

 Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN
MATEMATICA E INFORMATICA

CICLO XXVI

COORDINATORE Prof. Mella Massimiliano

A Web portal to simplify the scientific
communities in using Grid and Cloud resources

Settore Scientifico Disciplinare INF/01

 Dottorando Tutore
 Dott. BENCIVENNI MARCO Prof. LUPPI ELEONORA

Anni 2011/2013

Contents

Contents iv

List of Figures viii

List of Tables x

Introduction xii

1 Grid and Cloud architecture 1

1.1 Authentication . 1

1.1.1 X.509 Certificate . 1

1.1.1.1 Certification Authority 4

1.1.1.2 Robot certificate 5

1.1.1.3 Personal Certificate 6

1.1.2 Proxy . 6

1.1.2.1 MyProxy . 7

1.1.3 Identity Federation . 8

1.1.3.1 eduGAIN and IDEM 10

1.2 Grid Architecture . 11

1.2.1 VOMS . 12

1.2.2 WMS . 15

1.2.3 Computing Element . 15

1.2.4 Storage Element . 16

1.2.4.1 StoRM Implementation 18

1.2.5 LFC . 18

1.3 Cloud . 20

1.3.1 Openstack . 22

1.3.2 OpenNebula . 22

1.3.3 WNoDeS . 23

2 Architecture 25

2.1 Portal . 25

2.1.1 Portlet . 25

2.1.1.1 Portlet Container 26

iv

Contents v

2.1.1.2 Portal Server . 26

2.1.1.3 Liferay . 26

2.2 Grid Portal Classification . 27

2.3 Portal Architecture . 29

2.4 Database . 30

3 Authentication and Authorization 33

3.1 Related Works . 33

3.1.1 GridCertLib . 34

3.1.2 CILogon . 34

3.1.3 Terena Certificate Service 34

3.2 Authorization . 35

3.3 Authentication . 41

3.4 Online CA integration . 43

4 Workload Management 51

4.1 Existing solutions . 51

4.1.1 gUSE & WS-Pgrade . 51

4.1.2 DIRAC . 52

4.2 Generic jobs . 54

4.3 Workflow . 56

4.4 Specific Applications . 57

5 Data Management 61

5.1 EMI Data Management utilities . 61

5.1.1 LCG utils . 61

5.1.2 lfc-* commands . 62

5.2 File manager . 63

5.3 Upload . 65

5.4 Download . 67

6 Cloud services 69

6.1 Interactive Cloud Service . 69

6.2 Cloud resources for the Jobs execution 73

7 Use cases 75

7.1 ANSYS . 76

7.2 FLUKA . 79

8 Conclusions and future developments 83

8.1 Conclusions . 83

8.2 Future developments . 84

A Script for running ANSYS in Grid 87

Contents vi

B Script for moving files from Grid to Remote Servers 95

C DIRAC multi VO configuration 101

D Portal logical architecture 113

Bibliography 115

Abbreviations 115

List of Figures

1 Portal homepage . xiii

1.1 X.509 Certificate structure . 3

1.2 X509 Example . 4

1.3 Grid delegation . 7

1.4 Interaction between MyProxy and Portal 8

1.5 MyProxy used for proxy renewal . 8

1.6 Identity Federation model . 9

1.7 Map of eduGAIN members . 10

1.8 Grid architecture . 13

1.9 Interactions between Client and VOMS 14

1.10 Proxy with VOMS extension . 14

1.11 Job Types . 16

1.12 Storage Element architecture . 17

1.13 StoRM architecture . 19

1.14 Grid Data Naming . 19

1.15 Cloud Topologies . 21

1.16 Cloud Architecture . 22

2.1 Portlet Container . 27

2.2 Portlet architecture . 30

2.3 Database schema . 32

3.1 Registration - Step1 . 36

3.2 Registration - Step2 . 37

3.3 Registration - Step3 . 38

3.4 Registration - Step4 . 39

3.5 Registration - Summary . 39

3.6 Registration Flow Diagram . 40

3.7 Authentication - Organization choice 42

3.8 Authentication - VO choice . 42

3.9 Authentication Flow Diagram . 43

3.10 Portal architecture with the online-CA 45

3.11 Registration with the online-CA - step2 46

3.12 CA-bridge interface . 47

3.13 Online-CA Flow Diagram . 48

viii

List of Figures ix

4.1 gUSE/WS-Pgrade architecture . 52

4.2 DIRAC architecture . 54

4.3 DIRAC potlet submission . 55

4.4 DIRAC potlet monitoring . 55

4.5 Workflow structure . 56

4.6 gUSE/WS-Pgrade portlet . 57

4.7 Specific application portlet . 59

5.1 Data Management Architecture . 63

5.2 Data Management Interface . 64

5.3 Data Management - Upload interface 66

5.4 Data Management - Download interface 68

6.1 Portlet Cloud - SSH Keys management 71

6.2 Portlet Cloud - Image repository 71

6.3 Portlet Cloud - VMs Lists . 72

6.4 Portlet Cloud - Web terminal . 72

6.5 Data Management Architecture . 74

7.1 SPES section in the portal . 76

7.2 The portlet for the ANSYS suite 77

7.3 Example of ANSYS Output . 78

7.4 The portlet for the FLUKA application 80

7.5 Example of FLUKA Output . 81

D.1 Portal logical architecture . 114

List of Tables

2.1 VO portal policy summary. 28

3.1 Credentials needed for the registration *Case 2 is possible only as
proof of concept . 36

4.1 Applications in the portal and their status 58

5.1 LCG Utils . 62

5.2 lfc commands . 62

6.1 Cloud CLI . 70

x

Introduction

The modern scientific applications demand increasing availability of computing

and storage resources in order to collect and analyze big volume of data that often

the single laboratories are not able to provide. In the last decade, distributed

computing models such as Grid and Cloud have proved to be a valid and effec-

tive solution. A proof is the Grid model, widely used in the high energy physics

experiments. In this scenario also Clouds are showing an increasing acceptance.

Although the Grid has been recognized as a valid solution to allow the sharing of

computing and storage resources it was restricted principally by physicists users

due to its intrinsic difficulty.

The first obstacle to deal with in the use of Distributed Computing Infrastructures

(DCIs) is the robustness of Authentication and Authorization (AA) mechanisms.

Many user communities complain about the difficulty of handling digital certifi-

cates, the mechanism used in Grid to provide a secure computational environment,

and the complexity of the Grid middleware. Those factors, along with the steep

learning curve, have undermined the wide adoption of those kind of services.

In the last three years the Italian Grid Initiative (IGI) has started a process of

divulgation and support in order to extend the use of these resources to all dis-

cipline, but also activities for simplifying the access to Grid resources, covering

both the access step and the use of the middleware components. In particular it

has developed a Web portal that aims at facilitating the usage of Grid and Cloud.

It hides the complexities and acts as an unique access point for different services

such as: federated authentication, job submission, workflows, data management

in order to make easier the distributed computing resources usage to name a few.

Being the Cloud natively easier than Grid, the majority of the services developed

is relative to the Grid, especially for the authentication and authorization mecha-

nisms that are the most difficult aspects for the new Grid users.

In order to develop a powerful but sustainable solution, the Web portal has been

xii

List of Tables xiii

connected to some already existing services for the workload management or oth-

ers internally developed for the authentication and authorization operations and

for the data management. This type of solution has two main advantages: the

users see only a high level interface hiding them the underlying complexity and

the project is sustainable because it relies on several existing services, widely used

and well maintained. Our works consists in: configuring correctly the portal and

the services used, interconnecting the portal with the external services and devel-

oping new ones when needed. Pieces of software are developed only if other valid

solutions do not exist or can not be used.

Fig. 1 shows the homepage of the Web portal developed.

The portal URL is: https://portal.italiangrid.it

Figure 1: Portal homepage

In Chapter 1 we focus the attention on the paradigm of distributed computing,

in particular Grid and Cloud infrastructures. The Grid, being at the moment the

most usable infrastructure through the portal interface, it is introduced with more

emphasis, especially the services that have a main role in the portal architecture.

It is described also the Cloud definition and some implementations because the

future works on the portal will be oriented in this direction.

Chapter 2 we discuss the authorization and authentication mechanisms imple-

mented in the portal in order to hide the user from these complex aspects. We

also explain a study to integrate an online Certification Authority (CA) in the

https://portal.italiangrid.it

List of Tables xiv

portal architecture as a proof of concept.

In Chapter 3 it is described which external services have been integrated in the

portal architecture to perform different type of computations: jobs, workflows and

specific applications.

In Chapter 4 we focus on the data management aspects and the solution developed

in order to avoid the users to learn difficult commands to transfer data from their

PC to Grid and viceversa.

In Chapter 5 we give some examples how we have used the portal for specific ap-

plications, developing scripts and interfaces ad hoc for some communities in order

to hide the Grid complexity as much as possible.

In Chapter 6 we explain the services that we are going to use in order to inter-

face the portal with the Cloud infrastructures. Two different use cases have been

studied: the Cloud resources used in an interactive way or used as computation

resources on demand for the job execution.

In the appendixes are shown pieces of code developed for different purposes: the

appendix A shows the bash script used to run an application in Grid. In the ap-

pendix B there is the code for moving files or directory from the Grid to different

remote storage servers using several protocols. In appendix C is shown the DIRAC

configuration used to support multi VOs. Moreover in appendix D is shown the

portal logical architecture with all the components described in the thesis.

Chapter 1

Grid and Cloud architecture

1.1 Authentication

The authentication is a fundamental point both for Grid and Cloud because it

concerns the security aspects. The European Grid Infrastructure is composed of

more than 350 Grid sites distributed all over Europe and for these reasons it is

obvious that the security is one of the most important topic because a security

breach at one of the Grid site can affect a huge number of other sites. Therefore

a robust Authentication mechanism is a fundamental component in Grid.

In Grid the authentication mechanism is based on X.509 digital certificates, defined

by RFC 5280. In Cloud the authentication method is not univocally defined, it

could be used the X.509 certificates [1] yet but also other solutions as the federated

identity. In next paragraphs we introduce the basic concepts and services useful

to better understand the following chapters. In particular we are going to explain

the Authentication mechanism in Grid and the concepts of Identity Federations.

1.1.1 X.509 Certificate

A public key certificate (also known as a digital certificate) is an electronic docu-

ment used to identify an individual, a server or some other entity. In this way it is

possible to associate an identity with a public key. In cryptography the asymmet-

ric encryption involves a public key and a private key associated with an entity

that needs to authenticate its identity electronically. Each public key is published,

1

Chapter 1. Grid and Cloud architecture 2

and the corresponding private key is kept secret. Data encrypted with your public

key can be decrypted only with the corresponding private key1.

The X.509 is the standard for the digital certificate, it combines a Distinguished

Name (DN) with a Public key; the DN is a collection of information about a per-

son in a determined context. These information are in the key/value pair format:

where the values depend on the CA which signs the certificate itself. The typical

fields of a Distinguish Name in a X.509 certificate are: CN: Common Name, O:

Organization, OU: Organization Unit, C: Country, ST: State Or Province Name,

L: Locality. In Fig. 1.1 is shown the X.509 structure. It follows a brief description

of the fields:

• Version is a integer value; the possible alternatives are:

– 0. default (v1)

– 1. if present “Issuer unique identifier” or “Subject unique identifier“

(v2)

– 2. in case of extensions (v3)

• Serial number in an integer value, unique for each CA; it identifies unam-

biguously the certificate.

• Signature algorithm ID : it represents the algorithm and the hash function

used by CA to signs the certificate (e.g. md5WithRSAEncryption, sha-

1WithRSAEncryption).

• Issuer name: Distinguish Name of the CA which has signed the certificate.

• Validity period : it contains the date in which the certificate starts to be valid

and the expiration date.

• Subject name: the Distinguished Name of the certificate’s owner (who has

the corrispective private key).

• Subject’s public key information: Public key of the certificate’s owner and

relative algorithm (es. rsaEncryption).

• Issuer unique identifier : it is used to distinguish univoquely the CA if the

same DN is used in two distinct CAs.

1https://developer.mozilla.org/en-US/docs/Introduction to Public-Key Cryptography

Chapter 1. Grid and Cloud architecture 3

• Subject unique identifier : it is used to distinguish univoquely the certificate’s

owner if the DN (of the user) it is reused.

• Extensions : the extension are divided in 3 categories:

– key and policy information, for example the certificate utilization scopes,

– subject and issuer attributes, for example the subject/issuer alternative

name,

– certification path constraints, for example if the subject can act as a

CA.

The hash of these fields is signed by the CA private key.

Figure 1.1: X.509 Certificate structure

In Fig. 1.2 is shown an example of a certificate. After obtaining a personal X.509

certificate, the user have to store it according to some basic security rules defined

by their CA, including:

• encrypting their certificates by means of an appropriate passphrase;

Chapter 1. Grid and Cloud architecture 4

• storing the encrypted private keys on a local file system only;

• applying for the certificates renewal near the expiration date.

Figure 1.2: X.509 Certificate example

1.1.1.1 Certification Authority

A Certification Authority is a third party entity, public or private, qualified to issue

distribute and revoke digital certificates X.509 following certification procedures

established by international regulations. The authority issues a certificate used

to signs the user’s certificate. The CA software must run in a specialized and

safe hardware with the highest physical and logical security measures. Any CA

has a Registration Authority (RA) which is the system for the registration and

authentication of the users who are able to ask for a certificate.

A CA can be of 2 types: online or offline. The offline CA is completely disconnected

from the network and the certificate issue procedure need the physical intervention

of a CA administrator. The online CA typically has a front-end connected to the

Chapter 1. Grid and Cloud architecture 5

network and a back-end connected only to the front-end. Being this CA connected

to the network it is more exposed than the previous one so the security mechanisms

requested to protect it are stronger. Through an online CA a user can obtain a

certificate on-demand in an automatic way.

The access to the EGI infrastructure is restricted to certificates provided by CAs

accredited to the International Grid Trust Forum (IGTF2) federation. The IGTF

role is to establish common policies and guidelines among its Policy Management

Authorities (PMAs) members. EUGridPMA3 is the international organisation

coordinating the trust fabric for e-Science authentication in Europe.

According to the IGTF rules it can exist one IGTF-accredited CA per country per

type: for example one CA offline e one CA online in Italy. Moreover the IGTF

accepts 2 types of certificate profile:

• Short Living Credential Service (SLCS) SLCS: the certificates issued by a

SLCS CA have a maximum lifetime of 11 days.

• Member Integrated Credential Services (MICS) [13]: the certificates issued

by a SLCS CA have a maximum lifetime of 13 months.

The IGTF requirements for an on line CA are illustrated in the document for the

MICS profile. In particular, the user’s primary identity vetting must be performed

de visu, the assessment of the type of vetting done by the users home institutions

is done through a specific attribute (eduPersonEntitlement) released by the IdPs.

Moreover, the documents specifies that a certificate can be issued only upon an

explicit user’s request, that all communications are secure and that the user’s

private key is kept on the server for the time strictly needed to complete the

process. Two types of certificate can be used in a web portal: robot or personal.

In the next paragraphs we explain the difference between them.

1.1.1.2 Robot certificate

The Robot Certificate has been introduced in order to allow unattended services

to perform automated Grid tasks on behalf of a person. A Robot Certificate is

uniquely associated to a specific application and VO. A typical usage is inside a

Web Portal where a group of people submits jobs using the same Robot Certificate.

2http://www.igtf.net
3 http://www.euGridpma.org

Chapter 1. Grid and Cloud architecture 6

The certificate subject must be the string “Robot” followed by alphanumeric chars

without spaces in order to identify the certificate type and in the commonName

must be specified the Distinguished Name of the certificate owner. In this way all

the job submitted with the same Robot Certificate [2] belong to the same person

even if submitted from other people.

Being that a large number of users could performs Grid actions using a single

Robot Certificate: if a security incident happens, the robot certificate revocation

could have a very high impact because all its users would be unable to use the

Grid resources until a new Robot Certificate is generated and associated to the

application and VO.

As specified in the EGI Traceability and Logging Policy document [6], the portals

which use Robot Certificates need to provide information on who is doing what

at any time. They implement a mechanism to continuously track the real identity

of the user that is performing Grid operations. Moreover it has to store these

information in order to exactly identify the malicious user’s identity in case of

security incident.

1.1.1.3 Personal Certificate

A Personal Certificate is a certificate issued to a person by a Certificate Authority

only after a de visu identification. In order to perform Grid operations the user

must also be registered into one or more VOs. The name reported in the certificate

identifies precisely the certificate owner and the certificate can not be used by other

people. The portals which use this type of credential do not have to implement a

mechanism for identity traceability because users are already using their personal

credential so, in case of security accident, only the specified user is banned from

Grid.

1.1.2 Proxy

As we have explained above, Grid users have to provide a certificate in order to

prove their identity. Anyway, in Grid it is often necessary that a service acts on

behalf of the user, this mechanism is known as delegation. Instead of sending the

user’s certificate on the net, it is used a proxy certificate that has limited rights.

A proxy is a certificate with a shorter lifetime, typically of 12 hours. In order to

Chapter 1. Grid and Cloud architecture 7

create a proxy, a new public/private key pair is created and a new certificate is

built. It is signed with the certificate’s long-term private key and it contains the

public key using a name with the form of the following example:

/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Marco Bencivenni/CN=proxy

When a job is submitted, the proxy certificate, the private key for the proxy and

the normal certificate (but not the long-term private key) are sent with it. When

the job wants to prove its delegated identity to another service, it sends it the

proxy certificate and the standard certificate, but not the proxy private key. This

information is sufficient to prove that the remote service has the right to use the

delegated identity. Proxies usually have a lifetime of only a few hours, so the

potential damage is fairly limited4. The Fig. 1.3 shows the steps to create a proxy

certificate and delegation.

Figure 1.3: Grid delegation

1.1.2.1 MyProxy

MyProxy is open source software for managing certificates and private keys. It

can be configured to store encrypted private keys with a password chosen by the

user [10].

The typical interaction between a MyProxy and a Web Portal is that the portal

contacts the MyProxy server to obtain credentials so it can access Grid resources

on user’s behalf. The users has to enter his username and password on the portal

page, these credential are used by the portal to login to MyProxy on user’s behalf.

In this way the portal is authorized to retrieve user’s credential. The schema of

this interaction is show in Fig. 1.4.

4http://eu-egee-org.web.cern.ch/eu-egee-org/fileadmin/documents/UseCases/ProxyCerts.html

Chapter 1. Grid and Cloud architecture 8

Figure 1.4: Interaction between MyProxy and Portal5

Another important use of MyProxy is for credentials renewing.

Users can store a proxy credential in the MyProxy Server using the myproxy-

init command. Whenever users needs a credential, they can retrieve a short-lived

proxy from the MyProxy with a specific command6. In this way it is possible to

access the credentials without needing to copy the real and long user’s certificate

and private key between systems, which can be the cause of security problems.

The schema of this interaction is show in Fig. 1.5.

Figure 1.5: MyProxy used for proxy renewal

1.1.3 Identity Federation

We are now going to explain another type of authentication not adopted in Grid

yet, but used by the portal to authenticate the users. A federation can be con-

sidered as an agreement among organizations and resource providers. The organi-

zations mutually trust the information exchanged during the authentication and

authorization procedures following detailed rules in order to maintain this trusted

relationship.

6http://eu-egee-org.web.cern.ch/eu-egee-org/fileadmin/documents/UseCases/BasicDataMgt.html

Chapter 1. Grid and Cloud architecture 9

In order to avoid that the users have to authenticate themselves every time they

access a service, an Authentication and Authorization Infrastructure (AAI) has

been introduced. The task of this infrastructure is to manage the authentication

and authorization procedures among the users, their organization and the services

offered introducing the federation identity mechanism.

Figure 1.6: Identity Federation model

The Security Assertion Markup Language (SAML) is the protocol used for ex-

changing authentication and authorization data between parties. In particular it

is an XML-based open standard data format, and it is used to exchange data be-

tween the service that manage the user’s identity and a generic service provider.

Its principal scope is to provide the Single Sign On (SSO) property.

In the SAML protocol are defined three roles: the principal (the user), the Identity

Provider (IdP), and the Service Provider (SP) as shown in Fig. 1.6. The typical

scenario is:

1. the principal requests a service from the SP;

2. the SP requests an identity assertion from the IdP;

3. the principal authenticates himself on the IdP which issues an assertion to

the SP;

Chapter 1. Grid and Cloud architecture 10

4. the SP, on the basis of this assertion, decided whether the principal can

access to the services.

In a federation there are many SPs and IdPs: one IdP may provide SAML asser-

tions to many SPs and viceversa one SP may rely on and trust assertions from

many IdPs.

Shibboleth and SimpleSamlPHP are SAML implementations used to build SP and

IdP. In particular while Shibboleth is written in Java and uses Tomcat as container

in which the IdP runs, SimpleSamlPHP is written in PHP. At present several Iden-

tity Federations exist, in the next paragraph we introduce 2 of them because they

have been interfaced to the portal.

1.1.3.1 eduGAIN and IDEM

eduGAIN is a service developed within the GÉANT project and its scope is to

interconnect identity federations around the world, simplifying access to services

and resources for the global research and education community. eduGAIN co-

ordinates the elements of the federations and provides a policy framework that

controls this information exchange.

Figure 1.7: Map of eduGAIN members7

eduGAIN has 17 active participant federations (as shown in Fig. 1.7), one of which

is IDEM: the Italian identity federation of universities and research institutes for

Chapter 1. Grid and Cloud architecture 11

authentication and authorization. At present IDEM is composed of 74 IdPs and

90 SPs.

1.2 Grid Architecture

The Grid infrastructures were born and are still being used to face one of the most

challenging scientific collaborations, such as the ones running the experiments at

CERN’s Large Hadron Collider (LHC8). The Grid relies on advanced software,

called middleware, an interface between resources and applications. A typical

usage scenario is: many users of different organizations geographically distributed

(Virtual Organizations VOs) requesting high computational and storage capacities

and collaborating with each others where the computational resources (computing

and storage) belongs to different institutions but are transparently accessible. The

users join a VO, each VO shares Grid resources with other VOs accordingly to

several policies.

There are several middleware distributions: gLite, Arc, Unicore, etc. The rest

of this document we consider only the gLite solution which was developed in

the context of the Enabling Grids for E-sciencE (EGEE) project [28]. At the

end of EGEE, the development has been carried on by the European Middleware

Initiative (EMI) [25] as components of the EMI distribution. Now its key services

are maintained as independent projects by the interested research institutions.

In order for the user to exploit and share these resources, the gLite middleware is

composed of different services. Some of these are:

• User Interface (UI): the user entry point.

• Workload Management System (WMS): a set of services having the scope to

find the best available computing element where to submit user’s job.

• Logging and Bookkeeping (LB): it keeps track of user job execution in terms

of status: Ready, Scheduled, Waiting, Running, Done.

• Computing Element (CE): it is the service responsible of the computation

tasks. It is the entry point to several types of servers handled by a job queue

management system.

8http://home.Web.cern.ch/about/accelerators/large-hadron-collider

Chapter 1. Grid and Cloud architecture 12

• Worker Node (WN): the servers where jobs are executed and managed by

the CE queue management system.

• Information System (IS): the service for maintaining information about the

available Grid resources and their health status.

• Virtual Organization Management Service (VOMS): the service for manag-

ing the authorization to use the Grid resources. Furthermore VOMS allows

the VO managers to define different access rights to VO’s resources.

• Storage Element (SE): the service responsible to manage Grid files.

• LCG File Catalogue (LFC): it offers a mechanism for users and jobs to easily

locate the files stored in the SEs.

• Site-BDII : it collects the information gathered by the various services at a

site level.

• Top-BDII : it collects the information from different sites.

Being some of these services directly connected to the portal or used by it, in the

next paragraphs these will be described in more detail.

Fig. 1.8 shows the Grid architecture and the components interaction. Although

the Grid Middleware services should hide the users from the underlying infrastruc-

ture complexity, it is common belief that these services are not easy to use. The

middleware services are usually accessed via the Command Line Interface (CLI)

but while this is a trivial tasks for expert users, it may be very complex for not

skilled user communities.

1.2.1 VOMS

The VOMS is the Grid system for managing VO user authorization information

[11].

VOMS provides a database for sorting users into groups and keeping track of their

roles and other attributes. These information are used to issue trusted attribute

certificates and VOMS extension which are used in the Grid environment for au-

thorization purposes. Through a command line available in the UI, users can

generate a local proxy credential based on the user’s information in the VOMS

Chapter 1. Grid and Cloud architecture 13

Figure 1.8: Grid architecture

database. At the time the proxy is created, one or more VOMS servers are con-

tacted and they return an Attribute Certificate (AC) which is signed by the VO

and contains information about group membership and any associated roles within

the VO.

The information exchange between Client (UI) and the VOMS Server follows the

workflow shown in Fig. 1.9 and described by the following steps:

1. Mutual authentication between client and server.

2. Client sends a signal request to server that checks the user’s identity and if

the request is syntactically correct.

3. Server signs the authorization information and returns it back. The Client

checks the consistency and validity of the information returned, creates

a proxy certificate that includes the information returned by the VOMS

servers.

Chapter 1. Grid and Cloud architecture 14

Figure 1.9: Interactions between Client and VOMS

At the end of these process the credential includes the basic authentication in-

formation (Grid proxy credential) but also group and role information from the

VOMS server, as shown in Fig. 1.10. The VO administrator can assign roles to

user and manage user’s information.

Figure 1.10: Proxy with VOMS extension

Chapter 1. Grid and Cloud architecture 15

1.2.2 WMS

The WMS is the middleware component responsible for submitting and managing

jobs in Grid.

WMS typically receives requests for a job execution from a client (UI for example)

and, on the base of job requirements, finds the most appropriate resources, submits

the job to the resource and follows the job submitted until its completion. In case

of failure the WMS can also resubmit, if the job description requires it [20]. The

WMS is able to handle different job types (shown in Fig. 1.11):

• Batch: single job.

• Directed Acyclic Graphs (DAG): a set of jobs where the input/output/exe-

cution of one of more jobs may depend on one or more other jobs.

• Parametric Jobs: multiple jobs with one parameterized variable,

• Collections: multiple jobs with a common description but each one indepen-

dent from the others.

• Parallel jobs: a set of jobs each one dependent from the others commonly

used to handle the communications between tasks in parallel applications.

Jobs are described via a flexible, high-level Job Definition Language (JDL).

1.2.3 Computing Element

CE is the services that provides an uniform interface to the Grid to allow the

jobs to be executed in a Local Resource Management System (LRMS), like Load

Sharing Facility (LSF), Portable Batch System (PBS) or Sun Grid Engine (SGE).

The Computing Resource Execution and Management (CREAM) Service is a

lightweight service for job management. CREAM accepts job submission requests

and other job management requests (e.g. job cancellation, job monitoring, etc)

via WMS or directly from the end-user. The job submitted directly are described

with the same JDL language used to describe the jobs submitted to WMS.

Once the job has been received by the CE it is scheduled on the LRMS. It waits

there for the proper resources, based on the queue, user privileges, etc to be free

and then it is sent to a WN. The WN is essentially a UI that includes commands

Chapter 1. Grid and Cloud architecture 16

Figure 1.11: Job Types

to manipulate the jobs and has access to a software area where the required pro-

grams are installed the. The job is executed by mapping an appropriate local user

to the Grid user.

1.2.4 Storage Element

A Storage Element is the Grid service that allows the users to store and manage

files in the storage resources deployed in the Grid site. Using standard interface it

is able to provide the users a uniform interface hiding them from the heterogeneity

of the resources: disk servers, Storage Area Network (SAN), tape server, etc.

As shown in Fig. 1.12, in order to make the storage available in a Grid infrastruc-

ture, the storage resource is wrapped by the storage service.

In gLite several implementations are available:

• Storage Resource Manager9 (StoRM): it takes advantage of the parallel file

systems to access disk areas [23].

• dCache10 : by means of disk buffer, a server acts as frontend for a complex

mass storage system.

9http://italiangrid.github.io/storm/
10http://www.dcache.org/

Chapter 1. Grid and Cloud architecture 17

• Disk Pool Manager11 (DPM): a lightweight solution for disk storage man-

agement.

The standard interface of all these implementations is the Storage Resource Man-

ager [21] (SRM) which is responsible of interacting with the underlying storage

hiding the implementation details and providing a Grid interface to the outside

world. SEs also use standard transfer mechanisms for remote access such as the

File Transfer Protocol in Grid Computing Networks12 (GridFTP) that grants high-

performance, secure connection, reliable data transfer, and is optimized for high-

bandwidth wide-area. The data in a SE can be accessed through several standard

protocols: Remote File I/O (rfio) to directly access the remote files in the SE,

Data Link Switching Client Access Protocol13 (dcap) and file.

Figure 1.12: Storage Element architecture

As well as for the other services, the users must have the valid credentials to access

the SE. The system can allow or deny access and manage the space with quotas,

prevent the deletion of file with pinning, preallocate a storage space per VO with

space reservation and set a specific lifetime on the file.

The Grid service that manage the transfers is the File Transfer Service (FTS) [33].

It interacts with the SRM source and destination using the gridFTP protocol.

11https://www.gridpp.ac.uk/wiki/Disk Pool Manager
12http://www.ogf.org/documents/GFD.47.pdf
13http://www.networksorcery.com/enp/rfc/rfc2114.txt

Chapter 1. Grid and Cloud architecture 18

This allows the transfer of huge amount of data using multiple streams, queue of

transfers, detection of errors and rollback.

1.2.4.1 StoRM Implementation

StoRM solution has been designed, developed and maintained by the INFN-CNAF

development team. It has been designed in order to take advantage of the high

performance of parallel file systems used in Grid. Several file system are supported:

General Parallel File System14 (GPFS), Lustre15, Posix FS16 etc.

The StoRM architecture (shown in Fig. 1.13) encompasses different elements. It

is possible to deploy each one of them in a different server:

• Front-end: it exposes the SRM interface (written in C++).

• Back-end: it executes the SRM requests (written in Java).

• Database: it stores the requested data and StoRM metadata (MySQL based).

1.2.5 LFC

A relevant problem in a distributed architecture as Grid is to uniquely identify a file

but also identify replicas of the same file in different location and with different

names. Each file in Grid is univocally identified by a Global Unique Identifier

(GUID), a non-human-readable fixed-format string that identify an item of data.

Each file can be replicated in different locations and each replica is identified by

a Site URL (SURL) or Physical File Name (PFN). The Transport URL (TURL)

provides the necessary information to access a file in a SE; it is a string composed

by the access protocol and the temporary locator of a replica.

To access the desired file the users define the Logical File Name (LFN). The LFN,

as the GUID, is independent from the location of the file.

LFC servers are databases containing a list of correspondences between LFN,

GUID and SURL. When accessing a SE, the standard protocols use the TURL

address, given upon request by the SE itself, to write or retrieve a physical replica.

14http://www-03.ibm.com/systems/software/gpfs/
15 http://users.nccs.gov/ fwang2/papers/lustre report.pdf
16 http://www.opengroup.org/austin/papers/posix faq.html

Chapter 1. Grid and Cloud architecture 19

Figure 1.13: StoRM architecture

Figure 1.14: Grid Data Naming

Chapter 1. Grid and Cloud architecture 20

1.3 Cloud

By definition the Cloud computing is a model to conveniently enable on-demand

network access to a shared pool of configurable computing resources (e.g.: net-

works, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction.

The Cloud is another type of distributed computing infrastructure over the net.

Using the Cloud, the users connected to a Cloud Provider which can perform op-

erations as use of computing or storage resources and retrieval of data or software

through a web browser.

A user can execute remote software and store the resulting data in the online

storage made available by the provider.

It is possible to distinguish 3 main topologies of Cloud computing services:

• IaaS (Infrastructure as a Service) - It consists of using remote hardware

resources. This type of Cloud is similar to the Grid paradigm but with a

main difference: the resources used are available on demand, they are not

preassigned independently of their utilization (e.g Amazon EC2).

• PaaS (Platform as a Service) - On a remote server is executed a software

platform that could be composed by several services: programs, libraries etc

(e.g Google App Engine).

• SaaS (Software as a Service) - It consists of using software installed in a

remote server through a web server (e.g Google Apps).

In the IaaS the Cloud provider manages everything from the data centers, network,

storage, servers, and operating systems–leaving the customer to manage their own

applications and data. In other types of Cloud services, the Cloud provider could

manage the entire system all the way up to and including applications and data17.

Fig. 1.15 shows a high-level view of the provider and customer roles for IaaS,

PaaS, and SaaS.

The Cloud Computing system encompasses 3 main actors:

• Cloud provider: the entity who offers the services (virtual servers, storage,

applications), usually on the base of a ”pay-per-use” model.

17http://mycloudblog7.wordpress.com/2013/04/19/who-manages-cloud-iaas-paas-and-saas-
services/

Chapter 1. Grid and Cloud architecture 21

Figure 1.15: Cloud Topologies

• Administrator Client: the entity who chooses and configures the services.

Usually it is his task to install the necessary software for the final user.

• Final Client: the entity who uses the services opportunely configured by the

administrator client.

In some use case the administrator client and the final client could be the same

entity: for example a client uses a storage service to backup his data and it is also

responsible for configuring the service itself.

From an architectural point of view the Cloud Computing consists of one or more

physical servers, generally in a high availability configuration and located in the

data center of the service provider.

As shown in Fig. 1.16, the Cloud provider offers interfaces to catalog and manage

the available services. The client administrator uses these interfaces to select the

requested service (for example a complete virtual server or only the storage com-

ponent) and to administer it (configuration, activation, deactivation).The client

uses the service preconfigured by the administrator. For the final user the features

of the physical servers are not relevant.

The Cloud solutions are various, in the next paragraphs we describe only those

that the portal has been interfaced to.

Chapter 1. Grid and Cloud architecture 22

Figure 1.16: Cloud Architecture

1.3.1 Openstack

OpenStack18 is a Cloud-computing project that acts as IaaS platform. It is free

and open-source software released under the terms of the Apache License19. The

project is managed by the OpenStack Foundation. More than 200 companies have

already joined the project.

The software has a modular structure composed of a series of interrelated compo-

nents that control pools of processing, storage, and networking resources through-

out a datacenter, able to be managed or provisioned through a web-based dash-

board, command-line tools, or a RESTful API.

1.3.2 OpenNebula

OpenNebula20 is an open source Cloud management toolkit that can be used to

build different types of Cloud infrastructures. It is very widespread, has a modular

structure and is able to scale from a single node cloud to thousands of physical

nodes. OpenNebula manages storage, network, virtualization, monitoring, and

18https://www.openstack.org/
19http://en.wikipedia.org/wiki/Apache License
20http://opennebula.org/

Chapter 1. Grid and Cloud architecture 23

security technologies to deploy virtual machines on distributed infrastructures,

combining both data center resources and remote cloud resources.

1.3.3 WNoDeS

Worker Nodes on Demand Service (WNoDeS) [24] is a Cloud solutions developed

by INFN and released as a service in EMII. It uses a batch system, integrated in a

local farm, to define the resources allocation policies; the batch systems supported

are: IBM Platform LSF, Torque/Maui, SLURM. A study to integrate some com-

ponents of OpenStack inside WNoDeS is in progress. An important feature, called

mixed mode21, is the possibility to manage jobs that use physical resources and

virtual resource at the same time on the same hardware.

21http://web.infn.it/wnodes/index.php/mixed-mode-faq

Chapter 2

Architecture

2.1 Portal

Before describing in detail the architecture of the portal developed, we introduce

some concepts: a general defenition of web portal and which are its components.

In the subsequent paragraphs we describe the type of Grid portal and we explain

in detail the architecture of the one developed.

A web portal can be considered as a set of web pages in which the contents are com-

posed of information originated from different sources and displayed in a uniform

way. Usually, each source has its dedicated area on the web page for displaying

information (the portlet); often, the user can choose which information to display.

Modern Web portals offer several services such as e-mail, news, information from

databases and even entertainment content. The features available may be re-

stricted in case of authorized and authenticated users (employee or member) or

anonymous site visitor.

2.1.1 Portlet

A portlet is a Java technology to develop modular component that are managed

and displayed in a web portal. Portlets produce fragments of markup code (HTML,

XHTML, WML) that are aggregated into a portal. Typically a portal page is

composed of a collection of single portlet and the same portlet can be used in

different pages. Through the portlet it is possible to build dynamic contents and

25

Chapter 2. Architecture 26

manage the contents settings.

Portlet standards are JSR168 [8] and JSR286 [9] and enable software developers to

create portlets that can be reused into any other portal that support the standards.

2.1.1.1 Portlet Container

The portal container is the component responsible to manage the single portlet

instance and the distribution of the code fragments generated from the portlet to

the portal server where they are aggregated.

The portal container is responsible for the instantiation of the methods to manage

the portlets lifecycle and to provide them the correct execution environment

2.1.1.2 Portal Server

A portlet is a single web element. In order to create a web portal page it is

necessary a component that aggregates all the fragments code generated by the

portlet that need to be shown in the same page, this task is carried out by the

Portal Server. The portal server is responsible for the communication with the

portal container of all user’s request done through the web portal page To sum

up the portal container builds the web page contents (a content for portlet), while

the portal server aggregates all these contents in a single page providing a uniform

style.

There are several solution that offers portal servers/containers, commercial and

opensource like: Liferay, GridSphere, iGoogle etc. In the next paragraph we

describe in more detail the Liferay solution because it is the one chosen to build

the portal.

Fig. 2.1 shows the web portal architecture and how the components described

(portal container, portal server and portlet) interact with each other to create a

dynamic web page.

2.1.1.3 Liferay

Liferay1 is a free and open source portal written in Java and distributed under

the Lesser General Public License (LGPL). It is worldwide distributed and used

1 http://www.liferay.com

Chapter 2. Architecture 27

Figure 2.1: Portlet Container

by thousands of organizations and company and it is a leader among the open

source portal. Liferay is composed of an engine and applications executed by the

engine. it provides also an easy to use development framework for new applications

or customization. New developed applications can be integrated with the native

Liferay applications. Users access native and new applications as the same set.

It provides natively 60 portlets with general functionalities: content manager,

wiki, forum, blog and many others. It supports the JSR168 and JSR286 portlet

standards and utilities as Service Builder to build automatically interfaces for

database. The use of standards makes easier and faster the implementation of

new functionalities and also the reuse of the same portlets on other portals that

use the same technology.

2.2 Grid Portal Classification

The Virtual Organisations Portal Policy [4] is the document produced by the EGI

Security Policy Group in which portals are grouped in different classes according

to the executable code, executable parameters and the input data provided by the

Chapter 2. Architecture 28

Portal
Class

Credentials Executable Parameters Input

Simple
one-click

Robot Certificate provided
by portal

provided
by portal

provided
by portal

Parameter
Robot Certificate /
Personal Cerificate

provided
by portal

chosen chosen
from
repository

Data pro-
cessing

Robot Certificate /
Personal Cerificate

provided
by portal

chosen provided
by user

Job man-
agement

Personal Certificate provided
by user

provided
by user

provided
by user

Table 2.1: VO portal policy summary.

users or portal. There are four portal classes: Simple one-click, Parameter, Data

processing, Job Management. Each portal class allows a different set of actions:

• Simple one-click portals : the submitted jobs use executable codes, parame-

ters and input data provided by the portal and can not be modified by the

users.

• Parameter portals : the submitted jobs use executable codes provided by the

portal. The user can only choose parameters from a list and select input

data from a list of files saved in the Portal repository.

• Data processing portals : the submitted jobs use executable codes provided

by the portal. The user can only choose parameters from a list and provide

personal input data.

• Job Management portals : the submitted jobs use executable codes provided

by the portal. The user also choose parameters and provide personal input

data

All portals operated by (or on behalf of) a VO, which comply with the general

EGI Virtual Organisation Operations Policy [5], have to deal with the limitations

defined in the VO Portal Policy. Table 2.1 describes the user privileges and the

required credentials for each portal class.

In particular the portal developed belongs to the ”Job Management” class since

all users provide their personal certificate. In this way the users can provide their

Chapter 2. Architecture 29

computational jobs with the executables, input data and parameters. For this

reason the portal is as flexible and powerful as a Grid UI. Other solutions, such

as, Science Gateways [34], relying on the Robot Certificate, belong to the Data

Processing class detailed in Table 2.1. Within these portals users must provide

the input data while the computational job executable and parameters are fixed

and pre-configured within the portal.

2.3 Portal Architecture

The IGI Web portal is based on the Liferay Framework2 and it has been designed

and developed to allow an easy and fast access to Grid and Cloud resources. The

main tasks of this kind of portals are to hide and automate some procedures that

for not expert users could be too complex, such as: authentication mechanism,

job submission and monitoring, data transfer etc. Moreover it is also possible

to improve some Grid functionalities that the normal gLite UI is not able to

offer such as: workflow and specific application submission, Cloud integration

etc. In the next chapters, each of these functionalities will be described in detail.

Being the portal based on Liferay Framework, it grants a modular and flexible

structure. The portal modules are the portlets and each one of them implements

a specific function. This modular structure makes very simple to extend the portal

functionalities by simply adding new portlets. Fig. 2.2 shows the overall portal

architecture where dark box are third part components while light box are the

components we developed.

The Web portal is the high-level interface that hides the underlying complexity

and through which users can interact with the connected services running in the

background. In the center of Fig.18 there is the portal composed of several blocks,

the portlets, that implement the interaction with external services which are:

• MyProxy and VOMS for storing credentials and requesting VO attributes.

• IdPs for managing user authentication,

• CA-Bridge to request the creation of certificates on demand from an online-

CA,

2 http://www.liferay.com

Chapter 2. Architecture 30

Figure 2.2: Portlet architecture

• Grid and Cloud services for requesting computing and data resources.

Some of these services are solution already existing and widely used, the reuse of

existing and maintained solutions is key for its sustainability.

2.4 Database

An additional MySQL database, called Portal DB, has been added to the default

Liferay DB. The Portal DB is used to collect user’s information. Not only does it

store user’s personal data such as name, surname and mail, but also data concern-

ing the Grid and Cloud like certificate information and VOs membership. These

information as described in the next chapter are collected during the registration

phase and and are validated before being recorded in the database.

Fig.8 shows the Portal DB relational schema which is composed of 5 tables:

Chapter 2. Architecture 31

• userInfo: this table collects the personal user information, through an ex-

ternal key it is possible to store the information if the user has completed

the registration procedure

• certificate: this table collects the informazioni about user’s certificate. The

tables has an external key to link the certificate to the user identifier. The

data collected are: subject, issuer and expiration date and not the whole

certificate itself for security reasons. In addition to these information, here

is also stored the username used to save the user’s proxy certificate in the

MyProxy server (section 1.1.2.1).

• VO : this table collects the information about the VOs supported.

• userToVO : this table allows to collect relations among 3 entities: userInfo,

VOs and certificate. The information saved in each tuple are: the user’s

VO and the user’s certificate. Moreover, since a user for each VO can be

a member of more groups and have more roles, these information are saved

here.

• notify : this table collects the information about the proxy lifetime in order

to notify the users, some hours before the proxy expiration and give them

enough time to renew it in case of running jobs.

• sshKeys : this table collects the keys pair, in encrypted form, used for the

connection to virtual machines managed in the Cloud section.

Fig. 2.3 shows the Portal DB schema.

The database has been designed to be useful during the registration phase in

order to help the user with dynamic information in drop-down menu on the base

of his choices. In appendix D is shown a detailed portal architecture with all the

components described in the next chapters.

Figure 2.3: Database schema

Chapter 3

Authentication and Authorization

Authorization and Authentication processes in the portal are interconnected: the

mechanism of the authentication depends on some choice made during the Regis-

tration and one step of the Registration uses the authentication mechanism. For

this reasons it is not completely correct to describe one before the other. We have

chosen to introduce first the Authorization then the Authentication because the

first time users access the portal they have to register themselves proving all the

necessary credential, the next times they only have to perform the authentication.

For both these aspects we have tried to simplify the procedures, moreover we have

done a study to integrate an online-CA in order to provide certificate on-demand.

3.1 Related Works

Before the beginning of the work, several existing solutions which provide on-

demand certificate creation, have been examined in order to understand if one of

these solutions could be adopted. The softwares analized were: GridCertLib1 [7],

CILogon2 and Terena Certificate Service3. Unfortunately, none of these solutions

was completely satisfactory for the reasons explained in the next paragraphs.

1https://code.google.com/p/Gridcertlib
2http://www.cilogon.org
3http://www.terena.org/activities/tcs

33

Chapter 3. Authentication and Authorization 34

3.1.1 GridCertLib

GridCertLib is a Library developed in SWITCH 4 and is based on short-lived (11

days) certificates. Every time the users login on to the portal, using their federation

identity, it contacts a SLCS online CA in order to provide on-demand new personal

certificate. The weakness is that jobs longer than 11 days would fail. To allow

users to submit jobs longer than 11 days, the portal has to implement a mechanism

to trace any jobs and when they are near to expiration, it has to notify the users

to refresh their credentials. This is the main reason why GridCertLib has not been

considered as a good solution. This issue could be addressed by adopting long-

lived credentials (13 months) in this way the users should be notified for example

one month before the expiration of their credentials to renew them through the

portal interface and this operation would be only once a year.

3.1.2 CILogon

The CILogon is the solution developed by University of Illinois. It provides dif-

ferent types of long lived certificates (11 months) based on the authentication

mechanism used to request the certificate. Users can obtain an openID certificate

using weak authentication (e.g., their Google account) but these certificates is not

accredited by EUGridPMA so they can be used only on local resources. The U.S.

students and researchers, who are members of the InCommon federation5 and are

identified with a specific Level of Assurance (LoA)6, can obtain ”silver” certificates

which are recognized in EUGridPMA. Here the problem lies in the fact that this

service is based on the concept of LoA that is implemented only in the InCommon

Federation (U.S.)

3.1.3 Terena Certificate Service

The Terena Certificate Service is the solution developed on the context of the

Geant Project. It consists of a Web portal where the users can authenticate

themselves using their federated credentials and then obtain X.509 credentials.

Although in this way the users can obtain easily a Terena personal Certificate (13

4https://www.switch.ch
5http://www.incommon.org/federation
6http://www.incommon.org/assurance

Chapter 3. Authentication and Authorization 35

months of validity) they have yet the problem to manage it because the enrollment

certificate process contemplate that the certificates have to be saved locally (i.e on

the browser) and finally uploaded to portal. This procedure is quite unfriendly for

many users and also browser-dependent. It would be preferable if the online-CA

and portal would be directly connected in order to hide completely the users of

certificate management complexity.

3.2 Authorization

Now we are going to explain the Authorization mechanism implemented in the

portal. The first access to the portal, the so called “Registration”, is the most im-

portant phase because users have to prove they have all the necessary requirements

to access Grid or Cloud services and the Portal has to register this information in a

permanent way in order to automatically configure the correct user’s environment

every time the users log in. Users must provide the following information:

• a X.509 certificate;

• a VO membership;

• the IdP to which they belongs.

The portal trusts: the X.509 certificate issued by the CAs that are member of EU-

GridPMA, the VO recognized by the EGI project and all the IdPs belonging to

the EDUgain federation plus one additional IdP embedded into the portal (Portal

IdP), which is for the exclusive use of the Portal itself. In future it will be possible

to trust other federations, at the moment eduGAIN covers the majority of the

institutes involved in the EGI project.

For the user with only some of these credentials the portal can provide the miss-

ing ones: Table 3.1 summaries credentials combinations necessary to successfully

conclude the registration phase (i.e. x=absent, o=present).

Users who have a valid X.509 personal certificate and a VO membership can use

the portal. If they are already registered in a trusted IdP (case 3 in Table 3.1),

their personal information are retrieved from the IdP, otherwise (case 1 in Table

3.1) the portal retrieves the user’s personal information (such as first and last

Chapter 3. Authentication and Authorization 36

Case IDP member X.509 certifi-
cate

VO

1 x o o
2 o x x
3 o o o

Table 3.1: Credentials needed for the registration
Case 2 is possible only as proof of concept

name, email address, institute) from their certificate and registers him/her in the

Portal IdP using those information.

The registration phase consists of 4 steps:

• Step 1: Retrieve personal data from the IdP By clicking on the ”Registra-

tion” button, users are automatically redirected to a page where they can

select their institute (Fig. 3.1). In case it is in the list, they are automatically

redirected to their institute’s IdP login page where they have to insert their

personal credentials. The portal retrieves the personal information such as

first and last name, email address and institute from the IdP. If the institute

is not in the list, users have to select ”the other institute” option. Then they

are automatically redirected to the second step of the registration.

Figure 3.1: Registration - Step1

• Step 2: Certificate upload If users already have a personal certificate they

can upload it to the portal through an encrypted channel and type the

passphrase necessary to decrypt it. The web interface to do these actions

Chapter 3. Authentication and Authorization 37

is shown in Fig. 3.2. The portal at this point starts a set of subsequent

actions: saves it in a reserved area of the local file system, does not store the

passphrase but uses it to decrypt the certificate, creates a proxy certificates

Grid Security Infrastructure (GSI) compliant with the lifetime of the cer-

tificate [12], encrypts the proxies with a random password auto-generated,

saves the encrypted proxies in a dedicated MyProxy Server. The credentials

saved in this server last as the original ones so it is called MyProxy Server

(long) to distinguish from another MyProxy used to store shorter credentials

called MyProxy Server (short). Once the proxy is saved in MyProxy server

the original certificate is deleted. If the whole procedure ends successfully,

the Portal registers the user’s certificate information (such as DN, expira-

tion time, subject, issuer and proxy username) in the Portal DB. In case

the user’s organization is not in the list of the trusted IdPs, the information

retrieved in this step are used to register them in the portal IdP.

As shown in Table 3.1, users who do not have a valid certificate can not

use the portal components. To upload a personal certificate we follow the

EUGridPMA guidelines specified in the document “Protection of private key

data for end-users in local and remote systems” chapter 2.2 point 3.

We then upload an encrypted personal certificate, in a protected network

and we store it only for the few seconds necessary to create the proxy. All

the connections are SSL/TSL encrypted. All the web authentications are

shibboleth based. The passphrases requested to the user in order to decrypt

the user certificate is kept in a non-swappable memory area in clear text and

only for the time necessary to complete the procedure and then deleted.

Figure 3.2: Registration - Step2

Chapter 3. Authentication and Authorization 38

• Step 3: Declare the VO membership Users have to declare their VOs mem-

bership. The portal checks the consistency of this declaration querying the

VOMS server through the VOMS API. If this operation ends successfully,

users can also set their roles and groups for each VO they belong to and

set a default VO. In case of more VOs declared, the default VO will be the

first VO in the drop-down menu used to choose which VO to use. All these

information are stored in the portal DB.

All these actions are possible through the web interface shown in Fig. 3.3.

Figure 3.3: Registration - Step3

• Step 4: Encrypt credentials Users must choose a personal passphrase to

encrypt their credentials. This passphrase is not saved in the portal DB.

The portal replaces the old proxy passphrase, randomly generated during

the second step, with this new one. This passphrase is valid until a new

certificate is uploaded.

This passphrases is also kept in a non-swappable memory area in clear text

and only for the time necessary to complete the procedure and then deleted.

The web interface to do this action is shown in Fig. 3.4.

After successfully completing all the registration steps, users are redirected to a

summary registration page (called “MyData”) shown in Fig. 3.5 and then can use

the portal services.

Chapter 3. Authentication and Authorization 39

Figure 3.4: Registration - Step4

Figure 3.5: Registration - Summary

If the registration procedure is interrupted after the first step, it can be resumed on

the following login. The registration procedure can be carried out also setting none

VO. In this case users are registered but only when they add a VO Membership

in MyData they will be allowed to use all the portal services.

The same portlet used for the registration phase is also used to make some changes

during the normal use of the portal, such as adding new VO memberships, adding

a new role or group for a VO, or updating the certificate when approaching the

expiration date. In this page there is also a section for advanced setting where the

users can choose 3 parameters:

Chapter 3. Authentication and Authorization 40

• default proxy lifetime, from 12 hours to 7 days (default value is 2 days that

is a good compromise between security and usability);

• if they should receive an email notification when the jobs submitted change

the status (default value is “yes”);

• if they should receive an email notification when the proxy is near expiration

only if the user has jobs in running state (default value is “no”).

Fig. 3.6 shows the four registration steps in detail.

Figure 3.6: Registration Flow Diagram
(red arrow indicate a user actions, black arrow indicate a system action)

Chapter 3. Authentication and Authorization 41

3.3 Authentication

The portal adopts a federated authentication mechanism based on the SAML

protocol. This choice has a double advantage: it allows the users to utilize the

credentials stored by their organization’s IdP and the portal does not have to store

sensible data in its database. Unfortunately Liferay does not support the SAML

authentication natively, it supports the Central Authentication Service7 (CAS)

instead. To overcome this issue Casshib8 has been used. This software enables the

CAS server to act as a Shibboleth service provider. We have configured Liferay

to use the CAS authentication while, in background, Casshib translates the CAS

requests in Shibboleth requests in order to take advantage of the IdP federation.

The authentication mechanism in the portal consists of two steps.

Step 1: federated authentication.

1. Users, through the ”Sign In” button, are redirected to a web page where

they have to choose their institution or ”Portal IdP” in case their institute

is not in the list (Fig. 3.7 shows this page).

2. Users are then automatically redirected to the IdP login page where they

must insert their credentials.

3. The portal checks in its database if the users is already registered.

4. If users are already registered on the portal, they are redirected to the main

portal page otherwise they are redirected to the registration page.

Step 2: Grid credentials retrieval.

6. Users must select a VO from a menu which lists all the VOs they declared

to be part of and insert the passphrase set during the registration phase for

the credential encryption as shown in Fig. 3.8.

7. The portal retrieves a proxy by querying the MyProxy Server (long) server.

If the proxy is not in the Certificate Revocation List, the portal saves it in

an appropriate Portal directory and its lifetime is set to 7 days.

7http://www.jasig.org/cas
8https://code.google.com/p/casshib

Chapter 3. Authentication and Authorization 42

Figure 3.7: Authentication - Organization choice

Figure 3.8: Authentication - VO choice

Chapter 3. Authentication and Authorization 43

8. The portal then makes a copy of this proxy to the MyProxy Server (short)

that will be used by the WMS to renew the proxy if necessary.

9. According to the selected VO the portal contacts the appropriate VOMS

server in order to add VOMS extension to the short-lived proxy. The proxy

with VOMS extensions is called voms-proxy and is the only proxy ever trans-

mitted to the Grid. The VOMS extension lifetime is limited by the VO pol-

icy. For example, if a user sets N equal to 4, the portal requests a VOMS

extension of 4 days. In case the VO policy only allows the extensions of 24

hours, the portal shall renew the VOMS extension every 24 hours.

Fig. 3.9 shows each step of the authentication in detail.

Figure 3.9: Authentication Flow Diagram
(red arrow indicate a user actions, black arrow indicate a system action)

3.4 Online CA integration

As highlighted during the introduction, the request of a personal certificate and

its management often represents an issue for not ITC expert users and none of the

Chapter 3. Authentication and Authorization 44

solutions available up to now satisfies completely their requirements.

As a proof of concept we have designed a solutions to overcome this limitation

including in the portal architecture an Online CA which provides X.509 certificates

MICS profile on the basis of a federation identity (federation acts as RA) and a

service (CA-Bridge) to manage these certificates on behalf of the users.

This solution is useful for users without an X.509 certificate but member of a

trusted IdP (case 2 in Table 3.1). Using the infrastructure that we are going to

describe, users could get a proxy to operate on the Grid through the IGI portal in

a transparent way. During the registration phase at step 2 in the previous section

(3.2), the portal could provide the option to ask for a certificate.

Fig. 3.10 shows the role of the Online CA and CA-bridge in the portal architecture.

Users can interact directly with the Web Portal for Grid and Cloud tasks as well

as with the CA-Bridge for the certificate management services but not with the

Online CA because it is protected by a two-levels firewall. The CA-Bridge service

is the only one that can interact to the CA to apply for a certificate on behalf of

users and then automatically stores the certificate in the MyProxy server. The

encrypted long-term proxy is stored into the MyProxy server, while a delegated

short-term proxy is available whenever needed for the Grid tasks. The CA-Bridge,

the MyProxy server and the Online CA are the fundamental components of a

certificate provisioning service integrated in the portal framework. To implement

the Online CA it has been used an open source software, EJBCA9, while the

CA-Bridge has been completely developed by us; both these components are Java

based.

Certificates are issued according to the following workflow depicted in Fig. 3.13

(each number of this list has a correspondence in the figure):

1. By clicking on the ”Registration” button, users are automatically redirected

to a page where they can select their institute.

2. They are automatically redirected to their institute’s IdP login page where

they have to insert their personal credentials. The portal retrieves the per-

sonal information such as first and last name, email address and institute

from the IdP.

3. The portal checks if the users are already registered or not.

9http://www.ejbca.org

Chapter 3. Authentication and Authorization 45

Figure 3.10: Portal architecture with the online-CA

4. Users not already registered are redirected to the second step of the regis-

tration process.

5. Users ask for a X.509 certificate. Fig. 3.11 shows the step-2 of the regis-

tration modified in order to allow the user to choose if they want to upload

their certificate (if they have one) or ask for a new one.

6. The Web Portal redirects the users to the CA-Bridge.

7. This web page is provided by the CA-bridge server and not by the Portal

server. Even if this aspect is totally transparent for the user, the user’s

browser provides to CA-bridge service the necessary information to perform

a successful authentication against the user’s IdP. This is a possible thanks

to the SSO. In this way there is a double authentication: the first is needed

to access the portal and the second to access the CA-bridge, using the same

IdP. The IdP releases the required attributes: Name, Surname, Institute etc.

Chapter 3. Authentication and Authorization 46

Figure 3.11: Registration with the online-CA - step2

8. The CA-bridge, using a particular mechanism explained in the next pages,

checks if the user logged in the portal is the same logged in the CA-bridge.

In case of inconsistency the users are automatically logged out.

9. In case of success, the user is asked to provide a passphrase. Fig. 3.12 shows

the pop-up window in which the user insert the passphrase.

10. The CA-Bridge generates a private key and a Certificate Signing Request

(CSR) on behalf of the user and sends the CSR to the online-CA to be

signed

11. When the certificate is received back on the CA-Bridge, it is used to store a

long term proxy.

12. The user’s certificate is published in the CA repository and the private key

is destroyed.

Chapter 3. Authentication and Authorization 47

Figure 3.12: CA-bridge interface

13. The users are automatically added in a catch all VO whose the portal is

the administrator. This VO has a limited set of resources, useful as first

approach for the new Grid users.

14. The CA Bridge writes in Portal DB the certificate information for the tar-

geted user.

The security mechanism used to protect the communication occurring at points 3

and 4 and to enable the certificate request is based on a string (called token) gen-

erated using the Time-based One Time Password-algorithm RFC 6238 (TOTP)

[14].

This algorithm generates a token based on two elements: the timestamp, a com-

bination of the attributes retrieved by the IdP, and a secret-key shared between

the Web Portal and the CA-Bridge.

• Timestamp is used in order to force the user to make a choice, uploading

a certificate or requesting a new one, within 2 minutes: the token does not

change inside this time interval. In this way the token changes very often

also for the same user.

• IdP attributes are used in order to verify that the user who has asked for a

certificate in the portal page is the same that is finishing the procedure in

the CA-bridge page.

Chapter 3. Authentication and Authorization 48

Figure 3.13: Online-CA Flow Diagram
(red arrow indicate a user actions, black arrow indicate a system action)

• SecretKey is a long string shared between the portal and CA-bridge; this in

order to grant that the request of this certificate is coming from the Portal

and not directly to CA because in this case the output produced would be

different. The secret key is periodically changed.

A first token is generated by the WEB Portal and appended to the redirection

URL. A second token is generated by the CA-Bridge.

The CA-Bridge compares the 2 tokens: the one received by the WEB Portal and

the one generated by itself. If and only if the two tokens are equal, the point 5

and following are executed. It is worth mentioning that the 2 tokens are equal if

and only if the secret-key and IdP’s attribute are the same and the time interval

between 2 tokens generation is within 120 seconds.

Online-CA and MyProxy Server (long) are in a private network and have a ded-

icated firewall in front of them. MyProxy refreshes Certificate Revocation Lists

every 6 hours. When Portal retrieves a proxy from MyProxy Server (short) and

saves it in MyProxy Server (long) checks if the proxy requested is not in any CRLs

otherwise the procedure is stopped and the long proxy is deleted. In Grid only

Chapter 3. Authentication and Authorization 49

proxies of 12 hours are sent, renewable to a max of N days, with N depending

on the value set in MyProxy Server (short). If a proxy is compromised it will be

revoked the first time it is refreshed, this means that a compromised proxy has

12 hours as a maximum lifetime. This is the standard behaviour used on all Grid

procedures.

Such strong verification can assure both the validation of the user identity on the

WEB Portal and the CA-Bridge and that the WEB Portal is the vector of the

request. In this way the user is not responsible for the private key, since he will

never possess it. Nevertheless he is responsible to protect the passphrase which is

used to encrypt the long term proxy. This passphrase is not saved in the system.

The users can use the Grid services simply by means of short-lived proxies that are

automatically generated and are based on the long-lived proxy certificate stored

into the MyProxy Server (long).

Chapter 4

Workload Management

4.1 Existing solutions

Before describing in detail the mechanisms of the workload management imple-

mented in the portal, we introduce two services: DIRAC and WS-Pgrade. These

services are widely and successfully used by numerous communities to perform

their computation, are developed from third party and actively maintained. For

these reasons we have interfaced the portal with them. In the next paragraphs

we describe the interaction between the portal and these services and the types

of computations possible through the portal: normal job, workflow and specific

applications.

4.1.1 gUSE & WS-Pgrade

The ”grid and cloud User Support Environment” (gUSE) is an open-source soft-

ware that enables users to access Grid and Cloud infrastructures. gUSE is de-

veloped by the Laboratory of Parallel and Distributed Systems (LPDS) at MTA-

SZTAKI, Hungary.

It consists of a set of Web Services which have the functionality to create, interpret

and submit a workflow to the Grid in various DCIs. WS-Pgrade is the gUSE front-

end: a Web portal based on Liferay implemented using portlets and a database

necessary to track and manage the creation and execution of the workflows. These

portlets use the gUSE client APIs to submit users’ requests to the gUSE back-end

51

Chapter 4. Workload Management 52

[3]. Although WS-Pgrade and gUSE provide several functionalities (data manage-

ment, proxy management, etc.) in the portal developed they have been used only

for the workflows[18] creation and management. The API, called Application Spe-

cific Module (ASM) [19] provides most of the gUSE programmatic functionalities.

In order to facilitate the users in workflow construction, WS-Pgrade provides also

a Java applet to graphically build the workflow graph which then will be config-

ured using the WS-Pgrade portlet interface.

The last component of this architecture is the DCI Bridge, a web application that

creates a transparent layer between the workflow systems and the DCI systems. In

this way it is possible to provide a standard access to the DCIs like Grids, desktop

Grids, clusters, Clouds etc. All these components are shown in Fig. 4.1.

Figure 4.1: gUSE/WS-Pgrade architecture

4.1.2 DIRAC

The Distributed Infrastructure with Remote Agent Control (DIRAC) [15] provides

a Grid middleware stack that integrates heterogeneous computing resources and

provides a solution for both job submission and data management tasks. DIRAC

now is a solid, widespread and sustainable solution adopted by the LHCb experi-

ments and by many national Grid infrastructures.

The basic DIRAC components are Databases, Services and Agents that combined

together form Systems:

Chapter 4. Workload Management 53

• Databases : keep the persistent state of a System. They are accessed by

Services and Agents as a kind of shared memory.

• Services : are passive components listening to incoming client requests and

reacting accordingly by serving requested information from the Database or

inserting requests on the Database.

• Agents : are the active components which are running continuously invok-

ing periodically their execution methods. They execute actions and send

requests to the DIRAC services.

• System: is delivering a complex functionality to the rest of DIRAC, providing

a solution for a given class of tasks.

DIRAC WMS [16] is the component that provides the scheduling mechanism for

jobs. It organizes pending jobs in task queues and each task queue has jobs with

similar requirements as shown if Fig.4.2. The fundamental concept in DIRAC is

the Pilot job [17], a very useful solution especially for massive job submissions.

For each jobs submitted by the users DIRAC may submit four pilot jobs to the

resources that most match the job requirements. DIRAC, before to submit new

pilot jobs, checks if there are already pilot jobs with the same requirements. The

pilot jobs check the environment in which they are running. It is a task of the

pilot job to communicate with the task queue, through a dedicated component

called Matcher Service, in order to pull down the first job of the queue whose

requirements fit the environment where pilot job is running. In this way there is

a decoupling between resource allocation and job management. Moreover there is

also a notably reduction of the time that each job has to spend in the batch system

queue electing this model very useful for massive short job submission. It has

been shown that this model increases significantly the number of jobs submitted

successfully. Using the centralized task queue is also possible to define a sort of

prioritization (for example for VO policies as shown in Fig. 4.2) changing the job

position in the queue [16].

In order to allow the communication between the portal and the DIRAC server, a

portlet using the DIRAC Command Line Interface has been developed. Although

DIRAC was originally developed to support only one VO (LHCb), during the

years it evolved towards a more generic and configurable structure. Our DIRAC

installation has been configured to support multi-VOs, as shown in Appendix C.

Chapter 4. Workload Management 54

Figure 4.2: DIRAC architecture

4.2 Generic jobs

The first type of computation that we describe is the most simple: users want to

run jobs by uploading their executables, input files and specifying the executable

parameters. For these job types the portal developed provides a very simple in-

terface, through a specific portlet, in which the user can easily build his JDL by

setting the appropriate values from a list of JDL attributes. In background the

portal uses the DIRAC services inheriting its functionalities but also some of its

limitations like the limited choice on the type of job which can be submitted: nor-

mal and parametric jobs.

Fig. 4.3 shows this interface, on the left column there are the available fields to

build the JDL, in the center there is the JDL that will be submitted.

Chapter 4. Workload Management 55

Figure 4.3: The portlet to submit job using the DIRAC service

Once the job has been submitted, the user can monitor the job status during its

execution and retrieve the output and log files at its conclusion. It is also possible

to re-submit or duplicate a terminated job.

It has also been implemented the possibility to save a JDL as a template in order

to reuse all the settings previously made and increase productivity, but the real

added value is the possibilities to share the template with other users.

Fig. 4.4 shows this interface, each row represents a job submitted and con-

tains a job univoque identifier (Job ID), a job name, the submission time, the

status (blue=running, green=finished successfully, red=finished with error, or-

ange=waiting) and the bottom to perform some actions.

Figure 4.4: The portlet to monitor the job submitted using the DIRAC service

Chapter 4. Workload Management 56

Once the job is terminated from the same interface is possible to resubmit, delete

one or more jobs at a time, and also retrieve the “Standard Output” and “Standard

Error” for each job.

The biology use case is a typical example where DIRAC is a good solution because

from the computational point of view biology jobs can be considered as a massive

computation. Biology jobs can demand for thousands hours of computations and

produce TeraByte of data but they can be decomposed in hundreds of independent

smaller jobs executed at the same time according to the resources available. In

this way the effective computational time necessary to perform the analysis can

be notably reduced.

4.3 Workflow

The second type of computation executable through the portal are the Workflows:

acyclic sequences of connected nodes in which the execution of one or more nodes

depend on the results of the previous ones. Conceptually they are very similar

to DAG jobs: both can not be cyclic. The difference is that in workflow a single

node can be something different from a job, such as database interaction, VM

instantiation etc.

Fig. 4.5 shows an example of workflow structure created through the portal, there

are 10 nodes and each of them take as input the output of previous node.

Figure 4.5: Example of Workflow structure

The main advantage of the workflow is the possibility to split the global calcula-

tion into smaller and simpler problems: each node of the workflow represents a

specific portion of the complex computations. The workflow engine manages every

node of the workflows to allow the computation progress independently from the

Chapter 4. Workload Management 57

user interaction. From a Grid point of view, each node is independent from the

others and are assigned to different resources, optimizing the computational task.

It is also possible to define conditional branches which react in different ways ac-

cording to the evolution of the computation. As for the simple jobs, also for the

workflows the user has a total freedom in uploading their executables, input files

and specifying the executable parameters for each node. The template mechanism

is implemented too. Fig. 4.6 shows this interface which can be used to create the

workflow and configure each node.

Figure 4.6: The portlet to monitor the job submitted using the gUSE/WS-
Pgrade service

4.4 Specific Applications

Some communities use ad-hoc applications and consequently may have specific

requirements. Typically these communities need to perform complex calculations

requiring computing power not provided by their laboratories. At the same time,

they do not have ICT experts. An high level interface helps these users to exploit

the Grid resources. At the time of writing we have ported several applications.

The table 4.1 lists the applications, with a little description, already ported and

usable through the portal interface, but also the application which we are working

Chapter 4. Workload Management 58

Applications Description Porting sta-
tus

Ansys Engineering simulation software Completed
Fluka Physics MonteCarlo simulation

package
Completed

Crystal Alignment search tool for genome
sequences

Completed

Quantum
Espresso

Electronic structure calculations
and materials modelling

Completed

Nemo Oceanographic modelling Completed
Blast Alignment search tool for genome

sequences
Completed

Venus Chemical Dynamics simulations Completed
Namd Molecular Dynamics simulations In develop-

ment
Geant4 Simulation of the passage of par-

ticles through matter
In develop-
ment

Gaussian Electronic structure modelling To do
DMRG Electronic structure modelling To do

Table 4.1: Applications in the portal and their status

on and those that we will examine in the future.

To do that we followed a well tested procedure: firstly we perform an analysis of

the portability of the application in Grid trying to run it on a Worker Node; then

we identify the minimum hardware and software requirements (RAM, number of

CPU cores, specific libraries, licences, etc.), as last step we investigate, with the

application’s community experts, what is needed by the users: the input data and

output files, application’s parameters, required for retrieving log and output files

at runtime and any other relevant information.

Once all the previous tasks are completed, we write a script that takes care of the

following operations:

• retrieve the user input, parameters and files;

• execute the application;

• collect the output produced during and at the end of the computation.

Chapter 4. Workload Management 59

At this point the porting process can be considered finished and on the base

of user’s requirements we design a custom Web interface through which users

can execute their applications, monitor execution and retrieve partial and final

outputs. Technically the implementation of this interface consists in writing an

appropriate portlet that performs all the requested actions by means of the ASM

API provided by WS-Pgrade which takes a workflow as input. Therefore the last

step is the creation of a custom workflow (see section 4.3), based on the user and

application requirements. Each node of the workflow executes the script produced

in the porting process. In Fig. 4.7 there is an example of a custom interface for

an application of Theoretical Physics.

Figure 4.7: Example of portlet for specific application

The fact of having build a simplified interface and of knowing exactly the applica-

tion behaviour, the submission of an application, compared with the submission

of either generic jobs or workflows, has several advantages:

• The job submission only requires filling a Web form.

• It is possibke to interrupt the application execution and restart it in another

node. This a fundamental feature in case of long running Jobs because the

maximum wallclock time of a site could be not sufficient for the application

to finish its computation. Except the first one, every node of the workflow

retrieves the data produced from the previous step from a predefined Storage

Element so that execution can continue. This procedure goes on until the

execution is completed. A file indicating that the computation has ended is

Chapter 4. Workload Management 60

then created on the same SE. This feature is possible only if the application

supports this type of interruption and restart.

• In case of failure it is possible to distinguish the error type: a Grid error or

an application error. On the base of the error type the portlet can trigger

different actions: standard Grid recovery mechanisms or specific application

mechanism recovery.

The biggest advantage is probably for long running applications in which this

allow for the inspection of logs and output files at run time. The Grid middleware

provides the WMS functionality called perusal1, that has to be specified in JDL

files. This functionality saves the job output at regular intervals or before it is

removed when it reaches the walltime limit. In the JDL the user must specify the

file(s) to be sent to WMS every X seconds. The limit of this feature is given by the

number and size of the file(s) to retrieve in order to avoid overload of the WMS.

To overcome these limitations it has been developed a new mechanism inside the

portal called application progress monitoring. Specific SE are configured in order

to be used as a temporary storage for the intermediate outputs. The script used by

the portlets for a specific application (as described in the previous section) copies

and retrieves the files to/from these SE. To achieve the desired behaviour it has

been used the SRM technology. SRM allows to copy selected files from a WN where

the job is running to a SE, where the files are stored. The files are copied, every

N minutes, in specific SE storage area preconfigured to be available for inspection

by the portal. The value of N is a degree of freedom, it is settable but it depends

on the file size. Typically N is 30 minutes in order to avoid rewriting a file before

the previous writing is finished. In this way the users from the portlet interface

can access the files via web. To implement these features, a set of bash scripts

has been developed. The bash functions are executed directly on the WN and can

interact directly with the selected SE without involving the WMS and avoiding

the potential limitations aforementioned. In this way users can check the output

at runtime and evaluate possible strategies aimed at saving time, terminating in

advance the jobs that produce unuseful output, and computing resources as well

as at avoiding the waste of license usage.

1http://wiki.egee-see.org/index.php/Job output monitoring using job perusal

Chapter 5

Data Management

5.1 EMI Data Management utilities

In this chapter we describe in detail the mechanisms of data management imple-

mented in the portal, explaining the different phases of data management: upload,

download and other actions on the data in Grid.

As described in section 1.2.4, thanks to the SRM interface, Grid users can carry

out the common operations (such as upload, copy, download, etc) transparently

from the specific implementations of the involved SEs. These operations are pos-

sible by means of some sets of command line utilities distributed with the UI: the

LCG utils and the lcf-* commands. Both of these utilities interacts with the LCG

File Catalog LFC and are used by the portal to execute operations on files and

directories.

5.1.1 LCG utils

LCG utils is a suite of client tools for data movement based on the Grid File

Access Library (GFAL), which is also included. The tools allow users to copy files

between SEs and to register entries in the LFC and replicate files between SEs..

Table 5.1 lists the complete list of commands.

61

Chapter 5. Data Management 62

Command Description

lcg-cp Copies a Grid file to a local destination
lcg-cr Copies a file to a SE and register the

file in the catalog
lcg-del Delete one file
lcg-rep Replication between SEs and registra-

tion of the replica
lcg-gt Gets the TURL for a given SURL and

transfer protocol

Table 5.1: LCG Utils

Comman Description

lfc-chmod Change access mode of the LFC file/di-
rectory

lfc-chown Change owner and group of the LFC
file/directory

lfc-delcomment Delete the comment associated with
the file/directory

lfc-getacl Get file/directory access control list
lfc-ln Make a symbolic link to a file/directory
lfc-ls List file/directory entries in a directory
lfc-mkdir Create a directory
lfc-rename Rename a file/directory
lfc-rm Remove a file/directory
lfc-setacl Set file/directory access control lists
lfc-setcomment Add/replace a comment

Table 5.2: lfc commands

5.1.2 lfc-* commands

The lfc-* commands only operate on the LFC and do not manipulate data. lfc-*

commands equivalents exist for many UNIX file commands and as far as possible

use the same name prefixed by ”lfc-”. Table 5.2 shows in detail the available

commands.

Chapter 5. Data Management 63

5.2 File manager

As described in the introduction, to perform data management tasks in a standard

Grid environment, users can use a set of command line utilities (the LCG utils and

the lfc-* commands). These utilities require the knowledge of a command syntax

that is not so easy and intuitive to learn. We have worked in order to allow these

operations by means of typically web actions as dragging and dropping files in the

Web page.

In order to simplify the Grid data management, it has been designed and im-

plemented a sophisticated architecture (shown in Fig. 5.1 that includes several

elements intercommunicating in a secure way. The purpose of this solution is to

simplify data movement in Grid and at the same time to avoid the portal from

becoming the bottleneck.

Figure 5.1: Data Management Architecture

In the portal architecture, the Data Mover is the external component which allows

users to easily transfer and manage data among Grid resources. It controls and

manages every step of the file transfer actions (upload and download) [22].

Data are transferred to and from the Grid SEs through an external storage service

composed by a set of SEs (Portal SEs), based on StoRM, which keeps the files

Chapter 5. Data Management 64

until they are transferred to Grid SE (upload phase) or downloaded (download

phase). In this way it is possible to achieve a complete decoupling of the inter-

face view (Portal), the control service (Data Mover) and the physical storage (SEs

Portal). This architecture also allows a scalable solution because the SEs which

act as cache can grow, with geographically distributed SEs, and ensures the final

user a correct and fast data transfer without bottlenecks.

The Data Mover component is a Web-based data management service that offers

the possibility to benefit from the capabilities of the Grid data management com-

mand line utilities by means of simple web operations. This service is based on the

Pydio1 framework, a PHP-based file management system which has been chosen

for the intuitive interface and the easy integration of new extensions. Each action

is implemented by a specific plug-in that can be easily developed and integrated in

Pydio alongside the ones already available. The Portal Data Management plug-in

has been developed to extend the basic functionalities of Pydio for local file sys-

tems and integrate the LCG utils and the lfc-* commands. In this way, through

the web interface (shown in Fig. 5.2), the user can easily browse the content of

the file catalogues (those pertaining to his/her VO) and perform the data man-

agement operations both on the logical data (which affect the catalogue) and on

the physical files (which affect the SE).

Figure 5.2: Data Management Interface

1http://pyd.io/

Chapter 5. Data Management 65

The interface is divided in four main sections:

• Command Section (on the top) where the user can perform all the possible

actions on selected files or directories and chose the VO to use.

• List Section (in the center) where all the files and directory are listed. If the

number of files is too big, the output is automatically split in pages in order

to not overload the user’s web browser.

• Directory Section (on the left) where only the directories are listed: it is

useful to quickly browse the tree.

• Detail Section (on the right) where some details on selected folder or file are

shown.

By clicking on items in the List Section or in the Directory Section, it is possible

to list the content of the LFC. The allowed actions can be grouped in three main

categories: operations on the logical data (which affects the catalogues), operations

on the physical files (which affect the SE) or both. The basic operations permitted

on catalog content with effect only on the logical data are: creation of a new

folder, deletion of an empty folder, renaming or moving a folder or file (changing

the LFN), getting detailed information about a file (LFN, GUID, list of replicas,

owner, level of access) and sharing the file with other portal’s users. The basic

operation permitted with effect only on the physical data are: the replicas of files

on other storage elements and the download of files (see section 5.4). The basic

operation permitted on catalog content with effect on both physical and logical

data are: the removal and upload of files (see paragraph 5.3).

5.3 Upload

In order to upload files to the Grid, the Data Mover implements an external tool:

jQuery File Upload2. It has been chosen because it allows the upload of large

files, of the order of tens of gigabytes, using chunking mechanism and, on browser

that support the HTML53 function xmlhttprequest, it operates also the Resumable

Upload, that permits to resume a previous failed upload restarting from the last

2https://github.com/blueimp/jQuery-File-Upload
3http://www.w3schools.com/html/html5 intro.asp

Chapter 5. Data Management 66

bit successfully transferred.

Through the upload operation the file is copied on a SE and registered into the

LFC. In particular, the file is first uploaded on the SEs Portal and then copied on

Grid SE and registered in the catalog.

According to the file size and the VO, the system produces a list of suitable SEs. If

the user chose a specific SE the system tries to upload the file to that destination;

in case of failure, the system tries to copy the file on some other SEs of the list

following a random order. During the upload operation the user can check the

transfer rate and the percentage of completeness as shown in Fig. 5.3.

At the end of the transfer the user is notified on the result. There are three possible

outcomes:

• Transfer ok : the file has been correctly transferred on the selected SE

• Transfer ok but not on the selected SE : the file has been correctly transferred

in Grid but not on the selected SE

• Transfer failed : it has not been possible to transfer the file in any SEs, in

this case it is also possible to have more details about the failure.

Figure 5.3: Data Management - Upload interface

Chapter 5. Data Management 67

5.4 Download

Another feature is the possibility to download files from Grid to a local destination.

The file transfer from Grid to user’s local space is completely transparent to the

user and, like the upload phase, it consists of two steps. The file is first retrieved

from Grid, temporarily stored on the Portal SEs and then transferred to the user’s

local space. The file will be removed at the end of the transfer.It is also possible to

retrieve more than one file in a single operation; in this case the system waits until

all the files are retrieved from the Grid and then generates a tar file and transfers

it to the user local space.

Users can choose to copy the files either to a local destination or to an external

server. The transfers to remote servers run in background and the users is notified

by mail at the end of the transfer. The transfers to user’s PC are syncronous: the

users has to wait until the transfer is finished before to reuse the portal. For these

reason a five Gigabytes quota limit is currently set as the maximum size to be

downloaded on the users’ personal computer. In case of transfer to remote server,

the Data Mover automatically retries to transfer the files that at the first attempt

were not copied. The Supported protocols for the data transfer to external servers

are FTP and HTTP plain or over SSL.

Before starting the file transfer to a remote server, a set of checks are performed:

username and password verification, if the folder destination exists, if the target

server is reachable and if the proxy lifetime is reasonably long to complete the

transfer. In order to be sure that the transfers do not fail due to the proxy

expiration, a proxy must have a lifetime of 1 hour to transfer up to 2GB of data,

of 2 hours for 4 GB and at least 4 hour to move more than 4 GB of data. These

values are experimental. If the proxy lifetime does not comply with these roles

a pop window appears asking for the proxy renewal. Only if these checks end

successfully the data transfer starts. Fig.5.4 shows the window to retrieve files

from Grid. The Appendix B describes in detail the script used to move files form

Grid to a Remote Server.

Chapter 5. Data Management 68

Figure 5.4: Data Management - Download interface

Chapter 6

Cloud services

Grid services offered in the portal are to be considered production level while

Cloud services are still in development. Through the portal we want to provide

two different types of utilization of the Virtual Machines (VMs) managed by several

Cloud implementations. They can be used in interactive way: the users login and

use the VM for his purpose or they can be used as computing resources for job

execution: the users submit a job through the same interface described in 4.2 and

the portal chooses if the job has to run in Grid or Cloud environment, depending

on the job requirements, in a transparent way for the user.

6.1 Interactive Cloud Service

The IGI Web portal lets users access resources offered by one of more IaaS Cloud

providers through a Cloud interface. This interface is based on the WNoDeS Cloud

CLI, available since the EMI-3 Montebianco distribution. This CLI, developed

in the context of the EGI Federated Cloud Task Force1, allows the access to

resources served by several resource providers, using different Cloud platforms such

as WNoDeS, OpenStack or OpenNebula. The users can get a VM independently

by the provider, using the same procedure.

The CLI has been designed to be as modular as possible to easily add further

Cloud needs and satisfy site peculiarities. Table 6.1 provides a short description

of the commands supported by the CLI.

1https://wiki.egi.eu/wiki/Fedcloud-tf:FederatedCloudsTaskForce

69

Chapter 6. Cloud services 70

Command Description

resource providers info returns a list of providers registered in
the BDII service

size images info for each site returns the images size of
the adopted Cloud platform

metadata images info returns a list of the images metadata
registered in the MarketPlace service

create instance returns the instance location that sat-
isfies the user’s request in terms of the
image size

show instance shows information for the specified in-
stance location such as the hostname,
and the instance state

list instances returns either the whole instance loca-
tions associated to the user who is run-
ning the command or the whole Cloud
platform resources

delete instance destroys the created instance

Table 6.1: Cloud CLI

To use the Cloud CLI services within the portal, a portlet has been developed;

it invokes the CLI methods and exposes a Web interface simplifying the task to

create and manage new instances.

In order to login into a virtual machine with root privileges and without password,

users have to upload their own SSH public key, or require the portal to generate

a SSH private/public key pair. Once generated by the portal, the keys can be

retrieved by users using a secure channel. This step is necessary otherwise the

users are not allowed to do any action in this interface. Fig. 6.1 shows the window

to manage the SSH key pair.

Users can instantiate new VMs choosing from a list of images preloaded in a

repository, also called MarketPlace (the Stratuslab MarketPlace [26] in the EGI

use case). For each image is possible to select a flavour (usually offered with

different number of cores, memory and disk size) and how many instances of this

type need to be instantiated; each image has a range size that depends on the

Cloud platform it belongs to.

Fig. 6.2 shows the page in which is possible to select the image from the repository

and the virtual machine features.

Chapter 6. Cloud services 71

Figure 6.1: Portlet Cloud - SSH Keys management

Figure 6.2: Portlet Cloud - Image repository

Chapter 6. Cloud services 72

Once new instances are created, the list of user’s VMs is displayed with information

such as architecture, size and status as shown in Fig. 6.3.

Figure 6.3: Portlet Cloud - VMs Lists

By selecting the instance name, users are automatically logged into the virtual

machine with root privileges through a Web terminal2 and it is part of the portal.

Fig. 6.4 shows an example of web terminal for a VM instantiated through the

portal.

Figure 6.4: Portlet Cloud - Web terminal

While the portal lets users choose VM images offered by different Cloud providers,

the definition of policies dictating how the resulting VMs are connected to the

network (e.g. with public IP addresses or with private IP addresses using NAT)

2the Web terminal used is GateOne: http://liftoffsoftware.com/Products/GateOne

Chapter 6. Cloud services 73

is left to each resource provider.

A demo of the Cloud interface has been shown at the EGI Community Forum

201334 and succesfully adopted by communities such as WeNMR5 [27].

6.2 Cloud resources for the Jobs execution

In order to use the Cloud resources to execute the jobs submitted through the

appropriate portal interface, we have used a specific DIRAC Component: Virtual

Machine Scheduler [35]. This component has to be installed in DIRAC server

separately from the other used for job submission and it allows to “submit” a

VM to a generic Cloud Manager compliant to Open Cloud Computing Interface6

(OCCI) compliant or Amazon EC27. The model for instantiating VMs uses the

same philosophy of the pilot jobs in the Grid infrastructure. Fig. 48 shows the

DIRAC architecture relative at this component.

Since the DIRAC configuration is static, the administrator has to uploaded the

images to the Cloud Manager and set the images features in the DIRAC config-

uration file. When a new job is added to the task queue this component gets

the list of tasks to be executed from the central Task Queues, by matching the

pending tasks to the features of the defined images in the configuration file. If not

enough VMs are available and the maximum VMs threshold is not reached, then

it submits a new VM using the specific VM Director.

The Virtual Machine Scheduler starts a VM with pre-installed some DIRAC

agents: Job Agent and Monitor Agent. Job Agent is responsible to communicate

with the central Task Queue to check if there are pending tasks to be executed

which match the VM features and supervises the correct execution of the job run-

ning on the VM.

The Monitor Agent starts immediately after the operating system of the new VM

created is running. Its first action is to declare the VM in running state, it peri-

odically monitors the CPU load, the number of executed tasks and the amount of

output data. In case of problems it reports the malfunctioning to DIRAC WMS

which halts the VM.

3EGI Community Forum 2013: http://cf2013.egi.eu
4 EGI FedCloud Task Force Demo
5 A worldwide e-Infrastructure for NMR and structural biology: http://www.wenmr.eu
6http://occi-wg.org/
7http://aws.amazon.com/ec2/

Chapter 6. Cloud services 74

Figure 6.5: Dirac - Cloud components

Using DIRAC for both Grid job submission and Clod job submission gives the

advantage of using a single portlet for the job submission independently from

the infrastructure used. It is DIRAC that chooses which resources fit most the

job requirements based on the information declared by the administrator in the

DIRAC configuration file. This behaviour provides an high level of abstraction

that helps the users to exploit the different resource types.

Chapter 7

Use cases

The Grid infrastructures, initially designed to satisfy the computational and stor-

age requirements of the HEP communities, are now increasingly adopted by new

user communities belonging to various scientific domains: computational chem-

istry, bioinformatics, astronomy and astrophysics, earth science, mathematics,

engineering etc. These communities have different computational and storage

requirements, composition, experience and size. Often it is necessary to provide

dedicated support developing specific high level Web interfaces for their computing

models to hide the Grid complexity as much as possible, such as proxy credential

handling, job submission, data management, error recovery, etc.

In the typical use case the users has to provide the initial input files, configuration

parameters and wait for results at the end of the calculation. For these reasons

we have developed interfaces that enable the user to do that in 3 easy actions:

• uploading the needed input files and setting the necessary parameters (e.g.

the number of CPUs);

• monitoring the status of the submitted jobs;

• retrieving the output files directly from the Web Portal.

Accordingly to the application requirements we can decide to use a workflow or

normal jobs. Some specialized workflows developed are particularly complex, they

are able to run in an automated way by evaluating dependences occurring at

runtime.

For example we are collaborating with a working group at INFN-Legnaro involved

75

Chapter 7. Use Cases 76

in the Selective Production of Exotic Species1 (SPES) project, providing them 2

interfaces ad hoc for 2 applications: ANSYS2 and FLUKA3. We have created a

mini-site, shown in Fig. 7.1 inside the general web portal for these users who have

the privileges to see only these private pages. In this way they are able to use only

the required services for their needs and choose which applications to use.

The two applications mentioned are interesting because they cover several typical

user requirements: ANSYS provides the possibility to check the logs and output

files at runtime and to have a start and stop mechanism. FLUKA offers the

possibility to submit hundreds of job at the same times which run simultaneously

reducing drastically the computation time.

Figure 7.1: The dedicated SPES section in the portal

7.1 ANSYS

The ANSYS suite is a Finite Element Method (FEM) commercial program for sim-

ulations of models belonging to various physical environments to simulate problems

concerning mechanical, thermal, electrical, magnetic and fluid dynamics matters.

Depending on the model to be simulated, various packages of the ANSYS suite

exist: the Mechanical, Fluid Dynamics, Electromagnetic and Multiphysics. Very

often observable properties are the results of averaging (or integrating) over en-

ergies, time, etc. which means that ANSYS runs have to be repeated a large

1https://web.infn.it/spes/
2website: http://www.ansys.com/
3http://www.fluka.org/fluka.php

Chapter 7. Use Cases 77

number of times making the exploitation of the distributed resources available in

Grids highly effective for this kind of analyses [29]. The ANSYS suite has been

installed and configured in some Grid sites and a dedicated interface to run the

simulation exploiting the production Grid services is provided through a dedicated

portlet of the IGI Portal shown in Fig. 7.2.

Figure 7.2: Portlet developed for the ANSYS suite

To be compliant with the terms of license imposed by the seller, a license handling

mechanism has been implemented. In order to verify if the threshold of simulta-

neous usage has not been reached, the portal has to contact the Flex servers that

manages the licences for every job submission. Moreover only the users registered

in VO “gridit” and in ANSYS group can run this application. The main problem

to deal with is the amount of time necessary to run this application: from several

hours to some days. Since the amount of CPU time is limited on Grid sites (from

12 hours to few days), we have implemented a mechanism in order to run the

application and monitoring the computation time allowing a safely interruption of

the application.

To do this we have developed a workflow, using the WS-Pgrade workflow engine,

able to monitor a set of continuous runs in an automated way.

The workflow is composed of 10 nodes which means 10 consecutive job submissions

that is equivalent to an average of 10 days of continuative calculation for a single

run. Each step of workflow is conditioned by event-related dependencies occurring

at runtime which determine the execution of the successive node or not.

If the simulation is not finished after the last step, the user can submit a new

workflow that automatically takes as input the outcomes of the previous run.

This approach increases the feeling of the users with the submission procedures

with a consequent reduction of support requests.

On the base of this workflow a suitable graphical interface has been developed

to set the needed parameters that makes the whole Grid execution process com-

pletely transparent to the final user. Another crucial aspect of such long time

Chapter 7. Use Cases 78

simulations is the possibility to check the calculations at runtime. In order to do

that we took advantage of the SRM client-server functionalities which allow to

copy selected files from the WN where the job is physically running to a SE. Using

the same SRM functionalities, the files in the SE are made available for inspection

at runtime and can be accessed by the user directly via the web GUI. The main

bash script which interact with the GUI are described in appendix A.

The solution implemented has a twofold advantage for the users: easiness and ra-

pidity. The users through this interface are able to perform long time simulations

on the Grid infrastructure in a completely transparent way and to retrieve the

outcomes of the calculation with a Web browser. In this way the users can check

the consistency of the output at runtime, evaluating possible strategies aimed at

saving time, computing resources and at avoiding waste of license usage.

The average execution time for a single instance of ANSYS on the Grid is almost

equivalent to the one on a dedicated local machine.The added value of Grid runs

is the possibility to submit in parallel different sets of concurrent simulations. Ac-

cordingly, as soon as there are at least 4 ANSYS jobs running simultaneously, the

Grid based execution is advantageous because 4 jobs running simultaneously on 4

IGI Grid resources will take on average 8 days. Meanwhile, the same simulation

would take about 1 month on a local machine. The more parameter study jobs

are executed, the higher speedup can be achieved on the Grid. Fig. 7.3 shows an

example of the output produced using the ANSYS application.

Figure 7.3: Example of ANSYS Output
(Temperature map carried out from the adoption of the FEM model at 1300A)

Chapter 7. Use Cases 79

7.2 FLUKA

FLUKA is a fully integrated particle physics MonteCarlo simulation package. It

has many applications in high energy experimental physics and engineering, shield-

ing, detector and telescope design, cosmic ray studies, dosimetry, medical physics

and radio-biology. FLUKA can simulate with high accuracy the interaction and

propagation in matter of about 60 different particles.

The FLUKA applicative has the features to be linear and parameterizable on the

base of the input files and for these reasons we decided to use DIRAC as a ser-

vice for the submission. In this case we have reused the DIRAC portlet as base,

omitting all the fields not useful for this simulation and integrating some specific

checks. Because the FLUKA applicative needs input files to run, the first time

SPES users access the FLUKA portal interface they have to select their working

directory that represents a folder in LFC or create a new one. Once this action

is completed the users have to upload the files necessary, in archive format (.tar

or .tgz) or for the simulation in this directory using the portal data management

service.

The input file must be generated from the user and adhere to the following format:

input_<archive_name>.tar

where archive name is a string of alphanumeric chars chosen by the users. This

archive contains the input flies in accordance with this format:

<nome_archivio>_<N>.inp

where ¡N¿ is an integer number and the number must be consecutive inside the

same archive. The users are now able to submit the application from the dedicated

interface, shown in Fig. 7.4, setting the necessary fields like:

• Job Name: an identifier to distinguish the jobs submitted,

• Input : from a dropdown menu the users have to choose one of the file up-

loaded in their directory,

• Output folder : the LFC directory where the output will be saved. As default

it will be used the same directory of the input file.

Chapter 7. Use Cases 80

Figure 7.4: Portlet developed for the FLUKA application

• Number of Jobs and Start Number.

After filling the form the job is ready to be submitted and at this point it is

possible to monitor its states that can be:

• Waiting : the job has been taken in charge from the portal.

• Running : the job is running in the Grid site specified,

• Failed : the job is failed

• Done: the job has finished correctly: there have not been failures due to the

portal or Grid. The portal does not consider the failures of the applicative.

Once the simulation is finished the jobs are in state “Done”. The users in the “Data

Management” section can download the output produced. In order to avoid to

have file with the same name, the output file has the following format:

<archive_name>_<N>_out_<MMDDYY-HHMMSS>-<2to10_random_digits>.tgz

In this use case we can take benefit from the linearity of the application. The

entire job has been splitted in smaller job, each one takes as input a portion of

the entire input data and in this way the jobs submitted lasts only some hours.

Chapter 7. Use Cases 81

The advantage consists of the possibility to run these jobs simultaneously having

a consistent reduction on computational time. The more resources are available

at the same time, the bigger is the speed up. Fig. 7.5 shows an example of the

output produced using the FLUKA application.

Figure 7.5: Example of FLUKA Output
(Output of Fluka simulations by EN/STI/EET team)

Chapter 8

Conclusions and future

developments

8.1 Conclusions

This document describes a web portal mainly targeted at scientific communities

making use of distributed resources and its benefits for its users. Through the

portal, users can access computational resources made available by Grid commu-

nities or by Cloud resource providers, submit either simple or complex jobs as

well as workflows, move data to and from the Grid resources and finally access

to specific applications through custom interfaces. This document also describes

some examples of practical usage of the portal by several scientific communities.

Moreover it has been developed a prototype portal with an integrated online CA

in order to reduce the complexity of obtaining and managing certificates which is

an important feature to make this tool suitable for a much greater audience and

increase the number of users.

Being the portal a service accredited in international federations (EDUgain) it can

provide the described services to different user classes outside the national borders,

e. g. international collaborations or different NGIs.

The use cases described shows that the nature of Grid heterogeneity can be ex-

ploited when porting scientific applications on distributed platforms. These in-

clude the possibility of segmenting large calculations into smaller ones and the

selective distribution of the segments on different machines in order to gain effi-

ciency as well as feasibility. This makes the work performed for one application

83

Chapter 8. Conclusions and future developments 84

more general and reusable for other applications whose features are similar.

The present work of integration of applications into the portal is going to be ex-

tended in order to port the current and new user applications to different OS

flavours, as well as to different hardware platforms.

8.2 Future developments

The portal was initially developed to overcome the biggest Grid problems which

are the access to resources belonging to the Grid environment. The current and

future works will be oriented to Cloud resources integration which means:

• extending the Cloud high-level interface for the direct provisioning of SaaS

type-of services;

• implementing a tighter integration with Cloud frameworks such as Open-

Stack or OpenNebula. This will allow a more fine-grained specification of

the resource requirements supported by such frameworks, such as those re-

lated to network connectivity;

• improving support for scalable and distributed Grid and Cloud storage sys-

tems;

• extending the Cloud interface to support non-Linux systems.

Some improvements concern also the data management section:

• supporting data transfer across Grid and Cloud resources;

• improving support for scalable and distributed Grid and Cloud storage sys-

tems;

• enhancing the reporting for error status linked to storage provisioning;

• providing for each user or group of users a catalog with metadata since LFC

will be dismissed in the next months;

• allowing the upload of directories/files from a remote server to a Grid SE

Chapter 8. Conclusions and future developments 85

Thanks to the modularity of the portal architecture and to the use of widely

adopted frameworks, the portal can easily be extended to integrate or being in-

terfaced to new services by developing appropriate portlets.

Appendix A

Script for running ANSYS in

Grid

In this appendix, are shown the bash scripts developed to run ANSYS suite in

Grid. The bash functions are executed directly on the computing node and can

interact directly with the selected SE without involving the WMS and avoiding the

potential limitations described in chapter 4. The main bash functions interacting

with the SE are:

• SETENV Checks the environment parameters (both provided by the GUI

and set in the WN) needed to start the calculation

• USERFOLDER Checks if user-folder exists using the SRM-client function-

alities and create it, if needed;

• PREPARETOPUT Uses the PreparetoPut function implemented in the SRM-

client to copy a rewritable file(s) in the SE and store it for a limited amount

of time (lifetime has been set by default to 24 hours);

• PREPAREINPUT Retrieves the input file needed for the calculation de-

pending on the value provided by the GUI (first run or resubmission after

hang-up);

• RUNNINGAPP Runs the executable monitoring its activity for a fixed amount

of time, that depends from the CPU time assigned by the batch system to

the queue where the job is running, and gracefully kill it allowing a safe

87

Appendix A. Script for running ANSYS in Grid 88

interruption of the application. This component implements a check proce-

dure that, at fixed intervals, control the status of the running application

and uploads the needed file(s) to the SE.

• CHECKLOGS Uploads the file(s) created by PREPARETOPUT function

to the SE making use of specific commands available on the WNs.

• PREPAREOUTPUT The function manages the output files carried out from

the calculations acting on both sides: from the WN selects the output files

making a univocally named archive; from the SE (i) removes the oldest out-

put file, if it exists, (ii) rename the output file carried out from the previous

run assigning a proper name, (iii) copies the actual output file from the WN

to the SE (in this case the file lifetime has been set by default to 7 days).

#!/bin/bash
echo ""
echo "Script ANSYS start"
echo "Script 2"
echo "Set variables"
echo ""
#assign arguments to variable name
output=$1
userfolder=$2
url=$3
variables
#output_last
outputl=$1"_last"
APDL
APDL="Restart Job; APDL not neened"

#get the ncpus from PBS
ncpus=$(wc -l $PBS_NODEFILE | awk ’{print $1}’)

#get walltime from PBS
maxtimequeue=$(qmgr -c "list queue "$PBS_QUEUE |grep default.walltime |
awk ’{print $3}’| awk -F\: ’{print $1 *3600}’)
#set it if not specified
if ["x$maxtimequeue" == "x"]
then
maxtimequeue=43200
fi
################
runtime=7200
ctrltime=1800
################
#killing time
killtime=$runtime
#ansys bynary
progID="/opt/exp_soft/gridit/ansys_inc/v130/ansys/bin/ansys130 "
bynID="ansys.e130"
#closese=$SE_HOST
closese="darkstorm.cnaf.infn.it"
#clientSRM
clientSRM="/usr/bin/clientSRM"
#print variables
echo "APLD: " $APDL
echo "output: " $output
echo "user folder: " $userfolder
echo "URL: "$url
echo "cpu unumber: " $ncpus
echo "max runtime queue: " $maxtimequeue
echo "max runtime imposed: " $maxtime
echo "effective runtime: " $runtime
echo "kill time: " $killtime
echo "control time: "$ctrltime
echo "ansys path: "$progID
echo "ansys binary: "$bynID
echo "used SE: "$closese
Set automatic resubmission to FALSE by default
touch rstauto
echo "FALSE" > rstauto

Appendix A. Script for running ANSYS in Grid 89

Set LD_LIBRARY_PATH in the WN
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/exp_soft/gridit/ansys_inc/
libs/64:/opt/exp_soft/gridit/ansys_inc/libs/32
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/exp_soft/gridit/ansys_inc/
v130/ansys/syslib/linx64:/opt/exp_soft/gridit/ansys_inc/v130/
commonfiles/Tcl/lib/linx64
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/exp_soft/gridit/ansys_inc/
v130/ansys/lib/linx64:/opt/exp_soft/gridit/ansys_inc/v130/Framework/bin/Linux64
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/exp_soft/gridit/ansys_inc/
v130/Framework/bin/Linux64/Mesa
export LD_LIBRARY_PATH

#FUNCTIONS

##USERFOLDER
#check if userfolder exists via clientSRM
function user_folder()
{
echo ""
echo "Check if folder "$userfolder" exists"
#
ufexist=$($clientSRM Ls -e httpg://$closese:8444/ -s
srm://$closese:8444/ansys/$userfolder | grep "status: statusCode=" |
head -n 1 | awk -F\(’{print $NF}’ | awk -F\) ’{print $1}’)

if ["$ufexist" -ne "0"]; then
echo "Dir "$userfolder" does not exist... Potential incongruence found"
echo "This is a true resubmission, the Dir"$userfolder" has to be present in the SE."
echo "Contact the Admin."
echo "Exit script Err. 113"
echo ""
exit 113

else
echo $userfolder" already present in the SE:"$closese
echo ""
fi
}

##PREPARETOPUT
#PreparetoPut function
function ptp_log()
{
#remove file, if exists in the SE
echo ""
echo "Remove "$output".log on the SE "$closese
$clientSRM rm -e httpg://$closese:8444/ -s
srm://$closese:8444/ansys/$userfolder/$output".log"
echo "Done"
#log file -- 24h lifetime
echo ""
echo "Create file "$output".log on the SE "$closese
touch $output".log"
echo "File ready to be copyed" > $output".log"
$clientSRM PtP -e httpg://$closese:8444/ -w 1 -c 86400 -p -s
srm://$closese:8444/ansys/$userfolder/$output".log" > ptp_log.txt
#extract turl
turllog=$(cat ptp_log.txt |grep "TURL" | awk -F\" ’{print $2}’)
#"#extract token
tokenlog=$(cat ptp_log.txt | grep "requestToken" | awk -F\" ’{print $2}’)
#"#
try=1
while ["$try" -lt "4"]; do
globus-url-copy file:‘pwd‘/$output".log" $turllog
if ["$?" -ne "0"]; then
let try=$try+1
if ["$try" -lt "4"]; then
echo "Problem copying file "$output".log ... retry in few seconds"

else
echo "Problem copying file "$output".log ... no more tentatives"
echo "Exit script Err. 114"
$clientSRM pd -e httpg://darkstorm.cnaf.infn.it:8444 -s
srm://darkstorm.cnaf.infn.it:8444/ansys/$userfolder/$output".log" -t $tokenlog

echo ""
exit 114

fi
else
echo "File "$output".log successfully copied to the SE "$closese
echo ""
try=5

fi
done
$clientSRM pd -e httpg://darkstorm.cnaf.infn.it:8444 -s
srm://darkstorm.cnaf.infn.it:8444/ansys/$userfolder/$output".log" -t $tokenlog
}

##PREPAREINPUT
#prepare input
function pre_input()
{
echo ""

Appendix A. Script for running ANSYS in Grid 90

echo "Trasnfering file "$url" from the SE "$closese
try=1
while ["$try" -lt "4"]; do
curl --cert $X509_USER_PROXY --capath /etc/grid-security/certificates
-o ‘pwd‘/input.tar.gz $url
if ["$?" -ne "0"]; then
let try=$try+1
if ["$try" -lt "4"]; then
echo "Problem transfering file "$url" ... retry in few seconds"

else
echo "Problem transfering file "$url" ... no more tentatives"
echo "Exit script Err. 114"
echo ""
exit 114

fi
else
echo "File "$url" successfully transferred from the SE "$closese
echo ""
try=5

fi
done
tar -zxf input.tar.gz
echo "List content"
ls -la
}

##RUNNINGAPP
#sample script to start a program, permit it to run
#for a predefined amount of CPU time, then kill it.
function ansys_run()
{
generation of input commands file used to tun ansys
echo ""
echo "Preparing command file"
generation of command file used to tun ansys
echo "y" >> commands
echo "FINISH" >> commands
echo "RESUME,file,db" >> commands
echo "/CONFIG,NRES,1000000" >> commands
echo "/POST1" >> commands
echo "SET,LAST" >> commands
echo "*GET,nsub,ACTIVE,0,SET,SBST" >> commands
echo "*GET,nloa,ACTIVE,0,SET,LSTP" >> commands
echo "/SOLU" >> commands
echo "ANTYPE,TRANS,REST,nloa,nsub-1,CONTINUE" >> commands
echo "OUTRES,NSOL,ALL" >> commands
echo "VFOPT,READ" >> commands
echo "SOLVE" >> commands
echo "y" >> commands
echo "SAVE" >> commands
echo "Command file ready"
echo""
ansys=" -np "$ncpus" < commands > "$output".log"
#run it!
echo "Running program: ANSYS"
echo $progID $ansys
$progID $ansys & echo $! > ansyspid
#application pid
mypid=$(cat ansyspid)
echo "PID ansys130 is "$mypid
sleep 60
mypidchild=$(ps --ppid $mypid | grep -iv "PID" | awk ’{print $1}’)
echo "PID ansys.e130 is "$mypidchild
#first chack log
echo "Starting check at runtime..."
log_check

#start time
secs=0
#control loop
while [$secs -lt $killtime]; do
sleep $ctrltime

#check if the application is running
mypidcontrol=$(ps --ppid $mypid |grep -iv "PID" | awk ’{print $1}’)
echo "PID ansys.e130 is "$mypidcontrol
if ["x$mypidcontrol" == "x"]; then
echo ""
echo "Simulation ended before the assigned time"
echo ""
let secs=$killtime+1

else
rmin=$(eval ps --ppid $mypid |grep -iv "PID" |
awk ’{print $3}’ |awk -F\: ’{print $2}’)

curmin=$(eval ps $mypidcontrol |grep -iv "PID"|
awk ’{print $4}’|awk -F\: ’{print $1}’)

let secs2=$curmin*60
cursec=$(eval ps $mypidcontrol |grep -iv "PID"|
awk ’{print $4}’|awk -F\: ’{print $2}’)

let secs3=$cursec

Appendix A. Script for running ANSYS in Grid 91

let secs=$secs2+$secs3

#output_log check
#
echo ""
echo "Starting check at runtime; "$secs " seconds elapsed time"
#
log_check

fi
#
#end
done
#last check if the application is running
mypidcontrol=$(eval ps --ppid $mypid |grep -iv "PID" | awk ’{print $1}’)
if [-n "$mypidcontrol"]; then
kill the application
echo ""
echo "The job reached the CPU time assigned to the simulation "
echo "The job will be killed"
echo "The above errors are armless..."
echo "Kill ANSYS. PID: "$mypidchild
kill -s 2 "$mypidchild"
sleep 10
echo ""

fi
wait until the application is running
echo "Check il the application is really terminated"
check=1
while ["$check" -eq "1"]; do
mypidcheck=$(eval ps --pid $mypid |grep -iv "PID" | awk ’{print $1}’)
if [-n "$mypidcheck"]; then
echo "Application still up... retry in 10 min."
sleep 600

else
echo "Application terminated."
check=4

fi
done
}

##CHECKLOGS
check logs
function log_check()
{
echo "Copy file "$output".log to the SE "$closese
try=1
while ["$try" -lt "4"]; do
globus-url-copy file:‘pwd‘/$output".log" $turllog
if ["$?" -ne "0"]; then
let try=$try+1
if ["$try" -lt "4"]; then
echo "Problem copying file "$output".log ... retry in few seconds"

else
echo "Problem copying file "$output".log ... no more tentatives"

fi
else
echo "File "$output".log successfully copied to the SE "$closese
echo ""
echo ""
try=5

fi
done
}

##PREPAREOUTPUT
#prepare output
function ansys_out()
{
echo "Simulation ended, preparing output file..."
echo "Update file "$output".log to the SE "$closese
log_check
rm input.tar.gz
#remove file output_last, if exists in the SE
echo ""
echo "Remove "$outputl".tar.gz on the SE "$closese
$clientSRM rm -e httpg://$closese:8444/ -s
srm://$closese:8444/ansys/$userfolder/$outputl".tar.gz"
#insert control...to do
echo "Done"
echo ""
#move file output to output_last in the SE
echo ""
echo "Move "$output".tar.gz on the SE "$closese" to "$outputl".tar.gz"
$clientSRM mv -e httpg://$closese:8444/ -s
srm://$closese:8444/ansys/$userfolder/$output".tar.gz" -t
srm://$closese:8444/ansys/$userfolder/$outputl".tar.gz"
#insert control...to do
echo "Done"
echo ""

Appendix A. Script for running ANSYS in Grid 92

#remove file output, if exists in the SE ?
echo ""
echo "Remove "$output".tar.gz on the SE "$closese
$clientSRM rm -e httpg://$closese:8444/ -s srm://$closese:8444/ansys/$userfolder/$output".tar.gz"
echo "Done"
echo ""
create new output file
tar -zcf $output.tar.gz --exclude=’stdout.log’
--exclude=’stderr.log’ --exclude=’gridnfo.log’ --exclude=’execute.bin’
--exclude=’wrapper.sh’ --exclude=’commands’
--exclude=’ansys.out’ --exclude=’ansys.err’
--exclude=’ansys2srm_restart5.sh’ --exclude=’ansyspid’ --exclude=’rstauto’ *
echo "Output file "$output".tar.gz ready"
echo "Prepare to move "$output".tar.gz on the SE "$closese
#PtP and output transfer -- 7days lifetime
$clientSRM PtP -e httpg://$closese:8444/ -w 1 -c 604800 -p -s
srm://$closese:8444/ansys/$userfolder/$output".tar.gz" > ptp_out.txt
#TURL
turlout=$(cat ptp_out.txt |grep "TURL" | awk -F\" ’{print $2}’)
#"#Token
tokenout=$(cat ptp_out.txt | grep "requestToken" | awk -F\" ’{print $2}’)
#"#
try=1
while ["$try" -lt "4"]; do
globus-url-copy file:‘pwd‘/$output".tar.gz" $turlout
if ["$?" -ne "0"]; then
let try=$try+1
if ["$try" -lt "4"]; then
echo "Problem copying file "$output".tar.gz ... retry in few minutes"
sleep 300

else
echo "Problem copying file "$output".tar.gz ... no more tentatives"
echo "Exit script Err. 114"
echo ""
exit 114

fi
else
echo "File "$output".tar.gz successfully copied to the SE "$closese
try=5

fi
done
$clientSRM pd -e httpg://darkstorm.cnaf.infn.it:8444 -s
srm://darkstorm.cnaf.infn.it:8444/ansys/$userfolder/$output".tar.gz" -t $tokenout
Control for resubmission: endtime
endtime=$(cat end_TIME)
Stop automatic resubmission if endtime is not set
if ["x$endtime" == "x"]; then
echo ""
echo "******"
echo "TIME variable has not been correctly set from the previous run."
echo "Automatic resubmission aborted. Set rstauto to FALSE"
echo "******"
echo ""
echo "FALSE" > rstauto

else
Control for resubmission: realtime
realtime=$(cat $output".log" |grep "TIME =" |tail -n1 |
awk ’{print $4}’ |awk -F. ’{print $1}’)

Stop automatic resubmission if realtime is not set
if ["x$realtime" == "x"]; then
echo ""
echo "******"
echo "It has not been possible extract the actual TIME value from the "$output".log file."
echo "Automatic resubmission aborted. Set rstauto to FALSE"
echo "Please, have a look to the "$output".log for more details"
echo "******"
echo ""
echo "FALSE" > rstauto

else
realtime is set, evaluating...

echo ""
echo "******"
echo "Calculation ended at TIME = "$realtime" of "$endtime
if ["$realtime" -lt "$endtime"]; then
echo "Resubmission in progress. Set rstauto to TRUE"
echo "******"
echo ""
echo "TRUE" > rstauto
echo $realtime >> rstauto
echo $endtime >> rstauto

else
echo "Resubmission not needed. Set rstauto to FALSE"
echo "******"
echo ""
echo "FALSE" > rstauto
echo $realtime >> rstauto
echo $endtime >> rstauto

fi
fi

Appendix A. Script for running ANSYS in Grid 93

fi
}
#
REAL RUN
#
#invoke user_folder function
user_folder
#invoke ptp_log function
ptp_log
#invoke pre_input function
pre_input
#invoke running function
ansys_run
#invoke output function
ansys_out
echo ""
echo "Job "$output" terminated with success!"
echo ""
exit 0

Appendix B

Script for moving files from Grid

to Remote Servers

In this appendix it is shown the code used to transfer files from Grid to Remote

Servers using FTP(s) or http(s) protocol. This script is invoked by a function of

the Pydio plugin developed to browse the LFC and runs in background in order to

allow the users to access other portal’s functionalities. The files are retrieved from

Grid and stored temporarily in portal SE then they are transferred to the server

specified from the users. At the end of the transfer the script sends an email with

the transfer report: which files have been transferred correctly, which not and the

failure reason. In case the failures are under the 2% of the total files transferred

number, the script automatically retries to transfer the files failed. There is also

a mechanism to make the transfer dynamics: on the base of the file size we used

different values of timeout. In this way we try to set the time necessary to retrieve

the file but avoiding waste of time in case of failures.

<?php

function download_from_grid($user_id, $x509_user_proxy, $lfc_server,
$selectedFile_array, $selectedFile_size, $lcg_gfal_infosys, $vo_active,
$size1, $lfn_file, $file_name, $downloaded_file_name, $filename) {
$error=’true’;
$random2=rand(5, 15);
$filename_rand ="file:/opt/dm/ajp/data/personal/".$user_id."/".$random2."_".$file_name;
$downloaded_file_name_rand=substr($filename_rand, 5);
exec("sudo -u tomcat X509_USER_PROXY=$x509_user_proxy LFC_HOST=$lfc_server
/usr/bin/lcg-lr $lfn_file", $replica_values2);
shuffle($replica_values2);
foreach ($replica_values2 as $element2){

if($error=="true"){
exec("sudo -u tomcat X509_USER_PROXY=$x509_user_proxy LFC_HOST=$lfc_server
LCG_GFAL_INFOSYS=$lcg_gfal_infosys lcg-cp --sendreceive-timeout 4
--vo $vo_active $element2 $filename_rand > /dev/null &");
usleep(3800000);
if (file_exists($downloaded_file_name_rand)){
if ($size1<524288000) {

$srtimeout=300;

95

Appendix B. Script for moving files from Grid ro Remote Servers 96

} else if($size1>=524288000 && $size1<1610612736){
$srtimeout=600;

} else if($size1>=1610612736 && $size1<16106127360){
$srtimeout=1200;

} else {
$srtimeout=3600;

}
exec("sudo -u tomcat X509_USER_PROXY=$x509_user_proxy LFC_HOST=$lfc_server
LCG_GFAL_INFOSYS=$lcg_gfal_infosys /usr/bin/lcg-cp --sendreceive-timeout
$srtimeout --connect-timeout 300 --bdii-timeout 300 --srm-timeout 300
--vo $vo_active $element2 $filename ",
$download_values);
$size2=filesize($downloaded_file_name);
if($size2==$size1){

$error=’false’;
}
unlink($downloaded_file_name_rand);
} else {

$error=’true’;
}

}
}

return $error;
}

#VARIABLES DEFINITION
proc_nice(15);
$selectedFile_list=$argv[1];
$x509_user_proxy=$argv[2];
$lfc_server=$argv[3];
$home=$argv[4];
$protocol=$argv[5];
$server_comp=$argv[6];
$username=$argv[7];
$password=$argv[8];
$random=$argv[9];
$lcg_gfal_infosys=$argv[10];
$user_home_dir_big_transfer=$argv[11];
$numElements=$argv[12];
$mail=$argv[13];
$firstName=$argv[14];
$lastName=$argv[15];
$user_id=$argv[16];
$vo_active = $argv[17];
$pref = $argv[18];
if (substr($pref, 0, 1)!="/" && $pref!=’’) {
$pref = "/".$pref;
}
$port = $argv[19];
$mycloud = $argv[20];
$iesimo = $argv[21];
$dir = $argv[22];
$total_files_size_list = $argv[23];
$x=0;
$dir_selected= end(explode(’/’, substr($dir, 0, -1)));
if ($dir_selected=="") {
$dir_selected = "/";
} else {
$dir_selected = "/".$dir_selected."/";
}

require_once(’/opt/dm/ajp/plugins/access.lfc/phpmailer/class.phpmailer.php’);
require_once(’/opt/dm/ajp/plugins/access.lfc/fpdf/fpdf.php’);

#RETRIEVE FILES FROM GRID
$selectedFile_array=explode(’***’, $selectedFile_list);
$selectedFile_size=explode(’***’, $total_files_size_list);
foreach ($selectedFile_array as $selectedFile){
$user_home_dir_big_transfer_grid_error=$user_home_dir_big_transfer.’/grid_error’;
$lfn_file="lfn:/".$home."/".$selectedFile;
$lfn_file2=$home."/".$selectedFile;
$selectedFile_pieces=split("/", $selectedFile);
$file_name=end($selectedFile_pieces);
$file_name = clean_file_name($file_name);
$filename="file:/opt/dm/ajp/data/personal/".$user_id."/".$file_name;
$replica_values2=array();
exec("sudo -u tomcat X509_USER_PROXY=$x509_user_proxy LFC_HOST=$lfc_server
/usr/bin/lcg-lr $lfn_file", $replica_values2);
shuffle($replica_values2);
$path=$user_home_dir_big_transfer;
$server=$server_comp;
$downloaded_file_name=substr($filename, 5);
$firstname=$firstName;
$lastname=$lastName;
$path_user = str_replace($random, ’’, $path);
$pieces_1 = explode("/", $downloaded_file_name);
$file=end($pieces_1);
$server_dest =$protocol."://".$server.":".$port;
$path_completo=$server_dest.$pref.$dir_selected.$file;

Appendix B. Script for moving files from Grid ro Remote Servers 97

$path_mail=$server_dest.$pref;
$user_dir="/opt/dm/ajp/data/personal/".$user_id."/";

$file_lock=$user_home_dir_big_transfer.’/lock’;
$size1=$selectedFile_size[$x];
$error = download_from_grid($user_id, $x509_user_proxy, $lfc_server,
$selectedFile_array, $selectedFile_size, $lcg_gfal_infosys, $vo_active,
$size1, $lfn_file, $file_name, $downloaded_file_name, $filename);

#COPY FILES ON REMOTE SERVER
if(!file_exists($downloaded_file_name)||$error!=’false’){
$fd = fopen($user_home_dir_big_transfer_grid_error, ’a’);
fwrite($fd, $selectedFile_size[$x]."***".$lfn_file."***".$dir_selected.$file_name.PHP_EOL);
fclose($fd);
} else {
if($protocol==’ftp’|| $protocol==’http’){
$ch = curl_init();
$fp = fopen($downloaded_file_name, ’r’);
curl_setopt($ch, CURLOPT_URL, $path_completo);
curl_setopt($ch, CURLOPT_USERPWD, "$username:$password");
curl_setopt($ch, CURLOPT_UPLOAD, 1);
curl_setopt($ch, CURLOPT_INFILE, $fp);
curl_setopt($ch, CURLOPT_INFILESIZE, filesize($downloaded_file_name));
curl_setopt($ch, CURLOPT_FAILONERROR, true);
curl_setopt($ch, CURLOPT_FTP_CREATE_MISSING_DIRS, true);
curl_exec ($ch);
$error_no = curl_errno($ch);
$error_string = curl_error($ch);
curl_close ($ch);
if ($error_no == 0) {
$fd = fopen($path."/ok", ’a’);
fwrite($fd, $dir_selected.$file.PHP_EOL);
fclose($fd);
} else {
$fd = fopen($path."/error", ’a’);
fwrite($fd, $dir_selected.$file.PHP_EOL);
fclose($fd);
}
} else {
$filepath=$pref.$dir_selected.$file;
$connection = ssh2_connect("$server", "$port");
ssh2_auth_password($connection, "$username", "$password");
$error_no = ssh2_scp_send($connection, "$downloaded_file_name", "$filepath", 0644);
if ($error_no) {
$fd = fopen($path."/ok", ’a’);
fwrite($fd, $dir_selected.$file.PHP_EOL);
fclose($fd);
} else {
$fd = fopen($path."/error", ’a’);
fwrite($fd, $dir_selected.$file.PHP_EOL);
fclose($fd);
}
}
}
unlink($downloaded_file_name);
if ($handle = opendir($user_dir)) {

while (false !== ($entry = readdir($handle))) {
if ($entry != "." && $entry != "..") {
}

}
closedir($handle);

}
$user_home_dir_big_transfer_iesimo=$user_home_dir_big_transfer.’/file_’.$iesimo.’.zzz’;
touch("$user_home_dir_big_transfer_iesimo");
$occ = count(glob($user_home_dir_big_transfer.’/*.zzz’));
$iesimo++;
$x++;
}
if($occ==($numElements)){
if(unlink($file_lock)){
$filePath = "$path/myPdf.pdf";
$pdf = new FPDF();
$pdf->AddPage();
$lines_ok = file($path."/ok", FILE_IGNORE_NEW_LINES);
$lines_grid = file($path."/grid_error", FILE_IGNORE_NEW_LINES);

// RETRY CODE START //
$num_ok=sizeof($lines_ok);
$num_grid_errors=sizeof($lines_grid);
if ($num_grid_errors>0 && round($num_ok/$num_grid_errors)>1) {

$lines_grid_after_retry=array();
foreach($lines_grid as $row){

$file_info=explode("***", $row);
$lfn_file=$file_info[1];
$size1=$file_info[0];
$error = download_from_grid($user_id, $x509_user_proxy, $lfc_server,
$selectedFile_array, $selectedFile_size, $lcg_gfal_infosys, $vo_active,
$size1, $lfn_file, $file_name, $downloaded_file_name, $filename);

if ($error=="true") {

Appendix B. Script for moving files from Grid ro Remote Servers 98

$lines_grid_after_retry[]=$file_info[2];
} else {
$lines_ok[]=$file_info[2];
}

}
$lines_grid = $lines_grid_after_retry;

}
// RETRY CODE END //

// PREPARE MAIL //
sort($lines_ok);
$str_error_ok = "";
$ok_i=0;
foreach($lines_ok as $line_ok){
if ($ok_i==0) {
$pdf->SetTextColor(0,170,0);
$pdf->SetFont(’Arial’,’B’,14);
$pdf->Cell(40,10,’Files correctly copied!’);
$pdf->Ln();
}
$pdf->SetTextColor(0,0,0);
$pdf->SetFont(’Arial’,’B’,11);
$pdf->Cell(40,10,$line_ok);
$pdf->Ln(6);
$str_error_ok.=$line_ok."
";
$ok_i++;
}
if ($str_error_ok=="") {
$display_ok="none";
} else {
$display_ok="block";
}
sort($lines_grid);
$str_error_grid="";
$grid_err_i=0;
foreach($lines_grid as $line_grid){
if (!isset($retry)) {
$line_grid=end(explode("***", $line_grid));
}
if ($grid_err_i==0) {
$pdf->Ln(16);
$pdf->SetTextColor(255,0,0);
$pdf->SetFont(’Arial’,’B’,14);
$pdf->Cell(40,10,’Files not copied for Grid error reasons!’);
$pdf->Ln();
}
$pdf->SetTextColor(0,0,0);
$pdf->SetFont(’Arial’,’B’,11);
$pdf->Cell(40,10,$line_grid);
$pdf->Ln(6);
$str_error_grid.=$line_grid."
";
$grid_err_i++;
}
if ($str_error_grid=="") {
$display_grid="none";
} else {
$display_grid="block";
}
$lines_error = file($path."/error", FILE_IGNORE_NEW_LINES);
sort($lines_error);
$str_error_other="";
$other_err_i=0;
foreach($lines_error as $line_error){
if ($other_err_i==0) {
$pdf->Ln(16);
$pdf->SetTextColor(255,128,0);
$pdf->SetFont(’Arial’,’B’,14);
$pdf->Cell(40,10,’Files not copied for other error reasons!’);
$pdf->Ln();
}
$pdf->SetTextColor(0,0,0);
$pdf->SetFont(’Arial’,’B’,11);
$pdf->Cell(40,10,$line_error);
$pdf->Ln(6);
$str_error_other.=$line_error."
";
$other_err_i++;
}
if ($str_error_other=="") {
$display_other="none";
} else {
$display_other="block";
}
$pdf->Output($filePath,’F’);
$to = $mail;
$subject = ’Grid file transfer completed’;
$from =’igi-portal@italiangrid.it’;
$ok_i_perc=round(($ok_i/($numElements))*100, 1);
$grid_err_i_perc=round(($grid_err_i/($numElements))*100, 1);

Appendix B. Script for moving files from Grid ro Remote Servers 99

$other_err_i_perc=round(($other_err_i/($numElements))*100, 1);
if($numElements<20){
$body =" ... ";
} else {
$body =" ... ";
}
$email = new PHPMailer();
$email->IsSMTP(); // telling the class to use SMTP
$email->Host = "postino.cnaf.infn.it"; // SMTP server
$email->SMTPDebug = 2;
$email->From = $from;
$email->FromName = ’IGI Portal’;
$email->Subject = $subject;
$email->Body = $body;
$email->IsHTML(true);
if($to=="marco.bencivenni@cnaf.infn.it"){
$to="marco.bencivenni@gmail.com";
}
$email->AddAddress($to);
if($numElements>=20){
$email->AddAttachment($filePath , ’report.pdf’);
}

if($email->Send()){
deleteDir($path);

} else {
$error_mail = $mail->ErrorInfo;
}
}
}

// FUNCTIONS //
function clean_file_name($filename) {

$bad = array(
"<!--", "-->", "’", "<", ">", ’"’, ’&’, ’$’, ’=’, ’;’,
’?’, ’ ’, ’:’, "\n", "\r", "%20", "%22", "%3c", "%253c",
"%3e", "%0e", "%28", "%29", "%2528", "%26", "%24", "%3f",
"%3b", "%3d", "(", ")",);

$filename = str_replace($bad, ’’, $filename);
return stripslashes($filename);
}

function deleteDir($dirPath) {
if (! is_dir($dirPath)) {

throw new InvalidArgumentException("$dirPath must be a directory");
}
if (substr($dirPath, strlen($dirPath) - 1, 1) != ’/’) {

$dirPath .= ’/’;
}
$files = glob($dirPath . ’*’, GLOB_MARK);
foreach ($files as $file) {

if (is_dir($file)) {
self::deleteDir($file);

} else {
unlink($file);

}
}
rmdir($dirPath);

}

?>

Appendix C

DIRAC multi VO configuration

In this appendix, it is shown the DIRAC configuration to support multi VOs. The

DIRAC Configuration is organized in a tree structure. It is divided in sections,

which can also be seen as directories. Each section can contain other sections and

options. The options are the leafs in the configuration tree, which contain the

actual configuration data. At the top level of the Configuration tree there are the

following sections:

• DIRAC : this section contains the most general information about the DIRAC

installation.

• Systems : this section provides configuration data for all the DIRAC Systems,

their instances and components - services, agents and databases.

• Registry : this section contains information about DIRAC users, groups and

communities (VOs).

• Resources : this section provides description of all the DIRAC computing

resources. This includes computing and storage elements as well as descrip-

tions of several DIRAC and third party services.

• Operations : this section collects various operational parameters needed to

run the system.

DIRAC
{

Configuration
{

Name = MyConfiguration
Version = 2014-01-24 08:45:17.754002

101

Appendix C. DIRAC multi VO configuration 102

Servers = dips://dirac.cnaf.infn.it:9135/Configuration/Server
MasterServer = dips://dirac.cnaf.infn.it:9135/Configuration/Server

}
Setups
{

MyDIRAC-Production
{

Configuration = Production
Framework = Production
WorkloadManagement = Production
Accounting = Production
RequestManagement = Production

}
}

}
Registry
{

Users
{

portal-igi
{

DN = /C=IT/O=INFN/OU=Host/L=CNAF/CN=portal.italiangrid.it
Email = igi-portal-admin@lists.italiangrid.it

}
marco_bencivenni
{

DN = /C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Marco Bencivenni
Email = marco.bencivenni@cnaf.infn.it

}
}
Groups
{

user
{

Users = apaolini
Properties = NormalUser

}
dirac_admin
{

Users = flyback
Users += portal-igi
Users += marco_bencivenni
Properties = AlarmsManagement
Properties += ServiceAdministrator
Properties += CSAdministrator
Properties += JobAdministrator
Properties += FullDelegation
Properties += ProxyManagement
Properties += Operator

}
gridit_user
{

Users += marco_bencivenni
Properties = NormalUser
VOMSRole = /gridit
VOMSVO = gridit
VO = gridit
SubmitPool = Pool_gridit
AutoAddVOMS = True
AutoUploadProxy = True
AutoUploadPilotProxy = True

}
infngrid_user
{

Properties = NormalUser
VOMSRole = /infngrid
VOMSVO = infngrid
VO = infngrid
SubmitPool = Pool_infngrid
AutoAddVOMS = True
AutoUploadProxy = True
AutoUploadPilotProxy = True

}
}
Hosts
{

dirac.cnaf.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=CNAF/CN=dirac.cnaf.infn.it
Properties = TrustedHost
Properties += CSAdministrator
Properties += JobAdministrator
Properties += FullDelegation
Properties += ProxyManagement
Properties += Operator

}
}
VOMS

Appendix C. DIRAC multi VO configuration 103

{
Mapping
{

user = /gridit
gridit_user = /gridit
infngrid_user = /infngrid

}
Servers
{

gridit
{

voms.cnaf.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=CNAF/CN=voms.cnaf.infn.it
Port = 15008
CA = /C=IT/O=INFN/CN=INFN CA

}
voms-01.pd.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=Padova/CN=voms-01.pd.infn.it
CA = /C=IT/O=INFN/CN=INFN CA
Port = 15008

}
}
infngrid
{

voms.cnaf.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=CNAF/CN=voms.cnaf.infn.it
Port = 15000
CA = /C=IT/O=INFN/CN=INFN CA

}
voms-01.pd.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=Padova/CN=voms-01.pd.infn.it
CA = /C=IT/O=INFN/CN=INFN CA
Port = 15000

}
}

}
}
VO
{

gridit
{

SubmitPools = Pool_gridit
VOAdmin = dmichelotto
VOMSName = gridit
VOMSServers
{

voms.cnaf.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=CNAF/CN=voms.cnaf.infn.it
CA = /C=IT/O=INFN/CN=INFN CA
Port = 15008

}
voms-01.pd.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=Padova/CN=voms-01.pd.infn.it
CA = /C=IT/O=INFN/CN=INFN CA
Port = 15008

}
}

}
infngrid
{

SubmitPools = Pool_infngrid
VOAdmin = dmichelotto
VOMSName = infngrid
VOMSServers
{

voms.cnaf.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=CNAF/CN=voms.cnaf.infn.it
CA = /C=IT/O=INFN/CN=INFN CA
Port = 15000

}
voms-01.pd.infn.it
{

DN = /C=IT/O=INFN/OU=Host/L=Padova/CN=voms-01.pd.infn.it
CA = /C=IT/O=INFN/CN=INFN CA
Port = 15000

}
}

}
}
DefaultGroup = gridit_user
DefaultProxyTime = 604800

}

Appendix C. DIRAC multi VO configuration 104

Operations
{

MyDIRAC-Production
{

Pilot
{

Version = v6r7p20
Project = DIRAC
CheckVersion = True

}
}
gridit
{

Defaults
{

EMail
{

Production = diego.michelotto@cnaf.infn.it
Logging = diego.michelotto@cnaf.infn.it

}
Shifter
{

ProductionManager
{

User = dmichelotto
Group = user

}
SAMManager
{

User = dmichelotto
Group = user

}
}

}
Production
{

Pilot
{

Version = v6r7p20
Project = DIRAC
CheckVersion = True

}
}

}
EMail
{

Production = diego.michelotto@cnaf.infn.it
Logging = diego.michelotto@cnaf.infn.it

}
Gridit-Production
{

Shifter
{

SAMManager
{

User = dmichelotto
Group = gridit_user

}
ProductionManager
{

User = dmichelotto
Group = gridit_user

}
DataManager
{

User = dmichelotto
Group = gridit_user

}
}

}
infngrid
{

Infngrid-Production
{

Shifter
{

ProductionManager
{

User = dmichelotto
Group = user

}
SAMManager
{

User = dmichelotto
Group = user

}
DataManager
{

User = dmichelotto

Appendix C. DIRAC multi VO configuration 105

Group = user
}

}
}

}
JobDescription
{

AllowedJobTypes = MPI
AllowedJobTypes += User
AllowedJobTypes += Test
SubmitPools = Pool_gridit

}
}
Website
{

DefaultGroups = visitor
DefaultGroups += user
DefaultGroups += dirac_admin
DefaultSetup = MyDIRAC-Production
Authorization
{

systems
{

configuration
{

Default = all
showHistory = CSAdministrator
commitConfiguration = CSAdministrator
showCurrentDiff = CSAdministrator
showDiff = CSAdministrator
rollbackToVersion = CSAdministrator
manageRemoteConfig = CSAdministrator
manageRemoteConfig += ServiceAdministrator

}
}

}
}
Systems
{

Framework
{

Production
{

Services
{

SystemAdministrator
{

Port = 9162
Authorization
{

Default = ServiceAdministrator
}

}
SystemLoggingReport
{

Port = 9144
Authorization
{

Default = authenticated
}

}
Monitoring
{

Port = 9142
Authorization
{

Default = authenticated
queryField = ServiceAdministrator
tryView = ServiceAdministrator
saveView = ServiceAdministrator
deleteView = ServiceAdministrator
deleteActivity = ServiceAdministrator
deleteActivities = ServiceAdministrator
deleteViews = ServiceAdministrator
FileTransfer
{

Default = authenticated
}

}
}
Notification
{

Port = 9154
SMSSwitch = sms.switch.ch
Authorization
{

Default = AlarmsManagement
sendMail = authenticated
sendSMS = authenticated

Appendix C. DIRAC multi VO configuration 106

removeNotificationsForUser = authenticated
markNotificationsAsRead = authenticated
getNotifications = authenticated
ping = authenticated

}
}
SecurityLogging
{

Port = 9153
Authorization
{

Default = authenticated
}

}
UserProfileManager
{

Port = 9155
Authorization
{

Default = authenticated
}

}
ProxyManager
{

Port = 9152
MaxThreads = 100
getVOMSProxyWithTokenMaxThreads = 2
Authorization
{

Default = authenticated
getProxy = FullDelegation
getProxy += LimitedDelegation
getProxy += PrivateLimitedDelegation
getVOMSProxy = FullDelegation
getVOMSProxy += LimitedDelegation
getVOMSProxy += PrivateLimitedDelegation
getProxyWithToken = FullDelegation
getProxyWithToken += LimitedDelegation
getProxyWithToken += PrivateLimitedDelegation
getVOMSProxyWithToken = FullDelegation
getVOMSProxyWithToken += LimitedDelegation
getVOMSProxyWithToken += PrivateLimitedDelegation
getLogContents = ProxyManagement
setPersistency = ProxyManagement

}
UseMyProxy = True

}
SystemLogging
{

Port = 9141
Authorization
{

Default = authenticated
}

}
Plotting
{

Port = 9157
PlotsLocation = data/plots
Authorization
{

Default = authenticated
FileTransfer
{

Default = authenticated
}

}
}
BundleDelivery
{

Port = 9158
Authorization
{

Default = authenticated
FileTransfer
{

Default = authenticated
}

}
}

}
URLs
{

SystemAdministrator = dips://dirac.cnaf.infn.it:9162/Framework/SystemAdministrator
SystemLoggingReport = dips://dirac.cnaf.infn.it:9144/Framework/SystemLoggingReport
Monitoring = dips://dirac.cnaf.infn.it:9142/Framework/Monitoring
Notification = dips://dirac.cnaf.infn.it:9154/Framework/Notification
SecurityLogging = dips://dirac.cnaf.infn.it:9153/Framework/SecurityLogging
UserProfileManager = dips://dirac.cnaf.infn.it:9155/Framework/UserProfileManager

Appendix C. DIRAC multi VO configuration 107

ProxyManager = dips://dirac.cnaf.infn.it:9152/Framework/ProxyManager
SystemLogging = dips://dirac.cnaf.infn.it:9141/Framework/SystemLogging
Plotting = dips://dirac.cnaf.infn.it:9157/Framework/Plotting
BundleDelivery = dips://dirac.cnaf.infn.it:9158/Framework/BundleDelivery

}
Agents
{

SystemLoggingDBCleaner
{

RemoveDate = 30
}
CAUpdateAgent
{

PollingTime = 21600
}
TopErrorMessagesReporter
{

MailList =
Reviewer =
Threshold = 10
QueryPeriod = 7
NumberOfErrors = 10

}
}
Databases
{

UserProfileDB
{

DBName = UserProfileDB
Host = localhost

}
NotificationDB
{

DBName = NotificationDB
Host = localhost

}
ComponentMonitoringDB
{

DBName = ComponentMonitoringDB
Host = localhost

}
ProxyDB
{

DBName = ProxyDB
Host = localhost

}
SystemLoggingDB
{

DBName = SystemLoggingDB
Host = localhost

}
}

}
}
WorkloadManagement
{

Production
{

Services
{

SandboxStore
{

Port = 9196
LocalSE = ProductionSandboxSE
MaxThreads = 200
toClientMaxThreads = 100
Backend = local
MaxSandboxSizeMiB = 10
SandboxPrefix = Sandbox
BasePath = /opt/dirac/storage/sandboxes
DelayedExternalDeletion = True
Authorization
{

Default = authenticated
FileTransfer
{

Default = authenticated
}

}
}
Matcher
{

Port = 9170
MaxThreads = 20
#Flag for checking the DIRAC version of the pilot is the current production one as defined
#in /Operations/<vo>/<setup>/Versions/PilotVersion option
CheckPilotVersion = Yes
#Flag to check the site job limits
SiteJobLimits = False

Appendix C. DIRAC multi VO configuration 108

Authorization
{

Default = authenticated
getActiveTaskQueues = JobAdministrator

}
}
JobMonitoring
{

Port = 9130
Authorization
{

Default = authenticated
}

}
JobManager
{

Port = 9132
MaxParametricJobs = 100
Authorization
{

Default = authenticated
}

}
JobStateUpdate
{

Port = 9136
SSLSessionTime = 86400
MaxThreads = 100
Authorization
{

Default = authenticated
}

}
WMSAdministrator
{

Port = 9145
Authorization
{

Default = Operator
getJobPilotOutput = authenticated
setJobForPilot = authenticated
setPilotBenchmark = authenticated
setPilotStatus = authenticated
getSiteMask = authenticated
ping = authenticated
getPilots = authenticated
allowSite = authenticated
banSite = authenticated
getPilotSummary = authenticated
getSiteMaskLogging = authenticated
getPilotSummaryWeb = authenticated
getPilotMonitorWeb = authenticated
getSiteSummaryWeb = authenticated
getSiteSummarySelectors = authenticated
getPilotLoggingInfo = authenticated
getPilotMonitorSelectors = authenticated

}
}

}
URLs
{

SandboxStore = dips://dirac.cnaf.infn.it:9196/WorkloadManagement/SandboxStore
Matcher = dips://dirac.cnaf.infn.it:9170/WorkloadManagement/Matcher
JobMonitoring = dips://dirac.cnaf.infn.it:9130/WorkloadManagement/JobMonitoring
JobManager = dips://dirac.cnaf.infn.it:9132/WorkloadManagement/JobManager
JobStateUpdate = dips://dirac.cnaf.infn.it:9136/WorkloadManagement/JobStateUpdate
WMSAdministrator = dips://dirac.cnaf.infn.it:9145/WorkloadManagement/WMSAdministrator

}
Databases
{

SandboxMetadataDB
{

DBName = SandboxMetadataDB
Host = localhost

}
JobDB
{

DBName = JobDB
Host = localhost

}
JobLoggingDB
{

DBName = JobLoggingDB
Host = localhost

}
TaskQueueDB
{

DBName = TaskQueueDB
Host = localhost

Appendix C. DIRAC multi VO configuration 109

}
PilotAgentsDB
{

DBName = PilotAgentsDB
Host = localhost

}
}
Agents
{

MightyOptimizer
{

FilteredOptimizers = InputData
FilteredOptimizers += AncestorFiles

}
PilotStatusAgent
{

PollingTime = 300
#Minimal Validity of the proxy stored in the Proxy Repository. If the validity
#time is less that this value, the proxy will be renewed. The value is in seconds
MinValidity = 1800
#The period for which the proxy will be extended. The value is in hours
ValidityPeriod = 15
GridEnv = /etc/profile.d/grid-env
#Flag enabling sending of the Pilot accounting info to the Accounting Service
PilotAccountingEnabled = yes

}
JobHistoryAgent
{

PollingTime = 30
UpdatePeriod = 300

}
SiteDirector
{

PollingTime = 120
CETypes = CREAM
Site =
MaxJobsInFillMode = 5
PilotDebugMode = True
ExtraPilotOptions =
GetPilotOutput = True
UpdatePilotStatus = True
SendPilotAccounting = True
GenericPilotDN = /C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Marco Bencivenni
GenericPilotGroup = user

}
InputDataAgent
{

PollingTime = 120
}
TaskQueueDirector
{

SubmitPools = gLite
SubmitPools += Pool_gridit
SubmitPools += Pool_infngrid
Status = Active
DefaultSubmitPools = gLite
AllowedSubmitPools = gLite
AllowedSubmitPools += DIRAC
AllowedSubmitPools += Pool_gridit
AllowedSubmitPools += Pool_infngrid
DIRACVersion = v6r7p20
ListMatchDelay = 10
extraPilotFraction = 1.0
extraPilots = 2
pilotsPerIteration = 100
maxThreadsInPool = 8
PollingTime = 30
MaxCycles = 5000
gLite
{

GridMiddleware = gLite
GridEnv = /etc/profile.d/grid-env
ResourceBrokers = wms-multi.grid.cnaf.infn.it
Failing =
PrivatePilotFraction = 1.0
MaxJobsInFillMode = 5
Rank = (other.GlueCEStateWaitingJobs == 0 ? (other.GlueCEStateFreeCPUs * 10
/ other.GlueCEInfoTotalCPUs + other.GlueCEInfoTotalCPUs / 500) :
-other.GlueCEStateWaitingJobs * 4 / (other.GlueCEStateRunningJobs + 1) - 1)
GenericPilotDN = /C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Diego Michelotto
GenericPilotGroup = dirac_pilot

}
Pool_gridit
{

GridMiddleware = gLite
ResourceBrokers = wms-multi.grid.cnaf.infn.it
Failing =
PrivatePilotFraction = 1.0
MaxJobsInFillMode = 5

Appendix C. DIRAC multi VO configuration 110

Rank = (other.GlueCEStateWaitingJobs == 0 ? (other.GlueCEStateFreeCPUs * 10
/ other.GlueCEInfoTotalCPUs + other.GlueCEInfoTotalCPUs / 500) :
-other.GlueCEStateWaitingJobs * 4 / (other.GlueCEStateRunningJobs + 1) - 1)
GenericPilotDN = /C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Diego Michelotto
GenericPilotGroup = gridit_user
GridEnv = /etc/profile.d/grid-env
VirtualOrganization = gridit
MyProxyServer = myproxy.cnaf.infn.it

}
Pool_infngrid
{

GridMiddleware = gLite
ResourceBrokers = wms-multi.grid.cnaf.infn.it
Failing =
PrivatePilotFraction = 1.0
MaxJobsInFillMode = 5
Rank = (other.GlueCEStateWaitingJobs == 0 ? (other.GlueCEStateFreeCPUs * 10
/ other.GlueCEInfoTotalCPUs + other.GlueCEInfoTotalCPUs / 500) :
-other.GlueCEStateWaitingJobs * 4 / (other.GlueCEStateRunningJobs + 1) - 1)
GenericPilotDN = /C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Diego Michelotto
GenericPilotGroup = infngrid_user
GridEnv = /etc/profile.d/grid-env
VirtualOrganization = infngrid

}
DIRAC
{

GridMiddleware = DIRAC
}

}
JobCleaningAgent
{

PollingTime = 120
}
StalledJobAgent
{

StalledTimeHours = 2
FailedTimeHours = 6
PollingTime = 120

}
}

}
}
RequestManagement
{

Production
{

Services
{

RequestManager
{

Port = 9143
Backend = file
Path = requestDB
Authorization
{

Default = authenticated
}

}
}
URLs
{

RequestManager = dips://dirac.cnaf.infn.it:9143/RequestManagement/RequestManager
}

}
}
Accounting
{

Production
{

Services
{

DataStore
{

Port = 9133
Authorization
{

Default = authenticated
compactDB = ServiceAdministrator
deleteType = ServiceAdministrator
registerType = ServiceAdministrator
setBucketsLength = ServiceAdministrator
regenerateBuckets = ServiceAdministrator

}
}
ReportGenerator
{

Port = 9134
Authorization
{

Appendix C. DIRAC multi VO configuration 111

Default = authenticated
FileTransfer
{

Default = authenticated
}

}
}

}
URLs
{

DataStore = dips://dirac.cnaf.infn.it:9133/Accounting/DataStore
ReportGenerator = dips://dirac.cnaf.infn.it:9134/Accounting/ReportGenerator

}
Databases
{

AccountingDB
{

DBName = AccountingDB
Host = localhost

}
}

}
}
Configuration
{

Production
{

Agents
{

CE2CSAgent
{

BannedCSs =
MailTo =
MailFrom =
VirtualOrganization = gridit

}
CE2CSAgent_infngrid
{

Module = CE2CSAgent
VirtualOrganization = infngrid

}
}

}
}
Databases
{

User = Dirac
Password = 8TuX3862Na

}
}
Resources
{

Sites
{

LCG
{

LCG.IGI-BOLOGNA-SL6.it
{

Name = IGI-BOLOGNA
CE = cream-02.cnaf.infn.it
CEs
{

cream-02.cnaf.infn.it
{

wnTmpDir = /tmp
architecture = x86_64
CEType = CREAM
Queues
{

cream-pbs-test-sl6
{

maxCPUTime = 2880
SI00 = 1039

}
cream-pbs-wnodes-sl6
{

maxCPUTime = 2880
SI00 = 1039

}
}
OS = ScientificSL_Carbon_6.2
SI00 = 1039

}
}
Coordinates = 11.3417:44.4948
Mail = grid-operations@lists.cnaf.infn.it

}
}

}

Appendix C. DIRAC multi VO configuration 112

StorageElements
{

ProductionSandboxSE
{

BackendType = DISET
AccessProtocol.1
{

Host = dirac.cnaf.infn.it
Port = 9196
Protocol = dips
ProtocolName = DIP
Path = /WorkloadManagement/SandboxStore
Access = remote

}

Appendix D

Portal logical architecture

In this appendix it is described the detailed portal logical architecture. The Fig.

D.1 shows the logical layers and the components, exhaustively described in the

thesis, involved:

• External AuthZ/AuthN Services : in this layer there rae all the exyernal

services that the portal uses for the user authentication and authorization

purposes.

• Portal AuthN : here we can find the portlel developed for the portal authen-

tication.

• Portal AuthN : here we can find the portlel developed for the portal autho-

rization.

• Portal Services : in this layers there are all the portlets developed to pro-

vide the fucntionalities of workload computing, data management and cloud

resources provisioning.

• External Data/Computing Services : in this layer we can find the external

services used to interface the portal with the middleware and physiscal re-

sources.

• Middleware/Resources : this layer rapresents the services provided by the

middleware and the physiscal resources.

113

Appendix D. Portal logical architecture 114

Figure D.1: Portal logical architecture

Abbreviations

ASM Application Specific Module

AC Attribute Certificate

AAI Authentication and Authorization Infrastructure

CAS Central Authentication Service

CSR Certificate Signing Request

CA Certification Authority

CLI Command Line Interface

CE Computing Element

CREAM Computing Resource Execution and Management

DAG Directed Acyclic Graphs

DPM Disk Pool Manager

DN Distinguished Name

DCI Distributed Computing Infrastructures

DIRAC Distributed Infrastructure with Remote Agent Control

EGEE Enabling Grids for E-sciencE

EMI European Middleware Initiative

FTS File Transfer Service

FEM Finite Element Method

GPFS General Parallel File System

GUID Global Unique Identifier

gUSE grid and cloud User Support Environment

GSI Grid Security Infrastructure

IdP Identity Provider

IS Information System

115

Abbreviations 116

IaaS Infrastructure as a Service

IGTF International Grid Trust Forum

IGI Italian Grid Initiative

JDL Job Definition Language

LPDS Laboratory of Parallel and Distributed Systems

LCG LHC Computing Grid

LHC Large Hadron Collider

LFC LCG File Catalogue

LGPL Lesser General Public License

LoA Level of Assurance

LSF Load Sharing Facility

LRMS Local Resource Management System

LB Logging and Bookkeeping

LFN Logical File Name

MICS Member Integrated Credential Services

OCCI Open Cloud Computing Interface

PFN Physical File Name

PaaS Platform as a Service

PMAs Policy Management Authorities

PBS Portable Batch System

RA Registration Authority

SAML Security Assertion Markup Language

SPES Selective Production of Exotic Species

SP Service Provider

SLCS Short Living Credential Service

SSO Single Sign On

SURL Site URL

SaaS Software as a Service

SAN Storage Area Network

SE Storage Element

SRM Storage Resource Manager

Abbreviations 117

StoRM Storage Resource Manager

SGE Sun Grid Engine

TOTP Time-based One Time Password

TURL Transport URL

UI User Interface

VM Virtual Machine

VOMS Virtual Organization Management Service

VO Virtual Organization

WN Worker Node

WNoDeS Worker Nodes on Demand Service

WMS Workload Management System

Bibliography

[1] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk: ”RFC

5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Re-

vocation List (CRL) Profile”. May 2008, (http://tools.ietf.org/html/rfc5280)

[2] ”EUGridPMA Guideline on Approved Robots”

(http://www.euGridpma.org/guidelines/robot/approved-robots-20120912.pdf)

[3] Peter Kacsuk, Zoltan Farkas, Miklos Kozlovszky, Gabor Hermann, Akos Bal-

asko, Krisztian Karoczkai and Istvan Marton: ”WS-PGRADE/gUSE Generic

DCI Gateway Framework for a Large Variety of User Communities”. Journal of

Grid Computing, Vol. 9, No. 4, pp 479-499, 2012

[4] ”EGI-InSPIRE VO Portal Policy document”

(https://documents.egi.eu/public/ShowDocument?docid=80)

[5] ”EGI-InSPIRE VO Operations Policy”

(https://documents.egi.eu/public/ShowDocument?docid=77)

[6] ”EGI-InSPIRE, Grid Security Traceability and Logging Policy document”

(https://documents.egi.eu/document/81)

[7] Riccardo Murri, Peter Z. Kunszt, Sergio Maffioletti, Valery Tschopp: ”Grid-

CertLib: A Single Sign-on Solution for Grid Web Applications and Portals”.

Journal of Grid Computing, December 2011, Volume 9, Issue 4, pp 441-453

[8] ”JSR 168. Portlet Specification”. Java Community Process, 2005

(http://www.jcp.org/en/jsr/detail?id=168)

119

Bibliography 120

[9] ”JSR 286: Portlet Specification 2.0”. Java Community Process, 2008

(http://www.jcp.org/en/jsr/detail?id=286)

[10] J. Basney, M. Humphrey, and V. Welch.: ”The MyProxy Online Credential

Repository”. Software: Practice and Experience, Volume 35, Issue 9, July 2005,

pages 801-816

[11] Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, A., Lorentey,

K., Spataro F.: ”From Gridmap-file to VOMS: managing authorization in a Grid

environment”. Future Generation Computer Systems Vol. 21, Issue 4, 549558

(2005).

[12] Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman, Mary Thompson:

”RFC 3820: Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate

Profile,June 2004”. (http://tools.ietf.org/html/rfc3820)

[13] ”TAGPMA, Profile for Member Integrated X.509 Credential Services

with Secured Infrastructure”. (http://www.euGridpma.org/guidelines/MICS/IGTF-AP-MICS-

1.2-clean.pdf)

[14] David M’Raihi, Salah Machani, Mingliang Pei, Johan Rydell: ”RFC

6238: TOTP: Time-Based One-Time Password Algorithm”. May 2011,

(http://tools.ietf.org/html/rfc6238)

[15] Tsaregorodtsev, A; Bargiotti, M; Brook, N; Ramo, A C; Castellani, G; Charp-

entier, P; Cioffi, C; Closier, J; Graciani, R; Kuznetsov, G; Li, Y Y; Nandakumar,

R; Paterson, S; Santinelli, R; Smith, A C; Miguelez, M S; Gomez, S: ”DIRAC:

a community Grid solution”. Journal of Physics: Conference Series 119, 062048

(2008)

[16] Stuart K. Paterson, Andrei Tsaregorodtsev, ”DIRAC Optimized Workload

Management”, Journal of Physics: Conference Series 119 (2008) 062040

[17] I. Sfiligoi: ”glideinWMS a generic pilot-based workload management system”.

Journal of Physics: Conference Series Volume 119 Part 6 2008 J. Phys.: Conf.

Ser. 119 062044 doi:10.1088/1742-6596/119/6/062044

Bibliography 121

[18] Alfieri, R.; Bencivenni, M.; Boccia, V.; Buzzi, A.; Cesini, D.; Costantini, A.;

De Pietri, R.; Gaido, L.; Giorgio, E.; La Rocca, G.; Malguzzi, P.; Mastrangelo,

D.; Ottani, S.; Malguzzi, P.; Mastrangelo, D.; Venturini, D.: ”Porting work-

flows based on small and medium parallelism applications to the Italian Grid

Infrastructure”. ISGC2013, in press on PoS

[19] Peter Kacsuk, Zoltan Farkas, Miklos Kozlovszky, Gabor Hermann, Akos Bal-

asko, Krisztian Karoczkai, Istvan Marton: ”WS-PGRADE/gUSE Generic DCI

Gateway Framework for a Large Variety of User Communities”. Journal of Grid

Computing Volume 10 Issue 4, December 2012 Pages 601-630

[20] P. Andreetto, S. Andreozzi, G. Avellino, S. Beco, A. Cavallini, M. Cecchi,

V. Ciaschini, A. Dorise, F. Giacomini, A. Gianelle, U. Grandinetti, A. Guarise,

A. Krop, R. Lops, A. Maraschini, V. Martelli, M. Marzolla, M. Mezzadri, E.

Molinari, S. Monforte, F. Pacini, M. Pappalardo, A. Parrini, G. Patania, L.

Petronzio, R. Piro, M. Porciani, F. Prelz, D. Rebatto, E. Ronchieri, M. Sgara-

vatto, V. Venturi and L. Zangrando: ”The gLite workload management system”.

J. Phys.: Conf. Ser. Volume 119, issue 6 (2007)

[21] Lana Abadie, Paolo Badino, Jean-Philippe Baud, Ezio Corso, Matt Craw-

ford, Shaun De Witt, Flavia Donno, Alberto Forti, Akos Frohner, Patrick

Fuhrmann, Gilbert Grosdidier, Junmin Gu, Jens Jensen, Birger Koblitz, So-

phie Lemaitre, Maarten Litmaath, Dmitry Litvinsev, Giuseppe Lo Presti, Luca

Magnoni, Tigran Mkrtchan, Alexander Moibenko, Remi Mollon, Vijaya Natara-

jan, Gene Oleynik, Timur Perelmutov, Don Petravick, Arie Shoshani, Alex Sim,

David Smith, Massimo Sponza, Paolo Tedesco, Riccardo Zappi: ”Storage Re-

source Managers: Recent International Experience on Requirements and Mul-

tiple Co-Operating Implementations”. Mass Storage Systems and Technologies,

IEEE/NASA Goddard Conference on, pp. 47-59, 24th IEEE Conference on Mass

Storage Systems and Technologies (MSST 2007), 2007

[22] Bencivenni, M.; Brunetti, R.; Caltroni, A.; Ceccanti A.; Cesini, D.; Di

Benedetto, M.; Fattibene, E.; Gaido, L.; Michelotto, D.; Misurelli, G.; Venturi,

Bibliography 122

V.; Veronesi, P.; Zappi, R.: ”A Web-based utility for Grid data management”.

ISGC2013, in press on PoS.

[23] Magnoni, L.; Zappi, R.; Ghiselli, A. ”StoRM: a Flexible Solution for Storage

Resource Manager in Grid”. Proceedings of the IEEE 2008 Nuclear Science

Symposium (NSS-MIC 2008), 19 - 25 October 2008, Dresden, Germany. IEEE

Computer Society (2008)

[24] Elisabetta Ronchieri, Marco Verlato, Davide Salomoni, Gianni Dalla Torre,

Alessandro Italiano, Vincenzo Ciaschini, Daniele Andreotti, Stefano Dal Pra,

Wouter Geert Touw, Gert Vriend, Geerten W. Vuister: ”Accessing Scientific

Applications through the WNoDeS Cloud Virtualization Framework”. Proceed-

ings of ISCG 2013, 17-22 March, Taipei, 2013

[25] Cristina Aiftimiei, Andrea Ceccanti, Danilo Dongiovanni, Alberto Di Meglio,

Francesco Giacomini: ”Improving the quality of EMI Releases by leveraging

the EMI Testing Infrastructure”. 2012 Journal of Physics: Conference Series

Volume 396 Part 5.

[26] Mohammed Airaj, Christophe Blanchet, Stuart Kenny, Charles Loomis, Stra-

tusLab Collaboration(s): ”Appliance Management for Federated Cloud En-

vironments”. CloudCom 2013 - 5th IEEE International Conference on Cloud

Computing Technology and Science, Bristol, United Kingdom (2013)

[27] Wassenaar et al., ”WeNMR: Structural Biology on the Grid”. Journal of Grid

Computing, 10:743-767 (2012)

[28] Ferrari, T.; Gaido, L.; ”Resources and Services of the EGEE Production

Infrastructure”. Journal of Grid Computing, Springer Netherlands, pag. 119-

133, vol. 9, Issue 2, June 2011, ISSN: 1570-7873, Doi: 10.1007/s10723-011-9184-

1

[29] Costantini A., Michelotto D., Bencivenni M., Cesini D., Veronesi P., Giorgio

E., Gaido L., Laganà A., Monetti A., Manzolaro M., Andrighetto A.: ”Imple-

mentation of the ANSYS Commercial Suite on the EGI Grid Platform”. Lecture

Notes in Computer Science, Volume 7971, 84-95 (2013)

Bibliography 123

[30] Alfieri, R., Arezzini, S., Ciampa, A., De Pietri, R., Mazzoni, E.: ”HPC on

the Grid: The Theophys experience”. Journal of Grid Computing, 11:265-260,

DOI: 10.1007/s10723-012-9223-6 (2013)

[31] Löffler, F., Faber, J. Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder,

I., Mundim, B., Ott, C., Schnetter, E., Allen, G., Campanelli, M., and La-

guna, P.: ”The Einstein Toolkit: A Community Computational Infrastructure

for Relativistic Astrophysics”. Classical and Quantum Gravity, 29(11):115001

(2012).

[32] Di Renzo, F, L. Scorzato, L., and C. Torrero, C.: ”High loop renormalization

constants by NSPT: A Status report”. PoS, LAT2007:240, 2007

[33] Kunszt, Peter, et al. ”The gLite File Transfer Service.” 1st EGEE User Forum

(March 2006)

[34] V. Hazlewood and M. Woitaszek, “Securing Science Gateways,” TeraGrid

Conference, July 2011, Salt Lake City, Utah, USA.

[35] Vı́ctor Méndez Muñoz, Vı́ctor Fernández Albor, Ricardo Graciani Diaz,

Adriàn Casajús Ramo, Tomás Fernández Pena4, Gonzalo Merino Arévalo and

Juan José Saborido Silva, “The Integration of CloudStack and OCCI/Open-

Nebula with DIRAC”, Journal of Physics: Conference Series Volume 396 Part

3 2012 J. Phys.: Conf. Ser. 396 032075

	Contents
	List of Figures
	List of Tables
	Introduction
	1 Grid and Cloud architecture
	1.1 Authentication
	1.1.1 X.509 Certificate
	1.1.1.1 Certification Authority
	1.1.1.2 Robot certificate
	1.1.1.3 Personal Certificate

	1.1.2 Proxy
	1.1.2.1 MyProxy

	1.1.3 Identity Federation
	1.1.3.1 eduGAIN and IDEM

	1.2 Grid Architecture
	1.2.1 VOMS
	1.2.2 WMS
	1.2.3 Computing Element
	1.2.4 Storage Element
	1.2.4.1 StoRM Implementation

	1.2.5 LFC

	1.3 Cloud
	1.3.1 Openstack
	1.3.2 OpenNebula
	1.3.3 WNoDeS

	2 Architecture
	2.1 Portal
	2.1.1 Portlet
	2.1.1.1 Portlet Container
	2.1.1.2 Portal Server
	2.1.1.3 Liferay

	2.2 Grid Portal Classification
	2.3 Portal Architecture
	2.4 Database

	3 Authentication and Authorization
	3.1 Related Works
	3.1.1 GridCertLib
	3.1.2 CILogon
	3.1.3 Terena Certificate Service

	3.2 Authorization
	3.3 Authentication
	3.4 Online CA integration

	4 Workload Management
	4.1 Existing solutions
	4.1.1 gUSE & WS-Pgrade
	4.1.2 DIRAC

	4.2 Generic jobs
	4.3 Workflow
	4.4 Specific Applications

	5 Data Management
	5.1 EMI Data Management utilities
	5.1.1 LCG utils
	5.1.2 lfc-* commands

	5.2 File manager
	5.3 Upload
	5.4 Download

	6 Cloud services
	6.1 Interactive Cloud Service
	6.2 Cloud resources for the Jobs execution

	7 Use cases
	7.1 ANSYS
	7.2 FLUKA

	8 Conclusions and future developments
	8.1 Conclusions
	8.2 Future developments

	A Script for running ANSYS in Grid
	B Script for moving files from Grid to Remote Servers
	C DIRAC multi VO configuration
	D Portal logical architecture
	Bibliography
	Abbreviations

