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Abstract 

Normalization in object-oriented design is much 
different from that in relational database design. 
Not only are the conceptual data model of object- 
oriented (o-o) models integrating m’cher structuring 
capabilities than that of relational models, but also 
the dependency constraints, attribute ranges and 
access paths in o-o models are more complex 
than that in relational models. In o-o models, 
inheritance semantics is expressed mainly by 
class hierarchy, and it is important to ensure and 
maintain an appropriate class hierarchy. In this 
paper, we propose a Boolean algebra approach for 
class hierarchy normalization. A class hierarchy 
normal form(CHNF) and an indexing model for 
class hierarchy are defined respectively. Some 
methods and algorithms, such as transformation 
from a non-CHNF class hierarchy to a CHNF one, 
are given. 

Keywords object oriented databases, class hier- 
archy, normal forms, Boolean algebra. 

1 Introduction 

In traditional databases, a relational schema design 
begins with an initial schema, and ends with an 
equivalent one that is better in some respects. This 
better schema implies the fact that a schema with 
less redundancy and less update anomaly problem 
is preferable. The aim of solving the redundancy 
problem is to minimize the duplication of informa- 
tion stored in relations. Redundancies in relations 
cause update problems, such as insertion/deletion 
anomalies, which can also affect the performance 
of a database processing. In the literature, these 
redundancy and update problems have been solved 
to some extent by proposing a series of relational 
normal forms (such as 3NF, BCNF, 4NF and 5NF) 
and normalization procedures. 

In object-oriented databases, it is an important 
issue to design a good and correct conceptual 
schema. These conceptual data models integrate 
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richer structuring capabilities than the flat 
relational model by allowing the reuse of data and 
processes through inheritance, the construction of 
complex objects, and the identification of objects 
independently of their values(using the identity 
mechanism). 

One can translate an existing schema from tra- 
ditional databases into OODB [5], but a good rela- 
tional schema does not necessarily result in a good 
schema in the object-oriented sense. Some concepts 
of relational formalization method can be used to 
describe object-oriented database design [8], but 
most of them are different. 

In the context of normal forms and normaliza- 
tion, there are many differences between R models 
(flat relational and extended-relational data mod- 
els) and O-O models (object-oriented data models). 
First of all, in R models, dependency constraints 
are restricted to attribute-attribute relationships 
(e.g., functional and multivalued dependencies). In 
O-O models it is augmented to include the concepts 
of identifier and other atomic attributes (such as 
pointers, etc.). Secondly, object attributes may 
be complex (or multivalued), allowing reference to 
instances of other objects. The attribute types can 
be sets, collections, lists and any other structured 
type. However, relational attributes can only be 
simple or multivalued or other nested sub-relations 
in R models. And thirdly, objects are uniquely 
identified by an object identifier that is assigned 
by the system and can not be changed during its 
life time. There is no notion of key attributes in 
O-O models, whereas key attributes in R model 
are necessary to normal forms. In addition, the 
concepts of aggregation, generalization and multi- 
inheritance should be considered in object-oriented 
normal forms. 

Due to the above differences, the normal forms 
and normalization procedures for object-oriented 
models should be discussed independently from to 
that of R models. In the following sections, we pro- 
pose a Boolean algebra approach for class hierarchy 
normalization. In Section 2, we first review the 
related concepts and properties of Boolean algebra, 
then in Section 3, discuss the normalization of class 
hierarchy which deals with the redundancies of the 
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schema definition (inter-object relationship). The 
conclusions will be included in Section 4. 

2 Review on Boolean AIgebra 

Boolean algebra, in honour of George Boole who 
first set up a logic algebra of this type in 1854, is a 
algebra structure with very good properties. It is 
used in many areas of information processing and 
switch theory. Here, as a review, we list Boolean 
algebra and related concepts and properties [4, 10, 
131. 

Definition 1 [ Boolean algebra ] A Boolean alge- 
bra is a six-tuple < B, +, *, ‘, 0, I >, where B 
is a non-empty set, + and * are binary operations 
on B, ’ is a unary operation on B such that for all 
a,bEB,wehavea+bEB,a*bEB,anda’EB. 
And the following axioms hold: 

1. 

2. 

3. 

4. 

5. 

Foralla,bEB,a+b=b+a;a*b=b*a 

For all a, b, c E B, (a + b) + c = a + (b + c); 
(u * b) * c = a * (b * c) 

For alla,b,cE B, a+(b*c) = (u+b)*(u+c); 
a*(b+c)=(a*b)+(u*c) 

For each a E B, there exists an element de- 
noted a’ and called the complement or negation 
ofainBsnchthatu+a’=landa*u’=O 

Elements 0, 1 E B are called the smallest element 
and biggest element, respectively. 

When there is no danger of confusion, we refer 
to the Boolean algebra simply as B. The set B 
must contain at least the two elements 0, 1. The 
symbols 0 and 1 may be considered as nullary op- 
erations mapping from set B to 0, 1 in B. 

Property 1 Let < B, +, *, ‘, 0, l> be a Boolean 
algebra, x, y E B, then 

(a). (2)’ = 2. 

(b). x* (x-t y) =x,x 

(c). (x * y)’ = i + d, 

+(x*y)=x. 

(x + yy = cl?* 4. 

(d). x + 0 =x, x + 1 =x. 

(e). 0 # I. 

Definition 2 In a Boolean algebra < B, +, *, ‘, 
0, 1 >, we define a binary relation 5 on B by 
stipulating that x 5 y if and only if x * y = x. 

Property 2 Let < B, +, *, ‘, 0, 1 > be a Boolean 
algebra, and -( be a binary relation on B defined as 
Definition 2, then 

(a). For all x, y E B, x 5 y if and only if x + y 

=Y 

(b). For all x E B, x 5 x . (Reflexivity) 

(c). For all x, y and z, (x j y) B (y 5 z) + x 5 
z. (Tkansitivity) 

(d). (x 5 y) & (y 5 x) + x = y. (Anti-symmetry) 

Definition 3 A binary relation R on set A satis- 
fying the following conditions 

(1). (xRy fl yRz) + xRz. 

(2). (xRy & yRx) + x = y. 

is called as a partial order on A. A partial order R 
on A is said to be reflective if and only if XBX for 
all x EA. For a reflective partial order 5 on set A, 
we define x + y if and only if d y and x# y. 

Definition 4 Let 5 be a partial order on set A. z 
EA is said to be an upper bound of a subset Y 
CA if y jz for all y E Y. t EA is said to be a least 
upper bound (lub) of a subset Y GA if and only if 

(1) z is an upper bound of Y. 

(2) z iw for every upper bound w of Y. 

Similarly, z EA is said to be a lower bound of 
a subset Y GA if z sy for all y E Y. z EA is said to 
be a greatest lower bound (glb) of a subset Y GA 
if and only if 

(3) z is a lower bound of Y. 

(4) w 5.z for every lower bound w of Y. 

Property 3 (1) Let 5 be a partial order on set 
A. For any subset Y GA, Y has at most one 
lub (glb). 

(2) Let < B, +, *, I, 0, 1 > be a Boolean algebra. 
For any Y C B, Y has exactly one Iub and one 
glb. 

Example 1. Let A be a non-empty set. The 
power set (i.e., a set containing all subsets) of A 
is denoted as P(A). Under the usual operations 
of union, intersection, and complementation, and 
with C#J and A as the distinguished elements 0 and 
1, we have a Boolean algebra < P(A), U,fl, ‘, 4, 
A >, where U, n are two binary operations, ’ is a 
unary operation on P(A). 

As a special case, we consider that A={a, b, c}, 

In this case, P(A) = { 4, {al, {b), {cl, {a, b), {a, 
~1, (6 ~1, A ) . Th e smallest and biggest elements 
are q5 and A, respectively. The binary relation 5 on 
P(A) defined as in Definition 2 is the conventional 
set relation C. Obviously, 2 is a reflective partial 
order. For any subset Y of P(A), lub(Y) = US~YS, 
and glb(Y) = nseyS. For example, lub({ {a, b }, 

{a, c 1 1) = {a, b, c 1, and glb({ ia, b 1, {a, c 1 )> 
={a). II 
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Usually, the Boolean algebra < P(A), U, n, ‘, 4, 
A > is called as the subset Boolean algebra of set 
A. 

Definition 5 Let < B, +, *, ‘, 0, 1 > be a Boolean 
algebra and 5 a partial relation on B as defined in 
Definition 2. 

(1) An element b E B, b # 0, is said to be an 
atom of B if and only if, for all x E B, the 
condition x 5 b implies that x = b or x = 0. 

(2) Let x, b E B, x is said to be a predecessor 
(descendant) of b if x 3 b(b 5 x). x is said 
to be a direct predecessor of b if x 5 b , and 
there is not any other element c E B such that 
both x 4 c and c 4 b hold. If x is a direct 
predecessor of b, then we say that b is a direct 
descendant of x. 

Definition 6 [ Boolean algebra graph] 
Let < B, +, *, ‘, 0, 1 > be a Boolean algebra, B a 
finite non-empty set, and 5 a partial order relation 
on B as defined in Definition 2. A directed graph 
< V, E > is said to be a Boolean algebra graph of 

B, if 

(1) V = B, 

(2) E ={ <x,y> 1 x, y E B, y is a direct predeces- 
sor of x }. 

An element x E V is called a node, and an ele- 
ment <x, y>~ E is called as a edge (from x point- 
ing to y) of the Boolean algebra. If there exist an 
edge sequence <xl, x2>, <x2,23 >, . . . . <x,,, x,,+l> 
(n>l) such that <x;,x~+~>E E for all 1 5 i 5 n, 
we say that there exists a path from xi to x,+1. 

For simplicity, an undirected graph is usually 
used to replace the directed one. 
Example 2. Consider the Boolean algebra in 
Example 1. Let A={ a, b, c}, then P(A) have three 
atoms {a}, {b} and {c}. A directed Boolean alge- 
bra graph of P(A) is shown in F&l(a), whereas a 
undirected Boolean algebra graph of P(A) is shown 
in Fig.l(b). 

In Fig. l(a), an edge is expressed by an arrowed 
line which links nodes from one node to one of its 
direct predecessor nodes. {b, c} , for example, have 
three predecessors q5, { b } and { c }, two direct 
predecessors { b } and { c }, and one (direct) de- 
scendant { a, b, c }, and there are two arrowed line 
from {b, c} to nodes { b ) and { c }. As mentioned 
before, we usually use Fig.l(b) for Fig.l(a). But we 
will keep in maid that Fig.l(b) is a directed graph 
and all lines are arrowed lines pointing upward from 
the bottom. 0 

Property 4 Let < B, +, *, ‘, 0, 1 > be a Boolean 
algebra, then 

I a. b. c I 
(rb,c) 

(a). directed Boolcm algebra graph (b) undirected Boolean algebra graph 

(c)a Boolean algebra graph which is 

isomorphic to (b) 

Figure 1: Boolean algebra graph 

(1) #B = 2k, for some k>l, and B has exactly k 
atoms. 

(2) If x is a predecessor of y, there must be a path 
from y to x in B. 

where #B indicates the number of elements in B. 

Definition 7 Given two algebras < A, +, *, ‘, 0, 
1 > and < B, @,@,; 9, C >. If there exists a 
one-to-one function f from A to B such that 

(1) ffx + Y) = f(x) @ f(Y); 

(21 f(d) = f(z>; 

we say that < A, +, *, ‘, 0, I > and < B, $,@I, 
; 9,[> are isomorphic, f is an isomorphism (iso- 
morphic mapping) between A and B. 

Property 5 If < A, +, *, ‘, 0, 1 > and < B, 
@, @, ; 0, <> are isomorphic, and f is the isomor- 
phism between A and B, then 

(1) f(x * Yl = f(x) @ f(Y); 

(2) f(0) = 8 and f(l) = C. 

Property 6 All Boolean algebras with same num- 
ber of elements are isomorphic. 

If two Boolean algebras are isomorphic, we may 
take them as the same Boolean algebra. The dif- 
ferences between them are only the symbol differ- 
ences. Ail properties are the same. 
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Example 3. Let BN be a set of all binary 
numbers whose word-length is N (N > 1). That is, 
BN ={u~u~...~N(Q E (0, l), 1 5 i 5 N}. Then, < 
BN, v, A, N, ON, 1~ > is a Boolean algebra, where 
V, A are conventional logical operation on binary 
numbers, i.e. logical bit or and logical bit and, N is 
conventional logical l-complement operation, 0~ is 
the number OO...O, and IN is the number ll...l. 

Obviously, #BN = 2N. For this Boolean alge- 
bra, the following properties hold: 

(1) For every two elements x = oroz...uN and y = 
blb2...bN, 
lub({x,y}) = x V y = (al v bI)(az v bz)...(aN V 

h), 
glb({x,y}) = x A y = (al A bl)(az A b&..(uN A 
hv). 

(2) BN is isomorphic with P(A) in Example 2 if 
#A=N. 

(3) If we define partial order 5 on BN as following: 
For every two elements x=oruz...oj%J and y = 
blbz...bN, x sy if and only if ui 5 bi for 1 
5 i 5 N, then all of the atoms of BN are as 
following: lO...OO, OlO...OO, . . . . OO..lO, OO...Ol. 

In fact, property (1) can be easily extended to ob- 
tain lub and glu for any subset of BN. When N 
= 3, the Boolean algebra graph of BN is shown in 
Fig.l(c). 0 

We usually call the Boolean algebra of Example 
3 as bit Boolean algebra. 

3 Normal Form of Class Hierarchy 

In O-O models, inheritance semantics (isa seman- 
tics) is expressed mainly by class hierarchy. It is 
important to ensure and maintain an appropriate 
class hierarchy structure to fully express the in- 
heritance semantics. An improper class hierarchy 
structure will function initially but, when a class 
schema evolution occurs , may display an unreason- 
able structure that may cause loss of information, 
confusions in semantics and storage anomalies in 
implementation. 

Here we describe an object-oriented model that 
will be used for the development of object-oriented 
normalization theory. Similar to relational models, 
we call the component set of a class definition an 
attribute set. In the following discussion, we use 
capital letters for attribute sets, and some constant 
attribute sets are given below where the brackets 
denote that the attribute is a complex one (mul- 
tivalued attribute). A hypothetical class hierarchy 
graph is shown below in Fig.2, where the meanings 
of the capital letters are : 

P-represents the attribute set of Person, such as 
name, [address]; 

E-represents the special attribute set of 
Employee, such as job, salary; 

S-represents the special attribute set of Student, 
such as S-No, major; 

R-represents the special attribute set of 
Researcher, such as [laboratory]; 

T-represents the special attribute set of teacher, 
such as title; 

Figure 2: Class hierarchy 

Here the special attribute set is the attribute 
set differing from that of its superclass’s. We as- 
sume that a person may have several addresses, a 
researcher may work in several Iaboratories. 

In this diagram, P, E, R, T and S are perceived 
as separate classes. They are graphically repre- 
sented as large round squares. Their possible at- 
tribute sets are drawn beside them, and are linked 
to the class with a single line. When an attribute 
is a complex one, it is drawn inside a small square. 
For instance, the attribute salary of the class E 
is a simple attribute, whereas attribute laboratory 
of class R is a complex (multivalued) one. The 
relationship between superclass and subclasses is 
graphically represented by a directed line with an 
arrow point from subclass to its direct superclass. 
For instance, both R and T are subclasses of class 
E, and from each of them an arrowed line is drawn 
linking to E. It means that both R and T inherit 
all information of class E. 
Example 4. We now extract the class hier- 
archy from Fig.2 (we are not concerned with the 
component attributes), and discuss the redundancy 
problem of schema definition. In Fig.2, if we only 
consider information from two kinds of persons, 
such as researcher and teacher, we may get follow- 
ing class hierarchy 

ip\ 
PER PET 

where node PER represents Researcher, meaning 
that it is composed of the attribute sets of P, E and 
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R, i.e. PER =P U E U R. In this representation, a 
node labeled ABC represents a class frame whose 
attribute set is composed of 

special attribute set C, and inherited 
attributes AB from its superclass if its 
superclass attribute set is AB; or 

special attribute set BC, and inherited 
attribute set A if its superclass’s attribute set 
is A; or 

Definition 8 A local attribute set of a node con- 
tains those attributes of the node which are not 
inherited from its superclass. A full attribute set of 
a node is a attribute set which includes attributes in 
its local attribute set, and attributes in its direct su- 
perclass’s full attn’bute set . An inherited attribute 
set of a node is one which include attributes in its 
full attribute set but not in the local attribute set of 
the node. 

special attribute set ABC which inherits noth- 
ing from its direct superclass’s attribute set 
(or, say, its superclass’s attribute set is empty). 

a full attribute set of a node in a class hierarchy 
includes not only the local attribute set of the node 
but also the local attribute sets of all its predeces- 
sors. 

Similarly, PET represents Teacher. In the above 
representation, the attribute set P in PER and 
PET is inherited from its parent node (superclass), 
but E appeared in both PER and PET is redun- 
dantly defined. If we use folIowing class hierarchy 

P 
I 
PE 

/ \ 
PER PET 

then we get no redundancies in this schema defini- 
tion, where PE denotes the attribute set composed 
of P and E. E can be defined for PE class, and will 
be inherited by PER and PET classes. E appeared 
in PER and PET is defined only once and inherited 
from PE. 0 

Definition 9 Let Nl, N2, . . . . N,, be all nodes of a 
given class hierarchy, and Li be the local attribute 
sets corresponding to node Ni (i=l,!i’, . . . . n). If 
Li n Lj = q5 for any i, j(1 5 i, j 5 n,i # j), then 
we say that the class hierarchy is in class hierarchy 
normal form,or say, in CHNF. 

Generally, in object-oriented database applica- 
tions, it is hard to design a perfect class hierarchy. 
Practically, it is difficult to design a class schema 
with no redundancy in class attribute definition. A 
redundant class schema will result in redundancy 
in object definition and object storage. A non- 
redundant class hierarchy is easy to maintain, even 
when in schema evolution time. On the other hand, 
for a given application, we can construct different 
class inheritances in different ways. How do we 
judge if a given class hierarchy is reasonable or not? 
To keep a clear class inheritance, it is necessary 
to develop a rule to detect whether a given class 
hierarchy is redundantly defined, and if so, how to 
transfer it into a non-redundant one. 

Obviously, if a class hierarchy is in CHNF, there 
are no repeated components of the local attribute 
set of classes in the class hierarchy. A class hier- 
archy in CHNF has the least redundancy in class 
attribute definition, and can fully express the se- 
mantics of inheritance. However, it is an interesting 
task to detect the redundancy in a large class hier- 
archy, and to transfer a non-normal form class to a 
normal form one. We use a Boolean algebra model 
of class hierarchy to deal with the transformation. 
Example 5. Two class hierarchies are given 
below in Fig.3. Different capital letters stand for 
different attribute sets, and they are not overlap- 
ping in attributes. 

A\ 
AB ACD AE 

A 

ABD ABC 

AB AC AD AE 

b-K\ 
ABD ABC ACD 

(a). A class hierarchy with redundancy (b). A class hierarchy with no rcdundm :J 

Figure 3: Class hierarchies 

3.1 CHNF and its related concepts In Fig.3(a), the intersection of the local 

Based on the discussion above, we will present a set attributes in node ABD and ACD (also ABC and 

of definitions for normal form of class hierarchies. ACD) are not empty (note that the local attribute 

Later we will propose some procedures to detect set of node ABD is D, and the local attribute set of 

and deal with redundant class schema definitions node ACD is CD. According to the definition, this 

so that a better class schema with no such class hierarchy is not in CHNF. In Fig.3(b), all of 

redundancy can be obtained. For convenience, we the intersection of local attribute sets between any 

assume that any class hierarchy corresponds to a two nodes are empty. Therefore, it is in CHNF. 

(directed, acyclic) rooted graph and several graph In fact, the class hierarchy in Fig.J(b) can be 

terms, such as node, predecessor etc., are used considered as a further normalization of that in 

without declaration. Fig.3(a). 1 
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In the above example, the class hierarchy in 
Fig.3(b) differs from that in Fig.S(a) in two re- 
spects. First, two nodes , AC and AD are added 
to the class hierarchy in F&S(b). Secondly, not 
only the node ACD but also nodes ABD and ABC 
become child nodes of AC and AD. In some appli- 
cations, the object set of newly added class nodes 
may be empty, but the repeated definition of class 
attributes and the possible inconsistence resulting 
from it are avoided. 

The transformation from a non-CHNF class hi- 
erarchy to a CHNF one is a three-step process. We 
first map the input class hierarchy to a Boolean 
algebra graph, then find nodes of its corresponding 
Boolean algebra, and at last remove the unneces- 
sary nodes from the Boolean algebra graph to form 
a CHNF class hierarchy. 

3.2 Mapping a class hierarchy to a 
Boolean algebra 

Given a class hierarchy H, let Nc, Ni, Nz, . . . . N, be 
all of the nodes of the class hierarchy with Ne its 
root node. Let F = { Fo, Fl, Fz, . . . . F,} be the set 
of the full attribute sets of H, with Fr corresponding 
to node Ni (i=O,l, . . . ,n). For any i, j, i# j, if Ni is a 
predecessor of Nj, then Fi C Fj for Fi is included in 
the inherited attribute set of Nj . Fo is the smallest 
attribute set because Fo c Fi for i=1,2,...,n. Now 
Let L = {LI, Lz, . . . . L,,,}, for some m, be a set of 
possible local attribute sets of H excluding Fo (note 
that Fo = Lo is the full attribute set as well as 
the local attribute set of No). If a class have two 
or more direct superclass, i.e. the case of multi- 
inheritance, its local attribute sets will have two or 
more element sets in L, each differs from others 
according to one of its direct superclasses. For 
example, in Fig.S(b), node ABD has two direct pre- 
decessor nodes AB and AD. Therefore, class ABD 
has two different local attribute sets, D, relative 
to its superclass node AB, and B, relative to its 
superclass AD. 

Assume that Li n Lj = qb for every i, j, i # j,(l 
5 i, j 5 m), and let P(L) be the power set of L. 
Then we get a Boolean Algebra fl= {P(L), f~, U, - 
,&~},with~=LiULsU...UL,,heren,U,and 
N are conventional operators of sets, i.e. union, 
intersection and complement. 

In the above Boolean algebra p, if we add the 
attribute set FO = LO to every element of P(L),then 
we can get another Boolean algebra B that is 
isomorphic to ,0. B= {P’(L),n, U, o, Fo,r }, with 
P’(L)={ X’( X’ = Fo U X,X E P(L)}, L = F. u x, 
FO is the smallest element of this Boolean algebra, 
z is the biggest one, o(X) =N (X) U Fo, and n,u 

are conventional operators of sets. 
Because all local attribute sets (excluding F. ) 

of the class hierarchy are in L, we conclude that 
for any i (i 5 n), there must be a set L’ eP’(L) 

such that Fi= UsEL, S. It means that each of the 
full attribute sets of H will correspond to one of 
the nodes in Boolean algebra B. We can create a 
mapping from F of H to P’(L) of Boolean algebra 
B es following: 

a). FO corresponds to {Fo}; 

b). for every i (i=I, 2, . . . ,n), let F; = FoLi, Li, . . . 
Li,, then Fi corresponds to set {Fo, Li, , Liz, 
. . . . Lik} in P’(L), where Lij be a local attribute 
set of node Ni or some predecessor node of Ni. 

Example 6. Consider the example in Fig3(b). 
The class hierarchy has 8 nodes. The full attribute 
sets corresponding to those nodes are A, AB, AC, 
AD, AE, ABD, ABC, ACD. The local attribute 
sets corresponding to those nodes are A, B, C, 
D, E, (B,D), (B,C), (C,D), where attribute sets 
in parentheses indicate that that node have multi- 
parent nodes (expressing multi-inheritance). Dif- 
ferent local attribute sets in this example are A, B, 
C, D, E, and A corresponds to root node of H. The 
set of P’(L) in Boolean algebra B is {{A}, {A,B}, 
{A,C), {API, {A&l, {A, B, Cl, (4 B, Dl, {A, 
B, El, {A, C D), {A, WI, {A, D, E) ,(A, B, C, 
D), {A, B, C, El, (-4 B, D, El, (4 C, D, El, {A, 
B, C, QE)). 

The mapping f from the full attribute sets of 
the class hierarchy to P’(L) is defined as follow- 
ing: AA)=(A), f(AB)={A, B}, flAC)=(A, C}, 
f(AD)={A, D}, flAE)={A, E}, flABD)={A, B, 
D}, flABC)={A, B, C}, AACD)={A, C, D}. Note 
that every full attribute set of a node in H corre- 
sponds uniquely to a node in Boolean algebra B, 
the mapping f is a one-to-one mapping. 0 

If Li fl Lj # q5 for some i, j, i # j,(l < i, j 5 
m), we can get the full attribute sets as before but 
the local attribute sets of H need to be changed 
so that the resultant P’(L) can be mapped as be- 
fore. Actually, the new local attribute sets can be 
obtained by splitting the original local attribute 
sets. Let L = {LI, Lz, . .., L,,-,} be the original local 
attribute sets excluding Fo. We draw Li, Lj out 
Of L, let Lm+l = Li II Lj, Lm+2 = Li - L,+l, 

Then we replace L with 
ic;L3 {?i>Lj$tL,+1, Lm+2, Lm+3}. If there 
exists L;, Lf E L’, and L: f~ Lj # q5 for some k, 1, 
k # 1, we can repeat the same process until a new 
set Lnew = {Ly”, LTe’“, . . . . Ly’“) appears, with 
Lnew n Lnew =@, for every i, j, i#j. Note that all 
0; the atiributes of H are maintained, and all are 
included in L”‘“. The following algorithm PNL 
will produce the non-intersected sets Lnew from L. 

The mapping process from F to P’(Lnew ) can 
be used without any change. 

Algorithm 1. PNL:Producing a non-intersected 
local attribute sets. 

Input: A class hierarchy H, with local attribute 
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sets L={Lr,Lz, . . . . L,}, FoC L is 
the local attribute set of the root node of H. 

Output: non-intersected local attribute sets L”“” 
= {Ly=“, ,;ew, . ..) Lye”}, U&L”CYZ = lJ&. 
Lnew n Lye, = q5 for any i, j, if j (15 i,j 5 q). 

Begin 
if Li n L, = 4 for every i, j (1 <i, j<q) 

then let Lnew = L; return ; 
endif 
L’ = L; 
let X=L1 il Lx fl . . . fl L,; 
ifX#q5 

then FO = FcU X; L’ = 4; 
for i=l to m do 

L: = Li - x; L’ = L’ u {Li}; 
end for 

endif. 
do while exist i, j, i#j such that L: fl Li # 4 

J%+1= L:nL;; L;=L:-Lk+,; 
LS = L[i - L’,+,; m=m+l; 

end-do 
let Lne” =L’; return ; 

End 

Example ‘7. Consider the class hierarchy H in 
Fig.3(a), and L={B, D, C, CD, E}. L”““= {B, C, 
D, E}, same as the local attribute sets in Fig.S(b) 
(note that in this example, Fo =A CL). Therefore, 
the corresponding Boolean algebra B is the same 
as that in Example 6, and the mapping from H to 
B can be similarly constructed. 0 

Definition 10 Given a class hierarchy H. Let 
F be the set of all full attribute sets of H, L = 

{Ll,Ll, ..., L,} be the set of all local attribute sets 
of H, Lo = FoC L the local (and full) attribute set 
of root node of H, L”“” the non-intersected local 
attribute set generated by Algorithm PNL. We 
call B= {P(L”““), n, U,o, Lo, Lnew U Lo } as the 
Boolean algebra corresponding to class hierarchy 
H. 

Theorem 1 Given a class hierarchy H and the 
corresponding Boolean algebra B= {P’(L*‘“), 

n, u, 0, LO, Lnew U Lo }. Let F = {Fo,Fl,..., Fn} 
be the set of all full attribute sets of H. For any 
Fi E F, there is one node Nit E P’(Lnew) such 
that Fi = {FoLi,Li, . . . Lik}, and Nit = {Fo,LiI, 

ha, ...f Li, } and Fi corresponds to Nil . 
Proof : Let L = {Ll, La,..., Lm} be the set of 

all local attribute sets generated by Algorithm PNL 
(Li n Lj = @ for every i, j, 1 2 i, j 5 m,i # j ). 
Lo = FoC L. If Lij E L for every j (1 5 j 5 k), 
then, according to the definition of a power set, 
there exists a set {Li,,Li,, . . ..Li.,} E P(Lnew). 
Therefore, node Nil = FcU {Li,, Liz, . . . . Lib} 
= {Fo,Lil,Liz, . . . . Lib} E P’(L”““) and F; 
corresponds Nil. 

Assume that Li,C L for some j. According to 
the Algorithm PNL, there must be local attribute 
sets Lijl, Lija, . . . . Lij, E L such that Lij = L;,l U 
Lijz U . . . U Liiq, that is, Lij was split into q sub- 
attribute sets (q 2 1). Re-number all of those local 
attribute sets we can get local attribute sets L+ 
L;;, . . . . Lib EL, satisfying Li; U Li; U . . . , ULg = 
Li, U Liz U. ..U Li, and { Li; , Li;, . . . . Li;} E P(Lnew). 
Thus Nie = {Fo} u { Lil , Li;, . . . . L;;) = { Fo, Li; , 
LQ . . . . 
rl 

Liz} E P’ (Lnewj and F; corresponds to Nit. 

In the following discussion, we will use L for Lnew. 

3.3 Indexing and Operations on 
Class Hierarchy 

In constructing a class hierarchy, we need to know 
the current level of a node, and answer the following 
questions: How can we find all or some of the 
predecessor nodes for a given node in the class hi- 
erarchy? How many direct predecessor nodes does 
the current node have? And which node is the 
direct predecessor of a given node? Which one is 
the predecessor before the direct predecessor of a 
given node? Is there any easy way to find them? 
We will use the Boolean algebra model to answer 
the questions. 

3.3.1 Indexing on Class Hierarchy 

Logical operations on binary numbers are much 
easier than those on the attributes of a class hierar- 
chy. So, in many cases, people seek to map sets to 
some binary numbers and transfer the operations 
on sets to those on binary numbers. In the follow- 
ing, we will discuss mapping from a class hierarchy 
to a proper bit Boolean algebra, and to some ex- 
tent, transfer the operations on a class hierarchy to 
those on binary numbers of the bit Boolean algebra. 

For a given class hierarchy H, by using the Algo- 
rithm PNL, we can obtain a non-intersected local 
attribute set L (here we use L for Lnew). Let F 
= {Fo,Fl,..., F,} be the set of all full attribute 
sets in H, L = {Ll, La, . . . . LN} be the set of all 
local attribute sets excluding that of the root node 
of the class hierarchy, Fo = LoC L be the full 
attribute set as well as the local one. Now create 
the mapping fN from F to the bit Boolean algebra 
< BN,V,A,~, ON, 1N > m follows: 

(1) define f&Lo) = fN(LO)= OO...O; 

(2) For every Li E L, LQUL~ C F, define fN(Lo U 
Li) = 2+l = 00.. alu, (i=l, 2, . . . . N). 

N--i i-l 

(3) For Fi = LoLi, L;,...Lik, define fN(Fi) = 
fN(~O~~i,)~fN(~O~~~~)~...~fN(~O~~i,), 

(i=l, 2, . . . . N). 
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We call the 2-tuple < BN, f~ > the Indexing Model 
of the given class hierarchy, where BN indicates the 
bit Boolean algebra. The number value of fN(Fi) 
is called the index of the node whose full attribute 
set is Fi. It seems that for a given class hierarchy, 
by rearranging the order of the local attribute sets 
of H, we can obtain many different indexing models 
for H. But we have the following theorem: 

Theorem 2 FOT a given class hierarchy H, the In- 
dexing Model of H is unique in the sense of isomor- 
phism. 
Proof : By using Algorithm PNL, we can get a non- 
intersected local attribute set L = {Ll, Lz, . . . . LN}. 
L is determined uniquely by given class hierarchy 
H. Therefore, N is determined uniquely by H. Ac- 
cording to Property 6, the indexing model of H is 
unique in the isomorphism sense. [] 

For convenience, we can permute the local at- 
tribute sets of L in alphabetical order. In this way, 
every class hierarchy will have a unique indexing 
model. 
Example 8. Consider the class hierarchy H in 
Fig.S(a), where F = { A, AB, ACD, AE, ABD, 
ABC}, L = {B, CD, E, D, C}, Lney = {B, C, D, 
E}, and N = 4. According to the method described 
above, we have: 
f4(A) = 0000, 
f4(AB) = 0001, f4(AC) = 0010, f4(AD) = 0100, 
fd(AE) = 1000, 
f4(ABD) = f4(AB) v f4(AD)= 0001 v 0100 = 
0101, fd(ABC) = f4(AB) v fb(AC)= 0001 v 0010 
= 0011, fd(ACD) = fd(AC) v fd(AD)= 0010 v 
0100 = 0110. 
so node AB has a index 0001, and node ABD has a 
index 0101, and so on. Note that nodes AC and AD 
do not exist in the class hierarchy, and we will add 
these nodes into the class hierarchy later. In this 
way, every node in H has an unique index which 
belongs to BN of indexing model of given class 
hierarchy. It is clear that the class hierarchy in 
FigS.(b) has the same indexing model in the sense 
of isomorphism. In fact, for any binary number 
alazasad E B4, it will determine one node through 
this index, no matter if the node exists in H. For 
example, 1110 will be the index of node ABCD, 
although it is not existed in H. 0 

3.3.2 Operations on Class Hierarchy 

To maintain a proper class hierarchy, some oper- 
ations on class hierarchy need to be considered. 
The indexing model of class hierarchy is useful and 
convenient for expressing the following operation. 

Let Fi be the full attribute set of node 
Ni, fN(Fi) = ol@!...aN be the index of Ni. 
fN (Fj) = blbz . ..bN be the index of Nj. Following 
are some operations on class hierarchies: 

(1). Gl(Ni): get the level of a given node Ni in 
H. 
Gl(Ni) = C& ai; 

(2). Gcp(Ni, Nj): get index of the common 
predecessor of any two given nodes. 
GcP(NilNj) = fN(Fi) A fN(Fj) = 
(al A bl)(az A bz)...(w A hv). 

(3). Ccp(N;, Nj): construct an index of the 
common predecessor for two nodes. 
cCP(k&) = fiv(Fi) v fN(Fj) = 6% v 
h)(az V bz)--(W V bN). 

These operations provide some easy ways to 
deal with locating classes (and objects) in class 
navigation, especially when the class hierarchy is in 
CHNF. For example, consider the class hierarchy 
in Fig.S(b). According to Example 8, the common 
predecessor of node ABD and ACD is AD. We 
can easily get the common predecessor by using 
the operation Gcp ( ABD, ACD ) = fd(ABD) 
Afd(ACD) = 0101 A 0110 = 0100, that is the 
index of AD. The method can be used similarly 
to get a common descendant of any two nodes. In 
constructing a CHNF of a given class hierarchy, 
when we need to add new nodes to the CHNF of 
given class hierarchy, these operations will work 
efficiently. 
Other similar operations are: 
(4). Get the number of the predecessor 
nodes for a given node in H. 
(5). Get index of all the predecessors for a 
given node in H. 
(6). Get the common descendant of any two 
or more given nodes. 
The detailed expressions for the operations are 
omitted. By using the indexing model of class 
hierarchy, operations are all transferred to binary 
operations instead of those on attribute sets. It 
is ctear that all (except operation 5) of these 
operations have constant complexities, that is, 
O(l). 

3.4 Construction of CHNF 

In Section 3.2, we discussed the mapping from a 
given class hierarchy to a proper Boolean algebra. 
We know that any boolean algebra has 2” nodes, for 
some k. Our idea is to find a boolean algebra with 
proper nodes and with its nodes information rich 
enough to be mapped to from given class hierarchy 
using the method discussed. In this sense, any 
class hierarchy H will corresponds to one Boolean 
algebra BH unique1 y. 

After the mapping between a class hierarchy H 
and its corresponding algebra BH has been created, 
the nodes in BH can be divided to three groups: 

Pl(L)={n 1 3 1,l E LA n E P’(L) A fll)=n } 
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Pa(L)={m 1 3 1, lc L A m c-Pi(L) A 3 n( n E 
P’(L) A m=pre(n)) A f(l)=n } 

Pa(L)=P’(L) - Pi(L) - Pz(L) 

where L, P’(L) and f have the same meanings as 
in Section 3.2, m=pre(n) means that m is one of 
the predecessors of n. For any node in Ps(L), there 
exists at least one of its descendant nodes in given ABCD ABCE ABDE ACDE 

class hierarchy. Nodes in Pa(L) are not useful any 
more, and we need not to care about them. -XL I/ 

If a given class hierarchy H is in CHNF, Ps(L) ABCDE 

in its BH will be empty. In the case that Pz(L) 
is not empty, we need to transfer H to a new class 

(a) 

hierarchy so that Pa(L) become empty. In fact, 
for H, we only need to add nodes whose local at- A 

tribute sets corresponding to the nodes in Ps(L). 
In this way, we will complete the transformation 

4 \\ 

from H to CHNF of H. The algorithm MARK and 
TRANSFER will complete this transformation. 5fY3 

ABC ABD ACD 

Algorithm 2. MARK: Create mapping from given 
class hierarchy H to its corresponding Boolean (b) 
algebra B, and mark two class of nodes of B. 

Input : A class hierarchy H; non-intersected local 
attribute sets L={Li, L2, . . . . L,}; F = 
{Fo, Fl, . . . . F,}; FOG L is the local attribute Figure 4: Boolean algebra graph of a class hierar- 
set of the root node of H, n 5 m. thy 

Output : a Boolean algebra B whose nodes corres- 
ponding to full attribute sets of H are marked 

We can get that Pr(L”““)={{A}, {A, 

as one category(mark1); and all their predece- Bl,{A, B, Cl, {A, B, D), 1.4, C, Dl> {A, 

ssors not marked by mark1 belong to second 
E}}, Ps(LneW)={{A, C}, {A, D}}. A Boolean 

category(mark2). 
algebra graph is given in F&.4(a), in which we 

Begin 
marked the sets in Pr(LneW) with square boxes 

Generate P(L), the power set of L; 
and the sets in Ps(Lnew) with round boxes, 

let P’(L)={ X’I X’ = FOU X, X E P(L) }; 
iespectively. For simplicity, a set of attributes 

let z ={ Y’I Y’ = FoU Y, Y E L}; 
is expressed by a continuous string of those 

Create Boolean algebra B={P’(L),n, U, o, Fo, z }. 
attributes in the nodes of B , e.g. the set of {A, 

1 B, D} is expressed by string ABD. All of the sets 
for i=O to n do /* generate-set PI(L) */ 

let Fi = Li,Li,...Li,,; 
Find the node NEP’(L) of B whose value 

is 1/N={ Li,, Liz, . . . . LiE}, and markl(N); 
endfor 
for any node N’ in B do /*generate set Pz(L)*/ 

if N’ not marked A3 NL E B ( N6, marked 
A NL is a descendant of N’) 
then mark2(N’); 

endif ; 
endfor ; 
return ( B ); 

End 

in Ps ( Lnew ) are not marked. After removing sets 
of Ps(L”eW) from the Boolean algebra graph we 
get a sub-graph of the Boolean algebra showed 
in Fig.4(b). Actually, adding two nodes whose 
attribute sets are AC and AD to a proper position 
within class hierarchy we can get a new class 
hierarchy. This new class hierarchy must be the 
CHNF of the class hierarchy given in Fig.J(a) 
because it will result in an empty Ps(Lnew). The 
CHNF of the class hierarchy will be same as that 
in Fig.4(b), where sets in round boxes are newly 
added. [ 

The following algorithm will create CHNF of 
any class hierarchy, thus finishing the normaliza- 
tion of a class hierarchy. 

In the above algorithm, the sets in Pi(L) of B 
are marked by function mark1 0, and sets in Ps (L) 
by function mark.%‘(). They are useful in generating 
CHNF of the given class hierarchy H. 
Example 9. Consider the class hierarchy in 
Fig.J(a) again. L={B, D, C, CD, E}, and Lnew= 
{B, C, D, E} (note that FO =A CL ). 

Algorithm 3. TRANSFER: Transfer a given class 
hierarchy to one in CHNF 

Input : A class hierarchy H. 
Output : CHNF of the given class hierarchy H. 
Begin 
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Generate the local attribute sets L (excluding 
Fo, the local attribute set of the root); 
Generate the non-intersected local attribute sets 

L ~ew of L (by PNL) ,  and use L for L '~e~. 
Mapping nodes from H to its corresponding 

boolean algebra BH and mark the related 
nodes of B (by Algorithm MARK). 

let CHNF=¢; 
for any node N in BH do 

if N marked by marklO or markP 0 in BH 
t h e n  create a new node HN; copy full 

attribute set of N to HN. 
CHNF = CHNF U {HN}; 

e n d A f  
end_for 

for any node HN in CHNF do 
find the parent node N ~ o f / IN  in CHNF 

(according to N in BH), and index from 
HN to NI; /*create link between nodes*/ 

end_for 
End 

A careful reader will find that the algorithms 
given above can be improved greatly, e.g. par- 
tially generate the Boolean algebra graph and so 
on. Here we are just concerned with the behaviour 
of the algorithms. The evaluation of the perfor- 
mance and the improvement of the algorithms go 
beyond the range of this paper. 

4 C o n c l u s i o n s  

In this paper, a formal method for normalization 
of class hierarchy is presented. This could lay a 
foundation for constructing and maintaining class 
hierarchies. A class hierarchy in CHNF has no 
redundant attribute definition, and is better than 
that of a non-CHNF one in that it can fully and 
clearly express inheritance semantics. The Boolean 
algebra model is a powerful tool for class hierarchy 
normalization. By creating the mapping from a 
given class hierarchy to a proper Boolean algebra, 
we conclude that any class hierarchy corresponds 
uniquely to a subset Boolean algebra. On the 
basis of Boolean algebra, we give three algorithms 
to complete the transformation from a non-CHNF 
class hierarchy to a CHNF one. The indexing 
model of a class hierarchy is another Boolean 
algebra which can be easily used to determine the 
predecessors or descendants of classes in a class 
hierarchy. It will be helpful for class navigation. 
Boolean algebra can also be used to determine 
where a new class will be laid when it is added to 
the class hierarchy. 
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