

Symn+1
OX L1 → Symn+1

OX (L1 ⊕OX)→ Symn
OXL1

of the morphism on symmetric powers related to id⊕pr : L1 → L1⊕OX with the map coming from
the decomposition of the symmetric power of a direct sum. Exactness of (1.1.3) is readily checked.

We briefly record how the previous transition maps of the logarithm sheaves express after pullback
along the zero section:

Lemma 1.1.5
Let n ≥ 0. If we pull back the transition map Ln+1 → Ln of (1.1.3) via ε and use the splittings ϕn+1

and ϕn then the induced DS/Q-linear map

n+1∏
k=0

Symk
OSH →

n∏
k=0

Symk
OSH

is given on sections explicitly by

(s0, s1, ..., sn+1) 7→ ((n+ 1) · s0, n · s1, ..., sn), where sk ∈ Symk
OSH, k = 0, ..., n+ 1.

Proof. The proof is a straightforward calculation with the definitions.

The unipotent filtration

For the computation of their de Rham cohomology and the formulation of their universal property it
is crucial to consider the logarithm sheaves as unipotent objects. We will expose this in more detail
later (cf. 1.3) and for now content ourselves with the following basic observation:

Namely, the exact sequence
0→ HX → L1 → OX → 0

of (1.1.2) implies that for each n ≥ 0 we have a natural filtration

(1.1.4) Ln = A0Ln ⊇ A1Ln ⊇ ... ⊇ AnLn ⊇ An+1Ln = 0
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of Ln by subvector bundles stable under∇n and with quotients given by

(1.1.5) AiLn/Ai+1Ln ' Symi
OXHX ' π

∗Symi
OSH, i = 0, ..., n.

For this one sets

(1.1.6) AiLn := im(Symi
OXHX ⊗OX Symn−i

OX L1
mult−−−→ Symn

OXL1),

which defines the filtration in (1.1.4). The (horizontal) isomorphisms

(1.1.7) Symi
OXHX

∼−→ AiLn/Ai+1Ln

are first defined locally by choosing a local section s of L1 mapping to 1 in (1.1.2) and then setting

si 7→ si · s · ... · s︸ ︷︷ ︸
(n−i)−times

mod Ai+1Ln , for local sections si of Symi
OXHX .

One can check that this is independent of the chosen splitting of (1.1.2) and that the so defined global
map (1.1.7) is indeed an isomorphism respecting the connections.

Remark 1.1.6
The filtration we have just constructed can equivalently be described as follows:
Set A0Ln := Ln and

AiLn := ker(Ln → Li−1), i = 1, ...n+ 1,

where the arrow is given by iterated composition of the transition maps. TheseAiLn are exactly those
defined in (1.1.6).
Furthermore, consider 1

(n−i)! -times the projectionLn → Li. In view of the exact sequence (1.1.3) this
map induces a surjective arrowAiLn → Symi

OXHX with kernelAi+1Ln. The obtained isomorphism

AiLn/Ai+1Ln
∼−→ Symi

OXHX

then is precisely the inverse of (1.1.7).

Compatibility with base change

The logarithm sheaves as defined above behave naturally under base change in the following sense:
Let S′ be another connected scheme which is smooth, separated and of finite type over Spec (Q) and
f : S′ → S a Q-morphism. In the induced cartesian diagram

X ′
π′ //

g

��

S′

f

��
X

π // S

(1.1.8)

we view X ′ as abelian S′-scheme. Using the canonical horizontal isomorphism

f∗H1
dR(X/S)

∼−→ H1
dR(X ′/S′)

we obtain by pullback of (1.1.2) resp. of ϕ1 via g resp. via f a pair as in Def. 1.1.1 (ii) for the abelian
scheme X ′/S′. This is straightforward to check. We thus see (cf. Prop. 1.4.7 for another viewpoint):

Lemma 1.1.7
The pullback of (Ln,∇n, ϕn) along the arrows of the cartesian diagram (1.1.8) induces the datum of

the n-th logarithm sheaf for X ′/S′/Q
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1.2 The de Rham cohomology of the logarithm sheaves

1.2.1 The computation of H i
dR(X/S,Ln)

We calculate the de Rham cohomology sheaves

Hi
dR(X/S,Ln)

for n ≥ 1 and 0 ≤ i ≤ 2g. They are equipped with the Gauß-Manin connection relative Spec (Q).

The formal frame of the subsequent arguments is essentially drawn from [Ki4], Prop. 1.1.3 (a), where
the higher direct images of the logarithm pro-sheaf in the `-adic setting are computed. We need to
adjust the formalism to our situation of de Rham realization and additionally evaluate the occurring
spectral sequence in more detail to get the de Rham cohomology of each Ln.

Recall (cf. [Kat2], Rem. (3.1) or the proof of [Har], Ch. III, Prop. (4.2)) that the functor between
abelian categories

Hi
dR(X/S,−) : Modqc(DX/Q)→ Modqc(DS/Q)

may be viewed as the i-th right derivation of the left exact functor

H0
dR(X/S,−) : Modqc(DX/Q)→ Modqc(DS/Q).

The filtrationA•Ln of (1.1.4) then yields (cf. [EGAIII], Ch. 0, 13.6) a spectral sequence in Modqc(DS/Q)

Ep,q1 = Hp+q
dR (X/S, grpA•Ln)⇒ Ep+q = Hp+q

dR (X/S,Ln),

where with (1.1.5) we see thatEp,q1 ' Hp+q
dR (X/S)⊗OS Symp

OSH for 0 ≤ p ≤ n and zero otherwise.

The differential dpq1 : Ep,q1 → Ep+1,q
1 is given by the connecting morphism induced by applying

Hp+q
dR (X/S,−) to the exact sequence

0→ Symp+1
OX HX → ApLn/Ap+2Ln → Symp

OXHX → 0.

This morphism in turn is equal to the composition

Hp+q
dR (X/S)⊗OS Symp

OSH → Hp+q+1
dR (X/S)⊗OS H⊗OS Symp

OSH

→ Hp+q+1
dR (X/S)⊗OS Symp+1

OS H
(1.2.1)

in which the first arrow comes from the canonical map OS → H∨ ⊗OS H together with cup product
and the second is given by multiplication: one deduces this straightforwardly with the same argument
as in [Ki4], proof of Prop. 1.1.3 (a), observing the explicit construction of the filtration (1.1.4)-(1.1.7)

and the fact that (by definition) Log1 goes to the canonical map under the surjection of (1.1.1).

Using the canonical (horizontal) identifications2

Hi
dR(X/S) '

2g−i∧
H

2For this one composes the isomorphism

Hi
dR(X/S) '

(
2g−i∧

H1
dR(X/S)

)∨
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the differential dp,q1 writes as a map

dp,q1 :

2g−p−q∧
H⊗OS Symp

OSH →
2g−p−q−1∧

H⊗OS Symp+1
OS H,

and the q-th line of the first sheet of the spectral sequence thus becomes a complex of the form

0→
2g−q∧
H →

2g−q−1∧
H⊗OS Sym1

OSH → ...→
2g−q−n∧

H⊗OS Symn
OSH → 0.

With the explicit knowledge of the maps in (1.2.1) it is routinely verified that the preceding differen-
tials are precisely the Koszul differentials in the Koszul complex

0→
2g−q∧
H →

2g−q−1∧
H⊗OS Sym1

OSH → ...→ Sym2g−q
OS H → 0

which is exact for all q < 2g.3

This admits a detailed evaluation of the second sheet of the spectral sequence. The result is:

En,−n2 ' Symn
OSH

En,q2 ' Hn+q
dR (X/S)⊗OSSymn

OS
H

im(Hn+q−1
dR (X/S)⊗OSSymn−1

OS
H→Hn+q

dR (X/S)⊗OSSymn
OS
H)

∀q ∈]− n; 2g − n[

E0,2g
2 ' OS

and zero for all other cases; the map appearing in the En,q2 -term is given as in (1.2.1).
Of course, all the isomorphisms take place in the category Modqc(DS/Q).
We obtain that the spectral sequence degenerates at r = 2: note that there are only two nontriv-
ial columns, namely p = 0 and p = n, and that for p = 0 we only have a non-zero entry for
q = 2g; thus the only possible non-zero differential for r ≥ 2 could appear if r = n, namely
d0,2g
n : E0,2g

n → En,2g−n+1
n ; but the last term is zero.

From this one deduces for each n ≥ 1 the following

Theorem 1.2.1
(i) We have the following isomorphisms in Modqc(DS/Q):

• Symn
OSH ' H

0
dR(X/S,Ln),

induced by the inclusion Symn
OXHX ↪→ Ln given as in (1.1.3).

• HidR(X/S)⊗OSSymn
OS
H

im(Hi−1
dR (X/S)⊗OSSymn−1

OS
H→HidR(X/S)⊗OSSymn

OS
H)
' Hi

dR(X/S,Ln), where i 6= 0, 2g,

from the beginning of this chapter with the usual natural identification(
2g−i∧

H1
dR(X/S)

)∨
'

2g−i∧
H,

locally defined as in [La], Ch. XIX, §1, Prop. 1.5.
3We refer to [La], Ch. XXI, §4, Thm. 4.13 and Cor. 4.14, for the explicit formula of the Koszul differential and the

acyclicity of the Koszul complex in the case of free modules of finite rank over a ring; this globalizes to our situation of a vector
bundle. To get the Koszul exact sequence of above one sets r = 2g and n = 2g − q in ibid., Cor. 4.14.
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induced by the inclusion Symn
OXHX ↪→ Ln; the lower map is defined as in (1.2.1).

• H2g
dR(X/S,Ln) ' OS ,

induced by the projection Ln → Ln−1 → ...→ OX and the trace isomorphism for H2g
dR(X/S).

(ii) For all i < 2g the transition map Ln → Ln−1 induces the zero morphism

Hi
dR(X/S,Ln)

0−→ Hi
dR(X/S,Ln−1),

and for i = 2g it induces an isomorphism

H2g
dR(X/S,Ln)

∼−→ H2g
dR(X/S,Ln−1)

which becomes the identity when taking into account the identifications with OS in (i).

Remark 1.2.2
All the sheaves Hi

dR(X/S,Ln) are vector bundles on S: as the Gauß-Manin connection relative
Spec (Q) operates on them it suffices to check their coherence (cf. [Bert-Og], §2, Note 2.17). This in
turn follows from the spectral sequence (0.2.2) and the properness of X/S (cf. 0.2.2).

1.2.2 The computation of H i
dR(U/S,Ln)

We set U := X − ε(S) and write j : U → X for the associated open immersion. The structure
morphism of U as an S-scheme will be denoted by πU .

S

id ��

ε // X

π

��

U

πU~~

joo

S

For an object E ∈ Modqc(DX/Q) we write E|U ∈ Modqc(DU/S) for its restriction toU andHi
dR(U/S, E) ∈

Modqc(DS/Q) for the i-th de Rham cohomology sheaf of E|U , equipped with the Gauß-Manin con-
nection relative Spec (Q).

We now want to calculate
Hi

dR(U/S,Ln)

for n ≥ 0 and 0 ≤ i ≤ 2g.

For each n ≥ 0 we have the canonical distinguished triangle in Db
qc(DX/Q) (cf. (0.2.5))

ε+ε
!Ln → Ln → j+Ln|U .

Applying π+ and observing ε!Ln ' ε∗Ln[−g] (cf. 0.2.3) gives the distinguished triangle inDb
qc(DS/Q)

ε∗Ln[−g]→ π+Ln → (πU )+Ln|U .
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The k-th cohomology sheaf of π+Ln resp. (πU )+Ln|U is canonically isomorphic toHk+g
dR (X/S,Ln)

resp. Hk+g
dR (U/S,Ln) in Modqc(DS/Q) (the proof is as in [Dim-Ma-Sa-Sai], Prop. 1.4).

The long exact cohomology sequence for the preceding distinguished triangle hence shows

Lemma 1.2.3
Let n ≥ 0. Then:

(i) For i 6= 2g − 1, 2g the canonical map Hi
dR(X/S,Ln)→ Hi

dR(U/S,Ln) is an isomorphism.

(ii) One has an exact sequence of DS/Q-modules

0→ H2g−1
dR (X/S,Ln)

can−−→ H2g−1
dR (U/S,Ln)→ ε∗Ln

σn−−→ H2g
dR(X/S,Ln)

can−−→ H2g
dR(U/S,Ln)→ 0

Definition 1.2.4
For each n ≥ 0 we write

Resn : H2g−1
dR (U/S,Ln)→

n∏
k=0

Symk
OSH

for the DS/Q-linear arrow induced by the exact sequence of Lemma 1.2.3 (ii) and by the splitting

ϕn : ε∗Ln '
n∏
k=0

Symk
OSH.

The claim of the following lemma implies that for n ≥ 1 the map Resn factors in the form

Resn : H2g−1
dR (U/S,Ln)→

n∏
k=1

Symk
OSH ⊆

n∏
k=0

Symk
OSH,

and we write Resn also for the first of these arrows.

Lemma 1.2.5
Let n ≥ 0. Then, under the identifications ε∗Ln '

∏n
k=0 Symk

OSH and H2g
dR(X/S,Ln) ' OS given

by the splitting resp. by Thm. 1.2.1 (i), the map σn appearing in Lemma 1.2.3 (ii) is n!-times the

natural projection.

As the proof is a bit long and technical we postpone it to the next subsection.

With this result at hand we deduce from Lemma 1.2.3 (ii) that H2g
dR(U/S,Ln) = 0 for all n ≥ 0,

that the map H2g−1
dR (X/S)

can−−→ H2g−1
dR (U/S) is an isomorphism and that for n ≥ 1 there is an exact

sequence of OS-vector bundles with integrable Q-connection:

(1.2.2) 0→ H2g−1
dR (X/S,Ln)

can−−→ H2g−1
dR (U/S,Ln)

Resn−−−→
n∏
k=1

Symk
OSH → 0.

The long exact sequence for the derived functors of H0
dR(U/S,−) applied to the restriction

0→ Symn+1
OU HU → Ln+1|U → Ln|U → 0

of (1.1.3) to U and the vanishing of H2g
dR(U/S,Symn+1

OU HU ) ' H2g
dR(U/S)⊗OS Symn+1

OS H shows:
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Lemma 1.2.6
For each n ≥ 0 the transition map H2g−1

dR (U/S,Ln+1)→ H2g−1
dR (U/S,Ln) is surjective.

As the transition map H2g−1
dR (X/S,Ln+1) → H2g−1

dR (X/S,Ln) is zero (cf. Thm. 1.2.1 (ii)) the
surjection of Lemma 1.2.6 vanishes on the subobject H2g−1

dR (X/S,Ln+1), from which by (1.2.2)

(used for n+ 1 instead of n) we get an induced horizontal surjection of OS-vector bundles:

(1.2.3)
n+1∏
k=1

Symk
OSH → H2g−1

dR (U/S,Ln).

Lemma 1.2.7
For each n ≥ 0 the surjection of (1.2.3) is an isomorphism.

Proof. As a surjection between two OS-vector bundles of the same rank is an isomorphism we only
need to show that both involved bundles have the sameOS-rank. In view of the exact sequence (1.2.2)

it is enough to show that H2g−1
dR (X/S,Ln) has the same rank as Symn+1

OS H. But these two sheaves
are indeed isomorphic. We give two arguments for this fact:
First, look at the final terms of the de Rham cohomology sequence for the exact sequence

0→ Symn+1
OX HX → Ln+1 → Ln → 0.

of (1.1.3). Then Thm. 1.1.1 (ii) implies that the connecting arrow

H2g−1
dR (X/S,Ln)→ H2g

dR(X/S)⊗OS Symn+1
OS H ' Symn+1

OS H

is an isomorphism, which shows the claim.
Alternatively, it follows from Thm. 1.1.1 (i) that H2g−1

dR (X/S,Ln) identifies for n ≥ 1 with

H⊗OS Symn
OSH

im(
∧2H⊗OS Symn−1

OS H → H⊗OS Symn
OSH)

,

where the map in the denominator is the Koszul differential and hence fits into an exact sequence

2∧
H⊗OS Symn−1

OS H → H⊗OS Symn
OSH → Symn+1

OS H → 0.

This shows the claim for n ≥ 1, and for n = 0 we know it from the beginning of this chapter.

The proof of Lemma 1.2.7 has in particular shown the following supplement to Thm. 1.2.1:

Corollary 1.2.8
For each n ≥ 1 we have a horizontal isomorphism

Symn+1
OS H

∼−→ H2g−1
dR (X/S,Ln),

determined by the commutative diagram

H⊗OS Symn
OSH

mult

&&

// H2g−1
dR (X/S,Ln)

Symn+1
OS H

∼
88
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where the upper arrow is induced by the map Symn
OXHX → Ln in (1.1.3) and the canonical identi-

fication H2g−1
dR (X/S) ' H.

Observing Lemma 1.1.5 in part (iv) we deduce in sum for every n ≥ 0 the following

Theorem 1.2.9
(i) For each i 6= 2g− 1, 2g the canonical map Hi

dR(X/S,Ln)→ Hi
dR(U/S,Ln) is an isomorphism.

(ii) H2g
dR(U/S,Ln) = 0.

In particular, the transition map in de Rham cohomology

Hi
dR(U/S,Ln+1)→ Hi

dR(U/S,Ln)

is zero for all i 6= 2g − 1.

(iii) The canonical map H2g−1
dR (X/S)→ H2g−1

dR (U/S) is an isomorphism.

(iv) We have an isomorphism

n+1∏
k=1

Symk
OSH

∼−→ H2g−1
dR (U/S,Ln)

determined by the commutative diagram

H2g−1
dR (U/S,Ln+1)

Resn+1

((

// H2g−1
dR (U/S,Ln)

∏n+1
k=1 Symk

OSH

∼
77

Under these identifications the transition map in de Rham cohomology for n ≥ 1

H2g−1
dR (U/S,Ln)→ H2g−1

dR (U/S,Ln−1)

resp. the map Resn induces an arrow

n+1∏
k=1

Symk
OSH →

n∏
k=1

Symk
OSH

which is given explicitly as

(h1, h2, ..., hn+1) 7→ (n · h1, (n− 1) · h2, ..., hn) with hk ∈ Symk
OSH, k = 1, ..., n+ 1.

Remark 1.2.10
The preceding theorem and Rem. 1.2.2 imply that the sheaves Hi

dR(U/S,Ln) are all vector bundles.
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1.2.3 Proof of Lemma 1.2.5

We recall what we have to show:
Let n ≥ 0 and consider the arrow in Db

qc(DX/Q)

ε+ε
∗Ln[−g]→ Ln

appearing in the localization triangle for Ln. By application of π+ we get the arrow in Db
qc(DS/Q)

(1.2.4) ε∗Ln[−g]→ π+Ln,

and we need to verify that under the identifications

ε∗Ln '
n∏
k=0

Symk
OSH, Hgπ+Ln ' H2g

dR(X/S,Ln)
∼−→ OS

we obtain n!-times the natural projection when taking g-th cohomology in (1.2.4).
The isomorphism H2g

dR(X/S,Ln)
∼−→ OS is induced by the composition Ln → Ln−1 → ... → OX

together with the trace mapH2g
dR(X/S)

∼−→ OS , and for the identificationHg(π+Ln) ' H2g
dR(X/S,Ln)

cf. [Dim-Ma-Sa-Sai], Prop. 1.4. To show the claim we don’t need to assume the horizontality of the
trace map; in fact, this will come out as a side result below.

Proof:
We first explain that it suffices to verify the lemma for n = 0:
The functoriality of the localization triangle induces a commutative diagram in Db

qc(DX/Q)

ε+ε
∗Ln[−g] //

��

Ln

��
ε+OS [−g] // OX

from which we obviously get commutative diagrams in Db
qc(DS/Q) resp. Modqc(DS/Q)

ε∗Ln //

��

π+Ln[g]

��

∏n
k=0 Symk

OSH //

n!·can

��

H2g
dR(X/S,Ln)

∼
��

OS // π+OX [g] OS // H2g
dR(X/S)

In the right diagram the right vertical arrow is precisely the morphism in de Rham cohomology in-
duced from Ln → Ln−1 → ... → OX (and is an isomorphism by Thm. 1.2.1 (i)). The left vertical
arrow is given by n!-times the canonical projection, as follows from Lemma 1.1.5.
Knowing the claim for n = 0 means that we may add a lower commutative diagram in Modqc(OS)∏n

k=0 Symk
OSH //

n!·pr

��

H2g
dR(X/S,Ln)

∼
��

OS //

id

��

H2g
dR(X/S)

tr

��
OS

id // OS

(1.2.5)
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such that also the frame diagram commutes. But this frame commutativity is the claim of the lemma,
and thus we are indeed reduced to the case n = 0.

It hence remains to show the commutativity of the lower diagram

OS
ψ //

id

��

H2g
dR(X/S)

tr

��
OS

id // OS

(1.2.6)

ofOS-linear maps in (1.2.5). As the occurring arrow ψ is (by construction)DS/Q-linear, the commu-
tativity of (1.2.6) then clearly also implies the horizontality of the trace isomorphism.

TheDS/Q-linear map ψ is given by applying the functor π+ : Db
qc(DX/Q)→ Db

qc(DS/Q) to the arrow
ε+OS [−g] → OX of the localization triangle for OX , shifting the obtained map OS [−g] → π+OX
by [g], taking 0-th cohomology and identifying H0(π+OX [g]) ' Hg(π+OX) ' H2g

dR(X/S).

If we replace Q by S in the procedure of the previous passage and observe the identification

Hg(π+OX) = HgRπ∗(D(S←X)/S ⊗LDX/S OX) = HgRπ∗(Ω
g
X/S ⊗

L
DX/S OX)

' HgRπ∗(((Ω
•
X/S ⊗OX DX/S)[g])⊗LDX/S OX) ' H2gRπ∗(Ω

•
X/S) ' H2g

dR(X/S),
(1.2.7)

then the obtainedOS-linear arrowOS → H2g
dR(X/S) is again the map ψ in (1.2.6), only that we have

forgotten the DS/Q-linear structures (one can check this).

We now define arrows

Adε : ε+OS → OX [g] in Db
qc(DX/S)

resp.

Adπ : π+OX [g]→ OS in Db
qc(OS)

as follows: Adε comes from shifting by [g] the map ε+ε!OX → OX appearing in the localization
triangle (relative S) for OX . Hence, if we apply π+ to Adε, take 0-th cohomology and identify
H0(π+OX [g]) ' Hg(π+OX) ' H2g

dR(X/S) as we just did, then we get the morphism ψ.
The map Adπ has the important property that if we take 0-th cohomology and use H0(π+OX [g]) '
H2g

dR(X/S) it becomes the trace isomorphism; namely, it is constructed as follows:
As in (1.2.7) we have canonically in Modqc(OS)

Hi(π+OX [g]) ' H2g+i
dR (X/S).

From the degeneration of the Hodge-de Rham spectral sequence at the first sheet we further have

H2g
dR(X/S) ' Rgπ∗ΩgX/S ,

and composition with the Grothendieck trace isomorphism (cf. [Con1], Ch. I, 1.1)

Rgπ∗Ω
g
X/S

∼−→ OS
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yields altogether a canonical OS-linear arrow

H0(π+OX [g])
∼−→ OS .

As π+OX [g] has no cohomology above 0 there is a canonical morphism π+OX [g]→ H0(π+OX [g])

inDb
qc(OS) which is the identity when taking 0-th cohomology. We defineAdπ to be the composition

Adπ : π+OX [g]→ H0(π+OX [g])
∼−→ OS in Db

qc(OS),

and by construction it has the announced property to be the trace map when taking 0-th cohomology
and using the identification H0(π+OX [g]) ' H2g

dR(X/S).

Now consider the following composition in Db
qc(OS)

(1.2.8) OS → π+OX [g]→ OS

in which the first arrow is π+ applied to Adε and the second is Adπ . If it is the identity then by taking
0-th cohomology and using the property of Adπ explained above the remaining claim follows.

In the case that S = Spec (k), with k a field of characteristic zero, the morphisms Adε and Adπ
coincide precisely with the adjunctions (of the same notation) constructed for morphisms between
quasi-projective algebraic varieties of characteristic zero in [Me], Thm. (7.1)4, and these adjunctions
are functorial in the morphism (cf. [Ho-Ta-Tan], 2.7.2, where the notation is Tr instead of Ad). This
functoriality and π ◦ ε = id then imply that (1.2.8) is indeed the identity.

For general S the integrality5 of S and a standard compatibility of the occurring arrows with base
change (for the case of the Grothendieck trace map cf. [Con1], Ch. I, 1.1) reduce the commutativity
of (1.2.6) without problems to the situation of S = Spec (k).

1.3 Unipotent vector bundles with integrable connection

1.3.1 The notion of unipotency

In 1.1 we saw that there exists a filtration

Ln = A0Ln ⊇ A1Ln ⊇ ... ⊇ AnLn ⊇ An+1Ln = 0

of Ln by subvector bundles stable under∇n and with quotients given by

AiLn/Ai+1Ln ' π∗Symi
OSH, i = 0, ..., n.

We now take this observation as a model to give a general definition of unipotency for vector bundles
with integrable connection, adapted to our fixed geometric setting

X
π //

!!

S

}}
Spec (Q)

4That these adjunctions coincide with our constructions follows from their alternative description given in [Me], p. 95,
combined with ibid., p. 69 and p. 72.

5Our general assumptions imply that S is a regular scheme and hence its local rings are integral domains. As it is moreover
connected and (locally) noetherian we can readily conclude its integrality (cf. also [Gö-We], Ch. 3, Ex. 3.15 and Ex. 3.16 (b)).
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We further record the behaviour of unipotent bundles under some basic operations.

Let us denote by VIC(X/Q) the category whose objects are the vector bundles on X with integrable
Q-connection and whose morphisms are the OX -module homomorphisms respecting the connec-
tions. The fact that a coherent OX -module with integrable Q-connection is already a vector bundle
(cf. [Bert-Og], §2, Note 2.17) readily implies that VIC(X/Q) is abelian.
Replacing X by S in what we just said defines the abelian category VIC(S/Q).
By pullback via X π−→ S we obtain an exact functor π∗ : VIC(S/Q)→ VIC(X/Q).

Definition 1.3.1
Let n ≥ 0.
(i) An object U of VIC(X/Q) is called unipotent of length n for X/S/Q if there exists a filtration

U = A0U ⊇ A1U ⊇ ... ⊇ AnU ⊇ An+1U = 0

by subvector bundles stable under the connection of U such that for all i = 0, ..., n there are objects
Yi of VIC(S/Q) and isomorphisms in VIC(X/Q):

AiU/Ai+1U ' π∗Yi.

(ii) We write Un(X/S/Q) for the full subcategory of VIC(X/Q) consisting of those U in VIC(X/Q)

which are unipotent of length n for X/S/Q.
(iii) We write U(X/S/Q) for the full subcategory of VIC(X/Q) consisting of those U in VIC(X/Q)

which are unipotent of some length for X/S/Q. In other words, U(X/S/Q) is the union of the
Un(X/S/Q) for the canonical embeddings

U0(X/S/Q) ↪→ U1(X/S/Q) ↪→ U2(X/S/Q) ↪→ ... ↪→ VIC(X/Q).

Note that the zero vector bundle onX with its unique Q-connection is an object of each Un(X/S/Q).
Note further that U0(X/S/Q) is just the essential image of the functor π∗ : VIC(S/Q)→ VIC(X/Q).

In particular, Ln with its integrable Q-connection ∇n becomes an object of Un(X/S/Q).

The following lemma gives some first easy properties of unipotent bundles with integrable connection;
for the dual and tensor product of modules with integrable connection cf. 0.2.1 (iv).

Lemma 1.3.2
(i) If

0→ U ′ → U → U ′′ → 0

is an exact sequence in VIC(X/Q) with U ′ in Um(X/S/Q) and U ′′ in Un(X/S/Q), then U is in

Um+n+1(X/S/Q).

(ii) If U is in Un(X/S/Q), then its dual U∨ is also in Un(X/S/Q).

(iii) If V is in Um(X/S/Q) and W is in Un(X/S/Q), then the tensor product V ⊗OX W is in

Um+n(X/S/Q).
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Proof. (i) is straightforward and (ii) follows easily from (i) by induction on the length of U .
For (iii) define for each k = 0, ...,m+ n+ 1:

Ak(V ⊗OX W) :=
∑
i+j=k

(AiV ⊗OX AjW) in V ⊗OX W,

i.e.

Ak(V ⊗OX W) = im
( ⊕
i+j=k

(AiV ⊗OX AjW)
can−−→ V ⊗OX W

)
,

viewed as submodule of V ⊗OX W .
We may endow these coherent subsheaves with the induced integrable Q-connection such that they
are vector bundles. There clearly is a chain of inclusions

V⊗OXW = A0(V⊗OXW) ⊇ A1(V⊗OXW) ⊇ ... ⊇ An+m(V⊗OXW) ⊇ Am+n+1(V⊗OXW) = 0,

and it is not hard to check that the quotients are given for each k = 0, ...,m+ n by

Ak(V ⊗OX W)/Ak+1(V ⊗OX W) '
⊕
i+j=k

(
(AiV/Ai+1V)⊗OX (AjW/Aj+1W)

)
and hence obviously of the desired form.

1.3.2 The universal property of the logarithm sheaves

The main goal is to show that the logarithm sheaves (Ln,∇n) ∈ Un(X/S/Q) together with a dis-
tinguished section of their zero fiber are characterized by a universal property. This is well-known in
other realizations (cf. [Be-Le], Prop. 1.2.6, or [Hu-Ki], Lemma A.2.3), from which we may extract
the formal structure of the arguments; adjusting them properly for our case of de Rham realization and
supplying all necessary details will be the task in what follows. The essential ingredient for the proof
then consists in our knowledge of the de Rham cohomology of the logarithm sheaves (cf. 1.2.1).

An auxiliary lemma

To show the main theorem we will need the following duality result which is of independent interest.

Lemma 1.3.3
Let V be in Un(X/S/Q) and Z in VIC(S/Q). Then for each 0 ≤ i ≤ 2g we have a canonical

isomorphism in VIC(S/Q)

H2g−i
dR (X/S,HomOX (V, π∗Z)) ' HomOS (Hi

dR(X/S,V),Z),

functorial in V and in Z .

Remark 1.3.4
We explain how to consider both sides in the preceding lemma as objects of VIC(S/Q):
On the left side observe that we endow the OX -vector bundle HomOX (V, π∗Z) with the natural in-
tegrable Q-connection (cf. 0.2.1 (iv)) which becomes the tensor product connection when identifying
the bundle with V∨ ⊗OX π∗Z . The de Rham cohomology on the left side of the lemma is then
equipped with the Gauß-Manin connection relative Spec (Q) and indeed is a vector bundle on S (by
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the same argument as in Rem. 1.2.2).
On the right side Hi

dR(X/S,V) is a vector bundle on S (cf. again Rem. 1.2.2) and equipped with the
Gauß-Manin connection relative Spec (Q). The internal Hom of the right side then clearly is a vector
bundle on S and carries its usual integrable Q-connection.

We now prove Lemma 1.3.3.

Proof. The left side canonically identifies with

H2g−i
dR (X/S,HomOX (V, π∗Z)) ' H2g−i

dR (X/S,V∨ ⊗OX π∗Z) ' H2g−i
dR (X/S,V∨)⊗OS Z

in VIC(S/Q), whereas for the right side we have

HomOS (Hi
dR(X/S,V),Z) ' Hi

dR(X/S,V)∨ ⊗OS Z

in VIC(S/Q), and hence it suffices to show that for each i there is a functorial horizontal isomorphism

Hi
dR(X/S,V) ' H2g−i

dR (X/S,V∨)∨.

For this consider the composition

Hi
dR(X/S,V)⊗OS H

2g−i
dR (X/S,V∨)→ H2g

dR(X/S,V ⊗OX V∨)→ H2g
dR(X/S)

∼−→ OS ,

where the first arrow is given by cup product, the second is induced by the canonical map V⊗OXV∨ →
OX and the last is the trace isomorphism. All three arrows are horizontal: for the second it is clear
and for the two other maps cf. footnote 1 (the argument used there for the horizontality of the cup
product carries over to the present situation of de Rham cohomology with coefficients).
We thus obtain an induced (and in fact functorial) map in VIC(S/Q):

(1.3.1) Hi
dR(X/S,V)→ H2g−i

dR (X/S,V∨)∨,

and by what we already said it only remains to show that (1.3.1) is an isomorphism.
Indeed, this isomorphism should be valid for arbitrary V in VIC(X/Q), but we only need it for unipo-
tent V where the arguments are easier: we proceed by induction over the length n of V .
For n = 0 one writes V ' π∗Y for some Y in VIC(S/Q) and identifies the left side of (1.3.1) with

Hi
dR(X/S, π∗Y) ' Hi

dR(X/S)⊗OS Y,

the right side with

H2g−i
dR (X/S, π∗Y∨)∨ ' H2g−i

dR (X/S)∨ ⊗OS Y,

and uses the canonical isomorphism Hi
dR(X/S) ' H2g−i

dR (X/S)∨ (given precisely by cup-product
and the trace isomorphism) in order to deduce the claim for n = 0.
If n ≥ 1 we perform the induction step by considering an exact sequence in VIC(X/Q)

(1.3.2) 0→ A1V → V → π∗X → 0

in which A1V is unipotent of length n − 1 and π∗X is unipotent of length 0 (where X is of course a
suitable object of VIC(S/Q)).
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There is a diagram of exact sequences of finite length in VIC(S/Q):

0 //

∼

��

H0
dR(X/S,A1V)

∼

��

// H0
dR(X/S,V)

��

// H0
dR(X/S, π∗X ) //

∼

��

H1
dR(X/S,A1V)

∼

��

// ...

0 // H2g
dR(X/S, (A1V)∨)∨ // H2g

dR(X/S,V∨)∨ // H2g
dR(X/S, π∗X∨)∨ // H2g−1

dR (X/S, (A1V)∨)∨ // ...

The upper row is given by the long exact sequence of de Rham cohomology (cf. [Kat2], Rem. (3.1))
for (1.3.2). The lower row comes from dualizing (1.3.2), applying to this dual sequence the long
exact sequence of de Rham cohomology and finally dualizing the obtained long exact sequence in
VIC(S/Q). The vertical arrows are the maps defined in (1.3.1) for the various bundles, where for the
indicated isomorphisms we have already taken into account the induction hypothesis.
The squares in which no connecting homomorphism is involved are commutative by the (easily seen)
functoriality of (1.3.1). The squares in which the upper row is a connecting morphism

Hj
dR(X/S, π∗X )→ Hj+1

dR (X/S,A1V)

commute up to a sign as one can indeed verify.6

This obviously yields the claim by pursuing the big diagram successively until its end.

The comments of the following remark will frequently (and often tacitly) be used in what follows.

Remark 1.3.5
(i) Let V andW be objects in VIC(X/Q).
We then have a canonical identification of OS-modules

(1.3.3) H0
dR(X/S,HomOX (V,W)) ' π∗HomDX/S (V,W)

which comes about by noting that

H0
dR(X/S,HomOX (V,W)) = π∗

(
HomOX (V,W)∇X/S

)
= π∗HomDX/S (V,W).

The superscript in the middle term means that we take the subsheaf of HomOX (V,W) consisting of
those sections which are horizontal for the connection restricted relative S (cf. [Kat2], Rem. (3.1)).
Observe that via the Gauß-Manin connection relative Spec (Q) on the left side of (1.3.3) we may and
will equip π∗HomDX/S (V,W) with the induced connection and thus view it as object of VIC(S/Q).

6This rests on a straightforwardly checked naturality property of the cup product: If

0→ F → G → H→ 0

is a short exact sequence in VIC(X/Q), then for each j the diagram

Hj
dR(X/S,H) //

��

Hj+1
dR (X/S,F)

��
HomOS (H2g−j

dR (X/S,H∨), H2g
dR(X/S)) // HomOS (H2g−j−1

dR (X/S,F∨), H2g
dR(X/S))

is commutative up to a sign. Here, the upper horizontal arrow is the connecting morphism on level j for our sequence, and the
lower horizontal map comes from applying HomOS (−, H2g

dR(X/S)) to the connecting morphism on level 2g − j − 1 of the
dualized sequence. The vertical arrows are defined analogously to (1.3.1), but without identifying H2g

dR(X/S) ' OS .
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(ii) In particular, in the situation (and with the result of) Lemma 1.3.3 we obtain isomorphisms in
VIC(S/Q):

(1.3.4) π∗HomDX/S (V, π∗Z) ' H0
dR(X/S,HomOX (V, π∗Z)) ' HomOS (H2g

dR(X/S,V),Z).

On sections this composition is given as follows: if V → π∗Z is a morphism which is horizontal for
the connections restricted relative S, one applies H2g

dR(X/S,−) to it and uses H2g
dR(X/S, π∗Z) '

H2g
dR(X/S)⊗OS Z ' Z , where the last isomorphism is given by the trace map.

The universal property

We now show how morphisms ofLn into another unipotent bundle U ∈ Un(X/S/Q) are parametrized
via the fiber ε∗U , which is a direct expression of the universal property as we will then explain.
The reader acquainted with other realizations (cf. [Be-Le], Prop. 1.2.6, or [Hu-Ki], Lemma A.2.3)
should - after a correct translation of the formalism - expect an isomorphism of the form

H0
dR(X/S,HomOX (Ln,U)) ' ε∗U

resp., by using the identification of (1.3.3), an isomorphism

π∗HomDX/S (Ln,U) ' ε∗U .

This is indeed the case, and the precise statement in the case of de Rham realization is as follows:

Theorem 1.3.6
Let n ≥ 0 and U be an object of Un(X/S/Q).

(i) For each k ≥ n we then have an isomorphism in VIC(S/Q)

(1.3.5) π∗HomDX/S (Lk,U)
∼−→ ε∗U ,

functorial in U and compatible with the projections Lk → Ll of the logarithm sheaves for k ≥ l ≥ n.

It is defined on sections by

f 7→ ε∗(f)
( 1

k!

)
,

where we use the identification

ϕk :

k∏
i=0

Symi
OSH ' ε

∗Lk.

(ii) A section f : Lk → U of the left side of (1.3.5) is DX/Q-linear (and not only DX/S-linear) if and

only if its image ε∗(f)( 1
k! ) under (1.3.5) is a horizontal section of ε∗U .

Proof. (i) The formal frame of the proof is as in [Hu-Ki], Lemma A.2.3.
We proceed by induction over the length n of U .
For n = 0 we have U ' π∗Z with an object Z of VIC(S/Q). By (1.3.4) we then have a chain of
isomorphisms in VIC(S/Q):

(1.3.6) π∗HomDX/S (Lk, π∗Z) ' H0
dR(X/S,HomOX (Lk, π∗Z)) ' HomOS (H2g

dR(X/S,Lk),Z).
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Because of the identification H2g
dR(X/S,Lk)

∼−→ OS , induced by the projection Lk → OX and the
trace map (cf. Thm. 1.2.1 (i)), we get from (1.3.6) an isomorphism in VIC(S/Q) of the desired form

(1.3.7) π∗HomDX/S (Lk, π∗Z) ' Z ' ε∗π∗Z.

We claim that for a section f : Lk → π∗Z of the left side it really acts as f 7→ ε∗(f)( 1
k! ). To see this

we evoke the following diagram of OS-vector bundles:

∏k
i=0 Symi

OSH
∼

ε∗Lk

ε∗(f)

��

σk // H2g
dR(X/S,Lk)

��

∼ // H2g
dR(X/S) ' OS

Z ' ε∗π∗Z // H2g
dR(X/S, π∗Z)

∼ // H2g
dR(X/S)⊗OS Z ' Z

Here, the vertical arrows of the square are the naturally induced ones and its horizontal arrows come
about as follows: if G is Lk or π∗Z , then one restricts its Q-connection relative S, applies the func-
tor π+ : Db

qc(DX/S) → Db
qc(OS) to the map ε+ε∗G[−g] → G in its localization triangle relative

S, takes g-th cohomology and canonically identifies Hg(π+G) ' H2g
dR(X/S,G) as in (1.2.7). The

square commutes by functoriality of the localization triangle. The other maps in the diagram are clear.
By Rem. 1.3.5 (ii) the image of f under (1.3.6) is the composition of the right vertical arrow of the
square with the two lower right arrows of the diagram. In order to get the desired image of f under
(1.3.7) we need to precompose this last composition with the inverse of the upper right isomorphism.
But the whole upper row of the diagram maps the section 1 of OS ⊆

∏k
i=0 Symi

OSH to k!,7 and the
whole lower row is the identity.8

With this the claim follows directly from the diagram, and we hence conclude the case n = 0.

If n ≥ 1 we find an exact sequence in VIC(X/Q)

0→ π∗Y → U → U/π∗Y → 0

with U/π∗Y ∈ Un−1(X/S/Q). We then obtain the exact sequence

(1.3.8) 0→ HomOX (Lk, π∗Y)→ HomOX (Lk,U)→ HomOX (Lk,U/π∗Y)→ 0

in VIC(X/Q) and the commutative diagram of exact sequences of OS-vector bundles

0 // π∗HomDX/S (Lk, π∗Y)

∼

��

// π∗HomDX/S (Lk,U)

��

// π∗HomDX/S (Lk,U/π∗Y)
δk //

∼

��

H1
dR(X/S,HomOX (Lk, π∗Y))

��
0 // Y // ε∗U // ε∗(U/π∗Y) // 0

where we define the first three vertical arrows on sections by the rule f 7→ ε∗(f)( 1
k! ) and where

we have already used the induction hypothesis. The upper row comes from applying the long exact
sequence of de Rham cohomology to (1.3.8) and usage of (1.3.3).
To show that the second vertical arrow is an isomorphism it suffices to see that δk is the zero map.

7The proof of this is as for Lemma 1.2.5 (cf. 1.2.3), only that one works with Q replaced by S from the beginning on.
8One can derive this pretty straightforwardly from the preceding assertion applied for k = 0.
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For this we use the commutative diagram

π∗HomDX/S (Lk−1,U/π∗Y))
δk−1 //

can

��

H1
dR(X/S,HomOX (Lk−1, π

∗Y))

can

��
π∗HomDX/S (Lk,U/π∗Y)

δk // H1
dR(X/S,HomOX (Lk, π∗Y))

and show that the right vertical arrow is zero. This yields the claim δk = 0 because the left vertical
arrow becomes the identity if we identify both terms with ε∗(U/π∗Y) via the induction hypothesis
(use Lemma 1.1.5). But according to Lemma 1.3.3 the right vertical map identifies with an arrow

HomOS (H2g−1
dR (X/S,Lk−1),Y)→ HomOS (H2g−1

dR (X/S,Lk),Y)

which is induced by the transition map Lk → Lk−1. Thm. 1.2.1 (ii) then implies that this arrow is
indeed the zero morphism.

We now know that the map of (1.3.5):

π∗HomDX/S (Lk,U)→ ε∗U , f 7→ ε∗(f)
( 1

k!

)
is an isomorphism of OS-vector bundles. The left side carries an integrable Q-connection via

H0
dR(X/S,HomOX (Lk,U)) ' π∗HomDX/S (Lk,U)

(cf. Rem. 1.3.5 (i)), and with the easy explicit knowledge of the Gauß-Manin connection in 0-th
cohomology (cf. [Kat2], Rem. (3.1)) one checks by hands that (1.3.5) is indeed horizontal: when
doing this the essential point is the horizontality of 1

k! for the pullback of the connection of Lk via ε.
That (1.3.5) is functorial in U is clear, and that it is compatible with the transition maps of the loga-
rithm sheaves follows from Lemma 1.1.5. This finishes the proof of (i).

(ii) Consider π∗HomDX/S (Lk,U) with its integrable Q-connection induced by the identification

H0
dR(X/S,HomOX (Ln,U)) ' π∗HomDX/S (Lk,U)

of (1.3.3). Let us compute its global horizontal S-sections: they are given by

H0
dR(S/Q, H0

dR(X/S,HomOX (Ln,U))) = H0
dR(X/Q,HomOX (Lk,U)) = HomDX/Q(Lk,U),

and the analogous calculation holds on open subsets of S, showing that the subsheaf of horizontal
sections of π∗HomDX/S (Lk,U) is given by π∗HomDX/Q(Lk,U). As the isomorphism (1.3.5) is
horizontal by (i) the claim of (ii) follows.

Definition 1.3.7
For each n ≥ 0 we denote by 1(n) the image of 1

n! under the (horizontal) splitting

ϕn :

n∏
k=0

Symk
OSH ' ε

∗Ln,

such that 1(n) is a global horizontal S-section of ε∗Ln.
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By Thm. 1.3.6 (i) we may view (Ln, 1(n)) as a pair consisting of an object Ln in Un(X/S/Q) and a
global horizontal S-section 1(n) of ε∗Ln with the property that for any U in Un(X/S/Q) the map

π∗HomDX/S (Ln,U)→ ε∗U , f 7→ ε∗(f)
(
1(n)

)
is a horizontal isomorphism. Using an analogous claim as in Thm. 1.3.6 (ii) it is routinely checked
that a pair consisting of an object in Un(X/S/Q) and a global horizontal S-section of the fiber in
ε with the preceding property is unique up to unique isomorphism; here, isomorphism means an
isomorphism in VIC(X/Q) which respects the distinguished sections after pullback via ε.
This is the manifestation of the universal property of the n-th logarithm sheaf.

Remark 1.3.8
According to Lemma 1.1.5 the transition map Ln+1 → Ln is then given by 1(n+1) 7→ 1(n).

1.3.3 An equivalence of categories

As a further fundamental result we show that passage to the zero fiber identifies Un(X/S/Q) with a
certain category Cn ofOS-vector bundles with integrable Q-connection carrying a (compatible) mod-
ule structure over the sheaf of rings

∏n
k=0 Symk

OSH. This is the analogue in the de Rham realization
of [Be-Le], 1.2.10 (v) (cf. also [Hu-Ki], Thm. A.2.5). Our goal for what follows is to give the proper
definition of the category Cn, to explicitly construct and give sense to the quasi-inverse of the men-
tioned fiber functor and to then prove the equivalence result in full detail. This is a somewhat laborious
and technical task to do, but the theorem will be rather useful in our further study of unipotent bundles
and the logarithm sheaves.

The category Cn

For all n ≥ 0 consider
∏n
k=0 Symk

OSH as a commutative sheaf of rings on S with multiplication
defined on components by

(1.3.9) sk ◦ sl :=
(n− k)!(n− l)!

(n− k − l)!
sk · sl

if sk is a section of Symk
OSH and sl is a section of Syml

OSH such that k+ l ≤ n resp. by sk ◦ sl = 0

in the case k + l > n. Note that on the right side of (1.3.9) we mean multiplication in symmetric
powers, hence sk ◦ sl is a section of Symk+l

OS H. We extend the multiplication to the whole product by
linearity. The multiplicative identity is then given by 1

n! .
We get an OS-algebra structure inducing the original OS-module structure on

∏n
k=0 Symk

OSH by

(1.3.10) OS →
n∏
k=0

Symk
OSH, s 7→ s

n!
.

Definition 1.3.9
For each n ≥ 0 we writeR(n) to denote the so defined sheaf of commutativeOS-algebras

∏n
k=0 Symk

OSH.

Using Lemma 1.1.5 one sees that the map

R(n+1) → R(n),

induced by Ln+1 → Ln via the splittings ϕn+1 and ϕn, then becomes a morphism of OS-algebras.
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Remark 1.3.10
As for any sheaf of quasi-coherent OS-algebras we may consider the spectrum of R(n) which gives
an affine morphism Spec (R(n)) → S. In our later geometric interpretation of the logarithm sheaves
we will identify this spectrum with the n-th infinitesimal thickening Y \n of the zero section of Y \,
where Y \ is the universal vectorial extension of the dual abelian scheme.

For each U in Un(X/S/Q) the OS-vector bundle ε∗U carries a structure ofR(n)-module by( n∏
k=0

Symk
OSH

)
⊗OS ε∗U ' π∗HomDX/S (Ln,Ln)⊗OS π∗HomDX/S (Ln,U)

can−−→ π∗HomDX/S (Ln,U) ' ε∗U ,
(1.3.11)

where the isomorphisms are due to Thm. 1.3.6 (i).
In other words: if r is a section ofR(n) and ξ is a section of ε∗U , then the multiplication is given by

r · ξ = ε∗(f)(r),

where f : Ln → U is the unique DX/S-linear arrow with

ε∗(f)
( 1

n!

)
= ξ.

For U = Ln the rule (1.3.11) yields precisely the previously defined multiplication ofR(n).

The so definedR(n)-module structure on ε∗U satisfies:
(i) It is compatible with the OS-module structure of ε∗U , i.e. the restriction of the multiplication via
the arrow OS → R(n) of (1.3.10) gives the original OS-multiplication on ε∗U .
(ii) The mapR(n) ⊗OS ε∗U → ε∗U is horizontal for the respective integrable Q-connections.

Definition 1.3.11
We let Cn be the category whose objects are the OS-vector bundles E with integrable Q-connection
which carry the structure of a sheaf ofR(n)-modules satisfying (i) and (ii) (with ε∗U replaced by E).
Morphisms in Cn are defined to be theR(n)-linear and horizontal sheaf homomorphisms.

With what we have already said it is clear that we obtain a covariant functor

(1.3.12) Fn : Un(X/S/Q)→ Cn, U 7→ ε∗U ,

and we set out to prove that Fn is an equivalence of categories. This is the manifestation in the de
Rham realization of [Be-Le], 1.2.10 (v) (cf. also [Hu-Ki], Thm. A.2.5).

Some additional structures

Before we prove the announced theorem we need to discuss some more formalities which will be
helpful for a clean definition of the quasi-inverse of Fn.

Let n ≥ 0. First, it is clear that

n∏
k=0

Symk
OXHX = π∗R(n) = π−1

( n∏
k=0

Symk
OSH

)
⊗π−1OS OX
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becomes a sheaf of rings on X with unit given by 1
n! and multiplication analogously as for R(n); it

becomes a sheaf of commutative OX -algebras, inducing the original OX -module structure, via

(1.3.13) OX → π∗R(n), t 7→ t

n!
.

Consider for each 0 ≤ k ≤ n the map

Symk
OXHX ⊗OX Ln → Lk ⊗OX Ln−k → Ln,

where the first arrow is induced by the inclusion HX ↪→ L1 in (1.1.2) together with projection and
the second by multiplication in symmetric powers.
If we let each component Symk

OXHX act on Ln by (n − k)!-times this composition, then we get on
Ln the structure of π∗R(n)-module9 giving the earlier defined multiplication on R(n) after pullback
via ε. In what follows we will consider Ln with the π∗R(n)-module structure just explained.

Furthermore, if E is aR(n)-module on S, the pullback π∗E is a π∗R(n)-module.
Hence, the tensor product π∗E ⊗π∗R(n) Ln makes sense and is itself a π∗R(n)-module.

Lemma 1.3.12
Assume that E is a R(n)-module on S and a OS-vector bundle in the induced OS-module structure

(i.e. via (1.3.10)). Then the π∗R(n)-module π∗E ⊗π∗R(n) Ln is coherent over OX in the induced

OX -module structure (i.e. via (1.3.13)).

Proof. We have a canonical epimorphism of OX -modules

(1.3.14) π∗E ⊗OX Ln → π∗E ⊗π∗R(n) Ln

induced by the map OX → π∗R(n).
If we know that the right side of (1.3.14) is OX -quasi-coherent, then the claim follows from the fact
that the left side is a vector bundle on X (use [Li], Ch. 5, Prop. 1.11).
Note that Ln is quasi-coherent over π∗R(n) and that E is quasi-coherent over R(n), both by [EGAI],
Ch. I, Prop. (2.2.4). Hence, π∗E is quasi-coherent over π∗R(n), and as the same holds for Ln
the π∗R(n)-quasi-coherence of π∗E ⊗π∗R(n) Ln follows (cf. the comment after the proof of ibid.).
Another application of ibid. yields theOX -quasi-coherence of π∗E ⊗π∗R(n) Ln, and by what we said
above thus also its coherence.

The quasi-inverse functor

We now construct a functor
Gn : Cn → Un(X/S/Q)

which will turn out to provide a quasi-inverse for the functor Fn of (1.3.12).

Assume that E is an object of the category Cn (cf. Def. 1.3.11). We first define an integrable Q-
connection on the coherent OX -module π∗E ⊗π∗R(n) Ln (cf. Lemma 1.3.12) as follows:
Let π∗∇E be the pullback of the connection∇E on E and∇n as usual the connection on Ln. Then

(1.3.15) π∗E ⊗π∗R(n) Ln → Ω1
X/Q ⊗OX (π∗E ⊗π∗R(n) Ln)

9To check the associativity requires some basic combinatorics.
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is determined on local sections f resp. l of π∗E resp. Ln by

f ⊗ l 7→ (π∗∇E)(f)⊗ l +∇n(l)⊗ f,

where the first resp. second summand is to read in

(Ω1
X/Q ⊗OX π

∗E)⊗π∗R(n) Ln

resp. in
(Ω1

X/Q ⊗OX Ln)⊗π∗R(n) π∗E ,

both canonically isomorphic to the right side of (1.3.15).
That (1.3.15) is well-defined is straightforwardly checked by using that the multiplication maps

π∗R(n) ⊗OX Ln → Ln

and
π∗R(n) ⊗OX π∗E → π∗E

are horizontal, the first by definition of the π∗R(n)-module structure of Ln and the second by defini-
tion of Cn. In this way we make π∗E ⊗π∗R(n) Ln an object of VIC(X/Q) (it is coherent by Lemma
1.3.12 and carries an integrable Q-connection, hence is indeed a vector bundle).

Next, we define a unipotent filtration of length n on π∗E ⊗π∗R(n) Ln:
For this recall from 1.1 the filtration making Ln into an object of Un(X/S/Q):

Ln = A0Ln ⊇ A1Ln ⊇ ... ⊇ AnLn ⊇ An+1Ln = 0

with
AiLn := im(Symi

OXHX ⊗OX Symn−i
OX L1

mult−−−→ Symn
OXL1)

and quotients given by

AiLn/Ai+1Ln ' Symi
OXHX , i = 0, ..., n.

In terms of the π∗R(n)-module structure of Ln we may write the filtration objects as

AiLn =
( n∏
k=i

Symk
OXHX

)
· Ln, i = 0, ..., n,

where
∏n
k=i Symk

OXHX is considered as a sheaf of ideals in π∗R(n). In this way the AiLn and with
them also their quotients Symi

OXHX become π∗R(n)-modules such that via (1.3.13) the original
OX - module structure is induced. For each i = 0, ..., n we then have the exact sequence of π∗R(n) =∏n
k=0 Symk

OXHX -modules

(1.3.16) 0→ Ai+1Ln → AiLn → Symi
OXHX → 0.

Note that the
∏n
k=0 Symk

OXHX -module structure of Symi
OXHX is given by (usual) multiplication

with n!-times the OX -component; this implies that the functor

(π∗R(n)-modules)→ (π∗R(n)-modules), M 7→M⊗π∗R(n) Symi
OXHX
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is exact: observe that when consideringM⊗π∗R(n) Symi
OXHX as OX -module via (1.3.13) it can

be identified withM⊗OX Symi
OXHX , whereM is an OX -module via (1.3.13).

With this we see that (1.3.16) remains exact after tensoring with π∗E :

(1.3.17) 0→ π∗E ⊗π∗R(n) Ai+1Ln → π∗E ⊗π∗R(n) AiLn → π∗E ⊗π∗R(n) Symi
OXHX → 0.

The π∗E ⊗π∗R(n) AiLn, viewed as OX -modules by (1.3.13), thus define a filtration of length n of
π∗E ⊗π∗R(n) Ln by OX -submodules with quotients given by

π∗E ⊗π∗R(n) Symi
OXHX ' π

∗E ⊗OX Symi
OXHX ' π

∗(E ⊗OS Symi
OSH);

note that π∗E in the previous chain is an OX -module via (1.3.13) and that this is exactly its original
OX -structure because of property (i) in the definition of the category Cn.
Exactly the same argument as in Lemma 1.3.12 shows that the π∗E ⊗π∗R(n) AiLn are OX -coherent.
Moreover, they are stable under the integrable Q-connection of π∗E ⊗π∗R(n) Ln, hence locally free.
Altogether, it follows that the defined filtration makes π∗E ⊗π∗R(n) Ln an object of Un(X/S/Q).
In this way we obtain a covariant functor

(1.3.18) Gn : Cn → Un(X/S/Q), E 7→ π∗E ⊗π∗R(n) Ln.

The equivalence result

With all these preparations we are finally in the position to make sense of and prove the statement of

Theorem 1.3.13
The functor

Fn : Un(X/S/Q)→ Cn, U 7→ ε∗U

is an equivalence of categories with quasi-inverse

Gn : Cn → Un(X/S/Q), E 7→ π∗E ⊗π∗R(n) Ln.

Proof. It is easy to check that Fn ◦Gn ' id, hence it remains to show Gn ◦ Fn ' id.
For this we explicate the argument sketched very briefly in [Hu-Ki], proof of Thm. A.2.5.
Let us start with an object U of Un(X/S/Q) and define an arrow in VIC(X/Q)

(1.3.19) π∗ε∗U ⊗π∗R(n) Ln → U

as follows:
Note that π∗ε∗U identifies by Thm. 1.3.6 (i) with π∗π∗HomDX/S (Ln,U). Let us define an arrow

(1.3.20) π∗π∗HomDX/S (Ln,U)⊗π∗R(n) Ln → U ,

or in other words

(π−1π∗HomDX/S (Ln,U)⊗π−1OS OX)⊗π∗R(n) Ln → U .

Noting that π is an open map we define the last morphism at the level of presheaves on open subsets
V ⊆ X by the rule

(HomDπ−1(π(V ))/π(V )
(Ln,U)⊗OS(π(V )) OX(V ))⊗[R(n)(π(V ))⊗OS(π(V ))OX(V )] Ln(V )→ U(V ),
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(f ⊗ t)⊗ l 7→ t · (f|V )(l),

which is easily seen to be well-defined and which induces a OX -linear map (1.3.20). It is a routine
calculation to check that (1.3.20) is horizontal for the Q-connections of both sides. This finishes the
definition of the arrow (1.3.19) in VIC(X/Q). What remains to show is that it is an isomorphism
(naturality is clear). As (1.3.19) induces (by construction) the identity on ε∗U after pullback via ε and
as its cokernel is a vector bundle (recall once more that VIC(X/Q) is abelian) we may conclude the
proof by the following general argument:

Lemma 1.3.14
Letψ : V → W be a morphism of vector bundles onX such that the induced map ε∗(ψ) : ε∗V → ε∗W
is an isomorphism and such that the cokernel of ψ is a vector bundle. Then ψ is an isomorphism.

Proof. At first, it is an easy application of the Nakayama lemma (together with [EGAI], Ch. I, Prop.
(3.4.6)) to see that ψ is an isomorphism if and only if for all s ∈ S the induced map

ψs : V|Xs →W|Xs

on the fiber Xs over s is an isomorphism. We may hence assume from the beginning that we are in
the situation of an abelian variety X over a field k. The hypothesis that ψ induces an isomorphism
after pullback to Spec (k) via ε immediately shows that the vector bundles V and W must have the
same rank (which is constant as X is connected). By a standard argument we thus only need to see
that ψ is an epimorphism. Now consider the pullback of coker(ψ) along ε to Spec (k) and use the
hypothesis that ε∗(ψ) is an isomorphism together with the Nakayama lemma to see that the stalk of
coker(ψ) vanishes in the zero point; as coker(ψ) is a vector bundle on X it must hence be zero.

1.3.4 Some categorical structure results

The preceding theorem can in particular be used to obtain non-trivial information about categories of
unipotent vector bundles with integrable connection.

Corollary 1.3.15
For each n ≥ 0 the category Un(X/S/Q) is abelian.

Proof. One checks without problems that the category Cn is abelian. Now use Thm. 1.3.13.

Corollary 1.3.16
The category U(X/S/Q) is abelian.

Proof. Note that U(X/S/Q) is a full subcategory of the abelian category VIC(X/Q) and that then
the only potentially nontrivial task is to see that for each morphism U → V of objects of U(X/S/Q)

its kernel and cokernel is again in U(X/S/Q). But of course there is a suitable n ≥ 0 such that U and
V both are in Un(X/S/Q). Now use Cor. 1.3.15 to conclude.

Using the vocabulary of tensor categories (for which we refer to [Sh], Ch. 1, 1.1) we may view
VIC(X/Q) as rigid abelian tensor category (with unit object (OX ,d) and the usual tensor product
resp. internal Hom-objects). With Cor. 1.3.16 and Lemma 1.3.2 we may summarize the knowledge
we have won about U(X/S/Q):
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Theorem 1.3.17
The category U(X/S/Q) is a rigid abelian tensor subcategory of VIC(X/Q) which is closed under

extensions.

Remark 1.3.18
Let us mention what we get in the special case that S is the spectrum of a field k.
Our general assumptions on S/Spec (Q) tantamount to requiring that k is a number field.
As Spec (k) → Spec (Q) then is étale we note that connections relative Spec (Q) are the same as
connections relative Spec (k). It is easy to see that U(X/S/Q) then becomes the category of vector
bundles onX with integrable k-connection which have a filtration of finite length by subbundles stable
under the connection and quotients isomorphic to (OX ,d); write U(X/k) for this category.
Denoting by V ecfd(k) the category of finite-dimensional k-vector spaces the functor

ε∗ : U(X/k)→ V ecfd(k)

then is exact and faithful: exactness is obvious and faithfulness easily follows from Thm. 1.3.13 by
choosing for two objects of U(X/k) a common length of unipotency.
Because of the standard fact k = Γ(X,OX) it is also clear that EndU(X/k)((OX ,d)) = k.
Together with Thm. 1.3.17 this shows that U(X/k) is a (neutral) Tannakian category over k with fiber
functor given by ε∗ (for the notion of a Tannakian category cf. [Sh], Ch. 1, Def. 1.1.7).

1.4 The invariance results for the logarithm sheaves

1.4.1 A technical preparation

The zero fiber ε∗U of a bundle U ∈ U1(X/S/Q) carries a module structure over OS ⊕ H whose
restriction to OS coincides with the usual OS-multiplication on ε∗U (cf. (1.3.11) and (1.3.12)).
In addition to the explanations subsequent to (1.3.11) the following auxiliary result gives another
description of how the multiplication coming from theH-component looks like.

Lemma 1.4.1
Let U be an object of VIC(X/Q) and Y0,Y1 objects of VIC(S/Q) sitting in an exact sequence of

DX/Q-modules

(1.4.1) 0→ π∗Y1 → U
p−→ π∗Y0 → 0.

Denote by ψ : Y0 → H∨ ⊗OS Y1 the DS/Q-linear map induced by the first edge morphism in the

long exact sequence of de Rham cohomology relative S for (1.4.1); define a DS/Q-linear map τ as

the composition

τ : H⊗OS Y0
id⊗ψ−−−→ H⊗OS H∨ ⊗OS Y1

eval⊗id−−−−−→ Y1.

On the other hand, by pullback of (1.4.1) via ε one obtains the exact DS/Q-linear sequence

(1.4.2) 0→ Y1 → ε∗U ε∗(p)−−−→ Y0 → 0.

Let ξ ∈ Γ(S, ε∗U) and consider the section (ε∗(p))(ξ) ∈ Γ(S,Y0); together with τ it defines the

OS-linear map

η : H → Y1, s 7→ τ(s⊗ (ε∗(p))(ξ)).
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Then, if f : L1 → U is the unique DX/S-linear map with ε∗(f)(1) = ξ (cf. Thm. 1.3.6 (i)), the

restriction of

ε∗(f) : OS ⊕H → ε∗U

to the direct summand H (which defines the multiplication of ξ by sections of H) is equal to η com-

posed with the inclusion of (1.4.2).

Proof. We define a DX/S-linear map

g : OX → π∗Y0, 1 7→ π∗((ε∗(p))(ξ))

and observe that we then have a commutative square

L1
//

f

��

OX
g

��
U

p // π∗Y0

in which the upper map is given by the projection in (1.1.2); the commutativity follows because
both arrows L1 → π∗Y0 are DX/S-linear with the property that after pullback via ε they send 1 to
(ε∗(p))(ξ), hence by Thm. 1.3.6 (i) must be equal.
The induced commutative square of OS-linear maps

ε∗L1
//

ε∗(f)

��

OS
ε∗(g)

��
ε∗U

ε∗(p) // Y0

then permits a unique commutative continuation

0 // H

h

��

// ε∗L1
//

ε∗(f)

��

OS
ε∗(g)

��

// 0

0 // Y1
// ε∗U

ε∗(p) // Y0
// 0

such that the upper resp. lower row is given by pullback along ε of (1.1.2) resp. by (1.4.2).
We next consider the diagram of DX/S-linear maps

0 // HX
π∗(h)

��

// L1
//

f

��

OX
g

��

// 0

0 // π∗Y1
// U

p // π∗Y0
// 0

with upper resp. lower row given by (1.1.2) resp. by (1.4.1). The claim is that it commutes.
With what we have already said above it only remains to prove the commutativity of the left square,
which tantamounts to showing that a certain DX/S-linear arrow HX → U (namely the difference of
the two maps in the square) which is zero after pullback via ε is already zero. Taking into account
that X is integral10 and that U is a vector bundle one easily reduces the question to the situation
S = Spec (k) with k a field of characteristic zero. In this case [Bert-Og], §2, Prop. 2.16, yields that

10Use that S is integral (cf. footnote 5) and [Li], Ch. 4, Prop. 3.8, to conclude that X is integral.
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the considered map HX → U is zero not only in the fiber, but already in the stalk of the zero point
of X . As X is integral and U is a vector bundle one can conclude from this that HX → U is indeed
zero. The desired commutativity is thus shown.
From the long exact sequence of de Rham cohomology (cf. [Kat2], (2.0)), applied to the preceding
commutative diagram, we obtain the commutative square of OS-linear morphisms

OS
can //

��

H∨ ⊗OS H

id⊗h
��

Y0
ψ // H∨ ⊗OS Y1

in which the left vertical arrow is given by 1 7→ (ε∗(p))(ξ) (by definition of g) and where the above
horizontal arrow is the standard map (as follows from the definition of L1).
Tensoring withH and composing the horizontal arrows with eval⊗ id we obtain the diagram

H id⊗can //

��

H⊗OS H∨ ⊗OS H

id⊗ id⊗h
��

eval⊗id// H

h

��
H⊗OS Y0

id⊗ψ // H⊗OS H∨ ⊗OS Y1
eval⊗id // Y1

in which the two small squares commute, implying commutativity of the whole. If we note that the
upper horizontal composition is the identity, the lower horizontal composition is τ and the left vertical
map is given by s 7→ s⊗ (ε∗(p))(ξ), we get h = η. This implies the claim of the lemma.

1.4.2 The invariance results

We now prove the fundamental fact that the logarithm sheaves of two abelian schemes become canon-
ically identified under pullback by isogenies, from which we derive in particular the invariance of Ln
under translation by torsion sections. This implies that the fiber of Ln in a torsion section is canoni-
cally isomorphic to its zero fiber, a property that will be important later when we define and compute
the specialization of the polylogarithm along torsion sections.
We finally append a brief observation concerning compatibility of the logarithm sheaves under base
change, supplementing the content of Lemma 1.1.7.

Invariance under isogenies

Let us asssume that u : X → X ′ is an isogeny11 of abelian schemes over S and use primed notation
π′, ε′,H′,L′n etc. for the usual objects when they refer to the abelian scheme X ′/S.

Pullback via u of the exact sequence associated with L′1

0→ (π′)∗H′ → L′1 → OX′ → 0

gives an exact sequence of DX/Q-modules

(1.4.3) 0→ π∗H′ → u∗L′1 → OX → 0,

11By an isogeny we mean a surjective and finite homomorphism over S; it is automatically flat and hence finite locally free.
We thus have the notion of its degree deg(u), defined as the rank of the OX′ -vector bundle u∗OX . A priori, deg(u) is a
locally constant function onX′ and hence constant in our setting becauseX′ is connected (X′ is integral by the same argument
as in footnote 10). Moreover, as we are in characteristic zero each isogeny is an étale morphism.
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exhibiting u∗L′1 as object of U1(X/S/Q). By Thm. 1.3.6 (i) we may determine a DX/S-linear map

(1.4.4) f1 : L1 → u∗L′1

by choosing a global S-section of ε∗u∗L′1 ' (ε′)∗L′1 ' OS ⊕H′, for which we take the section 1.
By part (ii) of the same theorem we know that f1 is even DX/Q-linear.

Theorem 1.4.2
The canonical DX/Q-linear map f1 : L1 → u∗L′1 defined in (1.4.4) is an isomorphism.

The induced morphism ε∗(f1) : OS ⊕H → OS ⊕H′ is given by

ε∗(f1) = id⊕(u∗dR)∨,

where

u∗dR : H1
dR(X ′/S)→ H1

dR(X/S)

denotes the canonical morphism on de Rham cohomology induced by u.

Proof. For the isomorphy of f1 it suffices - by the equivalence of categories in Thm. 1.3.13 - to show
that the map

ε∗(f1) : OS ⊕H → OS ⊕H′,

induced by f1 and the identification ε∗u∗L′1 ' (ε′)∗L′1 ' OS ⊕H′, is an isomorphism.
We will determine ε∗(f1) explicitly, see that it is given as stated in the second claim of the theorem
and then argue that this is indeed an isomorphism.
By definition ε∗(f1) sends the global S-section 1 of OS to itself.
What it does on the direct summandH can be determined accurately with the help of Lemma 1.4.1:
The map η in the claim of that lemma writes in the present situation as η : H → H′, s 7→ τ(s ⊗ 1),
where τ is given by the composition

τ : H⊗OS OS
id⊗ψ−−−→ H⊗OS H∨ ⊗OS H′

eval⊗id−−−−−→ H′.

But the mapψ : OS → H∨⊗OSH′ was defined to be the first edge morphism of de Rham cohomology
for the exact sequence (1.4.3). One can check that ψ is nothing else than the map associated with the
canonical arrow

u∗dR : H1
dR(X ′/S)→ H1

dR(X/S),

and hence η : H → H′ is obviously equal to (u∗dR)∨.
Altogether, by Lemma 1.4.1 we conclude that ε∗(f1) is given on the summandH by (u∗dR)∨ followed
by the canonical inclusion, hence

ε∗(f1) = id⊕(u∗dR)∨ : OS ⊕H → OS ⊕H′.

But the map (u∗dR)∨ - and hence ε∗(f1) - is an isomorphism:
For this let v : X ′ → X denote the isogeny characterized by u ◦ v = [deg(u)], v ◦ u = [deg(u)],
where [deg(u)] means the multiplication map(s) by the degree deg(u) of u. Then the compositions

H (u∗dR)∨−−−−→ H′ (v∗dR)∨−−−−→ H

H′ (v∗dR)∨−−−−→ H (u∗dR)∨−−−−→ H′

are isomorphisms because they are given by multiplication with deg(u) which is invertible on S; this
suffices to conclude.
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Taking for each n ≥ 0 the n-th symmetric power of the isomorphism f1 in Thm. 1.4.2 we obtain an
induced DX/Q-linear isomorphism

Ln
∼−→ u∗L′n.

Its pullback via ε gives the DS/Q-linear isomorphism

n∏
k=0

Symk
OSH ' ε

∗Ln
∼−→ ε∗u∗L′n ' (ε′)∗L′n '

n∏
k=0

Symk
OSH

′

which is the n-th symmetric power of the map id⊕(u∗dR)∨ : OS ⊕H
∼−→ OS ⊕H′ in the theorem.

As this symmetric power sends the section 1
n! of OS to itself we see in particular:

Corollary 1.4.3
The canonical DX/Q-linear map

fn : Ln → u∗L′n,

characterized by the condition 1(n) 7→ (1(n))′ in the induced map

ε∗(fn) : ε∗Ln → ε∗u∗L′n ' (ε′)∗L′n,

(cf. Thm. 1.3.6 12), is an isomorphism. Under the splittings of the logarithm sheaves the arrow

ε∗(fn) :

n∏
k=0

Symk
OSH →

n∏
k=0

Symk
OSH

′

is given on each factor as the map

Symk
OSH → Symk

OSH
′

induced on symmetric powers by (u∗dR)∨ : H → H′.

A special kind of isogenies are the N -multiplication endomorphisms of the abelian scheme X . We
note this important case separatedly:

Corollary 1.4.4
Let N 6= 0 be an integer and [N ] : X → X the N -multiplication isogeny of X .

Then for each n ≥ 0 the canonical DX/Q-linear map

Ln → [N ]∗Ln,

characterized by 1(n) 7→ 1(n) after pullback via ε:

ε∗Ln → ε∗[N ]∗Ln ' ε∗Ln,

is an isomorphism. The induced morphism on the product of symmetric powers is given on each factor

as the Nk-multiplication map13

Symk
OSH

·Nk−−→ Symk
OSH.

12Of course, u∗L′n is an object of Un(X/S/Q): simply take the pullback via u of the natural unipotent filtration for L′n.
13Note the standard fact (which one can also deduce from the later Prop. 2.5.1) that [N ]∗dR is multiplication by N .
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Invariance under translation by torsion sections

The preceding result implies another crucial invariance property of the logarithm sheaves:
For this let t : S → X be a torsion section, i.e. t ∈ X(S) and N · t = 0 for some integer N 6= 0.
Denote with

Tt : X → X

the translation by t: for each S-scheme Z it is defined in Z-rational points as the mapX(Z)→ X(Z)

given by id +tZ , where tZ means the element in X(Z) naturally induced by t ∈ X(S).
For any N as above we have [N ] ◦ Tt = [N ], and combining this with the natural identification

Ln ' [N ]∗Ln

of Cor. 1.4.4 we obtain the following isomorphism of DX/Q-modules

(1.4.5) T ∗t Ln ' T ∗t [N ]∗Ln ' [N ]∗Ln ' Ln.

The composite isomorphism expresses the fundamental fact that Ln is invariant under translation with
torsion sections; let us note that this invariance is indeed canonical:

Lemma 1.4.5
For each torsion section t ∈ X(S) the DX/Q-linear isomorphism

T ∗t Ln ' Ln

in (1.4.5) is canonical, i.e. independent of the choice of the integer N 6= 0 annihilating t.

In particular, after pullback via ε we have a canonical DS/Q-linear identification

t∗Ln ' ε∗Ln.

Proof. Let M be another non-zero integer with M · t = 0. Then MN has the same property, and
we show that the isomorphism T ∗t Ln ' Ln in (1.4.5) constructed by using N coincides with the one
constructed by using MN ; by exchanging N and M we thus conclude that the isomorphisms (1.4.5)

for N and for M coincide.
Consider the following diagram in which all arrows are DX/Q-linear isomorphisms:

T ∗t Ln

id

T ∗t [N ]∗Ln [N ]∗Ln Ln

idT ∗t [N ]∗[M ]∗Ln

can

[N ]∗[M ]∗Ln

can

T ∗t Ln T ∗t [MN ]∗Ln [MN ]∗Ln Ln

The outer lines are (1.4.5) for N resp. MN , the arrows denoted with can are the obvious standard
identifications and the two vertical arrows without label are the maps induced by the isomorphism
Ln ' [M ]∗Ln of Cor. 1.4.4 by applying T ∗t [N ]∗ resp. [N ]∗.
The right square commutes: by Thm. 1.3.13 this may be checked after pullback via ε, where it is
straightforwardly seen. The left square comes from the right by applying the functor T ∗t , hence also
commutes. The commutativity of the middle square easily boils down to the functoriality of the
standard isomorphism g∗f∗F ' (f ◦ g)∗F for morphisms of schemes f, g and sheaves of modules
F . We deduce that the whole diagram commutes, which is what we wanted to show.
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Remark 1.4.6
The isomorphism t∗Ln

∼−→ ε∗Ln recorded in the preceding lemma can also be obtained as follows:
Apply t∗ to Ln

∼−→ [N ]∗Ln to get t∗Ln
∼−→ ε∗Ln; then compose this isomorphism with the map

ε∗Ln
∼−→ ε∗Ln given by applying ε∗ to [N ]∗Ln

∼−→ Ln.

Invariance under base change

We consider the situation

X ′
π′ //

g

��

S′

f

��
X

π // S

of (1.1.8) and use the notations ε′,H′,L′n for the usual objects when they refer to the abelian scheme
X ′/S′. Further, let us recall that the canonical (horizontal) map

(1.4.6) f∗H1
dR(X/S)→ H1

dR(X ′/S′)

is an isomorphism.
It is clear that for each n ≥ 0 the bundle g∗Ln defines an object of Un(X ′/S′/Q), and by Thm. 1.3.6
we may hence determine a DX′/Q-linear map

(1.4.7) L′n → g∗Ln

by choosing a global horizontal S′-section of (ε′)∗g∗Ln ' f∗ε∗Ln, for which we take f∗(1(n)).
In complete analogy to the arguments that led to Cor. 1.4.3 one arrives at

Proposition 1.4.7
The canonical DX′/Q-linear map L′n → g∗Ln defined in (1.4.7) is an isomorphism.

Under the splittings of the logarithm sheaves the associated morphism in the zero fibers

n∏
k=0

Symk
OS′H

′ →
n∏
k=0

Symk
OS′ f

∗H

is given on each factor as the map

Symk
OS′H

′ → Symk
OS′ f

∗H

induced on symmetric powers by the dual of (1.4.6).

1.5 The elliptic polylogarithm and its D-variant

In the whole present section we assume that the relative dimension g of X/S equals 1, i.e. that X is
an elliptic curve over S. For this situation we write E instead of X .

As in 1.2.2 we denote by U the open complement of the zero section of E/S.
If T is an open subscheme of E or a closed subscheme of E which is smooth over Q the notationHT
means the OT -vector bundle with integrable Q-connection given by the pullback ofH to T .
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1.5.1 The elliptic polylogarithm

We construct the elliptic polylogarithm associated to our fixed geometric setting E/S/Q as an inverse
system of de Rham cohomology classes with components in H1

dR(U/Q,H∨U ⊗OU Ln), characterized
by a certain natural residue property. It is the de Rham realization of the general formalism provided
in 1.3.13 in the original source [Be-Le]; cf. also [Ba-Ko-Ts], Def. 1.39.

Recall that in (1.2.2) we obtained for each n ≥ 1 the exact sequence of DS/Q-modules

(1.5.1) 0→ H1
dR(E/S,Ln)

can−−→ H1
dR(U/S,Ln)

Resn−−−→
n∏
k=1

Symk
OSH → 0.

These sequences are compatible with respect to the morphisms induced by the transition maps of the
logarithm sheaves. Note that by Lemma 1.1.5 the associated transition morphism

n+1∏
k=1

Symk
OSH →

n∏
k=1

Symk
OSH

is given explicitly as

(h1, h2, ..., hn+1) 7→ (n · h1, (n− 1) · h2, ..., hn) with hk ∈ Symk
OSH, k = 1, ..., n+ 1.

It follows that we have a well-defined system

(1.5.2)
( 1

(n− 1)!
· idH

)
n≥1
∈ lim
n≥1

HomDS/Q

(
H,

n∏
k=1

Symk
OSH

)
.

The exact sequence (1.5.1) and Thm. 1.2.1 (ii) readily imply that the maps Resn induce an isomor-
phism of Q-vector spaces

(1.5.3) lim
n≥1

HomDS/Q(H, H1
dR(U/S,Ln))

∼−→ lim
n≥1

HomDS/Q

(
H,

n∏
k=1

Symk
OSH

)
.

We have Leray spectral sequences (cf. [Kat2], (3.3.0))

Ep,q2 = Hp
dR(S/Q,H∨ ⊗OS H

q
dR(U/S,Ln))⇒ Ep+q = Hp+q

dR (U/Q,H∨U ⊗OU Ln),

and one can conclude from Thm. 1.2.9 (ii) that the edge morphisms

H1
dR(U/Q,H∨U ⊗OU Ln)→ H0

dR(S/Q,H∨ ⊗OS H1
dR(U/S,Ln))

give an isomorphism

(1.5.4) lim
n≥1

H1
dR(U/Q,H∨U ⊗OU Ln)

∼−→ lim
n≥1

H0
dR(S/Q,H∨ ⊗OS H1

dR(U/S,Ln)).

Combined with the natural identification

H0
dR(S/Q,H∨ ⊗OS H1

dR(U/S,Ln)) ' HomDS/Q(H, H1
dR(U/S,Ln))

and with (1.5.3) we obtain from (1.5.4) the isomorphism

(1.5.5) lim
n≥1

H1
dR(U/Q,H∨U ⊗OU Ln)

∼−→ lim
n≥1

HomDS/Q

(
H,

n∏
k=1

Symk
OSH

)
.
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Definition 1.5.1
(i) The elliptic polylogarithm cohomology system for E/S/Q is the system

poldR = (polndR)n≥1 ∈ lim
n≥1

H1
dR(U/Q,H∨U ⊗OU Ln)

which under (1.5.5) is mapped to the system
(

1
(n−1)! · idH

)
n≥1

of (1.5.2).

(ii) The elliptic polylogarithm extension system for E/S/Q is the system

pol = (poln)n≥1 ∈ lim
n≥1

Ext1
DU/Q(HU ,Ln)

corresponding to poldR under the standard canonical identification

lim
n≥1

Ext1
DU/Q(HU ,Ln) ' lim

n≥1
H1

dR(U/Q,H∨U ⊗OU Ln).

We append a remark which one can use to show that our definition of the elliptic polylogarithm
coincides with the one given in [Ba-Ko-Ts], Def. 1.39, in the case that S is the spectrum of a field.

Remark 1.5.2
We may define a morphism in Mod(DS/Q)

(1.5.6) lim
n≥1

n∏
k=1

Symk
OSH →

∞∏
k=1

Symk
OSH

by requiring that the composition with the n-th projection (n ≥ 1) is the chain of canonical maps

lim
n≥1

n∏
k=1

Symk
OSH →

n∏
k=1

Symk
OSH → Symn

OSH.

By the already mentioned formula for the transition morphisms
∏n+1
k=1 Symk

OSH →
∏n
k=1 Symk

OSH
it becomes clear that (1.5.6) is an isomorphism. Then, under the composition

lim
n≥1

HomDS/Q

(
H,

n∏
k=1

Symk
OSH

)
' HomDS/Q

(
H, lim

n≥1

n∏
k=1

Symk
OSH

)
' HomDS/Q

(
H,

∞∏
k=1

Symk
OSH

)
,

the system
(

1
(n−1)! · idH

)
n≥1

of (1.5.2) maps to idH ∈ HomDS/Q(H,
∏∞
k=1 Symk

OSH).

1.5.2 The D-variant of the elliptic polylogarithm

The elliptic polylogarithm (polndR)n≥1 was defined as a certain system of de Rham cohomology
classes on U = E − ε(S) with coefficients inH∨U ⊗OU Ln.
Our main interest in the future, however, will focus on a variant of this object which we introduce
now. For its construction we need to remove some more points of the curve, namely the D-torsion
subschemeE[D] for a fixed integerD > 1, and then apply a formally analogous procedure as in 1.5.1.
The outcome is an inverse system of de Rham cohomology classes on E − E[D] with coefficients
in Ln which again is determined by a prescribed residue along E[D]. In the formalism of [Be-Le]
it would be obtained essentially by pulling back the extension considered in ibid., 1.3.12, along the



82 THE FORMALISM OF THE LOGARITHM SHEAVES AND THE ELLIPTIC...

morphism induced by the section D2 · 1{ε} − 1E[D] to be defined below.
This "D-variant" of the elliptic polylogarithm turns out to provide a much better access for concrete
description and computations than the original object. We remark that in explicit terms it was intro-
duced and studied (for the `-adic realization) in the recent work [Ki3], where it serves as a crucial tool
to derive the relation between the elliptic Soulé elements and `-adic Eisenstein classes (cf. ibid., 4).

Some additional notation

We fix an integer D > 1 and write [D] : E → E for the D-multiplication endomorphism of E.
By the cartesian diagram

E[D]
πE[D] //

iD

��

S

ε

��
E

[D] // E

we define the closed subgroup scheme E[D] of E whose T -rational points (for an S-scheme T ) are
given by ker(E(T )

·D−→ E(T )). The corresponding well-known properties of the morphism [D] imply
that E[D] is a finite locally free S-group scheme of rank D2, and as we are in characteristic zero it is
moreover étale over S (cf. also [Kat-Maz], Thm. 2.3.1).
We let jD : UD → E be the open immersion of UD := E − E[D] and set πUD := π ◦ jD.

E[D]

πE[D]

##

iD // E

π

��

UD

πUD||

jDoo

S

��
Spec (Q)

Construction of the D-variant of the elliptic polylogarithm

We start by using the machinery of the localization sequence analogously as at the beginning of 1.2.2.

Namely, for each n ≥ 0 we have the canonical distinguished triangle in Db
qc(DE/Q) (cf. (0.2.5))

(iD)+(iD)∗Ln[−1]→ Ln → (jD)+Ln|UD

from which we obtain by applying the functor π+ the distinguished triangle in Db
qc(DS/Q)

(πE[D])+i
∗
DLn[−1]→ π+Ln → (πUD )+Ln|UD .

Taking cohomology and using [Dim-Ma-Sa-Sai], Prop. 1.4, we obtain the exact sequence of vector
bundles on S with integrable Q-connection

(1.5.7) 0→ H1
dR(E/S,Ln)

can−−→ H1
dR(UD/S,Ln)

ResDn−−−→ (πE[D])∗i
∗
DLn

σDn−−→ H2
dR(E/S,Ln)→ 0,

where all sheaves are equipped with their Gauß-Manin connection relative Spec (Q). For (πE[D])∗i
∗
DLn

this means nothing else than applying (πE[D])∗ and the projection formula to the (pullback) connec-
tion

i∗DLn → Ω1
E[D]/Q ⊗OE[D]

i∗DLn ' π∗E[D]Ω
1
S/Q ⊗OE[D]

i∗DLn.
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For the outmost right zero in (1.5.7) one observes H2
dR(UD/S,Ln) = 0: use the spectral sequence

(0.2.2) and that πUD : UD → S is affine and of relative dimension one.

We continue with constructions analogous to those which in 1.5.1 led to (1.5.5).

Namely, from (1.5.7) and Thm. 1.2.1 (ii) one derives that the maps ResDn induce an isomorphism

(1.5.8) lim
n≥0

HomDS/Q(OS , H1
dR(UD/S,Ln))

∼−→ lim
n≥0

HomDS/Q(OS , ker(σDn )).

Prolonging (1.5.7) to the left one sees that for all n ≥ 0 the canonical maps H0
dR(E/S,Ln) →

H0
dR(UD/S,Ln) are isomorphisms, which by application of Thm. 1.2.1 (ii) implies that the transition

morphisms H0
dR(UD/S,Ln+1)→ H0

dR(UD/S,Ln) are zero. From this one readily deduces that the
edge morphisms in the Leray spectral sequences (cf. [Kat2], (3.3.0))

Ep,q2 = Hp
dR(S/Q, Hq

dR(UD/S,Ln))⇒ Ep+q = Hp+q
dR (UD/Q,Ln)

yield an isomorphism

(1.5.9) lim
n≥0

H1
dR(UD/Q,Ln)

∼−→ lim
n≥0

H0
dR(S/Q, H1

dR(UD/S,Ln)).

Combined with the natural identification

H0
dR(S/Q, H1

dR(UD/S,Ln)) ' HomDS/Q(OS , H1
dR(UD/S,Ln))

and with (1.5.8) we obtain from (1.5.9) the isomorphism

(1.5.10) lim
n≥0

H1
dR(UD/Q,Ln)

∼−→ lim
n≥0

HomDS/Q(OS , ker(σDn )).

We continue by defining a certain distinguished system in lim
n≥0

HomDS/Q(OS , ker(σDn )).

First, note that an element of HomDS/Q(OS , ker(σDn )) tantamounts to a section in H0(E[D], i∗DLn)

which is horizontal for the Q-connection on i∗DLn and which goes to zero under the map σDn of (1.5.7)

in global S-sections:

σDn (S) : H0(E[D], i∗DLn)→ H0(S,H2
dR(E/S,Ln)).

We have an injection

(1.5.11) H0(E[D],OE[D]
) ↪→ H0(E[D], i∗DLn),

coming about by taking global E[D]-sections in the chain

(1.5.12) OE[D]
↪→ (πE[D])

∗
n∏
k=0

Symk
OSH ' (πE[D])

∗ε∗Ln ' i∗D[D]∗Ln ' i∗DLn,

where the monomorphism is 1
n! -times the obvious inclusion, the first isomorphism is the splitting of

Ln, the second uses the diagram defining E[D] and the last comes from Cor. 1.4.4.
Note that we need the normalization by 1

n! to obtain from the injections of (1.5.11) an induced map

(1.5.13) H0(E[D],OE[D]
) ↪→ lim

n≥0
H0(E[D], i∗DLn)
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into the inverse limit, as one can check with Lemma 1.1.5.

The zero section ε of E/S induces the zero section of E[D]/S which we likewise denote by ε.
As E[D] is étale and separated over S it follows that ε : S → E[D] is an open and closed immersion
(cf. [EGAIV], Ch. IV, Cor. (17.9.3)). One obtains the schematic decomposition

E[D] = (E[D] − {ε})q {ε}.

We may hence define a section 1{ε} ∈ H0(E[D],OE[D]) by determining it to be 0 on E[D] − {ε}
and to be 1 on {ε}; we further write 1E[D] for the section 1 ∈ H0(E[D],OE[D]).
We thus have a well-defined section

D2 · 1{ε} − 1E[D] ∈ H0(E[D],OE[D]).

Its image under (1.5.11) gives a horizontal section in H0(E[D], i∗DLn).

Let us now make the following assumption which will be proven in 1.5.4:

Lemma 1.5.3
Under the composition of (1.5.11) with the map σDn (S) the sectionD2·1{ε}−1E[D] ∈ H0(E[D],OE[D])

goes to zero in H0(S,H2
dR(E/S,Ln)).

Then, by what we said about how elements of HomDS/Q(OS , ker(σDn )) look like, we conclude:

Lemma 1.5.4
The image of D2 · 1{ε} − 1E[D] under the injection

H0(E[D],OE[D]
) ↪→ lim

n≥0
H0(E[D], i∗DLn)

of (1.5.13) is already contained in lim
n≥0

HomDS/Q(OS , ker(σDn )).

Definition 1.5.5
(i) The D-variant of the elliptic polylogarithm cohomology system for E/S/Q is the system

poldR,D2·1{ε}−1E[D]
=
(

polndR,D2·1{ε}−1E[D]

)
n≥0
∈ lim
n≥0

H1
dR(UD/Q,Ln)

which under the isomorphism of (1.5.10)

lim
n≥0

H1
dR(UD/Q,Ln)

∼−→ lim
n≥0

HomDS/Q(OS , ker(σDn ))

is mapped to the image of D2 · 1{ε} − 1E[D] under the inclusion of (1.5.13)

H0(E[D],OE[D]
) ↪→ lim

n≥0
H0(E[D], i∗DLn).

Note that by Lemma 1.5.4 this image is contained in lim
n≥0

HomDS/Q(OS , ker(σDn )).

(ii) The D-variant of the elliptic polylogarithm extension system for E/S/Q is the system

polD2·1{ε}−1E[D]
=
(

polnD2·1{ε}−1E[D]

)
n≥0
∈ lim
n≥0

Ext1
DUD/Q

(OUD ,Ln)

corresponding to poldR,D2·1{ε}−1E[D]
under the standard canonical identification

lim
n≥0

Ext1
DUD/Q

(OUD ,Ln) ' lim
n≥0

H1
dR(UD/Q,Ln).
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1.5.3 The relation between the elliptic polylogarithm and its D-variant

We connect the elliptic polylogarithm classes polndR ∈ H1
dR(U/Q,H∨U ⊗OU Ln) with the D-variant

classes polndR,D2·1{ε}−1E[D]
∈ H1

dR(UD/Q,Ln).
To formulate their relation we apply an elementary change of coefficients

multn : H1
dR(UD/Q,Ln)→ H1

dR(UD/Q,H∨UD ⊗OUD Ln)

to polndR,D2·1{ε}−1E[D]
whose result then has a direct expression in terms of polndR.

All of this is a direct translation of [Ki3], Prop. 4.3.3, to our setting, only adding a bit more details.

A change of coefficients

For each n ≥ 1 we define

multn : Ln → H∨E ⊗OE Ln

to be the composition

Ln → H∨E ⊗OE HE ⊗OE Ln → H∨E ⊗OE L1⊗OE Ln → H∨E ⊗OE L1⊗OE Ln−1 → H∨E ⊗OE Ln,

where the first arrow is given by the standard map, the second by the inclusionHE ↪→ L1 (cf. (1.1.2)),
the third by the transition map Ln → Ln−1 and the last by multiplication in symmetric powers.
The morphisms multn are checked to be compatible with the transition maps of the logarithm sheaves
and horizontal for the respective Q-connections on Ln andH∨E ⊗OE Ln.
We get an induced homomorphism of Q-vector spaces, also denoted by multn:

multn : H1
dR(UD/Q,Ln)→ H1

dR(UD/Q,H∨UD ⊗OUD Ln),

compatible with respect to the transition maps of the logarithm sheaves.
Hence, by applying the maps multn to the D-variant of the elliptic polylogarithm, we obtain a system(

multn

(
polndR,D2·1{ε}−1E[D]

))
n≥1
∈ lim
n≥1

H1
dR(UD/Q,H∨UD ⊗OUD Ln)

which we will be able to relate with the elliptic polylogarithm of Def. 1.5.1 (i).

Remark 1.5.6
Under the standard identification of de Rham- and Ext-spaces multn writes as homomorphism

multn : Ext1
DUD/Q

(OUD ,Ln)→ Ext1
DUD/Q

(HUD ,Ln).

One can check that the preceding map is alternatively obtained as follows: tensor a given extension
withHUD and take the pushout of the resulting extension along the map

m̃ultn : HUD ⊗OUD Ln → Ln

which is defined as the composition of the (by now obvious) arrows

HUD ⊗OUD Ln → L1 ⊗OUD Ln → L1 ⊗OUD Ln−1 → Ln.
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The comparison result

Recall from Def. 1.5.1 (i) that the system of the elliptic polylogarithm

poldR = (polndR)n≥1 ∈ lim
n≥1

H1
dR(U/Q,H∨U ⊗OU Ln)

is defined by mapping to the system
(

1
(n−1)! · idH

)
n≥1

of (1.5.2) under the isomorphism of (1.5.5):

lim
n≥1

H1
dR(U/Q,H∨U ⊗OU Ln)

∼−→ lim
n≥1

HomDS/Q

(
H,

n∏
k=1

Symk
OSH

)
.

We have UD ⊆ U , an induced morphism [D] : UD → U , and hence for each n ≥ 1 the classes

(polndR)|UD ∈ H
1
dR(UD/Q,H∨UD ⊗OUD Ln),

[D]∗polndR ∈ H1
dR(UD/Q,H∨UD ⊗OUD Ln),

where for the second class we have used the isomorphism [D]∗Ln ' Ln of Cor. 1.4.4 and the
canonical identification [D]∗H∨U ' H∨UD . Finally, for each n ≥ 1 we also have the class

multn

(
polndR,D2·1{ε}−1E[D]

)
∈ H1

dR(UD/Q,H∨UD ⊗OUD Ln).

The relation between the previous three classes is given by

Proposition 1.5.7
For all n ≥ 1 we have the following equality in H1

dR(UD/Q,H∨UD ⊗OUD Ln):

multn

(
polndR,D2·1{ε}−1E[D]

)
= D2 · (polndR)|UD −D · [D]∗polndR.

Proof. Note that the isomorphism of (1.5.10) in particular establishes an injection

lim
n≥0

H1
dR(UD/Q,Ln) ↪→ lim

n≥0
HomDS/Q(OS , (πE[D])∗i

∗
DLn).

By an analogous procedure14 one obtains an injection

lim
n≥0

H1
dR(UD/Q,H∨UD ⊗OUD Ln) ↪→ lim

n≥0
HomDS/Q(H, (πE[D])∗i

∗
DLn)

' lim
n≥0

HomDE[D]/Q(HE[D], i
∗
DLn),

where iD : E[D]→ E and πE[D] : E[D]→ S are still the morphisms fixed at the beginning of 1.5.2.
If we further use the identification

(1.5.14) i∗DLn '
n∏
k=0

Symk
OE[D]

HE[D],

coming about by the chain of (by now obvious) maps

i∗DLn ' i∗D[D]∗Ln ' π∗E[D]ε
∗Ln ' π∗E[D]

n∏
k=0

Symk
OSH '

n∏
k=0

Symk
OE[D]

HE[D],

14To be precise, one replacesOS byH in (1.5.8) and Ln byH∨UD ⊗OUD Ln in the subsequent Leray spectral sequence.
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then in sum we obtain an injection

lim
n≥0

H1
dR(UD/Q,H∨UD ⊗OUD Ln) ↪→ lim

n≥0
HomDE[D]/Q

(
HE[D],

n∏
k=0

Symk
OE[D]

HE[D]

)
which we will consider in components n ≥ 1 only:

(1.5.15) lim
n≥1

H1
dR(UD/Q,H∨UD ⊗OUD Ln) ↪→ lim

n≥1
HomDE[D]/Q

(
HE[D],

n∏
k=0

Symk
OE[D]

HE[D]

)
.

Note that the transition maps on the right side are given analogously as in Lemma 1.1.5.

We now show that the images of(
multn

(
polndR,D2·1{ε}−1E[D]

))
n≥1

and
(D2 · (polndR)|UD −D · [D]∗polndR)n≥1

under the injection (1.5.15) are equal, which then proves the theorem.

This follows by explicating the definitions of the three involved systems and all the identifications
we have made to define them and the map (1.5.15); it is the variety of these which makes the detailed
verification of the desired equality rather lengthy. It seems reasonable if we here only record the main
steps and results of this laborious task.

Recalling the decomposition E[D] = (E[D] − {ε}) q {ε} it follows by tracing back the defini-
tion of the polylogarithm system and of the map (1.5.15) that the image of (D2 · (polndR)|UD )n≥1

under 1.5.15) is given by D ·
(
D2 · 1

(n−1)! · idH{ε}
)
n≥1

. The additional factor D appears because of

the isomorphism Ln
∼−→ [D]∗Ln involved in (1.5.15) (cf. (1.5.14)) and because of Cor. 1.4.4.

In a similar way one checks that the image of (D·[D]∗polndR)n≥1 is given by
(
D· 1

(n−1)! ·idHE[D]

)
n≥1

.

This time no additional factor D comes in because in the definition of the class D · [D]∗polndR the
isomorphism [D]∗Ln

∼−→ Ln is used and eliminates the inverse isomorphism involved in (1.5.15).

Finally, the system
(

multn

(
polndR,D2·1{ε}−1E[D]

))
n≥1

is mapped under (1.5.15) to

D ·
( 1

(n− 1)!
· (D2 · idH{ε} − idHE[D]

)
)
n≥1
∈ lim
n≥1

HomDE[D]/Q

(
HE[D],

n∏
k=0

Symk
OE[D]

HE[D]

)
.

This can be verified as follows:
Observe that (by definition) the component polndR,D2·1{ε}−1E[D]

is mapped under the composition

lim
n≥1

H1
dR(UD/Q,Ln)

∼−→ lim
n≥1

HomDS/Q(OS , ker(σDn ))

↪→ lim
n≥1

HomDS/Q(OS , (πE[D])∗i
∗
DLn) ' lim

n≥1
HomDE[D]/Q

(
OE[D],

n∏
k=0

Symk
OE[D]

HE[D]

)
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to the section 1
n! · (D

2 · 1{ε} − 1E[D]) of
∏n
k=0 Symk

OE[D]
HE[D].

A careful analysis shows that the previous map and (1.5.15) fit into a commutative diagram

limn≥1H
1
dR(UD/Q,Ln) //

(multn)n≥1

��

limn≥1 HomDE[D]/Q(OE[D],
∏n
k=0 Symk

OE[D]
HE[D])

��
limn≥1H

1
dR(UD/Q,H∨UD ⊗OUD Ln) // limn≥1 HomDE[D]/Q(HE[D],

∏n
k=0 Symk

OE[D]
HE[D])

where the right vertical arrow is given under the canonical identification

HomDE[D]/Q

(
HE[D],

n∏
k=0

Symk
OE[D]

HE[D]

)
' HomDE[D]/Q

(
OE[D],H∨E[D]⊗OE[D]

n∏
k=0

Symk
OE[D]

HE[D]

)
by composition with D-times the following chain of maps:

n∏
k=0

Symk
OE[D]

HE[D] → H∨E[D] ⊗OE[D]
HE[D] ⊗OE[D]

n∏
k=0

Symk
OE[D]

HE[D]

→H∨E[D] ⊗OE[D]
HE[D] ⊗OE[D]

n−1∏
k=0

Symk
OE[D]

HE[D] → H∨E[D] ⊗OE[D]

n∏
k=0

Symk
OE[D]

HE[D].

Here, the first arrow is the standard map, the second is given by the transition map of the symmetric
power - hence acts on OE[D] by n-multiplication (cf. Lemma 1.1.5) - and the third is multiplication
in symmetric powers. The additional factor D comes in essentially because an inclusion of the form
HE ↪→ L1

∼−→ [D]∗L1 appears when one constructs (by using the maps multn) the right vertical
arrow of the above diagram such that it really commutes; then one applies again Cor. 1.4.4.
The image of the section 1

n! · (D
2 ·1{ε}−1E[D]) under the previous chain multiplied with D is indeed

equal toD · 1
(n−1)! ·(D

2 · idH{ε}− idHE[D]
), as one readily checks. This clearly finishes the proof.

Remark 1.5.8
In terms of extension systems Prop. 1.5.7 expresses as the following equality in Ext1

DUD/Q
(HUD ,Ln):

multn

(
polnD2·1{ε}−1E[D]

)
= D2 · (poln)|UD −D · [D]∗poln,

where multn is the map of Rem. 1.5.6; analogously as before, to define the extension class of the
right side one uses the identifications [D]∗HU ' HUD and [D]∗Ln ' Ln.

1.5.4 Proof of Lemma 1.5.3

We have to show the following statement:
Let n ≥ 0 and consider the composition

(1.5.16) H0(E[D],OE[D]
) ↪→ H0(E[D], i∗DLn)

σDn (S)−−−−→ H0(S,H2
dR(E/S,Ln))

of the inclusion (1.5.11) with the morphism σDn of (1.5.7) in global S-sections. Then the element
D2 · 1{ε} − 1E[D] ∈ H0(E[D],OE[D]) is mapped to zero under (1.5.16).

Proof:
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We will show that D2 · 1{ε} − 1E[D] is mapped to zero when we further compose (1.5.16) with the
identification H0(S,H2

dR(E/S,Ln))
∼−→ H0(S,OS) coming from Thm. 1.2.1 (i):

(1.5.17) H0(E[D],OE[D]) ↪→ H0(E[D], i∗DLn)
σDn (S)−−−−→ H0(S,H2

dR(E/S,Ln))
∼−→ H0(S,OS).

First Step:
We claim that the section 1E[D] ∈ H0(E[D],OE[D]) maps to D2 ∈ H0(S,OS) under (1.5.17).

For this we begin by observing that the following diagram commutes:

H0(E[D], i∗DLn)

can

��

σDn (S) // H0(S,H2
dR(E/S,Ln))

ψ //

can

��

H0(S,OS)

id

��
H0(E[D],OE[D])

σD0 (S) // H0(S,H2
dR(E/S))

tr(S) // // H0(S,OS)

(1.5.18)

Here, ψ is the last arrow of (1.5.17) and tr(S) denotes the trace isomorphism in global S-sections.
The morphisms can are induced by the composition Ln → OE of transition maps. The two small
diagrams commute by the definition of ψ and functoriality of the procedure that led to (1.5.7).
We may prolong the previous diagram on the left by the following commutative diagram:

H0(E[D], i∗DLn)

can

��

H0(E[D],OE[D])

66

id

((
H0(E[D],OE[D])

(1.5.19)

Here, the upper left arrow is the map (1.5.11), and the diagram indeed commutes: when check-
ing this one has to observe the factor 1

n! used in the definition of (1.5.11) and that the projection∏n
k=0 Symk

OSH → OS induced by Ln → OE is given by n! · idOS according to Lemma 1.1.5.
From the commutativity of (1.5.18) and (1.5.19) we see that the claim of the first step reduces to
verifying that 1E[D] maps to D2 under the composition

(1.5.20) H0(E[D],OE[D])
σD0 (S)−−−−→ H0(S,H2

dR(E/S))
tr(S)−−−→ H0(S,OS).

It suffices to show that this holds after transition to an étale covering (Si → S)i of S, as one checks
without difficulties.15 Further, we can choose an étale covering of S with affine schemes Si and the
property that over Si the divisor E[D] becomes equal to a divisor of the form [P i1] + ...+ [P iD2 ] with

15One uses that the assignment T 7→ H0(T,OT ) defines a sheaf on the étale site of S (cf. [Mi], Ch. II, §1, Cor. 1.6) and
that the maps in (1.5.20) are compatible with base change over S in the sense that when setting Ei := E ×S Si we have a
commutative diagram

H0(E[D],OE[D])
σD0 (S) //

can

��

H0(S,H2
dR(E/S))

can

��

tr(S) // H0(S,OS)

can

��
H0(Ei[D],OEi[D])

σD0 (Si) // H0(Si, H
2
dR(Ei/Si))

tr(Si) // // H0(Si,OSi )
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sections P ik ∈ (E×SSi)(Si), as follows from [Kat-Maz], Thm. 2.3.1, Prop. 1.10.12 and Thm. 1.10.1.
Altogether, we may hence assume from the beginning that S is affine and that

E[D] = [P1] + ...+ [PD2 ]

with sections Pk ∈ E(S). Now consider again the composition (1.5.20):
The image of 1E[D] under σD0 (S) is the fundamental class of the divisor E[D] = [P1] + ... + [PD2 ]

(essentially, this is [Co2], Lemma 1.5.1). As tr(S) maps this class precisely to D2 (cf. [Kat1], 7.416)
the claim of the first step of proof is shown.

Second Step:
We claim that the section 1{ε} ∈ H0(E[D],OE[D]) maps to 1 ∈ H0(S,OS) under (1.5.17).

As in the first step one is reduced to show that the image of 1{ε} under (1.5.20) equals 1 ∈ H0(S,OS).
To see this one considers the composition

(1.5.21) H0(S,OS)→ H0(E[D],OE[D])
σD0 (S)−−−−→ H0(S,H2

dR(E/S))

in which the first arrow is given in the natural way by the decompositionE[D] = (E[D] −{ε})q{ε},
i.e. by extending functions to zero on E[D] − {ε}. It is clear that (1.5.21) is just the map σ0(S) of
Lemma 1.2.3 (ii). From Lemma 1.2.5 it then follows that the composition

H0(S,OS)→ H0(E[D],OE[D])
σD0 (S)−−−−→ H0(S,H2

dR(E/S))
tr(S)−−−→ H0(S,OS)

is the identity. As the image of 1 ∈ H0(S,OS) under the first of these arrows is 1{ε} ∈ H0(E[D],OE[D])

we deduce the claim of the second step of proof.

Combining the two steps of proof yields the statement of Lemma 1.5.3.

16The projectiveness assumption made there is unnecessary.
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Chapter 2

The logarithm sheaves and the Poincaré bundle

We resume the general geometric setting

X
π //

!!

S

ε

yy

}}
Spec (Q)

fixed at the beginning of the previous chapter, i.e. X is an abelian scheme of relative dimension g ≥ 1

over a connected scheme S which is assumed smooth, separated and of finite type over Spec (Q).
All notation introduced so far remains valid for the present chapter.

2.1 A preliminary discussion

We provide a clean articulation of the heuristic which will stand as a guiding principle behind all
further progress of the present chapter. Pointedly formulated it says that we can fully reconstruct the
first logarithm sheaf of X/S/Q if we know "the first logarithm sheaf of X/S". The last might be
defined in complete analogy to the first logarithm sheaf of X/S/Q, but by considering DX/S- resp.
OS-linear structures instead of DX/Q- resp. DS/Q-linear structures.
In again more immediate terms: when searching for a (conceptual or explicit) description of the
logarithm sheaves of X/S/Q we may at first safely forget that the connections are in fact absolute,
i.e. Q-connections, and instead try to find the adapted connections relative S: the reason is that these
prolong uniquely to the desired Q-connections, which will be the content of the crucial Prop. 2.1.4.
Let us finally remark already now that, of course, at a certain future stage it will become inevitable to
leave the lines of this policy and to interpret conceptually resp. compute explicitly those completely
abstract prolongations. This will happen essentially in 2.6 resp. (in the universal elliptic case) in 3.5.4.

From absolute to relative connections

In 1.1 we introduced the first logarithm sheaf of X/S/Q as a triple (L1,∇1, ϕ1) consisting of a OX -
vector bundle L1 with integrable Q-connection ∇1, sitting in an exact sequence of DX/Q-modules

(2.1.1) 0→ HX → L1 → OX → 0

which represents the first logarithm extension class, together with the choice of aDS/Q-linear splitting

ϕ1 : OS ⊕H ' ε∗L1
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for the pullback of (2.1.1) along the zero section ε.
By the first logarithm extension class of X/S/Q we understood the class in Ext1

DX/Q(OX ,HX)

projecting to the identity and retracting to zero in the split exact sequence

(2.1.2) 0→ Ext1
DS/Q(OS ,H)

π∗−→ Ext1
DX/Q(OX ,HX)→ HomDS/Q(OS ,H∨ ⊗OS H)→ 0

which is part of the five term exact sequence associated with the Leray spectral sequence forHX .
Throughout, the vector bundle HX = π∗H was endowed with the pullback of the dual of the Gauß-
Manin connection relative Spec (Q) and OX with the connection defined by exterior Q-derivation.

We now consider the restriction relative S of these connections such that HX = π∗H is equipped
with its canonical S-connection (given by d⊗ id, cf. 0.2.1 (v)) and OX with exterior S-derivation.
For Ω•X/S(HX), the de Rham complex relative S for HX , we have a Leray spectral sequence of
hypercohomology (use [Dim], Thm. 1.3.19 (ii)):

Ep,q2 = Hp(S,Hq
dR(X/S)⊗OS H)⇒ Ep+q = Hp+q(X,Ω•X/S(HX)) ' Extp+qDX/S (OX ,HX).

The beginning of its five term exact sequence and (2.1.2) fit into the following commutative diagram
with exact rows1 which are both split via the retraction induced by ε∗:

(2.1.3)

0 // Ext1
DS/Q(OS ,H)

can

��

π∗ // Ext1
DX/Q(OX ,HX)

can

��

// HomDS/Q(OS ,H∨ ⊗OS H)

can

��

// 0

0 // Ext1
OS (OS ,H)

π∗ // Ext1
DX/S (OX ,HX) // HomOS (OS ,H∨ ⊗OS H) // 0

Here, the vertical arrows are the forgetful ones, i.e. given by restricting Q-connections to S-connections,
the pullbacks via π in the lower line are equipped with their canonical S-connections, and the projec-
tion in this line is given by mapping the class of a DX/S-linear extension

0→ HX →M→ OX → 0

to the first boundary map OS → H∨ ⊗OS H in the long exact sequence for the derived functors of
H0

dR(X/S,−) (cf. [Kat2], (2.0)).

Two auxiliary results

We will need the following two lemmas.

Lemma 2.1.1
Suppose we are given two extensions of DX/S-modules

M : 0→ HX
jM−−→M pM−−→ OX → 0

N : 0→ HX
jN−−→ N pN−−→ OX → 0

1For the surjectivity in the lower line observe that the five term exact sequence continues with the arrow H2(S,H) →
Ext2
DX/S

(OX ,HX) which is in fact injective: note that (by compatibility of the Leray spectral sequences for Ω•
X/S

(HX)

and forHX ) the composition of this arrow with the canonical morphism Ext2
DX/S

(OX ,HX)
can−−→ Ext2

OX (OX ,HX) '
H2(X,HX) is the map on cohomology induced by π which in turn is injective because of the existence of ε.



A PRELIMINARY DISCUSSION 93

with OS-linear splittings

ϕM : OS ⊕H ' ε∗M

ϕN : OS ⊕H ' ε∗N

and the property that the classes of M and N in Ext1
DX/S (OX ,HX) are equal - e.g. if they both map

to the identity under the lower projection of (2.1.3).

Then there exists a unique isomorphism of M and N which respects the splittings.

Proof.

Existence:
As the classes of M and N in Ext1

DX/S (OX ,HX) are equal there exists a DX/S-linear isomorphism

M f−→ N which is compatible with the extension structures. For any OS-linear morphism OS
µ−→ H

the map f + jN ◦ π∗(µ) ◦ pM : M → N defines a DX/S-linear isomorphism compatible with the
extension structures. It additionally respects the splittings if we choose µ in the following way:
Define an isomorphism of OS-modules ψ : OS ⊕H → OS ⊕H by the commutative diagram

ε∗M
ε∗(f) //

ϕM

��

ε∗N

ϕN

��
OS ⊕H

ψ // OS ⊕H

and set µ to be the composition

µ : OS
can−−→ OS ⊕H

ψ−1

−−−→ OS ⊕H
can−−→ H.

Then f + jN ◦ π∗(µ) ◦ pM indeed respects the splittings, as one can verify in a calculation.

Uniqueness:
It clearly suffices to show that the following is true: if (M,ϕM ) is an extension with splitting as in
the claim of the lemma, then any automorphism h of this pair is the identity.
Note that by assumption h :M ∼−→M is a DX/S-linear isomorphism such that ε∗(h) is the identity.
That then already h = id holds follows by an argument already used in the proof of Lemma 1.4.1.:
Namely, we have to show the vanishing of the DX/S-linear arrow h− id :M→M which we know
to be zero after pullback via ε. By the integrality of X and the fact that M is a vector bundle one
is reduced to consider from the beginning the situation S = Spec (k) with k a field of characteristic
zero. In this case [Bert-Og], §2, Prop. 2.16, yields that h− id is zero not only in the fiber, but already
in the stalk of the zero point of X . As X is integral andM is a vector bundle one can conclude from
this that indeed h− id vanishes.

Lemma 2.1.2
Suppose we are given two extensions of DX/Q-modules

M : 0→ HX
jM−−→M pM−−→ OX → 0

N : 0→ HX
jN−−→ N pN−−→ OX → 0
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with DS/Q-linear splittings

ϕM : OS ⊕H ' ε∗M

ϕN : OS ⊕H ' ε∗N

and the property that the classes of M and N in Ext1
DX/Q(OX ,HX) are equal - e.g. if they both map

to the identity under the upper projection of (2.1.3).

Then there exists a unique isomorphism of M and N which respects the splittings.

Proof. The existence is shown completely analogously as in Lemma 2.1.1 by noting that the OS-
linear map µ which was chosen there is nowDS/Q-linear and that hence the map f + jN ◦π∗(µ)◦pM
is DX/Q-linear. For the uniqueness part it suffices to show that a pair (M,ϕM ) as in the claim has
no nontrivial automorphisms. For this one restricts the Q-connections to S-connections and then uses
the same proof as in Lemma 2.1.1.

Remark 2.1.3
It is easy to also extract from the preceding two proofs that if (M,ϕM ) is as in the claim of Lemma
2.1.1 resp. Lemma 2.1.2, then the extension M has a nontrivial automorphism if and only if the sheaf
H has a nonzero global section resp. a nonzero global horizontal section.

Reconstruction of the first logarithm sheaf from relative structures

We can now come to the essential point of this preliminary discussion.

Proposition 2.1.4
Assume that we are given an exact sequence of DX/S-modules

(2.1.4) 0→ HX → L′1 → OX → 0,

whose extension class maps to the identity under the lower projection of (2.1.3), together with a

OS-linear splitting

(2.1.5) ϕ′1 : OS ⊕H ' ε∗L′1

for its pullback along the zero section ε. Then the following is true:

(i) The integrable S-connection on L′1 has a unique prolongation to an integrable Q-connection ∇′1
on L′1 such that the following property holds:

If we endow L′1 with ∇′1, then the exact sequence in (2.1.4) becomes DX/Q-linear and the splitting

ϕ′1 in (2.1.5) becomes DS/Q-linear.

(ii) The class of the DX/Q-linear extension given by (2.1.4) via (i) projects to the identity and re-

tracts to zero in the upper row of (2.1.3).

In other words: (L′1,∇′1, ϕ′1) is the first logarithm sheaf of X/S/Q.

Proof. In view of our assumptions, part (i), and the commutativity of (2.1.3) part (ii) is obvious. It
hence remains to show part (i), i.e. the existence and uniqueness of the connection∇′1.
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Existence:
Fix a triple (L1,∇1, ϕ1) as in Def. 1.1.1 and consider all involvedDX/Q- resp. DS/Q-linear structures
restricted to DX/S- resp. OS-linear structures. The diagram (2.1.3) and Lemma 2.1.1 then imply that
there exists a DX/S-linear isomorphism

η : L′1 ' L1

which respects the extension structures belonging to L′1 and L1 as well as the splittings ϕ′1 and ϕ1.
Via η and∇1 we obtain an integrable Q-connection∇′1 on L′1 which is easily checked to prolong the
integrable S-connection on L′1 and to satisfy the property formulated in (i).

Uniqueness:
Assume that ∇′1 and ∇̃′1 are two integrable Q-connections on L′1 which prolong the integrable S-
connection on L′1 and fulfill the property described in (i).
Endowing L′1 one time with ∇′1 and the other time with ∇̃′1 we are given in (2.1.4) two DX/Q-linear
extensions (by assumption). The images of their classes under the upper projection of (2.1.3) are
both times the identity: observe the diagram (2.1.3) and that the image of (2.1.4), considered as
DX/S-linear extension, under the lower projection of (2.1.3) is the identity, as was assumed from the
beginning on. Furthermore, both of these classes retract to zero in Ext1

DS/Q(OS ,H) (by assumption).
Altogether, we can thus conclude from the splitting of the upper row of (2.1.3) that the two DX/Q-
linear extension classes we obtain from (2.1.4) via ∇′1 and ∇̃′1 are equal in Ext1

DX/Q(OX ,H).
By Lemma 2.1.2 we conclude that there exists a DX/Q-linear isomorphism

ν : (L′1,∇′1) ' (L′1, ∇̃′1)

which respects the extension structure of L′1 and the splitting ϕ′1. Now restrict all involved DX/Q-
linear structures to DX/S-linear structures: then, as ∇′1 and ∇̃′1 are equal when considered as S-
connections, ν yields an automorphism of the DX/S-linear extension (2.1.4) with its OS-linear split-
ting ϕ′1. The uniqueness part of Lemma 2.1.1 then implies that ν = id. But ν is DX/Q-linear , i.e.
horizontal for the Q-connections ∇′1 and ∇̃′1. This shows∇′1 = ∇̃′1.
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2.2 The Fourier-Mukai transformation

Recall from 0.1.1 that we denote by Y the dual abelian scheme of X and by (P0, r0, s0) the birigidi-
fied Poincaré bundle on X ×S Y ; the last means that we keep fixed a representative (P0, r0) for the
universal isomorphism class in Pic0(X ×S Y/Y ) and note the existence of a unique X-rigidification
s0 of P0 which is compatible with the Y -rigidification r0 of P0.

Recall furthermore that Y \ stands for the universal vectorial extension of Y and (P, r, s,∇P) for
the birigidified Poincaré bundle with universal integrable Y \-connection on X ×S Y \; the last was
obtained by first taking the pullback (P, r) of (P0, r0) along the canonical morphism X ×S Y \ →
X ×S Y , by then observing that there is a unique integrable Y \-connection ∇P on P such that
(P, r,∇P) represents the universal isomorphism class in Pic\(X ×S Y \/Y \) and by finally noting
the existence of a unique trivialization s for the pullback of (P,∇P) along the diagram

X
idX×ε\//

��

X ×S Y \

��
S

ε\ // Y \

which (on the level of modules) is compatible with the Y \-rigidification r of P; in fact, the isomor-
phism s is the one induced by s0 in the natural way.

The focus of the present and subsequent sections will lie on the quadruple (P, r, s,∇P) and the
information it contains infinitesimally around the zero section of the X-group scheme X ×S Y \.
The reason is that the named information comprises a construction of the logarithm sheaves ofX/S/Q
with their connections relative S. To ensure that this construction really produces the logarithm
sheaves and to reconcile us with the fact that at first we only have access to the relative connec-
tions is the role of the preceding Prop. 2.1.4.

In the following, we will denote by p : X ×S Y \ → X and q : X ×S Y \ → Y \ the two projections:

X ×S Y \
q //

p

��

Y \

π\

��
X

π // S

The results of the whole present section hold for the general situation of an abelian scheme X/S
over an arbitrary noetherian base scheme S of characteristic zero.

2.2.1 The definition of the Fourier-Mukai transformation

Our geometric construction of the first logarithm sheaf from the Poincaré bundle, at which we are
ultimately aiming, naturally embeds in the formalism of the Fourier-Mukai transformation between
sheaves on Y \ and DX/S-modules on X , as introduced by Laumon in [Lau], 3. This transformation
was studied independently by Rothstein (cf. [Ro]) who uses an approach by rather explicit formulas,
assuming S as the spectrum of an algebraically closed field. For our purposes, the perspective adopted
in [Lau] is more profitable, and we begin by recalling and explicating the definition of the relevant
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Fourier-Mukai functor given there as well as the result that this functor is in fact an equivalence.
Of course, the origin for this circle of ideas stems back to Mukai’s seminal work [Mu].

Recall from 0.2.1 (v) that O-module pullback via q induces a functor

q∗ : Mod(OY \)→ Mod(DX×SY \/Y \),

defined by endowing such a pullback with its canonical integrable Y \-connection. The left derivation
Lq∗ is part of a commutative diagram (with lower horizontal arrow given by the usual left derivation
on the level of O-modules)

D−(OY \)
Lq∗ //

id

��

D(DX×SY \/Y \)

can

��
D−(OY \)

Lq∗ // D(OX×SY \)

and yields a triangulated functor

(2.2.1) Lq∗ : Db
qc(OY \)→ Db

qc(DX×SY \/Y \).

Note that Lq∗ is actually given by termwise pullback of complexes as q is flat and thus q∗ is exact.

Moreover, taking tensor product with the Poincaré bundleP and its universal integrable Y \-connection
gives a functor (cf. 0.2.1 (iv))

P ⊗O
X×SY \

(.) : Mod(DX×SY \/Y \)→ Mod(DX×SY \/Y \).

Its left derivation P ⊗LO
X×SY \

(.) sits again in a commutative diagram (with lower horizontal arrow
given by the usual left derivation on the level of O-modules)

D−(DX×SY \/Y \)
P⊗LO

X×SY \
(.)

//

can

��

D(DX×SY \/Y \)

can

��
D−(OX×SY \)

P⊗LO
X×SY \

(.)

// D(OX×SY \)

and induces a triangulated functor

(2.2.2) P ⊗LO
X×SY \

(.) : Db
qc(DX×SY \/Y \)→ Db

qc(DX×SY \/Y \),

given in fact by tensoring a complex termwise with P because the line bundle P is flat over OX×SY \
and thus P ⊗O

X×SY \
(.) is exact.

Finally, recall from 0.2.1 (vi) that taking direct image of O-modules gives rise to a functor

p∗ : Mod(DX×SY \/Y \)→ Mod(DX/S).

Its right derivationRp∗ sits in a commutative diagram (with lower horizontal arrow given by the usual
right derivation on the level of O-modules)

D+(DX×SY \/Y \)
Rp∗ //

can

��

D(DX/S)

can

��
D+(OX×SY \)

Rp∗ // D(OX)
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and is checked to induce a triangulated functor

(2.2.3) Rp∗ : Db
qc(DX×SY \/Y \)→ Db

qc(DX/S).

Composition of (2.2.1), (2.2.2) and (2.2.3) yields the triangulated functor

(2.2.4) ΦP : Db
qc(OY \)→ Db

qc(DX/S), F• 7→ Rp∗(P ⊗LO
X×SY \

Lq∗F•)

which one can view as a "Fourier-Mukai transformation with kernel (P,∇P)".
We record the following fundamental insight about the Fourier-Mukai functor ΦP , proven (using
different notations) in [Lau], (3.2), by explicit exhibition of the quasi-inverse:

Theorem 2.2.1
The triangulated functor ΦP : Db

qc(OY \)→ Db
qc(DX/S) of (2.2.4) is an equivalence of categories.

Let us append that for a single sheaf the cohomology of its Fourier-Mukai transformation has the
following description, as one sees from the above definitions and from what was said in 0.2.1 (vi):

Remark 2.2.2
If F is a quasi-coherent OY \ -module, considered as object of Db

qc(OY \) in the natural way, the i-th
cohomology sheafHi(ΦP(F)) of its Fourier-Mukai transformation is the quasi-coherentOX -module
with integrable S-connection given as follows: Consider P ⊗O

X×SY \
q∗F which is endowed with the

tensor product of ∇P with the canonical integrable Y \-connection on q∗F . Apply the i-th higher
direct image functor Rip∗ to this connection and identify

Rip∗(Ω
1
X×SY \/Y \ ⊗OX×SY \ (P ⊗O

X×SY \
q∗F)) ' Ω1

X/S ⊗OX R
ip∗(P ⊗O

X×SY \
q∗F)

via the canonical isomorphism Ω1
X×SY \/Y \ ' p∗Ω1

X/S together with the projection formula. In this
way one obtains a homomorphism of abelian sheaves on X:

Rip∗(P ⊗O
X×SY \

q∗F)→ Ω1
X/S ⊗OX R

ip∗(P ⊗O
X×SY \

q∗F)

which defines an integrable S-connection. The cohomology sheaf Hi(ΦP(F)) is then given by the
quasi-coherent OX -module Rip∗(P ⊗O

X×SY \
q∗F), equipped with this integrable S-connection.

2.2.2 WIT-sheaves on the universal vectorial extension

To make the Fourier-Mukai transformation fertile for our aims we need a way to leave the derived
setting and work with honest sheaves. The most convenient way to do this is by force and can already
be found in Mukai’s classical notion of a WIT-sheaf (WIT = weak index theorem) on an abelian
variety (cf. [Mu], Def. 2.3). We here define its analogue for our given Fourier-Mukai functor on the
universal vectorial extension and then present a rather important class of WIT-sheaves of index 0.

Definition 2.2.3
A quasi-coherent OY \ -module F is called WIT-sheaf of index i if

Hj(ΦP(F)) = 0 for all j 6= i.

In this case we write
F̂ := Hi(ΦP(F))

for the remaining cohomology sheaf in Modqc(DX/S) and call it the Fourier-Mukai transform of F .
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Remark 2.2.4
(i) If F is a WIT-sheaf of index i, then ΦP(F) ' F̂ [−i] in Db

qc(DX/S).

(ii) Taking the Fourier-Mukai transform defines a covariant functor from the full subcategory of
Modqc(OY \) given by the WIT-sheaves of index i into the category Modqc(DX/S). It is fully faith-
ful, as one can easily deduce from part (i), Thm. 2.2.1 and the standard fact that Modqc(OY \) resp.
Modqc(DX/S) are fully faithfully embedded in Db

qc(OY \) resp. Db
qc(DX/S).

As is common for the classical Fourier-Mukai transformation we will frequently need the base change
and projection formula. As in our situation integrable connections are involved we need an auxiliary
statement ensuring horizontality of these identifications in an adapted sense. The precise form in
which this will be used is recorded in the following lemma whose proof we postpone to 2.2.4.

Lemma 2.2.5
Let

Z ′
β //

δ
��

Z

γ

��
T ′

α // T

be a cartesian diagram of schemes with a closed immersion α and a smooth morphism γ.

If E ∈ Modqc(DZ/T ), F ∈ Modqc(DZ′/T ′) and G ∈ Modqc(OT ′), then:

(i) The base change isomorphism (cf. [EGAI], Ch. I, Cor. (9.3.3))

γ∗α∗G
∼−→ β∗δ

∗G

is horizontal if one considers both sides as objects in Modqc(DZ/T ) in the natural way (via 0.2.1 (v)

and (vi)).

(ii) The projection formula isomorphism (cf. [EGAI], Ch. I, Cor. (9.3.9))

E ⊗OZ β∗F
∼−→ β∗(β

∗E ⊗OZ′ F)

is horizontal if one considers both sides as objects in Modqc(DZ/T ) in the natural way (via 0.2.1 (vi),

(iv) and (v)).

With this observation we can now compute the Fourier-Mukai transforms for an important class of
WIT-sheaves of index 0: these are those OY \ -modules that come from quasi-coherent OS-modules
via the zero section ε\ : S → Y \.
One will note from its proof that the identification recorded in the following proposition crucially
uses (apart from standard canonical isomorphisms) the DX/S-linear trivialization s of (P,∇P). We
nevertheless call it "canonical" because the quadruple (P, r, s,∇P) is always regarded as fixed.

Proposition 2.2.6
Let G be a quasi-coherent OS-module. Then ε\∗G is a WIT-sheaf of index 0 for whose Fourier-Mukai

transform we have a canonical identification in Modqc(DX/S):

(̂ε\∗G) ' π∗G,

where π∗G is endowed with its canonical integrable S-connection.
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Proof. Consider the following cartesian diagram, where we abbreviate β := idX ×ε\.

X ' X ×S S
β //

π

��

X ×S Y \

q

��
S

ε\ // Y \

By Lemma 2.2.5 (i) we have a canonical isomorphism of DX×SY \/Y \ -modules:

q∗ε\∗G ' β∗π∗G.

Together with Lemma 2.2.5 (ii) and the DX/S-linear trivialization s : β∗(P,∇P) ' (OX ,d) (be-
longing to the quadruple (P, r, s,∇P)) we obtain the isomorphism of DX×SY \/Y \ -modules:

P ⊗O
X×SY \

q∗ε\∗G ' P ⊗OX×SY \ β∗π
∗G ' β∗π∗G.

Computing the 0-th cohomology sheaf of ΦP(ε\∗G) then means applying to β∗π∗G the functor
p∗ : Modqc(DX×SY \/Y \)→ Modqc(DX/S), such that in sum we get the DX/S-linear isomorphism

p∗(P ⊗O
X×SY \

q∗ε\∗G) ' (p ◦ β)∗π
∗G ' π∗G.

We finally need to verify
Hj(ΦP(ε\∗G)) = 0 for all j 6= 0,

for which we show that the j-th higher direct image

Rjp∗(P ⊗O
X×SY \

q∗ε\∗G) ' Rjp∗(β∗π∗G)

vanishes for all j 6= 0. But as a closed immersion β is affine, such that the Leray spectral sequence

Ej,k2 = Rjp∗R
kβ∗(π

∗G)⇒ Ej+k = Rj+k(idX)∗(π
∗G)

implies for each j an isomorphism

Rjp∗(β∗π
∗G) ' Rj(idX)∗(π

∗G).

This shows the remaining claim.

We finally append the following easy observation:

Lemma 2.2.7
If

0→ F ′ → F → F ′′ → 0

is an exact sequence in Modqc(OY \) and F ′,F ′′ are WIT-sheaves of index i, then the same holds for

F and the sequence of Fourier-Mukai transforms in Modqc(DX/S)

0→ F̂ ′ → F̂ → F̂ ′′ → 0

is exact.

Proof. By general theory of derived categories the given exact sequence naturally defines a distin-
guished triangle

F ′ → F → F ′′ → F ′[1]

in Db
qc(OY \). Applying the triangulated functor ΦP to it and then taking the long exact sequence of

cohomology yields both claims of the lemma.



THE FOURIER-MUKAI TRANSFORMATION 101

2.2.3 Categories of unipotent sheaves

The present geometric situation X/S permits to define the notion of unipotency for vector bundles
with integrable S-connection on X and to collect such bundles, dependent on their length, in cat-
egories Un(X/S) - analogously as we did in 1.3.1 for integrable Q-connections by considering a
setting X/S/Q. Our motivation to study unipotency now in a purely relative situation is twofold:
First, the category of unipotent vector bundles (without connections) on an abelian variety already
appears in the study of the classical Fourier-Mukai transformation, where one proves its equivalence
with the category of coherent modules on the dual variety which are supported in the zero point
(cf. [Mu], Ex. 2.9). It is thus natural and of its own interest to ask for an analogue of this result
for the present Fourier-Mukai transformation which involves connections and is defined over a base
scheme. We will answer this problem by revealing the category of OY \ -modules which corresponds
to Un(X/S) under Fourier-Mukai transformation; the essential ingredients here are the observation
of Prop. 2.2.6 and Laumons derived equivalence result of Thm. 2.1.1. We will remark that over a field
this category coincides precisely with the category of coherent modules on Y \ which are supported in
the zero point, as one would expect from the mentioned result in the classical case.
Second, if we want to construct the logarithm sheaves for a setting X/S/Q, then by the discus-
sion in 2.1 it essentially suffices to work with S-connections, which means moving in the categories
Un(X/S). But as was just explained we will prove that the objects of these categories are realizable
as Fourier-Mukai transforms of sheaves on Y \. Looking at the definition of the Fourier functor we
thus get the guarantee that there is a way to obtain the logarithm sheaves from the geometry of the
Poincaré bundle on X×S Y \. The successive sections 2.3 and 2.4 will then explore this way in detail.
A final result of this subsection is concerned with describing for a Fourier-Mukai transform its pull-
back along the zero section ε. By what we just said it is clear that we should address this question
because a construction of the first logarithm sheaf always involves the choice of a splitting along ε.

Unipotency and the equivalence result

Let us denote by VIC(X/S) the category whose objects are the vector bundles on X with integrable
S-connection and whose morphisms are the horizontalOX -module homomorphisms. We write V (S)

for the category of vector bundles on S. By endowing pullbacks via X π−→ S with their canonical
integrable S-connection (cf. 0.2.1 (v)) we obtain an exact functor π∗ : V (S)→ VIC(X/S).

Definition 2.2.8
Let n ≥ 0.
(i) An object U of VIC(X/S) is called unipotent of length n for X/S if there exists a filtration

U = A0U ⊇ A1U ⊇ ... ⊇ AnU ⊇ An+1U = 0

by subvector bundles stable under the connection of U such that for all i = 0, ..., n there are objects
Yi of V (S) and DX/S-linear isomorphisms

AiU/Ai+1U ' π∗Yi.

(ii) We write Un(X/S) for the full subcategory of VIC(X/S) consisting of those U in VIC(X/S)

which are unipotent of length n for X/S.
(iii) We write U(X/S) for the full subcategory of VIC(X/S) consisting of those U in VIC(X/S)
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which are unipotent of some length for X/S. In other words, U(X/S) is the union of the Un(X/S)

for the canonical embeddings

U0(X/S) ↪→ U1(X/S) ↪→ U2(X/S) ↪→ ... ↪→ VIC(X/S).

Note that the zero vector bundle on X with its unique S-connection is an object of each Un(X/S)

and that U0(X/S) is just the essential image of the functor π∗ : V (S)→ VIC(X/S).

Remark 2.2.9
By contrast to the categories VIC(X/Q), VIC(S/Q), Un(X/S/Q) and U(X/S/Q), which were all
recognized as abelian (cf. the comment preceding Def. 1.3.1 and the results in 1.3.4) the categories
VIC(X/S), V (S), Un(X/S) and U(X/S) are in general not abelian.
One can demonstrate this easily by a rather general type of example for which one actually only needs
that the morphism π : X → S is smooth and surjective and that S is an integral scheme whose ring
of global sections Γ(S,OS) is not a field.
Namely, in this situation one first observes (by flatness and surjectivity of π) that the pullback π∗K of
a coherent OS-module K which is not a vector bundle on S neither is a vector bundle on X .
Now choose a non-zero non-unit element ξ ∈ Γ(S,OS) and note (by integrality of S) that it induces
an exact sequence

0→ OS
·ξ−→ OS → K → 0

with a non-zero coherent OS-module K which then can’t be a vector bundle on S. Endowing pull-
backs with their canonical integrable S-connection we obtain an exact DX/S-linear sequence

0→ OX → OX → π∗K → 0,

where π∗K can’t be a vector bundle on X , as was already remarked.
We have thus constructed a morphism in V (S) resp. in VIC(X/S), Un(X/S), U(X/S) whose cok-
ernel in Mod(OS) resp. in Mod(DX/S) does not belong to these categories.

Definition 2.2.10
Let n ≥ 0.
An object F of Modqc(OY \) is called unipotent of length n for Y \/S if there exists a filtration

F = A0F ⊇ A1F ⊇ ... ⊇ AnF ⊇ An+1F = 0

by quasi-coherent OY \ -submodules such that for all i = 0, ..., n there are objects Yi of V (S) and
OY \ -linear isomorphisms

AiF/Ai+1F ' ε\∗Yi.

The categories Un(Y \/S) and U(Y \/S) are defined analogously as in Def. 2.2.8 (ii) and (iii).
Note that the zero sheaf on Y \ lies in all Un(Y \/S) and that U0(Y \/S) is the essential image of the
functor ε\∗ : V (S)→ Modqc(OY \).

Remark 2.2.11
It is easy to see that a OY \ -module F which belongs to U(Y \/S) is actually coherent.

We write J ⊆ OY \ for the ideal sheaf defined by the zero section ε\ : S → Y \.
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Theorem 2.2.12
Let n ≥ 0. Then:

(i) If F is an object of Un(Y \/S) then it is a WIT-sheaf of index 0 and satisfies J n+1 · F = 0.

The Fourier-Mukai transform F̂ is a vector bundle and belongs to Un(X/S).

(ii) Taking the Fourier-Mukai transform induces equivalences of categories

(̂.) : Un(Y \/S)
∼−→ Un(X/S),

(̂.) : U(Y \/S)
∼−→ U(X/S).

Proof. Part (i) is easily shown by induction over n and usage of Prop. 2.2.6 and Lemma 2.2.7.
As to part (ii) recall from Rem. 2.2.4 (ii) that the Fourier-Mukai transform defines a fully faithful
functor from the category of WIT-sheaves of index 0 into the category Modqc(DX/S). Together with
(i) we can then conclude that the functors in (ii) are well-defined and fully faithful. It remains to show
their essential surjectivity, and it is sufficient to do this for the functors (̂.) : Un(Y \/S)→ Un(X/S),
where n ≥ 0. The proof proceeds by induction over n as follows:
For n = 0 the claim clearly follows from Prop. 2.2.6.
Let now n ≥ 1 and U be an object of Un(X/S). We find an exact sequence in VIC(X/S)

(2.2.5) 0→ A1U → U → π∗Y → 0

for some OS-vector bundle Y and A1U an object of Un−1(X/S). By induction hypothesis there
exists F in Un−1(Y \/S) such that F̂ ' A1U , and together with Prop. 2.2.6 we obtain from (2.2.5)

an exact sequence in VIC(X/S):

0→ F̂ → U → (̂ε\∗Y)→ 0.

This naturally provides a distinguished triangle in Db
qc(DX/S):

(2.2.6) F̂ → U → (̂ε\∗Y)→ F̂ [1].

From part (i) and Prop. 2.2.6 we know that F and ε\∗Y are WIT-sheaves of index 0, such that (2.2.6)

writes in view of Rem. 2.2.4 (i) as a distinguished triangle in Db
qc(DX/S):

(2.2.7) ΦP(F)→ U → ΦP(ε\∗Y)→ ΦP(F)[1].

By Thm. 2.2.1 the functor ΦP : Db
qc(OY \) → Db

qc(DX/S) has a quasi-inverse Φ−1
P . Applied to

(2.2.7) it yields a distinguished triangle in Db
qc(OY \):

F → Φ−1
P (U)→ ε\∗Y → F [1].

Going into the long exact sequence of cohomology we obtain that Hj(Φ−1
P (U)) = 0 for j 6= 0 and an

exact sequence in Modqc(OY \):

(2.2.8) 0→ F → H0(Φ−1
P (U))→ ε\∗Y → 0.

As Φ−1
P (U) has cohomology only in degree zero we have H0(Φ−1

P (U)) ' Φ−1
P (U) in Db

qc(OY \).
In particular, we obtain ΦP(H0(Φ−1

P (U))) ' U in Db
qc(DX/S). If we know that H0(Φ−1

P (U)) is
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an object of Un(Y \/S) the preceding observation and Rem. 2.2.4 (i) imply that the Fourier-Mukai
transform of H0(Φ−1

P (U)) is isomorphic to U in Db
qc(DX/S) and then also in Modqc(DX/S) (by

general theory of derived categories), which proves the claim. But as F is in Un−1(Y \/S) the exact
sequence (2.2.8) clearly shows that H0(Φ−1

P (U)) belongs to Un(Y \/S).

Remark 2.2.13
From part (i) of the previous theorem we see in particular that sheaves of U(Y \/S) are supported in
the zero section of Y \. If S = Spec (k), with k a field of characteristic zero, we can show that a
coherent OY \ -module is in U(Y \/k) already if its support is concentrated in the zero point e\ of Y \.
Hence:

U(Y \/k) = (Coherent OY \ -modules with support in e\) ' (OY \,e\ -modules of finite length),

where the right equivalence is induced by taking the stalk in e\. Herunder, the category Un(Y \/k)

corresponds to those OY \ - resp. OY \,e\ -modules which are annihilated by J n+1 resp. by J n+1
e\

.
By part (ii) of the previous theorem these categories are equivalent to U(X/k) (resp. to Un(X/k)),
and one can also check that the length of a OY \,e\ -module of finite length equals the rank of the
corresponding unipotent vector bundle with integrable k-connection on X .
These are analogues of the results for the classical Fourier-Mukai transformation in [Mu], Ex. 2.9.

The pullback along the zero section

Definition 2.2.14
We keep denoting by J ⊆ OY \ the (coherent) ideal sheaf of the zero section ε\ : S → Y \.
For each n ≥ 0 we write Y \n for the closed subscheme of Y \ defined by the (coherent) ideal sheaf
J n+1 ⊆ OY \ .
The following two diagrams (whose hitherto undefined arrows are always the evident ones) introduce
some relevant notation associated with Y \n .

S

id
&&

in // Y \n

π\n
��

ε\n // Y \

π\

xx

X ×S Y \n qn
//

pn

��

Y \n

π\n
��

ε×id
Y
\
n

||

S X

idX×in

??

π // S

Finally, we denote by (Pn,∇Pn) the pullback (cf. 0.2.1 (v)) of (P,∇P) along the diagram

X ×S Y \n
idX×ε\n //

qn

��

X ×S Y \

q

��
Y \n

ε\n // Y \

and by rn resp. sn the OY \n -linear trivialization of P along ε × idY \n induced by r resp. the DX/S-
linear trivialization of (Pn,∇Pn) along idX ×in induced by s.
We collect these data in the quadruple (Pn, rn, sn,∇Pn).

Remark 2.2.15
One can check that π\n : Y \n → S is a finite locally free morphism.
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The canonical identification in the following proposition makes (apart from standard canonical iso-
morphisms) essentially use of the trivialization rn induced by r, as will be seen in its proof. Like in
Prop. 2.2.6, where the analogous situation with the trivialization s occurred, we speak of a "canonical"
identification because the Poincaré quadruple (P, r, s,∇P) is always fixed.

Proposition 2.2.16
For n ≥ 0 and F in Un(Y \/S) there is a canonical functorial isomorphism of vector bundles on S:

ε∗F̂ ' (π\n)∗F ,

where F is naturally considered as OY \n -module due to J n+1 · F = 0 (cf. Thm. 2.2.12 (i)).

Proof. Observing the cartesian diagram

X ×S Y \n
idX×ε\n //

qn

��

X ×S Y \

q

��
Y \n

ε\n // Y \

and Lemma 2.2.5 one deduces a canonical DX/S-linear isomorphism

(2.2.9) F̂ ' (pn)∗(Pn ⊗O
X×SY

\
n

q∗nF),

where on the right side the sheaf in brackets is endowed with the tensor product of ∇Pn with the
canonical integrable Y \n -connection on q∗nF ; taking direct image along the second (cartesian) diagram
of Def. 2.2.14 gives the integrable S-connection on the right side of (2.2.9) (cf. 0.2.1 (vi)).
Moreover, abbreviating hn := ε× idY \n , the cartesian diagram of affine maps

Y \n
π\n //

hn
��

S

ε

��
X ×S Y \n

pn // X

yields the canonical OS-linear base change isomorphism (cf. [EGAI], Ch. I, Cor. (9.3.3)):

ε∗(pn)∗(Pn ⊗O
X×SY

\
n

q∗nF)→ (π\n)∗h
∗
n(Pn ⊗O

X×SY
\
n

q∗nF)

By combination with (2.2.9) we obtain

ε∗F̂ ' ε∗(pn)∗(Pn ⊗O
X×SY

\
n

q∗nF) ' (π\n)∗h
∗
n(Pn ⊗O

X×SY
\
n

q∗nF) ' (π\n)∗F ,

using in the last step the trivialization rn : h∗nPn ' OY \n induced by the Y \-rigidification r of P .

2.2.4 Proof of Lemma 2.2.5

Recall that the lemma in question is occupied with a cartesian diagram of schemes

Z ′
β //

δ
��

Z

γ

��
T ′

α // T
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with a closed immersionα, a smooth morphism γ and sheaves E ∈ Modqc(DZ/T ),F ∈ Modqc(DZ′/T ′)
and G ∈ Modqc(OT ′).

Proof of (i):
Let ϕ be the base change isomorphism for G on the level of O-modules. We have to show that the
diagram

γ∗α∗G //

ϕ

��

Ω1
Z/T ⊗OZ γ

∗α∗G

id⊗ϕ
��

β∗δ
∗G // Ω1

Z/T ⊗OZ β∗δ
∗G

is commutative, where the horizontal arrows are the integrable T -connections on γ∗α∗G resp. β∗δ∗G.
We may assume that Z is affine and thus also that T is affine (by starting with an open affine covering
of T , taking inverse images in Z and covering these by open affines). But as α and β are closed
immersions (hence affine maps) we are reduced to the situation where all involved schemes are affine.
Our cartesian diagram of schemes then expresses as a diagram

Spec (B/aB)
β //

δ

��

Spec (B)

γ

��
Spec (A/a)

α // Spec (A)

with rings A,B, an ideal a ⊆ A and with aB the ideal generated by a in B via A→ B.
The quasi-coherent sheaf G corresponds to a A/a-module G.
One checks that δ∗G with its canonical integrable T ′-connection is given by the A/a-linear map

B/aB ⊗A/a G→ Ω1
(B/aB)/(A/a) ⊗B/aB (B/aB ⊗A/a G), b̄⊗ g 7→ db̄⊗ 1⊗ g.

The sheaf β∗δ∗G with its integrable T -connection then arises from this by using the isomorphism
Ω1

(B/aB)/(A/a) ' Ω1
B/A ⊗B B/aB and considering B/aB ⊗A/a G as B-module. In brief, one

checks that the integrable T -connection on β∗δ∗G is given by the A-linear map

(2.2.10) B/aB ⊗A/a G→ Ω1
B/A ⊗B (B/aB ⊗A/a G), b̄⊗ g 7→ db⊗ 1⊗ g,

where B/aB ⊗A/a G has the obvious B-structure (i.e. via the first factor) and where with b we mean
some representative of b̄ in B. But as B-modules we have canonically

B/aB ⊗A/a G ' B ⊗A G b̄⊗ g 7→ b⊗ g,

which is precisely the base change isomorphism. Under this identification (2.2.10) translates into

B ⊗A G→ Ω1
B/A ⊗B (B ⊗A G), b⊗ g 7→ db⊗ 1⊗ g,

which corresponds to γ∗α∗G with its integrable T -connection. This shows (i).

Proof of (ii):
We may again assume that all schemes are affine and adapt notations as in the proof of (i).
Let F correspond to theB/aB-module F with integrable T ′-connection given by theA/a-linear map

∇F : F → Ω1
(B/aB)/(A/a) ⊗B/aB F
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as well as E to the B-module E with integrable T -connection given by the A-linear map

∇E : E → Ω1
B/A ⊗B E,

such that the integrable T -connection on β∗F is given by using the map∇F and the B-linear isomor-
phism Ω1

(B/aB)/(A/a) ⊗B/aB F ' Ω1
B/A ⊗B F .

If we have e ∈ E and f ∈ F we write

∇E(e) =
∑
j

rj · dtj ⊗ ej , ∇F (f) =
∑
i

ūi · dv̄i ⊗ fi,

with rj , tj ∈ B, ej ∈ E and with ūi, v̄i ∈ B/aB, fi ∈ F . Note that we use the description of the dif-
ferential module Ω1

B/A as free B-module over the symbols db (b ∈ B) modulo the usual equivalence
relations, and similar for Ω1

(B/aB)/(A/a).

Then the tensor product connection on E ⊗OZ β∗F is given by the A-linear map

E ⊗B F → Ω1
B/A ⊗B (E ⊗B F )

e⊗ f 7→
∑
j

rj · dtj ⊗ ej ⊗ f +
∑
i

ui · dvi ⊗ e⊗ fi.(2.2.11)

On the other hand, β∗E corresponds to theB/aB-moduleB/aB⊗BE with integrable T ′-connection
given by a A/a-linear map

B/aB ⊗B E → Ω1
(B/aB)/(A/a) ⊗B/aB (B/aB ⊗B E).

Under the identifications B/aB ' A/a⊗A B and Ω1
(B/aB)/(A/a) ' Ω1

B/A ⊗B B/aB this writes as

A/a⊗A E → Ω1
B/A ⊗B (A/a⊗A E), ā⊗ e 7→

∑
j

rj · dtj ⊗ ā⊗ ej .

Note that the B/aB-structure on A/a⊗A E is given in the natural way, i.e. by multiplying represen-
tatives into the B-module E.

If we again use the identification Ω1
(B/aB)/(A/a) ' B/aB⊗B Ω1

B/A, then it is easily checked that the
integrable T ′-connection on β∗E ⊗OZ′ F writes as the A/a-linear map

(A/a⊗A E)⊗B/aB F → Ω1
B/A ⊗B ((A/a⊗A E)⊗B/aB F )),

ā⊗ e⊗ f 7→
∑
j

rj · dtj ⊗ ā⊗ ej ⊗ f +
∑
i

ui · dvi ⊗ ā⊗ e⊗ fi.(2.2.12)

Now observe that the operation β∗ applied to β∗E ⊗OZ′ F just means that we have to regard the
modules in (2.2.12) as B-modules. But we have the canonical isomorphism of B-modules

(A/a⊗A E)⊗B/aB F ' (A/a⊗A B ⊗B E)⊗(A/a⊗AB) F ' E ⊗B F.

As 1̄⊗ e⊗ f corresponds to e⊗ f under this identification we see that (2.2.12) becomes

E ⊗B F → Ω1
B/A ⊗B (E ⊗B F ),

e⊗ f 7→
∑
j

rj · dtj ⊗ ej ⊗ f +
∑
i

ui · dvi ⊗ e⊗ fi,(2.2.13)

which by construction is the integrable T -connection on E ⊗OZ β∗F obtained from the connection on
β∗(β

∗E ⊗OZ′ F) via the projection formula. Comparing (2.2.13) and (2.2.11) proves (ii).
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2.3 The first logarithm sheaf and the Poincaré bundle

We return to the geometric situation X/S/Q fixed at the beginning of this chapter and recall the
crucial observation made at the end of 2.1: EquipHX with its canonical integrable S-connection and
OX with exterior S-derivation. Assume we have an exact sequence of DX/S-modules

0→ HX → L′1 → OX → 0,

mapping to the identity under the lower projection in (2.1.3):

Ext1
DX/S (OX ,HX)→ HomOS (OS ,H∨ ⊗OS H),

together with a OS-linear splitting
ϕ′1 : OS ⊕H ' ε∗L′1

for its pullback along the zero section ε : S → X . Then, by Prop. 2.1.4, the integrable S-connection
on L′1 extends uniquely to an integrable Q-connection such that the previous data become the first
logarithm sheaf of X/S/Q.
We are now prepared to construct such data from the first infinitesimal restriction (P1, r1, s1,∇P1) of
the quadruple (P, r, s,∇P) - for the definition of this restriction recall Def. 2.2.14.
It is also useful to dispose of an equivalent viewpoint provided by the more hermetic machinery of the
Fourier-Mukai transformation, with which we begin.

2.3.1 The construction of the fundamental data

Construction via the Fourier-Mukai formalism

Consider the canonical exact sequence of OY \ -modules:

(2.3.1) 0→ J /J 2 → OY \/J 2 → OY \/J → 0.

Noting that J /J 2 is the conormal sheaf of the regularly embedded section ε\ : S → Y \ we have a
natural isomorphism of OY \ -modules (cf. [Fu-La], Ch. IV, Lemma 3.8):

J /J 2 ' (ε\)∗(Lie(Y \/S)∨).

Together with the fundamental canonical identification Lie(Y \/S) ' H1
dR(X/S) of (0.1.5) we get

(2.3.2) J /J 2 ' (ε\)∗H.

Moreover, we clearly have
OY \/J ' (ε\)∗OS ,

such that (2.3.1) translates into the OY \ -linear exact sequence

(2.3.3) 0→ (ε\)∗H → OY \/J 2 → (ε\)∗OS → 0.

By Prop. 2.2.6 and Lemma 2.2.7 its terms are WIT-sheaves of index 0 and the associated exact
sequence of Fourier-Mukai transforms writes as a DX/S-linear sequence

(2.3.4) 0→ HX → ÔY \/J 2 → OX → 0,
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whereHX is equipped with its canonical integrable S-connection andOX with exterior S-derivation.
Observe furthermore that by Prop. 2.2.16 the pullback of (2.3.4) along ε : S → X identifies with the
exact sequence (2.3.3), where now all its terms are to be considered as OS-modules:

(2.3.5) 0→ H→ (π\1)∗OY \1 → OS → 0.

Note that the morphism π\1 : Y \1 → S obviously provides a section for the sequence (2.3.5) and thus
a OS-linear splitting

(2.3.6) OS ⊕H ' (π\1)∗OY \1 .

Altogether, we obtain a OS-linear splitting for the pullback of (2.3.4) along ε : S → X:

(2.3.7) OS ⊕H ' ε∗(ÔY \/J 2).

Let us now illustrate how the data (2.3.4) and (2.3.7) are explicitly induced by the quadruple (P1, r1, s1,∇P1).

Construction via the Poincaré bundle

It is useful to have in sight the following diagram of cartesian squares:

X
π //

idX×i1
��

S

i1
��

X ×S Y \1

idX×ε\1
��

q1 // Y \1

ε\1
��

X ×S Y \
q //

p

��

Y \

π\

��
X

π // S

Associated with the closed immersion i1 is the canonical exact sequence of OY \1 -modules

(2.3.8) 0→ (i1)∗H → OY \1 → (i1)∗OS → 0,

where we have identified the ideal sheaf of i1 with (i1)∗H by (0.1.5).
Pullback of (2.3.8) along the (flat) projection q1 gives the exact sequence

(2.3.9) 0→ (idX × i1)∗HX → OX×SY \1 → (idX × i1)∗OX → 0

which identifies with the canonical exact sequence associated to the closed immersion idX ×i1: note
that the ideal sheaf of idX ×i1 is the pullback of the ideal sheaf of i1. The sequence (2.3.9) is
horizontal for the integrable Y \1 -connections given by the direct image along the upper square of the
canonical integrable S-connections onHX resp. OX and by exterior Y \1 -derivation on OX×SY \1 .
Tensoring with (P1,∇P1) and using Lemma 2.2.5 (ii) together with the DX/S-linear trivialization

s1 : (idX × i1)∗(P1,∇P1
) ' (OX ,d)

yields the exact sequence of DX×SY \1 /Y \1 -modules

(2.3.10) 0→ (idX × i1)∗HX → P1 → (idX × i1)∗OX → 0;
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the surjection comes alternatively from the adjunction P1 → (idX × i1)∗(idX × i1)∗P1 and from s1.
Finally, taking direct image of (2.3.10) along the digram

X ×S Y \1
q1 //

p1

��

Y \1

π\1
��

X
π // S

gives the exact sequence of DX/S-modules

(2.3.11) 0→ HX → (p1)∗P1 → OX → 0.

Note that we have a canonical isomorphism between the extensions (2.3.4) and (2.3.11):

0 // HX

id

��

// ÔY \/J 2 //

∼
��

OX

id

��

// 0

0 // HX // (p1)∗P1
// OX // 0

(2.3.12)

which is induced by the chain of natural identifications

ÔY \/J 2 = p∗(P ⊗O
X×SY \

q∗(OY \/J 2)) ' p∗(P ⊗O
X×SY \

q∗(ε\1)∗OY \1 )

' p∗(P ⊗O
X×SY \

(idX × ε\1)∗OX×SY \1 ) ' p∗(idX × ε\1)∗P1 ' (p1)∗P1

whose horizontality is guaranteed by Lemma 2.2.5.
The pullback of (2.3.11) along ε : S → X is OS-linearly split by

(2.3.13) ε∗(p1)∗P1
∼−→ (π\1)∗(ε× idY \1

)∗P1 ' (π\1)∗OY \1 ' OS ⊕H,

where the first map is the base change isomorphism along the cartesian diagram of affine maps

Y \1
π\1 //

ε×id
Y
\
1
��

S

ε

��
X ×S Y \1

p1 // X

the second is induced by the trivialization

r1 : (ε× idY \1
)∗P1 ' OY \1

and the third is given by (2.3.6). Under (2.3.12) the splittings (2.3.7) and (2.3.13) correspond.

2.3.2 The main result

With the explanations at the outset of this section our goal must now clearly consist in proving

Theorem 2.3.1
The class of the extension (2.3.11) maps to the identity under the lower projection in (2.1.3):

(2.3.14) Ext1
DX/S (OX ,HX)→ HomOS (H,H).
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Proof. Let us write ξ : H → H for the image of the class of (2.3.11) under (2.3.14) and recall from
(2.3.12) that ξ is also equal to the image of the class of (2.3.4) under (2.3.14).

We now proceed in several steps.

Step 1: (Reduction to the case S = Spec (k))

As H is a vector bundle and S is integral the map ξ is the identity on H = H1
dR(X/S)∨ already

if for all points s ∈ S its pullback along the canonical morphism fs : Spec (k(s))→ S is the identity
on H1

dR(Xs/k(s))∨. Here, we set Xs := X×S Spec (k(s)), viewed as abelian variety over k(s), and
recall that H1

dR(X/S) is compatible with arbitrary base change (cf. the beginning of Chapter 1).

Xs
πs //

gs

��

Spec (k(s))

fs

��
X

π // S

Now observe that clearly everything we said in 2.3.1 applies equally well for the situation of an abelian
variety over a field of characteristic zero and that in this situation we also have the map (2.3.14),
defined in the same way as done in 2.1 under different assumptions on the base scheme S. This is
important to note because in the following we will reduce to and work in this situation.
Indeed, in our previous consideration of the fibers Xs over points s ∈ S the respective maps (2.3.14)

are checked to fit into a commutative diagram

Ext1
DX/S (OX , π∗H1

dR(X/S)∨) //

g∗s

��

HomOS (H1
dR(X/S)∨, H1

dR(X/S)∨)

f∗s

��
Ext1

DXs/k(s)
(OXs , π∗sH1

dR(Xs/k(s))∨) // Homk(s)(H
1
dR(Xs/k(s))∨, H1

dR(Xs/k(s))∨)

Moreover, it is straightforward to see that under the left vertical arrow (2.3.11) maps to the class of the
extension obtained by performing the construction that led to (2.3.11) with the Poincaré quadruple for
Xs × Y \s naturally induced by (P, r, s,∇P). From this one easily concludes that from the beginning
on one may assume S = Spec (k) with k a field of characteristic zero, which we will henceforth do.

Step 2: (The situation on the universal vectorial extension)

Claim: There exists a canonical isomorphism of k-vector spaces

(2.3.15) Ext1
O
Y \

(OY \/J ,J /J 2)
∼−→ HomO

Y \
(J /J 2,J /J 2)

under which the class of (2.3.1) maps to the identity.
Proof of the claim: From the natural exact sequence

0→ J → OY \ → OY \/J → 0

we obtain2 from the long exact sequence for HomO
Y \

(−,OY \/J ) an isomorphism

HomO
Y \

(J ,OY \/J )
∼−→ Ext1

O
Y \

(OY \/J ,OY \/J ).

2Note that
Ext1
O
Y \

(OY \ ,OY \/J ) ' H1(Y \,OY \/J ) ' H1(Spec (k),OSpec (k)) = 0
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We precompose it with the isomorphism

HomO
Y \

(J /J 2,OY \/J )
∼−→ HomO

Y \
(J ,OY \/J ),

induced by the natural map J → J /J 2, in order to obtain an isomorphism

(2.3.16) HomO
Y \

(J /J 2,OY \/J )
∼−→ Ext1

O
Y \

(OY \/J ,OY \/J ).

The desired isomorphism (2.3.15) is then defined to be the composition

Ext1
O
Y \

(OY \/J ,J /J 2) ' Ext1
O
Y \

(OY \/J ,OY \/J )⊗k J /J 2

' HomO
Y \

(J /J 2,OY \/J )⊗k J /J 2 ' HomO
Y \

(J /J 2,J /J 2)

in which the second identification is given by (2.3.16) and the others are the canonical ones. Let us
remark that here and henceforth in this proof J /J 2 and OY \/J are often freely viewed either as
O\Y -modules or as k-vector spaces. We have thus defined a canonical isomorphism as in the claim.

In terms of a k-basis {e1, ..., e2g} for J /J 2, if we are given an extension

0→ J /J 2 → F → OY \/J → 0,

then by pushout along the projections corresponding to the ei:

pi : J /J 2 → OY \/J , i = 1, ..., 2g

and by using the inverse of the isomorphism (2.3.16) we get an element in

2g⊕
i=1

HomO
Y \

(J /J 2,OY \/J ) · ei ' HomO
Y \

(J /J 2,J /J 2)

which is the image under (2.3.15) of the class of the given extension.

Now consider the canonical exact sequence of (2.3.1):

0→ J /J 2 → OY \/J 2 → OY \/J → 0

and write

(2.3.17) 0→ OY \/J → Fi → OY \/J → 0

for the pushout of this extension via the above projection pi. The second assertion of the claim follows
if we can verify that pi maps to (2.3.17) under the isomorphism of (2.3.16):

HomO
Y \

(J /J 2,OY \/J )
∼−→ Ext1

O
Y \

(OY \/J ,OY \/J ).

and that the mapOY \ → OY \/J induces an isomorphism

HomO
Y \

(OY \/J ,OY \/J )
∼−→ HomO

Y \
(OY \ ,OY \/J ).
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This in turn is easily seen as follows: observe the commutative diagram

0 // J //

can

��

OY \ //

can

��

OY \/J //

id

��

0

0 // J /J 2 //

pi

��

OY \/J 2 //

��

OY \/J //

id

��

0

0 // OY \/J // Fi // OY \/J // 0

(2.3.18)

in which the second row is the pushout of the first along J can−−→ J /J 2 (obvious) and the third is the
pushout of the second along pi (by definition) such that the third row is the pushout of the first along
the map pi ◦ can. Now recall that the isomorphism (2.3.16) was defined as the composition

HomO
Y \

(J /J 2,OY \/J )
∼−→ HomO

Y \
(J ,OY \/J )

∼−→ Ext1
O
Y \

(OY \/J ,OY \/J )

in which the first map is induced by the arrow J can−−→ J /J 2 and the second is given by pushing out
the top row of (2.3.18) along morphisms J → OY \/J . This clearly implies the remaining claim.

Step 3: (A reduction step)

As S = Spec (k) the kernel Ext1
OS (OS ,H) of the projection (2.3.14) vanishes, and hence (2.3.14)

is in fact an isomorphism:
Ext1

DX/k(OX ,HX)
∼−→ Homk(H,H).

By Step 2 the claim of the theorem is proven if the following diagram commutes:

Ext1
DX/k(OX ,HX)

∼ // Homk(H,H)

∼

Ext1
O
Y \

(OY \/J ,J /J 2)

(̂.)

OO

∼ // HomO
Y \

(J /J 2,J /J 2)

(2.3.19)

Here, the upper resp. lower horizontal arrow is (2.3.14) resp. (2.3.15), the right vertical map is
induced by (2.3.2) and the left vertical map is given as follows: analogously as explained in (2.3.1)-
(2.3.4) an extension of OY \/J by J /J 2 writes as exact sequence of OY \ -modules

0→ (ε\)∗H → F → (ε\)∗OSpec (k) → 0

whose terms are WIT-sheaves of index 0, providing an exact sequence of Fourier-Mukai transforms

0→ HX → F̂ → OX → 0,

whereHX resp. OX has the canonical integrable k-connection (cf. Prop. 2.2.6 and Lemma 2.2.7).
It is a routine task to deduce commutativity of (2.3.19) if the following diagram is known to commute:

Ext1
DX/k(OX ,OX)

∼ // H1
dR(X/k)

∼

Ext1
O
Y \

(OY \/J ,OY \/J )

(̂.)

OO

∼ // HomO
Y \

(J /J 2,OY \/J ) ' Homk(Je\/J 2
e\ , k)

(2.3.20)
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where with e\ ∈ Y \ we denote the zero point of Y \. The left vertical arrow is defined analogously
as in (2.3.19) by taking Fourier-Mukai transforms, the right vertical arrow is induced by (2.3.2), the
lower horizontal map is given by (2.3.16) and the upper horizontal map is defined in the same way as
(2.3.14), withHX replaced by OX .
It is clear that to prove commutativity of (2.3.20) we will need a better understanding of its right
vertical arrow and thus of the canonical isomorphism of k-vector spaces induced by (2.3.2):

(2.3.21) (Je\/J 2
e\)
∨ ' H1

dR(X/k).

Step 4: (The identification (2.3.21))

Abbreviating the scheme of dual numbers over k with D := Spec (k[ε]/(ε2)), the identification in
question comes about as the composition

(2.3.22) (Je\/J 2
e\)
∨ ' ker(Y \(D)→ Y \(k)) ' H1

dR(X/k),

where the first identification is standard (cf. e.g. [Gö-We], Ch. 6, (6.4)) and the second is described
in [Maz-Mes], Ch. I, § 4, as follows:
By definition (cf. 0.1.1) and Lemma 0.1.12 for a k-scheme T the T -valued points of Y \ are given by

Pic\(XT /T ) = {Isomorphism classes of triples (L, α,∇L)},

where L is a line bundle on XT = X ×k T with T -rigidification α and integrable T -connection ∇L.
If T has trivial Picard group, then the assignment (L, α,∇L) 7→ (L,∇L) is easily checked to induce
an isomorphism of groups

Pic\(XT /T ) ' {Isomorphism classes of pairs (L,∇L)},

and (as in [Maz-Mes], Ch. I, Prop. (4.1.2)) we identify the last group with H1(XT ,Ω
∗
XT /T

), where

Ω∗XT /T : [O∗XT
dlog−−−→ Ω1

XT /T
d−→ Ω2

XT /T
d−→ ...]

denotes the multiplicative de Rham complex for XT /T (starting in degree zero). We thus obtain:

(2.3.23) ker(Y \(D)→ Y \(k)) ' ker(H1(XD,Ω
∗
XD/D

)→ H1(X,Ω∗X/k)).

The long exact sequence for hypercohomology associated with the canonically split natural short exact
sequence of complexes of abelian sheaves on X

0→ Ω•X/k → Ω∗XD/D → Ω∗X/k → 0

identifies H1
dR(X/k) with ker(H1(XD,Ω

∗
XD/D

) → H1(X,Ω∗X/k)). Combined with (2.3.23) we
obtain in sum an isomorphism of groups as in (2.3.22) which is in fact k-linear.
A final remark:
WithOXD = OX⊕ε ·OX ,O∗XD = O∗X⊕ε ·OX and ΩiXD/D ' ΩiX/k⊗OX OXD ' ΩiX/k⊕ε ·Ω

i
X/k
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the previous split exact sequence of complexes writes as

0 // OX
η //

d

��

O∗X ⊕ ε · OX //

θ

��

O∗X //

dlog

��

0

0 // Ω1
X/k

//

d

��

Ω1
X/k ⊕ ε · Ω

1
X/k

//

d+ε·d
��

Ω1
X/k

//

d

��

0

0 // Ω2
X/k

//

d

��

Ω2
X/k ⊕ ε · Ω

2
X/k

//

d+ε·d

��

Ω2
X/k

//

d

��

0

... ... ...

(2.3.24)

where θ(u+ ε · v) = dlog(u) + ε ·
(

dv
u −

v
u · dlog(u)

)
, η(v) = 1 + ε · v, the other left horizontal ar-

rows are given by multiplication with ε and inclusion into the second component, the right horizontal
arrows by projection to the first component and the sections by inclusion into the first component.

Step 5: (The map KS)

Denote by prX ,prD the projections ofXD = X×kD and by iX : X → XD the nilpotent closed im-
mersion of square zero induced by base change of the canonical closed immersion i : Spec (k)→ D.

X

iX

��

π //

id

  

Spec (k)

i

��
id

~~

XD

prX

��

prD // D

��
X

π // Spec (k)

(2.3.25)

Moreover, observe the (k[ε]/(ε)2)-linear exact sequence

0→ k
·ε−→ k[ε]/(ε)2 → k → 0

with maps a 7→ ε · a resp. a+ ε · b 7→ a and (k[ε]/(ε)2)-module structure of k defined by the second
map. The associated OD-linear exact sequence writes as

(2.3.26) 0→ i∗OSpec (k)
·ε−→ OD → i∗OSpec (k) → 0,

the second arrow belonging to the closed immersion i.
Now assume that we are given an element f : D → Y \ of ker(Y \(D)→ Y \(k)).
The OXD -line bundle (idX × f)∗P carries the integrable D-connection induced by ∇P by pullback
along the lower square of the diagram

X

iX

��

//

idX×ε\

��

Spec (k)

i

��
ε\

~~

X ×k D

idX×f
��

prD // D

f

��
X ×k Y \ // Y \

(2.3.27)
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Pull back the sequence (2.3.26) along prD (the pullbacks endowed with the canonical integrable D-
connections), then tensor with (idX × f)∗P and finally push out along the lower square of (2.3.25):

(prX)∗((idX × f)∗P ⊗OXD pr∗D(.)).

Observing Lemma 2.2.5 and theDX/k-linear trivialization s of (P,∇P) along idX ×ε\ this procedure
transforms (2.3.26) into an exact sequence of DX/k-modules:

0→ OX → (prX)∗(idX × f)∗P → OX → 0,

whereOX is endowed with exterior k-derivation and (prX)∗(idX×f)∗P with the pushout connection
along the lower square of (2.3.25).
This assignment yields a k-linear arrow

(2.3.28) KS : ker(Y \(D)→ Y \(k))→ Ext1
DX/k(OX ,OX).

If we forget the integrable connections, then this is precisely the usual Kodaira-Spencer map at the
zero point e\ ∈ Y \ associated to the sheaf P (cf. e.g. [Bri], 3.4, for this notion).
It fits into a commutative diagram

Ext1
DX/k(OX ,OX) ker(Y \(D)→ Y \(k))

KSoo

∼

Ext1
O
Y \

(OY \/J ,OY \/J )

(̂.)

OO

(Je\/J 2
e\)
∨

∼

(2.3.29)

where the left vertical and lower horizontal arrow is as in (2.3.20) and the right vertical identification
is the canonical one, already mentioned in (2.3.22).
For the commutativity of (2.3.29) one first checks (rather straightforwardly from the definitions) that
the composite of the right vertical and lower horizontal identification

ker(Y \(D)→ Y \(k))
∼−→ (Je\/J 2

e\)
∨ ∼−→ Ext1

O
Y \

(OY \/J ,OY \/J )

maps an arrow f : D → Y \ to the direct image of (2.3.26) along the (affine) map f :

0→ OY \/J → f∗OD → OY \/J → 0.

That KS(f) is isomorphic to the extension given by Fourier-Mukai transformation of the previous
sequence is a simple consequence of the definitions together with Lemma 2.2.5. A slightly different
argument for this compatibility of the Kodaira-Spencer map and the Fourier-Mukai transformation
(without considering integrable connections) can be found in [Bri], Lemma 4.2.3.

Step 6: (A further reduction step)

Recall from Step 3 that the theorem is proven as soon as (2.3.20) is seen to commute. But as (2.3.29)

is commutative a brief reflection shows that this is the case as soon as we know commutativity of

Ext1
DX/k(OX ,OX)

∼ // H1
dR(X/k)

ker(Y \(D)→ Y \(k))

KS
ii

∼
77

(2.3.30)
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where the upper arrow is as in (2.3.20) and the identification on the right is as explained in Step 4.
Our remaining task thus consists in verifying that (2.3.30) commutes.

Step 7: (Some preparations for the final step of proof)

By Step 4 (and the definition of the Poincaré bundle onX×SY \) the right arrow in (2.3.30) is given as
follows: for a (henceforth fixed) element f : D → Y \ of ker(Y \(D)→ Y \(k)) the OXD -line bundle
(idX × f)∗P with its integrable D-connection (induced by ∇P ) defines a class in H1(XD,Ω

∗
XD/D

)

which maps to zero under the projection in the exact sequence

(2.3.31) 0→ H1(X,Ω•X/k)→ H1(XD,Ω
∗
XD/D

)→ H1(X,Ω∗X/k)→ 0

induced by the split short exact sequence of complexes of abelian sheaves on X recorded in (2.3.24).
The thus obtained class in H1(X,Ω•X/k) gives the desired image of f .
On the other hand and as explained in Step 5, applying (prX)∗((idX × f)∗P ⊗OXD pr∗D(.)) to

0→ i∗OSpec (k)
·ε−→ OD → i∗OSpec (k) → 0

yields the DX/k-linear exact sequence

(2.3.32) 0→ OX → (prX)∗(idX × f)∗P → OX → 0.

The image of 1 ∈ k under the map k → H1(X,Ω•X/k) which appears in the long exact sequence of
hypercohomology for the associated sequence of de Rham complexes is then the image of f under the
composition of the left with the upper arrow of (2.3.30).
For the following, observe that the topological spaces of XD and X are the same and that taking
direct image of a OXD -module along prX : XD → X just means considering it as OX -module via
the morphism of ring sheavesOX → OXD = OX⊕ε·OX given by inclusion into the first component.
As it will be clear which structure is meant we will thus henceforth leave away the notation (prX)∗.
From now on let us abbreviate

L := (idX × f)∗P

which is an abelian sheaf on the topological space XD resp. X and can be viewed as invertibleOXD -
module with integrable D-connection resp. as OX -vector bundle with integrable k-connection. If we
then write the exact DX/k-linear sequence (2.3.32) as

(2.3.33) 0→ OX
ψ−→ L ϕ−→ OX → 0

it is easy to see that theOXD = OX⊕ε ·OX -structure of L is recovered from (2.3.33) by the formula

(2.3.34) (a+ ε · b) · l = a · l + b · (ψ ◦ ϕ)(l).

The D-connection and the k-connection on L translate into each other via the canonical identification

Ω1
XD/D

⊗OXD L ' (Ω1
X/k ⊗OX OXD )⊗OXD L ' Ω1

X/k ⊗OX L,

and we will denote both of them with∇L.
Finally, one checks that if a local section s : OU → L|U of ϕ over an open subset U ⊆ X is given,
then L as OXD -module is trivialized on U by means of the map

(2.3.35) L|U
∼−→ OU ⊕ ε · OU , l 7→ ϕ(l) + ε · (l − (s ◦ ϕ)(l)),
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where we tacitly view OX as included into L via ψ.

Step 8: (Conclusion of the proof)

Choose an open covering {Ui}i∈I of X with local sections si : OUi → L|Ui of ϕ and write

li := si(1) ∈ Γ(Ui,L).

Consider
(lj − li,∇L(li)) ∈

∏
i,j

Γ(Uij ,L)⊕
∏
i

Γ(Ui,Ω
1
X/k ⊗OX L).

Then there clearly exists

(uij , ωi) ∈
∏
i,j

Γ(Uij ,OX)⊕
∏
i

Γ(Ui,Ω
1
X/k)

with ψ(uij) = lj − li and (id⊗ψ)(ωi) = ∇L(li), where id⊗ψ : Ω1
X/k → Ω1

X/k ⊗OX L.3

Note that (uij , ωi) is a cocycle which represents in H1(X,Ω•X/k) the image of f under the composi-
tion of the left with the upper arrow of (2.3.30) (cf. Step 7).
On the other hand, we now represent the class of (L,∇L) in H1(XD,Ω

∗
XD/D

) by a cocycle in∏
i,j

Γ(Uij ,O∗XD )⊕
∏
i

Γ(Ui,Ω
1
XD/D

) =
∏
i,j

Γ(Uij ,O∗X ⊕ ε · OX)⊕
∏
i

Γ(Ui,Ω
1
X/k ⊕ ε · Ω

1
X/k).

Recall from (2.3.35) that we have a trivialization on Ui of L as OXD -module, defined by

(2.3.36) ti : L|Ui
∼−→ OUi ⊕ ε · OUi , l 7→ ϕ(l) + ε · (l − (si ◦ ϕ)(l)).

A representative of (L,∇L) in H1(XD,Ω
∗
XD/D

) is then given by the expression

((ti ◦ t−1
j )(1), ηi) ∈

∏
i,j

Γ(Uij ,O∗X ⊕ ε · OX)⊕
∏
i

Γ(Ui,Ω
1
X/k ⊕ ε · Ω

1
X/k),

where ηi is the image of 1 under the composition

OUi ⊕ ε · OUi
t−1
i−−→ L|Ui

∇L−−→ (Ω1
XD/D

⊗OXD L)|Ui

' ((Ω1
X/k ⊕ ε · Ω

1
X/k)⊗OX⊕ε·OX L)|Ui

id⊗ti−−−−→ Ω1
Ui/k
⊕ ε · Ω1

Ui/k
.

(2.3.37)

Observe that the section li corresponds to 1 in (2.3.36). We obtain

(ti◦t−1
j )(1) = ϕ(lj)+ε·(lj−(si◦ϕ)(lj)) = 1+ε·(sj(1)−(si◦ϕ◦sj)(1)) = 1+ε·(lj−li) = 1+ε·uij .

Furthermore, as section of Ω1
X/k ⊗OX L over Ui we have

∇L(li) = (id⊗ψ)(ωi) = ωi ⊗ ψ(1) = ωi ⊗ (ψ ◦ ϕ)(li) = ωi ⊗ ε · li,

the first three equations by definition and the last by (2.3.34). But under the identification

Ω1
X/k ⊗OX L ' Ω1

XD/D
⊗OXD L ' (Ω1

X/k ⊕ ε · Ω
1
X/k)⊗OX⊕ε·OX L

3For the final result of our Čech hypercohomology computations in this last step of proof it is irrelevant which sign con-
vention is adopted for the hyperdifferentials resp. for the cocycle representing the class of (L,∇L), as long as this is done
consistently.
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the section ωi ⊗ ε · li corresponds to ε · ωi ⊗ li, as one can readily check. We conclude that the image
of 1 under the chain (2.3.37) is the section ε · ωi of Ω1

Ui/k
⊕ ε · Ω1

Ui/k
.

Altogether, we have shown that the class of (L,∇L) in H1(XD,Ω
∗
XD/D

) is represented by

((ti ◦ t−1
j )(1), ηi) = (1 + ε · uij , ε · ωi).

From (2.3.24) it then obviously follows that the preceding class comes from the class of the cocycle
(uij , ωi) under the inclusion in (2.3.31):

H1(X,Ω•X/k)→ H1(XD,Ω
∗
XD/D

).

Hence, (uij , ωi) represents the image of f under the right arrow in (2.3.30) (cf. Step 7). But - as
remarked at the beginning of the present step of proof - it also represents the image of f under the
composition of the left with the upper arrow in (2.3.30). The commutativity of (2.3.30) is thus shown,
which according to Step 6 concludes the proof of the theorem.

Corollary 2.3.2
Consider the exact sequence of DX/S-modules constructed in (2.3.11):

0→ HX → (p1)∗P1 → OX → 0

together with the OS-linear splitting for its pullback along ε : S → X constructed in (2.3.13):

OS ⊕H ' ε∗(p1)∗P1.

Then the integrable S-connection on (p1)∗P1 has a unique prolongation to an integrable Q-connection

such that the previous data become the first logarithm sheaf of X/S/Q in the sense of Def. 1.1.1.

Proof. As already explained this follows by combining Prop. 2.1.4 and Thm. 2.3.1.

2.4 The higher logarithm sheaves and the Poincaré bundle

2.4.1 An equivalence of categories

The following auxiliary result is analogous to [Lau], (2.3). For our purposes, however, it is convenient
to give a different and direct proof, without introducing an intermediate equivalent category.

Lemma 2.4.1
Let Y be a vector bundle on S and denote by (YX ,∇YX ) its pullback via π : X → S together with

its canonical integrable S-connection. Then the following categories are equivalent:

(1) The category of DX/S-linear extensions of (YX ,∇YX ) by (OX ,d):

0→ (OX ,d)→ (U ,∇U )→ (YX ,∇YX )→ 0.

(2) The category consisting of (associative, commutative, unital) quasi-coherent (OX ,d)-algebras

with integrable S-connection (B,∇B)4 together with an exhaustive filtration by locally free OX -

submodules of finite rank with integrable S-connection (Bn,∇Bn), n ≥ 0:

(0) ⊆ (B0,∇B0
) ⊆ (B1,∇B1

) ⊆ (B2,∇B2
) ⊆ ... ⊆ (B,∇B)

4This shall mean that B is a quasi-coherent OX -algebra such that the structure map OX → B and the multiplication map
B ⊗OX B → B are horizontal.
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such that Bn · Bm ⊆ Bn+m, and together with an isomorphism of graded (OX ,d)-algebras with

integrable S-connection

ψ• : gr•(B,∇B) ' Sym•OX (YX ,∇YX ).

Proof. We define functors S : (1)→ (2), T : (2)→ (1) which will be quasi-inverse to each other.
Definition of T :
Given an object in (2) the exact sequence of DX/S-modules

0→ (B0,∇B0
)→ (B1,∇B1

)→ (B1,∇B1
)/(B0,∇B0

)→ 0

identifies by means of ψ0 and ψ1 with an exact sequence

0→ (OX ,d)→ (B1,∇B1)→ (YX ,∇YX )→ 0

which shall be the associated object in (1).
Definition of S:
Let an extension

0→ (OX ,d)
j1−→ (U ,∇U )

p1−→ (YX ,∇YX )→ 0

be given and note that U is a OX -vector bundle.
For n ≥ 0 set (Bn,∇Bn) := Symn

OX (U ,∇U ) with horizontal monomorphisms resp. epimorphisms

jn+1 : Bn → Bn+1 resp. pn+1 : Bn+1 → Symn+1
OX (YX),

given locally by

u1 · ... · un 7→ u1 · ... · un · j1(1) resp. u1 · ... · un+1 7→ p1(u1) · ... · p1(un+1),

from which one gets exact sequences

(2.4.1) 0→ (Bn,∇Bn)
jn+1−−−→ (Bn+1,∇Bn+1

)
pn+1−−−→ Symn+1

OX (YX ,∇YX )→ 0.

Define a quasi-coherentOX -module B := Sym•OX (U)/ (1− j1(1)). Note that B is the direct limit of
the Bn for the above maps jn+1. Endow it with the OX -algebra structure coming from Sym•OX (U)

and with the induced integrable S-connection, denoted by ∇B. Together with the filtration and the
isomorphism ψ• : gr•(B,∇B) ' Sym•OX (YX ,∇YX ) induced by (2.4.1) we obtain an object in (2).
That T ◦ S ' id(1) is clear. To see that S ◦ T ' id(2) we let an object of (2) be given.
The functor T maps it to the extension

0→ (OX ,d)
j1−→ (B1,∇B1

)
p1−→ (YX ,∇YX )→ 0,

where we have already taken into account the identifications of ψ0 and ψ1.
If we set B̃ := Sym•OX (B1)/ (1− j1(1)), then the functor S maps the preceding extension to (B̃,∇B̃)

together with filtration

(0) ⊆ (OX ,d) ⊆ (B1,∇B1
) ⊆ Sym2

OX (B1,∇B1
) ⊆ ... ⊆ (B̃,∇B̃)

and isomorphism ψ̃• : gr•(B̃,∇B̃) ' Sym•OX (YX ,∇YX ) induced by the exact sequences

0→ Symn
OX (B1,∇B1

)
jn+1−−−→ Symn+1

OX (B1,∇B1
)
pn+1−−−→ Symn+1

OX (YX ,∇YX )→ 0



THE HIGHER LOGARITHM SHEAVES AND THE POINCARÉ BUNDLE 121

whose maps are defined by

jn+1(b1 · ... · bn) = b1 · ... · bn · j1(1) and pn+1(b1 · ... · bn+1) = p1(b1) · ... · p1(bn+1).

For all n ≥ 0 we define OX -linear morphisms

(2.4.2) Symn
OXB1 → Bn

by b1 · ... · bn 7→ b1 · ... · bn, where on the right side multiplication in B is meant.
These morphisms are horizontal (because the multiplication map for B is horizontal) and fit into
commutative diagrams

0 // Symn
OX (B1,∇B1

)
jn+1 //

��

Symn+1
OX (B1,∇B1

)
pn+1 //

��

Symn+1
OX (YX ,∇YX ) // 0

0 // (Bn,∇Bn) // (Bn+1,∇Bn+1
) // Symn+1

OX (YX ,∇YX ) // 0

where we identify (Bn+1,∇Bn+1)/(Bn,∇Bn) with Symn+1
OX (YX ,∇YX ) by means of ψn+1.

The maps (2.4.2) are isomorphisms: use induction over n and the previous commutative diagrams.
We thus obtain isomorphisms between the exhaustive filtrations

(0) ⊆ (OX ,d) ⊆ (B1,∇B1
) ⊆ Sym2

OX (B1,∇B1
)... ⊆ (B̃,∇B̃),

(0) ⊆ (OX ,d) ⊆ (B1,∇B1
) ⊆ (B2,∇B2

) ⊆ ... ⊆ (B,∇B),

compatible with ψ̃• and ψ•, and thus also between the (OX ,d)-algebras (B̃,∇B̃) and (B,∇B).

The preceding proof shows:

Corollary 2.4.2
Suppose we are given data

(B,∇B),

(0) ⊆ (B0,∇B0) ⊆ (B1,∇B1) ⊆ (B2,∇B2) ⊆ ... ⊆ (B,∇B),

ψ• : gr•(B,∇B) ' Sym•OX (YX ,∇YX )

as in the definition of the category (2) in Lemma 2.4.1. We then have horizontal isomorphisms

Symn
OXB1

∼−→ Bn,

Sym•OX (B1)/ (1− j1(1))
∼−→ B,

induced by the rule b1 · ... · bn 7→ b1 · ... · bn, where on the right side multiplication in B is meant.

Here, j1 : OX → B1 is the inclusion coming from B0 ⊆ B1 via the identification ψ0.

Remark 2.4.3
As X is a Q-scheme one has for each OX -vector bundle U and n ≥ 0 a canonical isomorphism

Symn
OX (U∨)

∼−→ Symn
OX (U)∨

induced by
g1 · ... · gn 7→ {f1 · ... · fn 7→

∑
σ∈Σn

gσ(1)(f1) · ... · gσ(n)(fn)}.

If U carries an integrable S-connection this isomorphism is horizontal for the naturally induced con-
nections on Symn

OX (U∨) and Symn
OX (U)∨.
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2.4.2 The construction of the higher logarithm sheaves

By considering the first infinitesimal restriction to X ×S Y \1 of the Poincaré quadruple (P, r, s,∇P)

we have achieved in 2.3 a completely geometric construction of L1, ϕ1 and the restriction of ∇1

relative S (cf. Cor. 2.3.2). The higher logarithm sheaves (Ln,∇n, ϕn) of X/S/Q are defined as the
symmetric powers of (L1,∇1, ϕ1) (cf. 1.1), and in all our later applications we will only need this
approach. Nevertheless, the question naturally arises if one can recover also the data Ln, ϕn and the
restriction of∇n relative S from the Poincaré bundle on X ×S Y \, expectably from its n-th infinites-
imal restriction (Pn, rn, sn,∇Pn) on X ×S Y \n .
The answer we will give subsequently can be summarized as follows. By means of the rigidification
rn the zero fiber of the OX -vector bundle with integrable S-connection (pn)∗Pn identifies with the
structure sheaf of Y \n as OS-module and thus disposes of a distinguished section given by 1. We
define a (unique) DX/S-linear isomorphism (pn)∗Pn

∼−→ Ln under which this section corresponds to
1(n) = 1

n! and from which we obtain the desired interpretation of the higher logarithm sheaves by the
Poincaré bundle. The construction of the isomorphism uses an infinitesimal comultiplication which is
in turn naturally induced by the \-1-structure of the Gm,S-biextension (P,∇P).
The proper verification of these assertions involves the technicality of dualizing the situation, using
the auxiliary results in 2.4.1 and then redualizing.

At first, let n ≥ 2. As ε\ : S → Y \ is a regular embedding the sheaf J n/J n+1 as OS-module
naturally identifies with Symn

OS (J /J 2) (cf. [Fu-La], Ch. IV, Lemma 3.8 and Cor. 2.4) and hence by
(2.3.2) with Symn

OSH. Observing this one can apply an entirely analogous procedure as in (2.3.8)-
(2.3.11), now with the diagrams

X ×S Y \n−1
//

��

Y \n−1

��

X ×S Y \n //

pn

��

Y \n

��
X ×S Y \n

��

// Y \n

��

X // S

X ×S Y \ //

��

Y \

��
X // S

and obtains an exact sequence of OX -vector bundles with integrable S-connection

(2.4.3) 0→ Symn
OXHX → (pn)∗Pn → (pn−1)∗Pn−1 → 0

which (with Lemma 2.2.5 and Prop. 2.2.6) can also be viewed as the Fourier-Mukai transformation
of the following natural OY \ -linear exact sequence whose terms are WIT-sheaves of index 0:

0→ J n/J n+1 → OY \/J n+1 → OY \/J n → 0.

Note that the trivialization sn is essential for the construction of (2.4.3).
Setting B0 := OX , equipped with exterior S-derivation, and for each n ≥ 1:

Bn := ((pn)∗Pn)∨,
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equipped with the dual integrable S-connection of (pn)∗Pn, we get from dualizing (2.3.11) and the
sequences (2.4.3) horizontal monomorphisms

(2.4.4) Bn−1 := (0) ⊆ B0 ⊆ B1 ⊆ B2 ⊆ ...

and (with Rem. 2.4.3) for each n ≥ 0 a horizontal isomorphism

(2.4.5) ψn : Bn/Bn−1
∼−→ Symn

OX (H∨X).

Next, let an ordered tuple (n,m) with n,m ≥ 0 be fixed and write

pn,m;12 : X ×S Y \n ×S Y \m → X ×S Y \n resp. pn,m;13 : X ×S Y \n ×S Y \m → X ×S Y \m

for the projections and
µ\n,m : Y \n ×S Y \m → Y \n+m

for the morphism naturally induced by the multiplication map µ\ : Y \ ×S Y \ → Y \.
The horizontal isomorphism of (0.1.21) then induces by pullback via the canonical closed embedding

X ×S Y \n ×S Y \m → X ×S Y \ ×S Y \

a DX×SY \n×SY \m/Y \n×SY \m -linear isomorphism

(idX × µ\n,m)∗Pn+m
∼−→ (pn,m;12)∗Pn ⊗O

X×SY
\
n×SY

\
m

(pn,m;13)∗Pm.

Together with adjunction we obtain a DX×SY \n+m/Y
\
n+m

-linear morphism

Pn+m → (idX × µ\n,m)∗
[
(pn,m;12)∗Pn ⊗O

X×SY
\
n×SY

\
m

(pn,m;13)∗Pm
]
.

Taking its direct image along pn+m : X×S Y \n+m → X , noting pn+m ◦ (idX×µ\n,m) = pn ◦pn,m;12

as well as the projection formula and base change along the cartesian diagram of affine maps

X ×S Y \n ×S Y \m
pn,m;13//

pn,m;12

��

X ×S Y \m
pm

��
X ×S Y \n

pn // X

then yields a DX/S-linear morphism

(pn+m)∗Pn+m → (pn)∗(pn,m;12)∗
[
(pn,m;12)∗Pn ⊗O

X×SY
\
n×SY

\
m

(pn,m;13)∗Pm
]

∼−→ (pn)∗
[
Pn ⊗O

X×SY
\
n

(pn,m;12)∗(pn,m;13)∗Pm
] ∼−→ (pn)∗

[
Pn ⊗O

X×SY
\
n

(pn)∗(pm)∗Pm
]

∼−→ (pn)∗Pn ⊗OX (pm)∗Pm.

We only remark that compatibility with the connections can be checked similarly as in Lemma 2.2.5
and that the resulting map of the previous chain is the same if one uses pn+m ◦ (idX × µ\n,m) =

pm ◦ pn,m;13 instead of pn+m ◦ (idX × µ\n,m) = pn ◦ pn,m;12 and then proceeds analogously.

In sum, for a fixed ordered tuple (n,m) with n,m ≥ 0 we have constructed from the isomorphism
(0.1.21) - which is part of the \-1-structure on P (cf. 0.1.3) - in a canonical way a horizontal map

(2.4.6) ξ(n,m) : (pn+m)∗Pn+m → (pn)∗Pn ⊗OX (pm)∗Pm.
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The fact that P is a commutative Gm,X -extension of X ×S Y \, i.e. the corresponding commutative
diagrams (0.1.8) and (0.1.9), implies the commutativity of the diagrams

(pn+m)∗Pn+m

ξ(n,m) //

id

��

(pn)∗Pn ⊗OX (pm)∗Pm

can

��
(pm+n)∗Pm+n

ξ(m,n) // (pm)∗Pm ⊗OX (pn)∗Pn

and

(pn+m+l)∗Pn+m+l

ξ(n+m,l) //

ξ(n,m+l)

��

(pn+m)∗Pn+m ⊗OX (pl)∗Pl

ξ(n,m)⊗id

��
(pn)∗Pn ⊗OX (pm+l)∗Pm+l

id⊗ξ(m,l) // (pn)∗Pn ⊗OX (pm)∗Pm ⊗OX (pl)∗Pl

The morphisms in (2.4.6) are compatible with the transition maps arising from the projections in
(2.4.3) and for m = 0 become the identity on (pn)∗Pn under the DX/S-linear trivialization s of P0.

Let B be the quasi-coherent OX -module with integrable S-connection defined as the direct limit
over the Bn = ((pn)∗Pn)∨ in (2.4.4). By dualizing the maps of (2.4.6) it becomes (according to the
previous remarks) a well-defined associative, commutative and unital quasi-coherent (OX ,d)-algebra
with integrable S-connection.
Moreover, the arrow (2.4.6) induces on the subsheaf Symn+m

OX HX of (pn+m)∗Pn+m a map

Symn+m
OX HX → Symn

OXHX ⊗OX Symm
OXHX

which under the identification of Rem. 2.4.3 equals precisely the dual of the morphism

Symn
OX (H∨X)⊗OX Symm

OX (H∨X)→ Symn+m
OX (H∨X)

given by multiplication in symmetric powers; one can verify this by calculating on the one hand the
dual of the previous multiplication map under the isomorphism of Rem. 2.4.3 and by using on the
other hand the definition of (2.4.6) and the infinitesimal group law of Y \ to check the claimed equality.
Altogether, we see that B together with the filtration

(0) ⊆ B0 ⊆ B1 ⊆ B2 ⊆ ... ⊆ B

induced by (2.4.4) and the isomorphism

ψ• : gr•B
∼−→ Sym•OX (H∨X)

induced by (2.4.5) provides data as in the hypothesis of Cor. 2.4.2. We thus conclude that the map

Symn
OXB1 → Bn

defined by multiplication in B is a DX/S-linear isomorphism. With the isomorphism obtained from
the previous map by dualizing and using Rem. 2.4.3 one can verify that the following composition in
which the first arrow comes from the maps (2.4.6) is a DX/S-linear isomorphism:

(2.4.7) (pn)∗Pn → (p1)∗P1 ⊗OX ...⊗OX (p1)∗P1

1
n! ·can
−−−−→ Symn

OX ((p1)∗P1).
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Recall from Cor. 2.3.2 and Def. 1.1.1 that the right side with its integrable S-connection is the n-th
logarithm sheaf Ln of X/S/Q with∇n restricted relative S. We have the OS-linear identification

(2.4.8) ε∗(pn)∗Pn
∼−→ (π\n)∗(ε× idY \n )∗Pn ' (π\n)∗OY \n ,

where the first map is the base change isomorphism along the cartesian diagram of affine maps

Y \n
π\n //

ε×id
Y
\
n

��

S

ε

��
X ×S Y \n

pn // X

and the second is induced by the trivialization

rn : (ε× idY \n )∗Pn ' OY \n .

With the identifications induced by (2.4.8) the pullback of the isomorphism (2.4.7) along ε is checked
to translate into the OS-linear isomorphism

(2.4.9) OY \/J n+1 → OY \/J 2 ⊗OS ...⊗OS OY \/J 2
1
n! ·can
−−−−→ Symn

OS (OY \/J 2),

where the first arrow is induced by n-fold multiplication Y \1 ×S ...×S Y
\
1 → Y \n . The splitting ϕn of

ε∗Ln is induced by identifying the OS-module OY \/J 2 in Symn
OS (OY \/J 2) with OS ⊕H.

Proposition 2.4.4
The isomorphism (2.4.7) is the unique DX/S-linear isomorphism

(pn)∗Pn
∼−→ Ln

whose pullback along ε maps 1 ∈ Γ(Y \n ,OY \n ) = Γ(S, (π\n)∗OY \n ) ' Γ(S, ε∗(pn)∗Pn) to 1(n) = 1
n! .

Under this identification the splitting

ϕn : ε∗Ln '
n∏
k=0

Symk
OSH

corresponds to the composition of (2.4.8) with (2.4.9), where one observes OY \/J 2 ' OS ⊕ H as

OS-modules (cf. (2.3.6)):

ε∗(pn)∗Pn ' OY \/J n+1 ∼−→ Symn
OS (OY \/J 2) '

n∏
k=0

Symk
OSH.

Finally, the transition maps of the Ln correspond to those of the (pn)∗Pn as given in (2.4.3).

Proof. It only remains to check the uniqueness claim and the statement about the transition maps.
The first follows from the observation that a DX/S-linear automorphism of Ln which in the zero fiber
maps 1(n) to itself is the identity because of the isomorphism HomDX/S (Ln,Ln)

∼−→ Γ(S, ε∗Ln)

induced by (1.3.5). We finally prove the assertion about the transition maps.
By what we already remarked about the morphisms (2.4.6) we know that we have a commutative
diagram

(pn)∗Pn //

��

(p1)∗P1 ⊗OX ...⊗OX (p1)∗P1

��
(pn−1)∗Pn−1

// (p1)∗P1 ⊗OX ...⊗OX (p1)∗P1
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in which the left vertical arrow is the transition map in (2.4.3), the horizontal arrows are given by
(2.4.6) and the right vertical arrow is induced by tensoring (n− 1)-fold the identity map on (p1)∗P1

with the transition morphism pr : (p1)∗P1 → OX in the i-th component, where 1 ≤ i ≤ n. This
implies that the diagram is still commutative if we replace the right vertical arrow by the map

1

n
· (pr⊗ id⊗...⊗ id +...+ id⊗...⊗ id⊗pr).

But this map obviously sits in a commutative diagram

(p1)∗P1 ⊗OX ...⊗OX (p1)∗P1

��

1
n! ·can // Symn

OX ((p1)∗P1) = Ln

��
(p1)∗P1 ⊗OX ...⊗OX (p1)∗P1

1
(n−1)!

·can
// Symn−1

OX ((p1)∗P1) = Ln−1

with right vertical arrow given by the usual transition morphism of the logarithm sheaves (cf. (1.1.3)).
Recalling the definition of the maps (2.4.7) the remaining claim obviously follows.

Hence, if we prolong the integrable S-connection of (pn)∗Pn to the integrable Q-connection provided
by ∇n via the isomorphism in Prop. 2.4.4, the sheaf (pn)∗Pn becomes an object of Un(X/S/Q),
where the filtration Ai((pn)∗Pn) := ker((pn)∗Pn → (pi−1)∗Pi−1) corresponds to the canonical fil-
tration on Ln (cf. also Rem. 1.1.6). Together with the section 1 ∈ Γ(Y \n ,OY \n ) = Γ(S, (π\n)∗OY \n ) '
Γ(S, ε∗(pn)∗Pn) it becomes the n-th logarithm sheaf of X/S/Q as characterized at the end of 1.3.2.
The mentioned prolongation is the unique one with this property.
Via theOS-linear isomorphism induced by (2.4.9) and the usual decompositionOY \/J 2 ' OS⊕H:

(2.4.10) OY \/J n+1 ∼−→ Symn
OS (OY \/J 2) '

n∏
k=0

Symk
OSH

we obtain on
∏n
k=0 Symk

OSH the structure of a finite locally free OS-algebra: this structure is pre-
cisely the one introduced in (1.3.9) and (1.3.10), as one can check explicitly. The π∗

(∏n
k=0 Symk

OSH
)
-

module structure on (pn)∗Pn, given by OX×SY \n -multiplication on Pn and (2.4.10), becomes under
the isomorphism of Prop. 2.4.4 the π∗

(∏n
k=0 Symk

OSH
)
-module structure on Ln defined in 1.3.3.

In this interpretation the morphism in the pro-category of U(X/S/Q) induced by the above maps

ξ(n,m) : (pn+m)∗Pn+m → (pn)∗Pn ⊗OX (pm)∗Pm

is nothing else than the comultiplication on the projective system of the logarithm sheaves, defined as
in [Be-Le], 1.2.10 (i), via their universal property (1.3.5).

2.5 The invariance under isogenies and the Poincaré bun-
dle

2.5.1 The transpose endomorphism

We begin with some general theory and recall how a homomorphism of abelian schemes induces
(in the other direction) a homomorphism between the respective universal vectorial extensions of the
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duals. As in the end only the case of N -multiplication will be relevant for us we here focus on endo-
morphisms, which slightly reduces notation (for the analogous general case cf. Rem. 2.5.3 (i)).

Let S be an arbitrary locally noetherian scheme and X/S an abelian scheme, Y \/S the universal
vectorial extension of its dual abelian scheme Y/S and (P, r,∇P) the Y \-rigidified Poincaré bundle
on X ×S Y \ with its universal integrable Y \-connection (cf. 0.1.1).

Let u : X → X be an endomorphism of X over S.
Consider the endomorphism u× idY \ of the abelian Y \-schemeX×S Y \ and the pullback line bundle
(u× idY \)

∗P: it is algebraically equivalent to zero with respect to Y \, as one easily deduces from the
corresponding fact about P . Moreover, equip this line bundle with the Y \-rigidification ru naturally
induced by r and with the integrable Y \-connection (∇P)u arising from∇P by pullback.

Then, by definition of Y \, there exists a unique S-morphism

(2.5.1) u\ : Y \ → Y \

such that

(2.5.2) (idX × u\)∗(P, r,∇P) ' ((u× idY \)
∗P, ru, (∇P)u),

where the left side is equipped with the Y \-rigidification and integrable Y \-connection given by pull-
back of (P, r,∇P) along the cartesian diagram

X ×S Y \
idX×u\//

��

X ×S Y \

q

��
Y \

u\ // Y \

The S-morphism u\ : Y \ → Y \ of (2.5.1) is an endomorphism and called the transpose endomorphism
of u. For an S-scheme T it is given on T -rational points by sending the isomorphism class of a triple
(L, α,∇L) ∈ Pic\(X ×S T/T ) to the class of the pullback (u × idT )∗L which is endowed with
T -rigidification and integrable T -connection as performed above for (u× idY \)

∗P .
Recall also (cf. Lemma 0.1.5) that the isomorphism of (2.5.2) is unique.

Working with Y and (P0, r0) instead of Y \ and (P, r,∇P) one defines in a completely analogous
way the transpose endomorphism Y → Y associated with u.

To conclude this general part, we determine the transpose endomorphism in the important case of
multiplication by integers. The result is what one would expect, its proof however not entirely trivial.

Proposition 2.5.1
For the N -multiplication endomorphism [N ] : X → X , where N is an integer, the transpose endo-

morphism [N ]\ : Y \ → Y \ equals the N -multiplication map of the S-group scheme Y \. The same

statement holds if Y \ is replaced by Y .

Proof. At first, let (L, α) be any S-rigidified line bundle on X which is algebraically equivalent to
zero with respect to S. The existence of α and the definition of algebraic equivalence to zero imply
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that there is some isomorphism of line bundles on X ×S X:

(2.5.3) µ∗L ⊗OX×SX pr∗1L−1 ⊗OX×SX pr∗2L−1 ' OX×SX ,

where µ,pr1,pr2 : X ×S X → X denote the multiplication map resp. the two projections.
By restricting (2.5.3) via the morphism idX ×(−1)X : X → X ×S X , where (−1)X is the inverse
map of X/S, and by taking into account the S-rigidification α, one obtains an isomorphism

(2.5.4) (−1)∗XL ' L−1.

In the following, ifM and N are two line bundles on X which are isomorphic up to a tensor factor
given by the pullback of a line bundle on S, we will writeM'S N .
Combining (2.5.4) with the addition formula for N -multiplication:

[N ]∗L 'S L⊗
N2+N

2 ⊗OX (−1)∗XL⊗
N2−N

2 ,

which is an easy consequence of the theorem of cube (cf. [Ch-Fa], Thm. 1.3), yields

(2.5.5) [N ]∗L 'S L⊗N .

Equip each side with the S-rigidification naturally induced by α. The existence of such rigidifications
and (2.5.5) imply that there is some isomorphism

(2.5.6) [N ]∗L ' L⊗N

which moreover can be chosen uniquely such that it respects these S-rigidifications.5

This implies that the transpose endomorphism Y → Y of [N ] : X → X evaluated in S-rational
points equals the N -multiplication map Y (S)→ Y (S). As the previous arguments work unalteredly
in the situation X ×S T/T (with an S-scheme T ) the second claim of the proposition follows.
Now assume in addition that L is endowed with an integrable S-connection ∇L, i.e. (L, α,∇L) de-
fines a class in Pic\(X/S). Equip the line bundles in (2.5.6) with the integrable S-connections given
by pullback resp. by tensor product. If we can show that (2.5.6) is horizontal for these connections,
then we have verified that [N ]\(S) : Y \(S)→ Y \(S) is the N -multiplication map. As everything we
do works equally in the situation X ×S T/T (with an S-scheme T ) the remaining first claim of the
proposition follows.
The horizontality of (2.5.6) can be shown with the same trick as used in [Maz-Mes], proof of Prop.
(4.2.1) - in our situation applied to the isomorphism (2.5.6). Only note the following: to make the
argument of [Maz-Mes] work we need to see that also in our situation "i(∇) depends only on L and
not on the integrable connection∇ chosen" (cf. ibid., p. 49). As in [Maz-Mes] we want to deduce this
fact from ibid., Lemma (3.2.6) - in the completely analogous way as is illustrated there after the proof
of that lemma. The reasoning given there carries over to our situation, i.e. the equality "δ(∇̄) = δ( ¯̄∇)"
(cf. ibid., p. 42) holds also in our case, because the morphism [N ] : X → X acts as N -multiplication
on invariant differential forms.

2.5.2 Interpretation of the invariance property

We resume our familiar geometric setting X/S/Q and show that in our geometric interpretation of
the logarithm sheaves via the Poincaré bundle their invariance under (endomorphic) isogenies is en-
coded in the symmetry isomorphism (2.5.2). We explicate full details only for the case which will

5The argument is the same as in footnote 6 of Chapter 0.
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be concretely needed in the future, namely that of an isogeny endomorphism and the first logarithm
sheaf. A brief outline of the (completely analogous) general case is included in a final remark.

Let u : X → X be an isogeny (cf. footnote 11 of Chapter 1) and u\ : Y \ → Y \ its transpose.
Write

u\1 : Y \1 → Y \1

for the morphism naturally induced by u\, where as usual Y \1 is the first infinitesimal neighborhood
of the zero section of Y \/S with associated closed immersion ε\1 : Y \1 → Y \ (cf. Def. 2.2.14).
We will abbreviate with ι1 : X ×S Y \1 → X ×S Y \ the closed immersion idX ×ε\1.

Recall from Cor. 2.3.2 how the first logarithm sheaf L1 of X/S/Q was constructed as (p1)∗P1,
where P1 is the restriction of P via ι1 and p1 : X ×S Y \1 → X the projection.
We have the following chain of canonical OX -linear isomorphisms:

u∗L1 = u∗(p1)∗P1 ' (p1)∗(u× idY \1
)∗P1 ' (p1)∗ι

∗
1(u× idY \)

∗P '(!) (p1)∗ι
∗
1(idX × u\)∗P

' (p1)∗(idX×u\1)∗P1 ' (p1)∗(idX×u\1)∗(idX×u\1)∗P1 ' (p1)∗[(idX×u\1)∗OX×SY \1⊗OX×SY \1
P1].

The isomorphisms after the equality all are easy standard identifications coming from flat base change,
commutative diagrams and the projection formula - except for the one decorated with the exclamation
mark: this is the crucial identification of (2.5.2).
The map on structure sheaves

(2.5.7) OX×SY \1 → (idX × u\1)∗OX×SY \1

induced by
idX ×u\1 : X ×S Y \1 → X ×S Y \1

is an isomorphism because the corresponding morphism of quasi-coherent OX -algebras is the map

id⊕(u∗dR)∨X : OX ⊕HX → OX ⊕HX

and thus an isomorphism. Here, we denote as in 1.4.2 with u∗dR : H1
dR(X/S)→ H1

dR(X/S) the map
on de Rham cohomology induced by u, which is an isomorphism (cf. the proof of Thm. 1.4.2), and
with (u∗dR)∨X : HX → HX the morphism obtained from it by dualizing and pullback to X .
With the identification (2.5.7) we can conclude the above chain of isomorphisms and in sum receive

(2.5.8) u∗L1 = u∗(p1)∗P1 ' ...... ' (p1)∗P1 = L1.

One checks that (2.5.8) respects the integrable S-connections of both sides, where u∗L1 carries the
pullback connection (apart from standard verifications one observes in particular the horizontality of
(2.5.2)). It is a further routine affair to see that under pullback via ε it maps the global S-section
1(1) = 1 of ε∗u∗L1 ' ε∗L1 ' OS ⊕ H to the global S-section 1(1) = 1 of ε∗L1 ' OS ⊕ H
(for this one has to recall how the splitting of L1 = (p1)∗P1 was defined explicitly in terms of the
rigidification r1 of P1, cf. (2.3.13), and in particular observe the compatibility of (2.5.2) with the
occurring rigidifications). We have thus defined in (2.5.8) a DX/S-linear isomorphism

(2.5.9) L1
∼−→ u∗L1
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which in the zero fiber sends 1(1) to 1(1), and by Thm. 1.3.6 (ii) we know that it is in factDX/Q-linear.
By comparison of the associated maps in the zero fiber we conclude:

Proposition 2.5.2
The DX/Q-linear isomorphism constructed in (2.5.9) is the invariance isomorphism of Thm. 1.4.2.

Leaving away the unessential formal ballast in the chain of isomorphisms (2.5.8) we thus see that
after interpreting the logarithm sheaf L1 geometrically via the Poincaré bundle its invariance under
(endomorphic) isogenies expresses as the isomorphism

(idX × u\)∗(P, r,∇P) ' ((u× idY \)
∗P, ru, (∇P)u)

of (2.5.2). This is the crucial insight of the above discussion.

Let us finally indicate some obvious generalizations of the preceding line of arguments:

Remark 2.5.3
(i) If u : X → X ′ is a homomorphism of abelian schemes over a locally noetherian base S its trans-
pose homomorphism u\ : (Y ′)\ → Y \ is characterized by the existence of a (unique) isomorphism

(2.5.10) (idX × u\)∗(P, r,∇P) ' ((u× id(Y ′)\)
∗P ′, r′u, (∇P′)u),

where r′u resp. (∇P′)u is the (Y ′)\-rigidification resp. integrable (Y ′)\-connection induced by r′

resp. ∇P′ . In T -rational points (with an S-scheme T ) it is given by pulling back the class of a triple
(L′, α′,∇L′) in Pic\(X ′ ×S T/T ) via u× idT : X ×S T → X ′ ×S T .

(ii) Resuming the usual situation S/Q one can then construct for an isogeny of abelian S-schemes
u : X → X ′ in an entirely analogous way (but with more notational demand) a chain of isomorphisms
as in (2.5.8) whose crucial part is the identification (2.5.10) and obtains a DX/Q-linear isomorphism

L1
∼−→ u∗L′1

which is precisely the (general) invariance isomorphism of Thm. 1.4.2.

(iii) Finally, in the situation of (ii), when working with the n-th infinitesimal neighborhoods Y \n resp.
(Y ′)\n for n ≥ 1 one deduces from (2.5.10) in the same way as before a DX/S-linear isomorphism

u∗(p′n)∗P ′n ' (pn)∗Pn

which in the zero fiber sends 1 to 1 in the induced isomorphism ofOS-modulesO(Y ′)\n
' OY \n (recall

the identification (2.4.8)). If we identify (p′n)∗P ′n ' L′n resp. (pn)∗Pn ' Ln as in Prop. 2.4.4, then
we obtain a DX/S-linear isomorphism

Ln
∼−→ u∗L′n

which sends 1(n) = 1
n! to (1(n))′ = 1

n! in the zero fiber, hence is DX/Q-linear and coincides with the
invariance isomorphism defined in Cor. 1.4.3.
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2.6 Motivic description of the first logarithm extension class

2.6.1 Generalities on 1-motives over a scheme

We begin by recollecting fundamental definitions and facts concerning 1-motives over a base scheme,
fixing at the same time notation used in the further progress.
As main sources for our exposition we will use [BaVi], 2.2, [An-BaVi], 1.1-1.2 and [Ber], 2 and 4.
The theory goes back to the seminal work [De2], 10, which is focused on 1-motives over an alge-
braically closed field but also contains the definition over an arbitrary scheme (cf. ibid., (10.1.10)).

Basic definitions

Fix a locally noetherian base scheme S. The category of commutative S-group schemes will be tacitly
viewed as a full subcategory of the category of abelian fppf -sheaves over S.

By definition, a (smooth) 1-motive M = [X
u−→ G] over S is the datum of commutative S-group

schemes X,G and a homomorphism u between them, where we require that:
(i) X is a lattice over S, i.e. étale locally on S isomorphic to the constant S-group scheme defined by
a finitely generated free abelian group;
(ii) G is a semi-abelian scheme over S, i.e. an extension

0→ T → G→ A→ 0

of an abelian scheme A by a torus T .6

Note that any semi-abelian scheme (and a fortiori: any abelian scheme or torus) over S naturally
becomes a 1-motive over S by setting X = 0; the analogous comment applies to a lattice over S.

A morphismM1 →M2 between two 1-motives over S is a commutative diagram of homomorphisms

X1
u1 //

��

G1

��
X2

u2 // G2

We remark that the so-defined morphisms respect the extension structures of G1 and G2: the reason
for this is that any homomorphism of a torus into an abelian scheme is zero (cf. [Berto], Lemma 1.2.1).

The obtained category of 1-motives over S is additive but not abelian. By considering a 1-motive
M = [X

u−→ G] as complex in degree −1 and 0 we may view the category of 1-motives as a full
subcategory of the bounded complexes of abelian fppf -sheaves over S, and we still obtain a full
embedding when further passing to the bounded derived category Db(Sfppf ) of these sheaves (cf.
[BaVi], Scholium 2.2.4). These viewpoints will be adopted several times in what follows.

6By a torus T we mean an S-group scheme which is étale locally on S isomorphic to finitely many copies of Gm,S .
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Universal vectorial extension and de Rham realization

By an extension [X
v−→ E] of a 1-motive M = [X

u−→ G] by a vector group W over S we mean an
extension

0→W → E → G→ 0

of G by W together with a homomorphism v : X → E which lifts u.

A universal (vectorial) extension E(M) = [X
v−→ E(M)G] of M is then defined to be an exten-

sion of M by an S-vector group V (M) which parametrizes all extensions of M by S-vector groups
W via pushout along a unique vector group homomorphism V (M)→W .

A universal extension exists for every 1-motive M and is determined up to canonical isomorphism
(cf. [An-BaVi], 2.2-2.3, or [Ber], 2, for a proof).
We only record the following two special cases: if M is an abelian scheme A over S, then its uni-
versal extension is given by the S-group scheme A\ introduced in Thm. 0.1.13. Further, if M is a
semi-abelian schemeG, extension ofA by T , then its universal extension identifies withA\×AG, i.e.
we take the pullback of the universal extension sequence (0.1.3) forA via the homomorphismG→ A.

Given a 1-motive M over S with universal extension E(M) = [X
v−→ E(M)G], its de Rham re-

alization TdR(M) is defined to be the OS-vector bundle

TdR(M) := Lie(E(M)G/S),

where the last means the Lie algebra relative S of the (smooth) S-group scheme E(M)G.
We recall from Thm. 0.1.13 that for M = A an abelian scheme over S we have canonically

TdR(A) ' H1
dR(A∨/S),

where A∨ denotes the dual abelian scheme of A.

Taking universal extensions as well as de Rham realizations is covariant functorial and exact with
respect to short exact sequences of 1-motives over S (cf. [An-Ber], Lemma 4.1).7

Cartier duality

We briefly recall the construction of the Cartier dual for a 1-motive. Full details can be found in [Jo1],
1.3 (where more general motives with torsion are admitted) and in [BaVi], 2.2.7.

If M = [X
u−→ G] is a 1-motive over S we define abelian fppf -sheaves over S

X∨ := Homfppf (T,Gm,S), G∨ := Ext1
fppf ([X → A],Gm,S), T∨ := Homfppf (X,Gm,S),

which are all recognized as being represented by commutative S-group schemes. X∨ resp. T∨

becomes a lattice resp. torus over S. By applying RHomfppf (−,Gm,S) to the distinguished triangle

A→ [X → A]→ [X → 0],

7A morphism between universal extensions is defined analogously as for 1-motives; exactness for sequences of 1-motives
and universal extensions is to be understood on the level of complexes of abelian fppf -sheaves.
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going into cohomology and using the isomorphism of Barsotti-Rosenlicht-Weil (cf. Thm. 0.1.26).

A∨ ' Ext1
fppf (A,Gm,S)

yields an exact sequence T∨ → G∨ → A∨; that this is in fact an extension of A∨ by T∨ follows from
the vanishing of Homfppf (A,Gm,S) and Ext1

fppf (X,Gm,S) (cf. [SGA7-I], exp. VIII, (3.2.1) and
[Berto], Lemma 1.1.4).
Similarly, the canonical distinguished triangle

T →M → [X → A]

induces a homomorphism u∨ : X∨ → G∨.
The 1-motive M∨ = [X∨

u∨−−→ G∨] over S obtained in this way is the Cartier dual of M . Its forma-
tion is contravariant functorial in 1-motives over S and satisfies a natural double duality isomorphism,
such that it defines an antiautomorphism of the category of 1-motives over S.

We remark that it is possible to interpret M∨ as representing the Gm,S-biextension functor asso-
ciated with M on the category of 1-motives over S (cf. [BaVi], 2.2.24).

As an easy example, the Cartier dual of the 1-motive [ZS → 0] is given by Gm,S , where we write ZS
for the constant S-group scheme associated with the abstract group Z.

Deligne’s pairing

A canonical construction for Cartier dual 1-motives over S

M = [X
u−→ G], M∨ = [X∨

u∨−−→ G∨]

is the Deligne pairing

Φ : TdR(M)⊗OS TdR(M∨)→ OS ,

between their de Rham realizations, already explained at the end of 0.1.3 for the special case of
M = A an abelian scheme, where it writes as

Φ : H1
dR(A∨/S)⊗OS H1

dR(A/S)→ OS .

We recall from [Ber], 4, that in the general motivic setting Φ is obtained as follows: The canonical
S-connection of the Poincaré biextension on E(M)G×S E(M∨)G∨ induces via its curvature (which
is an invariant 2-form) an alternating OS-bilinear form on Lie algebras relative S, writing as

R : (TdR(M)⊕ TdR(M∨))⊕ (TdR(M)⊕ TdR(M∨))→ OS .

The Deligne pairing is then defined by

Φ(v ⊗ w) := R((v, 0), (0, w)),

and it is a fundamental fact, proven in full generality in [Ber], Thm. 4.3, that Φ is perfect.
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2.6.2 The motivic Gauß-Manin connection and de Rham-Manin map

The recent results in [An-Ber] permit the definition of various realization maps on the sections of a
1-motive. In the case of the de Rham realization, which we are interested in, this produces exten-
sions of vector bundles with integrable connection and thus provides the suitable tool for a motivic
interpretation of the logarithm extension. Let us hence review the relevant constructions of [An-Ber].

Motivic Gauß-Manin connection

LetB be a locally noetherian scheme andM = [X
u−→ G] a 1-motive overB with universal extension

E(M) = [X
v−→ E(M)G]. Further, let q : B → T be a smooth morphism with T locally noetherian.

Then, following [An-Ber], 4.2, an integrable motivic Gauß-Manin connection for M and q : B → T

∇M : TdR(M)→ Ω1
B/T ⊗OB TdR(M)

on the de Rham realization of M can be constructed as follows:
If ∆1

B/T denotes the first infinitesimal neighborhood of the diagonal immersion B → B ×T B, we
have natural morphisms

B
i−→ ∆1

B/T → B ×T B

composing to the diagonal, where i is a nilpotent closed immersion of square zero.
Write p1, p2 : ∆1

B/T → B for the maps induced by the projections of B ×T B and let M1,M2 be the
1-motives over the (locally noetherian) scheme ∆1

B/T obtained by base extension of M via p1, p2.
Then, the crucial point for the construction of the connection on TdR(M) = Lie(E(M)G/B) is the
existence of a canonical isomorphism of ∆1

B/T -group schemes

E∆1
B/T

(idM ) : E(M1)G1
' E(M2)G2

which becomes the identity on E(M)G after further base change to B via i. Passing to Lie algebras
relative ∆1

B/T in this isomorphism yields the desired connection on TdR(M) (cf. 0.2.1 (vii)). Its
integrability is a consequence of the smoothness of q : B → T (cf. [An-Ber], 4.2 (d)).

The existence of E∆1
B/T

(idM ) follows from a more general motivic deformation result for locally
nilpotent PD-thickenings, proven by interpreting the universal extension in the framework of the
crystalline site (cf. ibid., Thm. 2.1 and section 3).

The connection ∇M enjoys a number of natural functorial properties and turns out to be the ex-
pectable connection in special cases: e.g. if M = Gm,B it equals the exterior derivation on OB , and
for M = A an abelian scheme it coincides with the usual Gauß-Manin connection on H1

dR(A∨/B)

(cf. ibid., Ex. 4.3 and Lemma 4.5).

Remark 2.6.1
When working with Z-flat schemes any isomorphism of ∆1

B/T -group schemes

E(M1)G1 ' E(M2)G2

restricting under i to the identity on E(M)G is already the canonical isomorphism E∆1
B/T

(idM ) of
above (cf. the argument in [An-Ber], beginning of 6).
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Motivic de Rham-Manin map

As in [An-Ber], 7.1, we define the group M(B) of B-rational points of M by

M(B) := HomDb(Bfppf )(ZB ,M)

and the motivic de Rham-Manin map for M and q : B → T

MM,dR : M(B)→ Ext1
DB/T ((TdR(M∨),∇M∨), (OB ,d))

as the following composition:

HomDb(Bfppf )(ZB ,M)
∼−→ Ext1

1−Mot(M
∨,Gm,B)→ Ext1

DB/T ((TdR(M∨),∇M∨), (OB ,d)).

Here, the first arrow comes from the chain of natural identifications (cf. ibid., (16))

(2.6.1) HomDb(Bfppf )(ZB ,M) ' Ext1
1−Mot(Z[1],M) ' Ext1

1−Mot(M
∨,Gm,B),

and the second is given by passage to de Rham realizations, which are viewed as DB/T -modules via
the associated motivic Gauß-Manin connection.
The mapMM,dR is a group homomorphism behaving functorially in M and also in B when working
with Z-flat schemes (cf. ibid., Prop. 7.2).

Note that for M = A an abelian scheme over B the above group A(B) identifies with the usual
group of B-rational points HomB(B,A), which we will also denote by A(B), not distinguishing be-
tween a section s of A/B and its associated homomorphism ZB

17→s−−−→ A.
Observe further that the motivic de Rham-Manin map for A and q : B → T writes as

MA,dR : A(B)→ Ext1
DB/T (H1

dR(A/B),OB),

where (according to [An-Ber], Lemma 4.5) H1
dR(A/B) carries its usual Gauß-Manin connection.

Let us point already now to the subtle appearance of a sign, which becomes important when inter-
preting the subsequent motivic results geometrically by the Poincaré bundle at the end of the section.

Remark 2.6.2
If M = A is an abelian scheme over B and A∨ denotes its dual, then the composite

A(B) ' Ext1
1−Mot(A

∨,Gm,B) ' Ext1
fppf (A∨,Gm,B)

of (2.6.1) with the obvious identification differs from the Barsotti-Rosenlicht-Weil isomorphism in
Thm. 0.1.26 - biduality of Thm. 0.1.10 tacitly implied - by a minus sign (cf. [An-BaVi], 1.2, 1)).8

In view of this it might seem more natural to modify the motivic de Rham-Manin map and precompose
it with the inversion automorphism of M(B). The resulting homomorphism

M̃M,dR : M(B)→ Ext1
DB/T ((TdR(M∨),∇M∨), (OB ,d))

8The cited sign change is based on the fact that in the chain (2.6.1) one is actually using an intermediate identification

HomDb(Bfppf )(ZB ,M) ' Ext1
Db(Bfppf )

(Z,M [−1]) ' Ext1
Db(Bfppf )

(Z[1],M),

such that a shift of distinguished triangles appears (cf. also once again [An-Ber], (16)).
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then equals −MM,dR and in the case of M = A an abelian scheme is now given by composing the
Barsotti-Rosenlicht-Weil identification

A(B) ' Ext1
fppf (A∨,Gm,B) ' Ext1

1−Mot(A
∨,Gm,B)

with the de Rham realization map (motivic Gauß-Manin connections implied)

Ext1
1−Mot(A

∨,Gm,B)→ Ext1
DB/T (H1

dR(A/B),OB).

2.6.3 The first logarithm extension and the motivic de Rham-Manin
map

In the following we show how the dual of the elliptic logarithm extension can be realized as image
under a suitably chosen motivic de Rham-Manin map.
With our above preparations the precise statement is quickly given, but its detailed proof will require
some work and occupy the whole of this subsection. The basic idea consists in first relating the
logarithm extension to the so-called "classical Manin map" of [Co2] and in then using a comparison
theorem between this last map and the motivic de Rham-Manin map, established in [An-Ber] by a
translation of the whole situation into (log-) crystalline cohomology.9

Formulation of the main result and a first step towards its proof

If S is a connected scheme which is smooth, separated and of finite type over Spec (Q) and if E π−→ S

is an elliptic curve, we may view E ×S E as abelian scheme relative E via the second projection
pr2. The motivic de Rham-Manin map for E ×S E and the smooth morphism E → Spec (Q) then
expresses as a homomorphism

M(E×SE),dR : (E ×S E)(E)→ Ext1
DE/Q(π∗H1

dR(E/S),OE),

whereOE carries the trivial connection and π∗H1
dR(E/S) is endowed with the pullback of the Gauß-

Manin connection on H1
dR(E/S).

Writing ∆̄E ∈ (E ×S E)(E) for the inverse of the diagonal section ∆E , i.e. for the section given in
rational points by x 7→ (−x, x), our main goal is to show

Theorem 2.6.3
The dual extension ofM(E×SE),dR(∆̄E) is equal to Log1 in Ext1

DE/Q(OE ,HE).

Equivalently: The dual extension of M̃(E×SE),dR(∆E) is equal to Log1 in Ext1
DE/Q(OE ,HE).

Let us write ξ ∈ Ext1
DE/Q(OE ,HE) for the dual extension ofM(E×SE),dR(∆̄E), such that we need

to show the equality of extension classes ξ = Log1.
At first, we can prove without difficulty that ξ splits on S:

Lemma 2.6.4
ξ maps to zero under the retraction

Ext1
DE/Q(OE ,HE)

ε∗−→ Ext1
DS/Q(OS ,H)

9A different and very explicit proof for the equality of the two maps was found by Bertapelle and the author:
For this the realization sequence coming from the motivic map is described purely in terms of \-extension sheaves of various
motives by Ga, whereas the sequence induced by the classical map is interpreted (as in [Co2]) via Čech hypercohomology.
The required isomorphism is then obtained by using the cocycle data to construct in a natural way corresponding \-extensions.
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of the exact sequence (1.1.1).

Proof. Observe the cartesian diagram

E
π //

id×ε
��

S

ε

��
E ×S E

pr2 // E

(2.6.2)

Functoriality of the motivic de Rham-Manin map with respect to Z-flat base schemes (cf. [An-Ber],
Prop. 7.2) yields the commutative diagram with horizontal motivic de Rham-Manin maps (the lower
one is with respect to the abelian scheme E → S and the smooth morphism S → Spec (Q))

(E ×S E)(E) //

can

��

Ext1
DE/Q(π∗H1

dR(E/S),OE)

ε∗

��
E(S) // Ext1

DS/Q(H1
dR(E/S),OS)

where can stands for the canonical arrow induced by (2.6.2).
The image of ∆̄E under can is ε ∈ E(S), but the lower horizontal arrow is a homomorphism (cf.
[An-Ber], Prop. 7.2), henceM(E×SE),dR(∆̄E) maps to zero under ε∗. This suffices to conclude.

The main effort to prove Thm. 2.6.3 consists in showing that the image of ξ under the projection

Ext1
DE/Q(OE ,HE)→ HomDS/Q(H,H)

in (1.1.1) is the identity. This is nothing at all clear if one recalls the construction of the motivic
de Rham-Manin map. We will achieve the proof by relating the logarithm extension to Coleman’s
classical Manin map in [Co2], which is defined rather explicitly, and by then using a comparison
result in [An-Ber] between the motivic de Rham-Manin map and the classical Manin map.

A reduction step

Recall from (2.1.3) the commutative diagram of split exact sequences with vertical forgetful arrows

0 // Ext1
DS/Q(OS ,H)

can

��

π∗ // Ext1
DE/Q(OE ,HE)

can

��

// HomDS/Q(H,H)

can

��

// 0

0 // Ext1
OS (OS ,H)

π∗ // Ext1
DE/S (OE ,HE) // HomOS (H,H) // 0

(2.6.3)

Then, by the previous lemma it obviously suffices to show that can(ξ) gives the identity when pro-
jected to HomOS (H,H). But an easy application of [An-Ber], Thm. 2.1 (iii), shows that the element
can(ξ) is nothing else than the dual of the image of ∆̄E under the motivic de Rham-Manin map

Mres
(E×SE),dR : (E ×S E)(E)→ Ext1

DE/S (π∗H1
dR(E/S),OE)

for the abelian scheme E ×S E
pr2−−→ E and the smooth morphism E

π−→ S. Note the difference of
Mres

(E×SE),dR to the previous de Rham-Manin map

M(E×SE),dR : (E ×S E)(E)→ Ext1
DE/Q(π∗H1

dR(E/S),OE)
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and observe that now π∗H1
dR(E/S) is equipped with the trivial S-connection (by ibid., 4.2 (c)).

Writing Log1,res for the element in Ext1
DE/S (OE ,HE) which maps to zero under the retraction and

to the identity under the projection in the lower row of (2.6.3) we have shown:

Lemma 2.6.5
In order to prove Thm. 2.6.3 it suffices to verify that

(Mres
(E×SE),dR(∆̄E))∨ = Log1,res in Ext1

DE/S (OE ,HE),

where ∨ means the dual extension class.

(We have in fact shown that we only need to verify that (Mres
(E×SE),dR(∆̄E))∨ projects to the identity

in the lower row of (2.6.3), but it is convenient to formulate the lemma as we just did.)

But for an elliptic curve E over any connected, separated, noetherian, regular and finite-dimensional
scheme S of characteristic zero (not necessarily smooth and of finite type over Q) we can define
an element Ext1

DE/S (OE ,HE), characterized by mapping to zero resp. to the identity under the
retraction resp. projection in the split exact sequence

0→ Ext1
OS (OS ,H)

π∗−→ Ext1
DE/S (OE ,HE)→ HomOS (H,H)→ 0.

Let us write Log1 for this element. If S happens to be smooth of finite type over Q, then Log1 is
the class Log1,res of Lemma 2.6.5. But we will from now on - until we have finished the proof of
Thm. 2.6.3 - work with an elliptic curve E over a general connected, separated, noetherian, regular
and finite-dimensional Q-scheme S.
We then have the motivic de Rham-Manin map for the abelian schemeE×SE

pr2−−→ E and the smooth
map E π−→ S

M(E×SE),dR : (E ×S E)(E)→ Ext1
DE/S (π∗H1

dR(E/S),OE),

which in the case of Q-smooth S is the mapMres
(E×SE),dR of Lemma 2.6.5.

With these definitions, what we will do in the following (until Cor. 2.6.14) is to show that for an

elliptic curve E π−→ S, with S a connected, separated, noetherian, regular and finite-dimensional

Q-scheme, we have

(2.6.4) Log1 = (M(E×SE),dR(∆̄E))∨ in Ext1
DE/S (OE ,HE).

With Lemma 2.6.5 and our remarks this will in particular prove Thm. 2.6.3.

An auxiliary description for Log1

Write U for the open complement of the zero section of E, v : V ⊂ U ×S U for the embedding of the
open complement of the diagonal ∆U : U → U×SU and pU2 : U×SU → U for the second projection.

We have the canonical distinguished triangle in Db
qc(DU×SU/S) (cf. (0.2.5))

(∆U )+OU [−1]→ OU×SU → v+OV .

Applying (pU2 )+ gives the distinguished triangle in Db
qc(DU/S)

(pU2 ◦∆U )+OU [−1]→ (pU2 )+OU×SU → (pU2 ◦ v)+OV ,
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from which we obtain the exact sequence of vector bundles on U with integrable S-connection

(2.6.5) 0→ H1
dR(U ×S U/U)→ H1

dR(V/U)→ H0
dR(U/U)→ 0,

where we have used that H2
dR(U ×S U/U) = 0 (cf. Thm. 1.2.9 (ii)).

If we canonically identify H1
dR(U ×S U/U) ' H1

dR(E ×S U/U) ' HU (cf. Thm. 1.2.9 (iii) and the
beginning of Chapter 1) and observe that pU2 ◦∆U = idU , such that H0

dR(U/U) equalsOU , we arrive
at

(2.6.6) 0→ HU → H1
dR(V/U)→ OU → 0.

Note thatHU is equipped with the trivial S-connection,OU with the exterior derivative andH1
dR(V/U)

with the Gauß-Manin connection relative S, where V is an U -scheme via V v−→ U ×S U
pU2−−→ U .10

Lemma 2.6.6
The extension class of (2.6.6) in Ext1

DU/S (OU ,HU ) is the restriction of Log1 to U , i.e. its image

under the canonical map

Ext1
DE/S (OE ,HE)→ Ext1

DU/S (OU ,HU ).

Proof. The proof is entirely formal and (up to some minor supplements) a reproduction of the argu-
ments in [Ki4], proof of Prop. 2.3.2, where the statement is shown in the case of `-adic sheaves.

In fact, we will need the previous lemma only in the case where S = Spec (k) with k a field of
characteristic zero (namely for the proof of Cor. 2.6.11).

Remark 2.6.7
Assume that S = Spec (k), such that U is affine and irreducible.
In [Co2], p. 404 (before and in the proof of Lemma 1.5.1), Γ(U,H0

dR(U/U)) is then interpreted as the
group of divisors in U ×k U defined over U and supported on ∆U (U) ⊆ U ×k U . The identification
H0

dR(U/U) ' OU we made above then represents H0
dR(U/U) as the free OU -module generated

by the global section corresponding to the divisor ∆U (U). We will need this trivial remark in the
following when working with Coleman’s classical Manin map.

The classical Manin map

If U is a smooth irreducible affine curve over a field k of characteristic zero and A is an abelian
scheme over U , then by the classical Manin map we mean the homomorphism

MA : A(U)→ Ext1
DU/k(H1

dR(A/U),OU )

defined in [Co2], 4. The investigation of its kernel is a major tool in Coleman’s account of Manin’s
proof of the Mordell conjecture over function fields. We don’t recapitulate its construction here (cf.
ibid., 3 and 4), but instead record the following crucial comparison result of [An-Ber], Prop. 1.1:

10This is a general fact concerning the functor (−)+: Let T be a noetherian, regular and finite-dimensional Q-scheme,

and let X
f−→ Y → T be smooth arrows of finite type such that X resp. Y has relative dimension dX/T resp. dY/T

over T . Let f+ : Dbqc(DX/T ) → Dbqc(DY/T ) be the triangulated functor introduced in 0.2.3 andM ∈ Modqc(DX/T ).

Then Hi(f+M) ' H
i+dX/T−dY/T
dR (X/Y,M) canonically as DY/T -modules, where the right side is equipped with its

Gauß-Manin connection relative T as in 0.2.2.. The proof is analogous to [Dim-Ma-Sa-Sai], Prop. 1.4.
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Theorem 2.6.8
For all s ∈ A(U) we have the equality

MA(s) =MA,dR(s),

whereMA,dR is the motivic de Rham-Manin map for A and U → Spec (k).

For the following, the strategy to prove Thm. 2.6.3 consists in relating the logarithm extension to the
classical Manin map by a certain intermediate extension and the description given in Lemma 2.6.6;
the preceding theorem will then give the desired realization via the motivic de Rham-Manin map.
When doing this, the restriction to irreducible affine curves as base schemes in the classical Manin
map and in Thm. 2.6.8 will force us to consider the logarithm extension at first on a pointed single
elliptic curve and to then, by appropriate techniques, haul the result up to the entire curve and families.

An intermediate extension

Assume that U is as above and that τ : A = C → U is a family of elliptic curves.
Let s : U → C be a section disjoint from the unit section ε. Write z : Z → C for the closed
subscheme of C defined by ε ∪ s and ṽ : V → C for the open immersion of its complement V . As Z
is smooth over U (and hence over k) we have the localization sequence in Db

qc(DC/k) (cf. (0.2.5)):

z+OZ [−1]→ OC → ṽ+OV .

By applying τ+ and taking cohomology we recover the exact DU/k-linear sequence of [Co2], (5.2):

(2.6.7) 0→ H1
dR(C/U)→ H1

dR(V/U)→ H0
dR(Z/U)→ H2

dR(C/U)→ 0.

From the fact that H0
dR(Z/U) consists of two copies of OU , generated by the divisors s and ε of C

as in Coleman’s interpretation of H0
dR(Z/U) (cf. ibid., p. 404) and from the canonical identification

H2
dR(C/U) ' OU (cf. the beginning of 2) one obtains an exact DU/k-linear sequence

Bs,ε : 0→ H1
dR(C/U)→ H1

dR(V/U)→ OU → 0,

where OU is identified with the free OU -module over the divisor D = s− ε (cf. ibid., p. 406).

Lemma 2.6.9
Under the Poincaré duality identification H1

dR(C/U) ' H1
dR(C/U)∨ the extension class of Bs,ε in

Ext1
DU/k(OU , H1

dR(C/U)∨) becomes equal to the opposite of the dual extension ofMC(s).

Proof. This follows from [Co2], Lemma 1.5.5 and Prop. 1.3.1, together with the definition of the
classical Manin map (cf. ibid., p. 402).

Motivic description of the logarithm on a pointed single elliptic curve

We consider a single elliptic curve E π−→ Spec (k) over a field k of characteristic zero.
The open complement U = E\[0] of its zero point is a smooth irreducible affine curve over k.
We consider E ×k U as abelian scheme over U via the second projection, and we define a section
s ∈ (E ×k U)(U) to be the composition

s : U
∆U−−−→ U ×k U

j−→ E ×k U
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with j the canonical open immersion. Note that s is disjoint from the unit section ε of E ×k U .
Write z : Z → E ×k U for the closed subscheme defined by ε ∪ s and let ṽ : V → E ×k U be the
open immersion of its complement. Note that the last coincides precisely with the open complement
in U ×k U of the diagonal ∆U : U → U ×k U , embedded into E ×k U via U ×k U → E ×k U .
If we apply the procedure in our previous exposition about the intermediate extension for the case
C := E ×k U , then we obtain the exact sequence of DU/k-modules

Bs,ε : 0→ H1
dR(E ×k U/U)→ H1

dR(V/U)→ OU → 0,

where again OU actually is the free OU -module generated by the divisor D = s− ε of E ×k U .

On the other hand, by Lemma 2.6.6 we can describe the restriction Log1
|U of Log1 to U by iden-

tifying H1
dR(U ×k U/U) ' H1

dR(E ×k U/U) ' HU in the DU/k-linear exact sequence

(2.6.8) 0→ H1
dR(U ×k U/U)→ H1

dR(V/U)→ OU → 0,

which was won from the localization triangle for the closed immersion ∆U : U → U ×k U .

The following theorem relates the logarithm extension Log1
|U on U with the classical Manin map

ME×kU for the elliptic curve E ×k U over U . The section s ∈ (E ×k U)(U) is as defined above.

Theorem 2.6.10
When identifying H1

dR(E ×k U/U) ' H1
dR(U ×k U/U) the extensions Bs,ε and (2.6.8) coincide. In

particular, the class Log1
|U in Ext1

DU/k(OU ,HU ) equals the opposite of the dual ofME×kU (s).

Proof. We only need to show the first statement: the second then follows with Lemma 2.6.9.
We have commutative (in fact cartesian) squares

U

k

��

∆U // U ×k U

j

��

V
voo

id

��
Z

z // E ×k U V
ṽoo

where v is the open embedding of the complement of ∆U and k denotes the canonical open immersion
(note that j ◦∆U = s and that Z is the disjoint union of ε and s).
There are canonical (obvious) adjunction arrows11 inDb

qc(DZ/k) resp. Db
qc(DE×kU/k) resp. Db

qc(DV/k):

OZ → k+OU , OE×kU → j+OU×kU , OV → (id)+OV ,

and it is easily seen that we obtain a morphism of distinguished triangles in Db
qc(DE×kU/k)

z+OZ [−1]

��

// OE×kU

��

// ṽ+OV

��
j+((∆U )+OU )[−1] // j+OU×kU // j+(v+OV )

where the upper line is the localization triangle for z : Z → E ×k U , the lower one is j+ applied
to the localization triangle for ∆U : U → U ×k U and the vertical arrows are induced by the three

11Observe [Ho-Ta-Tan], Ex. 1.5.22 and App. C, Prop. C. 2.4.
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adjunction arrows and the above commutative diagram.
Applying the "lower plus" functor for the second projection of E ×k U and going into cohomology
yields the commutative diagram of DU/k-modules with exact rows:

0 // H1
dR(E ×k U/U)

can ∼
��

// H1
dR(V/U)

id

��

// H0
dR(Z/U)

η //

��

H2
dR(E ×k U/U)

��

// 0

0 // H1
dR(U ×k U/U) // H1

dR(V/U) // H0
dR(U/U) // 0 // 0

Note that by construction the upper row is the sequence (2.6.7) and the lower row is (2.6.5).
It is clear that the arrow H0

dR(Z/U) → H0
dR(U/U) is given by restriction to the s-component of Z.

Hence, the divisor D = s− ε, which is the fixed generator for the kernel of η, hereunder maps to ∆U ,
which is the fixed OU -generator of H0

dR(U/U) (cf. Rem. 2.6.7). This shows that the diagram

0 // H1
dR(E ×k U/U)

can∼
��

// H1
dR(V/U)

id

��

// OU

id

��

// 0

0 // H1
dR(U ×k U/U) // H1

dR(V/U) // OU // 0

is commutative, where the upper row isBs,ε and the lower one is (2.6.8); this shows the theorem.

Corollary 2.6.11
If s ∈ (E ×k U)(U) is the section s : U

∆U−−→ U ×k U
j−→ E ×k U , then the dual extension of

M(E×kU),dR(s) is equal to −Log1
|U in Ext1

DU/k(OU ,HU ).

Here,

M(E×kU),dR : (E ×k U)(U)→ Ext1
DU/k(π∗UH

1
dR(E/k),OU )

is the motivic de Rham-Manin map for the abelianU -schemeE×kU and the map πU : U → Spec (k).

Proof. Combine Thm. 2.6.8 and Thm. 2.6.10.

Motivic description of the logarithm on a single elliptic curve

In Cor. 2.6.11 we had to work on the complement of the zero section of E in order to apply the
comparison result of Thm. 2.6.8. The next step consists in removing this restriction.

Let again E π−→ Spec (k) be an elliptic curve over a field k of characteristic zero. We view E×k E as
abelian E-scheme via the second projection and consider the motivic de Rham-Manin map

M(E×kE),dR : (E ×k E)(E)→ Ext1
DE/k(π∗H1

dR(E/k),OE).

Write ∆E ∈ (E ×k E)(E) for the diagonal section.

Proposition 2.6.12
The dual extension ofM(E×kE),dR(∆E) is equal to −Log1 in Ext1

DE/k(OE ,HE).

Proof. We have an obvious cartesian diagram

E ×k U //

��

U

��
E ×k E // E
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As E and U are flat over Z we obtain from [An-Ber], Prop. 7.2, the commutativity of the diagram

(E ×k E)(E) //

��

Ext1
DE/k(π∗H1

dR(E/k),OE)

��
(E ×k U)(U) // Ext1

DU/k(π∗UH
1
dR(E/k),OU )

The vertical arrows are the canonical ones and the horizontal arrows are the respective motivic de
Rham-Manin maps.
It is readily checked that the image of ∆E under the left vertical arrow is precisely the section s of
Cor. 2.6.11. The same corollary and the commutativity of the preceding diagram imply that −Log1

and the dual ofM(E×kE),dR(∆E) map to the same element under the restriction arrow

Ext1
DE/k(OE ,HE)→ Ext1

DU/k(OU ,HU ).

But as we are working over a field this arrow is an isomorphism, as one easily sees by writing

Ext1
DE/k(OE ,HE) ' H1

dR(E/k)⊗k H ' H1
dR(U/k)⊗k H ' Ext1

DU/k(OU ,HU ),

where we have used that the restriction map H1
dR(E/k) → H1

dR(U/k) is an isomorphism (cf. Thm.
1.2.9 (iii)). This proves the desired equality.

Motivic description of the logarithm for families of elliptic curves

We now generalize Prop. 2.6.12 to relative elliptic curves.
Let S be a connected, separated, noetherian, regular and finite-dimensional Q-scheme and E π−→ S an
elliptic curve with zero section ε. Again, we view E ×S E → E as abelian E-scheme via the second
projection and consider the motivic de Rham-Manin map for E ×S E and the morphism E

π−→ S:

M(E×SE),dR : (E ×S E)(E)→ Ext1
DE/S (π∗H1

dR(E/S),OE).

Theorem 2.6.13
The dual extension ofM(E×SE),dR(∆E) is equal to −Log1 in Ext1

DE/S (OE ,HE).

Proof. Let us write χ ∈ Ext1
DE/S (OE ,HE) for the negative of the dual extension ofM(E×SE),dR(∆E),

such that we need to show χ = Log1.
That the image of χ under the retraction

Ext1
DE/S (OE ,HE)

ε∗−→ Ext1
OS (OS ,H)

is zero follows by the completely analogous argument as applied for the proof of Lemma 2.6.4.
It remains to verify that χ maps to the identity under the projection

(2.6.9) pr : Ext1
DE/S (OE ,HE)→ HomOS (H,H).

By the integrality of S (cf. footnote 5 of Chapter 1) one is reduced to show that for all s ∈ S the
image of pr(χ) under the canonical arrow

HomOS (H,H)→ Homk(s)(H
1
dR(Es/k(s))∨, H1

dR(Es/k(s))∨)
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is the identity; here, we set Es := E ×S Spec (k(s)), considered as elliptic curve over Spec (k(s)),
and recall that H1

dR(E/S) commutes with arbitrary base change (cf. the beginning of Chapter 1).
Consider the following diagram with horizontal motivic de Rham-Manin maps

(Es ×k(s) Es)(Es) // Ext1
DEs/k(s)

(π∗sH
1
dR(Es/k(s)),OEs)

(E ×S E)(E) //

can

OO

Ext1
DE/S (π∗H1

dR(E/S),OE)

can

OO

(2.6.10)

and observe that the right vertical arrow is understood to be given by pullback along

Es //

πs

��

E

π

��
Spec (k(s)) // S

as explained in 0.2.1 (v); the left vertical arrow is the obvious one.
Assuming that (2.6.10) commutes the theorem clearly follows from our above remarks together with
Prop. 2.6.12, noting that (2.6.9) respects the base change.
The commutativity of (2.6.10) in turn is a straightforward application of the third functoriality state-
ment of [An-Ber], Prop. 7.2, combined with ibid., Thm. 2.1 (iii).

Recall that we write ∆̄E ∈ (E×SE)(E) for the antidiagonal section, given in rational points by x 7→
(−x, x). As it is the inverse of ∆E in the group (E ×S E)(E) andM(E×SE),dR is a homomorphism
(cf. [An-Ber], Prop. 7.2) the preceding theorem yields:

Corollary 2.6.14
The dual extension ofM(E×SE),dR(∆̄E) is equal to Log1 in Ext1

DE/S (OE ,HE).

We have thus shown (2.6.4) and hence, according to the explanations given there, also Thm. 2.6.3
finally is proven.

Remark 2.6.15
From the beginning on we have considered E ×S E as abelian E-scheme via the second projection.
The results of Cor. 2.6.14 and Thm. 2.6.3 hold verbatim if one changes the convention and uses the
first projection, such that ∆̄E then is given by x 7→ (x,−x) in points. A quick way to see this consists
in applying the functoriality of the motivic de Rham-Manin map (cf. [An-Ber], Prop. 7.2) to the shift
automorphism of E ×S E.

2.6.4 Some corollaries

We outline how our main theorem leads to a geometric interpretation of the logarithm extension by
the Lie algebra of the Poincaré bundle. We finally give an equivalent approach using Deligne duality.

Description via the Poincaré bundle

Let E π−→ S be an elliptic curve, where S is a connected scheme which is smooth, separated and of
finite type over Spec (Q).
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By Thm. 2.6.3 the logarithm extension class Log1 ∈ Ext1
DE/Q(OE ,HE) is the dual of the image

of the diagonal section ∆E under the modified motivic de Rham-Manin map

M̃(E×SE),dR : (E ×S E)(E)→ Ext1
DE/Q(π∗H1

dR(E/S),OE).

Let us write E∨ for the dual abelian scheme of E and recall that M̃(E×SE),dR is the composite

(E ×S E)(E)
∼−→ Ext1

1−Mot(E
∨ ×S E,Gm,E)

TdR(−)−−−−−→ Ext1
DE/Q(π∗H1

dR(E/S),OE),

in which the first arrow comes from the Barsotti-Rosenlicht-Weil isomorphism (cf. Rem. 2.6.2).

It follows from the discussion in 0.1.3 that under this first arrow the section ∆E maps to the fppf -
extension (0.1.19) induced by the Poincaré bundle P0 on E ×S E∨:

(2.6.11) 0→ Gm,E → P 0 → E∨ ×S E → 0,

which we view as an extension of 1-motives overE in the obvious way. To compute M̃(E×SE),dR(∆E)

we then apply the realization functor TdR(−) to this extension and equip the terms in the obtained
sequence of OE-vector bundles with their motivic Gauß-Manin connections relative Q.

The sequence of universal extensions related to (2.6.11) is (e.g. by [An-BaVi], Lemma 2.2.1) pre-
cisely the extension ofE-group schemes (0.1.23) coming from the Poincaré bundleP onE×S (E∨)\:

0→ Gm,E → P → (E∨)\ ×S E → 0.

The associated exact sequence of Lie algebras relative E writes as

(2.6.12) 0→ OE → Lie(P/E)→ π∗H1
dR(E/S)→ 0,

where all terms are viewed as equipped with their motivic Gauß-Manin connection relative Q; re-
call that for the outer terms this is just the exterior derivative resp. the pullback of the usual Gauß-
Manin connection. As the obtained class in Ext1

DE/Q(π∗H1
dR(E/S),OE) is by construction equal to

M̃(E×SE),dR(∆E) we conclude from Thm. 2.6.3:

Corollary 2.6.16
The class in Ext1

DE/Q(OE ,HE) obtained from dualizing (2.6.12) coincides with Log1.

Remark 2.6.17
One can show that the restriction to an S-connection of the motivic Gauß-Manin connection relative
Q on Lie(P/E) is induced by the universal (E∨)\-connection on P in a natural way, as one would
expect. The full (absolute) connection on Lie(P/E), however, does not have an intrinsic expression
via the geometry of the Poincaré bundle.

Another description via Deligne’s pairing

Finally, consider another time the (non-modified) motivic de Rham-Manin map

M(E×SE),dR : (E ×S E)(E)
∼−→ Ext1

1−Mot(E
∨ ×S E,Gm,E)→ Ext1

DE/Q(π∗H1
dR(E/S),OE).
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Cartier dualizing the image of ∆̄E under the first arrow yields the extension of 1-motives over E:

(2.6.13) 0→ E ×S E → [ZE
17→∆̄E−−−−→ E ×S E]→ [ZE → 0]→ 0,

where ZE denotes the constant E-group scheme and the maps of the sequence are the natural ones.
Taking de Rham realizations in (2.6.13) yields an exact sequence of OE-vector bundles, which we
equip with the motivic Gauß-Manin connections relative Q. The realizations of the outer terms in
(2.6.13) are π∗H1

dR(E∨/S), equipped with the pullback of the usual Gauß-Manin connection, resp.
OE , equipped with exterior derivation (cf. [An-Ber], 4.2 (c), Ex. 4.2 and Ex. 4.4).
By the perfect Deligne pairing we have a canonical isomorphism of OS-vector bundles

H1
dR(E∨/S) ' H1

dR(E/S)∨,

which is in fact horizontal (cf. ibid., Cor. 2.8).
We thus obtain the natural identification of OE-vector bundles with integrable Q-connection

(2.6.14) TdR(E ×S E) ' HE .

Let us write ζ for the thus obtained DE/Q-linear extension of OE byHE , coming about by taking de
Rham realizations with motivic Gauß-Manin connections in (2.6.13) and using (2.6.14).

From the fact that Deligne’s duality behaves functorially12, that it respects the motivic Gauß-Manin
connections (cf. [An-Ber], Cor. 2.8) and that for the motive [ZE → 0] it just gives the identity on OE
(cf. [Ber], Ex. 4.4) we can hence conclude from Thm. 2.6.3:

Corollary 2.6.18
For the extension ζ ∈ Ext1

DE/Q(OE ,HE) induced by (2.6.13) as described we have ζ = Log1.

12This means that for a morphism t : M → N of 1-motives we have a commutative diagram

TdR(N∨)
∼ //

TdR(t∨)

��

TdR(N)∨

TdR(t)∨

��
TdR(M∨)

∼ // TdR(M)∨

with horizontal maps induced by the respective Deligne pairing. The statement can be viewed as a special case of [An-Ber],
Rem. 2.7 (b) and (c) resp. the preceding Cor. 2.6.



THE BIRIGIDIFIED POINCARÉ BUNDLE FOR ELLIPTIC CURVES 147

Chapter 3

The explicit description on the universal elliptic

curve

3.1 The birigidified Poincaré bundle for elliptic curves

We explain how to obtain from the zero divisor of an elliptic curve an explicit construction of the
birigidified Poincaré bundle (P0, r0, s0) if one takes into account the self-duality of the curve.

Let S be a locally noetherian scheme and π : E → S an elliptic curve with multiplication map
µ : E ×S E → E, zero section ε : S → E and projections pr1,pr2 : E ×S E → E.
Let Ê denote the dual abelian scheme of E.

Recall that the S-scheme Ê represents the dual functor of E/S on the category of all S-schemes:

(3.1.1) T 7→ Pic0(ET /T ) = {Isomorphism classes of pairs (L, α)},

where L is a line bundle on ET = E ×S T which is algebraically equivalent to zero and α a T -
rigidification of L (cf. 0.1.1). The abelian group Pic0(ET /T ) is canonically isomorphic to the group

{[L] ∈ Pic(ET )/Pic(T )|L is algebraically equivalent to zero},

where Pic(T ) becomes a subgroup of Pic(ET ) by pullback along the structure map πET : ET → T

and [L] denotes the residue in the quotient group of the isomorphism class of a line bundle L on ET ;
note that [L] = [L′] implies that L is algebraically equivalent to zero if and only if L′ is.
The identification of Pic0(ET /T ) with this group arises by mapping the class of (L, α) to [L] and by
conversely sending [L] to the class of (L ⊗OET π

∗
ET
ε∗ETL

−1, can), where can denotes the canonical
T -rigidification of L ⊗OET π

∗
ET
ε∗ETL

−1. That one obtains well-defined homomorphisms which are
inverse to each other is easy to check and indeed holds for E replaced by any abelian scheme over S.

We can now explain the self-duality of E: for this we define for each S-scheme T a map

E(T )
∼−→ {[L] ∈ Pic(ET )/Pic(T )|L is algebraically equivalent to zero},

Q 7−→ Class of OET ([−Q]− [0]).
(3.1.2)

Here, note that for Q ∈ E(T ) its inverse −Q ∈ E(T ) defines a section −Q of the abelian T -scheme
ET , which in turn induces an effective relative Cartier-Divisor [−Q] ofET /T (cf. [Kat-Maz], Lemma
1.2.2.). Write I([−Q]) ⊆ OET for the associated invertible ideal sheaf and OET ([−Q] − [0]) for
I([−Q])−1 ⊗OET I([0]), with [0] the effective relative Cartier divisor of the zero section of ET /T .
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It is well-known that (3.1.2) is an isomorphism of groups: this follows from [Kat-Maz], p. 64; cf.
also [Kat5], p. 292. Note that our identification (3.1.2) differs from the cited ones by the sign in [−Q].

Combining (3.1.1) and (3.1.2) provides an isomorphism of S-group schemes

(3.1.3) E
∼−→ Ê

which becomes the identification of [Kat5], p. 292, only after precomposition with the inverse map of
E. As a side note, let us remark here that from a conceptual viewpoint (3.1.3) is decisively the better
self-duality isomorphism to use: we direct the interested reader to the discussion in [Con2], Ex. 2.5.

The identification (3.1.3) will henceforth be fixed and referred to as the principal polarization ofE/S.

In the terminology of [Ch-Fa], p. 3-4, the morphism (3.1.3) is the polarization λ(OE([0])) : E → Ê

associated with OE([0]). Under Ê(E) ' Pic0(E ×S E/E) it corresponds to the class of the pair

(3.1.4) (M⊗OE×SE (π × π)∗ε∗OE([0]), can),

whereM is the Mumford bundle for OE([0]) on E ×S E:

M := µ∗OE([0])⊗OE×SE pr∗1OE([0])−1 ⊗OE×SE pr∗2OE([0])−1

and where can means the canonical rigidification along the second factor of E ×S E.
Hence, now always identifying E with Ê via (3.1.3), the pair (3.1.4) represents the universal class in
Pic0(E×S E/E). Observe furthermore thatM⊗OE×SE (π×π)∗ε∗OE([0]) also carries a canonical
rigidification along the first factor of E×S E, equally denoted by can, which is obviously compatible
with the canonical rigidification along the second factor after further restriction to S.
From the discussion in Rem. 0.1.8 we thus obtain that

(3.1.5) (M⊗OE×SE (π × π)∗ε∗OE([0]), can, can)

is what we called in Def. 0.1.9 the birigidified Poincaré bundle on E ×S E.

3.2 Automorphy matrices for holomorphic vector bundles

Throughout the subsequent sections we will use the yoga of automorphy matrices for vector bundles
on complex manifolds. Such a matrix is obtained as soon as a trivialization for the pullback of the
bundle to the universal covering exists and is chosen. One then has a convenient way of writing down
the sections of the bundle as certain vectors of holomorphic functions on the universal covering.
We here give a brief self-contained account of the required techniques and fix conventions that will
freely be used in the further proceeding. Despite slightly different priorities the material of this sec-
tion is basically found in [Ie], 2 and 3, or obtained by generalizing [Bi-Lan], App. B, to vector bundles.

Let X be a connected complex manifold with universal covering p : X̃ → X and write Deck(X̃/X)

for the group of deck transformations of X̃/X .
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(i) Assume we have a OX -vector bundle V of rank n and a (henceforth fixed) trivialization

O⊕n
X̃
' p∗V

with associated trivializing sections {e1, ..., en} ∈ Γ(X̃, p∗V).
Let γ ∈ Deck(X̃/X) and write for each j = 1, ..., n the section γ∗(ej) ∈ Γ(X̃, p∗V) as

γ∗(ej) =

n∑
i=1

ϕγij · ei

with uniquely determined ϕγij ∈ Γ(X̃,OX̃) which we collect in the matrix
(
ϕγij

)
i=1,...,n
j=1,...,n

.

Hence

(γ∗(e1), ..., γ∗(en)) = (e1, ..., en) ·
(
ϕγij

)
i=1,...,n
j=1,...,n

.

We refer to the map

A : Deck(X̃/X)× X̃ → GLn(C), (γ, x̃) 7→

((
ϕγij(x̃)

)
i=1,...,n
j=1,...,n

)−1

as the automorphy matrix for V with respect to the (ordered) trivializing sections {e1, ..., en} of p∗V .
If n = 1 we call the automorphy matrix the factor of automorphy and use a small letter to denote it.
The automorphy matrix A satisfies the relation

A(γ · γ′, x̃) = A(γ, γ′ · x̃) ·A(γ′, x̃) for all γ, γ′ ∈ Deck(X̃/X) and x̃ ∈ X̃.

(ii) For an open subset U of X we will tacitly use the canonical identification

p∗ : Γ(U,V)
∼−→ Γ(p−1(U), p∗V)Deck(X̃/X) := {s ∈ Γ(p−1(U), p∗V) | γ∗(s) = s ∀ γ ∈ Deck(X̃/X)}.

Then, if we express an element s ∈ Γ(p−1(U), p∗V) in terms of the trivializing sections

s =

n∑
i=1

si · ei, si ∈ Γ(p−1(U),OX̃),

it is invariant under Deck(X̃/X) and hence defines a section of V over U if and only if
(γ∗s1)(x̃)

...
(γ∗sn)(x̃)

 = A(γ, x̃) ·


s1(x̃)

...
sn(x̃)

 for all γ ∈ Deck(X̃/X), x̃ ∈ p−1(U).

We will often directly write s as the vector


s1

...
sn

 if the underlying trivialization of p∗V is clear.

(iii) Consider the dual of the previously fixed trivialization of p∗V:

O⊕n
X̃
' p∗V∨
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with associated trivializing sections {e∨1 , ..., e∨n} ∈ Γ(X̃, p∗V∨). If

A : Deck(X̃/X)× X̃ → GLn(C), (γ, x̃) 7→ A(γ, x̃)

is the automorphy matrix for V with respect to {e1, ..., en}, then the automorphy matrix for V∨ with
respect to {e∨1 , ..., e∨n} is given by(

At
)−1

: Deck(X̃/X)× X̃ → GLn(C), (γ, x̃) 7→
(
A(γ, x̃)t

)−1
.

(iv) Next, if we have a OX -vector bundle W of rank m whose pullback to X̃ is trivialized by the
sections {e′1, ..., e′m}, then the tensor product V ⊗OX W will be trivialized on X̃ by the sections (in
this order)

{e1 ⊗ e′1, ..., e1 ⊗ e′m, e2 ⊗ e′1, ..., e2 ⊗ e′m, ......, en ⊗ e′1, ..., en ⊗ e′m}.

We will tacitly adopt this convention in the future. If the automorphy matrix of V resp. W is given by
A resp. B, then V ⊗OX W has the automorphy matrix A⊗B, notation by which we mean the map

A⊗B : Deck(X̃/X)× X̃ → GLnm(C), (γ, x̃) 7→ A(γ, x̃)⊗B(γ, x̃),

where

A(γ, x̃)⊗B(γ, x̃) :=


a11(γ, x̃) ·B(γ, x̃) . . . a1n(γ, x̃) ·B(γ, x̃)

...
. . .

...
an1(γ, x̃) ·B(γ, x̃) . . . ann(γ, x̃) ·B(γ, x̃)


is the Kronecker product of A(γ, x̃) =

(
aij(γ, x̃)

)
i=1,...,n
j=1,...,n

with B(γ, x̃).

(v) Let now Y be another connected complex manifold with universal covering q : Ỹ → Y .
Fix base points ỹ0 ∈ Ỹ resp. x̃0 ∈ X̃ with images y0 resp. x0 under q resp. p.
Let g : Y → X be a holomorphic map with g(y0) = x0 and g̃ : Ỹ → X̃ the unique holomorphic map
fitting into a commutative diagram

(Ỹ , ỹ0)

q

��

g̃ // (X̃, x̃0)

p

��
(Y, y0)

g // (X,x0)

The standard isomorphisms Deck(X̃/X) ' π1(X,x0),Deck(Ỹ /Y ) ' π1(Y, y0) and the canonical
map g∗ : π1(Y, y0)→ π1(X,x0) provide a homomorphism g∗ : Deck(Ỹ /Y )→ Deck(X̃/X) with

g̃(µ · ỹ) = g∗(µ) · g̃(ỹ) for all µ ∈ Deck(Ỹ /Y ) and ỹ ∈ Ỹ .

By pullback along g̃ we obtain from {e1, ..., en} trivializing sections {f1, ..., fn} for q∗g∗V .
If µ ∈ Deck(Ỹ /Y ), γ := g∗(µ) and for j = 1, ..., n:

γ∗(ej) =

n∑
i=1

ϕγij · ei,

then we have

µ∗(fj) =

n∑
i=1

(g̃)∗(ϕγij) · fi.
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In this way one obtains the automorphy matrix for g∗V with respect to {f1, ...fn} from the automor-
phy matrix for V with respect to {e1, ..., en}. If the underlying trivializing sections {e1, ..., en} and
the base points are fixed we will always work with the indicated trivialization of q∗g∗V and associated
automorphy matrix for g∗V .

If (as explained above) s ∈ Γ(U,V) is given with respect to {e1, ..., en} by


s1

...
sn

 , si ∈ Γ(p−1(U),OX̃),

satisfying 
(γ∗s1)(x̃)

...
(γ∗sn)(x̃)

 = A(γ, x̃) ·


s1(x̃)

...
sn(x̃)

 for all γ ∈ Deck(X̃/X), x̃ ∈ p−1(U).

then g∗(s) ∈ Γ(g−1(U), g∗V) is given with respect to {f1, ..., fn} by


g̃∗(s1)

...
g̃∗(sn)

.

3.3 The fundamental meromorphic Jacobi form and Eisen-
stein series

3.3.1 From canonical to classical theta functions

A main goal of the future sections will consist in describing the analytified logarithm sheaves on the
universal elliptic curve via automorphy matrices. The results of Chapter 2, the buildup of the Poincaré
bundle (3.1.5) and the techniques developed in 3.2 clearly suggest to carry this out first of all for the
line bundle associated with the zero divisor of the curve. Trivializing this bundle on the universal cov-
ering corresponds to choosing a holomorphic function on the covering with the appropriate divisor,
and hence the question arises which one we will want to choose.
The present subsection illustrates this question in the case of a single complex elliptic curve. Here,
one possible trivialization is provided by the so-called canonical theta function associated to the zero
divisor: In [Ba-Ko-Ts], 1, this function is the starting point for an explicit description of the polylog-
arithm on the curve minus its zero section; the induced trivializing section for the Poincaré bundle
(3.1.5) on the universal covering is the Kronecker theta function which is studied in depth in [Ba-Ko].
After a review of these functions in the context of 3.2 we point to the main problem of the canonical
theta function: when varying the elliptic curve it no longer defines a holomorphic function and thus
also no trivialization as before. As a substitute, we then present the so-called classical theta function
for the zero divisor: it arises from the previous by multiplication with an exponential factor which
erases the anti-holomorphic part but preserves a normalization property for its derivative by which it
may also be characterized. Still working on a single curve we obtain the induced trivialization of the
Poincaré bundle (3.1.5) on the universal covering in the form of a meromorphic function J which will
turn out to play the main role in all subsequent sections. We finish this subsection with the fundamen-
tal observation that the function J , to which we were directed in the outlined natural way, coincides
precisely with 2πi-times the meromorphic Jacobi form introduced in [Za2], 3.
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The canonical theta function and factor of automorphy

Fix a point τ ∈ H in the upper half plane H of the complex numbers C. Let Γτ := Zτ ⊕ Z be the
associated lattice in the complex plane and Eτ := C/Γτ the complex torus defined by Γτ . Moreover,
set A(τ) := A(Γτ ) := 1

2πi (τ − τ̄), which is the fundamental area of Γτ divided by π.

Consider the line bundle OEτ ([0]) associated with the divisor given by the zero point [0] of Eτ .
For its pullback along the canonical projection pτ : C→ Eτ we have p∗τ (OEτ ([0])) ' OC(Γτ ).
Trivializing the previous line bundle amounts to giving a meromorphic function on C of divisor −Γτ .
Such a function is provided for example by z 7→ 1

θ(z;τ) with

(3.3.1) θ(z; τ) := exp

[
− e∗2(τ)

2
z2

]
· σ(z; τ),

where e∗2(τ) := limu→0+

∑
γ∈Γτ\{0} γ

−2|γ|−2u is an Eisenstein-Kronecker number1 and σ(z; τ) is
the Weierstraß sigma function for the lattice Γτ . Expressing the behaviour of (3.3.1) under the deck
transformations γ ∈ Γτ of C over Eτ as

θ(z + γ; τ) = a(γ, z) · θ(z; τ),

then it is clear from the definition that

a : Γτ × C→ C∗

is the factor of automorphy for OEτ ([0]) with respect to the trivializing section z 7→ 1
θ(z;τ) of

p∗τ (OEτ ([0])). This factor is well-known (cf. [Ba-Ko], Ex. 1.9), namely we have

(3.3.2) a : Γτ × C→ C∗, (γ, z) 7→ α(γ) · exp

[
πH(z, γ) +

π

2
H(γ, γ)

]
,

where H : C × C → C is a hermitian form whose imaginary part is integral-valued on Γτ × Γτ and
α : Γτ → {z ∈ C | |z| = 1} is a semicharacter for H , given explicitly by

H(z1, z2) =
z1z̄2

πA(τ)
and α(γ) =

 1 for γ ∈ 2Γτ

−1 otherwise.

Remark 3.3.1
The pair (H,α) is associated toOEτ ([0]) via the Appell-Humbert theorem, the factor of automorphy a
in (3.3.2) is the so-called canonical factor of automorphy for OEτ ([0]), and the function z 7→ θ(z; τ)

in (3.3.1) is a canonical theta function for OEτ ([0]). Details about this terminology can be found in
[Bi-Lan], 2.2, 2.3 and 3.2, and also in [Ba-Ko], 1.2.
The function z 7→ θ(z; τ) is the unique holomorphic function on C with the property that its inverse
defines a trivialization of p∗τ (OEτ ([0])) ' OC(Γτ ) which induces the canonical factor of automorphy
for OEτ ([0]) and such that its derivative at z = 0 is normalized to 1.

Fix the base points (0, 0) ∈ C × C and 0 ∈ C. Then (according to the conventions recorded in 3.2
(iii)-(v)) we obtain a trivialization for the pullback of the Mumford bundle Mτ of OEτ ([0]) along

1Namely, in the notation of [Ba-Ko], Def. 1.5 resp. p. 238, it is the number e∗0,2(0, 0; Γτ ) resp. e∗0,2(Γτ ).
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the projection C × C → Eτ × Eτ = (C × C)/(Γτ × Γτ ) . With 3.2 (v) the associated factor of
automorphy is straightforwardly computed from (3.3.2) as

(3.3.3) Γτ × Γτ × C× C→ C∗, (γ, µ, z, w) 7→ exp

[
γµ̄+ zµ̄+ wγ̄

A(τ)

]
.

One obtains the same factor for the Poincaré bundle (3.1.5) on Eτ × Eτ .
Note thatMτ is given by OEτ×Eτ (∆̄Eτ − ([0]×Eτ )− (Eτ × [0])), where ∆̄Eτ denotes the antidi-
agonal, that a trivialization of its pullback to C× C means giving a meromorphic function on C× C
of divisor −{(z, w) ∈ C×C | z +w ∈ Γτ}+ (Γτ ×C) + (C× Γτ ) and that the above trivialization
then is the one defined by the function (z, w) 7→ 1

Θ(z,w;τ) , where

(3.3.4) Θ(z, w; τ) :=
θ(z + w; τ)

θ(z; τ)θ(w; τ)

is the so-called Kronecker theta function (cf. [Ba-Ko], 1.10).
Setting

F1(z; τ) := dlogzθ(z; τ) = ζ(z; τ)− e∗2(τ) · z

we obtain from Θ(z, w; τ) the function

(3.3.5) Ξ(z, w; τ) := exp[−F1(z; τ)w] ·Θ(z, w; τ)

of [Ba-Ko-Ts], Def. 1.5. This function, in particular the coefficient functions obtained from it by
Laurent expansion around w = 0, lies at the center of the description given in [Ba-Ko-Ts], 1, for the
polylogarithm on the single elliptic curve defined by Eτ .

Observe that we have the equalities

α(mτ + n) = exp[πimn+ πim+ πin] for all m,n ∈ Z and e∗2(τ) = −η(1; τ)− 1

A(τ)
,

where
η(mτ + n; τ) := ζ(z; τ)− ζ(z +mτ + n; τ) for all m,n ∈ Z

is the quasi-period defined via the Weierstraß zeta function ζ(z; τ) for the lattice Γτ ; the formula for
e∗2(τ) may be deduced from the more general

Lemma 3.3.2
For each γ ∈ Γτ we have

e∗2(τ) · γ = −η(γ; τ)− γ̄

A(τ)
.

Proof. By [Ba-Ko-Ts], 1.1, we have

F1(z + γ; τ)− F1(z; τ) =
γ̄

A(τ)
,

from which the claim follows.

With the formula for α(mτ +n) and τ̄ = τ − 2πi ·A(τ) resp. with the formula for e∗2(τ) one verifies

a(mτ + n, z) = exp

[
πim+ πin− πim2τ +

zmτ

A(τ)
− 2πizm+

nz

A(τ)
+

(mτ + n)2

2A(τ)

]
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resp.

(3.3.6) θ(z; τ) = exp

[
z2

2

(
1

A(τ)
+ η(1; τ)

)]
· σ(z; τ),

such that moreover

(3.3.7) Θ(z, w; τ) = exp

[
zw

(
1

A(τ)
+ η(1; τ)

)]
· σ(z + w; τ)

σ(z; τ)σ(w; τ)

and

(3.3.8) Ξ(z, w; τ) = exp[−ζ(z; τ)w] · σ(z + w; τ)

σ(z; τ)σ(w; τ)
.

We see in particular that the function θ(z; τ) of (3.3.1), which we initially started with, does not
vary holomorphically if the (so far fixed) parameter τ ∈ H is moved: the obstruction comes from
the antiholomorphic part of the normalized area function A(τ) in (3.3.6). This presents very soon an
overt problem when dealing with families of elliptic curves. Besides, also the fact that the naturally
induced function Θ(z, w; τ) needs to be altered in (3.3.5) by an auxiliary exponential factor to obtain
the central function Ξ(z, w; τ) in [Ba-Ko-Ts], 1, strongly hints at the following heuristic guideline:

We should search from the beginning on a different trivialization for p∗τ (OEτ ([0])) ' OC(Γτ ).

The classical theta function and factor of automorphy

Instead of θ(z; τ) let us consider - at first still for a fixed τ ∈ H - the holomorphic function on C:

(3.3.9) z 7→ ϑ(z; τ) := exp

[
z2

2
η(1; τ)

]
· σ(z; τ) = exp

[
− z2

2A(τ)

]
· θ(z; τ).

Its inverse z 7→ 1
ϑ(z;τ) obviously provides again a trivialization for p∗τ (OEτ ([0])) ' OC(Γτ ), and its

derivative in z = 0 is again normalized to the value 1. But now we have indeed defined a holomorphic
function in both variables (z, τ) ∈ C×H; a more detailed analysis of ϑ will follow in 3.3.3.

The factor of automorphy for OEτ ([0])

ã : Γτ × C→ C∗

induced by z 7→ 1
ϑ(z;τ) is given by

ã(mτ + n, z) =
h(z)

h(z +mτ + n)
· a(mτ + n, z),

where a is still the factor of automorphy defined by z 7→ 1
θ(z;τ) and where

h(z) := exp

[
z2

2A(τ)

]
.

Explicitly, one computes

h(z)

h(z +mτ + n)
= exp

[
− 1

2A(τ)

(
(mτ)2 + n2 + 2zmτ + 2zn+ 2mnτ

)]
and hence

(3.3.10) ã(mτ + n, z) = exp

[
πim+ πin− 2πizm− πim2τ

]
.
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Remark 3.3.3
(i) In the terms of [Bi-Lan], App. B, we have altered the cocycle in Z1(Γτ , H

0(O∗C)) defined by the
canonical factor of automorphy a by the coboundary in B1(Γτ , H

0(O∗C)) which is obtained from
(mτ + n, z) 7→ h(z)

h(z+mτ+n) .

(ii) The new factor of automorphy ã in (3.3.10) is exactly the so-called classical factor of automorphy
for the positive definite line bundle OEτ ([0]) and its standard decomposition C = R · τ ⊕ R · 1; the
function z 7→ ϑ(z; τ) in (3.3.9) then is a classical theta function for OEτ ([0]). Details about this
terminology can be found in [Bi-Lan], 3.2.
The function z 7→ ϑ(z; τ) is the unique holomorphic function on C with the property that its inverse
defines a trivialization of p∗τ (OEτ ([0])) ' OC(Γτ ) which induces the classical factor of automorphy
for OEτ ([0]) and such that its derivative at z = 0 is normalized to 1.

Fixing as before (0, 0) ∈ C × C and 0 ∈ C as base points we obtain (with the conventions of 3.2) a
trivialization for the pullback to C × C of the Mumford bundleMτ associated with OEτ ([0]) resp.
for the pullback to C × C of the Poincaré bundle (3.1.5) on Eτ × Eτ . The associated factors of
automorphy are computed (with 3.2 (v)) from (3.3.10) both times as

(3.3.11)

Γτ × Γτ × C× C→ C∗, (mτ + n,m′τ + n′, z, w) 7→ exp

[
− 2πimm′τ − 2πim′z − 2πimw

]
.

If we write againMτ as OEτ×Eτ (∆̄Eτ − ([0]×Eτ )− (Eτ × [0])), then the trivialization on C×C
is defined by the function (z, w) 7→ 1

J(z,w;τ) , where

(3.3.12) J(z, w; τ) :=
ϑ(z + w; τ)

ϑ(z; τ)ϑ(w; τ)
= exp[zw · η(1; τ)] · σ(z + w; τ)

σ(z; τ)σ(w; τ)
.

The function J in (3.3.12) will be the key instrument for our explicit description of the D-variant
of the elliptic polylogarithm in families. We have seen that it is the analogue for the Kronecker
theta function Θ in (3.3.4) when one performs the shift from the canonical to the classical factor
of automorphy for OEτ ([0]) (cf. Rem. 3.3.1 and Rem. 3.3.3). The classical theta function ϑ of
(3.3.9), as characterized in Rem. 3.3.3 (ii), instead of the canonical theta function θ of (3.3.1) is
the appropriate theta function to start with. The use of such a theta function is that it provides a
factor of automorphy (and thus a way of writing down sections) for the Poincaré bundle (3.1.5).

Let us conclude this more preliminary subsection by showing that with the function J in (3.3.12)

we have not defined anything new to the existing literature.

The relation to Zagier’s meromorphic Jacobi form

We keep working with a fixed τ ∈ H.
In [Za2], 3, Zagier introduces a meromorphic function (z, w) 7→ Fτ (z, w) on C × C by analytic
continuation of the function

(z, w) 7→
∑
n≥0

e−nw

e−2πinτ · ez − 1
−
∑
m≥0

emz · ew

e−2πimτ − ew
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which is defined on a certain domain of C× C.
In the cited work the function Fτ (z, w) is shown to induce a generating function for the (adequately
normalized) period polynomials of all Hecke eigenforms for the full modular group (cf. ibid., (17)).
As explained in ibid., 3, Remark, Fτ (2πiz, 2πiw) is a two-variable meromorphic Jacobi form.

A number of fundamental properties of the function Fτ (z, w), including a determination of its poles
and residues and of its behaviour under modular transformations, are given in ibid., 3, Theorem.
The proof of the next lemma will make use of these results.

Lemma 3.3.4
With notation as above we have an equality of meromorphic functions in (z, w) ∈ C× C:

Θ(z, w; τ) = 2πi · exp

[
zw

A(τ)

]
· Fτ (2πiz, 2πiw).

Proof. As above let Γτ = Zτ ⊕ Z and write 2πiΓτ := Z2πiτ ⊕ Z2πi. If A(2πiΓτ ) denotes the
fundamental area divided by π of the lattice 2πiΓτ , then we have

A(2πiΓτ ) = 2πiτ̄ − 2πiτ,(∗)

A(2πiΓτ ) = 4π2A(τ).(∗∗)

Let
Θ(z, w; 2πiΓτ ) :=

θ(z + w; 2πiΓτ )

θ(z; 2πiΓτ )θ(w; 2πiΓτ )

be the Kronecker theta function for the lattice 2πiΓτ , where the function θ(−; 2πiΓτ ) is defined as in
(3.3.1) by using the lattice 2πiΓτ instead of Γτ .

The canonical factor of automorphy for the Poincaré bundle on (C/2πiΓτ × C/2πiΓτ ) is given (by
the same computation as in the deduction of (3.3.3)) as

2πiΓτ × 2πiΓτ × C× C→ C∗, (γ, µ, z, w) 7→ exp

[
γµ̄+ zµ̄+ wγ̄

A(2πiΓτ )

]
.

Using (∗) in the numerator of this expression (and observing e2πim′n = 1) one calculates that it equals

(2πimτ + 2πin, 2πim′τ + 2πin′, z, w) 7→ exp

[
1

A(2πiΓτ )
(4π2mm′τ2 + 4π2mn′τ + 4π2m′nτ

+ 4π2nn′ − 2πim′zτ − 2πimwτ − 2πin′z − 2πinw)− 2πimm′τ −m′z −mw
]
.

Now set
gτ (z, w) := Fτ (z, w) · exp

[
− zw

A(2πiΓτ )

]
,

which is a meromorphic function in (z, w) because this holds for Fτ (z, w) by [Za2], 3, Theorem, (ii).
Then

gτ (z + 2πimτ + 2πin,w + 2πim′τ + 2πin′)

= Fτ (z + 2πimτ + 2πin,w + 2πim′τ + 2πin′) · exp

[
− zw

A(2πiΓτ )

]
· exp

[
1

A(2πiΓτ )
(4π2mm′τ2

+ 4π2mn′τ + 4π2m′nτ + 4π2nn′ − 2πim′zτ − 2πimwτ − 2πin′z − 2πinw)

]
,
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and the formula

Fτ (z + 2πimτ + 2πin,w + 2πim′τ + 2πin′) = Fτ (z, w) · exp

[
− 2πimm′τ −m′z −mw

]
thus implies that (z, w) 7→ gτ (z, w) defines a meromorphic section of the Poincaré bundle over
(C/2πiΓτ × C/2πiΓτ ); for the preceding formula we use [Za2], 3, Theorem, (v).

The functions gτ (z, w) and Θ(z, w; 2πiΓτ ) moreover both have simple poles in z = 2πimτ +

2πin (m,n ∈ Z) and in w = 2πim′τ + 2πin′ (m′, n′ ∈ Z) and are holomorphic elsewhere: for
Fτ (z, w) - and hence for gτ (z, w) - this is [Za2], 3, Theorem, (ii), and for Θ(z, w; 2πiΓτ ) this is clear
by definition and by the zeroes of θ(−; 2πiΓτ ).

Let us calculate residues:
With [Za2], 3, Theorem, (ii), we obtain

Resz=2πimτ+2πin

{
gτ (z, w)

}
= exp[−wm] · exp

[
− (2πimτ + 2πin)w

A(2πiΓτ )

]
.

On the other hand,

Resz=2πimτ+2πin

{
Θ(z, w; 2πiΓτ )

}
= exp

[
(−2πimτ̄ − 2πin)w

A(2πiΓτ )

]
= exp

[
− 2πimwτ + 2πinw

A(2πiΓτ )
−mw

]
,

where the first equation follows from [Ba-Ko], Lemma 1.15, and the second from (∗). In the same way
one shows that the residues of gτ (z, w) and Θ(z, w; 2πiΓτ ) coincide also in w = 2πim′τ + 2πin′.

In sum, we deduce that the difference of gτ (z, w) and Θ(z, w; 2πiΓτ ) is a holomorphic section of
the Poincaré bundle over (C/2πiΓτ ×C/2πiΓτ ). By [Ba-Ko], Lemma 1.11, it must already be zero.
We hence get

(∗ ∗ ∗) Θ(z, w; 2πiΓτ ) = gτ (z, w) = exp

[
− zw

A(2πiΓτ )

]
· Fτ (z, w).

Now observe (e.g. by directly going into the definitions) the relation

θ(z; 2πiΓτ ) = 2πi · θ
(

z

2πi
; τ

)
,

such that

Θ(z, w; 2πiΓτ ) =
1

2πi
·Θ
(

z

2πi
,
w

2πi
; τ

)
and hence

Θ(z, w; τ) = 2πi ·Θ(2πiz, 2πiw; 2πiΓτ ) = 2πi · exp

[
4π2zw

A(2πiΓτ )

]
· Fτ (2πiz, 2πiw)

= 2πi · exp

[
zw

A(τ)

]
· Fτ (2πiz, 2πiw).

Here, the second equality comes from (∗∗∗) and the third one is (∗∗). This establishes our claim.
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We now deduce the fundamental relation between the function J(z, w; τ) of (3.3.12) and the mero-
morphic Jacobi form Fτ (2πiz, 2πiw):

Proposition 3.3.5
We have the equality

J(z, w; τ) = 2πi · Fτ (2πiz, 2πiw).

Proof. As

ϑ(z; τ) = exp

[
− z2

2A(τ)

]
· θ(z; τ)

we have

J(z, w; τ) = exp

[
− zw

A(τ)

]
·Θ(z, w; τ).

Now use Lemma 3.3.4.

Remark 3.3.6
We have the equality

J(z, w; τ) = exp[wζ(z; τ) + zwη(1; τ)] · Ξ(z, w; τ).

Namely, as F1(z; τ) = ζ(z; τ)− e∗2(τ) · z this follows by combining the last equation in the proof of
Prop. 3.3.5 with Lemma 3.3.2.

3.3.2 Notations for some classical functions

We briefly introduce notations for some well-known functions appearing in the complex theory of
elliptic curves. The conventions adopted here will remain valid until the end of the work.
Details and basic properties concerning these functions can be found in [Sil], Ch. I, [Kat3], Ch. I,
[Kat4], A 1.3, [Po], I, App. A, and [Bi-Lan], 8.5.

We use the abbreviations qz := e2πiz, qτ := e2πiτ .

(i) As in 3.3.1 we let

A(τ) :=
1

2πi
(τ − τ̄)

be the fundamental area of Γτ = Zτ ⊕Z divided by π, now viewed as a function in τ ∈ H, as well as

σ(z, τ) := z ·
∏

γ∈Γτ\{0}

(
1− z

γ

)
· exp

[
z

γ
+

z2

2γ2

]
resp.

ζ(z, τ) :=
1

z
+

∑
γ∈Γτ\{0}

(
1

z − γ
+

1

γ
+

z

γ2

)
the Weierstraß sigma resp. zeta function, now viewed as functions in (z, τ) ∈ C×H.

(ii) For each τ ∈ H the quasi-period η(−, τ) : Γτ → C for the lattice Γτ is again defined via

η(mτ + n, τ) := ζ(z, τ)− ζ(z +mτ + n, τ).
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We stress that our definition of the quasi-period follows the sign convention of [Kat3], 1.2.4 and
[Kat4], A 1.3, which usually differs by the factor (−1) from the definition in other sources.
The quasi-period in particular yields the functions in τ ∈ H given by η(1, τ) and η(τ, τ) which are
connected via the Legendre relation (cf. [Kat4], A 1.3.4):

η(τ, τ) = 2πi+ τ · η(1, τ).

We also remark the equality

−η(1, τ) = G2(τ) :=
∑
n 6=0

1

n2
+
∑
m 6=0

∑
n∈Z

1

(mτ + n)2
=
π2

3
− 8π2 ·

∑
n≥1

(∑
d|n
d>0

d

)
qnτ

of−η(1, τ) with the holomorphic Eisenstein series of weight twoG2(τ) (cf. [Kat4], Lemma A 1.3.9).

(iii) Furthermore, let

η(τ) := exp

[
2πiτ

24

]
·
∏
n≥1

(1− qnτ )

denote the Dedekind eta function in τ ∈ H.

(iv) We introduce the two-variable classical Riemann theta function of characteristic

[
1
2
1
2

]
by

θ11(z, τ) :=
∑
n∈Z

exp

[
πi

(
n+

1

2

)2

τ + 2πi

(
n+

1

2

)(
z +

1

2

)]
,

following in our notation [Po], I, App. A. It is also often denoted by ϑ

[
1
2
1
2

]
(z, τ), e.g. in [Bi-Lan], 8.5.

(v) Finally, we write
F (z, w, τ) := Fτ (z, w)

for the function defined in [Za2], 3, which we have already introduced prior to Lemma 3.3.4 and now
view as a function in (z, w, τ) ∈ C× C×H.

3.3.3 The elementary theta function and the fundamental meromor-
phic Jacobi form

In 3.3.1 we explained at some length the motivation to consider the functions ϑ(z; τ) and J(z, w; τ)

which we now officially introduce with also the parameter τ ∈ H varying. Before we explicitly apply
them in the context of the universal elliptic curve we want to use the present and following subsection
to record the most important analytic properties of these functions that will be needed later.

The elementary theta function

Definition 3.3.7
The elementary theta function is the function in (z, τ) ∈ C×H given by

ϑ(z, τ) := exp

[
z2

2
η(1, τ)

]
· σ(z, τ).
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Remark 3.3.8
As recorded in (3.3.9) the relation between ϑ(z, τ) and the function θ(z, τ) of (3.3.1) is given by

(3.3.13) ϑ(z, τ) = exp

[
− z2

2A(τ)

]
· θ(z, τ).

Lemma 3.3.9
We have the following two alternative expressions for the elementary theta function:

(3.3.14) ϑ(z, τ) =
1

2πi

(
q

1
2
z − q

− 1
2

z

)
·
∞∏
n=1

(1− qnτ qz)(1− qnτ q−1
z )

(1− qnτ )2

and

(3.3.15) ϑ(z, τ) = −θ11(z, τ)

2πη(τ)3
.

Proof. For (3.3.14) use [Sil], I, §6, Thm. 6.4, and observe that the quasi-period used there differs
from ours by a minus sign.
To derive (3.3.15) use [Po], I, App. A, Thm. 3.9; note again the different sign of the quasi-period.

As the functions (z, τ) 7→ θ11(z, τ) and τ 7→ η(τ) are holomorphic2 we see from (3.3.15) that ϑ(z, τ)

varies holomorphically in C × H. Its zeroes cut out the divisor {(mτ + n, τ)|τ ∈ H,m, n ∈ Z} ⊆
C×H, and its one-variable Taylor expansion around z = 0 has the form

(3.3.16) ϑ(z, τ) = z + higher terms.

Finally, we will need the behaviour of ϑ(z, τ) under modular transformations:

Proposition 3.3.10

For all m,n ∈ Z and

(
a b

c d

)
∈ SL2(Z) we have

ϑ

(
z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
=

1

cτ + d
·exp

[
πic(z +mτ + n)2

cτ + d
+πim+πin−2πimz−πim2τ

]
·ϑ(z, τ).

Proof. Consider formula (3.3.15):

ϑ(z, τ) = −θ11(z, τ)

2πη(τ)3
.

One checks that −θ11(z, τ) is equal to what in [Si], p. 30, is denoted by ϑ1(z, τ). The transformation
formulas for ϑ1(z, τ) and for η(τ) given in ibid., p. 34, then imply

ϑ

(
z

cτ + d
,
aτ + b

cτ + d

)
=

1

cτ + d
· exp

[
πicz2

cτ + d

]
· ϑ(z, τ).

For the proof of the proposition it thus remains to show that

ϑ(z +mτ + n, τ) = eπim+πin−2πimz−πim2τ · ϑ(z, τ).

2The product in the Dedekind eta function converges absolutely and uniformly on compact subsets of H, hence is holomor-
phic. For the holomorphicity of θ11(z, τ) in C× H set c1 = c2 = 1

2
in [Bi-Lan], Prop. 8.5.4.
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Taking into account Def. 3.3.7, the last formula is equivalent to the claim that σ(z+mτ+n, τ) equals

eπim+πin−2πimz−πim2τ−η(1,τ)·[ 12m
2τ2+ 1

2n
2+mzτ+nz+mnτ ] · σ(z, τ),

or, written differently, equals

eπimn+πim+πin · e−η(1,τ)·[ 12m
2τ2+ 1

2n
2+mzτ+nz+mnτ ]−2πimz−πim2τ−πimn · σ(z, τ)

= eπimn+πim+πin · e[−η(1,τ)·(mτ+n)−2πim]·[z+ 1
2n+ 1

2mτ ] · σ(z, τ)

= eπimn+πim+πin · e−η(mτ+n,τ)·[z+ 1
2 (mτ+n)] · σ(z, τ),

where for the last line we have used the Legendre relation (cf. 3.3.2 (ii)):

η(τ, τ) = 2πi+ τ · η(1, τ).

But that the last line is equal to σ(z + mτ + n, τ) is well-known: this is [Sil], Ch. I, Prop. 5.4 (c):
one only has to take into account that the quasi-period used there differs from ours by a minus sign
and that the factor ψ(mτ + n) appearing there equals eπimn+πim+πin.

The fundamental meromorphic Jacobi form

The holomorphic function ϑ(z, τ) induces the following meromorphic function in three variables:

Definition 3.3.11
We define a meromorphic function in (z, w, τ) ∈ C× C×H by setting

J(z, w, τ) :=
ϑ(z + w, τ)

ϑ(z, τ)ϑ(w, τ)

and call it the fundamental meromorphic Jacobi form.

Remark 3.3.12
The relation between J(z, w, τ) and the function Θ(z, w, τ) of (3.3.4) is given by

(3.3.17) J(z, w, τ) = exp

[
− zw

A(τ)

]
·Θ(z, w, τ).

Let us also recall from (3.3.12) that

(3.3.18) J(z, w, τ) = exp[zw · η(1, τ)] · σ(z + w, τ)

σ(z, τ)σ(w, τ)
.

In Prop. 3.3.5 we have already established the following relation between J(z, w, τ) and the mero-
morphic Jacobi form F (2πiz, 2πiw, τ) of [Za2], 3:

Proposition 3.3.13
We have the equality

J(z, w, τ) = 2πi · F (2πiz, 2πiw, τ).

In view of [Za2], 3, Theorem, (i)-(viii), this yields a number of non-trivial properties for J(z, w, τ).

The following transformation formula can be viewed as a corollary of Prop. 3.3.10 or be deduced
from Prop. 3.3.13 and [Za2], 3, Theorem, (v) and (vi).
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Corollary 3.3.14

For all m,n,m′, n′ ∈ Z and

(
a b

c d

)
∈ SL2(Z) we have

J

(
z +mτ + n

cτ + d
,
w +m′τ + n′

cτ + d
,
aτ + b

cτ + d

)
·
(
J(z, w, τ)

)−1

= (cτ + d) · exp

[
2πic

cτ + d
· (z +mτ + n)(w +m′τ + n′)− 2πim′z − 2πimw − 2πimm′τ

]
.

It follows e.g. from Prop. 3.3.13 and [Za2], 3, Theorem, (ii), that J(z, w, τ) has simple poles in

z = mτ + n (m,n ∈ Z, τ ∈ H)

with residue e−2πimw and simple poles in

w = m′τ + n′ (m′, n′ ∈ Z, τ ∈ H)

with residue e−2πim′z and is holomorphic elsewhere.
We consider its Laurent expansion with respect to the variable w around w = 0:

(3.3.19) J(z, w, τ) =
1

w
+
∑
k≥0

rk(z, τ) · wk.

From the mentioned knowledge about the residues of J and comparison of expansions one easily
deduces the following information about the meromorphic coefficient functions rk(z, τ) for all k ≥ 0,
where we use the convention 00 := 1 and trivially remark that having residue 0 at a pole of order at
worst one means holomorphicity:

(3.3.20)

rk has at worst simple poles along z = mτ + n (m,n ∈ Z, τ ∈ H),with residue
(−1)k(2πim)k

k!
.

From (3.3.17), [Ba-Ko-Ts], p. 191, and Lemma 3.3.2 one finds

(3.3.21) r0(z, τ) = ζ(z, τ) + η(1, τ) · z.

For later purposes we note as a consequence of (3.3.19) and (3.3.20) that for each D ∈ Z\{0} we
have a Laurent expansion around w = 0:

(3.3.22) D2 · J(z,−w, τ)−D · J
(
Dz,−w

D
, τ
)

= sD0 (z, τ) + sD1 (z, τ)w + ...,

where for all k ≥ 0 the sDk (z, τ) are meromorphic functions on C×H with the property:

(3.3.23)

sDk has at worst simple poles along z = mτ + n (m,n ∈ Z, τ ∈ H),with residue (D2 − 1) · (2πim)k

k!
,

and along z =
m

D
τ +

n

D
(with D not simultaneously dividing m and n),with residue −

(2πim
D

)k

k!
.

From (3.3.21) we see:

(3.3.24) sD0 (z, τ) = D2 · ζ(z, τ)−D · ζ(Dz, τ).
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3.3.4 The fundamental meromorphic Jacobi form and Eisenstein se-
ries

We continue the investigation of the function J(z, w, τ) by revealing that its Laurent expansion around
w = 0 involves as coefficients Eisenstein functions ek(z, τ) which are obtained from the Eisenstein-
Kronecker-Lerch series (resp. its analytic continuation) defined in [Ba-Ko-Ts], 2.1 or [Ba-Ko], 1.1.
It will turn out later that the analytified D-variant of the polylogarithm on the universal elliptic curve
can be constructed from the w-expansion of J(z, w, τ). Hence, already in prevision of determining
the specialization of the D-variant along torsion sections, we here evaluate the ek(z, τ) at points
z = a

N τ + b
N . The result, which is also of independent interest, represents the obtained functions

τ 7→ ek

(
a
N τ + b

N , τ
)

by the modular forms F (k)
a
N ,

b
N

(τ) defined and studied in [Ka], Ch. I.

The two-variable Eisenstein functions

For τ ∈ H we will again write Γτ = Zτ ⊕ Z for the associated lattice in the complex plane and
A(τ) := A(Γτ ) := 1

2πi (τ − τ̄), which is the fundamental area of Γτ divided by π.

For each k ≥ 0 we define a two-variable Eisenstein function by

ek(z, τ) := K∗k(0, z, k; τ),

where K∗k(−,−,−; τ) denotes the Eisenstein-Kronecker-Lerch function (with asterisk) associated to
the lattice Γτ ; for its definition and basic properties cf. [Ba-Ko-Ts], 2.1, or [Ba-Ko], 1.1. The ek(z, τ)

define C∞-functions for (z, τ) in (C×H)\{(mτ +n, τ)|τ ∈ H,m, n ∈ Z}, see the argument below.

The Eisenstein functions have an important relation to the expansion of J(z, w, τ) in w = 0; namely,
we have the following equation (in which we don’t write out the expansion of the exponential term):

(3.3.25) J(z, w, τ) = exp

[
2πi

z̄w − zw
τ − τ̄

]
·
(

1

w
+
∑
k≥0

(−1)k · ek+1(z, τ) · wk
)
.

This is deduced from the symmetry property J(z, w, τ) = J(w, z, τ) together with the formulas

J(z, w, τ) = exp

[
2πi

zw̄ − zw
τ − τ̄

]
·K1(z, w, 1; τ),

K1(z, w, 1; τ) =

(
1

z
+
∑
k≥0

(−1)k · ek+1(w, τ) · zk
)
,

where for the first equality one uses (3.3.17) and [Ba-Ko], Thm. 1.13, and the second follows from the
formula in [Ba-Ko-Ts], p. 226, noting ibid., Def. A.2 and Rem. A.5. Here, K1(z, w, 1; τ) is a certain
Eisenstein-Kronecker-Lerch function (without asterisk) for Γτ , as defined and studied in [Ba-Ko], 1.1.

From (3.3.25) and the properties of the Laurent w-expansion of J(z, w, τ) (cf. (3.3.19) and (3.3.20))
we see that the ek(z, τ) are C∞-functions for (z, τ) in (C×H)\{(mτ + n, τ)|τ ∈ H,m, n ∈ Z}.

Specializing the Eisenstein functions to modular forms

Fix N ≥ 3 and two integers a, b which are not simultaneously multiples of N , in other words: setting
α := a

N , β := b
N we have (α, β) 6= (0, 0) in ( 1

NZ/Z)2.
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We want to relate for each k ≥ 1 the function τ 7→ ek

(
a
N τ+ b

N , τ
)

with the modular form F
(k)
α,β(τ) of

weight k and level N defined in [Ka], Ch. I, 3.6. For the reader’s convenience, we quickly review the
definition of these modular forms, for the present purpose understood in the classical analytic sense;
for more details, in particular for their purely algebraic construction, we refer to ibid., Ch. I, 3.6-3.10.
In fact, their algebraic origin won’t play a role before 3.8.2, where we will also precisely describe
the relation between the algebraic and the analytic approach (cf. Rem. 3.8.12 and Rem. 3.8.13).
Until then, we will exclusively treat them as modular forms in the classical sense, working with their
expressions as holomorphic functions in τ given in ibid., Ch. I, 3.8.

Namely, if we (now and in the following) write ζN := e
2πi
N , then

F
(k)
α,β(τ) := N−k

∑
(x,y)∈(Z/NZ)2

ζxb−yaN · E(k)
x
N ,

y
N

(τ), k 6= 2

F
(2)
α,β(τ) := N−2

∑
(x,y)∈(Z/NZ)2

ζxb−yaN · Ẽ(2)
x
N ,

y
N

(τ).

The E(k)
x
N ,

y
N

(τ) resp. Ẽ(2)
x
N ,

y
N

(τ), associated to ( xN ,
y
N ) ∈ ( 1

NZ/Z)2, are modular forms of weight k
and level N of algebraic origin. As functions in τ they are given as follows:

In the case k ≥ 3 one has

E
(k)
x
N ,

y
N

(τ) = (−1)k(k − 1)!(2πi)−k
∑

(m,n)∈Z2

1

( x̃N τ + ỹ
N +mτ + n)k

for (x, y) 6= (0, 0) in (Z/NZ)2,

E
(k)
0,0 (τ) = (−1)k(k − 1)!(2πi)−k

∑
(m,n)∈Z2\{(0,0)}

1

(mτ + n)k
,

where (x̃, ỹ) represents (x, y) in (Z/NZ)2.
To obtain E

(k)
x
N ,

y
N

(τ), where (x, y) 6= (0, 0) ∈ (Z/NZ)2, resp. E
(k)
0,0 (τ) for the cases k = 1, 2

one proceeds by Hecke summation: this means that one takes the value at s = 0 of the analytic
continuation of the - in Re(s) > 2− k absolutely convergent - series

(−1)k(k − 1)!(2πi)−k
∑

(m,n)∈Z2

1

( x̃N τ + ỹ
N +mτ + n)k · | x̃N τ + ỹ

N +mτ + n|s

resp.

(−1)k(k − 1)!(2πi)−k
∑

(m,n)∈Z2\{(0,0)}

1

(mτ + n)k · |mτ + n|s
.

Ẽ
(2)
x
N ,

y
N

(τ) then is given by E(2)
x
N ,

y
N

(τ)− E(2)
0,0(τ).

For more details and for proofs of tacitly assumed facts we refer the reader to [Sc], Ch. VII; see
also the following remark.

Remark 3.3.15
Let (x, y) ∈ (Z/NZ)2. Then in [Sc], Ch. VII, for each k ≥ 1 functions GN,k,(x,y)(τ) are defined as
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the value at s = 0 of the analytic continuation of the - in Re(s) > 2−k absolutely convergent - series

s 7→
∑

(m,n)∈Z2\{(0,0)},
(m,n)≡(x,y) mod N

1

(mτ + n)k · |mτ + n|s
.

One can check that the following relation with the above defined Eisenstein series holds:

GN,k,(x,y)(τ) = N−k
(−1)k(2πi)k

(k − 1)!
· E(k)

x
N ,

y
N

(τ).

From [Sc], Ch. VII, (6) and (30), we also get the following formulas for any (x, y) ∈ (Z/NZ)2\{(0, 0)}:

E
(k)
x
N ,

y
N

(τ) = (2πi)−k · ℘(k−2)
( x
N
τ +

y

N
, τ
)

if k ≥ 3,

Ẽ
(2)
x
N ,

y
N

(τ) = (2πi)−2 · ℘
( x
N
τ +

y

N
, τ
)
,

with ℘(z, τ) resp. ℘(k−2)(z, τ) the Weierstraß ℘-function resp. its (k−2)-th derivative in z-direction.

We can now describe the specialization of the Eisenstein functions as follows:

Theorem 3.3.16
Let N, a, b, α, β be as above. Then for each k ≥ 1 we have the equality

ek

( a
N
τ +

b

N
, τ
)

=
(−1)k(2πi)k

(k − 1)!
· F (k)

α,β(τ).

Proof. We need to distinguish three cases.

Let us start with the case k ≥ 3:

Under this assumption we have the series representation

ek(z, τ) =
∑

γ∈Γτ\{0}

exp

[
2πi

z̄γ − zγ̄
τ − τ̄

]
· 1

γk
=

∑
(x,y)∈Z2\{(0,0)}

exp

[
2πi

z̄xτ + z̄y − zxτ̄ − zy
τ − τ̄

]
· 1

(xτ + y)k
,

following from the definition of ek and the fact that Re(k) > k
2 +1 holds for k ≥ 3, such that we have

an expression ofK∗k(0, z, k; τ) by the preceding absolute convergent series (cf. [Ba-Ko-Ts], Def. 2.1).

We get

ek
( a
N
τ +

b

N
, τ
)

=
∑

(x,y)∈Z2\{(0,0)}

ζxb−yaN · 1

(xτ + y)k

=
∑

(x,y)∈(Z/NZ)2\{(0,0)}

{
ζxb−yaN ·

∑
(m,n)∈Z2

1

((x̃+mN)τ + ỹ + nN)k

}
+

∑
(m,n)∈Z2\{(0,0)}

1

(mNτ + nN)k

= N−k
( ∑

(x,y)∈(Z/NZ)2\{(0,0)}

{
ζxb−yaN ·

∑
(m,n)∈Z2

1

( x̃
N
τ + ỹ

N
+mτ + n)k

}
+

∑
(m,n)∈Z2\{(0,0)}

1

(mτ + n)k

)
.

On the other hand, we have by definition
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F
(k)
α,β(τ) = N−k

∑
(x,y)∈(Z/NZ)2

ζxb−yaN · E(k)
x
N
, y
N

(τ)

= N−k
( ∑

(x,y)∈(Z/NZ)2\{(0,0)}

{
ζxb−yaN · (−1)k(k − 1)!(2πi)−k ·

∑
(m,n)∈Z2

1

( x̃
N
τ + ỹ

N
+mτ + n)k

}
+ E

(k)

(0,0)(τ)

)

=
(−1)k(k − 1)!

(2πi)k
N−k

( ∑
(x,y)∈(Z/NZ)2\{(0,0)}

{
ζxb−yaN ·

∑
(m,n)∈Z2

1

( x̃
N
τ + ỹ

N
+mτ + n)k

}

+
∑

(m,n)∈Z2\{(0,0)}

1

(mτ + n)k

)
.

Hence

ek

( a
N
τ +

b

N
, τ
)

=
(−1)k(2πi)k

(k − 1)!
· F (k)

α,β(τ) for all k ≥ 3.

We now treat the case k = 1:

By definition and [Ka], p. 140, we have

F
(1)
α,β(τ) = N−1

( ∑
(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN · E(1)
x
N
, y
N

(τ) + E
(1)
0,0(τ)

)

= −(2πiN)−1

( ∑
(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN ·
{

Anal. cont. of

∑
(m,n)∈Z2

1

( x̃
N
τ + ỹ

N
+mτ + n) · | x̃

N
τ + ỹ

N
+mτ + n|s

in s = 0

}
+

{
Anal. cont. of

∑
(m,n)∈Z2\{(0,0)}

1

(mτ + n) · |mτ + n|s in s = 0

})
= −(2πiN)−1

(
Anal. cont. of

{ ∑
(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN ·
∑

(m,n)∈Z2

1

( x̃
N
τ + ỹ

N
+mτ + n) · | x̃

N
τ + ỹ

N
+mτ + n|s

+
∑

(m,n)∈Z2\{(0,0)}

1

(mτ + n) · |mτ + n|s

}
in s = 0

)
.

The series are absolutely convergent for Re(s) > 1, and there the expression in {...} is equal to

N1+s
∑

(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN ·
∑

(m,n)∈Z2

1

((x̃+mN)τ + ỹ + nN) · |(x̃+mN)τ + ỹ + nN |s

+N1+s
∑

(m,n)∈Z2\{(0,0)}

1

(mNτ + nN) · |mNτ + nN |s

= N1+s
∑

(x,y)∈Z2\{(0,0)}

ζbx−ayN · 1

(xτ + y) · |xτ + y|s =: f(s).

On the other hand, we have for Re(s) > 1:

K∗1

(
0,
a

N
τ +

b

N
, 1 +

s

2
; τ
)

=
∑

(x,y)∈Z2\{(0,0)}

ζbx−ayN · 1

(xτ + y) · |xτ + y|s ,

absolutely convergent (by applying the definition, cf. [Ba-Ko-Ts], Def. 2.1). We then have:

(∗) e1(z, τ)|z= a
N τ+ b

N
= Anal. cont. of K∗1

(
0,
a

N
τ +

b

N
, 1 +

s

2
; τ
)

in s = 0,
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again by definition.
The equality N1+s ·K∗1 (0, aN τ + b

N , 1 + s
2 ; τ) = f(s) in Re(s) > 1 implies the equality

N ·K∗1
(

0,
a

N
τ +

b

N
, 1; τ

)
= f(0)

for the analytic continuations in s = 0. Now, (∗) together with the above computation for F (1)
α,β(τ)

yields, as desired:

e1

( a
N
τ +

b

N
, τ
)

= −2πi · F (1)
α,β(τ).

We finally turn to the case k = 2:

By definition and [Ka], p. 140, we have:

F
(2)
α,β(τ) = N−2

( ∑
(x,y)∈(Z/NZ)2

ζbx−ayN · Ẽ(2)
x
N
, y
N

(τ)

)

= N−2

( ∑
(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN ·
[
E

(2)
x
N
, y
N

(τ)− E(2)
0,0(τ)

])

= −(4π2N2)−1

( ∑
(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN ·
[
E
(

2, τ,
x̃

N
τ +

ỹ

N
, 0
)
− E0,0(2, τ, 0)

])

= −(4π2N2)−1

( ∑
(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN · E
(

2, τ,
x̃

N
τ +

ỹ

N
, 0
)

+ E0,0(2, τ, 0)

)

+ (4π2N2)−1

( ∑
(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN · E0,0(2, τ, 0) + E0,0(2, τ, 0)

)
.

The first summand is by definition

− (4π2N2)−1

(
Anal. cont. of

{ ∑
(x,y)∈(Z/NZ)2\{(0,0)}

ζbx−ayN ·
∑

(m,n)∈Z2

1

( x̃
N
τ + ỹ

N
+mτ + n)2 · | x̃

N
τ + ỹ

N
+mτ + n|s

+
∑

(m,n)∈Z2\{(0,0)}

1

(mτ + n)2 · |mτ + n|s

}
in s = 0

)
,

and the term in {...} is absolutely convergent in Re(s) > 0, where it equals

N2+s
∑

(x,y)∈Z2\{(0,0)}

ζbx−ayN · 1

(xτ + y)2 · |xτ + y|s
=: g(s).

On the other hand, by definition:

(∗∗) e2(z, τ)|z= a
N τ+ b

N
= Anal. cont. of K∗2

(
0,
a

N
τ +

b

N
, 2 +

s

2
; τ
)

in s = 0.

For Re(s) > 0 we have

K∗2

(
0,
a

N
τ +

b

N
, 2 +

s

2
; τ
)

=
∑

(x,y)∈Z2\{(0,0)}

ζbx−ayN · 1

(xτ + y)2 · |xτ + y|s
= N−2−sg(s),
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absolutely convergent (cf. [Ba-Ko-Ts], Def. 2.1).
Altogether, we obtain from (∗∗) and the above computation of F (2)

α,β :

(∗ ∗ ∗) e2

( a
N
τ +

b

N
, τ
)

= −4π2F
(2)
α,β(τ) +N−2

∑
(x,y)∈(Z/NZ)2

ζbx−ayN · E0,0(2, τ, 0).

But ∑
(x,y)∈(Z/NZ)2

ζbx−ayN =

( ∑
x∈Z/NZ

exp

[
2πi

N
bx

])
·
( ∑
y∈Z/NZ

exp

[
− 2πi

N
ay

])
.

By hypothesis, we have that N - a or N - b. If N - a we get

∑
y∈Z/NZ

exp

[
− 2πi

N
ay

]
=

1−
(

exp

[
− 2πi

N a

])N
1− exp

[
− 2πi

N a

] = 0,

and if N - b we get

∑
x∈Z/NZ

exp

[
2πi

N
bx

]
=

1−
(

exp

[
2πi
N b

])N
1− exp

[
2πi
N b

] = 0.

With this, (∗ ∗ ∗) writes as

e2

( a
N
τ +

b

N
, τ
)

= −4π2F
(2)
α,β(τ),

which is what we wanted to show.

Thm. 3.3.16 and (3.3.25) will serve as an important computational tool when determining the spe-
cialization of the D-variant of the polylogarithm along torsion sections of the universal elliptic curve.
More precisely, we will see that this specialization expresses in terms of the modular forms DF

(k)
α,β(τ)

defined in [Ka], Ch. I, p. 143; they are obtained from the above F (k)
α,β(τ) in the following way:

Definition 3.3.17
Let N, a, b, α, β be as above and let D be an integer with (D,N) = 1.
Then we define for each k ≥ 1 the modular form DF

(k)
α,β(τ) of weight k and level N by setting

DF
(k)
α,β(τ) := D2F

(k)
α,β(τ)−D2−kF

(k)
Dα,Dβ(τ).

3.4 The analytic geometry of the basic objects

The main goals for the rest of the work will be the following: to describe analytically the D-variant of
the polylogarithm for the universal family of elliptic curves with level N -structure, and to determine
its (algebraic) specialization along torsion sections.
In the following, we first review the definition of the universal elliptic curve over the modular curve
of level N (introduced as schemes over Q) and the description of their associated complex manifolds.
We also derive a suitable expression for the analytification of the universal vectorial extension of
the dual elliptic curve. Then, as already illustrated in 3.3.1 for a single complex elliptic curve, the
elementary theta function resp. the fundamental meromorphic Jacobi form is used to trivialize the
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pullback of the analytified Poincaré bundle to the universal covering, which provides us with a factor
of automorphy. Expressing in this way sections of the Poincaré bundle via holomorphic functions on
the universal covering, we finally deduce an explicit formula for its universal integrable connection.

Conventions and notations

Assume that X is a scheme which is locally of finite type over C or over Q.
We will denote by Xan the complex analytic space associated with the C-valued points X(C) =

HomC(Spec(C), X) resp. (X ×Q C)(C) = HomC(Spec(C), X ×Q C) = HomQ(Spec(C), X).
The assignment X 7→ Xan is functorial for morphisms in the respective category of schemes.
If F is a OX -module we write Fan for the OXan -module given by pullback of F via the canonical
map of locally ringed spaces Xan → X; as this map is flat we get an exact functor F 7→ Fan which
preserves coherence by Oka’s theorem and [EGAI], Ch. 0, (5.3.11).
For more details about the transition from the algebraic to the analytic category cf. [SGA1], exp. XII.

Furthermore, in view of 3.2 (v) we want to choose base points for the universal coverings of vari-
ous manifolds (resp. their connected components) which will be encountered. Here is our convention:

Until the end of the work we fix the base point 0 for C, the base point i for H and the induced
base points for factors, e.g. (0, i) for C×H or (0, 0, 0, i) for C× C2 ×H etc.

From now on let an integer N ≥ 3 be given.

The universal elliptic curve with level N -structure

Consider the (contravariant) set-valued functor on the category of Q-schemes

S 7→ {Iso classes of pairs (E , α) | E /S elliptic curve, α :
(
Z/NZ

)2
S

∼−→ E [N ] iso of S -groups},

where
(
Z/NZ

)2
S

means the constant S -group scheme associated with the abstract group
(
Z/NZ

)2
.

An isomorphism α as in the definition of the functor, called "level N -structure", is tantamount to
give an ordered pair of N -torsion sections of E /S inducing on each geometric fiber over S a basis
for the (usual)

(
Z/NZ

)
-module of N -torsion points: we obtain this pair of sections as the images of

(1, 0) and (0, 1) under the homomorphism
(
Z/NZ

)2 → E [N ](S ) of abstract groups corresponding
to α and call it the associated "Drinfeld basis" for E [N ].3

It is a well-known fundamental theorem that the above functor is representable by a 1-dimensional
affine scheme S which is smooth, separated and of finite type over Spec (Q), the (open) modular
curve of level N (cf. [Kat-Maz], Cor. 4.7.2, (4.3), (4.13) and (1.2.1)). One can check that S is
irreducible.4

We write
π : E → S, (e1, e2) ∈ E[N ](S)

3To see the equivalence between the isomorphy of α and the condition about the geometric fibers one may use [Kat-Maz],
Prop. 1.10.12, (1.10.5) and Lemma 1.8.3.

4One may use e.g. the remarks at the beginning of [Hi], 2.9.3, together with [Li], Ch. 4, Prop. 3.8.
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for the universal elliptic curve over the modular curve and the related Drinfeld basis for E[N ].

We want to have explicit expressions for the complex manifolds San and Ean.

For this let Γ(N) := ker(SL2(Z) → SL2(Z/NZ)) act as a group of automorphisms on H by lin-
ear fractional transformations. The action is properly discontinuous and as N ≥ 3 it is also free; the
orbit space Γ(N)\H, endowed with the quotient topology, naturally becomes a complex manifold.
Moreover, one checks that the set Z2 × Γ(N) obtains the structure of a group by((

m

n

)
, γ

)
◦

((
m′

n′

)
, γ′

)
:=

((
m′

n′

)
+ (γ′)t

(
m

n

)
, γγ′

)
and that it then acts properly discontinuously and freely as a group of automorphisms on C×H via((

m

n

)
,

(
a b

c d

))
· (z, τ) :=

(
z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
.

We can thus again naturally form the quotient manifold (Z2 × Γ(N))\(C×H).

In the following, we usually won’t indicate it in the notation when actually working with orbits and
will simply write down representatives, tacitly implying well-definedness of everything we do.

Because of N ≥ 3 the natural projection

(3.4.1) (Z/NZ)∗ × (Z2 × Γ(N))\(C×H)
pr−→ (Z/NZ)∗ × Γ(N)\H

with the section

(3.4.2) (j, 0, τ)← [ (j, τ)

defines an analytic family of elliptic curves.5 Furthermore, the two ordered sections

(3.4.3)
(
j,
jτ

N
, τ
)
← [ (j, τ),

(
j,

1

N
, τ
)
← [ (j, τ),

define an analytic Drinfeld basis for the N -torsion of this family.6

For each (j, τ) ∈ (Z/NZ)∗ × Γ(N)\H the complex elliptic curve pr−1((j, τ)), equipped with the
level N -structure induced by this Drinfeld basis, identifies with

(
C/(Zτ ⊕ Z), jτN ,

1
N

)
by

C/(Zτ ⊕ Z)
∼−→ pr−1((j, τ)), z 7→ (j, z, τ),

and this is the only such isomorphism because of N ≥ 3.

5By an analytic family of elliptic curves we understand a proper flat morphism of analytic spaces together with a section,
satisfying that each fiber is a compact Riemann surface of genus 1 which is then viewed as complex elliptic curve via the
distinguished point induced by the section. In our situation, (3.4.1) and (3.4.2) define such a family: for every (j, τ) ∈
(Z/NZ)∗×Γ(N)\H the fiber pr−1((j, τ)) is (non-uniquely) isomorphic to the complex torus C/(Zτ ⊕Z), e.g. by the map

C/(Zτ ⊕ Z)
∼−→ pr−1((j, τ)), z 7→ (j, z, τ).

Here it is essential that Γ(N) acts without fixed points on H, i.e. that we have N ≥ 3.
6For an analytic family of elliptic curves this means that the two sections fiberwise yield a basis for the N -torsion of the

respective complex elliptic curve. For our situation this is clear by using the isomorphism of the previous footnote.
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(3.4.1)-(3.4.3) parametrizes all analytic families of elliptic curves with Drinfeld basis for the N -
torsion (cf. [Ha], Thm. 5.2.297). In particular, applying this to the analytification of (E/S, e1, e2) we
obtain unique holomorphic maps constituting the vertical arrows of a commutative diagram

Ean //

πan

��

(Z/NZ)∗ × (Z2 × Γ(N))\(C×H)

pr

��
San

Φ // (Z/NZ)∗ × Γ(N)\H

(3.4.4)

such that for each s ∈ San the induced map (πan)−1(s)→ pr−1(Φ(s)) is an isomorphism of elliptic
curves with level N -structure. With this information8 one sees that the upper arrow of (3.4.4) is an
isomorphism if the lower one is; that the last in turn is true follows easily from the knowledge of the
C-valued points of S by considering the functor which it represents.

In view of (3.4.4) we will henceforth always identify the analytification of (E/S, e1, e2) with the
analytic family of elliptic curves with Drinfeld basis for the N -torsion defined by (3.4.1)-(3.4.3).

The universal vectorial extension

In a next step we describe the analytification of the universal vectorial extension Ê\ of the dual elliptic
curve Ê of E. For this we consider the following canonical exact sequence of abelian sheaves on San

(cf. [Maz-Mes], Ch. I, (4.4)):

(3.4.5) 0→ R1πan∗ (2πiZ)→ H1
dR(Ean/San)→ (Ê\)an → 0.

We then trivialize the OSan -vector bundle H1
dR(Ean/San) on the universal covering H of each con-

nected component of San by using the cartesian diagram

Z2\(C×H) //

��

(Z2 × Γ(N))\(C×H)

��
H // Γ(N)\H

(3.4.6)

and the OH-basis {p(z, τ)dz,dz} for the de Rham cohomology of the left analytic family of elliptic
curves in (3.4.6). This trivialization induces the 2-dimensional factor of automorphy

(3.4.7) Γ(N)×H→ GL2(C),

((
a b

c d

)
, τ

)
7→

(
1

cτ+d 0

0 cτ + d

)

for H1
dR(Ean/San) on each connected component Γ(N)\H of San. The geometric vector bundle

associated with H1
dR(Ean/San) is then given by

(Z/NZ)∗ × Γ(N)\(C2 ×H)

can

��
(Z/NZ)∗ × Γ(N)\H

(3.4.8)

7One easily checks that our quotient object identifies canonically with the curve ẼN considered in the cited reference.
8and with the well-known fact that bijective holomorphic maps of complex manifolds already are isomorphisms
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with Γ(N) acting (properly discontinuously and freely) on C2 ×H by the rule(
a b

c d

)
· (w, u, τ) =

(
w

cτ + d
, (cτ + d)u,

aτ + b

cτ + d

)
.

From (3.4.5), (3.4.8) and [Kat5], p. 301, one easily deduces the following description for (Ê\)an/San:

(Z/NZ)∗ × (Z2 × Γ(N))\(C2 ×H)

can

��
(Z/NZ)∗ × Γ(N)\H

(3.4.9)

with Z2 × Γ(N) acting (properly discontinuously and freely) on C2 ×H by the rule((
m′

n′

)
,

(
a b

c d

))
· (w, u, τ) :=

(
w +m′τ + n′

cτ + d
, (cτ + d)(u− η(m′τ + n′, τ)),

aτ + b

cτ + d

)
.

Under the principal polarizationE ' Ê in (3.1.3) the analytification of the canonical arrow in (0.1.3)

Ê\ → Ê

becomes the morphism (Ê\)an → Ean which is checked to be given as

(Z/NZ)∗ × (Z2 × Γ(N))\(C2 ×H)→ (Z/NZ)∗ × (Z2 × Γ(N))\(C×H),

(j, w, u, τ) 7→ (j,−w, τ).

Taking the product with idE we obtain the map E ×S Ê\ → E ×S Ê ' E ×S E with analytification

(Z/NZ)∗ × (Z2 × Z2 × Γ(N))\(C× C2 ×H)→ (Z/NZ)∗ × (Z2 × Z2 × Γ(N))\(C× C×H),

(j, z, w, u, τ) 7→ (j, z,−w, τ),

(3.4.10)

where the action of Z2 × Z2 × Γ(N) on C× C2 ×H resp. on C× C×H is given by

((
m

n

)
,

(
m′

n′

)
,

(
a b

c d

))
·(z, w, u, τ) :=

(
z +mτ + n

cτ + d
,
w +m′τ + n′

cτ + d
, (cτ+d)(u−η(m′τ+n′, τ)),

aτ + b

cτ + d

)

resp. ((
m

n

)
,

(
m′

n′

)
,

(
a b

c d

))
· (z, w, τ) :=

(
z +mτ + n

cτ + d
,
w +m′τ + n′

cτ + d
,
aτ + b

cτ + d

)
.

With (3.4.10) we have a good analytic access to the objects over which the Poincaré bundle is defined.
The next task is to find a suitable description for the analytification of this bundle and of its universal
integrable connection. In view of its buildup (cf. (3.1.5)) it is clear that we first treat:

The line bundle defined by the zero section

Consider again the analytification of the universal elliptic curve with level N -structure (cf. (3.4.4)):

(Z/NZ)∗ × (Z2 × Γ(N))\(C×H)

πan

��
(Z/NZ)∗ × Γ(N)\H

εan

WW
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where πan((j, z, τ)) = (j, τ) and εan((j, τ)) = (j, 0, τ).

Fix j ∈ (Z/NZ)∗ and let Eanj resp. Sanj be the connected component of Ean resp. San belong-
ing to j. The structure morphism resp. zero section for the analytic family of elliptic curves Eanj /Sanj
is given by πanj ((z, τ)) = τ resp. εanj (τ) = (0, τ). The line bundle OEan([0]) on Ean associated
to the analytic effective relative Cartier divisor defined by the zero section of Ean/San becomes the
analogous line bundle OEanj ([0]) for Eanj /Sanj when restricted to the component Eanj . Trivializing
OEanj ([0]) on the universal covering C × H of Eanj amounts to giving a meromorphic function on
C×H of divisor−{(mτ +n, τ)|τ ∈ H,m, n ∈ Z}. Such a function is given by (z, τ) 7→ 1

ϑ(z,τ) with
ϑ(z, τ) the elementary theta function (cf. 3.3.3). Fix this trivialization.
The associated factor of automorphy is then read off from Prop. 3.3.10 as

Z2 × Γ(N)× C×H→ C∗,

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)

7→ 1

cτ + d
· exp

[
πic(z +mτ + n)2

cτ + d
+ πim+ πin− 2πimz − πim2τ

]
.

(3.4.11)

Remark 3.4.1
The line bundle OEanj (−[0]) is trivialized on C×H by the function ϑ(z, τ). With 3.2 (v) we obtain a
trivialization on H of

(εanj )∗OEanj (−[0]) ' (εanj )∗Ω1
Eanj /Sanj

' (πanj )∗Ω
1
Eanj /Sanj

,

i.e. of the co-Lie algebra ωEanj /Sanj
of Eanj /Sanj .

On the other hand, there is a natural trivialization of ωEanj /Sanj
on H, namely the one induced by

(3.4.6) and the standard differential form dz on Z2\(C × H); we remark that this trivialization (or
rather: this trivialization multiplied by 2πi) allows the interpretation of modular forms as sections in
the tensor powers of the co-Lie algebra of Ean/San (for details cf. [Ka], Ch. I, 3.8).
The two described trivializations of ωEanj /Sanj

on H, i.e. the one coming from ϑ(z, τ) and the one
induced by dz, indeed coincide: to see this requires chasing through many identifications, but in the
end boils down precisely to the fact that ∂zϑ(0, τ)dz = dz (cf. (3.3.16)).

The Poincaré bundle I

Recall from (3.1.5) that under the fixed principal polarization (3.1.3) the birigidified Poincaré bundle
(P0, r0, s0) on E ×S E is given by

(M⊗OE×SE (π × π)∗ε∗OE([0]), can, can),

where

M = µ∗OE([0])⊗OE×SE pr∗1OE([0])−1 ⊗OE×SE pr∗2OE([0])−1

and can is the canonical rigidification along the second resp. first factor.

By 3.2 (iii)-(v) we get from the above fixed trivialization of OEanj ([0]) on C × H a trivialization
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of (P0)anj on C× C×H whose associated factor of automorphy is computed from (3.4.11) as

Z2 × Z2 × Γ(N)× C× C×H→ C∗,

((
m

n

)
,

(
m′

n′

)
,

(
a b

c d

)
, (z, w, τ)

)

7→ exp

[
2πic

cτ + d
· (z +mτ + n)(w +m′τ + n′)− 2πim′z − 2πimw − 2πimm′τ

]
.

(3.4.12)

Explicitly, the trivialization of

(P0)anj ' OEanj ×Sanj Eanj
(∆̄Eanj

− [0]×Eanj −Eanj × [0])⊗OEan
j
×San

j
Ean
j

(πanj ×πanj )∗(ωEanj /Sanj
)∨

on C× C×H is given by the section

(3.4.13) t0 :=
1

J(z, w, τ)
⊗ (ω0

can)∨,

with J(z, w, τ) the fundamental meromorphic Jacobi form (cf. 3.3.3) and (ω0
can)∨ defined as follows:

Definition 3.4.2
We write (ω0

can)∨ for the trivializing section of (πanj ×πanj )∗(ωEanj /Sanj
)∨ on C×C×H induced via

C× C×H

��

proj // H

��
Eanj ×Sanj Eanj

πanj ×π
an
j // Sanj

from the trivialization of (ωEanj /Sanj
)∨ on H given by the dual of the standard differential form - cf.

Rem. 3.4.1.

The Poincaré bundle II

Denoting as usual by (P, r, s) the birigidified Poincaré bundle on E ×S Ê\ we obtain an induced
trivialization of Panj on C× C2 ×H whose factor of automorphy is given in view of (3.4.10) by

Z2 × Z2 × Γ(N)× C× C2 ×H→ C∗,

((
m

n

)
,

(
m′

n′

)
,

(
a b

c d

)
, (z, w, u, τ)

)

7→ exp

[
− 2πic

cτ + d
· (z +mτ + n)(w +m′τ + n′) + 2πim′z + 2πimw + 2πimm′τ

]
.

(3.4.14)

Write

Panj ' OEanj ×Sanj (Ê\)anj
(K)⊗O

Ean
j
×San

j
(Ê\)an

j

(πanj × (π\)anj )∗(ωEanj /Sanj
)∨

withK the pullback divisor of ∆̄Eanj
−[0]×Eanj −Eanj ×[0] viaEanj ×Sanj (Ê\)anj → Eanj ×Sanj Eanj .

The trivialization of Panj on C× C2 ×H then is given by the section

(3.4.15) t :=
1

J(z,−w, τ)
⊗ ω∨can,

where (z, w, u, τ) 7→ J(z,−w, τ) is considered as meromorphic function on C× C2 ×H and:
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Definition 3.4.3
We write ω∨can for the trivializing section of (πanj × (π\)anj )∗(ωEanj /Sanj

)∨ on C × C2 × H induced
via

C× C2 ×H

��

proj // H

��
Eanj ×Sanj (Ê\)anj

πanj ×(π\)anj // Sanj

from the trivialization of (ωEanj /Sanj
)∨ on H given by the dual of the standard differential form - cf.

Rem. 3.4.1.

Remark 3.4.4
Let us finally record how the birigidification (r, s) of P expresses now analytically. An analogous
comment applies to (P0, r0, s0).
Assume we have a section of Panj defined on some open subset of Eanj ×Sanj (Ê\)anj . It is given
by a holomorphic function f(z, w, u, τ) which is defined on the inverse image of this subset under
C× C2 ×H→ Eanj ×Sanj (Ê\)anj and transforms under the effect of Z2 × Z2 × Γ(N) in the way

f

(
z +mτ + n

cτ + d
,
w +m′τ + n′

cτ + d
, (cτ + d)(u− η(m′τ + n′, τ)),

aτ + b

cτ + d

)

= exp

[
− 2πic

cτ + d
· (z +mτ + n)(w +m′τ + n′) + 2πim′z + 2πimw + 2πimm′τ

]
· f(z, w, u, τ).

The function (w, u, τ) 7→ f(0, w, u, τ) resp. (z, τ) 7→ f(z, 0, 0, τ) (defined on the appropriate open
subset of C2 × H resp. C × H) is then invariant under the effect of Z2 × Γ(N) on C2 × H resp.
C × H and represents the section of O(Ê\)anj

resp. OEanj given by pullback of the given section via

εanj × id(Ê\)anj
resp. idEanj × (ε\)anj and using ranj resp. sanj .

With the definition of t0 (cf. (3.4.13)) the verification of these facts is easy if one first observes that
(r, s) is induced by (r0, s0) (cf. 0.1.1), recalls how (r0, s0) expresses for elliptic curves (cf. (3.1.5))
and then takes into account Rem. 3.4.1.

The universal integrable connection

Recall that the Poincaré bundle P on E ×S Ê\ is equipped with the universal integrable connection

∇P : P → Ω1
E×SÊ\/Ê\

⊗O
E×SÊ\

P.

We now want to give a formula for the analytification9 of this connection:

∇anP : Pan → Ω1
Ean×San (Ê\)an/(Ê\)an

⊗O
Ean×San (Ê\)an

Pan,

which we do again by restricting to a fixed j ∈ (Z/NZ)∗:

(∇anP )j : Panj → Ω1
Eanj ×Sanj (Ê\)anj /(Ê\)anj

⊗O
Ean
j
×San

j
(Ê\)an

j

Panj .

9The formally clean way to analytify connections is to interpret them equivalently in terms ofO-linear structures which one
can then analytify as usual (cf. e.g. the viewpoint on connections outlined in 0.2.1 (v) or the approach via differential operators
in [Mal], p. 152, whose formalism of course generalizes to a smooth relative situation of Q-schemes).
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We trivialize the pullback of Panj resp. of Ω1
Eanj ×Sanj (Ê\)anj /(Ê\)anj

to C×C2×H as in (3.4.15) resp.

by the standard differential form {dz}10, with associated factor of automorphy (3.4.14) resp.

Z2 × Z2 × Γ(N)× C× C2 ×H→ C∗,

((
m

n

)
,

(
m′

n′

)
,

(
a b

c d

)
, (z, w, u, τ)

)
7→ cτ + d.

Assume then that a section of Panj on some open subset U of Eanj ×Sanj (Ê\)anj is given: as usual,
it is described by a holomorphic function f(z, w, u, τ), defined on the inverse image of U under
the canonical map pr : C × C2 × H → Eanj ×Sanj (Ê\)anj and transforming under the effect of
Z2 × Z2 × Γ(N) with the factor of automorphy for Panj in (3.4.14).
The section (∇anP )j(f(z, w, u, τ)) of Ω1

Eanj ×Sanj (Ê\)anj /(Ê\)anj
⊗O

Ean
j
×San

j
(Ê\)an

j

Panj is given by a

holomorphic function on pr−1(U) transforming with (cτ + d)-times the factor in (3.4.14).
By considering the situation fiberwise over points of Sanj and noting [Kat5], App. C, Thm. C. 6 (1),
one straightforwardly derives the following formula for this function:11

(3.4.16) (∇anP )j(f(z, w, u, τ)) = ∂zf(z, w, u, τ) + (η(1, τ)w + u) · f(z, w, u, τ).

Remark 3.4.5
The horizontality of sanj : (idEanj ×(ε\)anj )∗Panj ' OEanj (cf. Rem. 0.1.17) is reflected by (3.4.16) in
the fact that this formula becomes (relative) exterior derivation on the (Z2×Γ(N))-invariant function
(z, τ) 7→ f(z, 0, 0, τ) after plugging in w = 0 = u (cf. also Rem. 3.4.4).

3.5 The analytification of the logarithm sheaves

Preliminary remarks and conventions: generalities

In the following, we will as usual writeH for the dual of the OS-vector bundle H1
dR(E/S).

The canonical map

H1
dR(E/S)an → H1

dR(Ean/San)

10Observe that the pullback of Ω1
Eanj ×Sanj

(Ê\)anj /(Ê\)anj
to C× C2 × H naturally identifies with Ω1

C×C2×H/C2×H.

11When verifying the computation in fibers the reader should observe the following equality:

∂z
f(z, w, u; τ)

J(z,−w; τ)
dz +

f(z, w, u; τ)

J(z,−w; τ)
· (ζ(z − w; τ)− ζ(z; τ) + u)dz

=
1

J(z,−w; τ)

[
∂zf(z, w, u; τ)dz − f(z, w, u; τ) ·

∂zJ(z,−w; τ)

J(z,−w; τ)
dz + f(z, w, u; τ)(ζ(z − w; τ)− ζ(z; τ) + u)dz

]
=

1

J(z,−w; τ)

[
∂zf(z, w, u; τ)dz − f(z, w, u; τ) ·

(
− η(1; τ)w + ζ(z − w; τ)− ζ(z; τ)

)
dz

+ f(z, w, u; τ) · (ζ(z − w; τ)− ζ(z; τ) + u)dz

]
=

1

J(z,−w; τ)

[
∂zf(z, w, u; τ) + (η(1; τ)w + u) · f(z, w, u; τ)

]
dz,

where the equation for the logarithmic z-derivative of J(z,−w; τ), used in the transition from the second to the third line,
follows from (3.3.18).
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is an isomorphism12, and hence when writingHan we will equally refer to the analytification ofH or
to the dual of the first (analytic) de Rham cohomology sheaf of Ean/San.

Moreover, we will have to consider the analytification of infinitesimal thickenings. The notational
conventions of Def. 2.2.14 will remain fixed.
Hence, if J denotes again the ideal sheaf of the zero section ε\ : S → Ê\, one can check that
(ε\)an : San → (Ê\)an is a closed (analytic) immersion with ideal sheaf J an.13

One also checks that (Ê\n)an is identical with the n-th (analytic) infinitesimal neighborhood of San

in (Ê\)an, defined by (J an)n+1 ⊆ O(Ê\)an .

Furthermore, we will freely use compatibility of analytification with fiber products, in the sense that
the canonical map (V ×Z W )an → V an ×Zan W an is an isomorphism for schemes V,W,Z locally
of finite type over Spec (C) providing a fiber product situation (cf. [SGA1], exp. XII, 1.2).

Finally, let us slightly ease notation and fix the following agreement:
As in the previous section we work on a fixed connected component of Ean/San, and for quite a long
time it still won’t matter which j ∈ (Z/NZ)∗ is chosen - as an example, recall that the factor of auto-
morphy for Panj in (3.4.14) or the formula for the connection (∇P)anj in (3.4.16) is the same on each
component. We therefore no longer use a subscript practice like Eanj , Sanj , (Ê\)anj ,Panj ,Hanj , ..., but
in abuse of notation leave away the j.
Hence, until explicitly said otherwise, Ean, San, (Ê\)an,Pan,Han etc. will denote what actually is
some fixed component (Z2×Γ(N))\(C×H),Γ(N)\H, (Z2×Γ(N))\(C2×H), the restriction ofPan

to (Z2×Z2×Γ(N))\(C×C2×H), the restriction ofHan to Γ(N)\H resp. (by the above comment)
the dual of the first (analytic) de Rham cohomology sheaf of (Z2 ×Γ(N))\(C×H)→ Γ(N)\H etc.
In the end, all of our constructions on the henceforth fixed component which apparently don’t depend
on the choice of the component are to be understood as carried out simultaneously on all components.

Preliminary remarks and conventions: trivialization for de Rham cohomology

As explained in the previous section (cf. (3.4.6)-(3.4.8)) we trivializeH1
dR(E/S)an ' H1

dR(Ean/San)

on the universal covering H of San by {η, ω} := {p(z, τ)dz,dz} and thenHan by {η∨, ω∨}.
Hence, denoting for a moment by p : H→ Γ(N)\H the canonical projection:

(3.5.1) p∗Han ' OH · η∨ ⊕OH · ω∨ ' OH ⊕OH.

We obtain the following automorphy matrix forHan:

(3.5.2) Γ(N)×H→ GL2(C),

((
a b

c d

)
, τ

)
7→

(
cτ + d 0

0 1
cτ+d

)
.

12One first considers the base extension (E×QC)/(S×QC) ofE/S, for which the relative de Rham cohomology commutes
(by flatness of S ×Q C→ S); then one applies [De1], Ch. II, Thm. 6.13 and Prop. 6.14, or [Har], Ch. IV, Prop. (4.1).

13This is general and deduced from application of the (exact) analytification functor to the canoncial exact sequence defining
the ideal sheaf and observing that the occurring direct image commutes with analytification: use [SGA1], exp. XII, Thm. 4.2.
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For each n ≥ 0 we then trivialize the pullback of
∏n
k=0 Symk

OSanH
an to H by

p∗
n∏
k=0

Symk
OSanH

an '
⊕

0≤i+j≤n
0≤i,j

OH ·
(η∨)i(ω∨)j

(n− i− j)!
'

⊕
0≤i+j≤n

0≤i,j

OH.

As it will play a role for writing down automorphy matrices we fix - for now and for the future - the
order of the basis elements in the preceding trivialization; we do this by letting increase the number
of ω∨-factors and within this ordering rule letting increase the number of η∨-factors:

{
1

n!
,

η∨

(n− 1)!
,

(η∨)2

(n− 2)!
, ...,

(η∨)n

(n− n)!
,

ω∨

(n− 1)!
,
η∨ω∨

(n− 2)!
,

(η∨)2ω∨

(n− 3)!
, ...,

(η∨)n−1ω∨

(n− n)!
,

(ω∨)2

(n− 2)!
, .........,

(ω∨)n

(n− n)!

}
.

If r(n) := rkOSan

(∏n
k=0 Symk

OSanH
an

)
we obtain an automorphy matrix for

∏n
k=0 Symk

OSanH
an

of size r(n) × r(n) whose entries lie only on the diagonal and are computed by the transformation
property of the preceding basis elements:

Γ(N)×H→ GLr(n)(C),

((
a b

c d

)
, τ

)
7→



1

cτ + d

(cτ + d)2

. . .

(cτ + d)−n


In general, the entry coming from (η∨)i(ω∨)j

(n−i−j)! is given by (cτ + d)i−j .

3.5.1 The analytification of the first logarithm sheaf

We consider the analytification of the first logarithm sheaf L1 of E/S/Q and (componentwise) fix
a trivialization for its pullback to the universal covering C × H. We then compute the associated
automorphy matrix and, expressing in this way sections via holomorphic functions on C×H, deduce
a formula for the analytified integrable S-connection belonging to L1.
Our definition of the trivialization and the determination of the relative connection is based substan-
tially on the construction ofL1 in terms of the Poincaré bundle onE×S Ê\ and its universal integrable
Ê\-connection (cf. Cor. 2.3.2).
We remark that the splitting ϕ1 will be described analytically in 3.5.2, and that the problem of finding
a formula for the analytification of the absolute connection∇1 of L1 will be addressed in 3.5.4.

A commutative diagram of ringed spaces

Consider the closed analytic immersion

idEan × (ε\1)an : Ean ×San (Ê\1)an → Ean ×San (Ê\)an.

As a ringed space Ean ×San (Ê\1)an is the topological space Ean, endowed with a sheaf of rings
which (by analytifying (2.3.5)-(2.3.6)) identifies with

OEan ⊕HanEan ,
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where multiplication is given by (s1, h1) · (s2, h2) = (s1s2, s1h2 + s2h1); here, HanEan means the
pullback ofHan via πan : Ean → San; we could equally well have written (HE)an.

We define a diagram of ringed spaces

(3.5.3)

(C×H,OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨)
k1 //

τ1

��

(C× C2 ×H,OC×C2×H)

can

��
((Z2 × Γ(N))\(C×H),OEan ⊕HanEan) // ((Z2 × Z2 × Γ(N))\(C× C2 ×H),OEan×San (Ê\)an)

as follows:
The right part consists of Ean ×San (Ê\)an and the projection from its universal covering. The
lower part was explained above. The upper left space consists of C × H and the sheaf of rings
OC×H ⊕ OC×H · η∨ ⊕ OC×H · ω∨ whose addition works componentwise and whose multiplication
is defined by linearity, multiplication in OC×H and letting (η∨)2 = (ω∨)2 = η∨ω∨ = ω∨η∨ = 0.
The left vertical arrow τ1 topologically is the projection and on sheaf level is defined by pulling back
sections of the OEan -vector bundle OEan ⊕HanEan along the usual projection

pr : (C×H,OC×H)→ Ean

and by then using the trivialization induced by (3.5.1):

pr∗(OEan ⊕HanEan) ' OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨.

Finally, the upper horizontal arrow k1 topologically is given by (z, τ) 7→ (z, 0, 0, τ) and on sheaves
maps a section g(z, w, u, τ) to

g0,0(z, τ) + g1,0(z, τ) · η∨ + g0,1(z, τ) · ω∨,

where g0,0(z, τ) := g(z, 0, 0, τ), g1,0(z, τ) := ∂wg(z, 0, 0, τ), g0,1(z, τ) := ∂ug(z, 0, 0, τ), i.e. the
gi,j(z, τ) are defined by the Taylor expansion of g(z, w, u, τ) around (w, u) = (0, 0):

g(z, w, u, τ) = g0,0(z, τ) + g1,0(z, τ) · w + g0,1(z, τ) · u+ higher terms.

It is a straightforward exercise to check that the diagram of ringed spaces (3.5.3) commutes.

Trivializing the first logarithm sheaf on the universal covering

Recall from (3.4.15) that the pullback of Pan to the universal covering C× C2 ×H is trivialized by
the section

t :=
1

J(z,−w, τ)
⊗ ω∨can.

Observing the above commutative diagram we get by further pullback via k1 an induced isomorphism

τ∗1Pan1 ' OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨.

As OC×H-modules, the right side is O⊕3
C×H and the left side is pr∗(pan1 )∗Pan1 , where

pr : (C×H,OC×H)→ Ean,
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pan1 : Ean ×San (Ê\1)an → Ean.

We obtain an isomorphism
pr∗(pan1 )∗Pan1 ' O⊕3

C×H.

Because (p1)∗P1 is the first logarithm sheaf L1 of E/S/Q (cf. Cor. 2.3.2) we arrive at a trivialization

pr∗Lan1 ' O⊕3
C×H

for the pullback of the OEan -vector bundle Lan1 to the universal covering C×H of Ean.

Definition 3.5.1
Let

pr : (C×H,OC×H)→ Ean,

pan1 : Ean ×San (Ê\1)an → Ean

be the projections, let P̃ be the pullback of Pan to C× C2 ×H, and let

(3.5.4) OC×C2×H
∼−→ P̃ 1 7→ t :=

1

J(z,−w, τ)
⊗ ω∨can

be the trivialization of (3.4.15).
We then define and henceforth fix a trivialization

(3.5.5) O⊕3
C×H ' pr∗Lan1

by combining the OC×H-linear isomorphisms

(3.5.6) k∗1P̃ ' τ∗1Pan1 ' pr∗(pan1 )∗Pan1 = pr∗Lan1

and

O⊕3
C×H

∼−→ k−1
1 P̃ ⊗k−1

1 OC×C2×H
(OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨) = k∗1P̃,

(1, 0, 0) 7→ k−1
1 (t)⊗ 1,

(0, 1, 0) 7→ k−1
1 (t)⊗ η∨,

(0, 0, 1) 7→ k−1
1 (t)⊗ ω∨.

(3.5.7)

Here, τ1 and k1 are the morphisms of ringed spaces appearing in the commutative diagram (3.5.3).

We can formulate the content of Def. 3.5.1 differently as follows:

Analytify (and restrict to our fixed connected component) the exact sequence (2.3.11):

0→ HanEan → (pan1 )∗Pan1 → OEan → 0.

Its pullback via pr : (C×H,OC×H)→ Ean reads as the OC×H-linear exact sequence

(3.5.8) 0→ OC×H · η∨ ⊕OC×H · ω∨ → pr∗(pan1 )∗Pan1 → OC×H → 0,

where we have used the identification induced by (3.5.1). Via the natural isomorphism of (3.5.6):

k−1
1 P̃ ⊗k−1

1 OC×C2×H
(OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨) = k∗1P̃ ' τ∗1Pan1 ' pr∗(pan1 )∗Pan1
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we obtain from the trivializing section t of P̃ a global section

(3.5.9) k−1
1 (t)⊗ 1 ∈ Γ(C×H,pr∗(pan1 )∗Pan1 ).

It maps to 1 under the projection in (3.5.8), as is easily verified from the definition of t0 (cf. (3.4.13))
by recalling how the projection is induced by the trivialization s (cf. (2.3.9)-(2.3.11)), how s is
induced by s0 (cf. 0.1.1), how s0 expresses for elliptic curves (cf. (3.1.5)) and by noting Rem. 3.4.1.
In a similar way, by additionally observing how (3.4.9) came about, one sees that the two remaining
trivializing sections in (3.5.7):

k−1
1 (t)⊗ η∨ ∈ Γ(C×H,pr∗(pan1 )∗Pan1 )

k−1
1 (t)⊗ ω∨ ∈ Γ(C×H,pr∗(pan1 )∗Pan1 )

are nothing else than the images of the sections η∨ and ω∨ under the inclusion of (3.5.8).

Let us summarize:

Proposition 3.5.2
If

{k−1
1 (t)⊗ 1, η∨, ω∨}

are the global sections of pr∗Lan1 given by (3.5.9) resp. via the inclusion in (3.5.8), then

pr∗Lan1 = OC×H ·
(
k−1

1 (t)⊗ 1
)
⊕OC×H · η∨ ⊕OC×H · ω∨.

Under this decomposition the maps in (3.5.8) are given by the inclusion of the second and third

component resp. by the projection to the coefficient function of the first component.

The induced trivialization

pr∗Lan1 ' O⊕3
C×H

equals (3.5.5), and the associated automorphy matrix for Lan1 is given by

A1 : Z2 × Γ(N)× C×H→ GL3(C),((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
7→

 1 0 0

2πi(dm− cz − cn) cτ + d 0

0 0 1
cτ+d

 .

Proof. It only remains to compute the automorphy matrix. For this let((
m

n

)
,

(
a b

c d

))
∈ Z2 × Γ(N),

and let
σ : C×H→ C×H, (z, τ) 7→

(
z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
be the corresponding deck transformation of C×H over Ean.
Now observe that

σ∗(k−1
1 (t)⊗ 1) = k−1

1

(
exp

[
2πi

cτ + d
· (cz + cn− dm) · w

]
· t
)
⊗ 1

= k−1
1 (t)⊗

(
1⊕ 2πi

cτ + d
(cz + cn− dm) · η∨

)
.
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Here, the first equality is deduced from the fact that the section t = 1
J(z,−w,τ) ⊗ω

∨
can of P̃ transforms

under pullback along the deck transformation of C× C2 ×H over Ean ×San (Ê\)an belonging to((
m

n

)
,

(
0

0

)
,

(
a b

c d

))
∈ Z2 × Z2 × Γ(N)

with the factor

exp

[
2πic

cτ + d
· (z +mτ + n) · w − 2πimw

]
= exp

[
2πi

cτ + d
· (cz + cn− dm) · w

]
,

as one recollects by observing (the inverse of) the factor of automorphy in (3.4.14). For the second
equality one recalls howOC×H⊕OC×H ·η∨⊕OC×H ·ω∨ becomes a sheaf of rings over k−1

1 OC×C2×H,
i.e. the definition of k1 as a morphism of ringed spaces (see the diagram (3.5.3)).
We have thus shown that

σ∗(k−1
1 (t)⊗ 1) = k−1

1 (t)⊗ 1 +
2πi

cτ + d
(cz + cn− dm) ·

(
k−1

1 (t)⊗ η∨
)
,

and the section k−1
1 (t)⊗ η∨ was already noticed to be the image of η∨ under (3.5.8).

Moreover,

σ∗(η∨) =
1

cτ + d
· η∨,

σ∗(ω∨) = (cτ + d) · ω∨,

such that altogether the matrix describing the change of basis is given by 1 0 0
2πi
cτ+d (cz + cn− dm) 1

cτ+d 0

0 0 cτ + d

 .

By definition (cf. 3.2 (i)), the desired automorphy matrix evaluated at
((

m

n

)
,

(
a b

c d

)
, (z, τ)

)
is the

inverse of the previous matrix. But this inverse is precisely the matrix in the claim.

Description of the relative connection

The first logarithm sheaf L1 = (p1)∗P1 of E/S/Q is equipped with an integrable Q-connection

∇1 : L1 → Ω1
E/Q ⊗OE L1

whose restriction to an integrable S-connection

∇res1 : L1 → Ω1
E/S ⊗OE L1

is induced by the universal integrable Ê\-connection ∇P of P in the way explained in (2.3.10)-
(2.3.11) (recall again Cor. 2.3.2). We want to describe explicitly the analytification (and restriction to
our fixed connected component) of this relative connection:

(∇res1 )an : Lan1 → Ω1
Ean/San ⊗OEan L

an
1 .

Of course, the essential ingredient to derive the desired formula for (∇res1 )an will be the expression
for (∇P)an deduced in (3.4.16).
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Proposition 3.5.3
Trivialize Lan1 resp. Ω1

Ean/San on the universal covering C × H of Ean as in Prop. 3.5.2 resp. by

{dz}.14 Then (∇res1 )an writes on sections asλ(z, τ)

µ(z, τ)

ν(z, τ)

 7→
 ∂zλ(z, τ)

∂zµ(z, τ) + η(1, τ) · λ(z, τ)

∂zν(z, τ) + λ(z, τ)

 .

Proof. At first consider the pullback of the analytified universal integrable connection

(∇P)an : Pan → Ω1
Ean×San (Ê\)an/(Ê\)an

⊗O
Ean×San (Ê\)an

Pan

along the following commutative diagram in which all arrows are the canonical projections:

C× C2 ×H //

��

Ean ×San (Ê\)an

��
C2 ×H // (Ê\)an

Taking into account our fixed trivialization of P̃ (cf. (3.5.4)) the obtained integrable connection

∇̃ : P̃ → Ω1
C×C2×H/C2×H ⊗OC×C2×H

P̃

writes as a map
∇̃ : OC×C2×H · t→ OC×C2×H · (dz ⊗ t)

and is determined by the value at the section t. It is readily deduced from (3.4.16) that this value is

∇̃(t) = (η(1, τ)w + u) · (dz ⊗ t).

Altogether, we obtain

∇̃(t) = (η(1, τ)w + u) · (dz ⊗ t),

∇̃(wt) = (η(1, τ)w2 + wu) · (dz ⊗ t),

∇̃(ut) = (η(1, τ)wu+ u2) · (dz ⊗ t).

(∗)

Note that the sections t, wt, ut of P̃ induce sections of the OC×H-vector bundle

k∗1P̃ ' τ∗1Pan1 ' pr∗(pan1 )∗Pan1

which (by definition of k1) are just the three basic sections

k−1
1 (t)⊗ 1, k−1

1 (t)⊗ η∨, k−1
1 (t)⊗ ω∨

used for the trivialization of pr∗Lan1 = pr∗(pan1 )∗Pan1 (cf. Def. 3.5.1 resp. Prop. 3.5.2).
Observing this and the equalities in (∗) one derives the following fact:
The pullback of the connection (∇res1 )an : Lan1 → Ω1

Ean/San ⊗OEan L
an
1 along

C×H
pr //

can

��

Ean

πan

��
H can // San

14Observe that we have a canonical identification pr∗Ω1
Ean/San

∼−→ Ω1
C×H/H.
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is given (and determined) by

k−1
1 (t)⊗ 1 7→ η(1, τ) · (dz ⊗ (k−1

1 (t)⊗ η∨)) + dz ⊗ (k−1
1 (t)⊗ ω∨),

k−1
1 (t)⊗ η∨ 7→ 0,

k−1
1 (t)⊗ ω∨ 7→ 0.

The claim of the proposition then easily follows.

3.5.2 The analytification of the higher logarithm sheaves

We proceed to study the analytification of the higher logarithm sheaves Ln = Symn
OEL1 of E/S/Q.

Its (componentwise) pullback to the universal covering C×H receives a trivialization which is induced
by the one constructed for the first logarithm sheaf in 3.5.1. Based on this trivialization we describe
the resulting automorphy matrix, determine the formula for the analytified integrable S-connection of
Ln and finally also make explicit the analytified splitting of ε∗Ln.

Trivializing the higher logarithm sheaves on the universal covering

Definition 3.5.4
(i) The trivializing sections

{k−1
1 (t)⊗ 1, η∨, ω∨}

for the OC×H-vector bundle pr∗Lan1 (cf. Prop. 3.5.2) will henceforth be abbreviated with

{e, f, g}.

(ii) For each n ≥ 0 we will denote by ∇resn the restriction to an integrable S-connection of the
integrable Q-connection ∇n = Symn∇1 belonging to Ln = Symn

OEL1.
(iii) For each n ≥ 0 we fix the trivialization

(3.5.10) O⊕r(n)
C×H ' pr∗Lann

defined by the ordered basic sections{
en

n!
,
en−1f

(n− 1)!
,
en−2f2

(n− 2)!
, ...,

fn

(n− n)!
,
en−1g

(n− 1)!
,
en−2fg

(n− 2)!
,
en−3f2g

(n− 3)!
, ...,

fn−1g

(n− n)!
,
en−2g2

(n− 2)!
, .........,

gn

(n− n)!

}
,

where we let

r(n) := rkOE (Ln) = rkOEan (Lann ) = rkOS

( n∏
k=0

Symk
OSH

)
= rkOSan

( n∏
k=0

Symk
OSanH

an

)
.15

We denote by
An : Z2 × Γ(N)× C×H→ GLr(n)(C)

the associated automorphy matrix for Lann .

We now describe the structure of An.

Let ((
m

n

)
,

(
a b

c d

))
∈ Z2 × Γ(N),

15This number equals (n+1)(n+2)
2

.
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and let
σ : C×H→ C×H, (z, τ) 7→

(
z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
be the corresponding deck transformation of C × H over Ean (we use the underlines so as not to
double the notation n).
Recall from 3.2 (i) that the value

An

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)

is defined by the equation(
en

n!
,
en−1f

(n− 1)!
, ......,

gn

(n− n)!

)
=

(
σ∗
en

n!
, σ∗

en−1f

(n− 1)!
, ......, σ∗

gn

(n− n)!

)
·An

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
.

In other words, the columns of

An

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)

are obtained by expressing each basic section en−i−jfigj

(n−i−j)! in terms of the σ-transformed basic sections.
But from the already computed matrix

A1

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
=

 1 0 0

2πi(dm− cz − cn) cτ + d 0

0 0 1
cτ+d


(cf. Prop. 3.5.2) we obtain all the information we need:

Namely, for all 0 ≤ i, j with i+ j ≤ n we calculate:

en−i−jf igj

(n− i− j)!
=

(σ∗e+ 2πi(dm− cz − cn)σ∗f)n−i−j((cτ + d)σ∗f)i((cτ + d)−1σ∗g)j

(n− i− j)!

=

n−i−j∑
k=0

1

(n− i− j − k)! · k!
(σ∗e)k(2πi(dm− cz − cn))n−i−j−k(σ∗f)n−j−k(σ∗g)j(cτ + d)i−j

=

n−i−j∑
k=0

1

(n− i− j − k)!

(
2πi(dm− cz − cn)

cτ + d

)n−i−j−k
· (cτ + d)n−2j−k · σ∗ e

kfn−j−kgj

k!
,

and from the last line one can read off all entries of the respective column in our matrix.

Let us express this last line somewhat differently: we consider the factor of automorphy

a : Z2 × Z2 × Γ(N)× C× C2 ×H→ C∗,

((
m

n

)
,

(
m′

n′

)
,

(
a b

c d

)
, (z, w, u, τ)

)
7→

exp

[
− 2πic

cτ + d
· (z +mτ + n)(w +m′τ + n′) + 2πim′z + 2πimw + 2πimm′τ

]
.

of Pan (cf. (3.4.14)) and make the following
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Definition 3.5.5
Let ((

m

n

)
,

(
a b

c d

)
, (z, τ)

)
∈ Z2 × Γ(N)× C×H.

Then, for each r ∈ Z we define

ar

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)

to be the coefficient at wr in the expansion around w = 0 of

a

((
m

n

)
,

(
0

0

)
,

(
a b

c d

)
, (z, w, u, τ)

)
.

Hence, it is zero for all r < 0 and

ar

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
=

1

r!

(
2πi(dm− cz − cn)

cτ + d

)r
for all r ≥ 0.

Our previous transformation formula, determining An, may then conveniently be rewritten as

en−i−jf igj

(n− i− j)!
=

n∑
k=0

an−i−j−k

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
· (cτ + d)n−2j−k · σ∗ e

kfn−j−kgj

k!
.

With notation as above we have thus shown:

Proposition 3.5.6
The matrix

An

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
∈ GLr(n)(C)

is determined by the equation

en−i−jf igj

(n− i− j)!
=

n∑
k=0

an−i−j−k

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
· (cτ + d)n−2j−k · σ∗ e

kfn−j−kgj

k!
.

Concretely, this means:
Given 1 ≤ r, s ≤ r(n), the entry An(r, s) of the s-th column and r-th line of the above matrix is
obtained as follows:
Take the s-th of the sections{

en

n!
,
en−1f

(n− 1)!
,
en−2f2

(n− 2)!
, ...,

fn

(n− n)!
,
en−1g

(n− 1)!
,
en−2fg

(n− 2)!
,
en−3f2g

(n− 3)!
, ...,

fn−1g

(n− n)!
,
en−2g2

(n− 2)!
, .........,

gn

(n− n)!

}
.

It is of the form en−i−jfigj

(n−i−j)! for some 0 ≤ i, j with i+ j ≤ n.

Now consider the r-th of these sections: if it is of the form ekfn−j−kgj

k! for some 0 ≤ k ≤ n, then

An(r, s) = an−i−j−k

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
· (cτ + d)n−2j−k.

Otherwise we have An(r, s) = 0.
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With the preceding proposition one can visualize the matrix An

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
:

Namely, leaving away the argument

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
of An and of the ar, one figures

out that:

(3.5.11) An =



a0 0 . . . 0 0 . . . . . . 0

(cτ + d) · a1 (cτ + d) · a0 . . . 0 0 . . . . . . 0
...

...
...

...
...

(cτ + d)n · an (cτ + d)n · an−1 . . . (cτ + d)n · a0 0 . . . . . . 0

0 0 . . . 0 ∗ . . . . . . ∗
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 ∗ . . . . . . ∗


The upper left block is a (n+ 1)× (n+ 1)-matrix whose (r, s)-entry is given by (cτ + d)r−1 · ar−s.
The upper right resp. lower left block is a (n+1)×(r(n)−n−1) resp. (r(n)−n−1)×(n+1)-matrix
consisting only of zeroes.
The lower right block is a (r(n) − n − 1) × (r(n) − n − 1)-matrix whose detailed entries won’t be
of importance, but can nevertheless be computed as explained in Prop. 3.5.6.

Description of the relative connection

With the knowledge of (∇res1 )an (cf. Prop. 3.5.3) the computation of the connection

(∇resn )an : Lann → Ω1
Ean/San ⊗OEan L

an
n

is a straightforward affair. At first, let us once again clarify how to understand the result:
Letting as usual

pr : (C×H,OC×H)→ Ean

be the projection of the universal covering, we trivialize pr∗Lann resp. pr∗Ω1
Ean/San ' Ω1

C×H/H as in
(3.5.10) resp. by {dz}. Recall from 3.2 that then a section of Lann resp. of Ω1

Ean/San⊗OEan L
an
n over

an open subset V ⊆ Ean is given by a vector (of length r(n)) of holomorphic functions on pr−1(V ):

l0,0(z, τ)

l1,0(z, τ)

l2,0(z, τ)
...
...

l0,n(z, τ)


resp.



l̃0,0(z, τ)

l̃1,0(z, τ)

l̃2,0(z, τ)
...
...

l̃0,n(z, τ)


,

transforming under the effect of Z2 × Γ(N) with the matrix (3.5.11) resp. with the matrix obtained
from (3.5.11) by multiplying each entry with cτ + d.
The indices i, j of the function li,j(z, τ) resp. l̃i,j(z, τ) refer to the basic section

en−i−jf igj

(n− i− j)!
resp. dz ⊗ en−i−jf igj

(n− i− j)!
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in the trivialization of pr∗Lann resp. pr∗(Ω1
Ean/San ⊗OEan L

an
n ) to which the function is multiplied.

With these explanations we have:

Proposition 3.5.7
(∇resn )an is given on sections of Lann by the rule

l0,0(z, τ)

l1,0(z, τ)

l2,0(z, τ)
...
...

l0,n(z, τ)


7→



l̃0,0(z, τ)

l̃1,0(z, τ)

l̃2,0(z, τ)
...
...

l̃0,n(z, τ)


,

where for each 0 ≤ i, j with i+ j ≤ n we have

l̃i,j(z, τ) = ∂zli,j(z, τ) + η(1, τ) · li−1,j(z, τ) + li,j−1(z, τ).

Here, we set l−1,j(z, τ) = li,−1(z, τ) ≡ 0 for all i, j.

Proof. Use that the pullback of (∇res1 )an along

C×H
pr //

can

��

Ean

πan

��
H can // San

is given by

e 7→ η(1, τ) · (dz ⊗ f) + dz ⊗ g,

f 7→ 0,

g 7→ 0.

(cf. the proof of Prop. 3.5.3) and that (∇resn )an = Symn(∇res1 )an. The rest is routine.

Description of the splitting

Finally, we also want to express explicitly (on the fixed connected component) the analytification

ϕann :

n∏
k=0

Symk
OSanH

an ' (εan)∗Lann

of the splitting

ϕn :

n∏
k=0

Symk
OSH ' ε

∗Ln

in the formalism of automorphy matrices.

Recall (from the preliminary remarks preceding 3.5.1) that the pullback of
∏n
k=0 Symk

OSanH
an to

the universal covering H of San is trivialized by the ordered basic sections
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{
1

n!
,

η∨

(n− 1)!
,

(η∨)2

(n− 2)!
, ...,

(η∨)n

(n− n)!
,

ω∨

(n− 1)!
,
η∨ω∨

(n− 2)!
,

(η∨)2ω∨

(n− 3)!
, ...,

(η∨)n−1ω∨

(n− n)!
,

(ω∨)2

(n− 2)!
, .........,

(ω∨)n

(n− n)!

}
.

Recall furthermore (from Def. 3.5.4) that the pullback of Lann to the universal covering C×H of Ean

is trivialized by the ordered basic sections

{
en

n!
,
en−1f

(n− 1)!
,
en−2f2

(n− 2)!
, ...,

fn

(n− n)!
,
en−1g

(n− 1)!
,
en−2fg

(n− 2)!
,
en−3f2g

(n− 3)!
, ...,

fn−1g

(n− n)!
,
en−2g2

(n− 2)!
, .........,

gn

(n− n)!

}

and that we obtain from it (as explained in 3.2 (v) and the preliminary remarks of 3.4) an induced
trivialization for the pullback of (εan)∗Lann to H.
One deduces directly from Prop. 3.5.6 and the explicit formula for ar (cf. Def. 3.5.5) that the
associated automorphy matrix for (εan)∗Lann , evaluated at((

a b

c d

)
, τ

)
∈ Γ(N)×H,

is a diagonal matrix of size r(n) whose nontrivial entry in the r-th line is given as follows:
Take the r-th of the sections

{
en

n!
,
en−1f

(n− 1)!
,
en−2f2

(n− 2)!
, ...,

fn

(n− n)!
,
en−1g

(n− 1)!
,
en−2fg

(n− 2)!
,
en−3f2g

(n− 3)!
, ...,

fn−1g

(n− n)!
,
en−2g2

(n− 2)!
, .........,

gn

(n− n)!

}
.

It is of the form en−i−jfigj

(n−i−j)! for some 0 ≤ i, j with i+j ≤ n, and the entry is then given by (cτ+d)i−j .
The thus obtained automorphy matrix for (εan)∗Lann hence coincides with the automorphy matrix for∏n
k=0 Symk

OSanH
an (cf. again the remarks preceding 3.5.1).

Proposition 3.5.8
Trivializing the pullback of

∏n
k=0 Symk

OSanH
an resp. (εan)∗Lann to the universal covering H of

San as explained above, the associated automorphy matrices are equal. Expressing as usual the

sections of these OSan -vector bundles as vectors of holomorphic functions on (open subsets of) H
which transform under the effect of Γ(N) with this automorphy matrix, the isomorphism

ϕann :

n∏
k=0

Symk
OSanH

an ' (εan)∗Lann

is given as the identity on such vectors.

In particular, given a section 

l0,0(z, τ)

l1,0(z, τ)

l2,0(z, τ)
...
...

l0,n(z, τ)


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of Lann which is defined on some open subset of Ean intersecting εan(San), the induced section of∏n
k=0 Symk

OSanH
an (via pullback along εan and using ϕann ) is given by

l0,0(0, τ)

l1,0(0, τ)

l2,0(0, τ)
...
...

l0,n(0, τ)


.

Proof. The first assertion was already shown, and the third follows from the second together with the
explanations of 3.2 (v). It thus remains to verify the second claim of the proposition.
For this let us write p : H→ San and pr : C×H→ Ean for the projections and consider the pullback

p∗(ϕann ) : p∗(εan)∗Lann ' p∗
n∏
k=0

Symk
OSanH

an

of the isomorphism ϕann along p. Combining it with the identification

(ε̃)∗pr∗Lann ' p∗(εan)∗Lann ,

induced by the commutative diagram

H ε̃ //

p

��

C×H

pr

��
San

εan // Ean

with ε̃(τ) := (0, τ), we obtain the isomorphism

(ε̃)∗pr∗Lann ' p∗
n∏
k=0

Symk
OSanH

an.

What we have to show is that hereunder the trivializing section

(ε̃)∗
( en−i−jf igj

(n− i− j)!

)
of the left side is sent to the following trivializing section of the right side:

(η∨)i(ω∨)j

(n− i− j)!
.

Because of ϕn = Symnϕ1 one is quickly reduced to showing that

(ε̃)∗pr∗Lan1 ' p∗(OSan ⊕Han) ' OH ⊕OH · η∨ ⊕OH · ω∨

sends {(ε̃)∗(e), (ε̃)∗(f), (ε̃)∗(g)} to {1, η∨, ω∨}.
For (ε̃)∗(f) and (ε̃)∗(g) this follows directly from the fact that f and g are the images of η∨ and ω∨

under the inclusion of (3.5.8) (cf. the comments preceding Prop. 3.5.2).
The claim for (ε̃)∗(e) follows by recalling how ϕ1 was constructed via the rigidification r of P (cf.
Cor. 2.3.2 resp. (2.3.13)), that r is induced by r0 (cf. 0.1.1), how r0 expresses for elliptic curves (cf.
(3.1.5)) and by then observing the definition of t0 (cf. (3.4.13)) and Rem. 3.4.1.
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3.5.3 The pullback along torsion sections

Given a torsion section t : S → E of E/S we can pull back sections of Ω1
E/Q ⊗OE Ln along t and

use the invariance property t∗Ln ' ε∗Ln (cf. Lemma 1.4.5) together with the splitting ϕn to obtain
a section of Ω1

S/Q ⊗OS
∏n
k=0 Symk

OSH. This is basically the procedure to be carried out when one
wants to specialize de Rham cohomology classes with coefficients in Ln along t.
On the analytic side, if we again (componentwise) trivialize the occurring vector bundles on the uni-
versal coverings, we can ask for the explicit formula of the preceding process. Its deduction is the
main goal of this subsection, and it will present a key tool for our later (analytic and finally also alge-
braic) computation of the specialization of theD-variant polylogarithm classes along torsion sections.
To derive this formula we proceed in several steps. The first of these is the crucial one and consists in
determining explicitly the effect of translating sections of Lan1 by a torsion section and subsequently
using the invariance of Lan1 under such translations. To find the formula for this operation is the es-
sential (and rather technical) task to be solved as it then immediately implies the corresponding result
for general n, with which in turn one quickly arrives at the solution for the initial problem.
This subsection also contains (prior to Prop. 3.5.14) an insertion about how we trivialize the pull-
backs of various differential modules to the universal coverings, recording in addition the associated
automorphy matrices; these conventions will remain in force until the end of the work.

Notations and conventions

Recall from 3.4 that (e1, e2) ∈ E[N ](S) denotes the Drinfeld basis for E[N ] associated with E/S.

We let a, b be two fixed integers and consider the associated N -torsion section

ta,b := ae1 + be2 : S → E

which of course only depends on the class of (a, b) in (Z/NZ)2.
Moreover, we write

Ta,b : E → E

for the translation by the torsion section ta,b.
Recall from 1.4.2 that the invariance of Ln by N -multiplication

Ln ' [N ]∗Ln

together with the equality [N ] ◦ Ta,b = [N ] yields a canonical isomorphism of DE/Q-modules

T ∗a,bLn ' T ∗a,b[N ]∗Ln ' [N ]∗Ln ' Ln,

and that by further pullback via ε one obtains a canonical DS/Q-linear identification

t∗a,bLn ' ε∗Ln.

Cf. Cor. 1.4.4 and Lemma 1.4.5.

Let us now consider the analytic situation.
We continue to work on a fixed connected component of Ean/San but as usual suppress its index in
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the notation of the geometric objects, writing again e.g. Ean, San, πan, εan, tana,b, T
an
a,b , [N ]an,Lann ...

for the restrictions of the honest analytifications to the chosen component.
With these conventions, note that by analytifying the algebraic isomorphisms recalled above and then
restricting to the fixed component we obtain identifications

(3.5.12) (T ana,b)
∗Lann ' (T ana,b)

∗([N ]an)∗Lann ' ([N ]an)∗Lann ' Lann

resp.

(3.5.13) (tana,b)
∗Lann ' (εan)∗Lann .

For the subsequent computations it is necessary to specify the chosen component.
Let us hence determine that the fixed connected component of Ean/San is the one associated with
the class of j0 in (Z/NZ)∗, where j0 is an integer with (j0, N) = 1.

The analytified torsion section tana,b : San → Ean is then given by

tana,b : Γ(N)\H→ (Z2 × Γ(N))\(C×H), τ 7→
(aj0τ
N

+
b

N
, τ
)
,

and the analytified translation T ana,b : Ean → Ean writes as

T ana,b : (Z2 × Γ(N))\(C×H)→ (Z2 × Γ(N))\(C×H), (z, τ) 7→
(
z +

aj0τ

N
+

b

N
, τ
)
.

Cf. (3.4.1)-(3.4.4).

Explicit formulas I

Consider (3.5.12) for n = 1 and assume a section of Lan1 over an open subset V ⊆ Ean is given.
By pullback along T ana,b and using (3.5.12) we obtain a section of Lan1 defined over (T ana,b)

−1(V ).
With respect to the fixed trivialization of pr∗Lan1 on C × H (cf. Def. 3.5.1 resp. Prop. 3.5.2) we
express the section we started with as usual by a vectorl0,0(z, τ)

l1,0(z, τ)

l0,1(z, τ)


of holomorphic functions on pr−1(V ) which under the effect of Z2 × Γ(N) transforms with the
automorphy matrix A1 for Lan1 .
The section of Lan1 obtained from it in the way just described writes similarly as such a vector of
functions, defined on pr−1((T ana,b)

−1(V )), and explicitly we have:

Proposition 3.5.9
The section in question is given by l0,0(z + aj0τ

N + b
N , τ)

l1,0(z + aj0τ
N + b

N , τ)− 2πiaj0N · l0,0(z + aj0τ
N + b

N , τ)

l0,1(z + aj0τ
N + b

N , τ)

 .
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Proof. We define maps on the universal covering C×H of Ean:

T̃a,b : C×H→ C×H, (z, τ) 7→
(
z +

aj0τ

N
+

b

N
, τ
)

[̃N ] : C×H→ C×H, (z, τ) 7→ (Nz, τ)

which then fit into commutative squares

C×H

pr

��

T̃a,b // C×H

pr

��

C×H

pr

��

[̃N ] // C×H

pr

��
Ean

Tana,b // Ean Ean
[N ]an // Ean

With these diagrams fixed, the pullback of (3.5.12) via pr induces a chain of isomorphisms on C×H:

(∗) T̃ ∗a,b pr∗Lan1 ' T̃ ∗a,b [̃N ]
∗
pr∗Lan1 ' [̃N ]

∗
pr∗Lan1 ' pr∗Lan1 .

We now investigate what happens under (∗) with the following (global) sections of T̃ ∗a,b pr∗Lan1 :

T̃ ∗a,b(e), T̃
∗
a,b(f), T̃ ∗a,b(g),

where as usual {e, f, g} are the fixed trivializing sections of pr∗Lan1 (cf. Def. 3.5.4 resp. Prop. 3.5.2).

Let us begin with e. Recall from 3.5.1 that it was constructed as the section

e = k−1
1 (t)⊗ 1 ∈ Γ(C×H,pr∗Lan1 ),

where one uses the OC×H-linear isomorphism of (3.5.6):

k−1
1 P̃ ⊗k−1

1 OC×C2×H
(OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨) = k∗1P̃ ' τ∗1Pan1 ' pr∗(pan1 )∗Pan1

and the trivializing section t of P̃ on C× C2 ×H:

OC×C2×H
∼−→ P̃ 1 7→ t =

1

J(z,−w, τ)
⊗ ω∨can.

The isomorphism

pr∗Lan1
∼−→ [̃N ]

∗
pr∗Lan1

is given on the basic sections {e, f, g} of pr∗Lan1 as follows:

e 7→ [̃N ]
∗
(e)

f 7→ N · [̃N ]
∗
(f)

g 7→ N · [̃N ]
∗
(g).

(∗∗)

We provide a detailed justification for this fact after we have finished the present proof.
This in particular implies that the image of T̃ ∗a,b(e) in T̃ ∗a,b [̃N ]

∗
pr∗Lan1 under the first isomorphism in

(∗) is given by ([̃N ] ◦ T̃a,b)∗(e). Because of

([̃N ] ◦ T̃a,b)(z, τ) = (Nz + aj0τ + b, τ)
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and the equality

1

J(Nz + aj0τ + b,−w, τ)
⊗ ω∨can = exp(−2πiaj0w) · 1

J(Nz,−w, τ)
⊗ ω∨can,

deduced from Cor. 3.3.14, the further image under the second arrow in (∗) is [̃N ]
∗
(e − 2πiaj0 · f):

to see this recall the definition of k1 and that the section f equals k−1
1 (wt)⊗ 1.

Finally, under the last isomorphism [̃N ]
∗
pr∗Lan1 ' pr∗Lan1 in (∗) this section [̃N ]

∗
(e − 2πiaj0 · f)

goes to e− 2πiaj0N · f by observing again (∗∗).
Altogether, we see that T̃ ∗a,b(e) is indeed mapped to e− 2πiaj0N · f under the chain (∗).
Observing that f resp. g comes via k1 from wt resp. from ut one deduces with similar arguments that
T̃ ∗a,b(f) resp. T̃ ∗a,b(g) maps to f resp. to g under (∗).

It is then clear that a section of pr∗Lan1 :

l0,0(z, τ) · e+ l1,0(z, τ) · f + l0,1(z, τ) · g

coming from a section of Lan1 goes under pullback via T̃a,b and the OC×H-linear chain (∗) to

l0,0

(
z +

aj0τ

N
+

b

N
, τ
)
· e

+

[
l1,0

(
z +

aj0τ

N
+

b

N
, τ
)
− 2πi

aj0
N
· l0,0

(
z +

aj0τ

N
+

b

N
, τ
)]
· f

+ l0,1

(
z +

aj0τ

N
+

b

N
, τ
)
· g.

This readily implies the claim of the proposition.

Supplements to the proof of Prop. 3.5.9

It remains to verify (∗∗) of the previous proof. This is what we have to do:

Consider the isomorphism
pr∗Lan1 ' [̃N ]

∗
pr∗Lan1 ,

obtained by pulling back along pr the analytification

Lan1 ' ([N ]an)∗Lan1

of the invariance isomorphism in Cor. 1.4.4. Combining it with the OC×H-linear identification
pr∗Lan1 ' k∗1P̃ of (3.5.6) we obtain

(3.5.14) k∗1P̃ ' [̃N ]
∗
k∗1P̃,

where k∗1P̃ is viewed as OC×H-module. Then, the content of (∗∗) in the proof of Prop. 3.5.9 is that
hereunder k−1

1 (t)⊗ 1 corresponds to [̃N ]
∗
(k−1

1 (t)⊗ 1), where t is the familiar section of P̃:

t =
1

J(z,−w, τ)
⊗ ω∨can,

and that moreover 1
N · (k

−1
1 (t) ⊗ η∨) resp. 1

N · (k
−1
1 (t) ⊗ ω∨) corresponds to [̃N ]

∗
(k−1

1 (t) ⊗ η∨)

resp. [̃N ]
∗
(k−1

1 (t)⊗ ω∨).
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We show this for N replaced by an arbitrary integer M 6= 0.

Suppose for a moment that the following is true:

Lemma 3.5.10
Set

˜idE × [M ]\ : C× C2 ×H→ C× C2 ×H, (z, w, u, τ) 7→ (z,Mw,Mu, τ)

and
˜[M ]× idÊ\ : C× C2 ×H→ C× C2 ×H, (z, w, u, τ) 7→ (Mz,w, u, τ).

Analytifying (and restricting to the fixed component) the canonical isomorphism of (2.5.2):

(3.5.15) (idE × [M ]\)∗(P, r,∇P) ' (([M ]× idÊ\)
∗P, r[M ], (∇P)[M ]),

we obtain after pullback to C× C2 ×H an induced isomorphism

(3.5.16) ( ˜idE × [M ]\)∗P̃ ' ( ˜[M ]× idÊ\)
∗P̃.

Then (3.5.16) maps

( ˜idE × [M ]\)∗t =
1

J(z,−Mw, τ)
⊗ ω∨can 7→

1

J(Mz,−w, τ)
⊗ ω∨can = ( ˜[M ]× idÊ\)

∗t.

Assuming the content of this lemma we can deduce our above claims as follows.
We have a commutative diagram

(C×H,OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨)
k1 //

��

(C× C2 ×H,OC×C2×H)

˜idE×[M ]\

��
(C×H,OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨)

k1 // (C× C2 ×H,OC×C2×H)

in which the left arrow topologically is the identity and on ring sheaves is given by the isomorphism

(3.5.17) OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨
∼−→ OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨

defined by

f(z, τ) + g(z, τ) · η∨ + h(z, τ) · ω∨ 7→ f(z, τ) +Mg(z, τ) · η∨ +Mh(z, τ) · ω∨.

Moreover, we have a second commutative diagram

(C×H,OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨)
k1 //

��

(C× C2 ×H,OC×C2×H)

˜[M ]×id
Ê\

��
(C×H,OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨)

k1 // (C× C2 ×H,OC×C2×H)

in which the left arrow maps (z, τ) to (Mz, τ) and on ring sheaves is given by

f(z, τ) + g(z, τ) · η∨ + h(z, τ) · ω∨ 7→ f(Mz, τ) + g(Mz, τ) · η∨ + h(Mz, τ) · ω∨.
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If we pull back the left side of (3.5.16) along k1 and use the first diagram together with the identifi-
cation (3.5.17) we obtain k∗1P̃ . If we pull back the right side of (3.5.16) along k1 and use the second
diagram we obtain (as OC×H-module) [̃M ]

∗
k∗1P̃ .

Hence, pulling back (3.5.16) along k1 yields a OC×H-linear isomorphism

k∗1P̃ ' [̃M ]
∗
k∗1P̃.

The point is that this is precisely the identification of (3.5.14), which together with the assertion of
Lemma 3.5.10 and a careful inspection implies the desired claims.
That the last isomorphism indeed coincides with (3.5.14) basically follows by recalling from 2.5.2
how in terms of the Poincaré bundle the invariance isomorphism

L1 ' [M ]∗L1

comes from the canonical isomorphism (3.5.15) together with the identification

(3.5.18) OE×SÊ\1
∼−→ (idE × [M ]\1)∗OE×SÊ\1 = OE×SÊ\1

induced by the morphism
idE ×[M ]\1 : E ×S Ê\1 → E ×S Ê\1.

Note that the map OE ⊕HE → OE ⊕HE associated with (3.5.18) is given by id⊕(·M).
Cf. (2.5.2), (2.5.7)-(2.5.9), Prop. 2.5.1 and Prop. 2.5.2 for the details.

There is hence only one task left:

Proof of Lemma 3.5.10: Consider the canonical isomorphism of Ê-rigidified line bundles

(idE × [M ]∧)∗(P0, r0) ' (([M ]× idÊ)∗P0, r0
[M ]),

constructed as (2.5.2) by using the dual abelian scheme Ê and (P0, r0) instead of Ê\ and (P, r,∇P);
note that by Prop. 2.5.1 the transpose endomorphism of [M ] is theM -multiplication map [M ]∧ on Ê.
With the principal polarization of (3.1.3) this reads as isomorphism of E-rigidified line bundles

(3.5.19) (idE × [M ])∗(P0, r0) ' (([M ]× idE)∗P0, r0
[M ]).

Analytifying (3.5.19) (and restricting to the fixed component) gives after pullback to C × C × H an
induced isomorphism

(3.5.20) ( ˜idE × [M ])∗P̃0 ' ( ˜[M ]× idE)∗P̃0,

where P̃0 denotes the pullback of (P0)an to C× C×H and where we set

˜idE × [M ] : C× C×H→ C× C×H, (z, w, τ) 7→ (z,Mw, τ)

resp.
˜[M ]× idE : C× C×H→ C× C×H, (z, w, τ) 7→ (Mz,w, τ).

Note that the trivializing section t of P̃ is induced by pulling back the trivializing section

t0 =
1

J(z, w, τ)
⊗ (ω0

can)∨
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of P̃0 along
C× C2 ×H→ C× C×H, (z, w, u, τ) 7→ (z,−w, τ).

Cf. (3.4.10), (3.4.13) and (3.4.15).

The goal for the rest of the proof is to show that (3.5.20) maps

( ˜idE × [M ])∗t0 =
1

J(z,Mw, τ)
⊗ (ω0

can)∨ 7→ 1

J(Mz,w, τ)
⊗ (ω0

can)∨ = ( ˜[M ]× idE)∗t0;

because of compatibilities which are readily worked out this suffices to deduce the claim of the lemma.

Recall from (3.1.5) that (P0, r0) writes as

(M⊗OE×SE (π × π)∗ε∗OE([0]), can),

where

M = µ∗OE([0])⊗OE×SE pr∗1OE([0])−1⊗OE×SE pr∗2OE([0])−1 ' OE×SE(∆̄E− [0]×E−E× [0])

and where can is the canonical rigidification along the inclusion of the second factor of E ×S E.
Taking this into account, (3.5.19) induces an isomorphism of line bundles on E ×S E:

(3.5.21)
(idE × [M ])∗OE×SE(∆̄E − [0]×E −E × [0]) ' ([M ]× idE)∗OE×SE(∆̄E − [0]×E −E × [0])

whose restriction via (ε× ε) : S → E ×S E is the identity on

ε∗OE([0])⊗OS ε∗OE([0])−1 ⊗OS ε∗OE([0])−1;

note that there can only be one isomorphism of the form (3.5.21) having this property: this is an easy
consequence of Lemma 0.1.5.
Writing D for the divisor ∆̄E − [0]× E − E × [0], the analytification of (3.5.21) is an isomorphism

(3.5.22) (idEan × [M ]an)∗OEan×SanEan(Dan) ' ([M ]an × idEan)∗OEan×SanEan(Dan)

with the analogous restriction property along (εan × εan) : San → Ean ×San Ean, and there can
only be one isomorphism of the form (3.5.22) having this property: note that the canonical map
OSan → (πan × πan)∗OEan×SanEan is an isomorphism16, such that one has the analytic analogue
of Lemma 0.1.5 available (cf. its proof), from which the claimed uniqueness again easily follows.
Now comes the crucial point: the function

(3.5.23) (z, w, τ) 7→ J(Mz,w, τ)

J(z,Mw, τ)

is invariant under the effect of Z2 × Z2 × Γ(N) (use Cor. 3.3.14), and considering it hence as a
meromorphic function on Ean ×San Ean its divisor is given by

([M ]an × idEan)∗Dan − (idEan × [M ]an)∗Dan.

16One can see this e.g. by taking the analytification of the respective (well-known) algebraic isomorphism and by noting that
the appearing base change is an isomorphism by [SGA1], exp. XII, Thm. 4.2. In fact, the canonical morphism on structure
sheaves is an isomorphism whenever one considers a proper smooth map of analytic spaces with connected fibers.
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The function (3.5.23) thus defines an isomorphism between the line bundles in (3.5.22) which is
moreover checked to have the restriction property along (εan × εan) of above, such that the men-
tioned uniqueness implies its equality with the isomorphism of (3.5.22).
This implies straightforwardly the desired claim about (3.5.20) and hence the statement of the lemma.

As this finally finishes the proof of Prop. 3.5.9 in all relevant details we may return to the problem of
finding explicit formulas for the translation of sections of the logarithm sheaves.

Explicit formulas II

With the knowledge of the case n = 1 in Prop. 3.5.9 it is easy to compute the respective formula for
the case of arbitrary n ≥ 0, where the usual trivialization of pr∗Lann in Def. 3.5.4 is fixed.
The result of the calculation is:

Corollary 3.5.11
Assume that a section 

l0,0(z, τ)

l1,0(z, τ)

l2,0(z, τ)
...
...

l0,n(z, τ)


of Lann over an open subset V ⊆ Ean is given. By pullback along T ana,b and using (3.5.12) we obtain

a section of Lann over (T ana,b)
−1(V ). It expresses as

l̂0,0(z, τ)

l̂1,0(z, τ)

l̂2,0(z, τ)
...
...

l̂0,n(z, τ)


,

where for each 0 ≤ i, j with i+ j ≤ n the function l̂i,j(z, τ) is given by

l̂i,j(z, τ) =

i∑
k=0

(−2πiaj0N )i−k

(i− k)!
· lk,j

(
z +

aj0τ

N
+

b

N
, τ
)
.

Equivalently, the function l̂i,j(z, τ) is determined by the following equation, with free variables w, u

and to hold modulo expressions with factors wiuj , i+ j > n:

l̂0,0(z, τ) + l̂1,0(z, τ)w + l̂2,0(z, τ)w2 + ......+ l̂0,n(z, τ)un = e−2πi
aj0
N w ·

[
l0,0

(
z +

aj0τ

N
+

b

N
, τ
)

+ l1,0

(
z +

aj0τ

N
+

b

N
, τ
)
w + l2,0

(
z +

aj0τ

N
+

b

N
, τ
)
w2 + ......+ l0,n

(
z +

aj0τ

N
+

b

N
, τ
)
un
]
.
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Remark 3.5.12
To prevent possible confusion let us point to the following:
The integers a and b could very well be both divisible byN , such that Ta,b = id and (3.5.12) coincides
with the identity map on Lann . The two vectors in Cor. 3.5.11 thus need to be equal, which at first sight
they don’t seem to be. But one should always recall that the functions li,j(z, τ), defining a section of
Lann , have a transformation property under the effect of Z2×Γ(N), namely by the matrix An in Prop.
3.5.6. Taking this into account the two vectors indeed become equal.

We can now explicitly describe the specialization of sections of Lann along tana,b.
The trivialization for the pullback of

∏n
k=0 Symk

OSanH
an to the universal covering H is as fixed in

the preliminary remarks preceding 3.5.1.

Corollary 3.5.13
Let 

l0,0(z, τ)

l1,0(z, τ)

l2,0(z, τ)
...
...

l0,n(z, τ)


be a section of Lann which is defined on some open subset of Ean intersecting tana,b(S

an).

It induces a section of
∏n
k=0 Symk

OSanH
an, obtained by its pullback along tana,b and using the isomor-

phism (3.5.13) together with the splitting ϕann :

(tana,b)
∗Lann ' (εan)∗Lann '

n∏
k=0

Symk
OSanH

an.

This induced section then expresses as 

l̂0,0(0, τ)

l̂1,0(0, τ)

l̂2,0(0, τ)
...
...

l̂0,n(0, τ)


,

where for each 0 ≤ i, j with i+ j ≤ n the function l̂i,j(0, τ) is given by

l̂i,j(0, τ) =

i∑
k=0

(−2πiaj0N )i−k

(i− k)!
· lk,j

(aj0τ
N

+
b

N
, τ
)
.

Proof. Recall how (3.5.13) is obtained from (3.5.12). Then combine Cor. 3.5.11 and Prop. 3.5.8.

In the end we want to specialize sections of Ω1
Ean ⊗OEan Lann along tana,b. In order to reasonably

formulate the respective result we need the following insertion.
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Conventions for the trivialization of differential modules

We fix trivializations on the universal covering for modules of differential forms; they will tacitly
remain valid until the end of the work.
For the various occurring manifolds we keep working on the component associated to the integer j0
(where (j0, N) = 1) and thereby perform the usual abuse of notation, leaving away this index.
Here and henceforth, let us denote by ΩiEan resp. ΩiSan the sheaf of (absolute) differential i-forms on
the complex manifolds Ean resp. San.

• The pullback of Ω1
Ean via

pr : C×H→ Ean

shall be trivialized by the ordered basic sections {dz,dτ}.
The associated automorphy matrix for Ω1

Ean is readily computed as

Z2 × Γ(N)× C×H→ GL2(C)((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
7→

(
cτ + d 0

(cz + cn− dm)(cτ + d) (cτ + d)2

)
.

(3.5.24)

• The pullback of Ω2
Ean to C×H will be trivialized by {dz∧dτ}, which gives the factor of automorphy

(3.5.25) Z2 × Γ(N)× C×H→ C∗,

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
7→ (cτ + d)3.

The exterior derivation on 1-forms then expresses as

(3.5.26) d : Ω1
Ean → Ω2

Ean ,

(
f(z, τ)

g(z, τ)

)
7→ ∂zg(z, τ)− ∂τf(z, τ).

• The pullback of Ω1
San via

p : H→ San

shall be trivialized by {dτ}. The induced factor of automorphy is

(3.5.27) Γ(N)×H→ C∗,

((
a b

c d

)
, τ

)
7→ (cτ + d)2.

Assume then that we have a section (
f(z, τ)

g(z, τ)

)
of Ω1

Ean which is defined on some open subset of Ean intersecting tana,b(S
an).

By pullback via tana,b and usage of the canonical map

(tana,b)
∗Ω1

Ean → Ω1
San

we obtain a section of Ω1
San which expresses as follows:

(3.5.28)
aj0
N
· f
(aj0τ
N

+
b

N
, τ
)

+ g
(aj0τ
N

+
b

N
, τ
)
.
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• As already employed several times, the module Ω1
Ean/San of relative differential forms is trivialized

on C×H by {dz} and receives the associated factor of automorphy

(3.5.29) Z2 × Γ(N)× C×H→ C∗,

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
7→ cτ + d.

The canonical map from absolute to relative differential 1-forms then expresses as

(3.5.30) Ω1
Ean → Ω1

Ean/San ,

(
f(z, τ)

g(z, τ)

)
7→ f(z, τ).

Explicit formulas III

With the above conventions we can state the final result of this subsection, answering the question how
to compute explicitly the pullback of sections of Ω1

Ean ⊗OEan Lann along analytified torsion sections.
It will play a central auxiliary role later when we determine the specialization of the D-variant.
Its statement is easily deduced from Cor. 3.5.13 and (3.5.28).

Proposition 3.5.14
Let 

l0,0(z, τ)

l1,0(z, τ)

l2,0(z, τ)
...
...

l0,n(z, τ)

λ0,0(z, τ)

λ1,0(z, τ)

λ2,0(z, τ)
...
...

λ0,n(z, τ)


be a section of Ω1

Ean ⊗OEan Lann which is defined on some open subset of Ean intersecting tana,b(S
an).

It induces a section of Ω1
San ⊗OSan

∏n
k=0 Symk

OSanH
an, obtained from its pullback along tana,b and

using the composition

(tana,b)
∗(Ω1

Ean⊗OEanL
an
n ) ' (tana,b)

∗Ω1
Ean⊗OSan

n∏
k=0

Symk
OSanH

an can−−→ Ω1
San⊗OSan

n∏
k=0

Symk
OSanH

an,

where for the first map cf. Cor. 3.5.13.

This induced section then expresses as

aj0
N · l̂0,0(0, τ) + λ̂0,0(0, τ)
aj0
N · l̂1,0(0, τ) + λ̂1,0(0, τ)
aj0
N · l̂2,0(0, τ) + λ̂2,0(0, τ)

...

...
aj0
N · l̂0,n(0, τ) + λ̂0,n(0, τ)


,
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where for each 0 ≤ i, j with i+ j ≤ n the function l̂i,j(0, τ) resp. λ̂i,j(0, τ) is given by

l̂i,j(0, τ) =

i∑
k=0

(−2πiaj0N )i−k

(i− k)!
· lk,j

(aj0τ
N

+
b

N
, τ
)

resp.

λ̂i,j(0, τ) =

i∑
k=0

(−2πiaj0N )i−k

(i− k)!
· λk,j

(aj0τ
N

+
b

N
, τ
)
.

3.5.4 The analytification of the absolute connection

Precise formulation of the problem

The line bundle with integrable Ê\1-connection (P1,∇P1
) on E ×S Ê\1 becomes, when considered

as OE-module, a vector bundle L1 on E with integrable S-connection ∇res1 . Essentially via the
trivialization s of (P,∇P) along E it sits in an exact sequence of DE/S-modules:

(3.5.31) 0→ HE → L1 → OE → 0.

The extension class of this sequence maps to the identity under the lower projection in (2.1.3):

Ext1
DE/S (OE ,HE)→ HomOS (OS ,H∨ ⊗OS H).

Essentially via the rigidification r of P along Ê\ and the canonicalOS-isomorphismOS ⊕H ' OÊ\1
one constructs a OS-linear splitting ϕ1 : OS ⊕H ' ε∗L1 for the pullback of (3.5.31) along ε.
Cf. 2.3.1 and Thm. 2.3.1 for these constructions and facts.

Prop. 2.1.4 resp. Cor. 2.3.2 tells us that there is a unique prolongation of ∇res1 to an integrable
Q-connection∇1 that is characterized by the following property: If L1 is equipped with∇1, then:

(i) The DE/S-linear exact sequence (3.5.31) becomes DE/Q-linear.

(ii) The OS-linear splitting ϕ1 becomes DS/Q-linear.
(3.5.32)

The extension class of (i) then maps to the identity under the lower projection in (2.1.3):

Ext1
DE/Q(OE ,HE)→ HomDS/Q(OS ,H∨ ⊗OS H).

Altogether, this means that (L1,∇1, ϕ1) defines the first logarithm sheaf of E/S/Q in the sense of
1.1 (and that hence our notation is justified).

Analytically, with respect to our fixed (componentwise) trivializations on the universal coverings,
we have already gained explicit knowledge about the following of the above data:

• The analytification
0→ HanEan → Lan1 → OEan → 0

of (3.5.31) expresses on sections as

(3.5.33)

(
χ(z, τ)

ξ(z, τ)

)
7→

 0

χ(z, τ)

ξ(z, τ)

 ,

λ(z, τ)

µ(z, τ)

ν(z, τ)

 7→ λ(z, τ),
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as follows directly from the remarks preceding Prop. 3.5.2.

• The analytified splitting

ϕan1 : OSan ⊕Han ' (εan)∗Lan1

expresses as the identity on sections written as vectors of holomorphic functions in τ .
The pullback via εan of a section λ(z, τ)

µ(z, τ)

ν(z, τ)


of Lan1 , defined on some open subset of Ean intersecting εan(San), maps under ϕan1 to the sectionλ(0, τ)

µ(0, τ)

ν(0, τ)


of OSan ⊕Han. Cf. Prop. 3.5.8 for these facts.

• Finally, recall from Prop. 3.5.3 that the formula for the analytification

(∇res1 )an : Lan1 → Ω1
Ean/San ⊗OEan L

an
1

of the relative connection

∇res1 : L1 → Ω1
E/S ⊗OE L1

is given by λ(z, τ)

µ(z, τ)

ν(z, τ)

 7→
 ∂zλ(z, τ)

∂zµ(z, τ) + η(1, τ) · λ(z, τ)

∂zν(z, τ) + λ(z, τ)

 .

The goal of the present subsection is to determine the formula for the analytification

∇an1 : Lan1 → Ω1
Ean ⊗OEan L

an
1

of the absolute connection

∇1 : L1 → Ω1
E/Q ⊗OE L1.

To possess such an explicit knowledge of∇an1 is not only interesting in its own right but also essential
if one wants to give an analytic description of the D-variant polylogarithm system.
Let us hence proceed to develop the solution for this important problem. The already known analytic
expressions of the other data, which we have repeated above, together with an analytic version for the
characterizing property of∇1 in (3.5.32) will play the decisive auxiliary role.

Description of the Gauß-Manin connection

We continue to work on some fixed component of Ean/San and to always consider the restrictions of
all occurring objects to this component, omitting however the respective index in our notation.
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It was already mentioned at the beginning of 3.5 that we freely identify

H1
dR(E/S)an ' H1

dR(Ean/San) resp. Han ' H1
dR(Ean/San)∨.

As explained in (3.4.6) and (3.4.7) we trivialize the pullback of theseOSan -vector bundles to the uni-
versal covering H of San by the ordered basic sections {η, ω} = {p(z, τ)dz,dz} resp. by {η∨, ω∨}.
Moreover, recall from (3.5.27) that the pullback of Ω1

San to H is trivialized by {dτ}.

The analytified Gauß-Manin connection on H1
dR(E/S) expresses as the integrable connection

H1
dR(Ean/San)→ Ω1

San ⊗OSan H
1
dR(Ean/San)

which acts (with respect to our fixed trivializations) on sections over open subsets of San as follows:(
χ(τ)

ξ(τ)

)
7→

(
∂τχ(τ) + 1

2πiη(1, τ) · χ(τ) + 1
2πiξ(τ)

∂τξ(τ) + ∂τη(1, τ) · χ(τ)− 1
2πiη(1, τ)2 · χ(τ)− 1

2πiη(1, τ) · ξ(τ)

)
.

The formula is deduced from [Kat4], A 1.3.8.
Its dual connection

Han → Ω1
San ⊗OSan H

an

is then routinely computed as

(3.5.34)

(
χ(τ)

ξ(τ)

)
7→

(
∂τχ(τ)− 1

2πiη(1, τ) · χ(τ) + 1
2πiη(1, τ)2 · ξ(τ)− ∂τη(1, τ) · ξ(τ)

∂τξ(τ)− 1
2πiχ(τ) + 1

2πiη(1, τ) · ξ(τ)

)
.

The guess for the absolute connection

Now let λ(z, τ)

µ(z, τ)

ν(z, τ)


be a local section of Lan1 defined on some open subset of Ean intersecting εan(San). The image of
its pullback along εan under the isomorphism ϕan1 is the sectionλ(0, τ)

µ(0, τ)

ν(0, τ)


of OSan ⊕Han, and by (3.5.34) the connection of OSan ⊕Han maps it to

(3.5.35)

 ∂τλ(0, τ)

∂τµ(0, τ)− 1
2πiη(1, τ) · µ(0, τ) + 1

2πiη(1, τ)2 · ν(0, τ)− ∂τη(1, τ) · ν(0, τ)

∂τν(0, τ)− 1
2πiµ(0, τ) + 1

2πiη(1, τ) · ν(0, τ)

 ,

which is a section of Ω1
San ⊕ (Ω1

San ⊗OSan Han).
On the other hand, the connection∇an1 applied toλ(z, τ)

µ(z, τ)

ν(z, τ)





THE ANALYTIFICATION OF THE LOGARITHM SHEAVES 205

is a certain section of Ω1
Ean⊗OEanLan1 , i.e. (recalling the agreements for the respective trivializations)

given by a vector of functions

∇an1

(λ(z, τ)

µ(z, τ)

ν(z, τ)

) =



%1(z, τ)

%2(z, τ)

%3(z, τ)

%4(z, τ)

%5(z, τ)

%6(z, τ)


.

Our knowledge of the formula for (∇res1 )an implies that

(3.5.36)

%1(z, τ)

%2(z, τ)

%3(z, τ)

 =

 ∂zλ(z, τ)

∂zµ(z, τ) + η(1, τ) · λ(z, τ)

∂zν(z, τ) + λ(z, τ)

 .

Now consider the image of

(εan)∗∇an1

(λ(z, τ)

µ(z, τ)

ν(z, τ)

)

under the arrow

(εan)∗Ω1
Ean ⊗OSan (εan)∗Lan1

can−−→ Ω1
San ⊗OSan (εan)∗Lan1 ' Ω1

San ⊕ (Ω1
San ⊗OSan H

an),

where the isomorphism is induced by ϕan1 . It is given by%4(0, τ)

%5(0, τ)

%6(0, τ)

 ,

and if ϕan1 : (εan)∗Lan1 ' OSan ⊕Han shall be horizontal, then this must equal (3.5.35):%4(0, τ)

%5(0, τ)

%6(0, τ)

 =

 ∂τλ(0, τ)

∂τµ(0, τ)− 1
2πiη(1, τ) · µ(0, τ) + 1

2πiη(1, τ)2 · ν(0, τ)− ∂τη(1, τ) · ν(0, τ)

∂τν(0, τ)− 1
2πiµ(0, τ) + 1

2πiη(1, τ) · ν(0, τ)

 .

From the last equation and from (3.5.36) we may arrive at the following

Guess 3.5.15
The absolute connection∇an1 : Lan1 → Ω1

Ean ⊗OEan Lan1 is given on local sections by the formula

λ(z, τ)

µ(z, τ)

ν(z, τ)

 7→



∂zλ(z, τ)

∂zµ(z, τ) + η(1, τ) · λ(z, τ)

∂zν(z, τ) + λ(z, τ)

∂τλ(z, τ)

∂τµ(z, τ)− 1
2πiη(1, τ) · µ(z, τ) + 1

2πiη(1, τ)2 · ν(z, τ)− ∂τη(1, τ) · ν(z, τ)

∂τν(z, τ)− 1
2πiµ(z, τ) + 1

2πiη(1, τ) · ν(z, τ)


.
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First properties of the guess

Lemma 3.5.16
The formula given in Guess 3.5.15 defines an integrable connection on Lan1 which prolongs the rela-

tive connection (∇res1 )an.

Proof. At first it is not even clear if the vector proposed in the guess is a section of Ω1
Ean ⊗OEan Lan1 .

By (3.5.24) and Prop. 3.5.2 we know that the automorphy matrix for Ω1
Ean ⊗OEan Lan1 , evaluated at((

m

n

)
,

(
a b

c d

)
, (z, τ)

)
∈ Z2 × Γ(N)× C×H,

is given (as explained in 3.2 (iv)) by

(
cτ + d 0

(cz + cn− dm)(cτ + d) (cτ + d)2

)
⊗

 1 0 0

2πi(dm− cz − cn) cτ + d 0

0 0 1
cτ+d

 ,

i.e. by the following (6× 6)-matrix:

cτ + d 0 0 0 0 0

2πi(dm− cz − cn)(cτ + d) (cτ + d)2 0 0 0 0

0 0 1 0 0 0

(cz + cn− dm)(cτ + d) 0 0 (cτ + d)2 0 0

−2πi(cz + cn− dm)2(cτ + d) (cz + cn− dm)(cτ + d)2 0 2πi(dm− cz − cn)(cτ + d)2 (cτ + d)3 0

0 0 cz + cn− dm 0 0 cτ + d


.

Hence, what we first need to check is that the vector of length 6 in Guess 3.5.15 transforms under the
effect of Z2 × Γ(N) with the preceding matrix.
By hypothesis, the vector λ(z, τ)

µ(z, τ)

ν(z, τ)


transforms with the automorphy matrix of Lan1 . Moreover, we have the equality

η

(
1,
aτ + b

cτ + d

)
= (cτ + d)2η(1, τ) + 2πic(cτ + d),

as one shows e.g. by using η(1, τ) = −G2(τ) (cf. 3.3.2 (ii)) and [Di-Shu], Ch. 1.2, formula (1.4).
With these two pieces of information (and with the induced transformation formulas for derivatives
and squares) one verifies by explicit computation that the vector proposed in the guess indeed trans-
forms with the above (6× 6)-matrix; this calculation is quite laborious, but it can be done and exactly
gives the desired result.
Next, it is easily checked that the formula in the guess satisfies the Leibniz rule and hence defines
a connection. To see its integrability one observes (3.5.26) and then simply performs the required
calculation; this is again a bit tedious, but in the end it precisely works out.
That its restriction to an San-connection equals (∇res1 )an is clear by construction, cf. (3.5.36).

The following two properties are easily verified in small calculations, the first using (3.5.33) and
(3.5.34) and the second following essentially from how we arrived at the definition of our guess.
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Lemma 3.5.17
If Lan1 is equipped with the integrable connection defined in Guess 3.5.15, then:

(i) The analytification

0→ HanEan → Lan1 → OEan → 0

of (3.5.31) becomes DEan -linear.

(ii) The analytification ϕan1 : OSan ⊕Han ' (εan)∗Lan1 of ϕ1 becomes DSan -linear.

Technical preparations for the main theorem

For a little while (until Thm. 3.5.21) we no longer restrict to a single connected component of
Ean/San but really work with the description as disconnected complex manifolds given in (3.4.4).

As in the algebraic case we have a Leray spectral sequence for de Rham cohomology:

(3.5.37) Ep,q2 = Hp
dR(San, Hq

dR(Ean/San,HanEan))⇒ Ep+q = Hp+q
dR (Ean,HanEan)

(the remarks of [Kat2], (3.1) and (3.3) hold invariantly in the analytic situation).
Because of already cited identifications we have

H0
dR(Ean/San) ' H0

dR(E/S)an ' (OS)an ' OSan ;

this together with the existence of the analytic zero section εan implies that the five term exact se-
quence for (3.5.37) yields a short exact sequence of C-vector spaces

0→ H1
dR(San,Han)

(πan)∗−−−−→ H1
dR(Ean,HanEan)→ H0

dR(San, (Han)∨ ⊗OSan H
an)→ 0

which is split by the retraction (εan)∗.
Using the canonical identifications of the occurring de Rham cohomology spaces with the respec-
tive Ext-spaces, true also in the analytic setting (cf. [Ho-Ta-Tan], Prop. 4.2.1 and the subsequent
discussion), the previous sequence writes as the familiar split exact sequence

0→ Ext1
DSan (OSan ,Han)

(πan)∗−−−−→ Ext1
DEan (OEan ,HanEan)

→ HomDSan (OSan , (Han)∨ ⊗OSan H
an)→ 0,

(3.5.38)

where the projection is given analogously as described in 1.1.

We have a Leray spectral sequence of hypercohomology (cf. [Dim], Thm. 1.3.19 (ii)) for the de Rham
complex Ω•Ean/San(HanEan) ofHanEan relative San:

Ep,q2 = Hp(San, Hq
dR(Ean/San)⊗OSan H

an)

⇒ Ep+q = Hp+q(Ean,Ω•Ean/San(HanEan)) ' Extp+qDEan/San (OEan ,HanEan).

As happened algebraically in (2.1.3) one obtains from the associated five term sequence a split short
exact sequence forming the lower row of a commutative diagram whose upper row is (3.5.38):



208 THE EXPLICIT DESCRIPTION ON THE UNIVERSAL ELLIPTIC CURVE

(3.5.39)

0 // Ext1
DSan (OSan ,Han)

can

��

(πan)∗ // Ext1
DEan (OEan ,HanEan)

can

��

// HomDSan (OSan , (Han)∨ ⊗OSan H
an)

can

��

// 0

0 // Ext1
OSan (OSan ,Han)

(πan)∗// Ext1
DEan/San (OEan ,HanEan) // HomOSan (OSan , (Han)∨ ⊗OSan H

an) // 0

We will need the fact that also Lemma 2.1.1 and 2.1.2 are available in the analytic situation:

Lemma 3.5.18
Suppose we are given two extensions of DEan/San -modules

M : 0→ HanEan
jM−−→M pM−−→ OEan → 0

N : 0→ HanEan
jN−−→ N pN−−→ OEan → 0

with OSan -linear splittings

ϕM : OSan ⊕Han ' (εan)∗M

ϕN : OSan ⊕Han ' (εan)∗N

and the property that the classes of M and N in Ext1
DEan/San (OEan ,HanEan) are equal - e.g. if they

both map to the identity under the lower projection of (3.5.39).

Then there exists a unique isomorphism of M and N which respects the splittings.

Proof.

Existence: Verbatim as in the proof of Lemma 2.1.1.

Uniqueness: It suffices to show: if (M,ϕM ) is an extension with splitting as in the claim of the
lemma, then any automorphism h of this pair is the identity.
The claim that h : M → M equals id can be checked on the fibers over the points of San; such a
fiber writes as Ean, the analytification of an elliptic curve E/Spec (C). Let ean resp. e be the zero
point of Ean resp. E .
On Ean we are then given a horizontal automorphism h :M'M of a OEan -vector bundleM with
integrable connection such that the induced map

(∗) hean ⊗ id :Mean ⊗OEan,ean C 'Mean ⊗OEan,ean C

is the identity. We need to show that already h is the identity.
By standard GAGA-results (cf. [Mal], §1) one knows that analytification induces an equivalence
between the category of algebraic vector bundles with integrable connection on E and the respective
analytic category on Ean. Hence, the DEan -module M and the map h come from the algebraic
side. It is easily deduced from (∗) that the analogous "fiber-in-e-morphism" for the algebraic vector
bundle automorphism is the identity. But then this automorphism is already the identity, by the same
argument as in the uniqueness part in the proof of Lemma 2.1.1. This of course implies that the
analytic automorphism h is the identity, which is what we wanted to show.
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Lemma 3.5.19
Suppose we are given two extensions of DEan -modules

M : 0→ HanEan
jM−−→M pM−−→ OEan → 0

N : 0→ HanEan
jN−−→ N pN−−→ OEan → 0

with DSan -linear splittings

ϕM : OSan ⊕Han ' (εan)∗M

ϕN : OSan ⊕Han ' (εan)∗N

and the property that the classes of M and N in Ext1
DEan (OEan ,HanEan) are equal - e.g. if they both

map to the identity under the upper projection of (3.5.39). Then there exists a unique isomorphism of

M and N which respects the splittings.

Proof. Same argument as in Lemma 2.1.2.

It is formal to deduce from the preceding two lemmas the following analytic version of Prop. 2.1.4.
We will only need the uniqueness statement, but also the existence of a prolongation with the men-
tioned properties can be shown analogously as in the algebraic case.

Proposition 3.5.20
Assume we are given a DEan/San -linear extension

(3.5.40) M : 0→ HanEan →M→ OEan → 0,

whose class maps to the identity under the lower projection of (3.5.39), together with a OSan -linear

splitting for its pullback along εan:

ϕM : OSan ⊕Han ' (εan)∗M.

Then there exists at most one prolongation of the integrable San-connection on M to an absolute

integrable connection such that the following holds:

If we endow M with this connection, then the DEan/San -linear exact sequence (3.5.40) becomes

DEan -linear and the OSan -linear splitting ϕM becomes DSan -linear.

(A prolongation with these properties in fact exists.)

Proof. Let ∇M and ∇̃M be two (absolute) integrable connections onM with the properties of the
claim. Endowing M one time with ∇M and the other time with ∇̃M we obtain (by assumption)
from (3.5.40) two DEan -linear extensions. The images of their classes under the projection in the
upper row of (3.5.39) both times are the identity because of the commutativity of (3.5.39) and the
hypothesis about (3.5.40). As by assumption both classes retract to zero in Ext1

DSan (OSan ,Han) we
conclude from the splitting of the upper row of (3.5.39) that the two extension classes we obtained
from (3.5.40) are equal in Ext1

DEan (OEan ,HanEan).
Then, by Lemma 3.5.19, there exists a DEan -linear isomorphism

ν : (M,∇M) ' (M, ∇̃M)
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respecting the extension structure of M and the splitting ϕM. Now restrict absolute structures to
San-structures: then, as ∇M and ∇̃M are equal when considered as San-connections, ν yields an
automorphism of the DEan/San -linear extension (3.5.40) with its OSan -linear splitting ϕM . The
uniqueness part of Lemma 3.5.18 then implies that ν = id. But as ν is horizontal for the absolute
connections ∇M and ∇̃M we conclude that∇M = ∇̃M.

Proof of the main theorem

We are ready to show that the formula suggested in Guess 3.5.15 indeed describes the analytification
∇an1 of the integrable Q-connection ∇1.

Theorem 3.5.21
The connection ∇an1 : Lan1 → Ω1

Ean ⊗OEan Lan1 is given for each connected component on local

sections by the formula

λ(z, τ)

µ(z, τ)

ν(z, τ)

 7→



∂zλ(z, τ)

∂zµ(z, τ) + η(1, τ) · λ(z, τ)

∂zν(z, τ) + λ(z, τ)

∂τλ(z, τ)

∂τµ(z, τ)− 1
2πiη(1, τ) · µ(z, τ) + 1

2πiη(1, τ)2 · ν(z, τ)− ∂τη(1, τ) · ν(z, τ)

∂τν(z, τ)− 1
2πiµ(z, τ) + 1

2πiη(1, τ) · ν(z, τ)


.

Proof. Consider the analytification

(∗) 0→ HanEan → Lan1 → OEan → 0

of the DE/S-linear extension (3.5.31) as well as of the splitting ϕ1:

(∗∗) ϕan1 : OSan ⊕Han ' (εan)∗Lan1 .

The class of (∗) maps to the identity under the lower projection of (3.5.39) because the respective fact
holds algebraically for (3.5.31).

The integrable Q-connection∇1 is characterized by the following property: it prolongs the integrable
S-connection ∇res1 , and if L1 is equipped with∇1, then:

(i) The DE/S-linear exact sequence (3.5.31) becomes DE/Q-linear.

(ii) The OS-linear splitting ϕ1 becomes DS/Q-linear.

Cf. the recap at the beginning of this subsection.

The analytification∇an1 then satisfies the following property: it prolongs the integrable San-connection
(∇res1 )an, and if Lan1 is equipped with∇an1 , then:

(i)an The exact sequence (∗) becomes DEan -linear.

(ii)an The splitting (∗∗) becomes DSan -linear.

But by Lemma 3.5.16 and 3.5.17 the formula in the claim of the theorem likewise defines an (abso-
lute) integrable connection on Lan1 which prolongs (∇res1 )an and satisfies (i)an and (ii)an if Lan1 is
equipped with this connection.
As by Prop. 3.5.20 there can exist at most one such connection we conclude the claim.
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A vanishing result

With Thm. 3.5.21 we can prove the following observation which becomes relevant when one wants
to define (absolute) de Rham cohomology classes with coefficients in Lann . We will need it for our
explicit construction of the analytified D-variant of the polylogarithm.

From now on we again work on a fixed connected component, applying the usual abuse of notation.

Proposition 3.5.22
Let V be an open subset of Ean and let n ≥ 0. Assume that for k = 0, ..., n+ 1 we have holomorphic

functions sk(z, τ) on pr−1(V ) ⊆ C×H such that the vector of length 2 · r(n) given by

s0(z, τ)

s1(z, τ)
...

sn(z, τ)

0
...
...

0

− 1
2πis1(z, τ)

− 2
2πis2(z, τ)

...

−n+1
2πi sn+1(z, τ)

0
...
...

0


defines a section of Ω1

Ean ⊗OEan Lann over V ; here, after the first n+ 1 entries we fill up with zeroes

until we reach r(n) entries, and we perform the same procedure in the second half of the vector.

Assume furthermore that the functions sk(z, τ) satisfy the differential equation

∂τsk(z, τ) = −k + 1

2πi
· ∂zsk+1(z, τ) for all k = 0, ..., n.

Then the above section goes to zero under the map

Γ(V,Ω1
Ean ⊗OEan L

an
n )→ Γ(V,Ω2

Ean ⊗OEan L
an
n )

of the de Rham complex of (Lann ,∇ann ).

Proof. Recall that starting from the trivialization

O⊕3
C×H ' pr∗Lan1

by the ordered basic sections {e, f, g} we have fixed for each 0 ≤ n the trivialization

O⊕r(n)
C×H ' pr∗Lann
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by the r(n) many ordered basic sections

{
en

n!
,
en−1f

(n− 1)!
,
en−2f2

(n− 2)!
, ...,

fn

(n− n)!
,
en−1g

(n− 1)!
,
en−2fg

(n− 2)!
,
en−3f2g

(n− 3)!
, ...,

fn−1g

(n− n)!
,
en−2g2

(n− 2)!
, .........,

gn

(n− n)!

}
.

Recall moreover that the trivialization of pr∗Ω1
Ean ' Ω1

C×H is given by {dz,dτ}.
Thm. 3.5.21 implies that the pullback connection pr∗∇an1 acts on the basic sections e, f, g as follows:

e 7→ η(1, τ) · dz ⊗ f + dz ⊗ g,

f 7→ − 1

2πi
η(1, τ) · dτ ⊗ f − 1

2πi
· dτ ⊗ g,

g 7→
(

1

2πi
η(1, τ)2 − ∂τη(1, τ)

)
· dτ ⊗ f +

1

2πi
η(1, τ) · dτ ⊗ g.

Hence, for 0 ≤ n and 0 ≤ k ≤ n one computes that pr∗∇ann acts on the basic section en−kfk

(n−k)! as

en−kfk

(n− k)!
7→ η(1, τ) · dz ⊗ en−k−1fk+1

(n− k − 1)!
+ dz ⊗ en−k−1fkg

(n− k − 1)!

− k

2πi
η(1, τ) · dτ ⊗ en−kfk

(n− k)!
− k

2πi
· dτ ⊗ en−kfk−1g

(n− k)!
,

where we make the convention that terms containing the expressions e−1 or f−1 shall be zero.
The section in the claim of the corollary is defined by the section of Ω1

C×H ⊗OC×H pr∗Lann given by

n∑
k=0

sk(z, τ) · dz ⊗ en−kfk

(n− k)!
−

n∑
k=0

(k + 1)

2πi
sk+1(z, τ) · dτ ⊗ en−kfk

(n− k)!
.

Observing dz ∧ dz = 0 = dτ ∧ dτ we see that under the map of the de Rham complex this goes to
n∑
k=0

∂τsk(z, τ) · dτ ∧ dz ⊗ en−kfk

(n− k)!
−

n∑
k=0

(k + 1)

2πi
∂zsk+1(z, τ) · dz ∧ dτ ⊗ en−kfk

(n− k)!

−
n∑
k=0

sk(z, τ) · dz ∧
(
− k

2πi
η(1, τ) · dτ ⊗ en−kfk

(n− k)!
− k

2πi
· dτ ⊗ en−kfk−1g

(n− k)!

)

+

n∑
k=0

(k + 1)

2πi
sk+1(z, τ) · dτ ∧

(
η(1, τ) · dz ⊗ en−k−1fk+1

(n− k − 1)!
+ dz ⊗ en−k−1fkg

(n− k − 1)!

)
,

which in turn writes out as (dz ∧ dτ)- times the following expression:

−
n∑
k=0

∂τsk(z, τ)⊗ en−kfk

(n− k)!
−

n∑
k=0

(k + 1)

2πi
∂zsk+1(z, τ)⊗ en−kfk

(n− k)!

+

n∑
k=0

k

2πi
η(1, τ)sk(z, τ)⊗ en−kfk

(n− k)!
+

n∑
k=0

k

2πi
sk(z, τ)⊗ en−kfk−1g

(n− k)!

−
n∑
k=0

(k + 1)

2πi
η(1, τ)sk+1(z, τ)⊗ en−k−1fk+1

(n− k − 1)!
−

n∑
k=0

(k + 1)

2πi
sk+1(z, τ)⊗ en−k−1fkg

(n− k − 1)!
.

The third and the fifth summand obviously cancel to zero; the same holds for the fourth and the sixth.
Hence, what remains is (dz ∧ dτ)-times the expression

−
n∑
k=0

∂τsk(z, τ)⊗ en−kfk

(n− k)!
−

n∑
k=0

(k + 1)

2πi
∂zsk+1(z, τ)⊗ en−kfk

(n− k)!

= −
n∑
k=0

(
∂τsk(z, τ) +

(k + 1)

2πi
∂zsk+1(z, τ)

)
⊗ en−kfk

(n− k)!
.
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It is now the differential equation

∂τsk(z, τ) = −k + 1

2πi
· ∂zsk+1(z, τ) for all k = 0, ..., n.

of the hypothesis which annihilates also this last expression.
What we have shown implies altogether that the image of the section in the claim under the map

Ω1
Ean ⊗OEan L

an
n → Ω2

Ean ⊗OEan L
an
n

pulls back to the zero section of Ω2
C×H ⊗OC×H pr∗Lann under pr. But then already the image in

Ω2
Ean ⊗OEan Lann must be zero (cf. the isomorphism in 3.2 (ii)), and this was to prove.

3.6 The two fundamental systems of sections

Fix an integer D > 1 and let UD be the open complement of the D-torsion subscheme E[D] of E.

When working with analytifications we restrict as usual to a fixed connected component whose index
is suppressed in the notation (cf. the conventions at the beginning of 3.5 or 3.5.3). We then let again

pr : C×H→ Ean = (Z2 × Γ(N))\(C×H)

be the universal covering map.

Recall from (3.3.22) and (3.3.23) that we have a Laurent expansion

D2 · J(z,−w, τ)−D · J
(
Dz,−w

D
, τ
)

= sD0 (z, τ) + sD1 (z, τ)w + ...

with meromorphic functions sDk (z, τ), k ≥ 0, on C×H which are holomorphic on pr−1(UanD ).

3.6.1 The construction

By means of the coefficient functions sDk (z, τ) we construct two compatible systems of sections(
qDn (z, τ)

)
n≥0
∈ lim
n≥0

Γ(UanD ,Ω1
Ean/San ⊗OEan L

an
n ),(

pDn (z, τ)
)
n≥0
∈ lim
n≥0

Γ(UanD ,Ω1
Ean ⊗OEan L

an
n )

and show that the pDn (z, τ) vanish under the morphism in the de Rham complex of (Lann ,∇ann ).

The future role of these systems will be the following:
The mentioned vanishing means that the second system induces an element of

lim
n≥0

H1
dR(UanD ,Lann ),

and a main result of the work (to be proven in 3.8.1) will show that it equals the analytification of(
polndR,D2·1{ε}−1E[D]

)
n≥0

.

In this context, we will view the first of the above systems as an element of

lim
n≥0

Γ(San, H1
dR(UanD /San,Lann ))

which we have to consider for the residue computation of the second system.
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The first section

For each n ≥ 0 we build the following vector of holomorphic functions on pr−1(UanD ) ⊆ C×H:

(3.6.1) qDn (z, τ) :=



sD0 (z, τ)

sD1 (z, τ)
...

sDn (z, τ)

0
...
...
0


,

where after the first (n+ 1) entries we fill up with zeroes until we get a vector of length r(n).

Proposition 3.6.1
With our fixed trivializations for the pullbacks of Ω1

Ean/San , Lann and Ω1
Ean/San ⊗OEan L

an
n to the

universal covering the vector (3.6.1) defines a section in Γ(UanD ,Ω1
Ean/San ⊗OEan L

an
n ).

Proof. Let
Ãn : Z2 × Γ(N)× C×H→ GLr(n)(C)

be the automorphy matrix for Ω1
Ean/San ⊗OEan L

an
n . Its evaluation at((

m

n

)
,

(
a b

c d

)
, (z, τ)

)
∈ Z2 × Γ(N)× C×H

is given by

Ãn

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
= (cτ + d) ·An

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
,

which is the Kronecker product of the automorphy matrix for Ω1
Ean/San with the automorphy matrix

An for Lann (cf. 3.2 (iv) and (3.5.29)).

It is of advantage to recall the shape of the matrix An, already recorded in (3.5.11). For notational
convenience we leave away the argument of An.

An =



a0 0 . . . 0 0 . . . . . . 0

(cτ + d) · a1 (cτ + d) · a0 . . . 0 0 . . . . . . 0

...
...

...
...

...
(cτ + d)n · an (cτ + d)n · an−1 . . . (cτ + d)n · a0 0 . . . . . . 0

0 0 . . . 0 ∗ . . . . . . ∗
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 ∗ . . . . . . ∗


Here, for all r ≥ 0

ar := ar

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
=

1

r!

(
2πi(dm− cz − cn)

cτ + d

)r
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was defined as the coefficient at wr in the expansion around w = 0 of

a

((
m

n

)
,

(
0

0

)
,

(
a b

c d

)
, (z, w, u, τ)

)
with a the factor of automorphy for Pan (cf. Def. 3.5.5).

What we need to show is (cf. 3.2 (ii)) that for each((
m

n

)
,

(
a b

c d

))
∈ Z2 × Γ(N)

we have the following equation of vectors of holomorphic functions on pr−1(UanD ):

sD0 ( z+mτ+n
cτ+d , aτ+b

cτ+d )

sD1 ( z+mτ+n
cτ+d , aτ+b

cτ+d )
...

sDn ( z+mτ+n
cτ+d , aτ+b

cτ+d )

0
...
...
0


= Ãn

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
·



sD0 (z, τ)

sD1 (z, τ)
...

sDn (z, τ)

0
...
...
0


,

or equivalently (by the shape of Ãn) that for each 0 ≤ k ≤ n we have

(∗) sDk
(z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
= (cτ+d)k+1 ·

(
ak ·sD0 (z, τ)+ak−1 ·sD1 (z, τ)+...+a0 ·sDk (z, τ)

)
.

Now note at first that

J

(
z +mτ + n

cτ + d
,− w

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d) · a

((
m

n

)
,

(
0

0

)
,

(
a b

c d

)
, (z, w, u, τ)

)
· J(z,−w, τ)

(∗∗)

by Cor. 3.3.14 and the formula (3.4.14) for a.
Furthermore, the equality (implied by (∗∗))

J

(
D · (z +mτ + n)

cτ + d
,−

w
D

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d) · a

((
Dm

Dn

)
,

(
0

0

)
,

(
a b

c d

)
, (Dz,

w

D
, u, τ)

)
· J
(
Dz,−w

D
, τ
)

and the fact (following from the explicit formula (3.4.14) for a) that

a

((
Dm

Dn

)
,

(
0

0

)
,

(
a b

c d

)
,
(
Dz,

w

D
, u, τ

))
= a

((
m

n

)
,

(
0

0

)
,

(
a b

c d

)
, (z, w, u, τ)

)
yield

J

(
D · (z +mτ + n)

cτ + d
,−

w
D

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d) · a

((
m

n

)
,

(
0

0

)
,

(
a b

c d

)
, (z, w, u, τ)

)
· J
(
Dz,−w

D
, τ
)
.

(∗ ∗ ∗)
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From (∗∗) and (∗ ∗ ∗) we get

D2 · J
(
z +mτ + n

cτ + d
,− w

cτ + d
,
aτ + b

cτ + d

)
−D · J

(
D · (z +mτ + n)

cτ + d
,−

w
D

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d) · a

((
m

n

)
,

(
0

0

)
,

(
a b

c d

)
, (z, w, u, τ)

)
·
[
D2 · J(z,−w, τ)−D · J

(
Dz,−w

D
, τ
)]
.

Comparing coefficients at wk in the expansion around w = 0 of this last equation yields (∗).

The second section

Next, again by means of the coefficient functions sDk (z, τ), we define for each n ≥ 0 as follows a
vector of length 2 · r(n) consisting of holomorphic functions on pr−1(UanD ):

(3.6.2) pDn (z, τ) :=



sD0 (z, τ)

sD1 (z, τ)
...

sDn (z, τ)

0
...
...
0

− 1
2πis

D
1 (z, τ)

− 2
2πis

D
2 (z, τ)
...

−n+1
2πi s

D
n+1(z, τ)

0
...
...
0


Here, note that after the first (n+ 1) entries we fill up with zeroes until we have reached r(n) entries,
and we perform the same procedure in the second half of the vector.

Theorem 3.6.2
(i) With our fixed trivializations for the pullbacks of Ω1

Ean , Lann and Ω1
Ean⊗OEan Lann to the universal

covering the vector (3.6.2) defines a section in Γ(UanD ,Ω1
Ean ⊗OEan Lann ).

(ii) The section in (i) goes to zero under the map

Γ(UanD ,Ω1
Ean ⊗OEan L

an
n )

(∇ann )1−−−−→ Γ(UanD ,Ω2
Ean ⊗OEan L

an
n )

of the de Rham complex of (Lann ,∇ann ).

Proof. (i): Recall from (3.5.24) that the automorphy matrix of Ω1
Ean is given by((

m

m

)
,

(
a b

c d

)
, (z, τ)

)
7→

(
cτ + d 0

(cz + cn− dm)(cτ + d) (cτ + d)2

)
.
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The automorphy matrix for Ω1
Ean ⊗OEan Lann , evaluated at

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
∈ Z2 × Γ(N)× C×H,

is then given (cf. 3.2 (iv)) by the Kronecker product

(
cτ + d 0

(cz + cn− dm)(cτ + d) (cτ + d)2

)
⊗An =

(
(cτ + d) ·An 0

(cz + cn− dm)(cτ + d) ·An (cτ + d)2 ·An

)

which is a (2 · r(n) × 2 · r(n))-matrix; note that as usual we leave away the bulky argument of the
automorphy matrix An for Lann .

What we need to show is (cf. 3.2 (ii)) that for each

((
m

n

)
,

(
a b

c d

))
∈ Z2 × Γ(N)

we have the following equation of vectors of holomorphic functions on pr−1(UanD ):



sD0 ( z+mτ+n
cτ+d

, aτ+b
cτ+d

)

sD1 ( z+mτ+n
cτ+d

, aτ+b
cτ+d

)
...

sDn ( z+mτ+n
cτ+d

, aτ+b
cτ+d

)

0
...
...

0

− 1
2πi

sD1 ( z+mτ+n
cτ+d

, aτ+b
cτ+d

)

− 2
2πi

sD2 ( z+mτ+n
cτ+d

, aτ+b
cτ+d

)
...

−n+1
2πi

sDn+1( z+mτ+n
cτ+d

, aτ+b
cτ+d

)

0
...
...

0



=

(
(cτ + d) ·An 0

(cz + cn− dm)(cτ + d) ·An (cτ + d)2 ·An

)
·



sD0 (z, τ)

sD1 (z, τ)
...

sDn (z, τ)

0
...
...

0

− 1
2πi

sD1 (z, τ)

− 2
2πi

sD2 (z, τ)
...

−n+1
2πi

sDn+1(z, τ)

0
...
...

0



.

This seems quite an intimidating task to do, but one can reduce the problem step for step as follows.
We begin with the equality of the first r(n) rows of the left vector with the corresponding rows of the
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right vector: this equality is equivalent to the following equation of vectors of length r(n):



sD0 ( z+mτ+n
cτ+d , aτ+b

cτ+d )

sD1 ( z+mτ+n
cτ+d , aτ+b

cτ+d )
...

sDn ( z+mτ+n
cτ+d , aτ+b

cτ+d )

0
...
...
0


= ((cτ + d) ·An) ·



sD0 (z, τ)

sD1 (z, τ)
...

sDn (z, τ)

0
...
...
0


,

and this was verified in the proof of Prop. 3.6.1.
Next, consider the second half of our big vectors. In this half, take a row where we filled the vector
of the left side with a zero entry: such a row indeed equals the corresponding row at the right side
because of the arrangement of zeroes in the matrix An and in our vectors. This is immediate - for a
convenient direct comparison here is again the matrix An:

An =



a0 0 . . . 0 0 . . . . . . 0

(cτ + d) · a1 (cτ + d) · a0 . . . 0 0 . . . . . . 0

...
...

...
...

...
(cτ + d)n · an (cτ + d)n · an−1 . . . (cτ + d)n · a0 0 . . . . . . 0

0 0 . . . 0 ∗ . . . . . . ∗
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 ∗ . . . . . . ∗


What remains are the first (n + 1) rows in the second half of our big vectors. The equality of these
rows of the left side with the corresponding ones of the right side is equivalent to the following claim,
as one sees without difficulty:
Namely, that for each 1 ≤ k ≤ n+ 1 we have:

− k

2πi
· sDk

(
z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
= (cz + cn− dm)(cτ + d)k

[
ak−1s

D
0 (z, τ) + ak−2s

D
1 (z, τ)...+ a0s

D
k−1(z, τ)

]
+ (cτ + d)k+1

[
ak−1

(
− 1

2πi
sD1 (z, τ)

)
+ ak−2

(
− 2

2πi
sD2 (z, τ)

)
+ ...+ a0

(
− k

2πi
sDk (z, τ)

)]
.

Recall (cf. (3.5.11) and Def. 3.5.5) that ar abbreviates the expression

ar

((
m

n

)
,

(
a b

c d

)
, (z, τ)

)
=

1

r!

(
2πi(dm− cz − cn)

cτ + d

)r
=

(−1)r(2πi)r

r!

(
cz + cn− dm

cτ + d

)r
.
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Written differently, we have to show that for each 1 ≤ k ≤ n+ 1:

sDk

(
z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
= sD0 (z, τ) ·

[
− 2πi

k
(cz + cn− dm)(cτ + d)kak−1

]
+ sD1 (z, τ) ·

[
− 2πi

k
(cz + cn− dm)(cτ + d)kak−2 +

1

k
(cτ + d)k+1ak−1

]
+ sD2 (z, τ) ·

[
− 2πi

k
(cz + cn− dm)(cτ + d)kak−3 +

2

k
(cτ + d)k+1ak−2

]
+ ...

+ sDk−1(z, τ) ·
[
− 2πi

k
(cz + cn− dm)(cτ + d)ka0 +

k − 1

k
(cτ + d)k+1a1

]
+ sDk (z, τ) · (cτ + d)k+1a0.

(Multiply the equation we want to show with − 2πi
k and then order the right side by the sr(z, τ).)

Using the explicit formula for the ar we now look at the angled brackets on the right side of the pre-
vious equation. They are given as follows:

At sD0 (z, τ):
(−1)k(2πi)k

k!
(cz + cn− dm)k(cτ + d).

At sDj (z, τ), for 1 ≤ j ≤ k − 1:

(−1)k−j(2πi)k−j(cz + cn− dm)k−j(cτ + d)j+1 ·
[

1

k · (k − j − 1)!
+

j

k · (k − j)!

]
=

(−1)k−j(2πi)k−j

(k − j)!
(cz + cn− dm)k−j(cτ + d)j+1.

At sk(z, τ):
(cτ + d)k+1.

The desired equality is thus equivalent with the following equation (where again 1 ≤ k ≤ n+ 1):

sDk

(
z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
=

k∑
j=0

(−1)k−j(2πi)k−j

(k − j)!
(cz + cn− dm)k−j(cτ + d)j+1 · sDj (z, τ)

= (cτ + d)k+1
k∑
j=0

(−1)k−j(2πi)k−j

(k − j)!

(
cz + cn− dm

cτ + d

)k−j
· sDj (z, τ)

= (cτ + d)k+1
k∑
j=0

ak−j · sDj (z, τ).

This is true - cf. the equation (∗) in the proof of Prop. 3.6.1.
(ii): By Prop. 3.5.22 we only need to show that the functions sDk (z, τ) obey the differential equation

∂τs
D
k (z, τ) = −k + 1

2πi
· ∂zsDk+1(z, τ) for all k = 0, ..., n.

But it is well-known (cf. [Le-Ra], (14)17) resp. straightforwardly deduced from Prop. 3.3.13 and
the series expression given in [Za2], 3, that the fundamental meromorphic Jacobi form satisfies the

17Note that the function which they consider in this formula, written in the argument (z, w, τ), is equal to

2πi · F (2πiz, 2πiw, τ),
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"mixed heat equation":

2πi · ∂τJ(z, w, τ) = ∂z∂wJ(z, w, τ).

From this we obtain the equality

∂τ

[
D2J(z, w, τ)−D · J

(
Dz,

w

D
, τ
)]

=
1

2πi
∂z∂w

[
D2J(z, w, τ)−D · J

(
Dz,

w

D
, τ
)]
,

which by consideration of Laurent expansions around w = 0 yields

(−1)k · ∂τsDk (z, τ) = (−1)k+1 · k + 1

2πi
· ∂zsDk+1(z, τ)

(observe the definition of the sk(z, τ) with the sign in front of w and w
D ). Dividing by (−1)k gives

the desired differential equation.

Let us finally record the following natural compatibilities.

Lemma 3.6.3
For all n ≥ 0 the canonical arrow

Γ(UanD ,Ω1
Ean ⊗OEan L

an
n )→ Γ(UanD ,Ω1

Ean/San ⊗OEan L
an
n )

maps the section pDn (z, τ) to the section qDn (z, τ).

Proof. This is immediately clear from how the occurring vector bundles are trivialized on the universal
covering of Ean.

Lemma 3.6.4
For all n ≥ 1 the section qDn (z, τ) maps to the section qDn−1(z, τ) under the canonical arrow

Γ(UanD ,Ω1
Ean/San ⊗OEan L

an
n )→ Γ(UanD ,Ω1

Ean/San ⊗OEan L
an
n−1)

induced by the analytified transition map Ln → Ln−1.

The analogous assertion holds for pDn (z, τ) and the canonical arrow

Γ(UanD ,Ω1
Ean ⊗OEan L

an
n )→ Γ(UanD ,Ω1

Ean ⊗OEan L
an
n−1).

Proof. For each n ≥ 1 the pullback of the analytified transition map Ln → Ln−1 to C × H is given
as the composition

Symn
OC×H

(pr∗Lan1 )→ Symn
OC×H

(pr∗Lan1 ⊕OC×H)→ Symn−1
OC×H

(pr∗Lan1 )

in which the first morphism is induced by the identity and the projection in (3.5.8) and the second
comes from the decomposition of the symmetric power of a direct sum.
For 0 ≤ i, j with i+ j ≤ n this composition maps the basic section

en−i−jf igj

(n− i− j)!

where F denotes again the function of [Za2], 3: to see this one may use the expression of F in terms of a double series as given
at the beginning of the proof of [Za2], 3, Theorem. By Prop. 3.3.13 the function considered in [Le-Ra], (14), hence coincides
precisely with what we call the fundamental meromorphic Jacobi form J(z, w, τ).
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of Symn
OC×H

(pr∗Lan1 ) to the basic section

en−i−j−1f igj

(n− i− j − 1)!

of Symn−1
OC×H

(pr∗Lan1 ), where terms with e−1 are understood to be zero; this follows easily by recalling
that the projection

pr∗Lan1 → OC×H

in (3.5.8) sends the sections {e, f, g} to {1, 0, 0} (cf. the explanations preceding Prop. 3.5.2).
With this the claims of the lemma are clear by the shape of the vectors (3.6.1) and (3.6.2) and by the
definition of the trivialization for the pullback of the respective vector bundles to C×H.

3.6.2 The pullback along torsion sections

We now assume that the integer D > 1 in addition satisfies (D,N) = 1.
For two fixed integers a, b which are not simultaneously divisible by N the N -torsion section

ta,b = ae1 + be2 : S → E

by our assumptions on D, a, b factors over the open subscheme UD = E − E[D]:

ta,b : S → UD ⊆ E.

On the analytic side we work as usual on a fixed connected component and again adopt the already
familiar notational conventions formulated explicitly at the beginning of 3.5 or 3.5.3. We let j0 be an
integer with (j0, N) = 1 whose class in (Z/NZ)∗ determines the chosen component.

The analytification of ta,b then expresses (according to (3.4.1)-(3.4.4)) as the map

tana,b : Γ(N)\H = San → UanD ⊆ Ean = (Z2 × Γ(N))\(C×H), τ 7→
(aj0τ
N

+
b

N
, τ
)
.

An element in
Γ(UanD ,Ω1

Ean ⊗OEan L
an
n )

induces a section (its "specialization along tana,b") in

Γ
(
San,Ω1

San ⊗OSan
n∏
k=0

Symk
OSanH

an
)
,

obtained from its pullback along tana,b and using the composition

(tana,b)
∗(Ω1

Ean⊗OEanL
an
n ) ' (tana,b)

∗Ω1
Ean⊗OSan

n∏
k=0

Symk
OSanH

an can−−→ Ω1
San⊗OSan

n∏
k=0

Symk
OSanH

an;

the isomorphism in the previous chain is induced by the identification (3.5.13) and the splitting ϕann :

(tana,b)
∗Lann ' (εan)∗Lann '

n∏
k=0

Symk
OSanH

an.

For the following result recall that the pullback of

Ω1
Ean ⊗OEan L

an
n
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resp. of

Ω1
San ⊗OSan

n∏
k=0

Symk
OSanH

an

to C×H resp. to H has a fixed trivialization - as explained in 3.2 (iv) together with (3.5.24) and Def.
3.5.4 resp. together with (3.5.27) and the remarks preceding 3.5.1.

Theorem 3.6.5
Let n ≥ 0. Specializing along tana,b the section in Γ(UanD ,Ω1

Ean ⊗OEan Lann ) defined by the vector

pDn (z, τ) of (3.6.2) (cf. Thm. 3.6.2 (i)) yields the section in Γ(San,Ω1
San⊗OSan

∏n
k=0 Symk

OSanH
an)

which is given by 

−2πi · DF (2)
aj0
N , bN

(τ)

...
(−1)k(2πi)k

(k−1)! · DF (k+1)
aj0
N , bN

(τ)

...
(−1)n+1(2πi)n+1

n! · DF (n+2)
aj0
N , bN

(τ)

0
...
...

0



,

i.e. by the vector of length r(n) of holomorphic functions on H whose k-th entry consists of the

modular form (−1)k(2πi)k

(k−1)! · DF (k+1)
aj0
N , bN

(τ) if 1 ≤ k ≤ n+ 1 and whose further entries are zero.

Cf. Def. 3.3.17 for the definition of the function DF
(k+1)
aj0
N , bN

(τ).

Proof. We apply Prop. 3.5.14. To connect the present situation with the notation used there we set

(∗)



l0,0(z, τ)

l1,0(z, τ)
...

ln,0(z, τ)
...
...

l0,n(z, τ)

λ0,0(z, τ)

λ1,0(z, τ)
...

λn,0(z, τ)
...
...

λ0,n(z, τ)



:=



sD0 (z, τ)

sD1 (z, τ)

...
sDn (z, τ)

0

...

...
0

− 1
2πi

sD1 (z, τ)

− 2
2πi

sD2 (z, τ)

...
−n+1

2πi
sDn+1(z, τ)

0

...

...
0



.
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According to Prop. 3.5.14 the specialization of this section along tana,b is given by

(∗∗)



aj0
N · l̂0,0(0, τ) + λ̂0,0(0, τ)
aj0
N · l̂1,0(0, τ) + λ̂1,0(0, τ)

...
aj0
N · l̂n,0(0, τ) + λ̂n,0(0, τ)

...

...
aj0
N · l̂0,n(0, τ) + λ̂0,n(0, τ)


,

where the functions l̂i,j(0, τ) resp. λ̂i,j(0, τ) are defined by the formulas

l̂i,j(0, τ) =

i∑
r=0

(−2πiaj0N )i−r

(i− r)!
· lr,j

(aj0τ
N

+
b

N
, τ
)

resp.

λ̂i,j(0, τ) =

i∑
r=0

(−2πiaj0N )i−r

(i− r)!
· λr,j

(aj0τ
N

+
b

N
, τ
)
.

Having a look at (∗) it is obvious that

l̂i,j(0, τ) = 0 = λ̂i,j(0, τ) for all 0 < j ≤ n,

such that (∗∗) writes as 

aj0
N · l̂0,0(0, τ) + λ̂0,0(0, τ)
aj0
N · l̂1,0(0, τ) + λ̂1,0(0, τ)

...
aj0
N · l̂n,0(0, τ) + λ̂n,0(0, τ)

0
...
...
0


.

Now consider the k-th row of this vector for 1 ≤ k ≤ n+ 1, i.e. the function

aj0
N
· l̂k−1,0(0, τ) + λ̂k−1,0(0, τ).

The theorem is proven if we can show that this is equal to the function (−1)k(2πi)k

(k−1)! · DF (k+1)
aj0
N , bN

(τ).
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We have

aj0
N
· l̂k−1,0(0, τ) + λ̂k−1,0(0, τ)

=
aj0
N
·
k−1∑
r=0

(−2πiaj0N )k−1−r

(k − 1− r)!
· lr,0

(aj0τ
N

+
b

N
, τ
)

+

k−1∑
r=0

(−2πiaj0N )k−1−r

(k − 1− r)!
· λr,0

(aj0τ
N

+
b

N
, τ
)

=
aj0
N
·
k−1∑
r=0

(−2πiaj0N )k−1−r

(k − 1− r)!
· sDr

(aj0τ
N

+
b

N
, τ
)

+

k−1∑
r=0

(−2πiaj0N )k−1−r

(k − 1− r)!
·
(
− r + 1

2πi

)
· sDr+1

(aj0τ
N

+
b

N
, τ
)

= sD0

(aj0τ
N

+
b

N
, τ
)
·
[

(−1)k−1(2πi)k−1

(k − 1)!

(
aj0
N

)k]
+

k−1∑
r=1

sDr

(aj0τ
N

+
b

N
, τ
)
·
[

(−1)k−1−r(2πi)k−1−r

(k − 1− r)!

(
aj0
N

)k−r
+

(−1)k−1−r(2πi)k−1−r

(k − r)!

(
aj0
N

)k−r
· r
]

− sDk
(aj0τ
N

+
b

N
, τ
)
· k

2πi

= sD0

(aj0τ
N

+
b

N
, τ
)
·
[

(−1)k−1(2πi)k−1

(k − 1)!

(
aj0
N

)k]
+

k−1∑
r=1

sDr

(aj0τ
N

+
b

N
, τ
)
·
[

(−1)k−1−r(2πi)k−1−r

(k − r)!

(
aj0
N

)k−r
· k
]
− sDk

(aj0τ
N

+
b

N
, τ
)
· k

2πi
.

Next, we combine the defining formula of the sr(z, τ):

D2 · J(z,−w, τ)−D · J
(
Dz,−w

D
, τ
)

= sD0 (z, τ) + sD1 (z, τ)w + ...

with the w-expansion formula (3.3.25):

J(z, w, τ) = exp

[
2πi

z̄w − zw
τ − τ̄

]
·
(

1

w
+
∑
k≥0

(−1)k · ek+1(z, τ) · wk
)

and obtain

sD0 (z, τ) + sD1 (z, τ)w + ... = exp

[
2πi

zw − z̄w
τ − τ̄

]
·
∑
k≥0

[
D2ek+1(z, τ)−D1−kek+1(Dz, τ)

]
· wk,

such that ∑
k≥0

[
D2ek+1

(aj0τ
N

+
b

N
, τ
)
−D1−kek+1

(
D
aj0τ

N
+D

b

N
, τ
)]
· wk

= exp

[
− 2πi

aj0
N
w

]
·
[
sD0

(aj0τ
N

+
b

N
, τ
)

+ sD1

(aj0τ
N

+
b

N
, τ
)
w + ...

]
.

This implies that for each k ≥ 0 we have

D2ek+1

(aj0τ
N

+
b

N
, τ
)
−D1−kek+1

(
D
aj0τ

N
+D

b

N
, τ
)

= sD0

(aj0τ
N

+
b

N
, τ
)
·

(−2πiaj0N )k

k!
+ sD1

(aj0τ
N

+
b

N
, τ
)
·

(−2πiaj0N )k−1

(k − 1)!
+ ...

+ sDk−1

(aj0τ
N

+
b

N
, τ
)
·
(
− 2πi

aj0
N

)
+ sDk

(aj0τ
N

+
b

N
, τ
)
,
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and hence

− k

2πi
·
[
D2ek+1

(aj0τ
N

+
b

N
, τ
)
−D1−kek+1

(
D
aj0τ

N
+D

b

N
, τ
)]

= sD0

(aj0τ
N

+
b

N
, τ
)
·
[

(−1)k−1(2πi)k−1

(k − 1)!

(
aj0
N

)k]
+

k−1∑
r=1

sDr

(aj0τ
N

+
b

N
, τ
)
·
[

(−1)k−1−r(2πi)k−1−r

(k − r)!

(
aj0
N

)k−r
· k
]
− sDk

(aj0τ
N

+
b

N
, τ
)
· k

2πi
.

We have calculated above that this last expression for 1 ≤ k ≤ n+ 1 equals the function

aj0
N
· l̂k−1,0(0, τ) + λ̂k−1,0(0, τ),

such that we have shown
aj0
N
·l̂k−1,0(0, τ)+λ̂k−1,0(0, τ) = − k

2πi
·
[
D2ek+1

(aj0τ
N

+
b

N
, τ
)
−D1−kek+1

(
D
aj0τ

N
+D

b

N
, τ
)]
.

Thm. 3.3.16 tells us that

ek+1

(aj0
N
τ +

b

N
, τ
)

=
(−1)k+1(2πi)k+1

k!
· F (k+1)

aj0
N , bN

(τ)

ek+1

(
D
aj0
N
τ +D

b

N
, τ
)

=
(−1)k+1(2πi)k+1

k!
· F (k+1)

Daj0
N ,DbN

(τ).

Combining this with the previous equation we obtain

aj0
N
· l̂k−1,0(0, τ) + λ̂k−1,0(0, τ) =

(−1)k(2πi)k

(k − 1)!
·
[
D2F

(k+1)
aj0
N , bN

(τ)−D1−kF
(k+1)
Daj0
N ,DbN

(τ)

]
=

(−1)k(2πi)k

(k − 1)!
· DF (k+1)

aj0
N , bN

(τ),

the last equality by definition. As was already observed this proves the theorem.

3.7 The analytic characterization result

For the whole section fix an integer D > 1.

As in 1.5.2 write UD for the open complement of the D-torsion subscheme E[D] in E as well
as iD : E[D] → E resp. jD : UD → E for the canonical closed resp. open immersion and
πE[D] : E[D]→ S resp. πUD : UD → S for the structure map of E[D] resp. UD over S.

E[D]

πE[D]

%%

iD // E

π

��

UD

πUD
zz

jDoo

S

��
Spec (Q)

In 1.5.2 we saw that there exists an inverse system of cohomology classes

(3.7.1) poldR,D2·1{ε}−1E[D]
=
(

polndR,D2·1{ε}−1E[D]

)
n≥0
∈ lim
n≥0

H1
dR(UD/Q,Ln)

satisfying a certain residue condition, called the D-variant of the elliptic polylogarithm for E/S/Q.
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3.7.1 Preliminaries: Algebraic

We recall the residue condition by which the system (3.7.1) is uniquely determined. This can be done
in slightly simpler terms than in 1.5.2, where more technicalities were needed to establish various
isomorphisms by which we could ensure the existence of such a system.
Subsequently, we describe in more concrete terms the two arrows appearing in this characterization.

Algebraic characterization of the D-variant of the polylogarithm

Recall that for each n ≥ 0 we have a chain of DE[D]/Q-linear maps

(3.7.2) OE[D] ↪→ (πE[D])
∗

n∏
k=0

Symk
OSH ' (πE[D])

∗ε∗Ln ' i∗D[D]∗Ln ' i∗DLn

in which the monomorphism is given by 1
n! -times the obvious inclusion, the first isomorphism is the

splitting of ε∗Ln, the second uses the commutative diagram defining E[D] and the last comes from
the invariance isomorphism of Cor. 1.4.4. Taking global sections induces an injection

(3.7.3) H0(E[D],OE[D]) ↪→ lim
n≥0

H0(E[D], i∗DLn)

by which we may view the global section D2 · 1{ε} − 1E[D] of OE[D] as an element of the right side.

Now observe that we have a natural map

(3.7.4) lim
n≥0

H1
dR(UD/Q,Ln)→ lim

n≥0
Γ(S,H1

dR(UD/S,Ln)),

given by taking the inverse limit in the composition

H1
dR(UD/Q,Ln)→ H0

dR(S/Q, H1
dR(UD/S,Ln))

' HomDS/Q(OS , H1
dR(UD/S,Ln)) ⊆ Γ(S,H1

dR(UD/S,Ln)).

The first arrow is an edge morphism in the obvious Leray spectral sequence and - as was observed in
1.5.2 - becomes bijective in the inverse limit; in particular, we see that (3.7.4) is injective.

Moreover, the exact sequence of DS/Q-modules (coming from the localization triangle for Ln)

(3.7.5)

0→ H1
dR(E/S,Ln)

can−−→ H1
dR(UD/S,Ln)

ResDn−−−→ (πE[D])∗i
∗
DLn

σDn−−→ H2
dR(E/S,Ln)→ 0

induces the arrow

(3.7.6) lim
n≥0

Γ(S,H1
dR(UD/S,Ln))

ResD−−−→ lim
n≥0

H0(E[D], i∗DLn)

which with Thm. 1.2.1 (ii) is seen to be injective.

The composition of the injections (3.7.4) and (3.7.6) gives the injective Q-linear map

(3.7.7) lim
n≥0

H1
dR(UD/Q,Ln)→ lim

n≥0
Γ(S,H1

dR(UD/S,Ln))
ResD−−−→ lim

n≥0
H0(E[D], i∗DLn),
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which by definition of the D-variant sends poldR,D2·1{ε}−1E[D]
to the element D2 · 1{ε} − 1E[D].

For all further proceeding it is essential to understand the two arrows in the composition (3.7.7)

as explicitly as possible. This is what we undertake next.

Description of the first arrow

The first map of (3.7.7) was defined in (3.7.4) using the a priori rather abstract edge morphism of the
Leray spectral sequence. But it has an easy natural interpretation as follows:

Namely, as πUD : UD → S is affine and the modular curve S is affine the scheme UD is affine;
as it is moreover 2-dimensional and smooth over Q we see that the spectral sequence (cf. (0.2.2))

Ep,q1 = Hq(UD,Ω
p
UD/Q ⊗OUD Ln)⇒ Ep+q = Hp+q

dR (UD/Q,Ln)

degenerates at r = 2 and that the edge morphism E1,0
2 → E1 on the second sheet is an isomorphism:

(3.7.8)
ker

(
Γ(UD,Ω

1
UD/Q ⊗OUD Ln)

∇1
n−−→ Γ(UD,Ω

2
UD/Q ⊗OUD Ln)

)
im

(
Γ(UD,Ln)

∇n−−→ Γ(UD,Ω1
UD/Q ⊗OUD Ln)

) ∼−→ H1
dR(UD/Q,Ln).

Similarly, as πUD : UD → S is affine and smooth of relative dimension one the spectral sequence (cf.
again (0.2.2))

Ep,q1 = Rq(πUD )∗(Ω
p
UD/S

⊗OUD Ln)⇒ Ep+q = Hp+q
dR (UD/S,Ln)

degenerates at r = 2 and the edge morphism E1,0
2 → E1 is an isomorphism; in global S-sections

(recall that S is affine) it reads as:

(3.7.9)
Γ(UD,Ω

1
UD/S

⊗OUD Ln)

im

(
Γ(UD,Ln)

∇resn−−−→ Γ(UD,Ω1
UD/S

⊗OUD Ln)

) ∼−→ Γ(S,H1
dR(UD/S,Ln)).

It is straightforward and purely formal to check that the arrow (3.7.4):

lim
n≥0

H1
dR(UD/Q,Ln)→ lim

n≥0
Γ(S,H1

dR(UD/S,Ln))

is given under the previous identifications (3.7.8) resp. (3.7.9) simply as the map induced by the
natural restriction of differential forms:

(3.7.10) Γ(UD,Ω
1
UD/Q ⊗OUD Ln)→ Γ(UD,Ω

1
UD/S

⊗OUD Ln).

This is what we need to know about the first arrow in (3.7.7).

Description of the second arrow

The second map ResD of (3.7.7) arises - by taking global S-sections and inverse limit - from the a
priori rather abstract arrows (for all n ≥ 0):

H1
dR(UD/S,Ln)

ResDn−−−→ H0
dR(E[D]/S, i∗DLn) = (πE[D])∗i

∗
DLn,
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defined by applying π+ to the localization triangle in Db
qc(DE/Q):

Ln → (jD)+Ln|UD → (iD)+(iD)∗Ln

and then going into the long exact sequence of cohomology:

0→ H1
dR(E/S,Ln)

can−−→ H1
dR(UD/S,Ln)

ResDn−−−→ H0
dR(E[D]/S, i∗DLn)→ H2

dR(E/S,Ln)→ 0.

Clearly, completely the same procedure can be applied to any vector bundle V on E with integrable
Q-connection, yielding an exact sequence of vector bundles with integrable Q-connection on S:

(3.7.11)
0→ H1

dR(E/S,V)
can−−→ H1

dR(UD/S,V)
Res−−→ H0

dR(E[D]/S, i∗DV)→ H2
dR(E/S,V)→ 0.

A different interpretation of the previous sequence (3.7.11) together with an explicit description of
the map Res is obtained by using logarithmic differential forms. Let us explain this:

E[D] is an effective relative Cartier divisor of E/S and smooth over the smooth variety S. In partic-
ular, it has (strict) relative normal crossings over S and permits defining the sheaf Ω1

E/S(log(E[D]))

of relative differential forms with logarithmic poles along E[D] (cf. [De1], Ch. II, (3.3.1)).
We only give a brief reminder of how this sheaf looks like locally and refer to [De1], Ch. II, §3, and
to [Kat1], 1.0, for more details concerning logarithmic differential forms.
Recall hence that we may cover E by open subsets Vi mapping étale to A1

S via a coordinate t(i) such
that E[D] ∩ Vi either is empty or - if it is not empty - is cut out by the equation t(i) = 0. The sheaf
Ω1
E/S(log(E[D])), as a submodule of (jD)∗Ω

1
UD/S

, is then characterized by the fact that on such a Vi

it is freely generated over OVi by the basis element dt(i) if E[D] ∩ Vi = ∅ resp. by dt(i)

t(i)
otherwise.

Observe moreover that due to the further smoothness of S/Q it is always possible to find an open
covering (Vi)i of E with a pair of coordinates {t(i), s(i)} mapping Vi étale to A2

Q and such that the
coordinate t(i) has the property just mentioned.

Now let V be as above a vector bundle on E with integrable Q-connection.
Composing its relative de Rham complex

Ω•E/S(V) = [V → Ω1
E/S ⊗OE V]

with the natural inclusion

Ω1
E/S ⊗OE V → Ω1

E/S(log(E[D]))⊗OE V

defines the relative logarithmic de Rham complex of V along E[D]:

Ω•E/S(log(E[D]))(V) := [V → Ω1
E/S(log(E[D]))⊗OE V].

Enfolding the definitions it is easily seen that we have a well-defined and canonical short exact se-
quence of complexes

(3.7.12) 0→ Ω•E/S(V)
can−−→ Ω•E/S(log(E[D]))(V)

res−−→ (iD)∗i
∗
DV [−1]→ 0,
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where the map res in degree 1:

Ω1
E/S(log(E[D]))⊗OE V → (iD)∗i

∗
DV

is defined locally (using an open coordinate covering as above) by

dt(i) ⊗ v 7→ 0 resp.
dt(i)

t(i)
⊗ v 7→ i∗D(v).

According to [De1], Ch. II, Cor. 3.14 (i) and Rem. 3.16, the canonical homomorphism

(3.7.13) Ω•E/S(log(E[D]))(V)→ (jD)∗(Ω
•
UD/S

(V|UD ))

is a quasi-isomorphism. The long exact sequence of hyperderived functors Riπ∗ for (3.7.12) com-
bined with (3.7.13) and the fact that jD is affine thus induces18 an exact sequence of vector bundles

(3.7.14)
0→ H1

dR(E/S,V)
can−−→ H1

dR(UD/S,V)
res−−→ H0

dR(E[D]/S, i∗DV)→ H2
dR(E/S,V)→ 0.

This is nothing else than the sequence (3.7.11) deduced earlier by the machinery of the localization
sequence.19 This observation provides a sufficiently explicit knowledge of the abstract residue map
Res which appeared there, and hence in particular of the arrows ResDn in the case V = Ln.

3.7.2 Preliminaries: Analytic

We show that after base extension to Spec (C) the logarithm sheaves are vector bundles with regular
integrable connection. We then define the analogue of (3.7.14) for the analytification of such a vector
bundle and - in the case that the bundle is moreover originally defined over Q - record compatibility of
the algebraic and the analytic construction under comparison isomorphisms for de Rham cohomology.
The main technical input here is provided by the theory of regular integrable connections (cf. [De1]).

Regularity of the logarithm sheaves

We denote by EC resp. SC the smooth complex algebraic varieties E ×Q C resp. S ×Q C.
The maps πC := π × id resp. εC := ε× id make EC/SC into an elliptic curve.
For a vector bundle V on E we write VC for its pullback along EC → E; if V is equipped with
an integrable Q-connection ∇, then VC carries a naturally induced integrable C-connection ∇C; the
analogous remark holds for E replaced by S.

For vector bundles with integrable connection on a smooth complex algebraic variety we have the

18Observe that because jD is affine one has

Rq(jD)∗(Ω
p
UD/S

⊗OUD V|UD ) = 0 for all q > 0,

which implies that the canonical arrow

(jD)∗(Ω
•
UD/S

(V|UD ))→ R(jD)∗(Ω
•
UD/S

(V|UD ))

is a quasi-isomorphism (such a conclusion also appears in [De1], Ch. II, (6.4.1) and (6.4.3)). The rest is then clear.
19A detailed verification of this fact consists in the tedious task of precisely retracing the construction of the localization

sequence with all involved identifications and using the explicit local description of (iD)+i∗DV as in [Ho-Ta-Tan], Ex. 1.5.23.
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well-known fundamental notion of regularity (cf. [De1], Ch. II, Def. 4.5). We then have the fol-
lowing basic result about the logarithm sheaves; the crucial input for its proof is the regularity of the
Gauß-Manin connection, going back to Deligne, Griffiths and Katz.

Proposition 3.7.1
(LC

n,∇C
n) is regular for each n ≥ 0.

Proof. As (LC
0 ,∇C

0 ) = (OEC ,d) the claim is certainly true for n = 0.
Furthermore, for each n ≥ 0 the exact sequence of (1.1.3):

0→ Symn+1
OE HE → Ln+1 → Ln → 0

together with the canonical identifications20

(Symn+1
OE HE)C ' Symn+1

O
EC

((πC)∗HC) ' Symn+1
O
EC

((πC)∗H1
dR(EC/SC)∨)

induces the horizontal exact sequence

(∗) 0→ Symn+1
O
EC

((πC)∗H1
dR(EC/SC)∨)→ LC

n+1 → LC
n → 0,

where H1
dR(EC/SC) is equipped with its Gauß-Manin connection relative Spec (C).

The crucial point now is the regularity of H1
dR(EC/SC) (cf. [De1], Ch. II, Thm. 7.9 and Prop. 6.14),

which then implies the regularity of H1
dR(EC/SC)∨ (cf. ibid., Ch. II, Prop. 4.6 (ii)), hence also of

(πC)∗H1
dR(EC/SC)∨ (cf. ibid., Ch. II, Prop. 4.6 (iii)) and then also of Symn+1

O
EC

((πC)∗H1
dR(EC/SC)∨)

(by an analogous argument as used in ibid., Ch. II, Prop. 4.6 (ii), for the other tensor operations).
Using this and the fact that the property of regularity is closed under extensions (by ibid., Ch. II, Prop.
4.6. (i)) we see from (∗) and induction that regularity of LC

1 will imply regularity of LC
n for all n ≥ 2.

For n = 0 the sequence (∗) reads as

0→ (πC)∗H1
dR(EC/SC)∨ → LC

1 → OEC → 0,

and from the regularity of the outer terms we deduce, as already noted, that LC
1 is regular.

The next goal is to assure that the algebraic constructions at the end of 3.7.1 by which we arrived at
the sequence (3.7.14) carry over to the analytic situation - provided that we assume regularity.

Implications of regularity

When working with analytifications we now no longer tacitly consider a fixed connected component
(as we did in most of 3.5 and 3.6) but really mean the full objects with all components.

The complex submanifold (E[D])an = Ean[D] of Ean defines an effective relative Cartier divisor in
Ean with normal crossings over San. The following diagram refreshes some associated notation.

Ean[D]

πanE[D] $$

ianD // Ean

πan

��

UanD

πanUD||

janDoo

San

20The first is obvious and the second follows from the compatibility of the de Rham cohomology of E/S with base change
(cf. the beginning of Chapter 1); the base change to be considered here (along SC → S) is even flat.
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As in the algebraic setting we have the sheaf Ω1
Ean/San(log(Ean[D])) of relative differential forms

with logarithmic poles along Ean[D] (cf. [De1], Ch. II, (3.3.1)), with a local description as follows:
One can cover the 2-dimensional complex manifold Ean by open subsets Vi with complex coordinate
functions {t(i), s(i)} such that dt(i) freely generates Ω1

Ean/San over OVi and Ean[D] ∩ Vi either is
empty or - if it is not empty - is cut out by the equation t(i) = 0. The sheaf Ω1

Ean/San(log(Ean[D])),
as a submodule of (janD )∗Ω

1
UanD /San , is then characterized by the fact that on such a Vi it is freely

generated over OVi by the basis element dt(i) if Ean[D] ∩ Vi = ∅ resp. by dt(i)

t(i)
otherwise.

For each analytic vector bundle W on Ean with (absolute) integrable connection the definition of
its relative logarithmic de Rham complex along Ean[D]:

Ω•Ean/San(log(Ean[D]))(W) := [W → Ω1
Ean/San(log(Ean[D]))⊗OEan W]

and of the canonical short exact sequence of complexes

(3.7.15) 0→ Ω•Ean/San(W)
can−−→ Ω•Ean/San(log(Ean[D]))(W)

res−−→ (ianD )∗(i
an
D )∗W [−1]→ 0

then proceeds analogously to the already treated algebraic counterpart in 3.7.1.

The problem now is the following: by contrast to the algebraic setting the hyperderivation Riπan∗ of
Ω•Ean/San(log(Ean[D]))(W) does in general not compute the sheaf Hi

dR(UanD /San,W). Namely,
by [De1], Ch. II, Prop. 3.13 and Rem. 3.16, it is instead true that the canonical homomorphism

(3.7.16) Ω•Ean/San(log(Ean[D]))(W)→ (janD )mer∗ (Ω•UanD /San(W|UanD ))

is a quasi-isomorphism, where the superscript ”mer” on the right side means that we take the sub-
complex of (janD )∗(Ω

•
UanD /San(W|UanD )) of those sections which are meromorphic along Ean[D].

It is the regularity condition which resolves this problem.

Assume now that W = Zan for an algebraic vector bundle Z on EC with regular integrable
connection relative Spec (C).

Of course, the special case we will be interested in is W = (LC
n)an, i.e. W = Lann in our usual

notation; Prop. 3.7.1 guarantees that this is indeed a special case.

Under this assumption, by [De1], Ch. II, Lemma 6.1821, the canonical inclusion

(3.7.17) (janD )mer∗ (Ω•UanD /San(W|UanD ))→ (janD )∗(Ω
•
UanD /San(W|UanD ))

is a quasi-isomorphism. Combining this with (3.7.16) we see that the natural homomorphism

(3.7.18) Ω•Ean/San(log(Ean[D]))(W)→ (janD )∗(Ω
•
UanD /San(W|UanD ))

21Observe the obvious typos in the cited lemma: one has to remove all bar-superscripts.
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is in fact a quasi-isomorphism. Together with the fact that janD is Stein (because jD is affine) we
conclude22 that for all i:

(3.7.19) Riπan∗ (Ω•Ean/San(log(Ean[D]))(W))
∼−→ Hi

dR(UanD /San,W).

The long exact sequence of hyperderived functors Riπan∗ for (3.7.15) combined with (3.7.19) then
induces the following exact sequence of OSan -vector bundles (for H2

dR(UanD /San,W) = 0 one may
use that πanUD is Stein because πUD is affine):

0→ H1
dR(Ean/San,W)

can−−→ H1
dR(UanD /San,W)

res−−→ H0
dR(Ean[D]/San, (ianD )∗W)

→ H2
dR(Ean/San,W)→ 0.

(3.7.20)

Note that all maps of the preceding exact sequence (3.7.20) are defined in purely analytic terms; we
only had to assume that the analytic bundleW onEan comes from a regular complex algebraic bundle
Z on EC in order to ensure that the (analytically defined) map (3.7.18) is a quasi-isomorphism.

Comparison and compatibility properties

We conclude our general discussion with the following observations valid for any vector bundle V
on E with integrable Q-connection such that the induced vector bundle VC on EC with integrable
C-connection is regular, hence in particular for V = Ln (cf. Prop. 3.7.1).

For each i the canonical arrows

Hi
dR(E/S,V)⊗OS OSC → Hi

dR(EC/SC,VC)

Hi
dR(UD/S,V)⊗OS OSC → Hi

dR(UC
D/S

C,VC)

Hi
dR(E[D]/S, i∗DV)⊗OS OSC → Hi

dR(EC[D]/SC, (iCD)∗VC)

and

Hi
dR(EC/SC,VC)an → Hi

dR((EC)an/(SC)an, (VC)an)

Hi
dR(UC

D/S
C,VC)an → Hi

dR((UC
D)an/(SC)an, (VC)an)

Hi
dR(EC[D]/SC, (iCD)∗VC)an → Hi

dR((EC[D])an/(SC)an, ((iCD)an)∗(VC)an)

are all isomorphisms: the first triple because SC → S is flat and the second triple - due to our
regularity assumption - by [De1], Ch. II, Prop. 6.14 and Prop. 4.6 (iii).
In sum, if V is as above we have for all i canonical isomorphisms of OSan -vector bundles:

Hi
dR(E/S,V)an

∼−→ Hi
dR(Ean/San,Van)

Hi
dR(UD/S,V)an

∼−→ Hi
dR(UanD /San,Van)

Hi
dR(E[D]/S, i∗DV)an

∼−→ Hi
dR(Ean[D]/San, (ianD )∗Van)

(3.7.21)

22Observe that by Cartan’s Theorem B one has

Rq(janD )∗(Ω
p
Uan
D
/San

⊗OUan
D
W|Uan

D
) = 0 for all q > 0,

which implies that the canonical arrow

(janD )∗(Ω
•
Uan
D
/San (W|Uan

D
))→ R(janD )∗(Ω

•
Uan
D
/San (W|Uan

D
))

is a quasi-isomorphism (such a conclusion also appears in [De1], Ch. II, (6.4.2) and (6.4.4)). The rest is then clear.
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which are moreover checked to be horizontal (for the connections induced by the algebraic Gauß-
Manin connections on the left sides and the analytic Gauß-Manin connections on the right sides).

Finally, we then have a commutative diagram of OSan -vector bundles with integrable connection:

0 // H1
dR(E/S,V)an

∼

��

canan // H1
dR(UD/S,V)an

∼

��

Resan // H0
dR(E[D]/S, i∗DV)an

∼

��

// H2
dR(E/S,V)an

∼

��

// 0

0 // H1
dR(Ean/San,Van)

can // H1
dR(UanD /San,Van)

res // H0
dR(Ean[D]/San, (ianD )∗Van) // H2

dR(Ean/San,Van) // 0

(3.7.22)

where the upper resp. lower row is given by the exact sequence (3.7.11)an = (3.7.14)an resp. by
(3.7.20) and where the vertical arrows are the isomorphisms of (3.7.21).
To check the commutativity of (3.7.22) is indeed a routine formal procedure if for the upper row one
uses the construction (3.7.12)-(3.7.14).

3.7.3 The construction of the fundamental commutative diagram

As recalled in 3.7.1 the system poldR,D2·1{ε}−1E[D]
is the unique element in limn≥0H

1
dR(UD/Q,Ln)

mapping to D2 · 1{ε} − 1E[D] under the composition of injections (3.7.7):

lim
n≥0

H1
dR(UD/Q,Ln)→ lim

n≥0
Γ(S,H1

dR(UD/S,Ln))
ResD−−−→ lim

n≥0
H0(E[D], i∗DLn).

We will now construct a completely analogous composition of injections on the analytic side:

lim
n≥0

H1
dR(UanD ,Lann )→ lim

n≥0
Γ(San, H1

dR(UanD /San,Lann ))
resD−−−→ lim

n≥0
H0(Ean[D], (ianD )∗Lann ),

which is possible because forLann we have the analytic residue morphism in the lower row of (3.7.22).
Via natural analytification maps we then place these two compositions into a big commutative diagram
which in 3.7.4 will be used to formulate the main result of this section.

An auxiliary result

Lemma 3.7.2
(i) For each n ≥ 0 the morphism

H1
dR(Ean/San,Lann+1)→ H1

dR(Ean/San,Lann ),

induced by the analytified transition map Lann+1 → Lann , is zero.

(ii) The same holds for the morphism

H0
dR(UanD /San,Lann+1)→ H0

dR(UanD /San,Lann ).

Proof. (i) We have a commutative diagram

H1
dR(E/S,Ln+1)an

��

// H1
dR(E/S,Ln)an

��
H1

dR(Ean/San,Lann+1) // H1
dR(Ean/San,Lann )
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Here, the upper horizontal arrow is the analytification of the morphism

(∗) H1
dR(E/S,Ln+1)→ H1

dR(E/S,Ln)

induced by the algebraic transition map, the lower horizontal arrow is the map of the claim and the
vertical arrows are the canonical ones. From Thm. 1.2.1 (ii) we know that (∗) is zero, hence the same
holds for H1

dR(E/S,Ln+1)an → H1
dR(E/S,Ln)an. Furthermore, due to (3.7.21), the vertical maps

of the diagram are isomorphisms - note that (3.7.21) can be applied to the logarithm sheaves because
of the regularity result in Prop. 3.7.1. This implies the claim of (i).
(ii) The assertion of (ii) follows in complete analogy if one knows that the transition map

H0
dR(UD/S,Ln+1)→ H0

dR(UD/S,Ln)

is zero for each n ≥ 0. This is seen as follows: the canonical arrow

H0
dR(E/S,Ln)→ H0

dR(UD/S,Ln)

is an isomorphism (prolong the exact sequence (3.7.11) to the left); moreover, the transition map

H0
dR(E/S,Ln+1)→ H0

dR(E/S,Ln)

is zero, again by Thm. 1.2.1 (ii). This suffices to conclude.

The construction: first step

The analytic residue maps of the lower row of (3.7.22) are available for the logarithm sheaves because
of Prop. 3.7.1 and induce - by taking global San-sections and inverse limit - an arrow

lim
n≥0

Γ(San, H1
dR(UanD /San,Lann ))

resD−−−→ lim
n≥0

Γ(San, H0
dR(Ean[D]/San, (ianD )∗Lann ))

= lim
n≥0

H0(Ean[D], (ianD )∗Lann ),
(3.7.23)

and Lemma 3.7.2 (i) implies that it is injective.

The injection (3.7.23) fits into the following commutative square:

limn≥0 Γ(S,H1
dR(UD/S,Ln))

ResD //

can

��

limn≥0H
0(E[D], i∗DLn)

can

��
limn≥0 Γ(San, H1

dR(UanD /San,Lann ))
resD // limn≥0H

0(Ean[D], (ianD )∗Lann )

(3.7.24)

where the upper horizontal arrow ResD is the injection of (3.7.6) and the vertical maps are the canon-
ical ones: namely, note that by adjunction along San → S we have the canonical arrow

Γ(S,H1
dR(UD/S,Ln))→ Γ(San, H1

dR(UD/S,Ln)an)

which we may further compose with the natural map of (3.7.21) in global San-sections

Γ(San, H1
dR(UD/S,Ln)an)→ Γ(San, H1

dR(UanD /San,Lann )).

The induced map in the inverse limit is the left vertical arrow of (3.7.24), and the right vertical arrow
comes from adjunction along Ean[D]→ E[D] and going into the inverse limit.
That (3.7.24) commutes is immediate if one recalls the commutativity of the middle square of (3.7.22).
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The construction: second step

We have the edge morphism

H1
dR(UanD ,Lann )→ H0

dR(San, H1
dR(UanD /San,Lann ))

of the Leray spectral sequence23

Ep,q2 = Hp
dR(San, Hq

dR(UanD /San,Lann ))⇒ Ep+q = Hp+q
dR (UanD ,Lann ).

Its composition with

H0
dR(San, H1

dR(UanD /San,Lann )) ⊆ Γ(San, H1
dR(UanD /San,Lann ))

yields in the inverse limit a morphism of C-vector spaces

(3.7.25) lim
n≥0

H1
dR(UanD ,Lann )→ lim

n≥0
Γ(San, H1

dR(UanD /San,Lann )).

The above edge morphism becomes bijective in the limit as follows from the vanishing of the transi-
tion maps of H0

dR(UanD /San,Lann ) (cf. Lemma 3.7.2 (ii)). This implies that (3.7.25) is injective.

By composition of the injections (3.7.25) and (3.7.23) we obtain the injective C-linear map

(3.7.26)
lim
n≥0

H1
dR(UanD ,Lann )→ lim

n≥0
Γ(San, H1

dR(UanD /San,Lann ))
resD−−−→ lim

n≥0
H0(Ean[D], (ianD )∗Lann )

which becomes the lower row of the following crucial commutative diagram:

limn≥0H
1
dR(UD/Q,Ln)

can

��

// limn≥0 Γ(S,H1
dR(UD/S,Ln))

ResD //

can

��

limn≥0H
0(E[D], i∗DLn)

can

��
limn≥0H

1
dR(UanD ,Lann ) // limn≥0 Γ(San, H1

dR(UanD /San,Lann ))
resD// limn≥0H

0(Ean[D], (ianD )∗Lann )

(3.7.27)

Here, the upper row is the composition of injections given by (3.7.7), the right square is (3.7.24) and
the left vertical arrow comes from the composition of canonical maps

(3.7.28) H1
dR(UD/Q,Ln)→ H1

dR(UD/Q,Ln)⊗Q C ∼−→ H1
dR(UC

D/C,LC
n)
∼−→ H1

dR(UanD ,Lann ).

Note that the first map in (3.7.28) clearly is injective and that the second resp. third map is indeed an
isomorphism by the flatness of Spec (C)→ Spec (Q) resp. by the regularity of LC

n on UC
D (use Prop.

3.7.1 and [De1], Ch. II, Prop. 4.6 (iii)) and the comparison result of [De1], Ch. II, Thm. 6.2.
In particular, we see that (3.7.28) and hence also the left vertical arrow of (3.7.27) is injective.

Further remarks about the arrows of the diagram

We have a sufficiently explicit description for the algebraic and analytic residue map ResD and resD

in (3.7.27) in terms of logarithmic differential forms (cf. (3.7.12)-(3.7.14) and (3.7.15)-(3.7.20)).

23The spectral sequence is available also for our analytic situation as is immediately clear by its construction in [Kat2], Rem.
(3.3), resp. [Har], Ch. III, §4, Thm. (4.1).
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Furthermore, the upper left horizontal arrow was expressed in (3.7.8)-(3.7.10) via the transition from
absolute to relative differential forms. There is an analogous description for its analytic counterpart
beneath, but words need to be chosen more carefully. Let us explain this.

The edge morphism E1,0
2 → E1 at the second sheet of the spectral sequence of hyperderived functors

Ep,q1 = Hq(UanD ,ΩpUanD
⊗OUan

D
Lann )⇒ Ep+q = Hp+q

dR (UanD ,Lann )

writes as

(3.7.29)

ker

(
Γ(UanD ,Ω1

UanD
⊗OUan

D
Lann )

(∇ann )1−−−−→ Γ(UanD ,Ω2
UanD
⊗OUan

D
Lann )

)
im

(
Γ(UanD ,Lann )

∇ann−−−→ Γ(UanD ,Ω1
UanD
⊗OUan

D
Lann )

) → H1
dR(UanD ,Lann ).

Analogously, the second sheet of the spectral sequence

Ep,q1 = Rq(πanUD )∗(Ω
p
UanD /San ⊗OUanD L

an
n )⇒ Ep+q = Hp+q

dR (UanD /San,Lann )

gives an edge morphism

(3.7.30)
(πanUD )∗(Ω

1
UanD /San ⊗OUanD L

an
n )

im

(
(πanUD )∗(Lann )

(∇resn )an−−−−−−→ (πanUD )∗(Ω1
UanD /San ⊗OUanD L

an
n )

) → H1
dR(UanD /San,Lann ).

The maps (3.7.29) and (3.7.30) are in fact isomorphisms (cf. Rem. 3.7.3 below.)
From (3.7.30) we obtain - by taking global San-sections and using the canonical morphisms between
presheaf and associated sheaf - a natural arrow (not necessarily an isomorphism; cf. Rem. 3.7.3)

(3.7.31)
Γ(UanD ,Ω1

UanD /San ⊗OUanD L
an
n )

im

(
Γ(UanD ,Lann )

(∇resn )an−−−−−−→ Γ(UanD ,Ω1
UanD /San ⊗OUanD L

an
n )

) → Γ(San, H1
dR(UanD /San,Lann )).

The isomorphism (3.7.29) and the map (3.7.31) form a commutative diagram with the morphism

H1
dR(UanD ,Lann )→ Γ(San, H1

dR(UanD /San,Lann ))

whose limit is (3.7.25) and with the restriction of absolute to relative differential forms.
This finally expresses more concretely also the lower left horizontal map of (3.7.27) (which is (3.7.25)).

Remark 3.7.3
Using the fact that the complex manifold UanD is Stein (because UC

D is an affine scheme) resp. that the
morphism πanUD is Stein (because πC

UD
is an affine morphism) together with Cartan’s Theorem B one

sees that both of the previous spectral sequences degenerate at r = 2 and that the maps (3.7.29) resp.
(3.7.30) are isomorphisms.
But although also San is Stein one cannot conclude that (3.7.31) is an isomorphism (by contrast to
the algebraic situation in (3.7.9), where this was possible): the reason is that Theorem B only holds
for coherent analytic sheaves, and hence the global San-sections of the sheaves on the left side of
(3.7.30) a priori are not the same as the left side of (3.7.31).
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3.7.4 The characterization result

Altogether, we have constructed the fundamental commutative diagram (3.7.27):

limn≥0H
1
dR(UD/Q,Ln)

can

��

// limn≥0 Γ(S,H1
dR(UD/S,Ln))

ResD //

can

��

limn≥0H
0(E[D], i∗DLn)

can

��
limn≥0H

1
dR(UanD ,Lann ) // limn≥0 Γ(San, H1

dR(UanD /San,Lann ))
resD// limn≥0H

0(Ean[D], (ianD )∗Lann )

and deduced the information that its rows as well as its left vertical arrow are injective.
This finally enables us to characterize uniquely the analytification of the D-variant of the polyloga-
rithm by an analytic residue condition which is completely analogous to the algebraic one in (3.7.7).

We start with the algebraic system

poldR,D2·1{ε}−1E[D]
=
(

polndR,D2·1{ε}−1E[D]

)
n≥0
∈ lim
n≥0

H1
dR(UD/Q,Ln)

and make the following

Definition 3.7.4
(i) For each n ≥ 0 we write

(polndR,D2·1{ε}−1E[D]
)an

for the image of polndR,D2·1{ε}−1E[D]
under the canonical map of (3.7.28):

H1
dR(UD/Q,Ln)→ H1

dR(UanD ,Lann ).

(ii) We set

(poldR,D2·1{ε}−1E[D]
)an :=

(
polndR,D2·1{ε}−1E[D]

)an
n≥0
∈ lim
n≥0

H1
dR(UanD ,Lann ),

which is the image of poldR,D2·1{ε}−1E[D]
under the left vertical map of (3.7.27).

For each n ≥ 0 the analytification of (3.7.2) yields the chain of DEan[D]-linear maps:

(3.7.32)

OEan[D] ↪→ (πanE[D])
∗

n∏
k=0

Symk
OSanH

an ' (πanE[D])
∗(εan)∗Lann ' (ianD )∗([D]an)∗Lann ' (ianD )∗Lann

which induces an injection

(3.7.33) H0(Ean[D],OEan[D]) ↪→ lim
n≥0

H0(Ean[D], (ianD )∗Lann ).

The zero section ε : S → E[D] of E[D]/S induces by analytification the map εan : San → Ean[D]

which is an open and closed immersion. From the decomposition

Ean[D] = (Ean[D] − {εan})q {εan}

we can define precisely as in the algebraic situation the global sectionD2·1{εan}−1Ean[D] ofOEan[D]

and may view it as an element of the right side of (3.7.33).
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The fact that the upper row of (3.7.27) maps poldR,D2·1{ε}−1E[D]
to D2 · 1{ε} − 1E[D] (cf. (3.7.7))

together with the commutativity of (3.7.27) and of

H0(E[D],OE[D]) //

can

��

limn≥0H
0(E[D], i∗DLn)

can

��
H0(Ean[D],OEan[D]) // limn≥0H

0(Ean[D], (ianD )∗Lann )

(with horizontal maps given by (3.7.3) resp. (3.7.33)) obviously implies that

(poldR,D2·1{ε}−1E[D]
)an

under the lower row of (3.7.27) goes to

D2 · 1{εan} − 1Ean[D].

As we already explained (at (3.7.26)) that this row is injective we arrive at the following

Theorem 3.7.5
The analytification (poldR,D2·1{ε}−1E[D]

)an of the system poldR,D2·1{ε}−1E[D]
(cf. Def. 3.7.4) is the

unique element in lim
n≥0

H1
dR(UanD ,Lann ) which under the lower row of (3.7.27):

lim
n≥0

H1
dR(UanD ,Lann )→ lim

n≥0
Γ(San, H1

dR(UanD /San,Lann ))
resD−−−→ lim

n≥0
H0(Ean[D], (ianD )∗Lann )

goes to D2 · 1{εan} − 1Ean[D].

It is certainly worth mentioning that this characterization can also be used to determine the D-variant
of the polylogarithm algebraically:

Remark 3.7.6
Combining the injectivity of the lower row of (3.7.27) and of its left vertical arrow (cf. the explana-
tions at (3.7.26) and (3.7.28)) we obtain in addition:
The system poldR,D2·1{ε}−1E[D]

is the unique element in lim
n≥0

H1
dR(UD/Q,Ln) whose analytification

(i.e. image under the left vertical arrow of (3.7.27)) goes to D2 · 1{εan} − 1Ean[D] under the lower
row of (3.7.27).

3.8 The D-variant of the polylogarithm for the universal
family

3.8.1 The description of the analytified D-variant of the polylogarithm

Fix an integer D > 1.

Essentially by recapitulating the results of 3.6.1 we explain how the sections pDn (z, τ) define a system

pD ∈ lim
n≥0

H1
dR(UanD ,Lann ).
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We then state one of the main theorems of this work, namely the equality

(poldR,D2·1{ε}−1E[D]
)an = pD.

Apart from laborious technical aspects - arising from the need to chase through the chain of identi-
fications (3.7.32) - there are two crucial ingredients for the proof of this identity: the first is Thm.
3.7.5 which characterizes the left side by a computable analytic residue condition, and the second is
the precise information we have about the singularities and residues of the functions sDk (z, τ).

In our notation for analytifications we again no longer tacitly consider a fixed connected component
but really mean the full objects with all components, provided that we don’t explicitly say otherwise.

To begin with, recall that in 3.6.1 we used the coefficient functions appearing in the Laurent expansion

D2 · J(z,−w, τ)−D · J
(
Dz,−w

D
, τ
)

= sD0 (z, τ) + sD1 (z, τ)w + ...

to build for each n ≥ 0 the following vectors of length 2 · r(n) resp. r(n):

pDn (z, τ) =



sD0 (z, τ)

sD1 (z, τ)
...

sDn (z, τ)

0
...
...
0

− 1
2πis

D
1 (z, τ)

− 2
2πis

D
2 (z, τ)
...

−n+1
2πi s

D
n+1(z, τ)

0
...
...
0



resp. qDn (z, τ) =



sD0 (z, τ)

sD1 (z, τ)
...

sDn (z, τ)

0
...
...
0


.

Using Thm. 3.6.2 resp. Prop. 3.6.1 uniformly for each connected component of Ean, we obtain from
the vectors pDn (z, τ) resp. qDn (z, τ) an element in

ker

(
Γ(UanD ,Ω1

Ean ⊗OEan L
an
n )

(∇ann )1−−−−→ Γ(UanD ,Ω2
Ean ⊗OEan L

an
n )

)
resp. in

Γ(UanD ,Ω1
Ean/San ⊗OEan L

an
n ).

Definition 3.8.1
(i) Via the canonical map of (3.7.29) resp. (3.7.31) we receive for each n ≥ 0 an induced element in

H1
dR(UanD ,Lann ) resp. Γ(San, H1

dR(UanD /San,Lann ))
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which we denote by pDn resp. qDn .
(ii) We write pD resp. qD for the inverse system

pD := (pDn )n≥0 ∈ lim
n≥0

H1
dR(UanD ,Lann ) resp. qD := (qDn )n≥0 ∈ lim

n≥0
Γ(San, H1

dR(UanD /San,Lann )).

For part (ii) of the previous definition one observes that it follows from Lemma 3.6.4 that the pDn resp.
qDn are indeed compatible under the respective transition maps.

Lemma 3.8.2
Under the natural map of (3.7.25):

lim
n≥0

H1
dR(UanD ,Lann )→ lim

n≥0
Γ(San, H1

dR(UanD /San,Lann ))

the system pD goes to the system qD.

Proof. This follows from Lemma 3.6.3 and the explanation subsequent to (3.7.31).

Recalling the notation

(poldR,D2·1{ε}−1E[D]
)an =

(
polndR,D2·1{ε}−1E[D]

)an
n≥0
∈ lim
n≥0

H1
dR(UanD ,Lann )

for the analytification of the system poldR,D2·1{ε}−1E[D]
(cf. Def. 3.7.4), we are now ready to formu-

late and to prove the first main result of this section.

Theorem 3.8.3
We have the following equality of inverse systems in lim

n≥0
H1

dR(UanD ,Lann ):

(poldR,D2·1{ε}−1E[D]
)an = pD.

Proof. The proof is long and involved. We therefore divide it into several steps.

Step 1: (Reduction of the problem and recapitulation of the setup)

By the characterization of (poldR,D2·1{ε}−1E[D]
)an in Thm. 3.7.5 it suffices to show that pD is sent to

D2 · 1{εan} − 1Ean[D] under the lower row of (3.7.27):

lim
n≥0

H1
dR(UanD ,Lann )→ lim

n≥0
Γ(San, H1

dR(UanD /San,Lann ))
resD−−−→ lim

n≥0
H0(Ean[D], (ianD )∗Lann ).

Because of Lemma 3.8.2 we thus need to show the following equation in lim
n≥0

H0(Ean[D], (ianD )∗Lann ):

(3.8.1) resD(qD) = D2 · 1{εan} − 1Ean[D].

For each n ≥ 0 let us write

resDn : Γ(San, H1
dR(UanD /San,Lann ))→ Γ(San, H0

dR(Ean[D]/San, (ianD )∗Lann ))

= H0(Ean[D], (ianD )∗Lann )

for the analytic residue map in global San-sections as defined in (3.7.20), such that resD = (resDn )n≥0.
In order to obtain (3.8.1) we then have to show that resDn (qDn ) equals the image of the globalOEan[D]-
section D2 · 1{εan} − 1Ean[D] under the injection

(3.8.2) H0(Ean[D],OEan[D]) ↪→ H0(Ean[D], (ianD )∗Lann )
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which in turn is induced by taking global sections in the chain of maps (3.7.32):

(3.8.3)

OEan[D] ↪→ (πanE[D])
∗

n∏
k=0

Symk
OSanH

an ' (πanE[D])
∗(εan)∗Lann ' (ianD )∗([D]an)∗Lann ' (ianD )∗Lann ;

observe that the monomorphism in (3.8.3) is 1
n! -times the canonical inclusion (cf. (3.7.2)).

Recall from 3.7.2 that the map resDn comes about as follows: one has the diagram of complexes

Ω•Ean/San(log(Ean[D]))(Lann )

))

// (janD )∗(Ω
•
UanD /San((Lann )|UanD ))

(ianD )∗(i
an
D )∗Lann [−1]

where the horizontal arrow is the natural homomorphism and the left map is given in degree one by

Ω1
Ean/San(log(Ean[D]))⊗OEan L

an
n → (ianD )∗(i

an
D )∗Lann ,

dt(i) ⊗ l 7→ 0 resp.
dt(i)

t(i)
⊗ l 7→ (ianD )∗(l)

(3.8.4)

whenever (Vi)i is an open covering of Ean (in the analytic topology) with complex coordinate func-
tions {t(i), s(i)} such that dt(i) freely generates Ω1

Ean/San over OVi and Ean[D] ∩ Vi is empty resp.
- if it is not empty - is cut out by t(i) = 0.
As the horizontal arrow is a quasi-isomorphism (cf. (3.7.18)) and janD is Stein, the diagram yields by
applying R1πan∗ a map

H1
dR(UanD /San,Lann )

∼−→ R1πan∗ (Ω•Ean/San(log(Ean[D]))(Lann ))→ (πanE[D])∗(i
an
D )∗Lann

which in global San-sections gives resDn .

It is immediately clear that in order to compute resDn (qDn ) we can consider a fixed connected compo-
nent of Ean/San; hence, from now on until the end of the proof we restrict to such a component and
commit the familiar abuse of notation by leaving away its index. We then write again

pr : C×H→ Ean = (Z2 × Γ(N))\(C×H)

for the universal covering map.

Step 2: (Construction of charts for the residue computation)

Recall that Z2×Γ(N) acts properly discontinuously and freely on C×H, such that Ean is a complex
manifold in the well-known natural way: a complex atlas is constructed by local inverses of pr.
As usual, charts of Ean are always charts of the associated maximal atlas.

Let us now construct an open covering of Ean together with local coordinate charts which satisfy
the conditions recalled at the end of Step 1. For this we proceed as follows:
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If P is a point in Ean−Ean[D] we choose an open neighborhood V of P such that V ∩Ean[D] = ∅,
there is an open set V ′ ⊆ C×H projecting bijectively to V and such that Ω1

Ean/San is freely generated
over OV by the differential of the first coordinate function of (pr|V ′)

−1.
This is the coordinate system which we fix around P; it satisfies the conditions recalled in Step 1.

Next, we need to choose an adapted chart for each point P0 in Ean ∩ Ean[D].

The first step is to select for every point of Ean ∩ Ean[D] a representative in C×H as follows:
For each point of San we choose and keep fixed an orbit representative in H. Then, if P0 is a point
in Ean ∩ Ean[D] it is easy to see that it has the form P0 = [(m0

D τ0 + n0

D , τ0)] for some m0, n0 ∈ Z,
where τ0 is the representative of Q0 := πan(P0) we have just fixed. One further checks that all other
representatives of P0 with τ0 in the second component are obtained by replacing m0 resp. n0 by
m0 +m′0D resp. n0 + n′0D with m′0, n

′
0 ∈ Z. In the set of integers m0 + Z ·D resp. n0 + Z ·D we

take the smallest one of those which are greater or equal to zero.
Altogether, this procedure fixes for each P0 ∈ Ean ∩ Ean[D] uniquely a representative in C×H.
It is worth noting that the P0 which are already contained in εan(San) ⊆ Ean[D] then are represented
by (0, τ0), where τ0 is associated with Q0 = πan(P0) as before.

We now come to construct the desired chart around each point P0 ∈ Ean ∩ Ean[D].
For this we take the just fixed representative (m0

D τ0 + n0

D , τ0) of P0 in C×H and choose an open set
V ′0 ⊆ C×H containing it and projecting bijectively to an open neighborhood V0 of P0 in Ean.
The subsequent Lemma 3.8.4 claims the existence of a certain open neighborhood U ′0 in C×H of the
point (m0

D τ0 + n0

D , τ0), and we can assume (by shrinking V ′0 and V0 if necessary) that V0 and V ′0 are
as just chosen and that moreover V ′0 is contained in this U ′0.
The composition of (pr|V ′0 )−1 with

ψ0 : V ′0 → C×H, (z, τ) 7→
(
z − m0

D
τ − n0

D
, τ
)

gives a chart

(t0, s0) : V0
∼−→ im(ψ0) ⊆ C×H ⊆ C× C.

This is not yet the desired one; however, before continuing the construction we first show

(3.8.5) Ean[D] ∩ V0 = {Q ∈ V0| t0(Q) = 0}.

The inclusion "⊇" is straightforward. On the other hand, if a point in Ean[D] ∩ V0 is given, then
its inverse image under (pr|V ′0 )−1 lies in pr−1(Ean[D]) ∩ V ′0 , hence is of the form (mD τ + n

D , τ) for
some τ ∈ H and m,n ∈ Z. But because V ′0 by choice is contained in U ′0 if follows that m = m0 and
n = n0 (cf. Lemma 3.8.4). As ψ0(m0

D τ+ n0

D , τ) = (0, τ) we have shown the inclusion "⊆" in (3.8.5).

To proceed with the construction of the chart around P0 we note that im(ψ0) clearly is an open
neighborhood of (0, τ0) and that we may further shrink V0, V

′
0 to obtain a chart around P0 writing as

(3.8.6) (t0, s0) : V0
∼−→ V ′0

∼−→ Bε0(0)×Bδ0(τ0)24

24For any w0 ∈ C and s > 0 we use the standard notation Bs(w0) for the open ball Bs(w0) := {z ∈ C| |z − w0| < s}.
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for some ε0, δ0 > 0, where again the first arrow is the inverse of the projection and the second is
given by (z, τ) 7→ (z − m0

D τ − n0

D , τ). We can assume δ0 to be so small that Bδ0(τ0) ⊆ H projects
bijectively to an open neighborhood of the point πan(P0) = [τ0] ∈ San.
Choose a map as in (3.8.6) with all of the mentioned properties; note from (3.8.5) that Ean[D] ∩ V0

hereunder corresponds to (0)×Bδ0(τ0).
This is the chart we fix around P0 ∈ Ean ∩ Ean[D]; it satisfies the conditions recalled in Step 1.

In sum, we have constructed an open covering of Ean together with local coordinates adapted for
the residue computation (3.8.4).

Step 3: (The residue computation)

Now consider the section

qDn (z, τ) =



sD0 (z, τ)

sD1 (z, τ)
...

sDn (z, τ)

0
...
...
0


∈ Γ(UanD ,Ω1

Ean/San ⊗OEan L
an
n )

which induces the element qDn ∈ Γ(San, H1
dR(UanD /San,Lann )) (cf. Def. 3.8.1).

Crucial for the calculation of resDn (qDn ) will be our precise knowledge of the singularity and residue
behaviour of the functions sDk (z, τ), k ≥ 0, namely (cf. (3.3.23)):

(3.8.7)

sDk has at worst simple poles along z = xτ + y (x, y ∈ Z, τ ∈ H),with residue (D2 − 1) · (2πix)k

k!
,

and along z =
m

D
τ +

n

D
(with D not simultaneously dividing m and n),with residue −

(2πim
D

)k

k!
.

Using the coordinate charts of Step 2, the fact that sDk (z, τ) has at worst simple poles along each point
m0

D τ + n0

D (with τ ∈ H,m0, n0 ∈ Z) implies that qDn (z, τ) lies in the image of the canonical map

Γ(Ean,Ω1
Ean/San(log(Ean[D]))⊗OEan L

an
n )→ Γ(Ean, (janD )∗(Ω

1
UanD /San ⊗UanD (Lann )|UanD ))

= Γ(UanD ,Ω1
Ean/San ⊗Ean L

an
n ).

(3.8.8)

For this one needs to be aware of how the vector qDn (z, τ), which a priori is a section in

Γ(pr−1(UanD ),pr∗(Ω1
Ean/San ⊗OEan L

an
n )),

gives - by its invariance under deck transformations and our fixed trivialization for the pullback bundle
pr∗(Ω1

Ean/San ⊗OEan L
an
n ) - a corresponding section in

Γ(UanD ,Ω1
Ean/San ⊗OEan L

an
n ) :
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namely, by using the locally bijective projection pr and glueing; then, using the charts in Step 2, one
enfolds the definition of logarithmic poles (cf. 3.7.2) and sees immediately that the claim follows
from the mentioned property of the sDk (z, τ).

But (3.8.8) implies (by recalling the diagramatic definition of resDn in Step 1 and by straightforward
compatibilities) that resDn (qDn ) is nothing else than the image of qDn (z, τ) under the map

(3.8.9) Γ(Ean,Ω1
Ean/San(log(Ean[D]))⊗OEan L

an
n )→ H0(Ean[D], (ianD )∗Lann )

defined by (3.8.4) in global Ean-sections.

The last is accessible by a direct computation, using the concrete coordinate charts of Step 2:

Namely, for each point P0 ∈ Ean[D] with its fixed representative (m0

D τ0 + n0

D , τ0) in C×H let

(t0, s0) : V0
∼−→ V ′0

∼−→ Bε0(0)×Bδ0(τ0)

be the local coordinate of Ean around P0, as defined in (3.8.6). By the construction in Step 2 there
are two possibilities for the representative of P0: it is given by (0, τ0) iff P0 ∈ εan(San) ⊆ Ean[D]

and by (m0

D τ0 + n0

D , τ0), with D not dividing both m0 and n0, otherwise.
Now, there exist unique sections ẽ resp. f̃ resp. g̃ of (Lan1 )|V0

over V0 corresponding under V0
∼−→ V ′0

to the trivializing sections e|V ′0 resp. f|V ′0 resp. g|V ′0 of (pr∗Lan1 )|V ′0 .
Then the residue formulas in (3.8.7), the definition of the trivialization for pr∗(Ω1

Ean/San⊗OEan L
an
n )

as well as the definition and property (3.8.5) of our chart imply:
(3.8.9) maps qDn (z, τ) to a section in H0(Ean[D], (ianD )∗Lann ) whose restriction to Ean[D] ∩ V0 is


(D2 − 1) ·

∑n
k=0

(2πi·0)k

k! · (ẽ|Ean[D]∩V0 )n−k·(f̃|Ean[D]∩V0 )k

(n−k)! = (D2 − 1) · (ẽ|Ean[D]∩V0 )n

n!

resp.

−
∑n
k=0

(2πi
m0
D )k

k! · (ẽ|Ean[D]∩V0 )n−k·(f̃|Ean[D]∩V0 )k

(n−k)!

if
P0 ∈ εan(San) ⊆ Ean[D]

resp.

P0 ∈ Ean[D]− εan(San).

As explained at the beginning, the theorem follows if we can show that the image of the preceding
element of H0(Ean[D], (ianD )∗Lann ) under the chain of identifications

(ianD )∗Lann ' (ianD )∗([D]an)∗Lann ' (πanE[D])
∗(εan)∗Lann ' (πanE[D])

∗
n∏
k=0

Symk
OSanH

an

is equal to 1
n! · (D

2 · 1{εan} − 1Ean[D]), the last naturally viewed as global Ean[D]-section of the
outmost right term in the chain by considering the zeroth component of the product.

Step 4: (Local considerations)
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As we need to verify equality of two well-defined sections of a sheaf on Ean[D], we may work
locally on Ean[D]; it hence suffices to construct for each fixed point P0 ∈ Ean[D] an open neighbor-
hood of P0 in Ean[D] and to show that the two sections in question hereupon coincide.

At first, we have an open neighborhood V0 of P0 in Ean, appearing in the definition of the coor-
dinate chart (3.8.6) around P0:

(3.8.10) V0
∼−→ V ′0

∼−→ Bε0(0)×Bδ0(τ0)

with Ean[D]∩V0 corresponding to (0)×Bδ0(τ0) and Bδ0(τ0) ⊆ H projecting bijectively to an open
neighborhood of πan(P0) = [τ0] ∈ San. Here, (m0

D τ0 + n0

D , τ0) is as usual the representative of P0

in C×H, fixed as explained in Step 2.

We obtain the desired open neighborhood of P0 inEan[D] by possibly shrinking the V0 of (3.8.10) to
a smaller open neighborhood of P0 in Ean and then intersecting with Ean[D]. This goes as follows:
As the point [D]an(P0) is in εan(San) ⊆ Ean[D] it has a chart (defined as in (3.8.6)) of the form

(3.8.11) W0
∼−→W ′0 = Bµ0

(0)×Bν0(τ0)

withEan[D]∩W0 corresponding to (0)×Bν0(τ0) andBν0(τ0) ⊆ H projecting bijectively to an open
neighborhood of πan([D]an(P0)) = [τ0] ∈ San. As [D]an(P0) lies in the zero section we have to
use (in the definition of the chart, cf. Step 2) its representative (0, τ0) in C×H, and hence the second
arrow in (3.8.11) really is just the identity, by definition of the charts in Step 2 (cf. (3.8.6)).
We can now clearly shrink V0 to a possibly smaller open neighborhood T0 of P0 in Ean such that we
again have a chain as in (3.8.10):

(3.8.12) T0
∼−→ T ′0

∼−→ Br0(0)×Bs0(τ0)

with properties as before and additionally satisfying that the image of Br0(0) × Bs0(τ0) under
(z, τ) 7→ (Dz, τ) is contained in Bµ0

(0)×Bν0(τ0), i.e. Dr0 ≤ µ0, s0 ≤ ν0.
Then Ean[D] ∩ T0 is the open neighborhood of P0 in Ean[D] which we wanted to construct.
Note that T0 is contained in the coordinate region V0 of P0 which was fixed in Step 2 and used for the
residue computation in Step 3.

We use (3.8.12) and its properties to get a chart for P0 in Ean resp. in Ean[D] as well as for
πan(P0) = [τ0] in San; we use (3.8.11) to get a chart for [D]an(P0) = εan([τ0]) = [(0, τ0)] in Ean.

To avoid confusion here: the residue computation in Step 3 was done with a fixed family of charts
covering all of Ean, and this computation is over. The four charts introduced one moment ago serve
a different purpose and are entirely tied to the fixed point P0 ∈ Ean[D].
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One then verifies directly from the definitions that in these charts the maps

πan : Ean → San

εan : San → Ean

ianD : Ean[D]→ Ean

πanE[D] : Ean[D]→ San

[D]an : Ean → Ean

express as

πan : Br0(0)×Bs0(τ0)→ Bs0(τ0), (z, τ) 7→ τ

εan : Bs0(τ0)→ Bµ0(0)×Bν0(τ0), τ 7→ (0, τ)

ianD : Bs0(τ0)→ Br0(0)×Bs0(τ0), τ 7→ (0, τ)

πanE[D] : Bs0(τ0)→ Bs0(τ0), τ 7→ τ

[D]an : Br0(0)×Bs0(τ0)→ Bµ0
(0)×Bν0(τ0), (z, τ) 7→ (Dz, τ)

Step 5: (Coordinate transport of the situation)

As explained at the end of Step 3 and the beginning of Step 4 it now remains to show that
(D2 − 1) · (ẽ|Ean[D]∩T0 )n

n!

resp.

−
∑n
k=0

(2πi
m0
D )k

k! · (ẽ|Ean[D]∩T0 )n−k·(f̃|Ean[D]∩T0 )k

(n−k)!

under the following chain of maps evaluated in (Ean[D] ∩ T0)-sections:

(3.8.13) (ianD )∗Lann ' (ianD )∗([D]an)∗Lann ' (πanE[D])
∗(εan)∗Lann ' (πanE[D])

∗
n∏
k=0

Symk
OSanH

an

goes to 1
n! · (D

2 · 1{εan}∩T0
− 1Ean[D]∩T0

); recall here that T0 ⊆ V0.

We transport the whole situation via the four charts introduced at the very end of Step 4.

Write
Ln, e, f, g resp. H

to denote the pullback to Br0(0)×Bs0(τ0) resp. to Bs0(τ0) of

(Lann )|T0
, ẽ|T0

, f̃|T0
, g̃|T0

resp. of (the adapted restriction of)Han

via the chart around P0 in Ean resp. around πan(P0) = [τ0] in San introduced in Step 4.
Recalling how ẽ, f̃ , g̃ and (3.8.12) were defined (cf. Steps 3 and 4) we can say this differently:
Namely, Ln, e, f, g are the pullback of (pr∗Lann )|T ′0 , e|T ′0 , f|T ′0 , g|T ′0 along

Br0(0)×Bs0(τ0)
∼−→ T ′0, (z, τ) 7→

(
z +

m0

D
τ +

n0

D
, τ
)
.
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Note that because the second arrow in (3.8.11) is the identity we don’t have to introduce extra notation
when performing the analogous procedure with respect to the chart around DP0 in Ean.
For the induced maps between the various coordinate regions (recorded explicitly at the end of Step
4) we simply keep notations unchanged; note in particular that then πanE[D] = idBs0 (τ0).

The restriction of the chain (3.8.13) to the coordinate region Ean[D] ∩ T0 ⊆ Ean[D] then trans-
forms into the following series of isomorphisms of OBs0 (τ0)-modules:

(ianD )∗Ln ' (ianD )∗([D]an)∗((pr∗Ln)|Bµ0 (0)×Bν0 (τ0)) '

' (εan)∗((pr∗Ln)|Bµ0 (0)×Bν0 (τ0)) '
n∏
k=0

Symk
OBs0 (τ0)

H.
(3.8.14)

We claim that under the first isomorphism

(ianD )∗L1 ' (ianD )∗([D]an)∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0))

of (3.8.14) for n = 1 the section (ianD )∗(e) resp. (ianD )∗(f) of the left side corresponds to the section

(ianD )∗([D]an)∗(e|Bµ0 (0)×Bν0 (τ0) − 2πim0 · f|Bµ0 (0)×Bν0 (τ0))

resp.
(ianD )∗([D]an)∗(D · f|Bµ0 (0)×Bν0 (τ0))

of the right side.
We now insert a digression in which we give a detailed justification for the previous claim; it may be
convenient for the stream of reading if one first jumps to Step 7 to see how the proof continues and
later returns to the arguments of Step 6.

Step 6: (Insertion I)

To show the claim at the end of Step 5 it suffices to see that under the isomorphism ofOBr0 (0)×Bs0 (τ0)-
modules

L1 ' ([D]an)∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0)),

naturally induced25 by the invariance isomorphism

(3.8.15) Lan1 ' ([D]an)∗Lan1 ,

the section e resp. f corresponds to

([D]an)∗(e|Bµ0 (0)×Bν0 (τ0) − 2πim0 · f|Bµ0 (0)×Bν0 (τ0))

25This means that one restricts the isomorphism Lan1 ' ([D]an)∗Lan1 to T0, takes its pullback along the coordinate chart
T0 ' Br0 (0) × Bs0 (τ0) of P0 in Ean and uses the following commutative diagram with right vertical arrow given by the
chart (3.8.11) of DP0 in Ean; note that this last chart (by contrast to the first one) is just induced by the projection pr.

Br0 (0)×Bs0 (τ0)
[D]an // Bµ0 (0)×Bν0 (τ0)

T0

[D]an //

∼

W0.

∼ pr
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resp.

([D]an)∗(D · f|Bµ0 (0)×Bν0 (τ0)).

But we have a big commutative diagram

Br0(0)×Bs0(τ0)
[D]an // Bµ0

(0)×Bν0(τ0)

T ′0
λ //

∼

Bµ0(0)×Bν0(τ0)

id

T0
[D]an //

∼pr

W0

∼ pr

in which the vertical arrows are given by (3.8.12) resp. (3.8.11) and the map λ is defined by

λ(z, τ) := (Dz −m0τ − n0, τ).

It is hence enough to show that under the isomorphism

(pr∗Lan1 )|T ′0 ' λ
∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0)),

induced by (3.8.15) and the lower commutative square, the section e|T ′0 resp. f|T ′0 corresponds to

λ∗(e|Bµ0 (0)×Bν0 (τ0) − 2πim0 · f|Bµ0 (0)×Bν0 (τ0))

resp.

λ∗(D · f|Bµ0 (0)×Bν0 (τ0)),

because one can then apply pullback via the upper left vertical arrow of the diagram.

The last in turn follows if we can verify the following statement: under the isomorphism

pr∗Lan1 ' σ∗pr∗Lan1 ,

induced by (3.8.15) and the commutative diagram

C×H

pr

��

σ // C×H

pr

��
Ean

[D]an // Ean

the section e resp. f corresponds to

σ∗(e− 2πim0 · f)

resp.

σ∗(D · f);

here, we set

σ(z, τ) := (Dz −m0τ − n0, τ).

We already encountered this kind of problem during the proof of Prop. 3.5.9, and using formula (∗∗)
of that proof for N replaced by D (justified in the supplements subsequent to Prop. 3.5.9) our present
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claim is verified as follows:

First, one recalls the definition of the trivializing section e resp. f of pr∗Lan1 over C×H:

e = k−1
1 (t)⊗ 1 resp. f = k−1

1 (wt)⊗ 1,

where one uses the OC×H-linear isomorphism of (3.5.6):

k−1
1 P̃ ⊗k−1

1 OC×C2×H
(OC×H ⊕OC×H · η∨ ⊕OC×H · ω∨) = k∗1P̃ ' τ∗1Pan1 ' pr∗Lan1

and the trivializing section t of P̃ on C× C2 ×H:

OC×C2×H
∼−→ P̃ 1 7→ t =

1

J(z,−w, τ)
⊗ ω∨can.

Second, if one sets

ϕ(z, τ) := (z −m0τ − n0, τ) and [̃D](z, τ) := (Dz, τ),

then σ = ϕ ◦ [̃D] and the isomorphism

σ∗pr∗Lan1 ' pr∗Lan1

of above equals the composition

σ∗pr∗Lan1 ' [̃D]
∗
ϕ∗pr∗Lan1 ' [̃D]

∗
pr∗Lan1 ' pr∗Lan1 ,

where the second identification is due to pr ◦ ϕ = pr and the third is induced by (3.8.15) together
with the commutative diagram

C×H

pr

��

[̃D] // C×H

pr

��
Ean

[D]an // Ean

The section σ∗(e) of σ∗pr∗Lan1 maps to [̃D]
∗
(e+2πim0 ·f) under the first two arrows of the previous

chain because of the equality

1

J(Dz −m0τ − n0,−w, τ)
⊗ ω∨can = e2πim0w · 1

J(Dz,−w, τ)
⊗ ω∨can

and the definition of k1. Furthermore, in (∗∗) of Prop. 3.5.9 (and the supplements after its proof) we
have seen that [̃D]

∗
(e+ 2πim0 · f) goes to e+ 2πim0

D · f under the last arrow of the chain. Arguing
analogously for f one sees that σ∗(f) goes to 1

D · f under the chain.

Hence, under
σ∗pr∗Lan1

∼−→ pr∗Lan1

the section σ∗(e) resp. σ∗(f) goes to e+ 2πim0

D · f resp. 1
D · f . This clearly implies that under

pr∗Lan1
∼−→ σ∗pr∗Lan1

the section e resp. f goes to σ∗(e− 2πim0 · f) resp. σ∗(D · f), as desired.
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Step 7: (The images under the final isomorphism)

Resuming the discussion prior to Step 6 we get that the image of (ianD )∗(e) resp. (ianD )∗(f) under

(ianD )∗L1 ' (ianD )∗([D]an)∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0)) ' (εan)∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0))

is given by
(εan)∗(e|Bµ0 (0)×Bν0 (τ0) − 2πim0 · f|Bµ0 (0)×Bν0 (τ0))

resp. by
(εan)∗(D · f|Bµ0 (0)×Bν0 (τ0)).

We claim that the images of these sections under the final isomorphism

(3.8.16) (εan)∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0)) ' OBs0 (τ0) ⊕ H

of the chain (3.8.14) are the sections 1Bs0 (τ0)−2πim0 · (η∨)|Bs0 (τ0) resp. D · (η∨)|Bs0 (τ0); note here
that if we write

p : H→ San = Γ(N)\H

for the projection, then H equals (p∗Han)|Bs0 (τ0), and recall that η∨ is one of the two fixed trivializing
sections {η∨, ω∨} for p∗Han (cf. (3.5.1)).
We want to give a detailed verification of the preceding claim and thus include another intermediate
step in which this is carried out; again, it might be reasonable to first proceed directly with the con-
clusion of the proof in Step 9 and to recur to Step 8 later.

Step 8: (Insertion II)

To show the preceding claim note first that (3.8.16) arises by construction from the isomorphisms

(3.8.17) (εan)∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0)) ' (p∗(εan)∗Lan1 )|Bs0 (τ0)

and

(3.8.18) (p∗(εan)∗Lan1 )|Bs0 (τ0) ' (p∗(OSan ⊕Han))|Bs0 (τ0).

Here, (3.8.17) is the natural identification, in an obvious way due to the commutative diagram

Bs0(τ0)
εan //

p ∼
��

Bµ0(0)×Bν0(τ0)

pr∼
��

p(Bs0(τ0))
εan // W0

and (3.8.18) comes from pulling back via p the splitting (εan)∗Lan1 ' OSan⊕Han and then restricting
to Bs0(τ0). This and the fact that the upper arrow εan of the preceding diagram is εan(τ) = (0, τ)

(by Step 4) directly implies that one obtains (3.8.16) alternatively as follows: take the pullback of the
splitting (εan)∗Lan1 ' OSan ⊕Han along p and use the commutative diagram

H ε̃ //

p

��

C×H

pr

��
San

εan // Ean
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where ε̃(τ) := (0, τ), to get

(3.8.19) (ε̃)∗pr∗Lan1 ' OH ⊕ p∗Han.

Restricting this to Bs0(τ0) then yields (after obvious canonical identifications which we don’t write
out) the isomorphism (3.8.16).
Hence, to deduce our claim it clearly suffices to see that (3.8.19) sends the section (ε̃)∗(e) resp.
(ε̃)∗(f) to 1H resp. to η∨. This in turn was shown in the proof of Prop. 3.5.8.

Step 9: (Conclusion of the proof)

Altogether, we have shown in the last four steps that the chain (3.8.14) for n = 1:

(ianD )∗L1 ' (ianD )∗([D]an)∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0)) ' (εan)∗((pr∗L1)|Bµ0 (0)×Bν0 (τ0)) ' OBs0 (τ0)⊕H

sends the section (ianD )∗(e) resp. (ianD )∗(f) to 1Bs0 (τ0)−2πim0 ·(η∨)|Bs0 (τ0) resp. toD ·(η∨)|Bs0 (τ0).

Now observe that under our chart Ean[D] ∩ T0 ' Bs0(τ0) the sheaves ((ianD )∗(Lan1 ))|Ean[D]∩T0

and (ianD )∗L1 as well as their sections ẽ|Ean[D]∩T0
, f̃|Ean[D]∩T0

and (ianD )∗(e), (ianD )∗(f) correspond
to each other. Likewise, the sheaves OEan[D]∩T0

⊕ (HanEan[D])|Ean[D]∩T0
and OBs0 (τ0) ⊕ H as well

as their sections 1Ean[D]∩T0
, υ and 1Bs0 (τ0), (η

∨)|Bs0 (τ0) correspond.
Here, the auxiliary notation υ is used for the (Ean[D] ∩ T0)-section of (HanEan[D]) = (πanE[D])

∗Han

induced by the pullback of (η∨)|Bs0 (τ0) via

Ean[D] ∩ T0

πanE[D]−−−→ p(Bs0(τ0))
∼−→ Bs0(τ0).

All of this is checked directly from the definitions.

We thus conclude that the chain

(ianD )∗Lan1 ' (ianD )∗([D]an)∗Lan1 ' (πanE[D])
∗(εan)∗Lan1 ' OEan[D] ⊕HanEan[D]

maps the (Ean[D]∩T0)-section ẽ|Ean[D]∩T0
resp. f̃|Ean[D]∩T0

to 1Ean[D]∩T0
−2πim0·υ resp. toD·υ.

We can now finally determine the image of
(D2 − 1) · (ẽ|Ean[D]∩T0 )n

n!

resp.

−
∑n
k=0

(2πi
m0
D )k

k! · (ẽ|Ean[D]∩T0 )n−k·(f̃|Ean[D]∩T0 )k

(n−k)!

under the chain (3.8.13) in (Ean[D] ∩ T0)-sections: namely, with what we have just deduced it is:
(D2 − 1) · (1Ean[D]∩T0−2πim0·υ)n

n!

resp.

−
∑n
k=0

(2πi
m0
D )k

k! · (1Ean[D]∩T0−2πim0·υ)n−k·(D·υ)k

(n−k)! .

Recall from Step 3 that the two cases distinguish the situation that P0 ∈ εan(San) resp. that
P0 ∈ Ean[D] − εan(San); recall moreover from Step 2 that in terms of the (permanently fixed)
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representative (m0

D τ0 + n0

D , τ0) of P0 this is equivalent to m0 = 0 = n0 resp. to D not dividing
simultaneously m0 and n0. Hence, the first entry of the preceding bracket is

(D2 − 1) ·
(1Ean[D]∩T0

− 2πi · 0 · υ)n

n!
=

(D2 − 1)

n!
· 1Ean[D]∩T0

,

and the second entry is computed as

−
n∑
k=0

(2πim0

D )k

k!
·

(1Ean[D]∩T0
− 2πim0 · υ)n−k · (D · υ)k

(n− k)!

=− 1

n!
·
n∑
k=0

(
n

k

)
· (2πim0 · υ)k · (1Ean[D]∩T0

− 2πim0 · υ)n−k

=− 1

n!
· 1Ean[D]∩T0

.

Observe furthermore that Ean[D] ∩ T0 is contained in εan(San) resp. in Ean[D]− εan(San).
After a short reflection we see that we have obtained precisely the section

1

n!
· (D2 · 1{εan}∩T0

− 1Ean[D]∩T0
),

which finishes the proof, as explained at the beginning of Step 5.

During the proof of the preceding theorem (namely in Step 2) we used:

Lemma 3.8.4
Let τ0 ∈ H and m0, n0 ∈ Z. Then there exists an open neighborhood U ′0 in C × H of the point

(m0

D τ0 + n0

D , τ0) ∈ C×H with the following property:

If τ ∈ H and m,n ∈ Z such that (mD τ + n
D , τ) ∈ U ′0, then m = m0 and n = n0.

Proof. Using that the D-torsion points of the real torus Z2\R2 lie discrete, one easily finds an open
neighborhood S0 of (m0

D , n0

D ) in R2 such that

S0 ∩
1

D
· Z2 =

{(m0

D
,
n0

D

)}
.

Let U ′0 be the inverse image of S0 ×H ⊆ R2 ×H under the homeomorphism

C×H ∼−→ R2 ×H, (xτ + y, τ) 7→ ((x, y), τ).

It is readily checked that (m0

D τ0 + n0

D , τ0) ∈ U ′0 and that U ′0 satisfies the property in the claim.

3.8.2 The specialization of the D-variant of the polylogarithm along
torsion sections

In this subsection we assume that the integer D > 1 additionally satisfies (D,N) = 1.
Furthermore, we fix two integers a, b which are not simultaneously divisible by N .

Formulation of the problem

Using the Drinfeld basis (e1, e2) ∈ E[N ](S) for E[N ] we have the N -torsion section

ta,b = ae1 + be2 : S → E
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which by our assumptions on D, a, b factors over the open subscheme UD = E − E[D]:

ta,b : S → UD ⊆ E.

We can then "specialize" poldR,D2·1{ε}−1E[D]
along ta,b:

Definition 3.8.5
(i) For each n ≥ 0 we let

t∗a,b(polndR,D2·1{ε}−1E[D]
) ∈ H1

dR

(
S/Q,

n∏
k=0

Symk
OSH

)
be the de Rham cohomology class obtained by pulling back

polndR,D2·1{ε}−1E[D]
∈ H1

dR(UD/Q,Ln)

along ta,b and by using the (horizontal) identifications

t∗a,bLn ' ε∗Ln '
n∏
k=0

Symk
OSH,

where the first comes from Lemma 1.4.5 and the second is the splitting ϕn.
(ii) For each n ≥ 0 we let(

t∗a,b(polndR,D2·1{ε}−1E[D]
)
)(n) ∈ H1

dR(S/Q,Symn
OSH)

be the n-th component of t∗a,b(polndR,D2·1{ε}−1E[D]
).

Remark 3.8.6
Let n ≥ 0 and 0 ≤ k ≤ n. Then, if we more generally let

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(k)

be the k-th
component of t∗a,b(polndR,D2·1{ε}−1E[D]

), we have the equality

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(k)

=
1

(n− k)!
·
(
t∗a,b(polkdR,D2·1{ε}−1E[D]

)
)(k)

in H1
dR(S/Q,Symk

OSH). This is straightforwardly derived from Lemma 1.1.5.

In order to relate the specialization of the D-variant to cohomology classes of modular forms it is
necessary to make one further identification: namely, the perfect alternating pairing

H1
dR(E/S)⊗OS H1

dR(E/S)→ OS ,

coming from composition of the cup product and the trace isomorphism tr : H2
dR(E/S)

∼−→ OS ,
furnishes a horizontal isomorphism (Poincaré duality):

(3.8.20) H1
dR(E/S)

∼−→ H, x 7→ { y 7→ tr(x ∪ y)}.

For these facts cf. also the beginning of Chapter 1.
The identification (3.8.20) and the induced isomorphism on symmetric powers will henceforth remain
fixed; in particular, we will (without change of notation) consider the classes of Def. 3.8.5 as elements

t∗a,b(polndR,D2·1{ε}−1E[D]
) ∈ H1

dR

(
S/Q,

n∏
k=0

Symk
OSH

1
dR(E/S)

)
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resp. (
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n) ∈ H1

dR(S/Q,Symn
OSH

1
dR(E/S)).

The goal of this final subsection then is to derive a concrete description for the preceding classes by
showing that they come from certain algebraic modular forms which we will determine explicitly.
Note that in view of Rem. 3.8.6 it suffices to consider the classes

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n)

.

Outline of the main result and strategy of proof

The Hodge filtration and Kodaira-Spencer map induce a canonical homomorphism

Γ
(
S, ω

⊗(n+2)
E/S

)
→ H1

dR(S/Q,Symn
OSH

1
dR(E/S))

which associates to a weakly holomorphic algebraic modular form of weight n+2 and levelN a class
in the de Rham cohomology of the modular curve in the required coefficient sheaf.
Our main theorem then will assert that under this arrow the class

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n)

is
realized by the algebraic modular form

−DF (2)
a
N ,

b
N

if n = 0

(−1)n

n! · DF
(n+2)
a
N ,

b
N

if n > 0

introduced by Kato in [Ka], Ch. I, 4.2 resp. 3.6. There, it basically appears in the construction of the
"zeta elements" in the space of modular forms; the periods of these elements are intimately related to
values of operator-valued zeta functions (cf. ibid., Ch. II, 4, esp. 4.2, 4.5 and Thm. 4.6).

Our strategy to prove this result consists in first transporting the question to the analytic category
by moving in the lower row of a natural commutative diagram

Γ
(
S, ω

⊗(n+2)
E/S

)
//

��

H1
dR(S/Q,Symn

OSH
1
dR(E/S))

��
Γ
(
San, ω

⊗(n+2)
Ean/San

)
// H1

dR(San,Symn
OSanH

1
dR(Ean/San))

The key theorem on the analytic side will exhibit the class
(

(tana,b)
∗((polndR,D2·1{ε}−1E[D]

)an
))(n)

as
the image under the lower horizontal arrow of the collection of (classical) modular forms(

(−1)n+1 · (2πi)n+2

n!
· DF (n+2)

aj
N ,

b
N

(τ)

)
j∈(Z/NZ)∗

already introduced in Def. 3.3.17. The crucial input for its proof consists in Thm. 3.8.3, where we
gave an explicit description of (polndR,D2·1{ε}−1E[D]

)an via the section pDn (z, τ), and in Thm. 3.6.5,
where we determined the specialization of this section along tana,b.
As soon as the compatibility of the occurring algebraic and analytic specializations resp. modular
forms under the vertical arrows of the diagram is ascertained26, the desired algebraic specialization

26The hereby appearing factor (2πi)n+2 is due to the fact that we will trivialize ωEan/San componentwise on the universal
covering H by the basic section {ω = dz} and not by {2πidz}, though the last is the common trivialization when dealing with
modular forms; the reason why we here don’t follow this convention is that we want to keep consistent with the trivialization
for H1

dR(Ean/San) on H by {η, ω} = {p(z, τ)dz, dz} used throughout the previous sections.
Furthermore, the additional minus sign occurring in the case n > 0 will be explained in Rem. 3.8.13.
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result then follows from the (already noted) injectivity of the right vertical arrow.

We finally apply the specialization theorem to derive for each n ≥ 0 an explicit description for the
n-th de Rham Eisenstein class evaluated at ta,b: this is an element of H1

dR(S/Q,Symn
OSH) obtained

essentially by specializing the polylogarithm class poln+1
dR along ta,b, and our result expresses it via

the algebraic modular form F
(n+2)
a
N ,

b
N

defined in [Ka], Ch. I, 3.6.

Let us now come to the detailed execution of the outlined strategy.

Analytic Hodge filtration, Kodaira-Spencer map and Poincaré duality

We stipulate that all of the following constructions in (i)-(iv) shall be performed equally on each con-
nected component of Ean/San, so we don’t need to add everywhere the word "componentwise".

(i) At first, in the same way as we trivialized in (3.4.6) and (3.4.7) the pullback of H1
dR(Ean/San)

to H by the basic sections {η, ω} = {p(z, τ)dz,dz} and received the automorphy matrix

Γ(N)×H→ GL2(C),

((
a b

c d

)
, τ

)
7→

(
1

cτ+d 0

0 cτ + d

)
,

we do now for the line bundle (the co-Lie algebra of Ean/San)

ωEan/San := (πan)∗Ω
1
Ean/San ' (εan)∗Ω1

Ean/San

by using the basic section {ω} = {dz} and obtain the factor of automorphy

Γ(N)×H→ C∗,

((
a b

c d

)
, τ

)
7→ cτ + d.

We have a well-defined injection of OSan -modules by setting

(3.8.21) ωEan/San → H1
dR(Ean/San), g(τ) 7→

(
0

g(τ)

)
.

Using for ω⊗−1
Ean/San the dual basic section {ω∨} and hence the factor of automorphy 1

cτ+d (cf. 3.2.
(iii)), we see that (3.8.21) actually sits in a split short exact sequence ("analytic Hodge filtration")

(3.8.22) 0→ ωEan/San → H1
dR(Ean/San)→ ω⊗−1

Ean/San → 0

with projection resp. section given by(
f(τ)

g(τ)

)
7→ f(τ) resp.

(
f(τ)

0

)
← [ f(τ).

(ii) Recall that according to our conventions (cf. 3.2 (iv)) the pullback of ω⊗kEan/San , k ∈ Z, to H is
trivialized by the basic section {ω⊗k} = {(dz)⊗k} and receives the factor of automorphy (cτ + d)k.
On the other hand, we had determined the pullback of Ω1

San to H to be trivialized by the basic section
{dτ} and obtained the factor (cτ + d)2 (cf. (3.5.27)).
We hence get a well-defined isomorphism of OSan -modules ("analytic Kodaira-Spencer map") by

(3.8.23) ω⊗2
Ean/San

∼−→ Ω1
San , g(τ) 7→ 1

2πi
· g(τ).
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Let us remark that (3.8.23) can equally be obtained as the composition

ω⊗2
Ean/San → ωEan/San⊗OSanH

1
dR(Ean/San)→ ωEan/San⊗OSanH

1
dR(Ean/San)⊗OSanΩ1

San →

→ ωEan/San ⊗OSan ω
⊗−1
Ean/San ⊗OSan Ω1

San → Ω1
San ,

where the first and the third arrow come from (3.8.22), the second from the Gauß-Manin connection
on H1

dR(Ean/San) and the last is the canonical isomorphism; in view of the explicit formula for the
appearing Gauß-Manin connection (cf. 3.5.4) the verification of this fact is trivial.

For each n ≥ 0 we can now define a map

(3.8.24) ω
⊗(n+2)
Ean/San → Ω1

San ⊗OSan Symn
OSanH

1
dR(Ean/San)

as being the composition

ω
⊗(n+2)
Ean/San

∼−→ ω⊗2
Ean/San ⊗OSan Symn

OSanωEan/San → Ω1
San ⊗OSan Symn

OSanH
1
dR(Ean/San),

where the first arrow is the canonical isomorphism and the second is induced by (3.8.23) and by tak-
ing the n-th symmetric power of (3.8.21). It is easy to check that (3.8.24) is actually injective.

(iii) The edge morphismE1,0
2 → E1 at the second sheet of the spectral sequence of hypercohomology

Ep,q1 = Hq(San,ΩpSan⊗OSanSymn
OSanH

1
dR(Ean/San))⇒ Ep+q = Hp+q

dR (San,Symn
OSanH

1
dR(Ean/San))

furnishes a morphism

(3.8.25)
Γ(San,Ω1

San ⊗OSan Symn
OSanH

1
dR(Ean/San))→ H1

dR(San,Symn
OSanH

1
dR(Ean/San)).

Using that San is Stein one can see that (3.8.25) is surjective with kernel given by the image of the
connection of Symn

OSanH
1
dR(Ean/San) in global sections.

If we precompose (3.8.25) with (3.8.24) in global sections we get the C-linear homomorphism

(3.8.26) Γ
(
San, ω

⊗(n+2)
Ean/San

)
→ H1

dR(San,Symn
OSanH

1
dR(Ean/San)).

(iv) Finally, recall from (3.5.1) and (3.5.2) that we trivialize the pullback ofHan ' H1
dR(Ean/San)∨

to H by the basic sections {η∨, ω∨}, giving rise to the automorphy matrix

Γ(N)×H→ GL2(C),

((
a b

c d

)
, τ

)
7→

(
cτ + d 0

0 1
cτ+d

)
.

By exchanging its diagonal entries we obtain just the automorphy matrix for H1
dR(Ean/San), hence

(3.8.27) H1
dR(Ean/San)

∼−→ H1
dR(Ean/San)∨ ' Han,

(
f(τ)

g(τ)

)
7→

(
g(τ)

−f(τ)

)
defines an isomorphism ("analytic Poincaré duality") which is easily checked to be horizontal; we will
also need the induced identification in symmetric powers

(3.8.28) Symn
OSanH

1
dR(Ean/San) ' Symn

OSanH
an, n ≥ 0.



THE D-VARIANT OF THE POLYLOGARITHM FOR THE UNIVERSAL FAMILY 257

With the identification (3.8.27) we obtain yet another viewpoint on the Kodaira-Spencer map (3.8.23):
namely, it is also equal to the composition

ω⊗2
Ean/San → H1

dR(Ean/San)⊗OSan H
1
dR(Ean/San)

→ H1
dR(Ean/San)∨ ⊗OSan H

1
dR(Ean/San)⊗OSan Ω1

San → Ω1
San ,

where the first map comes from the inclusion (3.8.21), the second from (3.8.27) together with the
Gauß-Manin connection and the last is given by evaluation. The verification of the claimed equality
is again a simple computation, observing the formula for the Gauß-Manin connection in 3.5.4.

Definition of the analytic specialization

Recall from (3.4.1)-(3.4.4) that the analytic picture for the N -torsion section ta,b is given by

Ean = (Z/NZ)∗ × (Z2 × Γ(N))\(C×H)

πan

��
San = (Z/NZ)∗ × Γ(N)\H

tana,b

WW

where
tana,b : San → UanD ⊆ Ean, (j, τ) 7→

(
j,
ajτ

N
+

b

N
, τ
)
.

We now consider the "specialization" along tana,b of the analytified D-variant (cf. Def. 3.7.4)

(poldR,D2·1{ε}−1E[D]
)an =

(
polndR,D2·1{ε}−1E[D]

)an
n≥0
∈ lim
n≥0

H1
dR(UanD ,Lann ).

This means that we introduce for each n ≥ 0 the analytic de Rham cohomology class(
(tana,b)

∗((polndR,D2·1{ε}−1E[D]
)an
))(n)

∈ H1
dR(San,Symn

OSanH
an),

given by pulling back (polndR,D2·1{ε}−1E[D]
)an via tana,b, using the chain of analytified isomorphisms

(3.8.29) (tana,b)
∗Lann ' (εan)∗Lann '

n∏
k=0

Symk
OSanH

an

and by finally taking the n-th component.
By means of (3.8.28) we will consider the preceding class (without change of notation) as an element

(3.8.30)
(

(tana,b)
∗((polndR,D2·1{ε}−1E[D]

)an
))(n)

∈ H1
dR(San,Symn

OSanH
1
dR(Ean/San)).

Before relating (3.8.30) to modular forms we want to realize that it is nothing else than the analytifi-
cation of the earlier

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n) ∈ H1

dR(S/Q,Symn
OSH

1
dR(E/S)).

Insertion: compatibility of the algebraic and analytic specialization

To formulate this in clean terms we need to consider27 the composition of canonical arrows

H1
dR(S/Q,Symn

OSH
1
dR(E/S))→ H1

dR(SC/C,Symn
O
SC
H1

dR(E/S)C)

→ H1
dR(San,Symn

OSanH
1
dR(E/S)an)→ H1

dR(San,Symn
OSanH

1
dR(Ean/San)).

(3.8.31)

27using the notation (.)C as explained at the beginning of 3.7.2
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Here, the first map comes from the natural arrows

H1
dR(S/Q,Symn

OSH
1
dR(E/S))→ H1

dR(S/Q,Symn
OSH

1
dR(E/S))⊗Q C

∼−→ H1
dR(SC/C,Symn

O
SC
H1

dR(E/S)C)

and in particular is injective (the second arrow is an isomorphism because Spec (C)/Spec (Q) is flat).
The second map is the standard one, but it is important to note that it is in fact an isomorphism:
namely, the integrable C-connection on H1

dR(E/S)C - and hence also on Symn
O
SC
H1

dR(E/S)C - is
regular: note that under the canonical identification (due to the flatness of SC/S)

H1
dR(E/S)C

∼−→ H1
dR(EC/SC)

it identifies with the Gauß-Manin connection of H1
dR(EC/SC) relative Spec (C) which is regular by

[De1], Ch. II, Thm. 7.9 and Prop. 6.14; now use ibid., Ch. II, Thm. 6.2 for the claimed isomorphy.
The final map comes from the canonical (horizontal) isomorphism (cf. the beginning of 3.5)

H1
dR(E/S)an

∼−→ H1
dR(Ean/San)

and hence is an isomorphism.
In sum, we have explained how to understand the chain (3.8.31) and seen that it is injective.

Lemma 3.8.7
For each n ≥ 0 the image of

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n)

under the injection (3.8.31) coincides

with
(

(tana,b)
∗((polndR,D2·1{ε}−1E[D]

)an
))(n)

in H1
dR(San,Symn

OSanH
1
dR(Ean/San)).

Proof. This is, except for one point, a routine check enfolding the definitions and observing a couple
of natural compatibilities: one writes down a large diagram of the various occurring de Rham co-
homology spaces, furnishes commutativity of each square by an evident compatibility argument and
deduces the claim from the resulting commutativity of the whole. As this is very straightforward we
forbear from explicating it here, but mention that there is one piece of information, different from the
routine compatibilities, which one thereby needs to make a clean conclusion:
Namely, that the analytification H1

dR(E/S)an ' Han of (3.8.20) coincides with the isomorphism
H1

dR(Ean/San) ' Han of (3.8.27) when making the identificationH1
dR(E/S)an ' H1

dR(Ean/San)

(for the last cf. the beginning of 3.5). As the dual of the preceding isomorphism was used in the defi-
nition of (3.8.27) we see that we need to verify the following statement:
Under the natural identificationH1

dR(E/S)an ' H1
dR(Ean/San) and its dualHan ' H1

dR(Ean/San)∨

the analytification
H1

dR(E/S)an
∼−→ Han

of (3.8.20) coincides with the isomorphism

H1
dR(Ean/San)

∼−→ H1
dR(Ean/San)∨,

(
f(τ)

g(τ)

)
7→

(
g(τ)

−f(τ)

)
,

where we recall that the (componentwise) pullbacks to H of the preceding two vector bundles are
trivialized by the basic sections {η, ω} = {p(z, τ)dz,dz} resp. by {η∨, ω∨}.
This in turn can be verified fiberwise over points of San and then boils down to the fact that (3.8.20)

for a single complex elliptic curve identifies the basis elements η resp. ω with −ω∨ resp. η∨, i.e. to
the standard formula tr(η∪ω) = −1 = −tr(ω∪ η) (for more details cf. [Kat4], Rem. A 1.3.13).
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The analytic specialization result

We will now describe for each n ≥ 0 the cohomology class(
(tana,b)

∗((polndR,D2·1{ε}−1E[D]
)an
))(n)

∈ H1
dR(San,Symn

OSanH
1
dR(Ean/San))

in terms of the modular forms DF
(n+2)
α,β (τ) introduced in Def. 3.3.17.

At first, according to our fixed trivialization by {ω⊗(n+2)} = {(dz)⊗(n+2)} for the pullback of
ω
⊗(n+2)
Ean/San to the universal covering H of each component of San, a section in Γ

(
San, ω

⊗(n+2)
Ean/San

)
is

tantamount to a collection (
fj(τ)

)
j∈(Z/NZ)∗

of holomorphic functions fj(τ) on H, each satisfying

fj

(
aτ + b

cτ + d

)
= (cτ + d)n+2 · fj(τ) for all

(
a b

c d

)
∈ Γ(N).

In the following, we will usually apply the same notation j for a class in (Z/NZ)∗ or for a (arbitrarily
chosen) representative for this class.

Recalling from 3.3.4 that for each integer j with (j,N) = 1 the function

τ 7→ DF
(n+2)
aj
N ,

b
N

(τ)

is a modular form of weight n + 2 and level N , dependent only from the class of j in (Z/NZ)∗, we
see that the collection

(3.8.32)
(

(−1)n+1 · (2πi)n+2

n!
· DF (n+2)

aj
N ,

b
N

(τ)

)
j∈(Z/NZ)∗

gives a well-defined element of Γ
(
San, ω

⊗(n+2)
Ean/San

)
.

We can then formulate the main result about the specialization of the analytified D-variant of the
polylogarithm.

Theorem 3.8.8
For each n ≥ 0 the cohomology class

(
(tana,b)

∗((polndR,D2·1{ε}−1E[D]
)an
))(n)

is equal to the image

of (3.8.32) under the map

Γ
(
San, ω

⊗(n+2)
Ean/San

)
→ H1

dR(San,Symn
OSanH

1
dR(Ean/San))

of (3.8.26).

Proof. It is the assertion of Thm. 3.8.3 that (polndR,D2·1{ε}−1E[D]
)an ∈ H1

dR(UanD ,Lann ) is the image

of pDn (z, τ) under the canonical arrow

ker

(
Γ(UanD ,Ω1

Ean ⊗OEan L
an
n )

(∇ann )1−−−−→ Γ(UanD ,Ω2
Ean ⊗OEan L

an
n )

)
→ H1

dR(UanD ,Lann )
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induced by (3.7.29). Recall that pDn (z, τ) is the vector of functions defined in (3.6.2).
Now Thm. 3.6.5 implies that if we pull back pDn (z, τ) ∈ Γ(UanD ,Ω1

Ean ⊗OEan Lann ) along tana,b, use
the chain of isomorphisms

(tana,b)
∗(Ω1

Ean ⊗OEan L
an
n ) ' (tana,b)

∗Ω1
Ean ⊗OSan

n∏
k=0

Symk
OSanH

1
dR(Ean/San)∨

can−−→ Ω1
San ⊗OSan

n∏
k=0

Symk
OSanH

1
dR(Ean/San)∨

and finally take the n-part, then the obtained element in Γ(San,Ω1
San⊗OSanSymn

OSanH
1
dR(Ean/San)∨)

is given by (
(−1)n+1 · (2πi)n+1

n!
· DF (n+2)

aj
N ,

b
N

(τ) · dτ ⊗ (η∨)n

(n− n)!

)
j∈(Z/NZ)∗

.

Under our fixed identification

Symn
OSanH

1
dR(Ean/San)∨ ' Symn

OSanH
1
dR(Ean/San)

of (3.8.28) this becomes the element of Γ(San,Ω1
San ⊗OSan Symn

OSanH
1
dR(Ean/San)) given by

(∗)
(

(−1)n+1 · (2πi)n+1

n!
· DF (n+2)

aj
N ,

b
N

(τ) · dτ ⊗ ωn

(n− n)!

)
j∈(Z/NZ)∗

.

Putting everything together we obtain that(
(tana,b)

∗((polndR,D2·1{ε}−1E[D]
)an
))(n)

is equal to the image of (∗) under the arrow

Γ(San,Ω1
San ⊗OSan Symn

OSanH
1
dR(Ean/San))→ H1

dR(San,Symn
OSanH

1
dR(Ean/San))

of (3.8.25). Now, the map of (3.8.26)

Γ
(
San, ω

⊗(n+2)
Ean/San

)
→ H1

dR(San,Symn
OSanH

1
dR(Ean/San))

in the claim of the proposition is the composition of the preceding arrow with

(∗∗) Γ
(
San, ω

⊗(n+2)
Ean/San

)
→ Γ(San,Ω1

San ⊗OSan Symn
OSanH

1
dR(Ean/San)),

where the last is (3.8.24) in global San-sections. It hence remains to show that (∗∗) sends the section(
(−1)n+1 · (2πi)n+2

n!
· DF (n+2)

aj
N ,

b
N

(τ) · ω⊗(n+2)

)
j∈(Z/NZ)∗

∈ Γ
(
San, ω

⊗(n+2)
Ean/San

)
,

defined by (3.8.32), to (∗). This is clear by the very definition of (3.8.24) and the remark that the
Kodaira-Spencer map appearing in it sends ω⊗2 to 1

2πi ·dτ on the universal covering (cf. 3.8.23).

We can now approach the task of expressing the algebraic de Rham cohomology class(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n) ∈ H1

dR(S/Q,Symn
OSH

1
dR(E/S))

as induced by an algebraic modular form of weight n+ 2 and level N .
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Hodge filtration and Kodaira-Spencer map

(i) Writing ωE/S for the line bundle (the co-Lie algebra of E/S)

ωE/S := π∗Ω
1
E/S ' ε

∗Ω1
E/S ,

the degeneration of the Hodge-de Rham spectral sequence at the first sheet (cf. the beginning of
Chapter 1) furnishes a short exact sequence of OS-modules (Hodge filtration)

(3.8.33) 0→ ωE/S → H1
dR(E/S)→ R1π∗OE → 0.

Identifying R1π∗OE ' ω⊗−1
E/S by Serre duality28, this reads as an exact sequence

(3.8.34) 0→ ωE/S → H1
dR(E/S)→ ω⊗−1

E/S → 0

for which one can give an explicit local description after the choice of a local trivialization for ωE/S ,
showing in particular that (3.8.34) splits in a canonical way (cf. [Kat4], A 1.2.1-A 1.2.6).
We remark that the arrows in (3.8.33) are nothing else than those induced by application of R1π∗ to
the maps in the canonical short exact sequence of complexes

0→ Ω1
E/S [−1]→ Ω•E/S → OE → 0.

(ii) Next, let us briefly recall the Kodaira-Spencer map for our situation E/S/Q (cf. e.g. [Kat-Maz],
(10.13.10) or [Kat4], A 1.3.17). This is the OS-linear morphism

(3.8.35) ω⊗2
E/S → Ω1

S/Q

arising from the composition

ω⊗2
E/S → H1

dR(E/S)⊗OS H1
dR(E/S)→ H1

dR(E/S)∨ ⊗OS H1
dR(E/S)⊗OS Ω1

S/Q → Ω1
S/Q,

where the first arrow comes from the injection in (3.8.34), the second from Poincaré duality in
(3.8.20) together with the Gauß-Manin connection and the last is given by evaluation.
It is part of the theory of moduli schemes that (3.8.35) is an isomorphism (cf. [Kat-Maz], (10.13.10)).

Remark 3.8.9
It is possible to give various equivalent definitions for (3.8.35), e.g. as the composite map

ω⊗2
E/S → ωE/S ⊗OS H1

dR(E/S)→ ωE/S ⊗OS H1
dR(E/S)⊗OS Ω1

S/Q →

→ ωE/S ⊗OS ω⊗−1
E/S ⊗OS Ω1

S/Q → Ω1
S/Q,

where the third arrow is induced by the projection in (3.8.34) and the others should by now be clear.
One can also introduce it as the morphism obtained by tensoring with ωE/S the map

ωE/S → ω⊗−1
E/S ⊗OS Ω1

S/Q

28One considers theOS -linear map

π∗Ω
1
E/S ⊗OS R

1π∗OE → R1π∗Ω
1
E/S

∼−→ OS ,

where the first arrow comes from the natural bilinear map / cup product (cf. [Li], Ch. 6, (4.11)) and the second is the
Grothendieck trace isomorphism (cf. [Con1], Ch. I, 1.1). It is a perfect pairing and the induced isomorphism (Serre duality)

R1π∗OE
∼−→ ω⊗−1

E/S

is the desired one.
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coming from the boundary ωE/S = π∗Ω
1
E/S → R1π∗OE⊗OS Ω1

S/Q for the canonical exact sequence

0→ π∗Ω1
S/Q → Ω1

E/Q → Ω1
E/S → 0

and from the Serre duality isomorphism R1π∗OE
∼−→ ω⊗−1

E/S (cf. footnote 29).
To show the equality of all these different approaches to (3.8.35) is standard.29

(iii) As in (3.8.25) we obtain from the spectral sequence of hypercohomology a map

(3.8.36) Γ(S,Ω1
S/Q ⊗OS Symn

OSH
1
dR(E/S))→ H1

dR(S/Q,Symn
OSH

1
dR(E/S))

which (as S is affine) is surjective with kernel given by the image of the connection of Symn
OSH

1
dR(E/S)

in global sections.
Moreover, we define for each n ≥ 0 a map

(3.8.37) ω
⊗(n+2)
E/S → Ω1

S/Q ⊗OS Symn
OSH

1
dR(E/S)

as the composition

ω
⊗(n+2)
E/S

∼−→ ω⊗2
E/S ⊗OS Symn

OSωE/S → Ω1
S/Q ⊗OS Symn

OSH
1
dR(E/S),

where the first arrow is the canonical isomorphism and the second is induced by (3.8.35) and by
taking the n-th symmetric power of the inclusion in (3.8.34); the map (3.8.37) is actually injective.
From (3.8.37) and (3.8.36) we obtain the Q-linear homomorphism

(3.8.38) Γ
(
S, ω

⊗(n+2)
E/S

)
→ H1

dR(S/Q,Symn
OSH

1
dR(E/S)).

It is compatible with its analytic counterpart (3.8.26):

Lemma 3.8.10
For each n ≥ 0 the diagram

Γ
(
S, ω

⊗(n+2)
E/S

)
//

��

H1
dR(S/Q,Symn

OSH
1
dR(E/S))

��
Γ
(
San, ω

⊗(n+2)
Ean/San

)
// H1

dR(San,Symn
OSanH

1
dR(Ean/San))

where the upper resp. lower horizontal arrow is given by (3.8.38) resp. by (3.8.26) and the left resp.

right vertical arrow is given by the natural map resp. by (3.8.31), is commutative.
29That the first two of the three approaches coincide follows from the well-known fact that Poincaré duality in (3.8.20) and

Serre duality in footnote 29 are compatible via the Hodge filtration of (3.8.33) in the sense that the obtained diagram

ωE/S

��

∼ // (R1π∗OE)∨

��
H1

dR(E/S)
∼ // H1

dR(E/S)∨

commutes; for more details about this cf. the explanations in [Ca], 2.2, which hold invariantly over a base ring.
The equality of the last two definitions for the Kodaira-Spencer map requires to check that the composition

ωE/S → H1
dR(E/S)⊗OS Ω1

S/Q → R1π∗OE ⊗OS Ω1
S/Q,

induced by the Hodge filtration and Gauß-Manin connection, is the same as the boundary map mentioned in Rem. 3.8.9. This
in turn follows directly from the definition of the Gauß-Manin connection on H1

dR(E/S).
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Proof. According to the mere definitions of the maps we may split the diagram in question into the
following two diagrams:
The first is

Γ
(
S, ω

⊗(n+2)
E/S

)
//

��

Γ(S,Ω1
S/Q ⊗OS Symn

OSH
1
dR(E/S))

��
Γ
(
San, ω

⊗(n+2)
Ean/San

)
// Γ(San,Ω1

San ⊗OSan Symn
OSanH

1
dR(Ean/San))

Here, the horizontal arrows come from the algebraic resp. analytic Kodaira-Spencer map together
with the algebraic resp. analytic Hodge filtration, and the right vertical arrow is the canonical one -
always taking into account the identification H1

dR(E/S)an
∼−→ H1

dR(Ean/San).
The second diagram is

Γ(S,Ω1
S/Q ⊗OS Symn

OSH
1
dR(E/S)) //

��

H1
dR(S/Q,Symn

OSH
1
dR(E/S))

��
Γ(San,Ω1

San ⊗OSan Symn
OSanH

1
dR(Ean/San)) // H1

dR(San,Symn
OSanH

1
dR(Ean/San))

with horizontal arrows induced by the respective spectral sequence of hypercohomology for the de
Rham complex of Symn

OSH
1
dR(E/S) resp. Symn

OSanH
1
dR(Ean/San), as in (3.8.36) and (3.8.25).

The first of the previous two diagrams commutes: the essential point is that all maps on the ana-
lytic side used for the definition of the lower horizontal arrow were constructed exactly in such a
way that they are the analytifications of the corresponding algebraic maps used to define the upper
horizontal arrow. To be more precise, always taking into account the usual canonical identification
H1

dR(E/S)an
∼−→ H1

dR(Ean/San), the analytification of (3.8.20) resp. (3.8.34) resp. (3.8.35) be-
comes precisely the analytic Poincaré duality in (3.8.27) resp. the analytic Hodge filtration in (3.8.22)

resp. the analytic Kodaira-Spencer map in (3.8.23).
Everything of this is easy and can be seen in multiple ways; e.g., one may use the description of the
analytic Kodaira-Spencer map via analytic Poincaré duality, explained subsequent to (3.8.28), and as
to Poincaré duality one may then recall the argument already given in the proof of Lemma 3.8.7.
With these remarks the commutativity of the first diagram becomes obvious.
The commutativity of the second diagram is due to the compatibility of the two spectral sequences
used in its definition: the natural analytification maps between their initial and between their limit
terms are part of a morphism of spectral sequences, as can be seen very easily in our special case but
also holds in general, similar as in [De1], Ch. II, p. 101.

Preparations for the algebraic specialization result

Definition 3.8.11
As in [Ka], Ch. I, 4.2, we define for each k ≥ 1 an algebraic modular form of weight k and level N :

DF
(k)
a
N ,

b
N

:= D2F
(k)
a
N ,

b
N

−D2−kF
(k)
Da
N ,DbN

with

F
(k)
a
N ,

b
N

resp. F
(k)
Da
N ,DbN
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the algebraic modular forms of weight k and level N introduced in ibid., Ch. I, 3.6.
For the construction and basic properties of the latter as well as for generalities about algebraic mod-
ular forms we refer to ibid., Ch. I, 3.

Remark 3.8.12
An algebraic modular form of weight k ∈ Z and level N defines (by restriction to the open modular
curve S) a section in Γ

(
S, ω⊗kE/S

)
and hence, via the canonical arrow

(3.8.39) Γ
(
S, ω⊗kE/S

)
→ Γ

(
San, ω⊗kEan/San

)
,

an element of Γ(San, ω⊗kEan/San).
As explained previous to Thm. 3.8.8, we view any such element

Ψ ∈ Γ
(
San, ω⊗kEan/San

)
as a collection (

fj(τ)
)
j∈(Z/NZ)∗

of holomorphic functions fj(τ) on H satisfying

fj

(
aτ + b

cτ + d

)
= (cτ + d)k · fj(τ) for all

(
a b

c d

)
∈ Γ(N).

Recall our conventions how to obtain from the abstract section Ψ the associated functions fj(τ):
Namely, for each j ∈ (Z/NZ)∗ consider the cartesian diagram

E := Z2\(C×H) //

��

(Z/NZ)∗ × (Z2 × Γ(N))\(C×H) = Ean

��
H

pj // (Z/NZ)∗ × Γ(N)\H = San

(3.8.40)

where the lower arrow is given by the composition

H→ Γ(N)\H→ (Z/NZ)∗ × Γ(N)\H

of the projection and inclusion into the j-component and where the upper arrow is the analogous chain

Z2\(C×H)→ (Z2 × Γ(N))\(C×H)→ (Z/NZ)∗ × (Z2 × Γ(N))\(C×H).

Then Ψ naturally induces a section

p∗j (Ψ) ∈ Γ
(
H, ω⊗kE/H

)
which - via the fixed trivialization of ωE/H by the global section ω = dz ∈ Γ(E,Ω1

E/H) = Γ(H, ωE/H)

and the induced trivialization for ω⊗kE/H by {ω⊗k} = {(dz)⊗k} - writes as

p∗j (Ψ) = fj(τ) · (dz)⊗k

for a unique holomorphic function fj(τ) on H (necessarily transforming as above).
Our deviance from the standard trivialization by {(2πidz)⊗k} was already pointed out and explained
in footnote 27.
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Remark 3.8.13
In [Ka], Ch. I, p. 139, an algebraic modular form is assigned a classical modular form f(τ) by viewing
it as an element of Γ

(
S, ω⊗kE/S

)
, taking its image under (3.8.39) and then applying the process of Rem.

3.8.12 for j = 1, but with the trivialization of ω⊗kE/H by {(2πidz)⊗k}.
In this sense, (i) of ibid., Ch. I, p. 140, states that for k ≥ 1, k 6= 2, the classical modular form
assigned to the algebraic modular form E

(k)
a
N ,

b
N

defined in ibid., Ch. I, 3.3, is the E(k)
a
N ,

b
N

(τ) we have
introduced in 3.3.4; by definition, this would imply that for any such k the function assigned to the
algebraic modular form F

(k)
a
N ,

b
N

resp. DF
(k)
a
N ,

b
N

is the F (k)
a
N ,

b
N

(τ) resp. DF
(k)
a
N ,

b
N

(τ) of 3.3.4.

But it is instead true that (still in Kato’s convention and for k 6= 2) the function assigned to E(k)
a
N ,

b
N

is

−E(k)
a
N ,

b
N

(τ) and thus that F (k)
a
N ,

b
N

resp. DF
(k)
a
N ,

b
N

induces −F (k)
a
N ,

b
N

(τ) resp. −DF (k)
a
N ,

b
N

(τ).30

On the other hand, the function assigned to the algebraic modular form Ẽ
(2)
a
N ,

b
N

defined in ibid., Ch. I,

3.4, is indeed the Ẽ(2)
a
N ,

b
N

(τ) we have introduced in 3.3.4, such that F (2)
a
N ,

b
N

resp. DF
(2)
a
N ,

b
N

induces the

F
(2)
a
N ,

b
N

(τ) resp. DF
(2)
a
N ,

b
N

(τ) of 3.3.4.
Hence, in our conventions and notations of Rem. 3.8.12, if k ≥ 1 and Ψk denotes the image of

DF
(k)
a
N ,

b
N

via (3.8.39), then it follows altogether:

p∗1(Ψk) = −(2πi)k ·D F
(k)
a
N ,

b
N

(τ) · (dz)⊗k, k ≥ 1, k 6= 2,

p∗1(Ψ2) = (2πi)2 ·D F
(2)
a
N ,

b
N

(τ) · (dz)⊗2.
(3.8.41)

Lemma 3.8.14
In the sense of Rem. 3.8.12, for each k ≥ 1, k 6= 2, the image of DF

(k)
a
N ,

b
N

under (3.8.39) is given by(
− (2πi)k · DF (k)

aj
N ,

b
N

(τ)

)
j∈(Z/NZ)∗

,

and the image of DF
(2)
a
N ,

b
N

under (3.8.39) is given by(
(2πi)2 · DF (2)

aj
N ,

b
N

(τ)

)
j∈(Z/NZ)∗

,

where for each k ≥ 1 the function DF
(k)
aj
N ,

b
N

(τ) is the analytic modular form of Def. 3.3.17.

Proof. Let
Ψk ∈ Γ

(
San, ω⊗kEan/San

)
be the image of DF

(k)
a
N ,

b
N

under (3.8.39) and for j ∈ (Z/NZ)∗ let

pj : H→ San

be as in (3.8.40).
With the explanations in Rem. 3.8.12, what we have to show are the following equalities in Γ

(
H, ω⊗kE/H

)
:

p∗j (Ψk) = −(2πi)k · DF (k)
aj
N ,

b
N

(τ) · (dz)⊗k, k ≥ 1, k 6= 2,

p∗j (Ψ2) = (2πi)2 · DF (2)
aj
N ,

b
N

(τ) · (dz)⊗2.
(∗)

30This is easily checked, and the reason for the erroneous claim in ibid., Ch. I, p. 140, is essentially a constant sign mistake
in the logarithmic derivative of the Kato-Siegel function.
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The case j = 1:

p∗1(Ψk) = −(2πi)k ·D F
(k)
a
N ,

b
N

(τ) · (dz)⊗k, k ≥ 1, k 6= 2,

p∗1(Ψ2) = (2πi)2 · DF (2)
a
N ,

b
N

(τ) · (dz)⊗2
(∗∗)

is known to be true (cf. (3.8.41) in Rem. 3.8.13). For arbitrary j ∈ (Z/NZ)∗ let

σj :=

(
j 0

0 1

)
∈ GL2(Z/NZ)

and use the same notation

σj : (Z/NZ)∗ × Γ(N)\H→ (Z/NZ)∗ × Γ(N)\H

for the automorphism of San sending (l, τ) to (jl, τ).
The diagram (3.8.40) for our fixed j then equals the frame diagram in

E = Z2\(C×H) //

��

(Z/NZ)∗ × (Z2 × Γ(N))\(C×H)

��

// (Z/NZ)∗ × (Z2 × Γ(N))\(C×H)

��
H

p1 // (Z/NZ)∗ × Γ(N)\H
σj // (Z/NZ)∗ × Γ(N)\H

(3.8.42)

where the left square is the cartesian diagram (3.8.40) for j = 1 and the upper right horizontal arrow
is given by (l, z, τ) 7→ (jl, z, τ). On the other hand, from the elliptic curve with level N -structure
(E/S, je1, e2) and the universality of (E/S, e1, e2) we obtain a cartesian diagram

E //

��

E

��
S // S

(3.8.43)

whose analytification (under the identification (3.4.4)) becomes the right cartesian square in (3.8.42).
Let k ≥ 1 be arbitrary.
By [Ka], Ch. I, Lemma 3.7 (1) (iii), we know that DF

(k)
a
N ,

b
N

maps to DF
(k)
aj
N ,

b
N

under the arrow

Γ
(
S, ω⊗kE/S

)
→ Γ

(
S, ω⊗kE/S

)
induced by (3.8.43). We thus conclude that the image of Ψk under the map

σ∗j : Γ
(
San, ω⊗kEan/San

)
→ Γ

(
San, ω⊗kEan/San

)
coming from the right square in (3.8.42) is equal to Φk, where Φk is the image of DF

(k)
aj
N ,

b
N

under

(3.8.39). Hence, we have the following equality in Γ(H, ω⊗kE/H):

p∗j (Ψk) = (σj ◦ p1)∗(Ψk) = p∗1(σ∗j (Ψk)) = p∗1(Φk).

But considering (∗∗) with Ψk replaced by Φk and a replaced by aj we have

p∗1(Φk) = −(2πi)k · DF (k)
aj
N ,

b
N

(τ) · (dz)⊗k, k ≥ 1, k 6= 2,

p∗1(Φ2) = (2πi)2 · DF (2)
aj
N ,

b
N

(τ) · (dz)⊗2.

The last two formulas show (∗) and hence the claim of the lemma.
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The algebraic specialization result

We can finally prove our main result about the specialization of the D-variant of the polylogarithm.

Theorem 3.8.15
For n ≥ 0 the cohomology class

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n)

is equal to the image of
−DF (2)

a
N ,

b
N

if n = 0

(−1)n

n! · DF
(n+2)
a
N ,

b
N

if n 6= 0

under the map (3.8.38):

Γ
(
S, ω

⊗(n+2)
E/S

)
→ H1

dR(S/Q,Symn
OSH

1
dR(E/S)).

Proof. Consider the commutative diagram of Lemma 3.8.10:

Γ
(
S, ω

⊗(n+2)
E/S

) κ //

��

H1
dR(S/Q,Symn

OSH
1
dR(E/S))

ι

��
Γ
(
San, ω

⊗(n+2)
Ean/San

)
// H1

dR(San,Symn
OSanH

1
dR(Ean/San))

We use it to deduce the statement of the theorem as follows:
By Lemma 3.8.14 the left vertical arrow of this diagram maps the section in the claim

−DF (2)
a
N ,

b
N

∈ Γ
(
S, ω

⊗(2)
E/S

)
if n = 0

(−1)n

n! · DF
(n+2)
a
N ,

b
N

∈ Γ
(
S, ω

⊗(n+2)
E/S

)
if n 6= 0

to the section of Γ
(
San, ω

⊗(n+2)
Ean/San

)
which is given - in the sense of Rem. 3.8.12 - by the collection(

(−1)n+1 · (2πi)n+2

n!
· DF (n+2)

aj
N ,

b
N

(τ)

)
j∈(Z/NZ)∗

, where n ≥ 0.

According to Thm. 3.8.8 the previous section in turn is sent for each n ≥ 0 to(
(tana,b)

∗((polndR,D2·1{ε}−1E[D]
)an
))(n)

by the lower horizontal arrow of the diagram.
The commutativity of the diagram and Lemma 3.8.7 hence imply that

κ
(
− DF

(2)
a
N ,

b
N

)
κ
(

(−1)n

n! · DF
(n+2)
a
N ,

b
N

)
, where n 6= 0,

and 
(
t∗a,b(pol0dR,D2·1{ε}−1E[D]

)
)(0)(

t∗a,b(polndR,D2·1{ε}−1E[D]
)
)(n)

, where n 6= 0,

have the same image under the right vertical arrow ι.
But ι is injective, as we have seen directly after its definition in (3.8.31). This proves the theorem.
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Remark 3.8.16
In degree n = 0 theD-variant specializes to a cohomology class inH1

dR(S/Q); the preceding theorem
allows to express this class in terms of the Siegel units on S, as defined in [Ka], Ch. I, 1.4.
Namely, we obtain that

(
t∗a,b(pol0dR,D2·1{ε}−1E[D]

)
)(0) ∈ H1

dR(S/Q) is the image under (3.8.38) of

−DF (2)
a
N ,

b
N

= F
(2)
Da
N ,DbN

−D2F
(2)
a
N ,

b
N

∈ Γ
(
S, ω⊗2

E/S

)
.

Using the Kodaira-Spencer isomorphism (3.8.35), the previous section identifies (according to [Ka],
Ch. I, Prop. 3.11 (2)) with

(3.8.44) dlog

((
g a
N ,

b
N

)D2

·
(
gDa
N ,DbN

)−1
)
∈ Γ(S,Ω1

S/Q),

where g a
N ,

b
N

resp. gDa
N ,DbN

are the mentioned Siegel unit elements in Γ(S,OS)∗ ⊗Z Q; the desired
cohomology class then is the image of (3.8.44) under the canonical map Γ(S,Ω1

S/Q)→ H1
dR(S/Q).

If we additionally assume (D, 6) = 1, then the last formula in ibid., Ch. I, 1.4, implies that the
element of (3.8.44) is equal to

dlog(t∗a,b(DθE/S)) ∈ Γ(S,Ω1
S/Q),

where DθE/S ∈ Γ(UD,OE)∗ denotes the Kato-Siegel function associated with the elliptic curveE/S
and the integer D (cf. ibid., Ch. I, Prop. 1.3 and 1.10, for its definition and construction).

Application to the de Rham Eisenstein classes

The subsequent definition of the de Rham Eisenstein classes is modeled after [Ki3], 4.2, where the
`-adic Eisenstein classes are introduced.

For each n ≥ 0 we have a horizontal morphism

H∨ ⊗OS
n+1∏
k=0

Symk
OSH →

n∏
k=0

Symk
OSH

which is defined to be zero onH∨ and for 1 ≤ k ≤ n+ 1 to be given onH∨ ⊗OS Symk
OSH by

H∨ ⊗OS Symk
OSH → Symk−1

OS H, h∨ ⊗ h1 · ... · hk 7→
1

k + 1

k∑
j=1

h∨(hj)h1 · ... · ĥj · ... · hk.

Write

contrn : H1
dR

(
S/Q,H∨ ⊗OS

n+1∏
k=0

Symk
OSH

)
→ H1

dR

(
S/Q,

n∏
k=0

Symk
OSH

)
for the induced homomorphism (the n-th "contraction map").

Definition 3.8.17
For each n ≥ 0 we set

Eisn(ta,b) := −Nn−1 ·
(
contrn(t∗a,bpoln+1

dR )
)(n) ∈ H1

dR(S/Q,Symn
OSH)

and call this element the n-th de Rham Eisenstein class evaluated at ta,b.
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As explained in [Ki3], Rem. 4.2.3, the factor −Nn−1 is owed to tradition.

Moreover, analogously as in [Ki3], Prop. 4.4.1, we have the following formula relating the spe-
cialization of the D-variant of the polylogarithm with the de Rham Eisenstein classes:

Lemma 3.8.18
For each n ≥ 0 the following equality holds in H1

dR(S/Q,Symn
OSH):(

t∗a,b(polndR,D2·1{ε}−1E[D]
)
)(n)

= −N1−n(D2Eisn(ta,b)−D−nEisn(tDa,Db)
)
.

(For the left side we don’t use Poincaré duality as we usually did before).

In particular, if D ≡ 1 mod N we obtain:

(
t∗a,b(polndR,D2·1{ε}−1E[D]

)
)(n)

= −N1−nD
n+2 − 1

Dn
Eisn(ta,b).

Now, combining the preceding lemma with Thm. 3.8.15 implies that for D ≡ 1 mod N we have

Eis0(ta,b) = −N−1 1

D2 − 1
·
(
− DF

(2)
a
N ,

b
N

)
resp. for n > 0:

Eisn(ta,b) = −Nn−1 Dn

Dn+2 − 1
· (−1)n

n!
· DF (n+2)

a
N ,

b
N

,

where here DF
(2)
a
N ,

b
N

resp. DF
(n+2)
a
N ,

b
N

means the element of H1
dR(S/Q) resp. H1

dR(S/Q,Symn
OSH)

induced by the algebraic modular form DF
(2)
a
N ,

b
N

resp. DF
(n+2)
a
N ,

b
N

via the map (3.8.38) resp. via the
map (3.8.38) together with the Poincaré duality identification (3.8.20).
Taking furthermore into account that for D ≡ 1 mod N :

DF
(n+2)
a
N ,

b
N

= D2F
(n+2)
a
N ,

b
N

−D−nF (n+2)
Da
N ,DbN

=
Dn+2 − 1

Dn
· F (n+2)

a
N ,

b
N

, n ≥ 0,

we obtain the subsequent explicit description for the de Rham Eisenstein classes; for a different ap-
proach to this problem (by computing residues at the cusps) see [Ba-Ki2], 3.

Corollary 3.8.19
We have the equalities

Eis0(ta,b) = −N−1 ·
(
− F (2)

a
N ,

b
N

)
in H1

dR(S/Q)

Eisn(ta,b) = −Nn−1 (−1)n

n! · F
(n+2)
a
N ,

b
N

in H1
dR(S/Q,Symn

OSH), n > 0,

where here F (2)
a
N ,

b
N

resp. F (n+2)
a
N ,

b
N

means the element of H1
dR(S/Q) resp. H1

dR(S/Q,Symn
OSH) in-

duced by the algebraic modular form F
(2)
a
N ,

b
N

resp. F (n+2)
a
N ,

b
N

via (3.8.38) resp. via (3.8.38) together

with the identification (3.8.20).

Remark 3.8.20
(i) Observing again [Ka], Ch. I, Prop. 3.11 (2), the first equation of Cor. 3.8.19 translates into

Eis0(ta,b) = −N−1dlog
(
g a
N ,

b
N

)
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with the Siegel unit g a
N ,

b
N
∈ Γ(S,OS)∗ ⊗Z Q of ibid., Ch. I, 1.4.

(ii) Working with the identification

H1
dR(E/S)

∼−→ H, x 7→ { y 7→ tr(y ∪ x)}

instead of (3.8.20):
H1

dR(E/S)
∼−→ H, x 7→ { y 7→ tr(x ∪ y)},

the second equation of Cor. 3.8.19 changes into

Eisn(ta,b) = −Nn−1 1

n!
· F (n+2)

a
N ,

b
N

in H1
dR(S/Q,Symn

OSH), n > 0.
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