
A Boolean Algebra Approach for Class Hierarchy Normalization

Yanchun Zhang Jitian Xiao

Department of Mathematics and Computing
The University of Southern Queensland

Toowoomba, QLD 4350, Australia

Email: (yan, j&an) @usq. edu. au

Abstract

Normalization in object-oriented design is much
different from that in relational database design.
Not only are the conceptual data model of object-
oriented (o-o) models integrating m’cher structuring
capabilities than that of relational models, but also
the dependency constraints, attribute ranges and
access paths in o-o models are more complex
than that in relational models. In o-o models,
inheritance semantics is expressed mainly by
class hierarchy, and it is important to ensure and
maintain an appropriate class hierarchy. In this
paper, we propose a Boolean algebra approach for
class hierarchy normalization. A class hierarchy
normal form(CHNF) and an indexing model for
class hierarchy are defined respectively. Some
methods and algorithms, such as transformation
from a non-CHNF class hierarchy to a CHNF one,
are given.

Keywords object oriented databases, class hier-
archy, normal forms, Boolean algebra.

1 Introduction

In traditional databases, a relational schema design
begins with an initial schema, and ends with an
equivalent one that is better in some respects. This
better schema implies the fact that a schema with
less redundancy and less update anomaly problem
is preferable. The aim of solving the redundancy
problem is to minimize the duplication of informa-
tion stored in relations. Redundancies in relations
cause update problems, such as insertion/deletion
anomalies, which can also affect the performance
of a database processing. In the literature, these
redundancy and update problems have been solved
to some extent by proposing a series of relational
normal forms (such as 3NF, BCNF, 4NF and 5NF)
and normalization procedures.

In object-oriented databases, it is an important
issue to design a good and correct conceptual
schema. These conceptual data models integrate

Proceedings of the Fifth International Confer-
ence on Database Systems for Advanced Appli-
cations, Melbourne, Australia, April l-4, 1997.

richer structuring capabilities than the flat
relational model by allowing the reuse of data and
processes through inheritance, the construction of
complex objects, and the identification of objects
independently of their values(using the identity
mechanism).

One can translate an existing schema from tra-
ditional databases into OODB [5], but a good rela-
tional schema does not necessarily result in a good
schema in the object-oriented sense. Some concepts
of relational formalization method can be used to
describe object-oriented database design [8], but
most of them are different.

In the context of normal forms and normaliza-
tion, there are many differences between R models
(flat relational and extended-relational data mod-
els) and O-O models (object-oriented data models).
First of all, in R models, dependency constraints
are restricted to attribute-attribute relationships
(e.g., functional and multivalued dependencies). In
O-O models it is augmented to include the concepts
of identifier and other atomic attributes (such as
pointers, etc.). Secondly, object attributes may
be complex (or multivalued), allowing reference to
instances of other objects. The attribute types can
be sets, collections, lists and any other structured
type. However, relational attributes can only be
simple or multivalued or other nested sub-relations
in R models. And thirdly, objects are uniquely
identified by an object identifier that is assigned
by the system and can not be changed during its
life time. There is no notion of key attributes in
O-O models, whereas key attributes in R model
are necessary to normal forms. In addition, the
concepts of aggregation, generalization and multi-
inheritance should be considered in object-oriented
normal forms.

Due to the above differences, the normal forms
and normalization procedures for object-oriented
models should be discussed independently from to
that of R models. In the following sections, we pro-
pose a Boolean algebra approach for class hierarchy
normalization. In Section 2, we first review the
related concepts and properties of Boolean algebra,
then in Section 3, discuss the normalization of class
hierarchy which deals with the redundancies of the

303

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/33162576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

schema definition (inter-object relationship). The
conclusions will be included in Section 4.

2 Review on Boolean AIgebra

Boolean algebra, in honour of George Boole who
first set up a logic algebra of this type in 1854, is a
algebra structure with very good properties. It is
used in many areas of information processing and
switch theory. Here, as a review, we list Boolean
algebra and related concepts and properties [4, 10,
131.

Definition 1 [Boolean algebra] A Boolean alge-
bra is a six-tuple < B, +, *, ‘, 0, I >, where B
is a non-empty set, + and * are binary operations
on B, ’ is a unary operation on B such that for all
a,bEB,wehavea+bEB,a*bEB,anda’EB.
And the following axioms hold:

1.

2.

3.

4.

5.

Foralla,bEB,a+b=b+a;a*b=b*a

For all a, b, c E B, (a + b) + c = a + (b + c);
(u * b) * c = a * (b * c)

For alla,b,cE B, a+(b*c) = (u+b)*(u+c);
a*(b+c)=(a*b)+(u*c)

For each a E B, there exists an element de-
noted a’ and called the complement or negation
ofainBsnchthatu+a’=landa*u’=O

Elements 0, 1 E B are called the smallest element
and biggest element, respectively.

When there is no danger of confusion, we refer
to the Boolean algebra simply as B. The set B
must contain at least the two elements 0, 1. The
symbols 0 and 1 may be considered as nullary op-
erations mapping from set B to 0, 1 in B.

Property 1 Let < B, +, *, ‘, 0, l> be a Boolean
algebra, x, y E B, then

(a). (2)’ = 2.

(b). x* (x-t y) =x,x

(c). (x * y)’ = i + d,

+(x*y)=x.

(x + yy = cl?* 4.

(d). x + 0 =x, x + 1 =x.

(e). 0 # I.

Definition 2 In a Boolean algebra < B, +, *, ‘,
0, 1 >, we define a binary relation 5 on B by
stipulating that x 5 y if and only if x * y = x.

Property 2 Let < B, +, *, ‘, 0, 1 > be a Boolean
algebra, and -(be a binary relation on B defined as
Definition 2, then

(a). For all x, y E B, x 5 y if and only if x + y

=Y

(b). For all x E B, x 5 x . (Reflexivity)

(c). For all x, y and z, (x j y) B (y 5 z) + x 5
z. (Tkansitivity)

(d). (x 5 y) & (y 5 x) + x = y. (Anti-symmetry)

Definition 3 A binary relation R on set A satis-
fying the following conditions

(1). (xRy fl yRz) + xRz.

(2). (xRy & yRx) + x = y.

is called as a partial order on A. A partial order R
on A is said to be reflective if and only if XBX for
all x EA. For a reflective partial order 5 on set A,
we define x + y if and only if d y and x# y.

Definition 4 Let 5 be a partial order on set A. z
EA is said to be an upper bound of a subset Y
CA if y jz for all y E Y. t EA is said to be a least
upper bound (lub) of a subset Y GA if and only if

(1) z is an upper bound of Y.

(2) z iw for every upper bound w of Y.

Similarly, z EA is said to be a lower bound of
a subset Y GA if z sy for all y E Y. z EA is said to
be a greatest lower bound (glb) of a subset Y GA
if and only if

(3) z is a lower bound of Y.

(4) w 5.z for every lower bound w of Y.

Property 3 (1) Let 5 be a partial order on set
A. For any subset Y GA, Y has at most one
lub (glb).

(2) Let < B, +, *, I, 0, 1 > be a Boolean algebra.
For any Y C B, Y has exactly one Iub and one
glb.

Example 1. Let A be a non-empty set. The
power set (i.e., a set containing all subsets) of A
is denoted as P(A). Under the usual operations
of union, intersection, and complementation, and
with C#J and A as the distinguished elements 0 and
1, we have a Boolean algebra < P(A), U,fl, ‘, 4,
A >, where U, n are two binary operations, ’ is a
unary operation on P(A).

As a special case, we consider that A={a, b, c},

In this case, P(A) = { 4, {al, {b), {cl, {a, b), {a,
~1, (6 ~1, A) . Th e smallest and biggest elements
are q5 and A, respectively. The binary relation 5 on
P(A) defined as in Definition 2 is the conventional
set relation C. Obviously, 2 is a reflective partial
order. For any subset Y of P(A), lub(Y) = US~YS,
and glb(Y) = nseyS. For example, lub({ {a, b },

{a, c 1 1) = {a, b, c 1, and glb({ ia, b 1, {a, c 1)>
={a). II

304

Usually, the Boolean algebra < P(A), U, n, ‘, 4,
A > is called as the subset Boolean algebra of set
A.

Definition 5 Let < B, +, *, ‘, 0, 1 > be a Boolean
algebra and 5 a partial relation on B as defined in
Definition 2.

(1) An element b E B, b # 0, is said to be an
atom of B if and only if, for all x E B, the
condition x 5 b implies that x = b or x = 0.

(2) Let x, b E B, x is said to be a predecessor
(descendant) of b if x 3 b(b 5 x). x is said
to be a direct predecessor of b if x 5 b , and
there is not any other element c E B such that
both x 4 c and c 4 b hold. If x is a direct
predecessor of b, then we say that b is a direct
descendant of x.

Definition 6 [Boolean algebra graph]
Let < B, +, *, ‘, 0, 1 > be a Boolean algebra, B a
finite non-empty set, and 5 a partial order relation
on B as defined in Definition 2. A directed graph
< V, E > is said to be a Boolean algebra graph of

B, if

(1) V = B,

(2) E ={ <x,y> 1 x, y E B, y is a direct predeces-
sor of x }.

An element x E V is called a node, and an ele-
ment <x, y>~ E is called as a edge (from x point-
ing to y) of the Boolean algebra. If there exist an
edge sequence <xl, x2>, <x2,23 >, <x,,, x,,+l>
(n>l) such that <x;,x~+~>E E for all 1 5 i 5 n,
we say that there exists a path from xi to x,+1.

For simplicity, an undirected graph is usually
used to replace the directed one.
Example 2. Consider the Boolean algebra in
Example 1. Let A={ a, b, c}, then P(A) have three
atoms {a}, {b} and {c}. A directed Boolean alge-
bra graph of P(A) is shown in F&l(a), whereas a
undirected Boolean algebra graph of P(A) is shown
in Fig.l(b).

In Fig. l(a), an edge is expressed by an arrowed
line which links nodes from one node to one of its
direct predecessor nodes. {b, c} , for example, have
three predecessors q5, { b } and { c }, two direct
predecessors { b } and { c }, and one (direct) de-
scendant { a, b, c }, and there are two arrowed line
from {b, c} to nodes { b) and { c }. As mentioned
before, we usually use Fig.l(b) for Fig.l(a). But we
will keep in maid that Fig.l(b) is a directed graph
and all lines are arrowed lines pointing upward from
the bottom. 0

Property 4 Let < B, +, *, ‘, 0, 1 > be a Boolean
algebra, then

I a. b. c I
(rb,c)

(a). directed Boolcm algebra graph (b) undirected Boolean algebra graph

(c)a Boolean algebra graph which is

isomorphic to (b)

Figure 1: Boolean algebra graph

(1) #B = 2k, for some k>l, and B has exactly k
atoms.

(2) If x is a predecessor of y, there must be a path
from y to x in B.

where #B indicates the number of elements in B.

Definition 7 Given two algebras < A, +, *, ‘, 0,
1 > and < B, @,@,; 9, C >. If there exists a
one-to-one function f from A to B such that

(1) ffx + Y) = f(x) @ f(Y);

(21 f(d) = f(z>;

we say that < A, +, *, ‘, 0, I > and < B, $,@I,
; 9,[> are isomorphic, f is an isomorphism (iso-
morphic mapping) between A and B.

Property 5 If < A, +, *, ‘, 0, 1 > and < B,
@, @, ; 0, <> are isomorphic, and f is the isomor-
phism between A and B, then

(1) f(x * Yl = f(x) @ f(Y);

(2) f(0) = 8 and f(l) = C.

Property 6 All Boolean algebras with same num-
ber of elements are isomorphic.

If two Boolean algebras are isomorphic, we may
take them as the same Boolean algebra. The dif-
ferences between them are only the symbol differ-
ences. Ail properties are the same.

305

Example 3. Let BN be a set of all binary
numbers whose word-length is N (N > 1). That is,
BN ={u~u~...~N(Q E (0, l), 1 5 i 5 N}. Then, <
BN, v, A, N, ON, 1~ > is a Boolean algebra, where
V, A are conventional logical operation on binary
numbers, i.e. logical bit or and logical bit and, N is
conventional logical l-complement operation, 0~ is
the number OO...O, and IN is the number ll...l.

Obviously, #BN = 2N. For this Boolean alge-
bra, the following properties hold:

(1) For every two elements x = oroz...uN and y =
blb2...bN,
lub({x,y}) = x V y = (al v bI)(az v bz)...(aN V

h),
glb({x,y}) = x A y = (al A bl)(az A b&..(uN A
hv).

(2) BN is isomorphic with P(A) in Example 2 if
#A=N.

(3) If we define partial order 5 on BN as following:
For every two elements x=oruz...oj%J and y =
blbz...bN, x sy if and only if ui 5 bi for 1
5 i 5 N, then all of the atoms of BN are as
following: lO...OO, OlO...OO, OO..lO, OO...Ol.

In fact, property (1) can be easily extended to ob-
tain lub and glu for any subset of BN. When N
= 3, the Boolean algebra graph of BN is shown in
Fig.l(c). 0

We usually call the Boolean algebra of Example
3 as bit Boolean algebra.

3 Normal Form of Class Hierarchy

In O-O models, inheritance semantics (isa seman-
tics) is expressed mainly by class hierarchy. It is
important to ensure and maintain an appropriate
class hierarchy structure to fully express the in-
heritance semantics. An improper class hierarchy
structure will function initially but, when a class
schema evolution occurs , may display an unreason-
able structure that may cause loss of information,
confusions in semantics and storage anomalies in
implementation.

Here we describe an object-oriented model that
will be used for the development of object-oriented
normalization theory. Similar to relational models,
we call the component set of a class definition an
attribute set. In the following discussion, we use
capital letters for attribute sets, and some constant
attribute sets are given below where the brackets
denote that the attribute is a complex one (mul-
tivalued attribute). A hypothetical class hierarchy
graph is shown below in Fig.2, where the meanings
of the capital letters are :

P-represents the attribute set of Person, such as
name, [address];

E-represents the special attribute set of
Employee, such as job, salary;

S-represents the special attribute set of Student,
such as S-No, major;

R-represents the special attribute set of
Researcher, such as [laboratory];

T-represents the special attribute set of teacher,
such as title;

Figure 2: Class hierarchy

Here the special attribute set is the attribute
set differing from that of its superclass’s. We as-
sume that a person may have several addresses, a
researcher may work in several Iaboratories.

In this diagram, P, E, R, T and S are perceived
as separate classes. They are graphically repre-
sented as large round squares. Their possible at-
tribute sets are drawn beside them, and are linked
to the class with a single line. When an attribute
is a complex one, it is drawn inside a small square.
For instance, the attribute salary of the class E
is a simple attribute, whereas attribute laboratory
of class R is a complex (multivalued) one. The
relationship between superclass and subclasses is
graphically represented by a directed line with an
arrow point from subclass to its direct superclass.
For instance, both R and T are subclasses of class
E, and from each of them an arrowed line is drawn
linking to E. It means that both R and T inherit
all information of class E.
Example 4. We now extract the class hier-
archy from Fig.2 (we are not concerned with the
component attributes), and discuss the redundancy
problem of schema definition. In Fig.2, if we only
consider information from two kinds of persons,
such as researcher and teacher, we may get follow-
ing class hierarchy

ip\
PER PET

where node PER represents Researcher, meaning
that it is composed of the attribute sets of P, E and

306

R, i.e. PER =P U E U R. In this representation, a
node labeled ABC represents a class frame whose
attribute set is composed of

special attribute set C, and inherited
attributes AB from its superclass if its
superclass attribute set is AB; or

special attribute set BC, and inherited
attribute set A if its superclass’s attribute set
is A; or

Definition 8 A local attribute set of a node con-
tains those attributes of the node which are not
inherited from its superclass. A full attribute set of
a node is a attribute set which includes attributes in
its local attribute set, and attributes in its direct su-
perclass’s full attn’bute set . An inherited attribute
set of a node is one which include attributes in its
full attribute set but not in the local attribute set of
the node.

special attribute set ABC which inherits noth-
ing from its direct superclass’s attribute set
(or, say, its superclass’s attribute set is empty).

a full attribute set of a node in a class hierarchy
includes not only the local attribute set of the node
but also the local attribute sets of all its predeces-
sors.

Similarly, PET represents Teacher. In the above
representation, the attribute set P in PER and
PET is inherited from its parent node (superclass),
but E appeared in both PER and PET is redun-
dantly defined. If we use folIowing class hierarchy

P
I
PE

/ \
PER PET

then we get no redundancies in this schema defini-
tion, where PE denotes the attribute set composed
of P and E. E can be defined for PE class, and will
be inherited by PER and PET classes. E appeared
in PER and PET is defined only once and inherited
from PE. 0

Definition 9 Let Nl, N2, N,, be all nodes of a
given class hierarchy, and Li be the local attribute
sets corresponding to node Ni (i=l,!i’, n). If
Li n Lj = q5 for any i, j(1 5 i, j 5 n,i # j), then
we say that the class hierarchy is in class hierarchy
normal form,or say, in CHNF.

Generally, in object-oriented database applica-
tions, it is hard to design a perfect class hierarchy.
Practically, it is difficult to design a class schema
with no redundancy in class attribute definition. A
redundant class schema will result in redundancy
in object definition and object storage. A non-
redundant class hierarchy is easy to maintain, even
when in schema evolution time. On the other hand,
for a given application, we can construct different
class inheritances in different ways. How do we
judge if a given class hierarchy is reasonable or not?
To keep a clear class inheritance, it is necessary
to develop a rule to detect whether a given class
hierarchy is redundantly defined, and if so, how to
transfer it into a non-redundant one.

Obviously, if a class hierarchy is in CHNF, there
are no repeated components of the local attribute
set of classes in the class hierarchy. A class hier-
archy in CHNF has the least redundancy in class
attribute definition, and can fully express the se-
mantics of inheritance. However, it is an interesting
task to detect the redundancy in a large class hier-
archy, and to transfer a non-normal form class to a
normal form one. We use a Boolean algebra model
of class hierarchy to deal with the transformation.
Example 5. Two class hierarchies are given
below in Fig.3. Different capital letters stand for
different attribute sets, and they are not overlap-
ping in attributes.

A\
AB ACD AE

A

ABD ABC

AB AC AD AE

b-K\
ABD ABC ACD

(a). A class hierarchy with redundancy (b). A class hierarchy with no rcdundm :J

Figure 3: Class hierarchies

3.1 CHNF and its related concepts In Fig.3(a), the intersection of the local

Based on the discussion above, we will present a set attributes in node ABD and ACD (also ABC and

of definitions for normal form of class hierarchies. ACD) are not empty (note that the local attribute

Later we will propose some procedures to detect set of node ABD is D, and the local attribute set of

and deal with redundant class schema definitions node ACD is CD. According to the definition, this

so that a better class schema with no such class hierarchy is not in CHNF. In Fig.3(b), all of

redundancy can be obtained. For convenience, we the intersection of local attribute sets between any

assume that any class hierarchy corresponds to a two nodes are empty. Therefore, it is in CHNF.

(directed, acyclic) rooted graph and several graph In fact, the class hierarchy in Fig.J(b) can be

terms, such as node, predecessor etc., are used considered as a further normalization of that in

without declaration. Fig.3(a). 1

307

In the above example, the class hierarchy in
Fig.3(b) differs from that in Fig.S(a) in two re-
spects. First, two nodes , AC and AD are added
to the class hierarchy in F&S(b). Secondly, not
only the node ACD but also nodes ABD and ABC
become child nodes of AC and AD. In some appli-
cations, the object set of newly added class nodes
may be empty, but the repeated definition of class
attributes and the possible inconsistence resulting
from it are avoided.

The transformation from a non-CHNF class hi-
erarchy to a CHNF one is a three-step process. We
first map the input class hierarchy to a Boolean
algebra graph, then find nodes of its corresponding
Boolean algebra, and at last remove the unneces-
sary nodes from the Boolean algebra graph to form
a CHNF class hierarchy.

3.2 Mapping a class hierarchy to a
Boolean algebra

Given a class hierarchy H, let Nc, Ni, Nz, N, be
all of the nodes of the class hierarchy with Ne its
root node. Let F = { Fo, Fl, Fz, F,} be the set
of the full attribute sets of H, with Fr corresponding
to node Ni (i=O,l, . . . ,n). For any i, j, i# j, if Ni is a
predecessor of Nj, then Fi C Fj for Fi is included in
the inherited attribute set of Nj . Fo is the smallest
attribute set because Fo c Fi for i=1,2,...,n. Now
Let L = {LI, Lz, L,,,}, for some m, be a set of
possible local attribute sets of H excluding Fo (note
that Fo = Lo is the full attribute set as well as
the local attribute set of No). If a class have two
or more direct superclass, i.e. the case of multi-
inheritance, its local attribute sets will have two or
more element sets in L, each differs from others
according to one of its direct superclasses. For
example, in Fig.S(b), node ABD has two direct pre-
decessor nodes AB and AD. Therefore, class ABD
has two different local attribute sets, D, relative
to its superclass node AB, and B, relative to its
superclass AD.

Assume that Li n Lj = qb for every i, j, i # j,(l
5 i, j 5 m), and let P(L) be the power set of L.
Then we get a Boolean Algebra fl= {P(L), f~, U, -
,&~},with~=LiULsU...UL,,heren,U,and
N are conventional operators of sets, i.e. union,
intersection and complement.

In the above Boolean algebra p, if we add the
attribute set FO = LO to every element of P(L),then
we can get another Boolean algebra B that is
isomorphic to ,0. B= {P’(L),n, U, o, Fo,r }, with
P’(L)={ X’(X’ = Fo U X,X E P(L)}, L = F. u x,
FO is the smallest element of this Boolean algebra,
z is the biggest one, o(X) =N (X) U Fo, and n,u

are conventional operators of sets.
Because all local attribute sets (excluding F.)

of the class hierarchy are in L, we conclude that
for any i (i 5 n), there must be a set L’ eP’(L)

such that Fi= UsEL, S. It means that each of the
full attribute sets of H will correspond to one of
the nodes in Boolean algebra B. We can create a
mapping from F of H to P’(L) of Boolean algebra
B es following:

a). FO corresponds to {Fo};

b). for every i (i=I, 2, . . . ,n), let F; = FoLi, Li, . . .
Li,, then Fi corresponds to set {Fo, Li, , Liz,
. . . . Lik} in P’(L), where Lij be a local attribute
set of node Ni or some predecessor node of Ni.

Example 6. Consider the example in Fig3(b).
The class hierarchy has 8 nodes. The full attribute
sets corresponding to those nodes are A, AB, AC,
AD, AE, ABD, ABC, ACD. The local attribute
sets corresponding to those nodes are A, B, C,
D, E, (B,D), (B,C), (C,D), where attribute sets
in parentheses indicate that that node have multi-
parent nodes (expressing multi-inheritance). Dif-
ferent local attribute sets in this example are A, B,
C, D, E, and A corresponds to root node of H. The
set of P’(L) in Boolean algebra B is {{A}, {A,B},
{A,C), {API, {A&l, {A, B, Cl, (4 B, Dl, {A,
B, El, {A, C D), {A, WI, {A, D, E) ,(A, B, C,
D), {A, B, C, El, (-4 B, D, El, (4 C, D, El, {A,
B, C, QE)).

The mapping f from the full attribute sets of
the class hierarchy to P’(L) is defined as follow-
ing: AA)=(A), f(AB)={A, B}, flAC)=(A, C},
f(AD)={A, D}, flAE)={A, E}, flABD)={A, B,
D}, flABC)={A, B, C}, AACD)={A, C, D}. Note
that every full attribute set of a node in H corre-
sponds uniquely to a node in Boolean algebra B,
the mapping f is a one-to-one mapping. 0

If Li fl Lj # q5 for some i, j, i # j,(l < i, j 5
m), we can get the full attribute sets as before but
the local attribute sets of H need to be changed
so that the resultant P’(L) can be mapped as be-
fore. Actually, the new local attribute sets can be
obtained by splitting the original local attribute
sets. Let L = {LI, Lz, . .., L,,-,} be the original local
attribute sets excluding Fo. We draw Li, Lj out
Of L, let Lm+l = Li II Lj, Lm+2 = Li - L,+l,

Then we replace L with
ic;L3 {?i>Lj$tL,+1, Lm+2, Lm+3}. If there
exists L;, Lf E L’, and L: f~ Lj # q5 for some k, 1,
k # 1, we can repeat the same process until a new
set Lnew = {Ly”, LTe’“, Ly’“) appears, with
Lnew n Lnew =@, for every i, j, i#j. Note that all
0; the atiributes of H are maintained, and all are
included in L”‘“. The following algorithm PNL
will produce the non-intersected sets Lnew from L.

The mapping process from F to P’(Lnew) can
be used without any change.

Algorithm 1. PNL:Producing a non-intersected
local attribute sets.

Input: A class hierarchy H, with local attribute

308

sets L={Lr,Lz, L,}, FoC L is
the local attribute set of the root node of H.

Output: non-intersected local attribute sets L”“”
= {Ly=“, ,;ew, . ..) Lye”}, U&L”CYZ = lJ&.
Lnew n Lye, = q5 for any i, j, if j (15 i,j 5 q).

Begin
if Li n L, = 4 for every i, j (1 <i, j<q)

then let Lnew = L; return ;
endif
L’ = L;
let X=L1 il Lx fl . . . fl L,;
ifX#q5

then FO = FcU X; L’ = 4;
for i=l to m do

L: = Li - x; L’ = L’ u {Li};
end for

endif.
do while exist i, j, i#j such that L: fl Li # 4

J%+1= L:nL;; L;=L:-Lk+,;
LS = L[i - L’,+,; m=m+l;

end-do
let Lne” =L’; return ;

End

Example ‘7. Consider the class hierarchy H in
Fig.3(a), and L={B, D, C, CD, E}. L”““= {B, C,
D, E}, same as the local attribute sets in Fig.S(b)
(note that in this example, Fo =A CL). Therefore,
the corresponding Boolean algebra B is the same
as that in Example 6, and the mapping from H to
B can be similarly constructed. 0

Definition 10 Given a class hierarchy H. Let
F be the set of all full attribute sets of H, L =

{Ll,Ll, ..., L,} be the set of all local attribute sets
of H, Lo = FoC L the local (and full) attribute set
of root node of H, L”“” the non-intersected local
attribute set generated by Algorithm PNL. We
call B= {P(L”““), n, U,o, Lo, Lnew U Lo } as the
Boolean algebra corresponding to class hierarchy
H.

Theorem 1 Given a class hierarchy H and the
corresponding Boolean algebra B= {P’(L*‘“),

n, u, 0, LO, Lnew U Lo }. Let F = {Fo,Fl,..., Fn}
be the set of all full attribute sets of H. For any
Fi E F, there is one node Nit E P’(Lnew) such
that Fi = {FoLi,Li, . . . Lik}, and Nit = {Fo,LiI,

ha, ...f Li, } and Fi corresponds to Nil .
Proof : Let L = {Ll, La,..., Lm} be the set of

all local attribute sets generated by Algorithm PNL
(Li n Lj = @ for every i, j, 1 2 i, j 5 m,i # j).
Lo = FoC L. If Lij E L for every j (1 5 j 5 k),
then, according to the definition of a power set,
there exists a set {Li,,Li,,Li.,} E P(Lnew).
Therefore, node Nil = FcU {Li,, Liz, Lib}
= {Fo,Lil,Liz, Lib} E P’(L”““) and F;
corresponds Nil.

Assume that Li,C L for some j. According to
the Algorithm PNL, there must be local attribute
sets Lijl, Lija, Lij, E L such that Lij = L;,l U
Lijz U . . . U Liiq, that is, Lij was split into q sub-
attribute sets (q 2 1). Re-number all of those local
attribute sets we can get local attribute sets L+
L;;, Lib EL, satisfying Li; U Li; U . . . , ULg =
Li, U Liz U. ..U Li, and { Li; , Li;, Li;} E P(Lnew).
Thus Nie = {Fo} u { Lil , Li;, L;;) = { Fo, Li; ,
LQ
rl

Liz} E P’ (Lnewj and F; corresponds to Nit.

In the following discussion, we will use L for Lnew.

3.3 Indexing and Operations on
Class Hierarchy

In constructing a class hierarchy, we need to know
the current level of a node, and answer the following
questions: How can we find all or some of the
predecessor nodes for a given node in the class hi-
erarchy? How many direct predecessor nodes does
the current node have? And which node is the
direct predecessor of a given node? Which one is
the predecessor before the direct predecessor of a
given node? Is there any easy way to find them?
We will use the Boolean algebra model to answer
the questions.

3.3.1 Indexing on Class Hierarchy

Logical operations on binary numbers are much
easier than those on the attributes of a class hierar-
chy. So, in many cases, people seek to map sets to
some binary numbers and transfer the operations
on sets to those on binary numbers. In the follow-
ing, we will discuss mapping from a class hierarchy
to a proper bit Boolean algebra, and to some ex-
tent, transfer the operations on a class hierarchy to
those on binary numbers of the bit Boolean algebra.

For a given class hierarchy H, by using the Algo-
rithm PNL, we can obtain a non-intersected local
attribute set L (here we use L for Lnew). Let F
= {Fo,Fl,..., F,} be the set of all full attribute
sets in H, L = {Ll, La, LN} be the set of all
local attribute sets excluding that of the root node
of the class hierarchy, Fo = LoC L be the full
attribute set as well as the local one. Now create
the mapping fN from F to the bit Boolean algebra
< BN,V,A,~, ON, 1N > m follows:

(1) define f&Lo) = fN(LO)= OO...O;

(2) For every Li E L, LQUL~ C F, define fN(Lo U
Li) = 2+l = 00.. alu, (i=l, 2, N).

N--i i-l

(3) For Fi = LoLi, L;,...Lik, define fN(Fi) =
fN(~O~~i,)~fN(~O~~~~)~...~fN(~O~~i,),

(i=l, 2, N).

309

We call the 2-tuple < BN, f~ > the Indexing Model
of the given class hierarchy, where BN indicates the
bit Boolean algebra. The number value of fN(Fi)
is called the index of the node whose full attribute
set is Fi. It seems that for a given class hierarchy,
by rearranging the order of the local attribute sets
of H, we can obtain many different indexing models
for H. But we have the following theorem:

Theorem 2 FOT a given class hierarchy H, the In-
dexing Model of H is unique in the sense of isomor-
phism.
Proof : By using Algorithm PNL, we can get a non-
intersected local attribute set L = {Ll, Lz, LN}.
L is determined uniquely by given class hierarchy
H. Therefore, N is determined uniquely by H. Ac-
cording to Property 6, the indexing model of H is
unique in the isomorphism sense. []

For convenience, we can permute the local at-
tribute sets of L in alphabetical order. In this way,
every class hierarchy will have a unique indexing
model.
Example 8. Consider the class hierarchy H in
Fig.S(a), where F = { A, AB, ACD, AE, ABD,
ABC}, L = {B, CD, E, D, C}, Lney = {B, C, D,
E}, and N = 4. According to the method described
above, we have:
f4(A) = 0000,
f4(AB) = 0001, f4(AC) = 0010, f4(AD) = 0100,
fd(AE) = 1000,
f4(ABD) = f4(AB) v f4(AD)= 0001 v 0100 =
0101, fd(ABC) = f4(AB) v fb(AC)= 0001 v 0010
= 0011, fd(ACD) = fd(AC) v fd(AD)= 0010 v
0100 = 0110.
so node AB has a index 0001, and node ABD has a
index 0101, and so on. Note that nodes AC and AD
do not exist in the class hierarchy, and we will add
these nodes into the class hierarchy later. In this
way, every node in H has an unique index which
belongs to BN of indexing model of given class
hierarchy. It is clear that the class hierarchy in
FigS.(b) has the same indexing model in the sense
of isomorphism. In fact, for any binary number
alazasad E B4, it will determine one node through
this index, no matter if the node exists in H. For
example, 1110 will be the index of node ABCD,
although it is not existed in H. 0

3.3.2 Operations on Class Hierarchy

To maintain a proper class hierarchy, some oper-
ations on class hierarchy need to be considered.
The indexing model of class hierarchy is useful and
convenient for expressing the following operation.

Let Fi be the full attribute set of node
Ni, fN(Fi) = ol@!...aN be the index of Ni.
fN (Fj) = blbz . ..bN be the index of Nj. Following
are some operations on class hierarchies:

(1). Gl(Ni): get the level of a given node Ni in
H.
Gl(Ni) = C& ai;

(2). Gcp(Ni, Nj): get index of the common
predecessor of any two given nodes.
GcP(NilNj) = fN(Fi) A fN(Fj) =
(al A bl)(az A bz)...(w A hv).

(3). Ccp(N;, Nj): construct an index of the
common predecessor for two nodes.
cCP(k&) = fiv(Fi) v fN(Fj) = 6% v
h)(az V bz)--(W V bN).

These operations provide some easy ways to
deal with locating classes (and objects) in class
navigation, especially when the class hierarchy is in
CHNF. For example, consider the class hierarchy
in Fig.S(b). According to Example 8, the common
predecessor of node ABD and ACD is AD. We
can easily get the common predecessor by using
the operation Gcp (ABD, ACD) = fd(ABD)
Afd(ACD) = 0101 A 0110 = 0100, that is the
index of AD. The method can be used similarly
to get a common descendant of any two nodes. In
constructing a CHNF of a given class hierarchy,
when we need to add new nodes to the CHNF of
given class hierarchy, these operations will work
efficiently.
Other similar operations are:
(4). Get the number of the predecessor
nodes for a given node in H.
(5). Get index of all the predecessors for a
given node in H.
(6). Get the common descendant of any two
or more given nodes.
The detailed expressions for the operations are
omitted. By using the indexing model of class
hierarchy, operations are all transferred to binary
operations instead of those on attribute sets. It
is ctear that all (except operation 5) of these
operations have constant complexities, that is,
O(l).

3.4 Construction of CHNF

In Section 3.2, we discussed the mapping from a
given class hierarchy to a proper Boolean algebra.
We know that any boolean algebra has 2” nodes, for
some k. Our idea is to find a boolean algebra with
proper nodes and with its nodes information rich
enough to be mapped to from given class hierarchy
using the method discussed. In this sense, any
class hierarchy H will corresponds to one Boolean
algebra BH unique1 y.

After the mapping between a class hierarchy H
and its corresponding algebra BH has been created,
the nodes in BH can be divided to three groups:

Pl(L)={n 1 3 1,l E LA n E P’(L) A fll)=n }

310

Pa(L)={m 1 3 1, lc L A m c-Pi(L) A 3 n(n E
P’(L) A m=pre(n)) A f(l)=n }

Pa(L)=P’(L) - Pi(L) - Pz(L)

where L, P’(L) and f have the same meanings as
in Section 3.2, m=pre(n) means that m is one of
the predecessors of n. For any node in Ps(L), there
exists at least one of its descendant nodes in given ABCD ABCE ABDE ACDE

class hierarchy. Nodes in Pa(L) are not useful any
more, and we need not to care about them. -XL I/

If a given class hierarchy H is in CHNF, Ps(L) ABCDE

in its BH will be empty. In the case that Pz(L)
is not empty, we need to transfer H to a new class

(a)

hierarchy so that Pa(L) become empty. In fact,
for H, we only need to add nodes whose local at- A

tribute sets corresponding to the nodes in Ps(L).
In this way, we will complete the transformation

4 \\

from H to CHNF of H. The algorithm MARK and
TRANSFER will complete this transformation. 5fY3

ABC ABD ACD

Algorithm 2. MARK: Create mapping from given
class hierarchy H to its corresponding Boolean (b)
algebra B, and mark two class of nodes of B.

Input : A class hierarchy H; non-intersected local
attribute sets L={Li, L2, L,}; F =
{Fo, Fl, F,}; FOG L is the local attribute Figure 4: Boolean algebra graph of a class hierar-
set of the root node of H, n 5 m. thy

Output : a Boolean algebra B whose nodes corres-
ponding to full attribute sets of H are marked

We can get that Pr(L”““)={{A}, {A,

as one category(mark1); and all their predece- Bl,{A, B, Cl, {A, B, D), 1.4, C, Dl> {A,

ssors not marked by mark1 belong to second
E}}, Ps(LneW)={{A, C}, {A, D}}. A Boolean

category(mark2).
algebra graph is given in F&.4(a), in which we

Begin
marked the sets in Pr(LneW) with square boxes

Generate P(L), the power set of L;
and the sets in Ps(Lnew) with round boxes,

let P’(L)={ X’I X’ = FOU X, X E P(L) };
iespectively. For simplicity, a set of attributes

let z ={ Y’I Y’ = FoU Y, Y E L};
is expressed by a continuous string of those

Create Boolean algebra B={P’(L),n, U, o, Fo, z }.
attributes in the nodes of B , e.g. the set of {A,

1 B, D} is expressed by string ABD. All of the sets
for i=O to n do /* generate-set PI(L) */

let Fi = Li,Li,...Li,,;
Find the node NEP’(L) of B whose value

is 1/N={ Li,, Liz, LiE}, and markl(N);
endfor
for any node N’ in B do /*generate set Pz(L)*/

if N’ not marked A3 NL E B (N6, marked
A NL is a descendant of N’)
then mark2(N’);

endif ;
endfor ;
return (B);

End

in Ps (Lnew) are not marked. After removing sets
of Ps(L”eW) from the Boolean algebra graph we
get a sub-graph of the Boolean algebra showed
in Fig.4(b). Actually, adding two nodes whose
attribute sets are AC and AD to a proper position
within class hierarchy we can get a new class
hierarchy. This new class hierarchy must be the
CHNF of the class hierarchy given in Fig.J(a)
because it will result in an empty Ps(Lnew). The
CHNF of the class hierarchy will be same as that
in Fig.4(b), where sets in round boxes are newly
added. [

The following algorithm will create CHNF of
any class hierarchy, thus finishing the normaliza-
tion of a class hierarchy.

In the above algorithm, the sets in Pi(L) of B
are marked by function mark1 0, and sets in Ps (L)
by function mark.%‘(). They are useful in generating
CHNF of the given class hierarchy H.
Example 9. Consider the class hierarchy in
Fig.J(a) again. L={B, D, C, CD, E}, and Lnew=
{B, C, D, E} (note that FO =A CL).

Algorithm 3. TRANSFER: Transfer a given class
hierarchy to one in CHNF

Input : A class hierarchy H.
Output : CHNF of the given class hierarchy H.
Begin

311

Generate the local attribute sets L (excluding
Fo, the local attribute set of the root);
Generate the non-intersected local attribute sets

L ~ew of L (by PNL) , and use L for L '~e~.
Mapping nodes from H to its corresponding

boolean algebra BH and mark the related
nodes of B (by Algorithm MARK).

let CHNF=¢;
for any node N in BH do

if N marked by marklO or markP 0 in BH
t h e n create a new node HN; copy full

attribute set of N to HN.
CHNF = CHNF U {HN};

e n d A f
end_for

for any node HN in CHNF do
find the parent node N ~ o f / IN in CHNF

(according to N in BH), and index from
HN to NI; /*create link between nodes*/

end_for
End

A careful reader will find that the algorithms
given above can be improved greatly, e.g. par-
tially generate the Boolean algebra graph and so
on. Here we are just concerned with the behaviour
of the algorithms. The evaluation of the perfor-
mance and the improvement of the algorithms go
beyond the range of this paper.

4 C o n c l u s i o n s

In this paper, a formal method for normalization
of class hierarchy is presented. This could lay a
foundation for constructing and maintaining class
hierarchies. A class hierarchy in CHNF has no
redundant attribute definition, and is better than
that of a non-CHNF one in that it can fully and
clearly express inheritance semantics. The Boolean
algebra model is a powerful tool for class hierarchy
normalization. By creating the mapping from a
given class hierarchy to a proper Boolean algebra,
we conclude that any class hierarchy corresponds
uniquely to a subset Boolean algebra. On the
basis of Boolean algebra, we give three algorithms
to complete the transformation from a non-CHNF
class hierarchy to a CHNF one. The indexing
model of a class hierarchy is another Boolean
algebra which can be easily used to determine the
predecessors or descendants of classes in a class
hierarchy. It will be helpful for class navigation.
Boolean algebra can also be used to determine
where a new class will be laid when it is added to
the class hierarchy.

A c k n o w l e d g e m e n t

We would like to thank Ms Anne Fuller for her
comments and suggestions on an earlier version of
this paper.

R e f e r e n c e s

[1] C. Beeri. A Formal Approach to Object-
oriented Databases Data ~ Knowledge En-
gineering, Vol.5, 1990, pp.353-382.

[2] S. Ceri and G. Gottlob. Normalization of
relations and Prolog. CACM, pages 524-545,
June 1986.

[3] J. Diederich and J. Milton. New methods
and fast algorithms for database normaliza-
tion. A CM Transactions on Database Systems,
13(3):339-365, September 1988.

[4] S. S. Epp. Discrete Mathematics with Ap-
plications. PWS Publishing Company, 1995,
second edition.

[5] J. Fong. Mapping Extended Entity Rela-
tionship Model to Object Modeling Technique.
SIGMOD RECORD, 18(3), Sept. 1995.

[6] S. Khoshafian. Object-oriented Databases.
John Wiley & Sons, Inc., 1993.

[7] W. Kim. Objected-Oriented Database: Def-
inition and Research Directions IEEE Tran-
section on Knowledge and Data Engineering,
Vol.3, September 1990, pp.327-341.

[8] B .S . Lee. Normalization in OODB Design.
SIGMOD RECORD, 23(3), Sept. 1995.

[9] D. .Maier. The Theory of Relational
Databases. Computer Science Press, 1983.

[10] E. Mendelson. Theory and Problems
of Boolean Algebra ~ Switching Circuits.
McGRAW-HALL BOOK COMPANY, 1970.

[11] W.Y. Mok, Y. Ng and D.W. Embley. A
Normal Form for Precisely Characterizing Re-
dundancy in Nested Relations ACM Transec-
tion on Database systems, Vol.21, No.1 March
1996, pp.77-106.

[12] Z.M. Ozsoyoglu and L. Yuan. A New Normal
Form for Nested Relations ACM Transec-
tions on Database Systems, Vol.12, No.1 1987,
pp.l l l-136.

[13] R. R. Stoll. Set Theory and Logic. W. H.
Freeman and Company, 1963.

[14] Y. Zhang and M.E. Orlowska. An improve-
ment on the automated tool for relational
database design. Information Systems, 15(6),
1990.

312

