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INTRODUCTION

CERVICAL INTRAEPITHELIAL NEOPLASIA

Classification of the cervical intraepithelial neoplasia

The cervical  intraepithelial  neoplasia  (CIN) is  a  pre-cancerous lesion  of  uterine 

cervical squamous cell carcinoma (SCC) and is characterized by potentially premalignant 

transformation  and  abnormal  growth,  named  dysplasia,  of  cervical  keratinocytes.  The 

histological  classification  system provides  three  CIN grades  referred  to  as  CIN1 (mild 

dysplasia),  CIN2 (moderate  dysplasia)  and CIN3 (severe  dysplasia)  lesions.  Each  CIN 

grade  remains  confined  to  the  cervical  epithelium  (Figure  1,  A, 

www.lookfordiagnosis.com)  and has  a  variable  potential  evolution  towards  the  cancer. 

CIN1 lesions are characterized by keratinocytes with abnormal cell growth, perinuclear 

cytoplasmic vacuolation,  named koilocytosis,  and increase volume of the nucleus.  This 

histologic change is confined to the basal third of the cervical epithelium (Figure 1, B). 

CIN2 lesions, compared to CIN1, are characterized by higher cytologic atypia and cellular 

disorganization, while koilocytosis is lower or absent. The histological abnormalities are 

confined to the basal two thirds of the cervical epithelium (Figure 1, C). CIN2 cervical 

cells  show two  main  features:  (i)  atypical  mitotic  figures  induced  by  aneuploidy;  (ii) 

abnormal  nucleus/cytoplasm  ratio.  CIN3  lesions  are  characterized  by  keratinocytes 

endowed  with  high  proliferative  index,  immaturity  and  vertical  orientation.  Abnormal 

keratinocytes exceed the two thirds of the epithelium or expand throughout the thickness of 

the epithelium, altering the whole cyto-architecture of the tissue (Figure 1, D). 

Figure 1. Histological  representation of normal and CIN tissue.  (A) Normal cervical  

epithelium;  (B)  CIN1,  disorganization of  the lower third of  the  epithelium;  (C) CIN2,  
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disorganization  of  the  lower half  of  the epithelium with  viral  infection;  (D) CIN3,  the  

disorganization of the epithelium is evident in more than 2/3 lower. 

Epidemiology of the CIN lesions 

The incidence of CIN lesions in a population depends on several factors such as 

etiopathogenetic factors, the efficiency of prevention programs, the immunologic status, 

and the age of the female. The World Health Organization (WHO) has estimated that the 

annual incidence of CIN lesions among women aged 25-65 years who undergo cervical 

SCC screening for the first time was 3-10% for CIN 1 and 1-5% for CIN2 and CIN3. CIN2 

and CIN3 lesions  are  generally  diagnosed in  women  between 25 and 35 years  of  age 

(Kumar et al., 2007). On the contrary, cervical SCC is usually detected in women over 40 

years of age, typically 8 to 13 years after a diagnosis of CIN3. Women can develop CIN 

lesions at any age?. The prevalence of CIN lesions varies from 1/10,000 in women aged 

15-19 years to 1/1,000 in women aged 25-29 and then it reduces to 8/10,000 in women 

aged 25-29 years (WHO 2010). In developing Countries, like Nigeria, the mean age for 

CIN lesion is about 37 years. The prevalence is 3.6% for CIN1, 0.8% for CIN2 and 0.4% 

for CIN3. Such a result is due to the lack of screening methods and it mirrors the typical 

trend of developing Nations (Oguntayo and Samaila, 2012).

Clinical progression of CIN lesions 

The  temporal  progression  CIN1>  CIN2>  CIN3  represents  the  initial  steps  in 

tumorigenesis  of cervical  SCC. However,  CIN lesions do not always  progress towards 

cancer. Indeed, the histological and molecular phenotype of CIN reflects a fine balance 

between  the  factors  that  promote/accelerate  or  reduce/slow  down  disease  progression 

(Melsheimer et al, 2001). About 90% low-grade CIN lesions tend to regress spontaneously 

while 10% women progress to high grade CIN2 and CIN3 lesions. Typically, the risk of 

CIN progression to cancer is related to the severity of CIN lesion. Indeed, the probability 

that a CIN3 lesion progresses towards cervical SCC is significantly higher than CIN1. The 

percentage of regression and progression of different grades of CIN lesions are shown in 

Table 1:

4



Lesion Regression Persistence
Progression to 

CIN3
Progression to 

SCC

       CIN1 57% 32% 11% 1%

CIN2 43% 35% 22% 1.5%

CIN3 32% <56% - >12%

Table 1. Regression, persistence and progression to CIN3 or SCC probability of different  
CIN pre-cancerous lesions.

CIN lesions are believed to progress over time, evolving from low-grade neoplasia 

(CIN1),  to  high-grade  neoplasia  (CIN2  and  CIN3),  and  finally  to  invasive  carcinoma 

(Ostor, 1993). Accurate predictions of the progression rates of CIN lesions are limited due 

to a lack of sensitive markers  for neoplastic  progression.  Untreated CIN1 lesions have 

about 10% progression rate to CIN3, whereas CIN2 have about 20% progression rate to 

CIN3 and CIN3 lesions have rates of about 12% to progress to cervical SCC (Ostor, 1993; 

Castle et al., 2009; Moscicki  et al.,  2010). Traditionally, CIN1 lesions are conservatively 

managed and followed in time, while CIN2 and CIN3 are surgically removed. Thus, it can 

be speculated that many women, whose CIN would not evolve to malignant lesions, are 

unnecessarily  candidate  to  follow-up or  even  over-treated  and  exposed  to  the  risks  of 

surgical  excision  (Shanbhag  et  al.,  2009).  These  data  suggest  that  there  is  a  need  for 

sensitive markers that can be used in routine pathology practice to identify CIN lesions 

with a high risk of progression.  

HUMAN PAPILLOMA VIRUS 

Human  papillomavirus  (HPV)  is  the  necessary  cause  of  both  CIN  lesions  and 

cervical SCC (Park et al., 1995; Schiffman and Brinton, 1995; Bosch et al., 2002). HPV is 

a  small  double-stranded  (ds)  DNA  virus  belonging  to  Papillomaviridae  family. 
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Papillomaviridae family is divided into 16 genres defined phylogenetically by the letters of 

the greek alphabet (De Villiers  et al., 2004). Five of them, Alpha, Beta, Gamma Mu and 

Nu,  belong  to  the  human  papillomavirus  (Figure  2).  The  α-Papillomavirus  are 

predominantly mucosal, while other genres are predominantly cutaneous. Approximately 

40 HPV types show ano-genital tropism and are transmitted by sexual activity.  Among 

these, some HPV cause genital warts, while others produce persistent infections that may 

evolve in CIN lesions and cervical SCC (Schiffman et al., 2003). For these reasons, HPVs 

are divided into high- and low- oncogenic risk due to their ability to induce benign genital 

warts or CIN lesions and cervical SCC (Table 2). High-risk HPVs are detected in 90% of 

cervical cancers (Clifford et al., 2003; Muñoz et al., 2003). High-risk HPV16 and HPV18 

are detected in approximately in 50% and in 10-20% of all cervical cancers, respectively 

(Muñoz  et  al.,  2003).  Low-risk  HPVs  are  associated  with  90% of  the  warts,  benign 

squamous papillomas and CIN1 lesions, that in most cases resolve spontaneously (Muñoz 

et al., 2003). 

HPV Group HPV type

High Risk 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, 82

Low Risk 6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, CP6108

Probably High-Risk 26, 53, 66, 68, 73, 82

Table 2. Epidemiologic classification of High-, Low- and Probably High-risk HPVs 
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Figure 2. Phylogenetic tree of 118 types of papillomavirus. Each HPV type is identified  
by the number at the end of  each cluster.  The number above the semicircular  symbol  
identifies  the  papillomavirus  species.  The  greek  symbols  identify  genres.  HPV16  and  
HPV18, the main responsible of cervical cancer, are highlighted in red.

Molecular structure of HPV 

HPV  is  a  small  envelope-free  double-stranded  (ds)  DNA  virus.  The  virion  is 

composed by a proteic capsid (diameter=55 nm) consisting of 72 pentameric or hexameric-

shaped  capsomeres  in  icosahedral  symmetry  (Figure  3, 

https://visualsonline.cancer.gov/details.cfm?imageid=2255).  Viral  DNA is  located  inside 

the capsid. HPV genome is circular, double-stranded and it is composed of approximately 

8,000 base pairs (Narisawa-Saito and Kiyono, 2007). The genetic information is contained 

in only one DNA filament (positive strand) whereas 8 are the coding regions are eight. Six 

coding regions are defined “early” and tagged E1, E2, E4, E5, E6 and E7, whereas two are 

called “later” and tagged L1 and L2 (Bravo and Alonso 2007).
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Figure 3. Electron micrograph of a HPV 16. 

HPV  genome  can  be  divided  into  three  regions:  (i)  Long  Control  Region  (LCR),  or 

upstream  regulatory  region  (URR),  which  is  a  non-coding  region  required  for  viral 

replication and viral DNA encapsidation; (ii) Early region (E), that represents 45% of the 

viral DNA and contains the six E genes expressed early in the HPV life cycle; (iii) Late 

Region (L), corresponds to 40% of the viral DNA and encodes for the structural proteins of 

capsid, L1 and L2 (Muñoz et al., 2006). The “E” and “L” regions are referred to as ORF 

(Open Reading Frame) and are separated by the LCR region (Muñoz et al., 2006). 

The viral genes are transcribed in a clockwise direction, but the transcription is not 

temporally sequential.  The encoded proteins have the same nomenclature of genes: six 

nonstructural regulatory proteins, E1, E2, E4, E5, E6 and E7 that interact with the host 

genome  and  proteins  to  replicate  viral  DNA,  and  two  structural  proteins  L1  and  L2, 

expressed after replication of viral DNA. Each viral protein has a specific function in the 

viral replication cycle. E1 and E2 are specifically involved in DNA replication, while E4, 
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E5, E6, and E7 contribute to the initial destabilization of proliferation and differentiation of 

the  host  cell  (Bravo and Alonso,  2007).  E1 plays  a  major  role  in  the  initial  phase  of 

replication  of  the viral  genome as it  presents  the ATP-dependent  helicase  activity  that 

allows  recognition  and  beginning  of  viral  DNA  replication.  E2  gene  encodes  several 

proteins that regulate early viral gene transcription and viral DNA replication, thanks to a 

structural sequence that binds specific DNA regions (Wilson et al., 2002). At low levels, 

E2 binds specific recognition sequences and activates early viral promoters, while at high 

concentrations  it  represses  viral  transcription  by  blocking  the  binding  to  transcription 

factors. E2 plays a key role in the direct regulation of the levels of E6 and E7 oncoproteins. 

Indeed, loss of E2 expression is the first stage of neoplastic transformation.  Despite its 

name, E4 is expressed during the final phases of the viral replication cycle: it seems to 

interact with the keratin intermediate filaments, making them mechanically unstable and 

thus  facilitating  the  release  of  mature  virions  from  the  keratinocytes.  E5  is  a  highly 

hydrophobic protein made up of 83 amino acids that participates to viral DNA replication 

along with E1, E2 and E4 proteins. His Its expression induces several cellular changes. 

Indeed, E5 enhances the signal of growth factors (Crusius  et al.,  1998) activates MAPK 

pathway and down-regulates MHC class I and class II (Ashrafi et al., 2005). Specifically, 

E5: (i) activates the EGF receptor to promote cell proliferation; (ii) enhances the activity of 

transcription  factors,  such  as  c-jun  and  c-fos  thereby  favoring  cellular  mitosis;  (iii) 

inactivates p21; (iv) prevents apoptosis resulting in DNA damage: (v) prevents transport of 

the major histocompatibility complex (MHC) class I and class II. Recent works proved that 

E5 contributes to hyperplasia, regulates growth and invasion in cervical cancer cell lines 

and promotes cervical carcinogenesis in conjunction with E6 and E7 (Genther et al., 2005; 

Maufort  et  al.,  2010).  A study of Kabsch conducted,  in  2002,  indicates  that  E5 could 

inhibit apoptosis, forcing the cell to remain in a continuous proliferative state. 

E6 and E7 are the two oncoproteins of High Risk HPVs. These two viral proteins 

are essential  to induce and maintain cell transformation because they interfere with the 

normal controls of cell cycle and apoptosis. E6 is one of the first proteins to be expressed 

during HPV infection. This protein is formed by 150 amino acids with a molecular weight 

of 18 kD. Typically, E6 protein of High Risk HPVs is located in the nucleus and has no 

intrinsic enzymatic activity. E6 is involved in different cellular pathways, which involve a 

large number of different proteins: transcription factors, pro-apoptotic proteins, proteins 

involved in the formation and maintenance of cellular architecture, polarity and adhesion, 

and factors involved in DNA replication and repair. (Zur Hausen, 2002). E6 protein binds 
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to tumor suppressor protein p53, its principal target, thereby leading to p53 degradation 

(Scheffner  et al., 1990; Werness et al., 1990). p53 plays a key role in apoptosis and cell 

cycle  regulation,  through  several  mechanisms:  (i)  it  induces  apoptosis  in  the  case  of 

irreparably damaged DNA;  (ii)  it  activates  p21 (an inhibitor  of cyclin/cyclin-dependent 

kinase complex, cdk) consequently holding cell cycle at the G1/S regulation point on DNA 

damage recognition and finally blocking cell growth (Vogelstein et al., 2000). Therefore, 

functional inactivation of p53 by E6 results in G1/S and G2/M deregulation of cell cycle 

control leading to abnormalities in DNA replication and genomic structure. The carboxyl 

(C)-terminal of E6 protein carries a short sequence that interacts with a specific set of PDZ 

domains included in several human proteins (Scott and Klingelhutz, 2014). PDZ domains 

(an acronym from the initial of the proteins PSD95, DLG, and ZO1 on which they have 

been  identified)  are  small  domains  that  bind  to  peptide  ligands  through  a  consensus 

sequence XX(S/T/Y)X(V/L/M) located on target proteins. The PDZ protein family present 

a conserved domain that is often found in proteins located in the areas of contact between 

cells,  such as  tight  junctions  between epithelial  cells  or  neural  cell  synaptic  junctions. 

Furthermore,  PDZ  proteins  are  implicated  in  signal  transduction  and  polarity.  The 

members of PDZ protein family (MUPP-1, and hDlg, hSCRIB, MAGI-1, -2 and -3, GIPC, 

PATJ, PTPN3 and PSD95) bind the C-terminus of the protein E6 of oncogenic HPVs and 

are  subsequently  degraded  in  a  proteasome  dependent  manner  (Gardiol  et  al., 1999; 

Glaunsinger  et al., 2000; Nakagawa and Huibregtse, 2000; Massimi  et al., 2004). As a 

consequence  of  the degradation  of  PDZ family  proteins,  cellular  contact  mediated  by 

adherence junctions is lost with a consequent lack of cell polarity. These alterations were 

observed in High Risk HPV-associated transformed cells. 

E6 protein is also able to induce cell immortalization via telomerase activation and 

specifically activating the expression of the catalytic subunit of telomerase, i.e. telomerase 

reverse  transcriptase  TERT.  Telomerases  are  RNA-dependent  polymerases  that  add 

telomere  repeats  to  the ends of chromosomes  (Klingelhutz  et  al.,  1996;  Kiyono  et al., 

1998; McMurray and McCance, 2003; Howie  et al., 2009). They are ribonucleoproteins 

made up by RNA and a protein component,  which is  the reverse transcriptase subunit 

TERT. This subunit catalyzes the addition of deoxynucleotides in a TTAGGG sequence to 

the  ends  of   telomeres  (Shampay  and  Blackburn,  1988).  Thereby  preventing  the 

degradation  of the chromosomal  ends during DNA replication.  Both proliferative  stem 

cells and cancer cells express human TERT (hTERT). The expression of hTERT allows 

telomerase activity and suppression of cell senescence in germ cells. The E6 of some HPV 
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types is able to activate the TERT promoter and this mechanism is strongly associated with 

cancer (Van Doorslaer and Burk, 2012). Even though the exact molecular mechanism of 

promoter  activation  is  still  unclear,  it  probably  involves  E6AP  binding  (Gewin  and 

Galloway,  2001).  Furthermore,  E6  activates  the  transcription  of  hTERT  through  the 

transcription factor c-myc (Veldman  et al.,  2001) that displaces the USF transcriptional 

repressor  from  the  E  box  in  the  TERT  promoter  (McMurray  and  McCance,  2003). 

According to other models, E6 and E6AP bind to a repressor of TERT transcription called 

NFX1-91,  inducing  its  degradation.  The  interaction  between  E6-E6AP  and  NFX1-91 

allows myc to bind to the hTERT promoter and activates it (Gewin  et al., 2004). As a 

consequence of the interaction with E6-E6AP, NFXI-91 is ubiquitinated and degradated, 

thereby removing transcriptional repression at the TERT promoter. Conversely,  a splice 

variant  of  NFX1  referred  to  as  NFX1-123  is  unable  to  interact  with  E6  and  hence 

transcriptional repression is kept despite HPV infection (Katzenellenbogen  et al.,  2007). 

Furthermore,  NFX1-123 stabilizes  TERT transcripts  in HPV-16 E6 expressing cells  by 

binding to poly-(A) binding proteins (Katzenellenbogen et al., 2007; Katzenellenbogen et  

al., 2009).  Interestingly, E6 is able to bind directly TERT proteins, (Liu et al., 2009) even 

though the biological consequences of this interaction are still unknown (Liu et al., 2009).

HPV E7  is  a  phosphoprotein  made  up  of  100  amino  acid  residues  that  is  not 

encoded by all papillomaviruses. E7 is composed by three domains: conserved region (CR) 

1, CR2 and CR3. The E7 amino terminus region contains two regions corresponding to the 

small  portion  of  CR1  and  nearly  the  entire  CR2,  whose  sequence  is  similar  to  the 

adenovirus (Ad) E1A (Phelps et al., 1988). The CR1 and CR2 domains are separated by a 

non-conserved  sequence  of  variable  size  and  amino-acidic  composition.  The  CR3  is 

located  at  the  carboxyl  terminal  that  contains  a  zinc-binding  site  important  for 

dimerization. Such a site is made up by two CXXC domains separated by 29-30 amino 

acid residues (Barbosa et al.,  1989; McIntyre et al., 1993). When one or both the cystein 

residues of one zinc-binding site is mutated,  the virus is no longer able to  immortalize 

human keratinocytes in the dermis (HFK) and transform rodent cells (Dyson et al., 1989). 

E7  could  presents  post-translational  modifications.  Indeed,  E7  contains  a  consensus 

phosphorylation site for: (i) protein kinase C (PKC) on threonine 7 in the CR1 homology 

domain (Liang et al., 2008); (ii) casein kinase II (CKII) in the CR2 domain (Firzlaff et al.,  

1989; Barbosa  et al.,  1990); (iii)  unknown kinase in CR3 domain (Massimi and Banks, 

2000).  E7  can  be  either  carboxyl  terminally  polyaminated  or  amino  (N)-terminally 

ubiquitinated and subsequently degradated via proteasome (Reinstein et al., 2000; Jeon et  
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al.,  2003).  This  oncoprotein  is  usually  located  in  the  nucleus,  but  can  be  potentially 

shuttled  between  the  two  cellular  compartments,  thanks  to  nuclear  export  sequences 

(Knapp et al., 2009). E7 interacts with several cellular proteins: transcription factors and 

proteins that remodel chromatin, negative regulators of the cell cycle, and components of 

the  innate  immune  response.  As  previously  reported,  E7  has  oncogenic  activity  as  it 

efficiently immortalizes human keratinocytes via the combined action with E6 (Felsani et  

al., 2006). In addition to that, E7 binds pRb and other members of Rb family: p107 and 

p130 (Dyson et al., 1989; Davies et al., 1993). E7 associates to pRB through the conserved 

LXCXE sequence motif within CR2 domain (Dyson et al., 1989). pRb is a nuclear tumor 

suppressor phosphoprotein belonging to the pocket protein family, whose members have a 

interacting  region  with  various  proteins  (Korenjak  and  Brehm,  2005).  pRb  prevents 

excessive  cell  growth  by  inhibiting  cell  cycle  progression  and  can  be  considered  a 

“molecular  brake”  of  the  transition  from  G1  to  S  phase.  pRb  regulates  cell  cycle 

progression  through  the  interaction  with  E2F/DP,  a  dimer  of  E2F  protein  and  a 

dimerization partner (DP) protein (Wu et al., 1995) that pushes the cell cycle into S phase 

(Funk  et  al., 1997).  The active  form of  pRB normally  binds  and inactivates  E2F/DP, 

blocking cell  cycle  in G1 phase.  Furthermore,  the complex pRb-E2F/DP interacts  with 

several  chromatin  remodeling  enzymes  such  as  acetylases  and  methylases,  thereby 

silencing numerous promoter of genes involved in the progression from G1 to S phase. On 

the contrary, when the cell is ready to divide, Rb is inactivated through phosphorylation, 

allowing the progression from G1 to S phase. The other two members of retinoblastoma 

family that interact with E7 (p107 and p130) are involved in the control of the different 

phases of the cell cycle. Specifically,  p130 has a regulatory function during the G0/G1 

phase, while p107 is active in the G1/S transition.  E7 is able to bind p107 and p130, 

allowing  cell  progression  from  G1  to  S  phase  and  enhancing  cellular  proliferative 

characteristics (Dyson  et al., 1989; Howie  et al., 2009). E7 is able to interact with the 

cyclin-dependent kinase, CDK2 dependent cyclin A and E that normally regulate cell cycle 

(Arroyo et al., 1993). Furthermore, it associates to inhibitors of cyclin/cdk complex as p21 

and p27, thereby blocking their inhibitory action and fostering the activity of the complex 

cyclin/cdk (Funk  et al., 1997). p16INK4a is an inhibitor of cyclin/cdk complex, whose 

overexpression  normally  induces  cycle  arrest.  E7  counteracts  the  inhibitory  role  of 

p16INK4a  through  mechanisms  that  have  not  been  completely  clarified  yet.  For  this 

reason, p16INK4a was considered as a molecular marker for the CIN pre-cancerous lesions 

(Razmpoosh et al., 2014). Furthermore, E7 is able to bind histone deacetylases (HDACs), a 
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class of enzymes that remove acetyl groups (O=C-CH3) from the ε-N-acetyl lysine amino 

acid on the histones and increase their ability to bind to DNA, thereby enhancing genetic 

transcription.  The  interaction  between  E7  and  HDACs  causes  chromatin  packing  and 

consequently blocks transcription. Since pRb normally binds and recruits HDAC at level 

of E2F inducible promoters, E7 can prevent histone deacetylation also in an indirect way, 

i.e.  through  the  inhibition  of  pRb  (Brehm  et  al., 1999).  Furthermore,  in  the  case  of 

persistent HPV infection, HDACs recruitment allows E7 to silence specific genes, such as 

interferon regulatory factor 1 (IRF1), whose expression is important in immune response 

(Park  et al., 2000). Since the viral genome is unable to remain permanently in episomal 

form when a mutation in the E7-HDAC binding site of E7 is induced (Longworth and 

Laimins,  2004),  it  has  been  deducted  that  the  association  with  HDAC  allows  E7  to 

maintain the viral DNA in episomal form. The molecular mechanism of such an interaction 

is still unclear, but it has been proposed that HDAC directly deacetylates of E2F, causing 

loss  of  function.  Another  important  action  of  E7 is  the  transactivation  of  the  enzyme 

phosphatase  Cdc25,  which  allows  the  dephosphorylation  and  activation  of  complex 

cyclin/cdk and is required for cell cycle progression (Jinno et al., 1994). Another capacity 

of E7 is the ability to induce genomic instability. In fact, several HPV-positive cancer cells 

contain different aneuploidies, indicating that changes in the number of chromosomes are 

important  events  in  tumor  progression.  The  presence  of  E7  is  sufficient  to  induce  an 

abnormal  increase  in  the  number  of  chromosomes  in  primary  human  keratinocytes 

(Duensing  et al.,  2000). Mutated E7 proteins that do not bind or degrade pRb, but are 

associated with p107, induce centrosome abnormalities during cell division (Duensing and 

Munger, 2003). These anomalies are also observed in cells lacking p53 and pRb and in 

embryonic fibroblasts of knock-out mice for pRb, p130 and p107. It has been speculated 

that  a  combination  of  family members  of pRb or other  factors  can induce  centrosome 

abnormalities during HPV infection (Duensing and Munger, 2003).

 The late proteins L1 and L2 have a structural function. L1 is the major viral capsid protein 

common  to  all  the  HPV protein.  L1 self-assemble  into  72  pentamers  and is  the  most 

exposed region of the capsid and the target of the majority of neutralizing antibodies. L2 

protein is highly variable among different types of HPV. This viral protein plays mainly 

regulatory and structural. In fact, it presents a nuclear localization signal and it is involved 

into the selective viral DNA encapsidation.
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The life cycle of HPVs in uterine cervix 

HPV  infections  are  mainly  common  in  keratinocytes  of  the  skin  or  mucous 

membranes  presenting  pluristratified  epithelium,  the  only  tissue  in  which  they  can 

replicate. In particular, HPV infection starts with the initial contact of the virus with micro-

abrasions of the cutaneous or mucous membranes that expose segments of the basement 

region of the pluri-stratified epithelia, composed by stem elements (figure 1, A; Figure 4). 

Following the same process, genital HPV attack the uterine cervix, whose covering surface 

is thin and hence particularly susceptible to suffer from micro-abrasions, making it even 

more vulnerable to infection. As far as we know, the virus enters in the basal cells through 

endocytosis, even though the exact mechanism (classical endocytosis or receptor-mediated 

endocytosis) is still unclear. Presumably the heparan sulfate proteoglycans, located at the 

cell surface and in the extracellular matrix, mediate the initial phase of cell infection (Joyce 

et al., 1999; Patterson et al., 2005). As for other viruses, (Chung et al., 1998; Summerford 

et al., 1999) it seems that secondary receptors as efficient as the integrin receptor α4β6 are 

needed  for  HPV  infection  (Evander  et  al.,  1997;  Bossis  et  al.,  2005).  After  receptor 

recognition, the process of endocytosis occurs through clathrin-coated vesicles. After the 

entrance of the virus into the cytoplasmic compartment (Culp and Christensen, 2004), the 

capsid protein is disassembled in the lysosomes and the viral DNA is transferred into the 

nucleus through the minor capsid protein L2 (Day et al., 2003). The viral DNA remains in 

episomal  form in  the  nucleus  in  the  number  of  10-100 copies/cell  equivalent  and this 

process does not usually cause cytological abnormalities (Schiller et al., 2010). HPV early 

genes E1/E2 are expressed at low levels in the nucleus and trigger the replication of the 

viral genome, which is almost completely mediated by the replicative machinery of the 

host  keratinocyte  (Figure  4).  The  life  cycle  of  HPV is  intimately  associated  with  the 

proliferative  activity  and  differentiating  status  of  the  host  keratinocyte.  In  fact,  quick 

cellular replication is necessary for an increased viral progeny. E2 protein activates and 

controls the expression of E6 and E7 that stimulate the host cell to proliferate, thereby 

stimulating cell growth.
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Figure 4. HPV life cycle. Graphical representation of the key events in HPV life cycle:  
from the first interaction with the basal layer by the virions to the DNA replication, viral  
gene expression and viral release.

Furthermore, E6 and E7 proteins induce a block of cell cycle progression keeping 

the  cell  in  an  undifferentiated  state.  The  final  effect  is  an  increased  proliferation  of 

undifferentiated and infected keratinocytes (Doorbar et al., 2012). The viral cycle follows 

the  natural  maturation  of  the  epithelium,  where  basal  keratinocytes  progressively 

differentiate  while  moving towards the most  superficial  layers.  In the intermediate  cell 

layers,  viral DNA replication stops and the expression of E4 and E5 early genes starts 

(Figure 4, http://www.clinsci.org/cs/). The proteins transcript of E4 activate the expression 

of the late genes L1 and L2, while and proteins transcript of E5 encapsidates the viral DNA 

within  the  virion  (Doorbar  et  al.,  2012).  The  virus  is  completely  assembled  in  the 

squamous cells of the upper layer of the pluri-stratified epithelium, where the keratin is 

destroyed and virions are released by dead cells (Figure 4). The infectious process is slow 

as it takes about 12–24 hours for the initiation of transcription and the final passage of life 

cycle is the exfoliation of superficial keratinocytes and subsequent release of HPV virions 

into the surrounding cervix environment (Doorbar et al., 2012). The complete life cycle of 

HPV from the first interaction with the basal layer to the viral release, requires about 6-12 

weeks.
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HPV and cell proliferation

During the full replicative cycle of low-risk HPV the genome remains in episomal 

form and the production of mature viral progeny occurs. On the contrary, during high-risk 

HPV infections viral  DNA is integrated into the DNA of the host cell.  This molecular 

mechanism has a double effect: it decreases viral progeny on the one hand and it increases 

proliferative capacity in the host cell on the other hand. Indeed, the integration occurs at 

the level of the E2 ORF, blocking the repressive action of E2 on viral oncoproteins E6 and 

E7 and leading to uncontrolled expression. As recently reported, E6 and E7 stimulate cell 

cycle progression by inhibiting the activity of important regulatory proteins of the cycle, 

p53 and pRb, with well known molecular mechanisms (Munger  et al., 1989; Sheffner  et  

al., 1990). E5 seems to be involved in the stimulation of cell proliferation. In fact, it can 

inhibit apoptosis and lead the cell to a high proliferative status.

HPV and tumorigenesis

A crucial aspect of the replicative cycle of cervical high-risk HPVs is the possibility 

to induce persistent infections. As previously reported, the integration of viral DNA into 

the DNA of  the host cell  causes  the disruption of E2 gene sequence and leads  to  the 

uncontrolled and continuous production of viral oncoproteins E6 and E7. Consequently, 

the epithelial cells that express E6 and E7 have a growth advantage compared to those that 

contain  the  viral  DNA in  episomal  form.  This  is  the first  mechanism in the  multistep 

process  of  cervical  neoplastic  transformation.  E6,  E7  and  E5  are  critical  for  the 

tumorigenic process, as they stimulate cell proliferation, induce cell survival and modulate 

keratinocytes  differentiation,  as  confirmed  by  experimental  models.  In  fact,  when  the 

expression of E6 and E7 is inhibited in cultured transformed cells the malignant phenotype 

is reverted, while the activation of E2 in  in vitro experiments blocks cell proliferation in 

cervical SCC cell lines (Goodwin et al., 1998; Jiang and Milner, 2005). During high-risk 

HPVs infection,  the tumorigenic  process  changes  the histological  characteristics  of the 

cervical squamous pluri-stratified epithelium. However, the viral DNA is present only in 

the episomal form and the expression levels of oncoproteins E6 and E7 are relatively low 

(Schiller et al., 2010). This phase is generally referred to as CIN1 lesion. Conversely, when 

the viral DNA begins to integrate in shuffle mode and becomes equally available in the 
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episomal  and  integrated  form,  the  cervical  pre-neoplastic  lesion  acquires  tumorigenic 

potential  (CIN2).  Finally,  cervical  keratinocytes  of  CIN3 lesions  are  no longer  able  to 

regulate  their  own  proliferative  and  differentiation  capacity,  due  to  the  uncontrolled 

expression of E6 and E7. Epidemiological and experimental data indicate that the presence 

of High-risk  HPVs  in  cervical  keratinocytes  is  necessary  yet  not  sufficient  to  induce 

cervical  SCC.  Indeed,  other  genetic  and epigenetic  events  would  be  implicated  in  the 

multifactorial  process  of  neoplastic  transformation  (Zur  Hausen,  2002),  justifying  the 

presence of several functional and structural abnormalities of both oncogenes and tumor 

suppressor genes as well as epigenetic modifications in cervical SCCs. As to the proto-

oncogenes,  cell  mutations  and/or  gene  amplification  have  been identified  in  the  genes 

encoding for the subunits of PIK3CA, RAS, MYC, ErbB2 and cIAP1 (Zhang et al., 2002; 

Imoto et al., 2002; Bertelsen et al., 2006). As to the tumor suppressor genes, loss of PTEN, 

CADM1 and NOTCH seems to be associated with tumor progression (Cheung et al., 2004; 

Overmeer et al., 2008; Vande and Klingelhutz, 2013). The epigenetic deregulation and its 

role in cervical pre-neoplastic CIN progression or in SCC will be dealt in detail  in the 

following chapter.

EPIGENETIC AND CANCER

It  is well known that epigenetic alterations,  i.e.  improper DNA methylation and 

histone modification, are strongly involved, as other molecular phenomena, like genetic 

mutations or gene expression changes, in a cell’s transformation to cancer (Novak, 2004). 

Furthermore,  the DNA methylation  and histone modifications  defects  could be operate 

alone  or  in  concert  with  several  other  molecular  alterations  involved  in  cancer 

development.  

Epigenetics can be defined as the study of all heritable chemical modifications that 

affect the phenotype without altering the genotype. Indeed, it is defined as ‘‘the study of 

mitotically and/or meiotically heritable changes in gene function that cannot be explained 

by changes in DNA sequence’’ (Russo et al., 1996). Furthermore, epigenetics modification 

may have short- or long-term and even trans-generational effect. Epigenetics modification 

are well-established and common phenomena in all cells and are involved in the regulation 
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of gene expression.  At the  basis  of the  epigenetics  process there are  the regulation  of 

chromatin remodeling and regulation of gene expression that are accomplished through 

two related  mechanisms:  DNA methylation  and posttranslational  histone modifications. 

From a biological standpoint, epigenetics modifications are phenomenon that plays a key 

role in a diversity of processes, such as embryonic development, immune system response, 

infertility and cancer development. However, aberrant epigenetic modifications may have 

the same negative effect of a gene mutation, because the expression of the DNA is altered. 

Consequently,  aberrant epigenetic modifications may be associated,  or induces, disease. 

While the genetic code is considered static, i.e. it is the same in each cell for the entire life 

of the organism, the epigenetics phenomena are dynamic, tissue-specific and provides to 

change the phenotype because of various factors such as environmental factors (Li et al., 

2006).  This  dynamic  state  may  suggest  the  possibility  of  reversibility  of  epigenetic 

changes, and then a possible therapeutic target for a certain number of diseases. (Egger et  

al., 2009)

Aberrant  CpGs  methylations,  hypo-  and  hypermethylation,  have  long  been 

associated with diseases and cancer.  DNA methylation is a biochemical process based to 

the addition of a methyl group to the S-adenosyl-methionine to the 5’ position of cytosine 

belonging  to  CpG  DNA  dinucleotide  (Biermann  and  Steger  2007).  This  activity  is 

mediated by DNA methyltransferases (DNMTs) family enzymes. Specifically, the family 

of enzimes DNMT1 is involved in the maintenance of methylation patterns (Bestor et al., 

1988); whereas, enzymes DNMTs 3a and 3b (Okano et al., 1999) are required for de novo 

methylation activity (Lei et al., 1996; Okano et al., 1999). Another protein, DNMT3L, is 

homologous  to  DNMT3s,  but  has  no  catalytic  activity  and  assists  the  DNMTs  by 

increasing their ability to bind DNA and stimulating their activity (Chedin  et al., 2002; 

Suetake et al., 2004). Takai and Jones formulated the accepted definition of a CpG island 

as a 500, or higher, base pair segment of DNA with a G+C equal to, or greater than, 55% 

and with a CpG frequency of at least 0.65 of the statistically expected value (Takai and 

Jones,  2002). In mammals  70% to 80% of CpG cytosines are methylated (Jabbari  and 

Bernardi  2004).  CpG  islands  are  located  preferentially  in  high  concentrations  within 

promoters genes (Bird  et al.,  1995) with a frequency about 40% (Fatemi  et al.,  2005), 

indicating that they are involved in the regulation of gene expression (Deaton and Bird, 

2011).  Indeed,  DNA hypomethylation  in  CpG islands  correlates  with  gene  expression 

(Biermann and Steger, 2007), whereas DNA methylation in CpG islands is associated with 

trascriptional  repression  (Deaton  and  Bird,  2011).  Hypermethylation  in  CpG  islands 
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located at  gene promoter  region cause gene suppression because:  (i)  DNA methylation 

itself prevents binding of transcriptional factors (Choy et al., 2010); (ii) methylated DNA 

is  bound by methyl-CpG-binding  domain  proteins  (MBDs)  (Nan  et  al.,  1993),  which, 

subsequently recruit other factors involved in gene expression inhibition (Illingworth and 

Bird, 2009; Thomson et al., 2010);

In  general,  these  epigenetic  modifications,  causes  defective  gene  expression, 

improper condensation and chromosomal instability (Attila and Lorincs, 2014). In cancer 

cells, both of these alterations could coexist in concert or alone. As previously reported, 

CpG islands are typically located within, or close to, gene promoter and are involved in 

gene  expression  regulation.  Whereas  CpG  islands  preceding  tumor  suppressor  gene 

promoters  are  generally  unmethylated,  in  cancer  cells  it  is  possible  that  an  abnormal 

increase  of  methylation  level  at  this  region  induce  gene  silencing.  Indeed, 

hypermethylation  of  tumor  suppressor  gene  promoters  is  often  associated  with  the 

silencing of those genes. The tumorigenic process is induced when genes that regulate the 

cell cycle are silenced, allowing cells to increase their proliferative capacity and reproduce 

uncontrollably (Esteller, 2007). Two important genes that acquire hypermethylation were 

two cell-cycle inhibitor referred to as p16 and p15 in different types of cancer (Viet et al., 

2007).  Various  genes  involved  in  DNA  repair,  such  as  O-6-methylguanine-DNA 

methyltransferase (MGMT), undergo defective methylation in many types of carcinomas 

(Esteller et al., 1999; Weller et al., 2010). Furthermore, another DNA-repair gene found to 

be  hypermethylated  is  MLH1.  This  gene  was  detected  whit  this  defective  epigenetics 

aberration  in  gastric  cancer  (Li  et  al., 2014).  Others  suppressor  genes  known  to  be 

hypermethylated during cancer progression were: RB, Cyclin-dependent kinase inhibitor; 

the Von Hippel–Lindau tumor suppressor gene VHL; and E-cadherin, a calcium-dependent 

cell-cell adhesion glycoprotein (Greger et al.,1989; Santini et al., 2001). Typically, during 

cancer development, while hypermetilation generally occurs in a single molecular target, 

DNA  hypomethylation  is  a  general  phenomenon.  Genomic  instability  is  the  principal 

consequence,  but  sometime  transcriptional  activation  of  oncogenes  may occur.  Indeed, 

aberrant hypomethylation of CpG islands located at proto-oncogene promoters could lead 

to an increase of expression of these genes. In normal cell, repetitive genomic sequence, 

such  as  LINE,  SINE,  IAP  and  Alu  elements  are  highly  methylated.  These  genomic 

sequences  ensure  genomic  integrity/stability  and  improper  hypometylation  phenomena 

could induce undesired mitotic recombination. Indeed, loss of DNA methylation in SAT2 

(juxtacentromeric  satellite  2) and SATα (centromeric  satellite  α) was detected in breast 
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cancer and may contribute to progression of ovarian cancer (Widshwendter  et al., 2004). 

DNA loss of methylation of individual gene is rather in common. Indeed, frequently, most 

of promoter regulatory region are under this epigenetic control, belong to tissue specific 

genes. For instance, a cancer/testis (CT) antigens, expressed in normal condition in adult 

male testis, are epigenetically and aberrantly activated in various types of human cancers 

(Caballero  and Chen,  2009).  Furthermore,  in  colorectal  cancer  and melanoma,  the  CT 

antigens MAGE are reactivated by promoter hypomethylation (Weber et al., 1994). 

High-risk HPVs and epigenetics deregulation in cancer

The  multifactorial  process  of  cervical  SCCs  high-risk  HPVs  induced,  includes, 

among the various aspects, epigenetic changes in the host genome. The apoptotic pathway 

presents  numerous  genes,  which  epigenetic  aberrations  are  involved  with  the  onset  of 

cervical  SCCs.  The  gene  coding  two  members  of  tumor  necrosis  factor  receptor 

superfamily, referred to as decoy receptors (DcR1/DcR2) can be the target for abnormal 

methylation that leads to their silencing in cervical SCCs, suggesting that cervical cancer 

cells  may  obtain  a  growth  advantage,  probably  due  to  the  down-regulation  of  decoy 

receptor DcR1/DcR2 (Van Noesel  et al., 2002; Shivapurkar  et al., 2004). Interestingly, 

despite  cervical  SCCs  show  down-regulation  of  hTERT  mRNA,  a  study  has  found  a 

correlation between reduced expression, and catalytic subunit activity, with hTERT gene 

promoter demethylation (Guilleret and Benhattar, 2003). p73, a member of the p53 family,  

involved in cellular response to DNA damage induced by radiation and chemotherapeutic 

agents, presents two independent promoters that have opposite activities. One of this two 

promoters presents within the exon 1, is rich in CpG dinucleotides and its transcriptional 

silencing through hypermethylation represents a mechanism for inactivation of this gene in 

cervical SCCs (Liu  et al., 2004). As previously reported, a lot of number of cell cycle-

related genes is deregulated during cancer development. Aberrant methylation of the p16 

gene promoter occurs in situ as well as in invasive tumors with a frequency of ranged 

between  10-100%  (Nakashima  et  al.,  1999).  Furthermore,  p16  hypermethylation  is 

progressively  most  frequent  during  CIN  pre-cancerous  lesions  progression.  Indeed  is 

present in 17.6% of CIN I, 42.1% of CIN II, 55.0% of CIN III, and 65.0% of invasive 
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cancers (Huang et al., 2011). Two other genes cycle-related genes epigenetically involved 

in cervical SCCs onset and progression are CCNA1 and the fragile histidine triad (FHIT). 

The  CCNA1 gene  encodes  Cyclin  A1,  which  regulates  the  cell  cycle.  CCNA1 

downregulation  due  to  promoter  hypermethylation  was  detected  in  60% and 93.3% of 

microinvasive  cancers,  and invasive  cancers,  respectively (Yang  et  al., 2010).  FHIT is 

another protein involved in cell cycle regulation and apoptosis. Epigenetic silencing of this 

gene  by  promoter  hypermethylation  is  common  in  cervical  cancer  (Ki  et  al., 2008). 

Furthermore, the signal transduction pathway Wnt, named for its most upstream ligands, 

the Wnts, is epigenetically deregulated during cervical SCC development. In this pathway 

were detected promoter aberrant methylations in PTEN (Cheung et al., 2004), E-cadherin 

(Widschwendter  et al., 2004) and APC (Virmani  et al., 2001) in various cervical SCCs 

cases. Two genes belonging to the Fanconi anemia (FA)-BRAC pathway referred to as 

BRCA  and  FANCF  present  aberrant  methylation  in  their  promoter  in  cervical  SCCs 

(Marsit  et al., 2004; Narayan et al., 2003). Furthermore, in a study conducted in patients 

with  SCC,  BRCA1  promoter  hypermethylated  cases  present  a  frequency  of  6.1%,  in 

invasive SCCs, whereas FANCF hypermethylation rate was 30%. Thus, hypermentilation 

of these genes was mutually exclusive in the analyzed cases, suggesting the important role 

of  epigenetics  aberrations  in  this  pathway  for  cancer.  (Narayan  et  al.,  2004).  Other 

molecular  pathways  that  have  genes,  which  promoter  carries  epigenetics  deregulations 

include:  mismatch  repair,  metastasis/cell  death,  cell  differentiation  and  DNA  repair 

(Narayan et al., 2003; Virmani et al., 2001).
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MOLECULAR STUDIES OF CIN PROGRESSION

The  molecular  bases  involved  in  the  pre-cancerous  CIN lesions  progression  to 

cervical SCC were previously investigated in different studies. These studies were carried 

out at both tissue and cellular level using microarray analysis or HPV DNA transfection 

assays, respectively. 

In order to compare gene expression signature on biopsies from cervical SCC with 

normal tissues, different studies were performed using microarray technique. (Cheng et al., 

2002; Chen et al., 2003; Wong et al., 2003; Rosty et al., 2005; Wong et al., 2006; Chao et 

al.,  2006).  However,  in  all  these  studies  have  not  been  investigated  the  molecular 

mechanisms  involved  in  the  progression  of  CIN  lesions  to  the  cervical  SCC.  These 

mechanism were subsequently investigated in other works when were used, in addition to 

cervical SCC and normal tissues, CIN biopsies as well (Gius  et al., 2007; Arvantis and 

Spandidos, 2008; Song et al., 2008; Rajcumar et al., 2011). A work conducted by Gius and 

colleagues  shows  that  proproliferative/immunosuppressive  genes,  such  as  p16INK4a, 

KIF23  and  CENPF are  up  regulated  in  CIN1  lesions,  probably  due  to  the  epithelial 

response  to  human  papillomavirus  infection,  while  proangiogenic  stromal/epithelial 

interaction genes, such as HINT1, TAGLN and TBX19 and proinvasive genes, such as 

DSG3, MMP3 are mainly up-regulated in CIN2 and CIN3 lesions,  respectively.  These 

results suggest a cooperative signaling interaction between stroma and tumor cells. Finally, 

the signature pattern detected in CIN3 and SCC probably represents epithelial tumor cell 

overcrowding (Gius et al., 2007). 

Microarray studies were performed on biopsies of tumor and normal tissue. This 

study model may affect the actual gene expression profile of the type of cell under study, 

as keratinocytes, in this case. Such a problem has to be ascribed to tissue samples - in 

particular cervical CIN or normal tissue samples - that contain a significant number of 

stromal cells and contaminants derived from the host immune cells, such as monocytes, 

dendritic cells and lymphocytes. 

In vitro HPV-transfected human skin keratinocytes represent good models to mimic 

the molecular  and morphological  characteristics  of cancerous cells  (Pirisi  et al.,  1987;; 

Zyzak et al., 1994; Creek et al., 1995; Borger et al., 2000; Akerman et al., 2001; Chang 

and Laimins, 2000; Nees et al., 2001; Oh et al., 2001). In vitro models of HPV-transfected 

cells  showed loss  of  differentiation,  overexpression  of  EGF receptor  and resistance  to 
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TGF-beta-induced  growth  inhibition  (Pirisi  et  al.,  1988).  Several  studies  have  applied 

microarray technology to this model with the aim of identifying the molecular processes 

involved  in  HPV-induced  transformation  and  tumor  development  (Ruutu  et  al.,  2002; 

Duffy  et  al.,  2003;  Kravchenco-Balasha  et  al., 2009).  However,  HPV-transfected 

keratinocytes may not mirror the actual in vivo situation because they do not derive from 

the uterine cervix,  but from other parts of the body.  Moreover,  keratinocytes  were not 

naturally infected by high-risk HPVs. Consequently, the molecular pathways detected in 

this model could be different from those involved in HPV induced progression to cervical 

SCC. 

Only few gene-expression studies have been performed on cervical keratinocytes 

that were naturally infected with HPV, i.e.  in vitro neoplastic HPV-keratinocytes derived 

from CIN lesions (Gray  et al., 2010). In those studies, the gene expression profile was 

investigated in HPV16-infected keratinocytes derived from low-grade CIN1 lesions (Gray 

et al., 2010). A work of Nees and colleagues used, as a study model, primary cultures of 

ectocervical  keratinocytes  obtained from cervical  tissue from hysterectomies.  The cells 

used were infected with retroviruses expressing E6 and E7 genes of HPV16 (Nees et al., 

2001).  In  1989 Stanley and colleagues  set  up a  human  cervical  keratinocyte  cell  line, 

referred to as W12, from a low-grade cervical lesion histologically diagnosed as CIN1. 

This keratinocyte cell line represented a good model to study the natural history of cervical 

neoplasia.  In  fact,  the  same  model  was  used  to  identify  groups  of  genes  that  carried 

expression  changes  due  to  HPV-16  integration  (Alazawi  et  al.,  2002).  Santin  and 

colleagues analyzed gene expression on  in vitro cultures of cervical keratinocytes using 

microarray  assay.  Even  though  cultured  keratinocytes  did  not  derive  from  CIN  pre-

cancerous lesions, the study was conducted on 15 primary cervical cell lines: 11 HPV-16 

or HPV-18 positive cervical  SCC primary cultures  and 4 cell  lines  of normal  cervical 

keratinocytes (Santin et al., 2005).
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OBJECTIVE AND AIMS 

OF THE STUDY

Overall,  the  main  objective  of  my  study  was  to  investigate  the  molecular 

mechanisms occurring in neoplastic progression of CIN2 and CIN3 cervical pre-cancerous 

lesions. To this purpose, HPV16-CIN2 and HPV16-CIN3 keratinocytes derived from high-

grade CIN2 and CIN3 pre-cancerous lesions were investigated by microarray analysis and 

DNA methylation of gene promoters. Aims of this study were:

I

To set up a cell culture protocol able to derive pre-neoplastic and normal cervical 

keratinocytes from small tissue fragments of naturally high-risk HPV-infected CIN2 and 

CIN3 lesions and normal uterine cervix, respectively. Cultures of CIN and normal cervical 

keratinocytes  were  stained  with  immunofluorescence  technique  in  order  to  investigate 

expression of epithelial and cervical markers.

II

To  investigate  the  gene  expression  profile  of  HPV16-CIN2  and  HPV16-CIN3 

keratinocytes.  To  this  purpose,  HPV16-CIN2  and  HPV16-CIN3  keratinocytes  and  the 

corresponding normal cervical keratinocytes were subjected to microarray analysis, Real-

Time Quantitative RT- PCR, and Immunohistochemistry analysis.

III
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To analyze  the  mRNA expression levels  and DNA methylation  status  of  target 

genes in  HPV16-CIN2 and HPV16-CIN3 keratinocytes. To this  purpose,  HPV16-CIN2 

and HPV16-CIN3 keratinocytes and the corresponding normal cervical keratinocytes were 

subjected to Real-Time Quantitative RT- PCR, and bisulfite sequencing analysis.

MATERIALS AND METHODS

CERVICAL UTERINE SPECIMENS 

Small tissue fragments (2-3 mm3) were taken from CIN biopsies, CIN2 or CIN3 

pre-cancerous  lesions,  after  surgery  excision.  The  corresponding  surrounding  normal 

tissues were also provided. The patients had undergone electrosurgical conisation under 

colposcopic examination using 5% acetic acid and Lugol’s iodine solution, which stains 

the pathologic tissue with a white color, whereas stains normal tissue brown (Stafl and 

Wilbanks,  1991).  CIN  and  normal  specimens  were  selected  and  divided  by  the 

gynecologist during surgery and CIN specimens were classified by pathologists according 

to international criteria (Horvat et al., 2008). Informed written consent was obtained from 

all patients in accordance with our institutional guidelines.

CIN2, CIN3 AND NORMAL TISSUE PREPARATION

Each tissue fragment was transferred into a 50 ml centrifuge tube and submerged in 

an ice-bath containing 20 ml of DMEM:F12 transporting medium (with L-glutamine, 15 

mM  HEPES  and  3.151  g/L  glucose;  Lonza,  Milan,  Italy)  with  200  U  ml-1 

Penicillin/Streptomycin  (10,000  U ml-1 penicillin,  10,000  U ml-1 streptomycin;  Lonza, 

Milan, Italy), 0.25 μg ml-1 Amphotericin B (250 μg ml-1; Lonza, Milan, Italy). Under a 
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sterile hood, the transporting medium was removed and the tissue fragments were rinsed 

with 10 ml of sterile PBS 1X (without calcium or magnesium; Lonza, Milan, Italy,) and 

mixed manually 3-4 times. The samples were centrifuged at 400 g at RT for 10 minutes 

and the PBS 1X was discarded. The samples were washed again twice and afterwards the 

PBS 1X was discarded. The tissue fragments were lifted with tweezers and placed in a 10 

cm Petri-dish. Afterwards the tissue fragments were finely cut with a disposable blade. 

During cutting,  it  was followed the direction of the blade edge, and the tissue was not 

dragged  laterally;  to  cut  the  tissue  in  all  directions,  the  Petri-dish  was  turned  around 

periodically. Then, DMEM:F12 medium (with L-glutamine, 15 mM HEPES and 3.151 g/L 

glucose;  Lonza,  Milan,  Italy),  4.5 ml,  was deposited on the Petri-dish and the minced 

specimens were aspirated and transferred into a T25 flask (Corning, Pero, Italy); 500 µl of 

2000 u/ml  Type  II  collagenase  enzyme  solution  (final  concentration  200 u/ml,  Sigma-

Aldrich, Milan, Italy) were added and tissue digestion was performed at 37 °C, with 5% 

CO2, for 24 hrs.  

CIN2, CIN3 AND NORMAL CULTURE SETUP

After  digestion,  cell  suspension was  gently  mixed  to  optimally  disaggregate  all 

tissue fragment residues, and then transferred the into a 10 ml conical tube and centrifuged 

at  400g at  RT,  for  10 minutes.  The supernatant  was discarded and the  cell  pellet  was 

washed twice with 2 ml of PBS 1X. The cell pellet was suspended in 5 ml of DMEM:F12 

complete  medium  (with  L-glutamine,  15  mM  HEPES  and  3.151  g/L  glucose;  Lonza, 

Milan, Italy) with 200 U ml-1 Penicillin/Streptomycin (10,000 U ml-1 penicillin, 10,000 U 

ml-1 streptomycin; Lonza, Milan, Italy), 0.25 μg ml-1 Amphotericin B (250 μg ml -1; Lonza, 

Milan, Italy) and 10% v/v of Fetal Bovine Serum (FBS, Lonza, Milan, Italy) and seeded in 

a T25 flask. Cell cultures were incubated at 37 °C, with 5% CO2. After two days, the cell 

suspension was  transferred  into  a  10  ml  conical  tube  whereas  the  attached  cells  were 

washed twice with 5 ml of PBS 1X; then, 5 ml of fresh DMEM:F12 complete medium was 

added. Cell suspension was centrifuged at 400g at RT for 10 minutes. The cell pellet was 

26



washed twice with 2 ml of PBS 1X, then suspended in 5 ml of DMEM:F12 complete  

medium and transferred into a new T25 flask (T2 flask). The cell suspension in the T2 

flask was incubated at 37 °C, with 5% CO2, and leaved to attach for 2 days. After two 

days, the cell suspension of the T2 flask was discarded, the attached cells were washed 

twice with PBS1X and 5 ml of fresh DMEM:F12 complete medium was added.  

CIN2, CIN3 AND NORMAL PRIMARY COLONY EXPANSION

Colonies grown in T1 and T2 flask were analysed with Inverted Nikon TE2000E 

microscope; the larger colonies, and made up of small cells, were selected for expansion. 

DMEM:F12 complete medium was removed and cells were washed twice with 5 ml of 

PBS 1X. The upper surface of the T1 and T2 flasks was opened at the top with a red-hot 

sterile  disposable  blade.  The  flasks  were  carefully  opened  in  order  to  avoid  dropping 

plastic  fragments  onto  the  layer  where  the  cells  were  located.  After  discarding  of  the 

PBS1X, glass cylinders (height 10 mm, external diameter 9 mm, internal diameter 7 mm; 

Elettrofor s.a.s.,  Borsea, Italy)  were used to isolate the single colonies.  Glass cylinders 

were sealed with a silicone rubber and placed around the colonies; after pressing lightly 

down,  so  that  the  cylinders  adhered  well  to  the  bottom of  the  T25  flasks,  cells  were 

detached with 50 µl of 0.05% w/v Trypsin (from bovine pancreas; Sigma-Aldrich, Milan, 

Italy)/0.01% w/v Ethylenediaminetetraacetic acid (EDTA; Sigma-Aldrich, Milan, Italy) in 

a PBS 1X solution, at 37°C for 5 minutes. After incubation, most of the cells from different 

colonies were completely detached. However, cells from some colonies were difficult to 

detach and further 3-5 minutes of incubation at 37°C  were needed. Then, cell suspension 

from each colony was recovered and seeded in a well of 6 well culture plate (Corning, 

Pero, Italy) with 2 ml of DMEM:F12 complete medium. Cells were left to attach overnight 

at 37 °C, with 5% CO2. After incubation, the DMEM:F12 complete medium was changed 

with 2 ml  of DMEM:F12 complete  medium/defined Keratinocyte  Serum Free Medium 

(dKSFM, Invitrogen, Monza, Italy) (ratio 1:1) (DMEM:F12/dKSFM) medium. Cells were 

incubated at 37 °C, with 5% CO2 and the DMEM:F12/dKSFM medium was changed every 
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3  days.  Cell  cultures  became  80% confluent  typically  in  4  days  for  CIN2 and  CIN3 

keratinocyte colonies and in 7 days for normal keratinocyte colonies. In order to obtain 

huge amounts of normal and neoplastic keratinocytes, the subconfluent cells were detached 

from each well  with 500 µl  Trypsin/EDTA solution at  37 °C for  5  minutes,  and then 

transferred into a new T25 flasks with 5 ml DMEM:F12/dKSFM medium. Cell cultures 

were incubated at 37 °C, with 5% CO2 and the medium was changed every 3 days. CIN2 

and CIN3 keratinocyte  colonies  grew more  quickly than  normal  keratinocyte  colonies. 

Therefore,  10  days  were  sufficient  to  reach  sub-confluence  for  CIN2  and  CIN3 

keratinocytes and 15 days or more were needed in order for sub-confluence to be reached 

by normal keratinocytes.

IMMUNOFLUORESCENCE ASSAYS

Single CIN3 and normal colonies were isolated with cloning rings, keratinocytes 

were subdivided  onto different  coverslips  and cells  were  grown on microscope  slides. 

Keratinocytes  were fixed by immersing  the slides in  jars filled  with paraformaldehyde 

solution (4% formaldehyde and 0.5% Triton X-100 in PBS 1X) and incubated at 37°C for 

20 min. Keratinocytes were then blocked with 10% goat serum in PBS 1X at 37°C for 1h. 

Subsequently keratinocytes were incubated with different mouse anti-human monoclonal 

antibodies (mabs). To determine the epithelial and cervical markers, immunofluorescence 

staining with K5, K14, K17, and K19 keratins and with p63 (Dako SpA, Milan, Italy) was 

performed, as previously described (Quade et al., 2001; Radu et al., 2002; Martens et al., 

2004; Harper et al., 2007; Tudor et al., 2007). The substitution of primary antibodies with 

PBS 1X served as a negative control. Digital images from a Nikon TE2000E microscope 

were  captured  using  the  ACT-  1  software  for  the  DXM1200F digital  camera  (Nikon, 

Florence,  Italy).  The  percentage  of  cells  expressing  different  keratin  markers  in  the 

colonies was quantified by counting 1,000 cells in four randomly selected fields/colony.
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DNA ISOLATION

DNA was isolated from a small fraction of CIN2, CIN3, and normal specimens and 

from  corresponding  CIN2,  CIN3,  and  normal  keratinocytes  according  to  standard 

procedures, as described (Barrandon and Green, 1987; Bononi et al., 2012; Rotondo et al. 

2012). All  DNA  was  stored  at  -80°C  until  the  time  of  analysis.  Furthermore,  before 

molecular analysis, all DNA was first quantified using the Nanodrop spectrophotometer 

(ND-1000, NanoDrop Technologies, Wilmington, DE USA). To test the suitability of the 

extracted DNA for PCR analysis, isolated DNA was PCR amplified with ß-globin primers 

(Pancaldi et al., 2009).

HPV DETECTION AND GENOTYPING 

Purified DNA from CIN2, CIN3, and normal specimens and from corresponding 

cultured CIN2, CIN3 and normal keratinocytes was amplified for HPV sequences with the 

general  primers  GP5-GP6, which enable detection of HPV -6b, -11,  -16,  -18,  -31,  -33 

genotypes. PCR analysis was carried out with 500 ng human genomic DNA (Barrandon 

and Green, 1987; Bononi et al., 2012; Martini et al., 2004). HPV PCR product sizes were 

139 bp for HPV -6b, -11 and -33 genotypes, 142 bp for HPV -16 and -31 genotypes, and 

145 bp for HPV -18 genotype. PCR products were electrophoretically separated on 2.5% 

agarose gel. To further assess PCR product specificity, a restriction endonuclease analysis 

of  HPV  sequences  was  performed  with  RsaI  digestion  (Barrandon  and  Green,  1987; 

Bononi  et al., 2012). DNA digestion was performed at 37°C for 2 h. The digested DNA 

products were electrophoretically separated on 20% acrylamide gel, and DNA fragment 

size GP5-GP6 amplified  DNA of CIN and HPV PCR (positive  control)  products were 

compared. 
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RNA ISOLATION

Total RNA was extracted from CIN2, CIN3, and normal keratinocytes by use of a 

RNAzol kit (Life Technologies, Milan, Italy), according to the manufacturer’s instructions. 

All RNA was stored at -80°C until the time of analysis.  Furthermore,  before molecular 

analysis, all RNA was first quantified using the Nanodrop spectrophotometer (ND-1000, 

NanoDrop Technologies, Wilmington, DE USA).

WHOLE  HUMAN  GENOME  EXPRESSION  DETECTION  BY 

OLIGO MICROARRAY

RNA from CIN2, CIN3 and normal keratinocytes was hybridized on Agilent whole 

human genome oligo microarray (Agilent Technologies, Palo Alto, CA). This microarray 

consists of 60-mer DNA probes which have been synthesized in situ and represent 41,000 

unique human transcripts.  One-colour  gene expression was performed according to the 

manufacturer’s  procedure.  Briefly,  RNA  quality  was  assessed  with  Agilent  2100 

Bioanalyzer (Agilent Technologies). Low quality RNA (RNA integrity number below 7) 

was 6 excluded from microarray analyses. Labelled cRNA was synthesized from 500 ng of 

total RNA using the Low RNA Input Linear Amplification Kit (Agilent Technologies) in 

the presence of cyanine 3-CTP (Perkin-Elmer Life Sciences, Boston, MA). Hybridizations 

were performed at 65°C for 17 hours in a rotating oven. Images at 5 μm resolution were 

generated  by  the  Agilent  scanner,  and  Feature  Extraction  10.5  software  (Agilent 

Technologies) was used to obtain the microarray raw data. 

MICROARRAY DATA ANALYSIS
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Microarray raw data were analyzed by use of GeneSpring GX 10 software (Agilent 

Technologies). Data transformation was applied to set all the negative raw values at 1.0, 

followed by normalization at the 75th percentile. A filter on low gene expression was used 

to keep only the probes expressed in at least one sample (flagged as Marginal or Present). 

Then,  samples  were  grouped  according  to  their  differentiation  status  and  compared. 

Differentially expressed genes were selected as having a 1.5-fold expression difference 

between  their  geometrical  mean  in  two or  more  groups  of  interest,  and  a  statistically 

significant p-value (<0.05) according to ANOVA (analysis of variance) and Benjamini and 

Hoechberg correction for reduction of false-positive values. Differentially expressed genes 

were employed for sample cluster analysis by use of the Pearson correlation as a measure 

of  similarity.  The  microarray  raw  data  have  been  deposited  at  ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-2019. 

REVERSE  TRANSCRIPTION  QUANTITATIVE  REAL-TIME 

PCR (RT-QPCR)

The  differential  expression  of  selected  genes  in  CIN2,  CIN3  and  normal 

keratinocytes  was  validated  by  Reverse  Transcription  quantitative  real-time  PCR (RT-

qPCR). Briefly, 300 ng total RNA was reverse transcribed with a random hexamer primer 

using High Capacity RNA-to-cDNA Kit (Roche Applied Science, Milan, Italy), according 

to  the manufacturer’s instructions. qPCR monitoring was performed with the ABI 7500 

Fast  Real  Time  PCR system (Roche  Applied  Science)  and  Power  SYBR Green  PCR 

Master Mix (Roche Applied Science). The following eight genes were investigated: RARB 

(Bohlken et al., 2009), IRF6 (Restivo et al., 2011), TIMP3 (Bernot et al., 2010), APOC1 

(Oue et al., 2004), MSX1 (Chetcuti et al., 2011), PHGDH (Liu et al., 2013), C-JUN (De-

Castro  et  al., 2004)  and  p63  (Yalcin-Ozuysal1  et  al., 2010).  The  glyceraldehyde-3-

phosphate dehydrogenase gene (GAPDH) was used as an internal control (Chetcuti et al., 
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2011). Each assay was performed in triplicate. Data analysis was performed with the 2-

⊿⊿
Ct 

method. 

IMMUNOHISTOCHEMICAL (IHC) ANALYSIS

Immunohistochemical  (IHC)  analysis  was  performed  on  paraffin-embedded 

specimens from 30 patients with CIN lesions (10 CIN1, 10 CIN2 and 10 CIN3), from 4 

with invasive squamous cell cervical cancer, and from 10 with normal cervical tissue. The 

IHC staining  was  performed  by use  of  the  Multimeric  Detection  Kit  (Universal  DAB 

Detection  Kit  Ultraview,  Roche  Tissue  Diagnostics  (CH),  on  a  BenchMark  XT 

immunostainer (Roche T.D.). Paraffin-embedded tissue sections (4 μm thick) were stained 

with mouse monoclonal  3PGDH antibody sc-100317 (Santa Cruz Biotechnology,  Santa 

Cruz, CA) (dilution, 1:50). HeLa cells, processed as tissues, ie. pelleted, fixed and paraffin-

embedded, were used as positive controls, as recommended by the manufacturer. Staining 

intensity and the distribution of staining were assessed by two pathologists. Staining was 

graded as negative (no staining) and as weak, moderate, or strong intensity.

SODIUM BISULFITE TREATMENT OF DNA

DNA from CIN2, CIN3 and normal keratinocytes was treated with sodium bisulfite 

using the Epitect Bisulfite kit (Qiagen, Milan, Italy) as previously described (Rotondo     et  

al  ., 2013). Sodium bisulfite treatment induces the conversion of unmethylated cytosines of 

DNA  to  uracil,  while  leaving  the  5-methylcytosines  unchanged.  Samples  were  then 

purified using DNA purification columns (Epitect Bisulfite kit, Qiagen).
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RARB METHYLATION PCR PRIMERS DESIGN

RARB methylation PCR primers were designed using the MethPrimer informatics 

software  (Li  and  Dahiya,  2002).  Briefly,  MethPrimer is  a  software  for  methylation 

designing PCR primers for methylation investigation. In a first step, this software is able to 

search for all CpGs in a limit input sequence of 5 Mbp.  In a second step the software can 

design  primers  within  the  imput  sequence  through  general  parameters  changes,  like 

product Size, primer Tm, etc. (Li and Dahiya, 2002).

BISULFITE  TREATED  DNA  PCR  OF  RARB  AND  IRF6 

PROMOTER REGION

The methylation assay was performed at the promoter region of RARB and IRF6 

genes. 150 ng of sodium bisulfite-treated CIN2, CIN3 and normal keratinocytes DNA was 

amplified at the RARB and IRF6 (Botti  et al., 2011) loci by Bisulfite treated DNA PCR. 

The RARB promoter region studied contained 14 CpG islands whereas the IRF6 promoter 

region studied contained 25 CpGs.

DNA CLONING AND SEQUENCING

Amplified products were purified with the QIAquick PCR Purification Kit (Qiagen) 

and then cloned with the TOPO TA cloning kit (Invitrogen), using the Turbo Competent E. 

coli bacteria strain (EuroClone) and the pCR 2.1-TOPO vector (Invitrogen), according to 

manufacturer’s  instructions.  Selection  of  bacterial  clones  containing  the  fragment  of 

interest  was performed using selective LB growth medium with ampicillin (100 μg/ml, 
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Sigma-Aldrich). For each DNA sample, 10 positive clones were selected for sequencing 

analysis.  Single clones  were sequenced using automated  ABI Prism Genetic  (Analyzer 

Applied Biosystems).

STATISTICAL ANALYSIS

The observed RARB and IRF6 epigenotype  frequencies  (i.e.  methylated  CpGs) 

were compared between groups using the chi-square trend test with Yates' correction. All 

statistical  analyses  were  carried  out  using  Graph Pad  Prism version  5.0  for  Windows 

(Graph Pad, La Jolla, CA, USA). P-values < 0.05 were considered statistically significant.
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RESULTS

HPV-DNA ANALYSIS OF CIN2, CIN3 AND NORMAL 

SPECIMENS AND KERATINOCYTES

In a first step of our experiments, high-risk HPV16  presence in CIN2 and CIN3 

specimen was investigated. To this purpose, CIN and normal specimens, were screened by 

PCR for HPV DNA sequences.  All  normal  samples  were negative for HPV sequences 

(Figure  5,  A). CIN2  and  CIN3  keratinocyte  specimens  tested  positive  for  HPV16 

sequences were selected for the present study (Figure 5, A, B). The DNA fragment sizes 

for HPV types are shown in the table 3. Subsequently, in a second step, in order to confirm 

HPV detection and genotyping, the same DNA analysis was performed in CIN2 and CIN3 

keratinocytes. Previous CIN specimens data were confirmed. 
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HPV type  Total length (bp)    Length of RsaI restriction
fragments (bp)

30
HPV-6 139 42

67

30
HPV-11 139 109

30
HPV-16 142 42

70

30
HPV-18 145 38

77

30
HPV-31 142 112

30
HPV-33 139 39

70

Table  3.  DNA fragment  sizes  for  HPV types  spanned  by  GP5/GP6  primer  set  and  
fragment lengths generated by RsaI restriction enzyme digestion.
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Figure 5. HPV PCR and HPV genotyping. A: the agarose gel shows HPV PCR results  
obtained  from  the  CIN2,  CIN3,  and  normal  keratinocyte  DNA  specimens.  HPV PCR  
products are only visible in the CIN2 and CIN3 samples  (lanes 1 and 2). MW: molecular  
weight markers are 100 bp  (left); HPV-16: PCR positive control; C-: negative control of  
the PCR reaction without DNA template. B: polyacrylamide gel shows HPV genotyping of  
HPV PCR products  from the  CIN2 and CIN3 specimens.  The  CIN2  (lanes  1 and 2)  
specimens and CIN3  (lanes  1 and 2) are positive  for HPV-16. Fragment  lengths  are  
reported in table 3. M.W.: molecular weight markers are 100 bp  (M.W. I) and 50 bp  
(M.W. II)  ladder. HPV-6b, -11, -16, -18, -31 and -33: HPV controls.
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CIN2, CIN3 AND NORMAL KERATINOCYTES CULTURES 

SETUP

The protocol  is  developed in  two main  steps:  (i)  CIN and normal  keratinocyte 

primary culture preparation, (ii) CIN and normal keratinocyte primary colony expansion. 

CIN tissue fragments are obtained from CIN patients during the excision of a cone-shaped 

portion of preneoplastic tissue under colposcopic examination. Since excided CIN tissue 

specimens include surrounding normal tissue, a small fragment of normal cervical tissue 

can be taken from each corresponding CIN tissue specimen. The isolation of all the total 

cells from the small CIN and normal cervical tissue relies on a collagenase digestion step. 

Then, separated cells are washed, counted and seeded in T25 flasks (T1) with DMEM:F12 

medium  and  10%  foetal  bovine  serum  (FBS).  Approximately,  1x104-2x105 cells  are 

isolated from each CIN and normal tissue fragment. After seeding, cells are left to attach 

for 48 h; then, any unattached cell suspension is recovered, washed and reseeded for a 

further  48  h  in  new  T25  flasks  (T2).  This  re-seeding  procedure  allows  keratinocytes 

endowed with slow attachment capability to be rescued later and therefore enables total 

primary  colony  numbers  per  specimen  to  be  increased.  Representative  primary 

keratinocyte colonies from a CIN3 specimen are shown in figure 6. CIN2 and CIN3 tissues 

give the best primary cultures, producing approximately 200-400 colonies/tissue. Normal 

cervical  tissues  give  rise  to  a  lower  number  of  colonies,  ranging  from  50  to  80 

colonies/tissue.  Frequently,  T2 flasks develop many more colonies  than T1 flasks.  The 

duration of the procedure is 3-4 weeks; however, CIN2 and CIN3 keratinocyte colonies 

can be well visible in 2-3 weeks. Keratinocytes and fibroblasts are well distinguishable in 

primary  cell  cultures.  Indeed,  keratinocytes  grow forming  colonies  whereas  fibroblasts 

proliferate sparsely (Figure 6, A), or in disordered cell clusters or in parallel bundle groups 

(Figure 6, C). Keratinocyte colonies grow surrounded by fibroblasts (Figure 6, B, C) or 

isolated (Figure 6, A). CIN2, CIN3 and normal primary cultures develop three different 

types  of  colonies,  which  are  classified  on  their  cell  content  and  morphology:  type  I 

colonies  contain  cells  which  are  irregularly  sized,  flattened  or  spindle-shaped  and  are 

loosely spaced (endowed with a  low proliferation  rate)  (Figure 6,  A);  type  II  colonies 

consist of small, compact and uniform sized cells (endowed with a high proliferation rate) 

(Figure 6, B); type III colonies contain smaller, more compact and more uniform size cells  

than those of type II (endowed with a very high proliferative rate) (Figure 6, C). CIN2 and 

CIN3 primary cultures develop approximately 70% type II/type III colonies and 30% type 

I colonies, whereas normal primary cultures 50% type II and 50% type I colonies. Type II 
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and  III  colonies  can  be  expanded  efficiently  since  they  are  endowed  with  a  high 

proliferative capability. 

Figure 6.  Keratinocyte primary colonies of a CIN3 culture. (A) A type I colony. Arrow 
indicates a fibroblast; (B) a type II colony. Arrow indicates a fibroblast; (C) a type III  
colony. Arrows indicate parallel bundle groups of fibroblasts.

IMMUNOFLUORESCENCE CHARACTERIZATION

Immunofluorescence  characterization  on  round  coverslip  was  assessed  in  CIN3 

(Figure 7) and normal primary and expanded colonies. All CIN3 and normal colonies were 

analyzed for K14, K17, and K19  keratins and p63 expression. The CIN3 primary colonies 

react strongly for K14 (Figure 7, A) , K17 (Figure 7, B) , K19 (Figure 7, C) as well as for 

p63 in all  cells  (Figure 7,  D).  In some normal primary colonies  K14 and K19 stained 

strongly in all  cells whereas K19 reacted with a moderate signal in only 50% of cells. 

Furthermore, staining for p63 was negative. The CIN3 and normal colonies expanded with 

the new mixture DMEM-F12/dKSFM (1:1 ratio) cell culture medium stained strongly for 

K14, K17, K19, and p63 (Figure 7, A-D, insert), and for K14 and K19. Expanded colonies 

maintain the same staminal and epithelial markers as the primary colonies from which they 

originated as shown in figure 7.
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Figure 7.  Immunofluorescence staining.  Panels  A-D: immunofluorescence staining of  
type III colonies from a CIN3 culture. Cells react strongly to K14 (A), K17 (B) and K19 
(C) keratins (markers of cervical keratinocytes; cytoplasmic signal) and p63 (D) (marker  
of cervical staminal keratinocytes; nuclear signal). Keratinocytes from type III colonies  
expanded in the new medium mixture maintain high expression of K14 (panel A, inset),  
K17 (panel B, inset), K19 (panel C, inset) and p63 (panel D, inset).

IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES 

IN CIN KERATINOCYTES

To identify genes associated with progression of CIN lesions, it was examined the 

gene expression profiles in two CIN2, two CIN3, and two normal keratinocytes obtained 
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by tissue cultures from four CIN patients.  The genes modulated during the progression 

from  normal  to  CIN2  keratinocytes  and  from  CIN2  to  CIN3  keratinocytes  were 

investigated. One hundred and thirteen genes were significantly down-regulated in CIN2 

keratinocytes compared with normal keratinocytes, and 211 genes were down-regulated in 

CIN3  compared  with  CIN2  keratinocytes  (P<0.05  and  fold-change  >2).  A  consistent 

down-regulation  from  normal  to  CIN2  keratinocytes,  and  from  CIN2  to  CIN3 

keratinocytes, was observed for the following 23 genes: INHBB, SLC38A11, IRX2, RARB, 

TIMP3, ALDH1A3,  ABCB4, EFNB2,  C6orf168, ATP2A3,  FMO3, FMO4,  NCAM2,  TLR2, 

IRF6, SYNM, HIST1H2AC, FRMPD4, LIMS3, C1orf96, FBXO32, HIST2H2BE and IFIT2 

(Table 4 and Figure 8, A). One hundred seventy-five genes were significantly up-regulated 

in CIN2 keratinocytes compared with normal keratinocytes, and 94 were up-regulated in 

CIN3 keratinocytes compared with CIN2 keratinocytes (P<0.05 and fold-change >2). A 

consistent  up-regulation  from normal  to  CIN2  keratinocytes  and  from  CIN2  to  CIN3 

keratinocytes  was  detected  for  14  genes:  FOXD2,  SCARA5,  OLFM1,  LPAR1,  SFRP2, 

MSX1,  APOC1,  KLF2,  TAGLN,  SFXN2,  TMEM54,  PHGDH,  SPOCD1,  and  ARNTL2 

(Table 4 and Figure 8, B). Genes consistently up- or down-regulated during transition from 

CIN2 to CIN3 were used to perform a hierarchical clustering analysis (Figure 9). Normal, 

CIN2 and CIN3 keratinocytes grouped in three different clusters and showed a distinct 

gene expression pattern (Figure 9).
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Figure 8. Genes differentially expressed revealed by microarray analysis..A: Intersection 
between  the  113  genes  down-regulated   (p<0.05  and  FC<0.5)  in  CIN2  keratinocytes  
(CIN2) compared with normal keratinocytes and the 221 genes down-regulated  (p<0.05  
and FC<0.5) in CIN3 keratinocytes  (CIN3) compared with CIN2 keratinocytes   (CIN2).  
Twenty-three genes are in common. B: Intersection between the 175 genes up-regulated  
(p<0.05 and FC>2) in CIN2 keratinocytes  (CIN2) compared with normal keratinocytes,  
and  the  94  genes  up-regulated   (p<0.05  and  FC>2)  in  CIN3  keratinocytes   (CIN3)  
compared with CIN2 keratinocytes  (CIN2). Fourteen genes are in common. 

_________________________________________________________________________
Gene symbol Gene Bank acc. no. Function
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23 down regulated genes
INHBB NM_002193 Immune response
SLC38A11 NM_173512 Amino acid transport
IRX2 NM_033267 DNA binding
RARB NM_000965 DNA binding
TIMP3 NM_000362 Proteolysis
ALDH1A3 NM_000693 Apoptotic process
ABCB4 NM_018850 Metabolic process
EFNB2 NM_004093 Cell-cell signaling
C6orf168 NM_032511 Unknown
ATP2A3 NM_174953 Nucleotide binding
FMO4 NM_002022 Metabolic process
NCAM2  NM_004540.3 Cell-cell adhesion 
FMO3 NM_001002294 Metabolic process
TLR2 NM_003264 Immune response
IRF6 NM_006147 Transcription factor 
SYNM NM_145728 Cytoskeleton constituent
HIST1H2AC NM_003512.3 DNA binding
FRMPD4 NM_014728                               Protein binding 
LIMS3 NM_033514 Zinc ion binding
C1orf96 NM_145257 Embryonic development 
FBXO32 NM_058229 Protein ubiquitination
HIST2H2BE NM_003528 DNA binding
IFIT2 NM_001547 Immune response

14 up regulated genes
FOXD2 NM_004474 DNA binding
SCARA5 NM_173833 Transmembrane transport
OLFM1 NM_006334 Cell junction
LPAR1 NM_012152 Signal transduction
SFRP2 NM_003013 Cell-cell signaling 
MSX1 NM_002448 DNA binding
APOC1 NM_001645 Metabolic process
KLF2 NM_016270 DNA binding 
TAGLN NM_001001522 Organ development
SFXN2 NM_178858 Transmembrane transport
TMEM54 NM_033504 Unknown
PHGDH NM_006623.3 Metabolic process
SPOCD1 NM_144569.5 Transcription
ARNTL2 NM_001248002.1 DNA binding
_________________________________________________________________________

Table 4. Consistently down-modulated and up-modulated genes identified in CIN2 and  
CIN3 keratinocytes.
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Figure  9.  Cluster  analysis  of  normal  keratinocytes,  CIN2  and  CIN3  keratinocytes  
performed  in  accordance  to  the  expression  of  commonly  modulated  genes,  both  
annotated  (with gene symbol) and not annotated  (N/A). Genes are in rows, samples in  
columns. The colors of the genes represented on the heat map correspond to the values  
normalized  on  miRNA  average  expression  across  all  samples   (see  color  bar);  up-
regulated miRNAs are in red, down-regulated miRNAs in green.

VALIDATION OF MICRARRAY DATA BY RT-QPCR
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To confirm the gene expression data identified by microarray analysis, total RNA 

isolated  from  the  two  CIN2,  two  CIN3  and  two  normal  keratinocyte  specimens  was 

subjected  to  QRT-PCR analysis.  Three  consistently  down-regulated  genes  from the 23 

candidate genes (RARB, IRF6, and TIMP3) and three consistently up-regulated genes from 

the  14  candidate  genes  (APOC1,  MSX1,  and  PHGDH)  were  chosen.  Representative 

amplification plot is showed in figure.  In accordance with microarray analysis, the mRNA 

expression level  of  RARB,  IRF6,  and  TIMP3  was significantly  decreased  from that  of 

normal and CIN2 keratinocytes and from that of CIN2 and CIN3 keratinocytes (Figure 11). 

Specifically, the RARB gene was significantly down-regulated by 8.9-fold and 29.2-fold in 

CIN2 and CIN3 keratinocytes, respectively, compared to normal keratinocytes (Figure 11). 

As for RARB, IRF6 also resulted down-expressed: 3.6-fold and 7.2-fold in CIN2 and CIN3 

keratinocytes,  respectively,  compared  to  normal  keratinocytes  (Figure  11).  Similarly, 

TIMP3 gene resulted significantly down-regulated by 5.6-fold and 13.7-fold in CIN2 and 

CIN3  keratinocytes,  respectively,  compared  to  normal  keratinocytes  (Figure  11). 

Differences in RARB, IRF6 and TIMP3 mRNA expression levels between CIN2 and CIN3 

keratinocytes were statistically significant (p<0.0001). 
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Figure 10. Reappresentative real-time quantitative RT-PCR amplification plot  of:  (A)  
RARB,  IRF6,  TIMP3,  and  the  housekeeping  gene  GAPDH  and  (B)  APOC1,  MSX1,  
PHGDH and GAPDH.
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Figure 11. Differential expression of RARB, IRF6, TIMP3 genes measured with real-
time quantitative RT-PCR in specimens from CIN2 and CIN3 keratinocytes.  Relative  
expression was calculated by use of  the ∆∆Ct method. Data are expressed as a relative  
fold  change   (2-∆∆Ct)  over  the  value  of  normal  specimens.  GAPDH gene  was  used  as  
internal control. *P <0.0001 versus CIN2.

In  contrast,  the  expression  levels  of  APOC1,  MSX1  and  PHGDH  mRNA 

continuously increased both from normal to CIN2 keratinocytes and from CIN2 to CIN3 

keratinocytes (Figure 12). Specifically, the APOC1 gene was significantly up-regulated by 

7.4-fold and 10-fold in CIN2 and CIN3 keratinocytes, respectively, compared to normal 

keratinocytes (Figure 12).  Similarly,  up-expression of PHGDH was also detected. This 

gene resulted up-regulated  by 5.6-fold and 10.6-fold in  CIN2 and CIN3 keratinocytes, 

respectively,  compared  to  normal  keratinocytes  (Figure  12).  MSX1  gene  resulted 

significantly  up-regulated  by  3.5-fold  and  14-fold  in  CIN2  and  CIN3  keratinocytes, 

respectively,  compared  to  normal  keratinocytes  (Figure  12).  Differences  in  APOC1, 

PHGDH and MSX1 mRNA expression levels between CIN2 and CIN3 keratinocytes were 
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statistically significant (p<0.0001).These findings indicate that the data obtained from the 

microarray analysis are reliable and that these 37 genes may be significant contributors in 

the progression of high-grade HPV16 CIN lesions. 

Figure12. Differential  expression of APOC1, MSX1, PHGDH  genes measured with  
real-time  quantitative  RT-PCR  in  specimens  from  CIN2  and  CIN3  keratinocytes.  
Relative expression was calculated by use of  the ∆∆Ct method. Data are expressed as a  
relative fold change  (2-∆∆Ct) over the value of normal specimens.  GAPDH gene was used  
as internal control. *P <0.0001 versus CIN2.

IHC ANALYSES

The IHC staining of CIN and normal  cervical tissue samples validated PHGDH 

protein expression. PHGDH staining was cytoplasmatic. As shown in figure 13, in normal 
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tissues, PHGDH was weakly expressed and only in the proliferative compartment of the 

epithelium.  In cervical  cancer  tissue,  strong staining was present  in  all  tissue sections. 

Strong staining of dysplastic cells was present in 9/10 CIN3, 7/10 CIN2 and 10/10 CIN1 

lesions; one out of ten CIN3 and 3/10 CIN2 lesions showed moderate staining of dysplastic 

cells (data not shown). PHGDH staining extended to the superficial layers in CIN3 cases, 

to the mid layer in CIN2 lesions, and to the lower third of the epithelium in CIN1 lesions, 

corresponding to the extension of the dysplastic proliferative compartment in the different 

types of lesions. Nondysplastic cells in CIN cases were stained only weakly or not at all. 

The specificity of IHC staining for PHGDH protein in CINs and cervical cancers indicates 

that PHGDH is likely associated with tumorigenesis.
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Figure 13.  Immunohistochemical  analysis  of  PHGDH in  CIN,  cervical  cancer,  and  
normal tissues. Immunohistochemical  analysis  with  anti-PHGDH polyclonal  antibody  
confirmed the elevated expression of this protein in dysplastic cells from CIN1  (B), CIN2  
(C), CIN3  (D) lesions, in tumor cells from invasive carcinoma  (E), and in HeLa cells  (F)  
compared with the  expression in proliferative cells from normal cervical tissue  (A).

RARB, C-JUN, IRF6 AND P63 GENE EXPRESSION ANALYSIS
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In order to explore the expression trend of RARB, c-Jun, IRF6 and p63 mRNAs, 10 

CIN2, 10 CIN3, positive for HPV16, and 10 normal keratinocyte specimens was subjected 

to  QRT-PCR  analysis. As  reported  previously  in  this  work  (page 47),  the  mRNA 

expression level of RARB and IRF6, resulted significantly decreased from that of normal 

and CIN2 keratinocytes  and from that of CIN2 and CIN3 keratinocytes  (Figure 14, B) 

(P<0.0001).  Specifically,   RARB was  significantly  down-regulated  by 9.3-fold  and by 

35.8-fold in CIN2 and CIN3 keratinocytes, respectively, compared to normal keratinocytes 

(figure  3,  B). Differences  in  RARB  expression  levels  between  CIN2  and  CIN3 

keratinocytes were statistically significant (p>0.0001).  In contrast,  the amount of c-Jun 

mRNA was found to correlate with the degree of pre-neoplastic CIN lesion: the lowest in 

CIN2  (4.3-fold   up-regulated  compared  to  normal)  and  the  highest  in  CIN3  (22  up-

regulated compared to normal) (Figure 14, B) (P<0.0001). Indeed, differences in c-Jun 

expression  levels  between  CIN2  and  CIN3  keratinocytes  were  statistically  significant 

(p>0.0001). As for RARB, IRF6 mRNA was Similarly down-regulated by 2.9-fold and 

6.7-fold in CIN2 and CIN3 group, respectively, compared to normal keratinocytes (figure 

15, B). Contrariwise,  p63 was significantly high expressed by 3.6-fold and by 15-fold in 

CIN2 and CIN3 keratinocytes, respectively, compared to normal keratinocytes (figure 15, 

B). Differences in IRF6 and p63 expression levels between CIN2 and CIN3 keratinocytes 

were statistically significant (p>0.0001).

RARB AND IRF6 PROMOTER METHYLATION ANALYSIS

The methylation status of the RARB and IRF6 loci was investigated by sequencing 

analysis of the cloned PCR products. A total of 120 clones were investigated for the DNA 

methylation status of RARB and IRF6 loci in bisulfite-treated DNA samples from CIN 

keratinocytes. RARB and IRF6 clones derived from two HPV16-CIN2, two HPV16-CIN3 

and two normal RARB and IRF6 PCR products (10 from each sample) were randomly 

selected for DNA sequencing. The overall distribution of the different clones within CIN 

keratinocytes, within CIN2 and normal as well as within CIN3 and normal keratinocytes 

was evaluated. Only RARB or IRF6 hypermethylated clones i.e., clones showing 50% (or 

more than 50%) methylated CpG islands, were taken into account in this analysis. RARB 
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hypermethylation was detected in 9/11 (45%) of the clones from the CIN2 keratinocytes 

and  in  16/20  (80%)  of  the  clones  from  the  CIN3  keratinocytes.  Whereas,  in  normal 

keratinocytes,  RARB  hypermethylation  was  never  detected.  The  difference  in  RARB 

hypermethylation  between  CIN2  and  CIN3  keratinocytes  was  statistically  significant 

(P<0.05,  Figure  14,  A,  Figure  15)  as  well  as  difference  between  CIN2  and  normal 

keratinocytes  (p<0.01,  Figure  14,  A,  Figure  15)  and  CIN3  and  normal  keratinocytes 

(p<0.0001, Figure 14, A, Figure 15). IRF6 hypermethylation was detected in 6/20 (40%) of 

the clones from the CIN2 keratinocytes and in 11/20 (55%) of the clones from the CIN3 

keratinocytes.  Whereas,  as  for  RARB,  in  normal  keratinocytes,  it  was  never  detected 

(Figure 14, A, Figure 15). No significant differences in IRF6 hypermethylation frequencies 

were evaluated between CIN2 and CIN3 keratinocytes (p>0.05, Figure 16, A, Figure 17). 

However, the difference between CIN2 and normal keratinocytes (p<0.05, Figure 16, A, 

Figure  17)  as  well  as  CIN3  and  normal  keratinocytes  (p<0.0001,  fig.  3.  A)  resulted 

statistically significant. 
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Figure 14.  RARB  promoter  methylation  pattern  and RARB  and  c-Jun  differential  
expression. (A)  Bisulfite-PCR sequencing  for  (A)  RARB gene  promoter  region in  one  
representative Normal, CIN2 and CIN3 cultured keratinocytes. Filled-in and clear circles  
represent methylated and unmethylated CpG islands, respectively. The CpG islands within  
the RARB locus is numbered on the upper side of the circles. Each line represents one  
clone.  For the analysis, were considered ten clones per sample. (B) RARB and  c-Jun  
differential  expression  measured  by  real-time  quantitative  RT-PCR in  specimens  from  
CIN2 and CIN3 keratinocytes. Relative expression was calculated using the ∆∆Ct method.  
Data are expressed as a relative fold change (2-∆∆Ct) over the value of normal specimens.  
*P <0.0001 versus CIN2. 
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Figure 15.  Frequency of  RARB hypermethylation clones in normal, CIN2 and CIN3  
keratinocytes. Only clones showing 50% or more than 50% methylated CpG islands were  
taken into account in this analysis

54



Figure 16.  IRF6  promoter  methylation  pattern  and IRF6  and  p63  differential  
expression. (A)  Bisulfite-PCR  sequencing  for  (A)  IRF6  gene  promoter  region  in  one  
representative Normal, CIN2 and CIN3 cultured keratinocytes. Filled-in and clear circles  
represent methylated and unmethylated CpG islands, respectively. The CpG islands within  
the IRF6 locus is numbered on the upper side of the circles.  Each line represents one  
clone.  For  the  analysis,  were  considered  ten  clones  per  sample. (B)  IRF6  and  p63 
differential  expression  measured  by  real-time  quantitative  RT-PCR in  specimens  from  
CIN2 and CIN3 keratinocytes. Relative expression was calculated using the ∆∆Ct method.  
Data are expressed as a relative fold change (2-∆∆Ct) over the value of normal specimens.  
*P <0.0001 versus CIN2. 

Figure 17.  Frequency of  IRF6 hypermethylation clones in normal, CIN2 and CIN3  
keratinocytes. Only clones showing 50% or more than 50% methylated CpG islands were  
taken into account in this analysis
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DISCUSSION 

CIN AND NORMAL KERATINOCYTES CULTURES

Recognition of the role of Human Papilloma Virus (HPV) as the etiologic agent in 

cervical  cancer  has  focused  attention  on  the  mechanisms  inducing  transformation  in 

cervical keratinocytes (Zur Hausen, 1996; Togtema et al., 2012; Lindel et al., 2012; Herfs 

et  al.,  2012;  Kaczkowski  et  al., 2012;  Tan  et  al.,  2012;  Malinowski,  2005).  Due  to 

difficulties in propagating HPV in culture (Angeletti, 2005; Pyeon et al., 2005. McLaughli 

and Meyers  ,2005).  Molecular  characterization  of  naturally  infected-HPV keratinocytes 

derived from cervical preneoplastic lesions is a promising cell study model for elucidating 

HPV-induced cancerogenesis in the human cervix. The HPV transformation process occurs 
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in  multiphase  steps  which  are  clinically  diagnosed as  cervical  intraepithelial  neoplasia 

(CIN) -1, 2 and 3 (Mitchell  et al., 1996; Schiffman et al., 2007). Two published methods 

have been previously described for culturing keratinocytes derived from CIN1-3 lesions as 

well as from normal cervical tissues  (Freshney and Freshney, 2002; Green, et al., 1977). 

With one method, keratinocytes are grown in co-culture with mouse fibroblasts which are 

inactivated  with  mitomycin  C or  gamma rays (feeder  cells)  and  submerged  in  culture 

medium  (Freshney and Freshney, 2002). The alternative approach regards the employment 

of defined keratinocyte-specific medium which allows keratinocyte expansion without the 

use of fibroblast feeder layers (Green, et al., 1977). However, there are some limitations to 

culturing CIN and normal cervical keratinocytes by these methods. Firstly, a large number 

of pure CIN or normal keratinocytes, i.e. free from cervical fibroblasts, is needed to start 

primary  cultures.  Whilst  an  adequate  number  of  normal  cervical  keratinocytes  can  be 

isolated from cervical epithelium obtained from hysterectomy specimens (Narisawa-Saito 

and Kiyono,  2007)   CIN tissue  specimens  are  usually  very  small  and do not  allow a 

sufficient number of pure keratinocytes to be isolated for culturing purposes. Secondly, the 

procedure for isolating pure keratinocytes requires several steps, which increase the risk of 

cell culture contamination.

Therefore, the development of a rapid and easy method of enabling cultures of CIN 

and normal cervical keratinocytes to be grown using small amounts of starting material 

was considered useful. The search for a new culturing method began with the observation 

that seeding the total number of cells isolated from a complete enzymatic digestion of CIN 

or  normal  cervical  tissues,  a  typical  range  of  morphologically  differing  keratinocyte 

colonies,  based  on  their  cell   content  and  general  morphology,  could  be  obtained. 

Additional studies from our laboratories demonstrated that by sufficiently diluting cells 

during  primary  propagation,  CIN  and  normal  keratinocyte  colonies  develop  clonally. 

Furthermore, different CIN and normal keratinocyte primary clonal colonies consisted of 

small, compact and uniform size cells, indicating that cultured keratinocytes were endowed 

with high proliferative potential (Barrandon and Green, 1985, 1987). On the basis of these 

observations, a cell culturing method which employs small CIN and normal cervical tissue 

fragments  to  derive  primary  CIN  and  normal  keratinocyte  clonal  colonies  capable  of 

further expansion was set up. 

Although two different methods for CIN and normal cervical keratinocyte cultures 

have been reported, a very few studies regarding cellular and molecular characterization of 

naturally infected HPV CIN1-3 or normal cervical keratinocytes, have been published to 
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date. These studies have been carried out in W12 and CIN 612 cells, two naturally HPV16-

infected keratinocyte lines derived from CIN1 lesions (Rader  et al., 1990; Bedell  et al., 

1991; Gray et al., 2010; Dall  et al., 2008). The reason for lacking of researchers on CIN 

keratinocytes is that previous culturing methods work well when large pieces of CIN or 

normal cervical tissues are employed, but these are rarely obtained from gynaecological 

surgery.  By  using  murine  fibroblasts  as  feeder  layers,  the  number  of  CIN  or  normal 

keratinocytes seeded must  maintain a  1:2 density ratio  with the murine fibroblasts  co-

cultured in vitro (for an example, 1x104/cm2:2x104/cm2) (Rader et al., 1990; Freshney and 

Freshney, 2002). Alternatively, the number of CIN or normal keratinocytes seeded must be 

at a density of 2x105/cm2  (Barrandon and Green, 1987),  using the specific keratinocyte 

defined  medium  without  murine  fibroblasts.  The  main  procedure  for  isolating  pure 

keratinocytes includes dermal sheet elimination, by dispase digestion or tissue scraping, 

and two consecutive digestions of cervical epithelial tissues by trypsin-EDTA. Due to the 

small size of CIN tissues, CIN keratinocytes are also isolated following migration from 

micro-dissected CIN explants. However, the major problem in this latter procedure is that 

CIN keratinocytes are rescued at a low number and are frequently highly contaminated by 

cervical fibroblasts, which do not allow primary cultures to be started successfully.

The protocol described in this work is very simple compared to previous CIN and 

normal tissue culture methods. CIN and normal cervical keratinocyte primary colonies can 

be obtained in a single technical passage, i.e. after tissue digestion. Consequently, the time 

required  is  highly  reduced.  Moreover,  our  culture  method  enables  CIN  and  normal 

keratinocytes to be grown at a clonal rate by seeding the cells at a high dilution during 

primary  propagation.  This  is  an  important  aspect  since  CIN  lesions  are  clonally 

heterogeneous,  due  to  the  multiphase  steps  of  HPV-induced  carcinogenesis;  therefore, 

clonal  CIN  keratinocyte  cultures  allow  different  CIN  keratinocyte  clones  of  the 

preneoplastic  specimen  to  be  faithfully  reproduced  in  vitro.  Finally,  primary  CIN and 

normal  keratinocyte  clones can be expanded at  highly proliferative rates  over different 

passages with no sign of differentiation. When taken altogether, these results may provide 

important  findings  on  the  mechanisms  induced  by  HPV  during  onset/progression  of 

cervical neoplasia.  CIN2, CIN3 and normal cervical primary culture preparation provides 

the onset of a series of problems due mainly to the presence of endogenous microbiological 

contaminants, bacteria and fungi, which are naturally present in the cervical region. The 

contamination of primary cultures is relevant due to this aspect. Notably, the higher the 

cervical preneoplastic grade, the higher the endogen microbial contamination and therefore 
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the risk of culture contamination. CIN2 and CIN3 tissues give the best primary culture 

results as  the  higher  the  preneoplastic  grade of  keratinocytes,  the higher  the  ability  to 

attach and proliferate clonally. On the contrary, keratinocytes from normal tissues attach 

slowly and differentiate rapidly and much fewer primary colonies can be obtained than 

with high grade CIN2-CIN3 tissues. Nevertheless, the successful rate of normal primary 

keratinocyte cultures is approximately 5-6 out of 10 and nearly 10 out of 10 of CIN2-CIN3 

primary keratinocyte cultures. This protocol is based on a cellular culture method, which 

was used in a recent publication of my lab (Bononi  et al., 2012) and employs the total 

number of cells, i.e. fibroblasts and keratinocytes, isolated from small tissue fragments of 

CIN or normal cervical tissue samples. The isolation of all the cells overcomes the issues 

arising from isolating pure populations of keratinocytes including low cell numbers and 

exogenous microbial  contamination,  and avoids  keratinocyte  loss  from starting  tissues. 

Although the presence of live fibroblasts is considered detrimental to keratinocyte cultures, 

due to overgrowth being caused (Freshney and Freshney 2002), this problem is avoided by 

seeding the all  cells  at  a very high dilution,  i.e.  in large culture surfaces.  In this  way, 

primary keratinocyte colonies can be obtained before fibroblasts colonize the cultures. On 

the other hand, high cell dilution allows keratinocytes to reach optimal density for clonal 

growth (Barrandon and Green, 1985, 1987). Furthermore, were formulated a new medium 

mixture which permits CIN and normal keratinocyte colonies to be expanded singly at a 

highly  proliferative  rate  for  different  passages  without  signs  of  differentiation. 

Immunofluorescence staining showed that CIN and normal keratinocyte primary colonies, 

as  well  as  expanded colonies,  expressed K14,  K17,  and K19 indicating  their  common 

origin  from basal  and  parabasal  layers  of  the  cervical  epithelia  (Smedts  et  al.,  1990, 

Martens et al., 2004; Akgűl et al., 2007). P63 stained strongly, with nuclear localization, in 

CIN3 keratinocytes  suggesting that those keratinocytes  present stemness characteristics. 

Indeed, p63 has previously been detected in stem cells from CIN and normal ectocervical 

epithelia (Quade  et al., 2001; Martens  et al., 2004).  Therefore, naturally HPV infected 

keratinocyte clones have the potential to provide valuable insights into the mechanisms 

induced by HPV during cervical cancerogenesis.  Since cultured cells represent a useful 

model for investigating the onset/progression of the carcinogenesis processes (Goldstein et  

al., 2011; Karst and Drapkin, 2012) and cellular and molecular studies on naturally HPV-

infected keratinocytes have been poorly reported, our protocol may provide opportunities 

for exploring mechanisms which occur during CIN transition, as well as gene expression 

59



changes in progression toward cervical cancer in vitro, which to date is far from having 

been elucidated (Woodman et al., 2007; Galloway, 2009)

GENE EXPRESSION CHANGES AND CIN PROGRESSION

In  this  study,  gene  expression  changes  were  investigated,  for  the  first  time,  in 

naturally HPV16-infected CIN2 and CIN3 keratinocytes by microarray analysis. Since the 

majority of high-grade HPV16-CIN lesions are the result of 2-dimensional intra-mucosal 

extension of a single monoclonal cell population infected by the oncogenic HPV (Ueda et  

al.,  2003), two CIN keratinocyte  colonies,  representative of all  neoplastic keratinocytes 

comprising the CIN lesion, were chosen from each CIN tissue culture for the analysis of 

microarray. Moreover, in order to avoid the risk of a selection bias inherent in any long 

term in vitro growth, were collected CIN and normal keratinocyte colonies from primary 

cultures.  Were used DNA microarray technology in order to compare changes of gene 

expression, which characterize two key stages of progression of HPV16-cervical lesions in 

vivo. It was encouraging that the hierarchical clustering analysis of the data neatly grouped 

CIN keratinocytes together according to their status: CIN2 or CIN3. Moreover, the finding 

that our dataset contained many expected gene expression changes (such as those involving 

cell proliferation and differentiation) affirmed validity of the dataset. Therefore, the results 

obtained  in  CIN2  and  CIN3  keratinocytes  by  microarray  analysis  likely  parallel  the 

molecular  changes  that  underlie  progression  to  high-grade  HPV16  CIN.  Notably,  the 

number  of  genes  down-regulated  in  CIN3 keratinocytes  compared  with  the  number  in 

CIN2 keratinocytes  (n=211) was almost  double  that  in  normal  keratinocytes  compared 

with CIN2 keratinocytes (n=113). In contrast, 175 genes were increased significantly in 

CIN2  compared  with  normal  keratinocytes,  and  94  genes  were  increased  in  CIN3 

compared  with  CIN2 keratinocytes.  These  findings  suggest  that  the  majority  of  genes 

down-regulated and up-regulated during the progression of cervical neoplasia affect the 

transition  from CIN2 to CIN3 lesions  and from normal  to  CIN2 lesions,  respectively. 
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Twenty-three under-expressed and 14 over-expressed genes, which may play an important 

role in CIN progression, were selected. These genes are associated with HPV-mediated 

transformation,  including  the  down-regulation  of  antiviral  immune  response-inducible 

genes and up-regulation of proliferation-related genes. Indeed, INHBB, TLtlrR2, TIMP3, 

RARB,  IFIT2  and  EFNB2  were  consistently  under-expressed,  whereas  APOC1  and 

PHGDH were consistently overexpressed in CIN2 and CIN3 keratinocytes. Notably, most 

of the down-regulated genes, such as INHBB, TLR2, TIMP3 and RARB, are the target of 

promoter  methylation  in  various  tumours  (De  Oliveira  et  al.,  2011;  Gu  et  al.,  2008; 

Karpinski et al., 2011; Wang et al., 2005), including HPV-related cancers (Stephen et al., 

2010), high-grade CIN lesions (Terra et al., 2007), and HPV cervical cancers (Sun et al., 

2011), suggesting an important role of these genes in tumour development. Therefore, it is 

possible that the consistent decrease in mRNA expression in CIN2 and CIN3 keratinocytes  

accounts for increasing CpG-island methylations at the gene promoter level. In line with 

this, HPV16 can induce cellular gene promoter hypermethylation (Leonard  et al., 2012). 

These  findings  this  findings  leaded  me  to  explore  explore,  in  the  next  step  of  my 

investigation,  the  putative  link  between  gene  expression,  at  mRNA  levels,  and  gene 

promoter methylation status in high-grade CIN keratinocytes. A major feature of CIN2 and 

CIN3 keratinocytes is the consistent overexpression of genes that play a role in tumour 

invasiveness.  Indeed,  consistent  up-regulation  of  LPAR1,  a  pro-angiogenesis  gene 

(Hayashi  et al., 2012), and ARNTL2 (Mazzoccoli  et al., 2012), MSX1 (Chetcuti  et al., 

2011),  and  TAGLN (Rho  et  al.,  2009),  which  are  pro-invasive  genes,  was  present  in 

progression  from  CIN2  to  CIN3  keratinocytes.  These  findings  are  in  agreement  with 

results of a recent microarray study in which transition to CIN2 stage coincided with the 

activation  of  pro-angiogenesis  pathways,  whereas  the  transition  to  CIN3  and  then  to 

invasive cancer was characterized by a pro-invasive gene expression (Gius  et al., 2007). 

Therefore, these up-regulated genes detected in CIN2 and CIN3 keratinocytes likely are 

associated with cervical cancer and may be prognostic markers for CIN progression. An 

interesting  characteristic  of  CIN2  and  CIN3  keratinocytes  is  the  disruption  of  cell-

differentiation  programs.  Indeed,  a  series  of  differentiation-induced  genes,  such  as 

ALDH1A3 (Muzio  et al.,  2012),  IRX2 (Lewis  et al.,  1999),  IRF6 (Botti  et al.,  2011), 

SYNM (De Souza Martins et al., 2011), and ATP2A3 (Korosec et al., 2009), were down-

regulated in late-stage CIN keratinocytes. On the other hand, stemness-related genes, such 

as KLF2 (Gillich et al., 2012), were increased in the transition of CIN keratinocytes from 

CIN2 to CIN3. These data are in accordance with the oncogenic activities of HPV16 E6-
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E7  viral  oncoproteins  that  dysregulate  the  cell  cycle  through  differentiation  program 

disruption (Rosty  et  al.,  2005).  Finally,  two up-regulated  genes,  SCARA5 and SFRP2 

change in opposite directions in HPV-related tumors or other cancers (Huang et al., 2010). 

Further investigations are needed to clarify the role of these genes in CIN progression. I 

focused on one of the up-regulated genes, PHGDH, which encodes an enzyme that controls 

the  flux  from glycolysis  into  the  serine  biosynthesis  pathway,  although  a  novel  non-

metabolic role of PHGDH also has been reported. Various studies have found increasing 

PHGDH expression in human astrocytomas according to increasing tumour grade (Liu et  

al., 2013), and PHGDH recently was found overexpressed in cervical cancer (Locasale et  

al., 2011). These observations prompted me to investigate PHGDH expression in CINs and 

invasive cancer in order to explore its contribution to cervical carcinogenesis. Expression 

of PHGDH mRNA was continuously increased during conversion from normal to CIN2 

keratinocytes  and from CIN2 to CIN3 keratinocytes.  Consistently,  a  strong staining of 

PHGDH was observed in dysplastic cells from almost all CIN lesions and in tumour cells 

from all cervical cancer tissues, whereas expression was less and only in the proliferative 

compartment  of  the epithelium from normal  tissues,  a  finding which  suggests  that  the 

protein  expression  of  this  gene  is  enhanced  according  to  the  degree  of  malignant 

transformation. In conclusion, this microarray study revealed 37 down-expressed or over-

expressed genes which may contribute to progression of CIN. mRNA expression of one of 

the up-regulated genes, PHGDH, was significantly greater in CIN2 keratinocytes than in 

normal keratinocytes and in CIN3 keratinocytes than in CIN2 keratinocytes. In addition, 

protein expression of PHGDH increased from CIN1 to cancer according to the degree of 

malignant transformation. Thus, PHGDH likely plays an important role in the initiation 

and progression of cervical tumorigenesis and may be a prognostic marker for progression 

of CIN to invasive cancer.

GENES PROMOTER METHYLATION AND CIN 
PROGRESSION

Together  with  genetics  changes,  epigenetic  alteration,  such  as  improper  DNA 

promoter methylation, have an important role in cancer onset and progression. Indeed, the 

CpGs methylation status of some gene promoter regions is a significant prognostic variable 
62



for various tumor types, including cervical SCC (Van Noesel et al., 2002; Shivapurkar et  

al.,  2004).  Particularly,  aberrant  promoter  methylation  play  a  important  role  in 

downregulation of  tumor suppressor genes in SCC.  This phenomenon could lead to cell 

transformation or cervical  SCC formation. As previously reported,  a certain number of 

tumor suppressor genes such as p16 (Nakashima et al., 1999), CCNA1 ( Yang et al., 2010) 

PTEN (Cheung et al., 2004), E-cadherin (Widschwendter et al., 2004) and APC (Virmani 

et al., 2001) present improper hypermethylation in cervical carcinogenesis. Furthermore, 

p16  hypermethylation  was  detected  progressively  higher  in  CIN pre-cancerous  lesions 

progression (Huang  et  al.,  2011).  Using DNA cloning and bisulfite  sequencing,  it  was 

investigated the  epigenetic  status  of  RARB  and  IRF6  promoter  region  in  neoplastic 

progression  of  CIN  pre-cancerous  lesions.  These  genes  have  been  suggested  to  be 

implicated as actual or potentitumour suppressor genes, and are aberrantly methylations of 

their promotereds were detected   in  variousdifferent cancers (Piperi  et al., 2010; Botti  et  

al., 2011).  The RARB gene encodes  for  retinoic  acid  receptor  beta,  a  member  of  the 

thyroid-steroid hormone receptor superfamily of nuclear transcriptional regulators, which 

binds the retinoic acid. Interaction of retinoic acid with RARB receptor induces cell growth 

and differentiation  as well  as embryonic  morphogenesis  (Soprano  et  al.,  2004).  RARB 

improper  methylation  was  detected  in  several  tumors,  like  breast  (Park  et  al.,  2012), 

prostate  (Serenaite  et  al.,  2015)  and ovarian  cancer  (Flanagan  et  al., 2013)  and 

oropharyngeal SCC (Van Kempen et al., 2014). Moreover, methylation defects in RARB 

promoter region were detected in CIN3 biopsies (Vasiljević  et al., 2014) and in primary 

human foreskin keratinocytes transfected with episomial form of HPV16 (Leonard et al., 

2013).

This study  shows,for  the  first  time, that  an  extensive  methylation  defects,  i.e. 

hypermethylation,  occur  at  the  RARB  tumor  suppressor  gene  promoter  in  naturally 

HPV16-infected  CIN2  and  CIN3  keratinocytes.  Similar data  were  obtained  data  were 

showed  in  HPV16-positive  exfoliated  cervical  CIN2 and CIN3 samples  (Chang  et  al., 

2011),  and  in  cervical  SCC  samples  (Narayan  et  al.,  2003).  In  the  present  study, 

hypermethylation of RARB gene promoter was significantly higher in CIN23 keratinocytes 

compared to CIN23 keratinocytes (p<0.05).  ThereforeFurthermore, these results indicate 

that  methylation  defects  at  the  RARB  locus  frequently  occur  in  CIN  keratinocytes, 

suggesting  that  increased methylation  of  the  gene  promoter  is  predictive  ofwith CIN2 

progression  towards  >CIN3 progression.  It  can  be  hypothesized  that  the  presence  of 

HPV16 could be involved in this improper promoter methylation, as previously reported 
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(Leonard  et  al.,  2012).  In my study, in  CIN2 and CIN3 keratinocytes  wereas found a 

progressive  down-regulation  of   RARB and  a  progressive  up-regulation  of  the proto-

oncogene  c-Jun transcript,  respectively (p<0.0001).  This  negative  correlation  between 

RARB and c-JUN was previously reported in Cervical Carcinoma HeLa Cells (De-Castro 

et al., 2004). It is conceivable that the progressive RARB hypermethylation may cause a 

consequent RARB mRNA down-regulation and this reduction of expression could enhance 

c-JUN expression (De-Castro et al., 2004). As previously mentioned, c-JUN expression is 

increased in in SV40 immortalized human epidermal keratinocytes, transfected with HPV-

16  E5  coding  sequence  (Chen  et  al., 1996).   Moreover,  it  is  know  that  HPV-16  E5 

suppresses the  expression of  tumor  suppressor  gene p21 by c-JUN activation  inducing 

human  keratinocytes  immortalization.  (Tsao  et  al.,  1996).  This  might  be  one  of  the 

mechanisms by which HPV-16 stimulates cell proliferation by c-Jun activation and p21 

inactivation. It is conceivable that the same molecular effect could occur in naturally HPV-

16-positive CIN keratinocytes used in my study. 

As  for  RARB,  this  study  shows  that  extensive  methylation  defects,  i.e. 

hypermethylation,  occur  also at  the IRF6 gene promoter  in  HPV16-positive  CIN2 and 

CIN3  keratinocytes.  This  gene  encodes  for  a  member  of  the  interferon  regulatory 

transcription  factor  (IRF)  family.  The  encoded  IRF6  protein  regulates  craniofacial 

development  and  epidermal  proliferation and  may  be  a  transcriptional  activator. 

ReFurthermore,  recently findings  suggest  have  suppose  that  IRF6  exhibits  tumor 

suppressor activity  IRF6  (Botti  et al., 2011). Despite the epigenetics data of the present 

study  show  extensive  DNA  hypermethylation  in  IRF6  gene  promoter  region  in  CIN 

keratinocytes compared to normal, this trend was not in progression between CIN2 and 

CIN3 keratinocytes. However, it  is appreciable a methylation increase, even though not 

statistically  significant  (p>0.05),  between these two groups.  These epigenetics  data  are 

consistent  with a work conducted by Botti  and colleagues,  where IRF6 gene promoter 

region was aberrantly methylated in primary SCCs cultures and SCC cell lines (Botti et al., 

2011). Furthermore, in the present study was observed a reduced IRF6 expression in the 

same cell cultures in association with hypermethylation of whose its IRF6 promoter region 

is hypermethylated.  Accordingly, in this work, In my work,  was detected a similar  IRF6 

expression  was  detected  to  be  reduced  trend  in  HPV16-positive  CIN2  and  CIN3 

keratinocytes were  IRF6  promoter  resulted  hypermethylated.  Specifically,  was 

evaluatedIndeed, it was observed  a progressively down-regulation of IRF6 transcript from 

normal  to  CIN2  as  well  as  from  CIN2  to  CIN3  (p<0.0001)  in  HPV16-positive 
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keratinocytes whit  progressive  CIN2 to  CIN3 IRF6 promoter  region hypermethylation. 

Therefore, it is conceivable that the hypermethylation of IRF6 promoter region may cause 

a  consequent  IRF6 transcript  reduction in  CIN keratinocytes.  It  is  known that  IRF6 is 

involved in squamous differentiation (Biggs et al., 2012). This biological effect is limited 

by  p63,  a  protein  present  in  squamous  epithelia  that promotes  renewal  of  basal 

keratinocytes (Okuyama et al., 2007). Furthermore, IRF6 is a p63 transcriptional target that 

limits  keratinocyte  proliferation  by  inducing  p63  proteasome-mediated  degradation 

(Moretti et al., 2010). In the present work an increased of p63 expression was detected an 

increased p63 expression  in HPV16-positive CIN2 and CIN3 keratinocytes compared to 

normal. This expression was confirmedevaluated also by immunofluorescence, where  p63 

resulted  highly expressed  in  CIN3  keratinocytes  with  nuclear  localization. 

MoreoverFurthermore, p63 transcript up-regulation resulted in progression from CIN2 to 

CIN3  and  in  progressive  negative  correlation  with  IRF6  expression (p<0.0001).  It  is 

conceivable  that  the  deregulation  of  this  molecular  loop,  altering  the  critical  balance 

between differentiation and proliferation during CIN progression, as previously reported in 

Neck Squamous  Cell  carcinoma (Nicolas  Stransky  et  al.,  2011),  ectodermal  dysplasias 

(Moretti  et al., 2010) and cleft palate (Thomason  et al., 2010). These findings led us to 

hypothesize that RARB and IRF6 gene promoter hypermethylation could be a potential 

prognostic epigenetic marker for HPV16-positive CIN progression. Such changes might 

therefore be used as markers of cervical neoplasia, either alone or in conjunction with other 

molecular prognostic markers. Furthermore, RARB, c-Jun, IRF6 and p63 deregulation may 

contribute to progression of CIN pre-cancerous lesions.

CONCLUSIONS

In conclusion,  in my study the molecular  mechanisms occurring in CIN lesions 

progression were investigated. In particular, it was investigated gene expression profiles 

and methylation status of gene promoters in a novel study model, i.e. primary colonies of 

CIN2  and  CIN3  keratinocytes  derived  from  HPV16-CIN2  and  CIN3  lesions.  Gene 

expression  analysis  revealed  37  down-expressed  or  over-expressed  genes  which  may 

contribute to CIN progression. One of these genes, the phosphoglycerate dehydrogenase, 

which  resulted  over-expressed  at  both  mRNA  and  protein  level  in  CIN2  and  CIN3 
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keratinocytes and in CIN2, CIN3 and cancer tissues, respectively, is likely to be associated 

with  tumorigenesis  and  may  be  a  potential  prognostic  marker  for  CIN  progression. 

Aberrant promoter hypermethylation of RARB and IRF6 genes also may be a potential 

epigenetic prognostic marker for CIN progression.
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