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Summary

In this study we have started from a real odontoiatric clinic problem, which affects 

a high percentage of patients: edentulism.

Implant  therapy,  started  by  Prof.  Branemark  in  the  seventies  thanks  to  the 

discovery of osseointegration, has developed  in the last 15 years.

This therapy represents a valid solution for edentulous patients, although it cannot 

always be used.

Severe osseous resorption or anatomical limitations hinder the use of implant and 

force the employ of biomaterials and/or autologous bone, which, according to the 

latest scientific research, represents the gold standard.

However, intraoral bone graft is not always well tolerated by patients and, in cases 

of severe atrophy, the quantity of bone that can be taken from the oral cavity is not 

enough for complete regeneration.

Although implant therapy represents the best solution for edentulous patients, in 

the latest years a biological complication has become more and more frequent: 

peri-implantitis.

It represents a serious problem since it begins with an inflammation of peri-implant 

hard  tissues  that  clinically  leads  to  a  loss  of  peri-implant  alveolar  bone  and, 

eventually, to the loss of the implant as a whole.

According to the most recent literature, this serious problem affects 10% of the 

patients and 4% of the implant sites after 10 years of follow-up. 

To make this pathology even more serious is the little knowledge that clinicians 

and researchers have about early diagnosis, etiopathogenesis and therapy.

The purpose of this study is to address both edentulism and consequent osseous 

regeneration, as well as the problem of peri-implantitis from a biological point of 

view and with the help of tissue engineering.

In particular, we wanted to test the ability of stem cells taken from adult tissue to 

favor - in shorter time - osseous regeneration and implant osseointegration both in 

vitro and on small and large animals.

Furthermore, we have tested the anti-inflammatory ability of stem cells in bone 

tissue. Finally, with regard to the problem of peri-implantitis, we have searched for 

predictive genetic factors in order to possibly identify patients at risk.

Preliminary results of studies performed both in vitro and on animal enable us to 
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state that:

 It is possible to isolate stem cells from different adult tissues (adipose 

tissue, dental pulp) and test their genetic stability.

 For the cells isolated from dental pulp, we could identify an important 

connection between patient’s age and ability to differentiate and proliferate.

 Stem  cells  combined  with  different  scaffolds  are  able  to  foster 

osseous regeneration faster.

 It  has been recognized an actual  anti-inflammatory ability  of  stem 

cells in bone tissue.

 Preliminary  results  on  the  use  of  CGH  as  genetic  predictive 

technique  for  peri-implantitis  are  encouraging  since  they  foreground  a 

correlation between the genetic alteration of some chromosomal tracts and 

clinical onset of the disease.
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Introduction

Edentulous patients

The absence of good oral health in adults can manifest into social, physical, and 

emotional health issues. Poor oral health, therefore, negatively impacts on quality 

of life. Oral health is instrumental to older people’s health, life satisfaction, quality 

of life and their perception of self. [Mitchell et al. 2013; Mariño et al. 2013]

In addition, clinical data demonstrates that poor oral health increases the risks to 

health in the same way as any disease of the body system  [health 2001]. The 

interconnections between poor oral health, in particular periodontal disease, and 

other acute and chronic medical conditions (e.g. pneumonia, cerebrovascular and 

cardiovascular disease as  acute myocardial infarction stroke and coronary heart 

disease  [Emingil  et  al.  2000;  Elter  et  al.  2003;  Hung  et  al.  2007] diabetes, 

nutritional  deficiencies  are  now  established  [Genco  and  Van  Dyke  2010; 

LOESCHE et al. 1998].

The ability to chew and swallow food comfortably, to speak and to interact socially, 

can  be  compromised  by  common  oral  diseases  and  partial  or  full  edentulism 

conditions. (Figure 1, Figure 2)

Partial edentulsim is the absence of at least one natural tooth, and full edentulism 

is the complete absence of all natural teeth. 

Thorstensson H. and Johansson B. [Thorstensson and Johansson 2010] suggests 

that  the  main  cause  of  tooth  loss  is  due  to  caries  in  about  55% of  swedish 

individuals of the study, up to the oldest age substantial increase in frequency to 

75%. Periodontitis, as a reason for tooth loss, is of minor importance compared 

with caries but increase steadily over the lifespan from 18 to 33%. Other reasons 

are toothache, endodontics and tooth/root fractures. 
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Figure 1: edentulous patient with severe atrophy: lateral view, frontal view

Figure 2: orthopantomography

Oral health status and quality of life are strictly related. 

The ability to chew  food may affect dietary choices and nutritional intake and have 

consequences for  general  health  [Joshipura  et  al.  1996a;  KRALL et  al.  1998]. 

Edentates have been shown to have a significantly lower fruit and vegetable intake 

than the fully dentate. Tsakos G et al.[Tsakos et al. 2010] suggests that edentate 

individuals consumed 50.7 g (27.0, 74.3) fewer fruits/vegetables per day than the 

dentate.  Joshipura  et  al.  [Joshipura  et  al.  1996b] investigated  the  association 

between tooth loss and diet. The edentulous had a higher intakes of total fat and 

saturated fat and a lower intake of non-starch polysaccharide (NSP) (dietary fiber), 

β-carotene,  and  fruits  and  vegetables  than  subjects  with  25  or  more  teeth. 

Consumption of fruit and vegetables is also positively related with the number of 

natural teeth. Patients with loss of functional dentition and denture-wearing result 

in  selective food intake,  hard foods  and foods cointaining seeds and pips  are 
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avoided (such as tomatoes,  grapes and whole grain bread)  with the effects of 

material deprivation on nutrient intake [Moynihan and Bradbury 2001].

Oral health is not only related to masticatory function and chew ability. Esthetic  

and psycological problems are often related with loss of teeth. Missing teeth can 

have negative consequences on self-image, social interaction and psychological 

health. Interviews done on edentulous patients by Fiske J et al. [Fiske et al. 1998] 

suggests the main themes identified in reaction to tooth loss were: lowered self-

confidence, altered self-image, dislike of appearance, an inability to discuss this 

taboo subject,  a  concern  about  prosthodontic  privacy,  behaving  in  a  way  that 

keeps the tooth loss secret,  altered behaviour  in socialising and forming close 

relationships, premature ageing, and lack of preparation. Active ageing requires 

maintenance of oral health status: desire for physical attractiveness and interest in 

appearance does not decline with age [Xiaoxian Meng et al. 2007]; consequently 

in  edentates  patients  complete  prosthetic  treatment  contributes  to  maintaining 

aesthetic  appearance,  fluent  speech  and  suitable  occlusal  arrangements  for 

masticatory efficiency [Quran et al. 2001].

Papadaki E. and Anastassiadou V.  [Papadaki and Anastassiadou 2012] correlate 

emotional  reactions  to  tooth  loss  with  denture  satisfaction  attributes  in  elderly 

complete denture wearers.  Questionnaire  for  Emotional  reactions to  tooth  loss 

showed that 60% of patients had not only difficulties in accepting their tooth loss, 

but 65% of the younger participants and 47% of the older ones required more than 

6 months to come to terms with it. The same pattern was revealed regarding time 

of acceptance. Four key feelings associated with losing the last tooth/teeth identify 

sensation of  relieved in 1/4 of the subjects, sadness in 1/4 and resignation and 

oldness in 1/5.  Older  subjects more often felt  relieved with tooth clearance, in 

contrast to the younger subjects who were more likely to develop negative feelings 

of bereavement. The study suggests that a substantial proportion of patients were 

satisfied with their complete dentures rehabilitation but some patients experienced 

increased social and psychological problems related to their edentulousness and 

the  wearing  of  complete  dentures.  The  aesthetic  and  functional  aspects  of 

complete dentures affected both patients’ social behaviour and self-confidence as 

going  out  and  laughing  in  public,  speaking  difficulties  correlated  with  avoiding 

social interaction. 
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The  edentoulus  patient  has  a  resorption  of  alvelar  bones.  This  condition  in 

association with the absence of  teeth create physiognomy changes as leak of 

intraoral  volume  and  deflation  of  perioral  tissues  (lips  and  cheeks).  Esthetics 

changes could create psychological problems and loss of self-esteem.

Carossa  S.  et  al  [Carossa  et  al.  2000] investigated  the  correlation  between 

edentulism,  sleep disorders and arterial  hypertension.  Respiratory disturbances 

during  sleep  are  considered  risk  factors  for  arterial  hypertension  and 

cardiovascular diseases. Edentulism, by decreasing retro-pharyngeal space, may 

favor  upper  airway  occlusion  during  sleep.  In  edentulous  subjects,  removing 

dentures during sleep may favor respiratory disorders, and increase the risk for 

hypertension and cardiovascular disease. 

Different studies demonstrate that oral health conditions and edentulism is strictly 

related  to  age,  education,  socio-economic  status,  ethnicity  and  smoking 

[Thorstensson and Johansson 2010; Wu et al. 2012; Kim et al. 2012; Brennan et 

al. 2008; Elani et al. 2012].

In  economically  developed  countries,  the  trend  of  edentulism  has  declined 

consistently.  In England and Wales, the prevalence of edentulism for the adult 

population  declined  from 37% in  1968  to  12% in  1998  [Kelly  et  al.  1998].  In 

Australia,  the  prevalence  of  edentulism for  the  adult  population  declined  from 

20.5% in  1979  to  8% in  2002.  Among  older  adults  aged  65  and  above,  the 

reduction for males was from 59.7% to 26.5% and for females was from 71.5% to 

40.3%  [Sanders  et  al.  2004].  Similarly,  in  the  United  States,  the  few  studies 

available on middle-aged and older adults have shown that edentulism in these 

age groups has been dropping for the past several decades. One study revealed 

that within the period of 1971 and 2001, for those in a low socioeconomic position 

(SEP), the prevalence of edentulism declined from 50% to 32% in adults age 55–

64 and 58–43% in age 65–74; the comparable declines for these age groups for 

individuals in a high SEP were 22–6% and 30–9%,respectively [Cunha-Cruz et al. 

2007]. A report conducted by the National Centers for Health Statistics using the 

National Health and Nutrition Surveys of 1988–1994 (NHANES III) and NHANES 

1999–2004 [Kim et al. 2012] found that the prevalence of edentulism declined in 

the United States over these two-time periods from 34% to 27% among adults 

aged 65 and older over  [BA et al. 2007].  Thanks to improvements in oral health, 
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the proportion of the population who are edentulous has declined over the past 20 

years  [Sanders et al. 2004]. However, the number of people requiring complete 

dentures has been predicted to increase over the next  20 years in the United 

States. Moreover, although implant treatment is reportedly increasing, the need for 

complete denture treatment is likely to remain substantial in the future rise [Starr 

and Hall 2009].

Musacchio et al. [Musacchio et al. 2007] reported the prevalence of edentulism in 

north-est of Italy was 43.8%; this was more pronounced in women and increased 

with age. It was 31.8% in the 65-69 years age group and more than twice (63.9%) 

in the 90/ years group. The prevalence of edentulous subjects was much higher in 

heavy smokers than in non-smokers (55.6% versus 26%) and in subjects with 0-3 

years of education (52.4%) than 4-8 years (44.3%) and >8 years (3.3%).

Douglass et al.  [Douglass et al. 2002] indicated that edentulism has declined by 

10%  every  decade  and  that  only  90%  of  edentulous  adults  obtain  and  wear 

complete dentures.  However,  when the  number  of  adults  in  each specific  age 

group  is  multiplied  by  the  percentage  who  need  a  complete  maxillary  or 

mandibular denture, the results suggest that the adult population in need of 1 or 2 

complete dentures will  increase from 33.6 million adults in 1991 to 37.9 million 

adults in 2020. The 10% decline in edentulism experienced each decade for the 

past 30 years will be more than offset by the 79% increase in the adult population 

older than 55 years. the number of people in the United States who need complete 

dentures will increase over the next 20 years despite an anticipated decline in the 

age-specific rates of edentulism.

The assumption that the most of edentulous persons wear  and utilize dentures 

was proven Redford et al  and Marcus et al.  [Redford et al. 1996; Marcus et al. 

1996] in  their  analysis  of  denture use in the United States and New England. 

These  2  research  groups  found  that  89.6%  [Redford  et  al.  1996] and  89.9% 

[Marcus et al. 1996],  respectively, of the edentulous population used dentures. 

For past  decades,  conventional  dentures were the only  available treatment for 

edentulism.  This  treatment  relies  on  the  retention  and  support  provided  by 

remaining bone ridge, but many denture-wearing patients have a poor diet and 

cannot speak clearly due to lack of denture retention and stability  [Sánchez-Ayala 
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et al. 2010].  Inevitable ridge resorption, at the onset of edentulism or over time, 

may further decrease oral function if dentures do not remain retentive and stable. 

Ill-fitting  dentures  can  prevent  enjoyment  of  food  and  affect  overall  nutrition 

[Marcus et al. 1996]. The success of conventional complete dentures treatment is 

variable and depends on a patient’s adaptive capacity to overcome the limitations 

of complete dentures by an habituation process. The inadequacy of conventional 

treatment makes implant therapy an alternative to provide significant improvement 

in stability, retention and quality of life in denture-wearing patients. [Sánchez-Ayala 

et  al.  2010].  Moreover  implant-supported  fixed  dental  prosthesis  could  be 

considered a restitutio ad integrum of oral health problems. 

The  introduction  of  osseointegrated  implants  has  opened  new  possibilities  for 

improving chewing capacity of edentulous subjects wearing removable dentures. 

In addition to fixed dental prosthesis, implants can also be used to improve the 

function of removable prosthesis by the use of various retention systems.

The  limit  of  implant  therapy  is  inadequate  quantity  of  bone:  resorption  and 

remodelling of the alveolar ridge is a process that occurs especially after tooth 

extraction and results in a decrease ridge dimension [Schropp et al. 2003; Araujo 

and Lindhe 2005]. The volume and rate of bone loss depends by different factors 

such  as  gender,  hormones,  general  disease,  denture  rehabilitation  and 

metabolism [Güler et al. 2005]. The greater amount of resorption occurs during the 

first 3 months of healing with a significative loss of height and width of the alveolar 

bone  [Schropp  et  al.  2003;  Kerr  et  al.  2008].  Horizontal  dimensional  changes 

consist of 50% alveolar ridge reduction after 1 year from tooth extraction [Schropp 

et  al.  2003].  The  resorption  occurs  primarily  from  the  buccal  aspect,  with 

significantly  less  resorption  from the  lingual  aspect  [Araujo  and  Lindhe  2005]. 

Alveolar ridge resorption is usually more rapid in the premolar and molar region 

than the anterior region af the mandible [AA 2002]. 

Furthermore after teeth extraction in the anterior mandibular region there is higher 

basal  bone  disponibility  and  there  are  not  anatomical  landmarks  to  be 

compromised  for  implants  insertion  such  as  in  the  maxillary  anterior  region. 

Oikarinen et al suggest that implants of 8mm or longer could be inserted in the 

anterior  maxilla  in  more  than  50%  of  patients.  The  mandible  showed  that 

implantation was possible in almost every jaw with fixture of 8mm or longer in the 

canine regions [Oikarinen et al. 1995]. Instead in the maxillary posterior region the 
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proportion of sites with bone height  ≥8mm and bone width  ≥6mm was 28.3%, 

18.4%, 8.0% and 18.2% at first premolar, second premolar, first molar and second 

molar sites, respectively [Pramstraller et al. 2011] The use of removable dentures 

significantly increases the severity of alveolar bone resorption in edentulous areas. 

Xie et al.  reported that the edentulous maxilla has a much greater reduction in 

radiologic  heights  compared  to  the  edentulous  mandible  for  both  sexes.  The 

finding is considered to be in agreement with the study of Tallgren [Xie et al. 1997; 

Tallgren 1972]. 

In addition to the problem of edentulism, Injuries caused by trauma, tumor or cyst 

resection, infectious diseases, and also congenital and developmental conditions 

(i.e.,  cleft  palate  de-  fects)  may  result  into  serious  functional,  aesthetical  and 

psychological sequelae  [Cohen 1995; Hunt and Hobar 2003]. In such situations, 

absence of hard and soft tissues can be disfiguring and often compromise basic 

functions  such  as  mastication,  speech,  swallowing,  and  also  lead  to  limited 

thermal  and  physical  protection  of  important  anatomical  structures  (i.e.  brain, 

nerves, arteries, veins) [Davis and Telischi 1994; Kadota et al. 2008; Curtis et al. 

1997; Urken et al. 1991]. The progression of certain oral conditions may also result 

in craniofacial defects of difficult resolution. For istance periodontitis is a chronic 

inflammatory disease of bacterial  etiology,  characterized by the loss of support 

around teeth, including alveolar bone resorption and soft tissue alterations [Genco 

1992; Kinane and Bartold 2007; Feng and Weinberg 2006].

Achieving  predictable  regeneration  in  the  treatment  of  craniofacial  defects  is 

remarkably challenging in most clinical scenarios

Another  current  cause  of  bone  resorption  is  peri-implantitis.  Peri-implantitis  is 

defined as inflammation of peri-implant tissues accompanied with changes in the 

level  of  crestal  bone  and  with  the  presence  of   bleeding  on  probing  and/or 

suppuration, with or without concomitant deepening of peri-implant pockets [Lang 

et al. 2011].

Peri-implantitis is a serious current problem because neither the causes neither 

therapies are currently unclear.

However, this disease will be discussed in the next chapter
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Regenerative procedures, applying the concept of guided bone regeneration, use 

of  bone  grafts,  and  membranes,  are  implemented  to  rebuild   peri-implant 

supporting bone, rebuild bone after implant-extraction for peri-implant inflammation 

and for alveolar ridge regeneration. 

Tooth anatomy

Each tooth consists of three main parts: the crown, the neck and the root, that we 

can define with anatomic o clinical criteria. Here follow a brief review of the tooth 

anatomy (Figure 3) involved on stem cells-tissue engineering field.

Dentin

Dentin is a mesenchymal derived tissue lying between enamel or cementum and 

dental pulp (pulp chamber and root canal). It is a mineralized connective tissue 

with  an  organic  matrix.  It  is  made  up  of  70%  inorganic  materials  (especially 

hydroxyapatite crystals),  20% organic materials and 10% water by weight.  The 

bulk of organic matrix (85-90%) consists of type I collagen, there is also a minor 

amount of type V and VI collagen. Noncollagenous molecules of dentin are dentin 

phosphorines,  Gla  proteins,  acidic  glycoproteins,  growthrelated  factors,  serum 

derived proteins, lipids and proteoglycans. Dentin has microscopic channels (0,5-3 

Figure 3: tooth anatomy
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μm), called dentinal tubules, radiating outward from pulp cavity to dentinoenamel 

or dentino-cementum junction. These tubules contain projections of cells secreting 

dental matrix, known as odontoblasts. The most peripheral aspect of the pulp is 

lined by the body of these odontoblasts [Yoshiba et al. 2002]

Pulp

Pulp consists of a loose connective tissue enclosed by rigid predentin and dentin. 

Along the border between the dentin and the pulp are odontoblasts. The thickness 

of dentinal layer increases with age due to the deposition of secondary and tertiary 

dentin, reducing the volume of the pulp chamber and the root canals. The most 

peripheral aspect of the pulp contains four layers of cells: the odontoblastic layer 

(the  most  external  one),  the cell-free  zone,  the  cell-rich zone and the  parietal 

plexus of nerves. Deep inside is the pulp proper, composed of a great amount of 

fibroblasts and ECM. Blood vessels and nerves enter the tooth mostly through the 

apical foramen. Other cells in the pulp include undifferentiated mesenchymal cells, 

deriving from dental papilla, fibrocytes, macrophages and lymphocytes.

Alveolar bone

The  bone  that  supports  the  teeth  is  called  alveolar  bone.  It  is  composed  of 

compact bone and trabecular or spongy bone. The outside wall  of the bone is 

compact bone, such as the thin layer that lines the socket known as lamina dura.

The spongy bone is inside and contains bone marrow. The number and the size of 

the trabeculae in this bone are determined by the function activity of the organ.

Alveolar bone proper is the part just around the tooth and it gives attachment to 

the PDL fibres (bundle bone). The alveolar bone proper is also called cribiform 

plate, due to the presence of perforation for the entry of vessels and nerves.

Bone is made of 65% inorganic material (mainly hydroxyapatite) by weight, 15% 

water, 20% organic material. The organic matrix is composed of collagen type I 

(90-95%),  Gla  proteins,  glycoproteins,  phosphorines,  proteoglycans,  growth 

factors and bone morphogenetic proteins (e.g. osteogenin) [Lindhe et al. 2009a].
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Odontogenesis

During the sixth week of embryogenesis, after the migration of neural crest cells 

into head and neck mesenchyme, the ectoderm of the first brachial arch begins to 

proliferate giving rise to the vestibular lamina and the dental lamina.

Dental lamina is a band of ectodermic cells growing from the epithelium of the 

stomodeum into the underlying mesenchyme and giving rise to the enamel organs 

of teeth, along the horse shoe shaped dental arches.

Several  transcription  factors  are  implicated  in  odontogenesis,  including  Pax9, 

Pitx2, Runx2, Msx1, Msx2, Bmp2, Bmp4, Fgf8 and Fgf9 [Bei and Maas 1998]. The 

development is commonly divided into the following stages: the bud stage, the cap 

stage,the bell stage.

The early bell stage of odontogenesis is characterized by epithelial expansion and 

differentiation into the inner and outer enamel epithelium, stratum intermedium and 

stellate reticulum.

During the late bell stage, two tooth specific cell types are formed: ameloblasts, 

which  derive  from  the  inner  enamel  epithelium  and  produce  enamel,  and 

odontoblasts, which differentiate from dental papilla and synthesize dentin.

Dentinogenesis starts before enamel formation with the secretion of an organic 

matrix  in  the  area  directly  adjacent  to  the  inner  enamel  epithelium.  Dentin  is 

formed  by  the  production  of  organic  matrix  (predentin)  and  the  simultaneous 

mineralization of this matrix [Hao et al. 2009].

After crown formation, root development begins. The cells of the inner and of the 

outer enamel epithelium become in contact and give rise to the cervical loop at the 

base of enamel organ.

The cells of the cervical loop continue to grow away from the crown and become 

Hertwig’s epithelial  root sheath. It  induce the adjacent cells of dental papilla to 

differentiate into odontoblasts and produce dentin. Once this structure fragments, 

the dentin of the root comes in contact with the dental follicle and stimulates the 

cementoblasts to begin cementum secretion.

The dental follicle also gives rise to the other supporting structure of the tooth: the 

periodontal ligament and the alveolar bone proper [Luan et al. 2006].
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Bone tissue 

Bone tissue is a connective tissue specialized in providing support. Affinity of bone 

tissue with connective tissues is confirmed by both its origin from mesenchyme, 

the embryonic tissue where connective tissues is derived from, and its composition 

since  the  extracellular  matrix  is  made  up  of  collagen  fibers  and  amorphous 

fundamental substance.

Bone tissue is characterized by mineralization. The presence of minerals and the 

peculiar distribution of organic components in the extracellular matrix lend to this 

tissue remarkable mechanic properties: hardness, resistance to pressure, traction 

and torsion. Thanks to these properties, bone tissue represents an ideal material  

for the formation of skeletal bones, which as a whole can be seen as a supportive 

scaffolding of the organism. Furthermore, given the relevant amount of calcium 

salts, bone tissue represents the principal store of calcium ions for the metabolic 

needs of the entire organism.

Calcium deposition in the bone and its mobilization, finely controlled by endocrine 

mechanisms, provide a crucial contribution to the regulation of plasma levels of 

this ion.

Morphology of bone tissue 

From a macroscopic point  of view, two varieties of bone can be distinguished: 

compact bone and spongy bone (Figure 4)

Compact bone

Compact  bone  is  found  in  the  outer  layer  of  short,  flat  and  long  bones  and 

constitutes the diaphysis of the latter as well.

The bone matrix of the compact bone is organized in lamellae which form cavities 

named  bone  lacunae  containing  osteocytes.  Compact  bone  lamellae  usually 

arrange themselves in three different ways:

- Concentrically around vascular channels to form cylindrical structures, na-

med  Haversian systems or  osteons, oriented along the major axis of the 

bone;

- In the spaces around osteons, taking on various dimensions and irregular 

shapes, to form interstitial systems ;
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- Under the periosteum (a layer of connective tissue on the outer surface of 

the bone) and over the endostium (connective tissue on the inner surface of 

the bone) to form inner and outer circumferential lamellae.

In the compact bone two categories of vascular channels can be identified:

- Harvesian  canals:  longitudinal  canals  located  at  the  center  of  osteons 

containing one or two vessels;

- Volkmann’s canals: transverse canals interconnecting Harvesian canals

Spongy bone

Spongy bone can be found primarily inside short bone, flat bones and epiphysis of  

long bones.

It  is  made  up  by  a  tridimensional  network  of  branched  bone  spicules  named 

trabeculae, that limit a labyrinth of interconnected spaces occupied by hemopoietic 

bone marrow.

Figure  4: Distribution  of  compact  and 
spongy bones in the bone.

Bone extracellular matrix

Being a connective tissue,  bone tissue contains  a  relevant  amount  of  organic 

extracellular  matrix,  composed  of  connective  fibers  and  amorphous  substance 

enriched by the mineral component.

Organic matrix

It favors resistance to traction and pressure. It consists of:

- connective fibers: almost totally made up of Type I collagen fibers, are cha-

racterized by a great number of crossed bundles that maintain united the si-

gle molecules of tropocollagen. The abundant presence of collagen is the 
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main cause of the marked acidophilia that  characterizes the intracellular 

substance of the bone.

Collagen fibers aggregate to  form remarkably thick collagen fibers (5-10 

µm) only in the fibrous bone tissue, whereas in the lamellar bone tissue col-

lagen  microfibrils  group  to  form a  homogeneous tridimensional  network. 

Connective  fibers  are  particularly  abundant  in  the  periosteum therefrom 

thick bundles of collagen fibers start to penetrate into the cortical bone tis-

sue and get lost in the intracellular substance of the bone. These bundles 

constitute  Sharpey’s perforating fibers, which fasten the periosteum to the 

surface of the bone.

- elastic fibers: virtually absent from the bone tissue, reticular fibers are loca-

ted at the level of the basal membrane that surrounds intraosseous blood 

vessels;

- amorphous substance: characterized by a peculiar and relevantly different 

composition in respect to other connective tissues, it is composed of va-

rious macromolecules:

 Proteoglycans: made up of sulfated glycosaminoglycan acids (chera-

tan sulfate, chondroitin sulfate) which are kept together by short pro-

tein chains.

o Glycoproteins: include several molecules, some of which are belie-

ved to play a fundamental  role in the mineralization processes. 

Among these:

a) Osteonectin: the most abundant protein. It possesses high af-

finity for calcium, both as a free ion and as an associated ion 

in crystal-like complexes. It is believed that it works as nuclea-

tion agent for mineral crystals since it is considered capable of 

concentrating  calcium located nearby, thus creating the con-

ditions to start the precipitation of calcium phosphatase.

b) Fibronectin: is an adhesion molecule located primarily in the 

pericelluar matrix and characterized by a portion capable of 

binding with collagen. It is believed that fibronectin is involved 

in the following processes: migration, adhesion to the matrix 

and organization of the bone cells.

c) Alkaline phosphatase:  is an enzyme capable of hydrolyzing 

phosphate groups of organic substrates in a basic  environ-
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ment. It is involved in the processes of mineralization, provi-

ding phosphate ions to form mineral crystals.

o Sialoproteins  (BSP):  specific  glycoproteins  containing  traces  of 

sialic acid which possess the RGD (Arg-Gly-Asp) aminoacid se-

quences responsible for the adhesion of the cells to the bone ma-

trix. They include osteopontin.

o Proteins containing gamma linolenic acid (GLA): thanks to GLA 

they are able to chelate bivalent cations such as calcium ion. Two 

proteins containing GLA can be identified in the bone:

a) Osteumcalcin: a small protein containing 3 or 5 GLA residues. 

It is involved in the inhibition of the matrix mineralization since 

it binds calcium ions and makes them available for the combi-

nation with phosphate ions thus inhibiting the dimensional gro-

wth of crystal minerals. It is abundant in the mature bone tis-

sue whereas is scarce in the developing bone tissue (osteoid 

tissue).

b) GLA protein  of  the matrix:  it  has  a higher  molecular  weigh 

than osteumcalcin and can be found both in the mature bone 

and in the osteoid tissue as well as in the cartilage which is 

about to be replaced by osseous tissue.

Inorganic matrix

The mineral component represents 65% of the dry weight of the bone.

Its function is to provide hardness and rigidity to the bone tissue.

It  is made up of calcium crystals - mainly calcium phosphate -  and of calcium 

carbonate,  calcium  fluoride  and  magnesium  phosphate  in  smaller  quantities. 

Calcium phosphate  can be found in  the form of  apatite  crystals  (Ca10(PO4)6
2+) 

whose positive charges are normally neutralized by the binding with two hydroxide 

ions thus forming hydroxyapatite.

Hydroxyapatite crystals appear like long and thin needles about 2 nm thick and 20-

40  nm  long.  They  tend  to  arrange  themselves  parallel  to  each  other  and  to 

collagen microfibrils, covering their surface and permeating their porosities.

During the mineralization process of the bone, calcium phosphate precipitates at 

first in the form of tiny amorphous aggregates.

These initial nuclei of mineral concretion are rapidly replaced by very thin crystals 

positioned parallel  to  the  filamentous molecules  of  the  fundamental  substance 
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called axial filaments.These crystals assume the typical shape of apatite crystals, 

progressively  occupying  most  space  inbetween  collagen  microfibrils  and 

permeating the microfibrils themselves. Once the apatite crystals have formed, the 

deposition of new mineral can occur both through the formation of new crystals 

and  through  apposition  on  pre-existing  crystals.  This  phenomenon  is  finely 

regulated by bone cells thanks to the production of specific molecules of the bone 

matrix.

Bone cells

Four types of cells can be identified in the bone tissue: 

Osteoprogenitors (also  called  pre-osteoblasts),  osteoblasts,  osteocytes and 

osteoclasts.  Among these,  osteoprogenitors,  osteoblasts and osteocytes are in 

fact subsequent functional phases of the same cell type and are derived from the 

pluripotent  mesenchymal  cell  of  connective  tissues.  Osteoclasts,  instead,  are 

derived from precursors migrated from the blood to the bone tissue, the so called 

pre-osteoclasts, which are derived from the stem cells of the hematopoietic bone 

marrow.

Osteoprogentitor cells

Pre-osteoblasts  have  a  spindle  or  oval  shape,  a  dispersed  chromatin  nucleus 

(euchromatic)  with  a  large  nucleolus  and  scarce  and  basophilic  cytoplasm 

because  of  the  presence  of  a  number  of  free  polyribosomes,  whereas  other 

granules are scantily represented.

Osteoprogenitor cells place themselves on the free surfaces of the bones: the can 

be recognized at level of the inner layer of the periosteum, the so called Ollier’s 

osteogenic  layer,  rich  in  vessels  and  at  the  level  of  the  endostium  close  to 

capillaries.

Osteoprogenitor cells are able to proliferate, a feature which is shown especially 

when their body is growing but can be observed also during adult life. They can 

produce  and  secrete  growth  and  differentiaton  factors,  the  so  called bone 

morphogenetic  proteins (BMP).  When  they  start  the  differentiation  process, 

osteoprogenitor cells change into osteoblasts.
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Osteoblasts

Osteoblasts are primarily responsible for synthesizing the extracellular bone matrix 

and for its mineralization. They have a spherical or polyhedric shape and tend to 

align to form epithelious laminae by the developing bone surfaces. In the active 

phase of the deposition of the bone matrix, osteoblasts have relevant dimensions 

(about  20  µm),  a  euchromatic  spherical  nucleus  with  a  large  nucleolus,  a 

basophilic abundant cytoplasm with PAS-positive granulations, a well-developed 

Golgi’s  apparatus and a number of  long-shaped mitochondria.  Osteoblasts are 

characterized by the positivity for alkaline phosphatase and by the presence of 

small cytoplasmatic granules pink in colour containing the precursors of the bone 

matrix glycoproteins. On the  side facing the mineralizing bone matrix, they show 

several  vescicles  rich  in  proteoglycan  which,  once  expelled,  will  form  the 

mineralization nuclei.

Osteoclasts are interconnected with each other and with nearby osteocytes by 

means of gap junctions to exchange signal molecules which coordinate metabolic 

activity and bone matrix deposition.

Osteocytes

Osteocytes  are  cells  which  are  typically  present  in  the  mature  bone  and  are 

responsible for its maintenance and turnover. They are terminal cells with a finite 

lifespan.

An osteocyte is a star-shaped cell, with a cellular body resembling a biconvex lens 

and with several cytoplasmatic extensions.

It  presents  a  heterochromatic  nucleus  (with  condensed  chromatin)  a  small 

nucleolus  and  a  perinuclear  cytoplasm  rather  scarce  and  basophilic. 

Cytoplasmatic  organules,  RER  and  Golgi’s  apparatus  tend  to  decrease  their 

dimension as the cell grows older until it dies due to apoptosis.

In the bone tissue, the osteocyte is enclosed in a niche carved in the bone matrix, 

called bone lacuna, whose shape replicates that of the cell, whereas its extensions 

reach thin canals called bone canaliculi.

Each osteocyte is in contact with surrounding osteocytes through gap junctions at 

the  extremities  of  their  extensions.  Water  and  metabolites  can  reach  all 

osteocytes, even the farthest away from blood vessels, through non-mineralized 

osteoid  tissue  which  covers  the  inner  communicating  surface  of  lacunae  and 

canaliculi. Moreover, metabolites and signal molecules dissolved in the cytoplasm 

can be exchanged between osteocytes through the gap junctions.
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Osteoclasts

Osteoclasts  are  cells  specialized  in  bone  resorption.  They  derive  from  pre-

osteoclasts originating in the hematopoietic bone marrow and are carried by the 

blood  stream  up  to  the  sites  of  bone  resorption,  where  they  melt  together 

generating  active  osteoclasts,  i.e.  syncytial  elements  capable  of  dissolve  and 

digest organic components of the bone tissue.

Mature osteoclasts are giant  plurinucleated cells  (100-200 µm) with acidophilic 

cytoplasm;  in  a  single  osteoclast  can  be  detected  up  to  50  nuclei  with  lax 

chromatin and clearly visible nucleolus. When a osteoclasts is activated it adheres 

to the mineralized matrix and due to its erosive action a cavity called  Howship’s 

lacuna is formed. The side of the cell which is clinged to the bone is characterized 

by the so called ruffled border, a thickening of the cell surface made up of a large 

number  of  cytoplasmatic  lamellae,  having  different  sizes  and  lengths,  which 

considerably widen the extension of the plasmalemma.

Through the ruffled border osteoclasts adhere tightly to the surface of the bone to 

be resorbed, delimiting the extracellular environment where ostoelytic substances 

are released, an area called sealing zone.The resorbtion of the bone matrix begins 

with  the  dissolution  of  the  mineral  component  due  to  the  acidification  of  the 

microenvironment  in  the  sealing  zone,  followed  by  exocytosis  of  lysosomal 

enzymes which digest the organic components of the bone matrix. Furthermore, 

osteoclasts  stimulate  osteobalsts  to  release  collagenase  enzyme  which 

contributes, through its lytic activity, to the digestion of the organic matrix of the 

bone. Once the first lacuna has been formed, the osteoclast separates from the 

bone matrix and migrates with amoeboid movement to a portion of an adjacent 

bone, adhering again and forming a new lacuna. Osteoclastic function is finely 

regulated by hormonal and local factors.

Bone histogenesis

Bone always develops replacing a pre-existing tissue,  be it  mesenchyme or  a 

differentiated connective tissue. The processes which lead to the genesis of the 

bone tissue within another tissue are called ossification or osteogenesis.

These processes are maximized during prenatal life and continue to maintain a 

high pace throughout the period of the somatic development.
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Two types of ossification can be identified:

- Direct or intramembranous ossification;

- Indirect or chondral ossification.

Direct ossification

Direct  or  intramembranous  ossification  is  typical  of  flat  bones.  It  starts  from 

ossification centers which develop in the mesenchyme at early stages of foetal life 

or in membranes of fibrous, dense connective tissue derived from mesenchyme at 

later stages of intrauterine and postnatal life.

Direct  ossification  begins when,  beside  a  rich vascular  network,  mesenchymal 

cells differentiate into osteoprogenitor cells which, in turn, change into osteoblasts.

Through gap  junctions osteoblasts  align  themselves in  epithelial-like  rows  and 

start  depositing  the  organic  matrix  of  the  bone,  i.e.  osteoid  tissue.  When  the 

osteoid  tissue  undergoes  mineralization,  it  changes  into  spongy  bone  and 

osteoblasts  remain  enclosed  in  bone  lacunae  transforming  into  osteocytes. 

Afterwards preosteoclasts differentiate  into  osteoclasts  which dissociate fibrous 

bone, later replaced by lamellar bone.

Indirect ossification

Indirect or chondral ossification is the most widespread variant. Typically, the bone 

is  preceded  by  a  cartilage  scaffold  with  about  the  same  shape  of  the  bone 

segment to be and which is later reabsorbed and replaced by bone tissue. Bone 

can develop both inside the cartilage scaffold (endochondral ossification) and on 

the outer surface of the cartilage in contact with the perichondrium (perichondral 

ossification).

Perichondrial ossification starts in the perichondrium where osteoprogenitor cells 

differentiate into osteoblasts which deposit osteoid tissue. This tissue is committed 

to become fiber bone through mineralization and is later rearranged by osteoclasts 

with subsequent deposition of lamellar bone. The bone thus generated binds to 

the surface of the cartilage,  under the perichondrium which then develops into 

periosteum.

Endochondrial ossification starts when the chondrocytes of the cartilage scaffold 

undergo hypertrophy. In their cytoplasm drops of glycogen accumulation and PAS-

positive granulations resembling the calcifying globules of the osteoclasts can be 

detected. They release vesicles inducing the calcification of the cartilage matrix 

and, finally, are destined to undergo apoptosis.
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Calcified cartilage matrix is partially subject to erosion thanks to the intervention of 

cells  of  osteoclastic  nature,  coming from the nearby already-formed bone and 

generating wide cartilage lacunae which merge into each other and where blood 

vessels,  departing  from the  perichondrium and  accompanied  by  mesenchymal 

cells,  penetrate.  Mesenchymal  cells  differentiate  into  osteoprogenitor  cells  and 

afterwards  in  osteoblasts  which  deposit  fibrous  bone  by  the  remnants  of  the 

calcified  cartilage matrix.  Finally,  osteoclasts  intervene to  resorb both  the fiber 

bone and the mineralized bone matrix, whereas new osteoblasts deposit lamellar 

bone. Some of the mesenchymal cells, penetrated with blood vessels, originate 

new vessels and hematopoietic bone marrow. [Zallone 2007; Capitani et al. 1996]

Implant therapy

Missing teeth and supporting oral  tissues have traditionally  been replaced with 

removable dentures or fixed bridges permitting restoration of masticatory, phonetic 

function, and aesthetics.

Replacement  of  lost  dentition  has been traced to  ancient  Egyptian  and South 

American civilizations. In ancient Egyptian writings implanted animal and carved 

ivory teeth were the oldest examples of primitive implantology. In eighteenth and 

nineteenth century England and colonial America, poor individuals sold their teeth 

for extraction and transplantation to wealthy recipients. The clinical outcomes of 

these transplanted dentitions were either ankylosis or root resorption. Continued 

research  prolonged  allotransplant  survival  but  did  not  appreciably  improve 

predictability.

In  1809  Maggiolo  placed  an  immediate  single-stage  gold  implant  in  a  fresh 

extraction site  with  the  coronal  aspect  of  the  fixture  protruding  just  above the 

gingiva.  Postoperative  complications  included  severe  pain  and  gingival 

inflammation.  Since  then  various  implant  materials  were  used  ranging  from 

roughened lead roots holding a platinum post to tubes of gold and iridium. Adams 

in  1937  patented  a  submergible  threaded  cylindrical  implant  with  a  ball  head 

screwed to the root for retention for an overdenture in a fashion similar to that 

done today.

Up to this point implant success was marginal with a maximum longevity of only a 

few years.  Strock placed the first  long-term endosseous implant  at  Harvard in 
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1938. This implant was a threaded cobalt-chrome-molybdenum screw with a cone-

shaped head for the cementation of a jacket crown. The implant remained stable 

and asymptomatic until  1955, at  which time the patient died in a car accident.  

Strock  wrote,  “The  histological  sections  of  implants  in  the  dog  study  showed 

remarkable complete tolerance of the dental implant and the pathologist report so 

indicated to our gratification.” Strock demonstrated for the first time that metallic 

endosteal dental implants were tolerated in humans, with a survival rate of up to 

17 years.

Due to inadequate alveolar bone height in certain sites of the jaws, subperiosteal 

implants were developed. In 1943 Dahl placed a metal structure on the maxillary 

alveolar crest with four projecting posts.  Multiple variations to this initial  design 

were  fabricated  but  these  devices  often  resulted  in  wound  dehiscence.  Blade 

implants were introduced by Linkow and by Roberts  and Roberts.  There were 

numerous configurations with broad applications,  and the implants became the 

most widely used device in implantology in the United States and abroad.

A two-staged  threaded  titanium root-form implant  was  first  presented in  North 

America by Brånemark in 1978. He showed that titanium oculars, placed in the 

femurs  of  rabbits,  osseointegrated  in  the  femurs  of  rabbits  after  a  period  of 

healing.

Two-staged titanium implants were first  placed in patients in 1965 and studies 

showed  prolonged  survival,  free-standing  function,  bone  maintenance,  and 

significant  improvement  in  benefit-to-risk  ratio  over  all  previous  implants.  This 

breakthrough  has  revolutionalized  maxillofacial  reconstruction.  Subsequently, 

various implant  designs have been manufactured and research in implantology 

has grown exponentially. The frontiers of implantology are rapidly being advanced 

and esthetics continue to be an integral part of this progress  [Brånemark et al. 

1985].

In  1977,  Brånemark  presented  his  research  work  carried  out  over  10  years 

showing  that  bone  can  grow  intimately  onto  the  surface  of  titanium  implants 

(Brånemark 1977). The now well-accepted concept, termed osseointegration, has 

undoubtedly been one of the most significant scientific breakthroughs in dentistry 

over the past 30 years. A multitude of implant designs have been marketed since, 

and the clinical situations in which osseointegrated implantretained prostheses are 

used have expanded enormously.

One  of  the  key  factors  for  the  long-term  success  of  dental  implants  is  the 
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maintenance of healthy tissues around them. A cause-effect relationship between 

bacterial plaque accumulation and the development of inflammatory changes in 

the soft  tissues surrounding dental  implants has been shown  [Pontoriero et al. 

1994]. If this reversible condition, called ’peri-implant mucositis’, is left untreated, it 

may lead to the progressive destruction of the tissues supporting an implant (peri-

implantitis) and ultimately to its failure. [Mombelli 1999] [Esposito et al. 2011]

The 20-year cumulative survival rates of short and standard implants were 92.3 

and 95.9%, respectively. The cumulative success rates were 78.3 and 81.4%. The 

survival rates of short implants in posterior and anterior regions were comparable: 

95 and 96.4%, respectively.[Lops et al. 2012]

Implant therapy nowadays is a major branch of dentistry that is constantly evolving 

also thanks to the scientific interest of many companies. The patients themselves 

requiring implant  therapy to get  a fixed prosthesis that mimics the most of  the 

natural tooth (Figure 5,  Figure 6). Implant therapy can also be used to stabilize 

dentures and thus ensuring greater comfort to the patient both masticatory that 

phonetic and aesthetic (Figure 7).
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Figure 7: patient before and after treatment

Peri-implantitis 

Implant therapy is a well established method of replacing missing teeth. Excellent 

long- term results can be achieved, but biologic complications may occur.

The  most  common  biological  complications  were  hygiene-related:  30.2%  of 

patients displayed peri-implant mucositis and 10.4% peri-implantitis  [Francetti  et 

al. 2013]. 

Perimplantitis  is  defined  as:  plaque-induced  progressive  marginal  bone  loss 

observed on radiographs with clinical  signs of  infection of  the peri-implant soft  

tissues (Figure 8).
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Figure  8: patient with severe peri-implantitis: presence of suppuration and bone 
loss

The  occurrence  of  peri-implantitis  is  not  rare.  In  a  single-cohort  study  [Roos-

Jansåker et al. 2006] peri-implantitis, defined as a marginal bone loss of 3 mm or 

more in combination with bleeding on probing or pus or both, was diagnosed in 

16% of patients treated with turned (machined) Brånemark implants 9 to 14 years 

after loading. The occurrence of peri-implantitis around implants with roughened 

surfaces is likely to be even higher, since it was observed in another Cochrane 

systematic review  [Esposito et al.  2007] that statistically significantly more peri-

implantitis occurred at 3 years of loading around implants with roughened surfaces 

when compared to turned (machined) Brånemark implants  [Esposito et al. 2011].

In a recent consensus conference Klinge et Meyle reported the prevalence of peri-

implantitis over a 5-10 year period following implant placement has been in the 

order of 10% of implants and 20% of patients [Klinge et al. 2012].

Cecchinato showed that during the 10-year follow-up period, 12% of patients and 

5% of implants displayed signs of peri-implantitis (bone loss >0.5 mm, BoP+, PPD 

≥6 mm) [Cecchinato et al. 2013].

Keratinized gingiva has been shown to promote soft tissue health around teeth. 

However, around dental implants, the presence of keratinized gingiva may or may 

not  be  important  for  preservation  of  crestal  bone.  Krekeler  and  colleagues 

suggested that  there is a  strong correlation of  keratinized gingiva with  implant 

failure and the absence of an adequate band of keratinized mucosa surrounding 

the  abutment.  This  suggested  relationship  was  based  on  the  ability  of  the 

keratinized mucosa to withstand bacterial insult and ingression, which can lead to 
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peri-implantitis [Krekeler et al. 1985].

The keratinized gingiva allows a better marginal seal, mantaining a mucosal collar 

that prevents the access of bacteria into the underlying tissues. These bacteria 

can maintain inflammatory conditions harmful  to the peri  implant  soft  and hard 

tissues. The Brito’s systematic review concludes that the presence of an adequate 

zone of keratinized tissue may be necessary because it was shown to be related 

to better peri-implant tissue health [Brito et al. 2013].

From studies of Lang, Lindhe and Schou conducted on animal models in which 

they were created peri-implantitis and experimental periodontitis, is evident that to 

support peri-implant pathology plaque is a key factor. Plaque is a biofilm rich in 

bacteria. The bacteria around teeth and implants have very similar characteristics: 

sites  showing  periodontal  and  peri-implant  inflammation  with  diffuse  biofilms, 

contain a significant amount of gram-negative bacteria.

The  main  treatment  of  peri-implantitis  is  based  on  the  resolution  of  the 

inflammatory lesion. In experiments on animals conducted by Ericsson, Persson 

and  Lindhe,  peri-implant  experimentally  induced  lesions  were  subsequently 

subjected to therapy. The animals were administered systemic antibiotics, while 

the local treatment was performed only on some of the implant sites affected. After 

several months of healing, the implant sites were also receiving local therapy, ie 

the subgingival mechanical cleaning, inflammatory lesions had resolved, While in 

non-exposed  to  local  treatment  sites  had  been  maintained  the  inflammatory 

infiltrate in the mucosa and bone.

Peri-implantitis antibiotics treatment must be combined with a meticulous removal 

of biofilm from contaminated implant surface.

To  conclude  it  can  be  stated  that  lesions  caused  by  peri-implantitis  are  little 

encapsulated, extend inside the marginal bone tissue and can, if left to progress, 

lead  to  loss  of  the  implant.  Symptoms  of  peri-implantitis  are  related  to 

infectious/inflammatory  lesion.  Therefore  you  are  having  radiographic  signs  of 

bone loss, which looks lijke a crater. Swelling and redness of the mucosa occur 

with frequency, but also bleeding after slight probing and suppuration. However 

the implant  may still  remain stable  for  extended periods of  time  [Lindhe et  al. 

2009b].
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Bone regeneration

Autogenous tissues have been widely used and are still considered as the gold 

standard to which all  other biomaterials  are compared  [Dimitriou et  al.  2011a]. 

Nevertheless,  even  the  most  advanced  reconstructive  techniques  using 

autologous  materials  are  often  insufficient  to  restore  extensive  or  complex 

maxillofacial  defects  [Susarla  et  al.  2011].  Autografts  contain  all  of  the  basic 

elements  necessary  to  induce  effective  tissue  regeneration,  provided  cells, 

extracellular matrix and cytokines [Pape et al. 2010; Khan et al. 2005]. However, 

the use of autogenous tissue involves the need of harvesting it from a donor site,  

with  the  consequent  drawbacks  in  terms  of  costs,  procedure  time,  patient 

discomfort and possible complications.

Additionally, oftentimes the volume of harvested tissues is not sufficient to fill or 

cover a defect, given the limited availability of autogenous tissues [Dimitriou et al. 

2011b;  Zouhary  2010].  To  overcome these  limitations,  a  variety  of  exogenous 

substitute  materials,  including  allografts,  xenografts  and  alloplasts,  have  been 

introduced in clinical practice over the last three decades  [Bauer and Muschler 

2000; De Long et al. 2007]. These materials primarily act as scaffolds, supporting 

the  migration  of  cells  from the  periphery  of  the  grafted  area.  Substitutes  are 

indicated in the treatment of cases where the application of autografts alone may 

not  be  possible  [Finkemeier  2002].  Unfortunately,  when  comparing  these 

biomaterials to autografts other limitations emerge.

The presence of cellular populations, orchestrate the release of growth factors, 

maintenance of  a  stable  scaffold,  and  stimulate  angiogenesis  and  are  key for 

successful  tissue regeneration as they play a fundamental  role  on the healing 

process [Taba et al. 2005]. Controlling the dynamics of these elements allows for a 

more predictable treatment of challenging alveolar bone loss or extremily atrophy.

Novel  tissue  engineering  therapies  aimed  at  enabling  clinicians  to  achieve 

predictable regeneration have been recently developed.

Tissue engineering has a great potential in the clinical area for the regeneration of 

both hard and soft  tissues and could represent  a  new important  instrument to 

enhance wound healing in different scenarios.
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Tissue engineering

The  great  progress  in  the  knowledge  in  the  field  of  cellular  biology  and  of 

biotechnologies has led to the development of technologies aimed at the  in vitro 

growing and reconstruction of tissues or organs, thus defining a new branch of 

biomedical  sciences  known  as  tissue  engineering.  The  combination  of  these 

technologies make possible the  ex vivo expansion of autologous cells and their 

employment in the repair of lesions and in the regeneration of tissues through the 

use  of  biocompatible  three-dimensional  matrices.  By  suitably  modulating  the 

chemical, mechanical and physical characteristics of such matrices, it is possible 

to  use  them  as  supports  for  the  inoculation,  growth  and  differentiation  of 

autologous cells for the in vitro regeneration of specialized tissues.

Tissue engineering allows to combine the potentials of living cell transplantation 

with the technology of artificial organs for the realization of functional structures. 

For this reason, tissue engineering, with the introduction of bioartificial structures, 

represents  an  evolution  with  respect  to  the  substitutes  of  first  generation: 

traditional  artificial  organs  like  heart  valve  prostheses,  pacemakers  and 

orthopaedic  prostheses,  whose  clinical  alternative  was  represented  by  the 

transplantation of organs from donors. 

The in vitro reconstruction of a tissue or of a whole organ, however, requires not 

only an in-depth study of the composition and structure of the three-dimensional 

matrices,  but  also  of  the  physical  forces acting  on it.  Furthermore,  it  requires 

knowledge about the chemical and molecular factors that regulate the growth and 

differentiation of cells and tissues.

Therefore, it  can be reasonably stated that tissue engineering is based on two 

main components:  three-dimensional support and biological component. The 

three-dimensional support is represented by biomaterials, whereas the biological 

component comprises both the cells and the molecular factors.

Biomaterials

A biomaterial is the three-dimensional support necessary for cells to be distributed 

in the three dimensions and to lay the extracellular matrix. Therefore, a biomaterial 

is  an  element  or  a  combination  of  several  elements  used  in  the  treatment, 

improvement or replacement of a tissue or of a whole organ.
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Biomaterials,  in  order  to  be  suitable  for  tissue engineering,  must  possess  the 

following characteristics:

- Biocompatibility with the receiving tissue or organ;

- Biodegradability: the ideal degradation speed corresponds to the speed of 

formation of the new tissue;

- Non-toxicity;

- Non-immunogenicity;

- Optimal mechanical properties to be inserted in the surrounding tissue;

- Suitable porosity and morphology for the transport of cells, gases, metabol-

ites, nutrients and molecules both within the biomaterial and between the 

biomaterial and the surrounding environment.

In  general,  biomaterials  are  designed  and  built  drawing  inspiration  from  the 

extracellular matrix, as this guarantees communication between the cells and the 

stability  of  the  tissues  by  means  of  the  adhesion  molecules.  In  general,  the 

extracellular matrix is made up of the ground substance, a very hydrous gel that 

provides  the  matrix  with  compressive  strength,  of  fibres  that  provide  tensile 

strength,  and  of  water  that  favours  the  rapid  diffusion  of  substances.  These 

elements, common to all extracellular matrices, are combined with different ratios 

in each tissue. Natural, synthetic or semi-synthetic biomaterials were used in order 

to obtain three-dimensional structures compatible with the extracellular matrix of 

the  tissue  to  be  regenerated.  Natural  biomaterials  are,  for  example,  collagen, 

gelatin,  fibrin,  hyaluronic  acid,  cellulose,  chitin,  alginates,  hydroxyapatite  and 

materials from cadavers or from animals. They provide several advantages, such 

as  selective  adhesion  (collagen),  biodegradability  (gelatin  and  chitin)  and 

mechanical properties similar to those of natural tissues (heart valves and blood 

vessels from animals). Natural biomaterials have some disadvantages as well: the 

possibility to transmit viral infections, antigenicity and instability. On the other hand, 

synthetic  biomaterials  are:  polyglycolic  acid  (PGA),  polylactic  acid  (PLA), 

polytetrafluoroethylene (PTFE),  ceramic and alloys.  They feature a  satisfactory 

three-dimensional  architecture  but  questionable  biocompatibility;  furthermore, 

most of the synthetic biomaterials have a poor content of information and signals 

for  the  cells.  Finally,  semi-synthetic  biomaterials  derive  from alterations  of  the 

natural  biomaterials  for  the  purpose  of  improving  their  performance.  Some 

examples are modified hyaluronic acid and hydroxyapatite derivatives.

On the basis of their application, biomaterials can be divided into supports for the 
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reconstruction of soft tissue or for the reconstruction of hard tissue [Bressan et al. 

2011] [Gardin et al. 2011].

Soft Tissue

At present, the strategies for the reconstruction of soft tissue are based on grafts 

of autologous tissue or on bioengineered implants made up of cells inoculated in 

biocompatible supports. To this purpose, different natural biomaterials are used, 

also in association with synthetic or organic materials.

Some examples of biomaterials used in soft tissue regeneration are:

- Collagen: it is the main component of the extracellular matrix of the con-

nective tissue.  Thanks to its biocompatibility,  strength and flexibility,  it  is 

widely used to generate dermal substitutes. Several scaffolds based on col-

lagen are currently marketed as dermal substitutes, in particular in the form 

of hydrogel. These substitutes are usually obtained through the suspension 

of dermal fibroblasts in a collagen hydrogel. However, their use as a per-

manent graft is limited due to their low resistance to degradation, especially 

if the hydrogel is a low-concentration hydrogel [Helary et al. 2011]. Dermal 

substitutes made up of a collagen layer associated with dermal glycosa-

minoglycans superimposed to a silicone layer are available on the market. 

These substitutes were successfully used in the treatment of chronic cu-

taneous wounds [Kahn et al. 2011].

- Gelatin: it is produced from the hydrolysis of collagen, it has high haemo-

static power and does not cause antigenicity. Thanks to its properties, gelat-

in was widely used as a tissue adhesive for the closure of wounds [Dhan-

dayuthapani et al. 2010].

- Fibrin: it derives from the polymerization of fibrinogen in the presence of 

thrombin. It is not part of the extracellular matrix but is temporarily present 

during the healing of wounds as it is involved in blood clotting. In the field of 

regenerative medicine, fibrin glue was widely used as a tissue adhesive. 

Fibrin glue is marketed in the form of two separate solutions: one of fibrino-

gen and the other of thrombin, applicable by means of a double syringe or a 

spray. When they are mixed together, they mime the last phases of the clot-

ting cascade and form a fibrin clot [Thompson et al. 1988]. Fibrin glue was 

used, as an alternative to clips, in burn patients subjected to the removal of 

the wound and to skin graft. It has proven to be safe and efficient, giving 

better results than clipping. Furthermore, the use of fibrin glue has obtained 
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compliance from patients, since the removal of clips is often painful and re-

quires more time [Foster et al. 2008].

- Hyaluronic acid: it is a polysaccharide of the extracellular matrix diffused in 

a ubiquitous way. In an aqueous environment, it generates viscous matrices 

guaranteeing tissue hydration, it regulates the organization of matrix pro-

teoglycans, and it is also involved in cellular adhesion, proliferation, migra-

tion and differentiation.  In  vitro and  in  vivo studies  have widely  demon-

strated its potentials in the construction of three-dimensional supports use-

ful for tissue engineering [Solchaga et al. 1999] . Hyaluronic acid derivatives 

are available on the market, such as HYAFF® 11 (Fidia, Italy), a linear deriv-

ative of hyaluronic acid modified by complete esterification of the carboxyl 

groups of glucuronic acid with benzyl groups. This modification determines 

lower hydrophilicity and degradation by the hyaluronidases. The esterified 

derivatives maintain the same biological characteristics as hyaluronic acid, 

but they have a longer permanence time when they are implanted and they 

can be processed by means of various weaving techniques producing vari-

ous articles like gauzes, sponges, microspheres, granules, membranes and 

non-woven felts, with characteristics that can be adapted to many clinical 

applications [Rastrelli et al. 1990].

- Laminin: it is a glycoprotein of the extracellular matrix generally present in 

the basement membrane. It promotes cellular adhesion, migration, growth 

and differentiation. In the field of tissue engineering laminin is used to im-

prove the functionalities of  three-dimensional  supports  and to prevent  or 

minimize transplant  rejection.  It  has  been demonstrated that  associating 

laminin with a chitin-based support (a structural element of the exoskeleton 

of crustaceans) promotes the healing of wounds by fastening re-epithelializ-

ation through the reduction of inflammatory infiltrates and the higher prolif-

eration of fibroblasts [Min et al. 2010].

Hard Tissue

In general, by speaking of hard tissue reconstruction one means the regeneration 

of the hard tissue par excellence: bone tissue. At present, progresses in the field of 

nanotechnologies have allowed to produce bone substitutes alternative to bone 

tissue grafts deriving from the same patient (autotransplantation) or from donors 

(allotransplantation). Today autotransplantation is still the “gold standard” in bone 

reconstruction as it features some important qualities:
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- Osteoconductivity: ensuring cellular adhesion and proliferation in a structure 

that allows for cellular migration and for the formation of new vessels;

- Osteogenicity: ensuring the presence of osteoblasts in the graft adhesion 

seat to favour the generation of new bone tissue;

- Osteoinductivity: capability to stimulate the surrounding stem or osteopro-

genitor cells to differentiate in osteoblasts.

Despite  these  characteristics,  autotransplantation  is  associated  with  several 

collateral  effects,  among  which:  post-surgery  pain,  formation  of  hematomas, 

haemorrhages,  nervous  lesions,  infections  and  aesthetic  defects. 

Allotransplantation, on the other hand, implies a high risk of disease transmission 

and immune responses; for this reason, bone grafts, before being implanted, are 

frozen or freeze-dried. An alternative to allotransplantation is the  demineralized 

bone matrix,  produced from decalcified cortical  bone treated with radiation and 

chemical agents. The result, a bone matrix made up of denatured proteins only, is 

not  a  stable structure but  an osteoconductive substrate to  be used in case of 

structurally  stable  bone  lesions.  Although  there  exist  different  forms  of  bone 

transplantation,  they  all  share  reduced  osteoinductivity  and  the  absence  of  a 

cellular component, as the donor grafts are devitalized through radiation or freeze-

drying [Finkemeier 2002].

A way of getting round the drawbacks related to bone tissue transplantation is to 

treat the bone defects with bioengineered substitutes. In addition to the already 

mentioned characteristics of osteoconductivity, osteogenicity and osteoinductivity, 

the ideal bone substitute must possess other precise characteristics [Gardin et al. 

2012b]:

- Osseointegration: the capability to establish connections with the original 

bone tissue;

- Biodegradability;

- Morphology similar to the human bone;

- Easy clinical use;

- Economical.

A great number of bone substitutes, of natural and synthetic origin, which promote 

the proliferation, differentiation and migration of cells, are available on the market. 

Among these there are biomaterials made up of:

- Metals:  they  were  widely  used,  especially  titanium,  as  bone  substitutes 

thanks to their mechanical strength. However, after 10-15 years metal im-
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plants must be replaced due to their poor or incomplete osseointegration 

with the surrounding bone. In order to improve osseointegration, metal im-

plants were developed with nanostructured surfaces that increase their sur-

face wrinkledness and wettability favouring the absorption of proteins, cellu-

lar  adhesion and proliferation and calcium deposition  [Tran and Webster 

2009].

- Ceramics: based on calcium phosphate, such as hydroxyapatite (HA) and 

β-tricalcium phosphate (TCP), they are widely used in bone tissue regener-

ation thanks to their high biocompatibility with cells and bone tissue. Ceram-

ics are also bioactive, that is to say, they are able to support cellular adhe-

sion, proliferation and differentiation. Although HA and TCP resemble the in-

organic components of the bone matrix, their use is limited by their fragility 

and low resistance to pressure. Moreover, like metals, ceramics too feature 

a poor osseointegration, which can be made up for through the develop-

ment of nanoscale surfaces. With respect to conventional ceramics, nano-

scale ceramics feature a greater cellular adhesion and proliferation and cal-

cium  deposition  thanks  to  the  greater  wettability  and  adsorption  of  vit-

ronectin, one of the proteins involved in cellular adhesion  [Webster et al. 

2001].

- Polymers: of natural or synthetic origin. Natural polymers include polysac-

charides (alginate, chitin/chitosan, hyaluronic acid and derivatives) and pro-

teins (collagen, fibrin and silk). The advantage of natural polymers lies in 

their high biocompatibility, but synthetic polymers have no immunogenicity 

and can be processed to obtain particular characteristics  [Balasundaram 

and Webster 2007]. The most used synthetic polymers are polylactic acid 

(PLA), polyglycolic acid (PGA), and their co-polymer, polylactic-co-glycolic 

acid (PLGA). The osseointegration of polymers,  too, can be increased if 

modified on a nanoscale level, for example, through the bond with proteins 

or peptides that can increase cellular adhesion. Since the biological activity 

of the adhesion proteins is expressed through peculiar RGD sequences (ar-

ginin-glycin-aspartat), the functionalization of synthetic polymers with such 

sequences increases their interaction with integrins, the membrane recept-

ors of the RGD sequences, favouring cellular adhesion [Paletta et al. 2009].

Since the bone substitutes made up of one component only do not have all the 

characteristics of an ideal substitute, research in recent years has been focussing 
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on the combination of the above-listed materials.

Cell therapy applications for craniofacial regeneration

Interest about novel stem cell based therapies has exponentially been increasing 

over the past years, not only in the scientific community but also within the society.  

Indeed, stem cells seem to give the best chance for human tissue engineering, 

and  particularly,  mesenchymal  stem  cells  (MSCs)  represent  a  great  tool  in 

regenerative  medicine  because  of  their  ability  to  differentiate  into  a  variety  of 

specialized cells in addition to their immune privileged characteristics 

Hovewer both somatic and stem cells can be used in cell based therapy (Table 1). 

Somatic  cells  can  be  harvested,  cultured  and  implanted  with  the  aim  of 

engineering new tissues. Limitations in their use are related to the lack of self-

renewal capability and limited potency; characteristics that are exclusive of stem 

cells [Garcia-Godoy and Murray 2006]. Somatic cell delivery and stem cell therapy 

cells have been evaluated in different areas of regenerative medicine.

Somatic  cells  in  the  craniofacial  region,  fibroblast-like  cells  derived  from  the 

periodontal ligament have been used to promote periodontal regeneration [Dogan 

et al.  2002; Dogan et al.  2003]. As demonstrated through in vivo investigations 

using  a  labeling  technique,  oral-derived periodontal  cells  are  able  to  stimulate 

alveolar  bone formation  [Lekic  et  al.  2001].  Cloned tooth-lining  cementoblasts, 

periodontal  ligament  fibroblasts,  and  dental  follicle  cells  seeded  onto  three-

dimensional polylactic-co-glycolic acid scaffolds, exhibit mineral formation in vitro 

[Jin  et  al.  2003b].  Immortalized  cementoblasts  delivered  to  large  periodontal 

defects via biodegradable PLGA polymer sponges contributed to complete bone 

bridging  and PDL formation,  while  dental  follicle  cells  inhibited bone formation 

[Zhao et al. 2004].

Another  study  showed  that  skin  fibroblasts  transduced  by  the  BMP-  7  gene 

promoted the regeneration of periodontal defects including new bone, functional 

PDL and tooth root cementum [Jin et al. 2003a]. In the management of soft tissue 

defects cultivated fibroblasts have also been used for the treatment of interdental 

papillary  insufficiency  [McGuire  and  Scheyer  2007].  A  human  oral  mucosa 

equivalent,  made  of  autogenous  keratinocytes  on  a  cadaveric  dermal  carrier 

(Alloderm®) was able to favor wound healing when compared to the dermal carrier 

alone  [Izumi  et  al.  2003].  An  ex  vivo  synthesized  oral  mucosa  equivalent 
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(EVPOME)  produced without  using  animal-derived serum or  feeder  layer  cells 

[Hotta et al. 2007; Song et al. 2004] has demonstrated its ability to promote early 

initiation of epithelialization, short healing period and minimal scar contraction.

This can be partially  explained by the ability  of  this  living construct  to  secrete 

growth  factors  as  VEGF,  promoting  initial  vascularization,  which  is  critical  to 

subsequent graft survival  [Nakanishi et al. 2007; Xu et al. 2009]. EVPOME has 

been successfully used to treat patients affected by squamous cell carcinoma of 

the tongue, leukoplakia of the tongue, gingiva, and buccal mucosa or hypoplasia 

of the alveolar ridge [Hotta et al. 2007]. In other soft tissue applications, allogenic 

foreskin fibroblasts have been utilized to promote keratinized tissue formation at 

mucogingival defects [McGuire and Nunn 2005]. A tissue-engineered living cellular 

construct  comprised  of  viable  neonatal  keratinocytes  and  fibroblasts  rendered 

similar  clinical  outcomes  when  compared  to  conventional  gingival  autografts 

[McGuire  et  al.  2011].  This  construct  has a  strong potential  to  promote  tissue 

neogenesis  through  the  stimulation  of  angiogenic  signals  [Morelli  et  al.  2011]. 

Another interesting product consists of the application of neonatal keratinocytes 

and  fibroblasts  for  increasing  keratinized  gingiva  around  teeth  [McGuire  et  al. 

2008]

This cell construct can stimulate the expression of angiogenic-related biomarkers 

as  compared  with  autogenous  free  gingival  grafts  during  early  wound-healing 

stages  [Morelli  et  al.  2011] and,  therefore,  constitutes  a promising material  for 

gingival grafting without the need of a donor site.

The benefits of using somatic cells for the regeneration of soft and hard tissues in 

the  craniofacial  district  have  been illustrated  by  several  preclinical  and  clinical 

studies  [Mao et al.  2006].  Although, the lack of selfrenewal capability and their 

commitment toward a single cellular. Phenotype limit their use in the treatment of 

more  challenging  craniofacial  defects,  in  which  a  more  orchestrated  cellular 

response may be critical to gain success. Given their higher characteristics, stem 

cells might have a greater potential in this area.
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Table 1: Cell therapy applications for periodontal/craniofacial tissue engineering.
Regenerative cell construct Study model References

Autologous 
Stem Cells

Bone block allografts impregnated with autogenous bone marrow Patients with severely atrophic maxillary and mandibular ridges [Soltan et al. 2007]
Autologous MSCs isolated from a bone marrow aspirate and expanded in vitro Periodontal regeneration in class III furcations in a dog model [Kawaguchi et al. 2004]
Engineered porous scaffold seeded with BMSCs Postextraction socket in rabbits [Marei et al. 2005]
PRP+MNCs from bone marrow aspirate Alveolar ridge augmentation in humans [Filho Cerruti et al. 2007]
PRP + in vitro-expanded bone marrow derived MSCs Trephined defects in dog mandibles [Yamada et al. 2004c; Yamada et 

al. 2004b; Yamada et al. 2004a]
PRP+in vitro-expanded bone marrow derived MSCs Periodontal defects in humans [Yamada et al. 2006]
Adipose-derived stem cells Periodontal defects in Wistar rats [Tobita et al. 2008]
BMSCs incorporated with a PLCL scaffold Osteochondral defect on the medial femoral condyles at a high load- bearing 

site on a rabbit's knee joint
[Xie et al. 2010]

NELL-1 modified autogenous BMSCs in PLGA scaffold Surgically-created osteochondral defects in goats' mandibular condyles [Zhu et al. 2011]
Autologous periodontal ligament cells from extracted teeth in a hyaluronic acid carrier Dehiscence defects in beagle dogs [Akizuki et al. 2005]
PDL stem cells from extracted teeth Surgically-created periodontal defects in miniature pigs [Liu et al. 2008]
mp2-supplemented dental pulp stem cells On amputated pulp to stimulate reparative dentin formation [Iohara et al. 2006]
BMSCs cryopreserved for 1 month and freshly isolated BMSCs (control) Periodontal fenestration on beagle dogs [Li et al. 2009]

Allogenic So
matic Cells

Fibroblast-like cells from expanded regenerated periodontal ligament cells Artificial class II furcal defect in a dog model [Dogan et al. 2002; Dogan et al. 
2003] 

Periodontal ligament cells Periodontal defects created in Sprague–Dawley male rats [Lekic et al. 2001]
Cultured cementoblasts, periodontal ligament fibroblasts, and dental follicle cells Ectopic tissue regeneration in mice using 3-D poly lactic-co-glycolic acid 

(PLGA) scaffolds
[Jin et al. 2003b]

Cultured primary follicle cells and immortalized cementoblasts Buccal periodontal defects in mandibular molar of athymic rats [Zhao et al. 2004]
Syngeneic skin fibroblasts transduced by the BMP-7 gene Periodontal ligament regeneration at sites with periodontal bone defects in 

rats
[Jin et al. 2003b]

Living human fibroblast-derived dermal substitute (Allogenic foreskin fibroblasts and 
keratinocytes)

Patients with insufficient attached gingiv [McGuire and Nunn 2005]

Living human fibroblast-derived dermal substitute (Allogenic foreskin fibroblasts and 
keratinocytes)

Multi center study treating patients with insufficient attached gingiva but no 
need for root coverage

[McGuire and Scheyer 2007]

Autologous 
Somatic Cells

Periodontal ligament cell sheets with reinforced hyaluronic acid carrier Surgically create dehiscence defects [Akizuki et al. 2005]
Cultured and expanded autologous fibroblasts Injections for papilla priming procedure to augment open interproximal spa-

ces
[McGuire and Scheyer 2007]

Ex vivo produced oral mucosa equivalent (EVPOME, Autogenous keratinocytes seeded 
on Alloderm®)

Patients with either a premalignant or cancerous mucosal oral lesion [Izumi et al. 2003]

Ex vivo produced oral mucosa equivalent (EVPOME, Autogenous keratinocytes seeded 
on Alloderm®

Patients affected by squamous cell carcinoma of the tongue, leukoplakia of 
the tongue, gingiva, and buccal mucosa or hypoplasia in the alveolar ridge

[Hotta et al. 2007]

Autogenous chondrocytes expanded in presence of FGF-2 and TGFß1 Cartilage defects in the knee [Brittberg et al. 1994; Jakob et al. 
2001; Dozin et al. 2005; Dozin et 
al. 2002]

Engineered cartilage generated in vitro from chondrocytes cultured on a biodegrada-
ble scaffold

Osteochondral defect in a rabbit knee joint [Schaefer et al. 2002]

PDL-derived cells cultured and placed on the surface of Ti pins Implantation on nude mice, beagle dogs and human patients [Gault et al. 2010]
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Stem cells 

Stem cells  are  cells  which  can  continuously  divide  generating  undifferentiated 

(self-renewing)  or  specialized (multilineage  differentiation)  daughter  cells.  They 

can divide symmetrically, to increase the number of stem cells, or asymmetrically 

to keep the number of stem cells unvaried and generate parent cells, which in turn 

will differentiate into mature cells. [Bluteau et al. 2008].

Commonly stem cells are grouped in Embryonic Stem Cells (ESC) and Adult Stem 

Cells (ASC).

ESC are derived from inner cell mass of a  blastocyst of an early-stage embryo. 

They are named pluripotent stem cells since they are able to differentaiate into all 

types of cells of an adult individuum.

On the contrary ASC are simply multipotent  as their  differentiation potential  is 

limited to specific cell lines.

ASC reside in different organs and tissues in microenvironments named “stem cell 

niches” consisting of heterogeneous cells, extracellular matrix and soluble factors 

which support the maintenance and self-renewal of stem cells.  [Yen and Sharpe 

2007]

For this reason ASC are also named postnatal or somatic cells. ASC cannot be 

identified with certainty but only on the basis of indirect properties such as the 

expression of a specific range of surface markers, slow cell cycle, clonogenicity 

and undifferentiated state.

The best way to determine staminality is the  self-renewal assessment based on 

the isolation of likely-to-be stem cells and their subsequent transplant in order to 

evaluate their ability to reconstruct host tissue [Bluteau et al. 2008].

Mesenchymal stem cells (MSC) are non-hematopoietic cells of mesodermal and 

neuroectodermal origin. They can be found in many soft tissues (Table 2) such as 

bone marrow, adipose tissue, umbilical cord and dental pulp. They differentiate to 

form mesoderm derived cells  e.g.  adipocytes,  chondrocites and osteocytes but 

also cells belonging to the others germ layers (Table 3). As a matter of fact, it is 

known  that  MSC  have  a  higher  plasticity  degree  in  respect  to  other  ASC 

populations and are able to differentiate in vitro to form non-mesodermal cell lines 

such as neurons and astrocytes.

It appears that their function in the human body is to grant a supply of repairing 

cells without distinctive characteristics but receptive to signals which can guide 
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them to  generate  different  specialized  cell  lines.  The  destiny  of  MSC can  be 

influenced  by  signals  of  different  nature:  by  tissue  damages  such  as  trauma, 

fracture, inflammation, necrosis and tumor, by chemotactic signals and by signals 

coming from the surrounding micro environment. [Pountos and Giannoudis 2005].

Besides multipotency, MSC possess further important qualities: they can be easily 

amplified in a laboratory using standard cultivating conditions and the source they 

are derived from is not encountering ethical problems.

Table  2 List  of  tissues  where  MSC have  been found and 
related references.

Source Reference

Bone marrow stroma Jones E. A., 2002

Adipose tissue Zuk P. A., 2001

Trabecular bone Tuli R., 2003

Joint cartilage Alsalameh S., 2004

Synovial membrane De Bari C., 2003

Muscle Young H. E., 2001

Tendon Salingcarnboriboon R.,2003

Umbilical cord Romanov Y. A., 2003

Blood vessels Abedin M., 2004

Blood Kuznetsov S. A., 2001

Skin Toma J. G., 2005

Dental pulp Gronthos S., 2000

Foetal tissues Muench M. O., 2002
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Table  3: List  of  cell  lines  generated  by  MSC and  related 
references.

Differentiation Reference

Osteoblasts Jones E. A., 2002

Chondrocytes Jones E. A., 2002

Adipocytes Jones E. A., 2002

Cardiomyocytes Orlic D., 2001

Fibroblasts Ogawa M., 2006

Myofibroblasts Ogawa M., 2006

Skeletal muscle De Bari C., 2003

Tenocytesi Pittenger M., 2002

Neurons Long X., 2005

Astrocytes Mimura T., 2004

Hepatocytes Lee K. D., 2004

Pancreatic cells Chen L. B., 2004

Their high ability to proliferate together with their multipotency and their elevated 

differentiation potential make MSC interesting candidates for tissue regeneration.

MSC have been discovered and first characterized in the bone marrow stroma and 

named bone marrow-derived mesenchymal stem cells (BMMSC) [Friedenstein et 

al. 1970]. They can be easily obtained, considerably amplified in vitro and utilized 

in cell-mediated therapy and tissue engineering.

However, clinical use of BMMSC is limited by a range of problems among which 

painful sample taking, often combined with a low number of cells per sample. For 

this reason, a number of researchers have begun to look for more accessible and 

abundant alternative sources from where MSC can be obtained with less invasive 

sample-collection procedures.

Adipose tissue-derived stem cells

Adipose  tissue,  just  like  bone  marrow,  derives  from  mesenchyme  and  is 

characterized by an easy-to-isolate supportive stroma. Adipose tissue could easily 

represent an alternative source to bone marrow when isolating stem cells. Through 

liposuction operations it is possible to collect a large amount of adipose derived 

stem cells (ADSC) which can be effortlessly amplified in vitro. In fact, in standard 
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cultivating conditions and without special caution, ADSC grow rapidly showing a 

stable proliferation kinetics [Zuk et al. 2001].

It has been demonstrated that ADSC, just like BMMSC, can differentiate  in vitro 

into osteocytes, adipocytes, myocytes and chondrocytes, if treated with specific 

differentiation  factors.  Such  a  plasticity  further  confirms  that  adipose  tissue  is 

composed of a population of multipotent stem cells whose ability to differentiate 

equals BMMSC.

ADSC staminality has been confirmed by the characterization of CD (cluster of 

differentiation) antigen markers. Analogously to BMMSC, ADSC express markers 

on the cell surface: CD29, CD44, CD71, CD90, CD105/SH2 e SH3, which together 

with SH2, is considered a marker for MSC [Haynesworth et al. 1992].

Besides  these  markers,  ADSC and  BMMSC alike  express  STRO-1,  a  marker 

utilized to isolate bone marrow mother cells [Dennis et al. 2002]. On the contrary 

ADSC do not  express the markers  of  the hemopoietic  lineage CD31,  CD34 e 

CD45. In addition they are positive for CD13 but negative for CD14, CD16, CD56, 

CD61, CD62E, CD104 e CD106. ADSC differ from BMMSC just for the expression 

of two antigen markers: CD49d and CD106. In particular, ADSC express CD49d 

but not CD106, whereas the converse has been observed in BMMSC [Zuk et al. 

2002].  The  expression  of  CD106  is  functionally  associated  to  hematopoiesis 

[Lévesque et al. 2001], consequently the lack of expression of this antigen marker 

in ADSC is coherent with their localization in a non-haematopoietic tissue.

Since adipose tissue - just like bone marrow stroma - derives from mesoderm, it is 

non unlikely to observe ADSC differentiation into cells of the mesodermal lineage. 

However,  their  differentiation into  cells  of  the neuronal  phenotype -  generating 

cells with similar morphology and expression of protein markers similar to nervous 

cells - has likewise been documented [Franco Lambert et al. 2009].

It  is  concluded  that  ADSC  possess  all  the  characteristcs  typical  of  MSC: 

fibroblastoid  morphology,  ability  to  form  single  colonies  named  CFU-F 

(fibroblastoid colony-forming units),  expression of the typical set of cell  surface 

markers, multipotency as well as ability to differentiate into cells of the mesodermal 

lineage [Kern et al. 2006].
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Dental pulp stem cells

Dental pulp is a soft connective tissue of mesenchymal origin trapped inside the 

pulp  cavity  of  the  tooth.  It  is  possible  to  identify  four  layers  in  the  pulp:  the 

outermost layer composed of odontoblasts which generate dentine; a second layer 

called “cell free zone”, poor in cells but rich in collagen fibers; a third layer called 

“cell  rich  zone” containing  progenitor  cells  and  undifferentiated  cells,  some of 

which  are  stem  cells;  an  innermost  layer,  located  in  the  center  of  the  pulp 

chamber, rich in both vessels and nerve networks. Stem cells and undifferentiated 

cells contained in the “cell rich zone” can migrate to variuous district where - driven 

by different stimuli – can originate new differentiated cells and specialized tissues 

[d'Aquino et al.  2007]. Dental pulp of the third molar, although often discarded, 

represents an easily accessible source of MSC.  It was only in the year 2000 that 

dental pulp stem cells  (DPSC) were first identified and isolated according to their 

clonogenic abilities and their high proliferation speed. [Gronthos et al. 2000]. Later, 

more than four types of MSC cells derived from dental pulp have been identified: 

stem cells  from human exfoliated deciduous teeth (SHED)  [Miura et  al.  2003], 

stem cells  derived from periodontal  ligaments (PDLSC)  [Seo et al.  2004] stem 

cells from the apical papilla (SCAP)  [Sonoyama et al.  2006] and dental  follicle 

progenitor cells (DFPC) [Morsczeck et al. 2005]. They all show multipotency and 

ability to regenerate different dental and periodontal tissues  in vitro and  in vivo 

[Huang 2009].

In addition,  they are positive for markers STRO-1, CD13, CD24, CD29, CD44, 

CD73, CD90, CD105, CD106, CD146, Oct4, Nanog e β2 integrin, but negative for 

CD14,  CD34,  CD45  e  HLA-DR.  The  persistence  of  negativity  for  CD45  and 

positivity for CD34 demonstrates that DPSC are not derived from a hematopoietic 

source, but are of mesenchymal origin  [d'Aquino et al. 2007]. Just like all MSC, 

DPSC are a heterogeneous population and the different markers listed above can 

be expressed in subpopulations of the same cells [Huang 2009].

They  can  survive  in  culture  for  long  periods  and  be  maintained  for  several 

passages: clear signs of senescence have not been detected up to 80 passages. 

Furthermore,  they  can  be  cryopreserved  for  long  periods  without  losing  their 

multipotency [Laino et al. 2005].

It has been demonstrated their differentiation into odontoblasts, the cells producing 

the mineralized matrix of dentine [Gronthos et al. 2000]. However, DPSC can also 
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differentiate into adipocytes and neurons showing both morphology and respective 

markers. In addition, their chondrogenic and myogenic differentiation  in vitro has 

been observed. DPSC plasticity and multipotency can be related to the origins of 

dental pulp, consisiting both of ectodermic and mesodermic components and of 

neural crest derived cells. [d'Aquino et al. 2009].

Scaffolds for cell therapy delivery to oral and craniofacial  
defects

As  underline  previously,  Scaffolds  play  a  pivotal  role  in  providing  a  three-

dimensional template for tissue neogenesis [Ma 2008]. Scaffolds can not only be 

used as carriers for cell  delivery but also serve as synthetic extracellularmatrix 

environments  to  define a 3D geometry  for  tissue regeneration and provide an 

adequate microenvironment in term of chemical  composition,  physical  structure 

and biologically functional moieties [Rice et al. 2005; Liu and Ma 2004].

Thus far, the most widely adopted scaffolds for craniofacial bone regeneration are 

xenogenic and allogenic  bone substitutes,  hydroxyapatite,  calcium phosphates, 

and gelatin or collagenous sponges  [Kawaguchi et  al.  2004; Lekic et al.  2001; 

Nakahara et al. 2004; Kaigler et al. 2010a; Kaigler et al. 2010b]. Limitations in their 

use  are  related  to  the  lack  of  degradability  of  certain  materials  or  too  fast  

degradability  of  others,  poor  processability  into  porous  structures,  brittleness, 

inability to generate structures to be tailored to the specific needs of the patient or 

inability  to  maintain  the  desired  volume  under  mechanical  stimuli.  In  order  to 

overcome these limitations synthetic scaffolds specifically designed to mimic the 

wound healing extracellular matrix are being evaluated.

This  biomimetic  concept  applied  to  materials  synthesis  intends  to  generate 

biodegradable scaffolds with a highly porous structure and adequate mechanical 

properties for bone engineering  [Ma 2008]. Ideally, a scaffold material should be 

degradable  at  a  rate  similar  to  that  of  the  new  tissue  formation,  large 

interconnected pores are required to allow for cell  incorporation, migration, and 

proliferation  [Zhang  and  Ma  2000].  Bone  formation  occurs  over  a  structured 

collagen matrix with fiber bundle diameter varying from 50 to 500 nm [Hay 1991; 

Elsdale and Bard 1972], therefore nanofibrous scaffolds appear to provide better 

cellular attachment [Woo et al. 2003], increased differentiation of osteoblastic cells 

[Chen et  al.  2006],  and enhanced mineral  deposition compared to  solid-walled 
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scaffolds [Woo et al. 2007].

Electrospinning, self-assembly, and phase separation are three different methods 

employed  in  the  fabrication  of  nano-fibrous  polymeric  scaffolds  for  tissue 

engineering. Electrospinning is a simple method, which utilizes an electric field to 

draw a polymer solution from an orifice to a collector, producing polymer fibers 

[Dosunmu  et  al.  2006;  Jia  et  al.  2002].  It  can  be  used  to  produce  thin  two-

dimensional  sheets,  while  three-dimensional  nanofibrous  scaffolds  have  been 

fabricated by layering these 2D sheets  [Matthews et al.  2002] or by combining 

electrospinning with 3D printing [Moroni et al. 2008]. Molecular self-assembly uses 

non-covalent  bonds  such  as  hydrogen  bonds,  van  der  Waals  interactions, 

electrostatic  interactions,  and  hydrophobic  interactions  for  fabricating 

supramolecular architectures  [Whitesides et al.  1991].  Limitations in the use of 

self-assembly methods are related to difficulties in forming macropores and limited 

mechanical  properties  [Smith  et  al.  2009].  Finally,  thermally  induced  phase 

separation (TIPS) technique can be used to fabricate nano-fibers through polymer 

dissolution,  phase  separation  and  gelation,  solvent  extraction,  freezing,  and 

freeze-drying under vacuum  [Ma and Zhang 1999]. This technique can also be 

combined with processing techniques such as particulate leaching or 3D printing 

to design complex 3D structures with well-defined pore morphologies [Chen et al. 

2006; He et al. 2010; Wei and Ma 2006].

Another interesting aspect of polymer scaffolds is that CAD/CAM technologies can 

be  applied  to  create  patient-specific,  anatomically  shaped  scaffolds.  As 

craniofacial defects and anatomical structures may greatly vary among different 

individuals a scaffold unique to each patient can be helpful in regenerating defects 

with complex geometry [Ma 2008].

Polymers have great design flexibility and their composition and structure can be 

designed to match the specific needs of the tissue to be engineered. Moreover, 

benefits can be reached by adding nano-crystalline hydroxyapatite to the scaffolds 

as  it  has  a  strong  potential  for  attracting  osteoblasts  (osteoconductivity),  it 

improves its mechanical properties [Wei and Ma 2004], and may reduce adverse 

effects associated with the degradation of some synthetic polymers  [Smith et al. 

2009]. Hydroxyapatite crystals can be incorporated during processing of polymer 

scaffolds  or  they  could  be  biomimetically  grown  onto  a  prefabricated  polymer 

scaffold.  Since  all  interactions  with  biological  components  occur  at  the  pore 

surface, the non-exposed ceramic is in effect wasted [Smith et al. 2009] and could 
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affect biodegradability and mechanical  properties of the scaffold.  It  is  therefore 

recommended to allow apatite to form as a coating of the polymer scaffold in order 

to enhance its surface characteristics.

An  interesting  technology  has  been  described  in  which  prefabricated  polymer 

scaffold are soaked in simulated body fluid in order to allow apatite crystals to 

grow onto its pore surfaces [Boskey 2003; Boskey 1998].

Growth factors can easily be incorporated in polymeric scaffolds  [Elisseeff et al. 

2001; Wei et al. 2007; Jin et al. 2008], which would allow for a more sustained 

release of  the molecules and better  properly  orchestrated tissue formation.  As 

such,  3D porous, nanofibrous scaffolds have supported various stem cells and 

differentiated cells to regenerate many hard and soft tissues.

It  should  be  pointed  out  that  significant  technical  challenges  remain  for  the 

synergistic  integration  of  structural  cues  with  biological  cues  for  cell-based 

therapies to achieve functional dental and craniofacial tissue regeneration [Gupte 

and Ma 2012]. However, it is likely that the continuous expansion of biomimetic 

approaches in the scaffolding materials design will substantially advance the field 

of  tissue  engineering  and  regenerative  medicine.  Recently,  a  biomimetic  fiber-

guiding scaffold using solid free-form fabrication methods that custom fit complex 

anatomical defects to guide functionally-oriented ligamentous fibers in periodontal 

regeneration has been successfully tested in vivo  [Park et al. 2012] and work is 

being done to incorporate biomimetic scaffolds in cellular delivery for craniofacial 

bone regeneration in many other clinical scenarios 
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Aim

The  percentages  related  to  total  edentulism  and  to  the  connected  social 

consequences represent an important problem.

Dental implant tooth replacements, one of the most popular therapies for total or 

partial edentulism, however not always is a possible solution.

Extremely atrofy or bone loss need to reconstruction before inserting implant.

Autogenous tissues have been widely used and are still considered as the gold 

standard to which all other biomaterials are compared.

Nevertheless,  even the most  advanced reconstructive techniques using autolo-

gous materials are often insufficient to restore extensive or complex maxillofacial 

defects.

However, the use of autogenous tissue involves the need of harvesting it  from

a donor site, with the consequent drawbacks in terms of costs, procedure time, pa-

tient discomfort and possible complications.

Otherwise implant may be affected by a similar condition of periodontics known as 

periimplantitis.

The latter can cause severe destruction of the peri-implant hard and soft tissues.

The Aims of this thesis are:

1. To evaluate whether the tissue engineering, through the use of stem cells, 

can be an effective therapy for the alveolar bone regeneration.

For this first purpose, we wanted to test :

a) the properties and safety of stem cells taken from different postnatal 

tissues;

b) the ability of stem cells to promote bone regeneration both in vitro 

and on small and large size animal.

 

2. Use the tissue engineering in the area of bone inflammation both in the 

therapeutic environment and in prevention, and more specifically to:

a) test stem cells anti inflammatory capability;

b) try  to  identify  a  genetic  predisposition  in  the  peri-implantitis 

development.
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Materials and methods

In Vitro

To  test  the  properties  and  safety  of  stem  cells  taken  from different  postnatal 

tissues we have used those materials and methods with experimental in vitro.

Isolation and culture of adult stem cells

Adult stem cells from adipose tissue (ADSCs)

Adipose-derived stem cells (ADSCs) were isolated from samples of subcutaneous 

adipose tissue of patients subjected to abdominoplasty, upon informed consent. 

[Gardin et al. 2012a]

Abdominal  fat,  washed in  PBS and broken into  small  pieces,  was digested in 

agitation for 3 hours at room temperature. Digestion was carried out with a 0.075% 

solution of  Collagenase from Clostridium histolyticum type II (Sigma) in  Hank’s 

Balanced Salts  Solution (HBSS, Lonza).  The enzymatic  activity  of  collagenase 

was blocked with an equal volume of complete Dulbecco's Modified Eagle Medium 

(DMEM, Lonza), made up of DMEM, 10% Fetal Bovine Serum (FBS, Gibco) and 

1% Penicillin/Streptomycin (P/S, Lonza). The cells, collected by centrifugation at 

1200 revolutions per minute (rpm) for 4 minutes, were washed in PBS and filtered 

through a 70 m strainer (BD Biosciences) to eliminate the residues of digestion. 

Finally, the collected cells were inoculated in F75 flasks (BD Falcon) with complete 

DMEM low glucose (Lonza) and placed in a humidified incubator with 5% CO2 and 

at 37°C.

Two days after digestion, the non-adherent cells (mature adipocytes and red blood 

cells) and the culture medium were eliminated and replaced with fresh complete 

DMEM low glucose. Afterwards, the culture medium was changed every 2 days.

Adult stem cells from dental pulp (DPSCs)

The dental pulp was extracted from healthy third molars of adults, upon informed 

consent. Donors of both genders, non-smokers, not subjected to pharmacological 

therapy and with no oral and systemic infections were chosen. The extraction of  

the third molars was preceded by a dental hygiene session.[Bressan et al. 2012]

The dental  pulp was isolated by mechanical  disruption of  the  crown within  24 
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hours from the extraction of each molar (Figure 9)

Figure 9: Sources of adult stem cells in dental tissues. (A) After a tooth was 
cut horizontally, the pulp tissue (arrow) in the pulp chamber was exposed; 
this pulp provides dental pulp stem cells (DPSCs). (B) Extracted impacted 
third molar (10-year-old female) containing the dental follicle (dotted line) that 
provides dental follicle stem cells (DFSCs). Bar: 5 mm. 

The dental pulp, broken into small pieces and washed in PBS, was digested with a 

HBSS solution  made  up of  Worthington  Collagenase type  I (3  mg/ml)  and  of 

Dispase II (Roche) (2 mg/ml) for 1 hour in a humidified incubator with 5% CO2 and 

at 37°C.

Digestion was blocked by adding an equal volume of complete DMEM. The cells, 

collected by centrifugation at 1200 rpm for 4 minutes, were inoculated in 24-well 

plates (BD Falcon) with complete DMEM and placed into a humidified incubator 

with 5% CO2 and at 37°C.

After 3 days from digestion, the residues of digestion and the non-adherent cells 

were eliminated and replaced with fresh complete DMEM. Afterwards, the culture 

medium was changed every 2 days.

Biomaterials:

The following biomaterials were used:

- Hyaluronic acid;

- Fibrin;

53



- Hydroxyapatite.

A hyaluronic acid derivative was used for the in vitro reconstruction of dental-like 

tissue:  HYAFF 11® (Fidia,  Abano Terme,  PD,  Italy).  Since hyaluronic  acid  is  a 

highly  hydrophilic  linear  polymer,  in  an  aqueous  environment  it  generates  a 

viscous  gel  that  drastically  reduces  its  workability.  In  order  to  reduce  its 

hydrophilicity, keeping its biological properties unchanged, the hyaluronic acid was 

submitted to an esterification process of the carboxyl groups with benzyl alcohol.

HYAFF 11® is the 100% benzyl ester of hyaluronic acid. It is insoluble in aqueous 

solution but biodegradable, as the hydrolysis of the esteric bond determines the 

release of benzyl acid (eliminated with the urine) and of hyaluronic acid, which 

follows the same metabolic pathway as endogenous hyaluronic acid.

HYAFF 1® was used in the form of non-woven tissue with a specific weight of 

100 g/m2, made up of 20-μm-thick fibres and having a size of 1 cm2.

Two different hydroxyapatite-based biomaterials were used for vascularized bone 

tissue  reconstruction:  Orthoss® (Geistlich  Pharma AG,  Switzerland)  for  in  vitro 

experiments  and  Bio-Oss® (Geistlich  Pharma  AG,  Switzerland)  in  in  vivo 

experiments.

Orthoss is made up of carbonate-natural nanocrystalline hydroxyapatite deriving 

from the purification and sterilization of bovine bones. Therefore, it is an inorganic 

bone  matrix  with  a  microporous  and  macroporous  structure  similar  to  human 

spongy bone. In the in vitro experiments it was used in the form of blocks having a 

size of 1 cm × 1 cm × 2 cm. Bio-Oss, too, derives from the mineral component of 

bovine bone matrix, but it is in the form of granules having a size of 0.25-1 mm.

Differentiation

A culture medium containing both osteogenic differentiation factors and endothelial 

differentiation factors was used for in vitro vascularized bone tissue reconstruction.

Osteo-Endothelial Differentiation Medium:

- Endothelial Basal Medium;

- 2% FBS;

- 1% P/S;

- 10 ng/ml FGF-b;

- 10 ng/ml EGF;

- 10 mg/ml Heparin;
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- 1 mg/ml Hydrocortisone;

- 10 mM -Glycerophosphate;

- 10 nM Dexamethasone.

Finally,  in vitro dental-like tissue reconstruction was carried out by imbibing the 

biomaterial  with  a  mixture  of  neuronal  factors  in  the  presence  of  endothelial 

differentiation medium.

Mixture of Neuronal Factors: - 50 ng/ml NGF-

- 50 ng/ml BDNF;

- 10 ng/ml NT-3;

- 4 mM Forskolin;

- 10 ng/ml Heregulin 

- 40 ng/ml FGF-b;

- 20 ng/ml EGF.

Endothelial Differentiation Medium:

- Endothelial Basal Medium;

- 2% FBS;

- 1% P/S:

- 3 ng/ml FGF-b;

- 10 ng/ml EGF;

- 10 mg/ml Heparin;

- 1 mg/ml Hydrocortisone.

Proliferation tests

MTT Assay

The cell proliferation rate was assessed by MTT assay, according to the method 

by Denizot et al. [Denizot F., 1986]. It is a colorimetric assay that measures in a 

quantitative  manner  the  activity  of  the  mitochondrial  enzyme  succinate 

dehydrogenase  of  the  cells  being  cultured.  This  enzyme,  active  in  the 

mitochondria  of  viable  cells  only,  is  normally  used  as  a  marker  of  the  cells’ 

metabolic activity, viability and growth.

The assay is based on the reduction of the chemical compound MTT, that is to say, 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,  a  yellow tetrazolium 

dye,  in  blue  formazan  salts,  by  mitochondrial  succinate  dehydrogenase.  The 
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amount  of  formazan  produced  is  proportional  to  the  activity  of  mitochondrial 

succinate dehydrogenase and,  therefore,  directly proportional to the number of 

viable cells. By means of spectrophotometric reading, at a wavelength of 570 nm, 

it is possible to quantify the formazan salts and, then, correlate the optical density 

(O.D.) value to the number of cells.

The assay was carried out by incubating for 3 hours the cell samples with 1 ml 

MTT solution - 0.5 mg/ml - in PBS in a humidified incubator with 5% CO2 and at 

37°C. Afterwards, the MTT solution was eliminated gently and the formazan salts 

were dissolved in 500 l extraction solution (90% isopropanol and 10% dimethyl 

sulfoxide) for 15 minutes at room temperature. Finally, the formazan blue solutions 

were read at the spectrophometer at a wavelength of 570 nm.

Population Doubling Time 

The assessment of the proliferative capacity of the DPSC cells included the study 

of the Population Doubling Time (PDT).

The analysis was carried out at passages p2, p5 and p8 inoculating 5 x 104 cells in 

12-well plates (BD Falcon). At intervals of 24 hours from inoculation, the number of  

adherent cells was determined for each passage by detaching them with an EDTA 

0.02% and  tripsin  0.25% solution  (Lonza)  and  counting  them with  the  Bürker 

chamber (Marienfeld Superior).

The PDT was calculated by applying the following formula:

PDT = (T – T0) × log 2 / (log Nt - log N0)

wherein (T – T0) indicates the culture time expressed in days, Nt is the average 

number of cells collected at time T, and N0 is the number of cells inoculated in 

each well/plate at time 0.

Morphological study

Immunofluorescence

Monolayer immunofluorescence analyses were carried out by culturing the cells on 

slides (having a diameter of 19 mm) pre-treated with a 2% aqueous solution of 

Gelatin B extracted from bovine skin (Sigma Aldrich) in the presence of complete 

DMEM or of differentiation medium. The analysis required the fixation of the cells 

on the slides with a 3.7% formalin solution for 15 minutes at room temperature.
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The three-dimensional constructs, on the other hand, were fixed in formalin for two 

hours and then dehydrated through ascending alcohols: the samples were soaked 

in ethyl  alcohol  solutions with growing concentration (from 50% to 100%) with 

double passages of 15 minutes each, to gradually eliminate the water content, 

before passing  through xylene until  clearing.  After  the inclusion in  paraffin  the 

samples were cut  into slices having a thickness of 6  m and submitted to the 

immunofluorescence reaction.

The samples,  after  two washes in PBS,  were treated for  one hour  with a 2% 

Bovine Serum Albumin (BSA, Sigma) solution in PBS to reduce the non-specific 

bonds of primary antibodies. Afterwards, the following primary antibodies diluted in 

BSA at 2% were incubated for one night at 4°C:

- Chicken anti Human CNPase (Millipore);

- Chicken anti Human III -tubulin (Millipore);

- Mouse anti Human CD31 (Abcam);

- Mouse anti Human Nestin (Covance);

- Mouse anti Human Vimentin (Sigma);

- Rabbit anti Human CD105 (Santa Cruz);

- Rabbit anti Human CD73 (Abcam);

- Rabbit anti Human CD90 (Abcam);

- Rabbit anti Human GFAP (Millipore);

- Rabbit anti Human S100 (Sigma);

- Rabbit anti Human von Willebrand Factor (Dako).

After  a  wash  in  PBS,  the  samples  were  incubated  for  one  hour  at  room 

temperature with the following secondary antibodies:

- Goat anti Chicken IgG (H + L) TRITC labeled (KPL);

- Goat anti Mouse IgG (H + L) FITC labeled (KPL);

- Goat anti Rabbit IgG (H + L) TRITC labeled (KPL).

Following a wash in PBS, the nuclei were marked with Hoeches 33342 (Sigma) for 

15 minutes at room temperature. After a short wash in PBS, the mounting on slide 

holders was carried out with ProLong® Gold antifade reagent (Invitrogen).

The immunofluorescence images were acquired by means of the Zeiss Axioplan 

microscope (Carl  Zeiss, Germany),  coupled with the Leica DC500 camera and 

with  the  Leica  IM1000  Image Manager  v1.20 software  (Leica,  Germany).  The 

images were acquired at 40x enlargements.
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Scanning Electron Microscopy (SEM)

The constructs, previously washed in PBS, were washed with a 2% glutaraldehyde 

solution in a 0.1 M sodium phosphate buffer with 7.2 pH and preserved at 4° C 

until the moment of dehydration. The latter, preceded by three washes in 0.1 M 

sodium  phosphate  buffer,  was  carried  out  through  ascending  alcohols:  the 

samples  were  soaked  in  solutions  of  ethyl  alcohol  with  growing  concentration 

(from 20% to 96%) with double passages of 5 minutes each, to gradually eliminate 

the water content from the samples. The samples were preserved one night in 

96% alcohol and after a passage in absolute alcohol were submitted to Critical 

Point Drying and metallised with gold. The preparations obtained were observed 

with a scanning electron microscope (model: JMS Jeol 6490) in use at the CUGAS 

Interdepartmental Service Centre of the University of Padua.

Gene expression by Real-Time PCR

RNA extraction and quantification

The  RNA extraction  of  the  samples  was  carried  out  by  using  a  monophasic 

solution  based  on  phenol  and  guanidine  isothiocyanate,  TRIzol® Reagent 

(Invitrogen). 

The homogenization of the samples with such reagent causes the lysis of the cell 

membranes  guaranteeing  the  integrity  of  RNA inhibiting  the  activity  of  RNase 

enzymes.

The constructs  were transferred to  microtubes with 1 ml TRIzol® Reagent  and 

incubated  for  5  minutes  at  30°C  to  allow  for  their  complete  dissociation. 

Afterwards, 200 l chloroform were added to the samples and these were stirred 

for 30 seconds before incubation at room temperature for 2 further minutes. From 

the following centrifugation at 14000 rpm for 15 minutes at 4°C three phases were 

obtained: an upper, aqueous, limpid phase containing the RNA, a central, white 

interphase containing the DNA and a lower, pink phase containing proteins, phenol 

and chloroform. 

The aqueous phase was transferred into a new microtube and 500 l isopropanol 

were added to precipitate the RNA. After incubating the samples for 10 minutes at  

room temperature, these were centrifuged at 14000 rpm for 10 minutes at 4° C.

The pellet deriving from centrifugation, made up of the RNA, was washed with 1 

ml cold 75% ethanol, stirred and centrifuged at 14000 rpm for 5 minutes at 4° C.
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Afterwards,  the  RNA was  dried  at  room temperature  for  ten  minutes  and  re-

suspended in DNase RNase-free water.

RNA  quantification  was  carried  out  with  the  NanoDrop  spectrophotometer 

(NanoDrop™  1000,  Thermo  Scientific),  which,  besides  estimating  the 

concentration  of  the  samples,  determines  their  purity  from  contaminants.  The 

instrument provides the absorbance ratios 260/280 and 260/230, whose values 

must be respectively included in the ranges of 1.8-2 and 2-2.2 in order to consider 

the RNA samples pure from contaminants. Low values of such ratios indicate the 

presence of proteins, phenol and other organic contaminants that absorb around 

280 and 230 nm.

Synthesis of complementary DNA

Complementary DNA (cDNA) was synthesized following the Invitrogen protocol: 

First-Strand cDNA synthesis using M-MLV RT. Such protocol provides the use of 

the M-MLV RT (Moloney Murine Leukemia Virus Reverse Transcriptase) enzyme 

that,  using  the RNA strand as  a template,  synthesizes a complementary DNA 

strand.

For each sample, 500 ng RNA were retrotranscribed in a reaction volume equal to 

20  l.  In  nuclease-free microtubes were mixed:  1  μl  Oligo (dT)12-18 [500 μg/ml] 

(Invitrogen); 500 ng total RNA; 1 μl dNTP Mix [10 mM] (Invitrogen) and nuclease-

free distilled water up to the volume of 12 μl. The mixtures were heated to 65°C for 

5 minutes and then placed into ice for some minutes.

After  a  short  centrifugation  step  to  collect  the  content  on  the  bottom  of  the 

microtube, we added: 4 μl First-Strand Buffer 5X (Invitrogen); 2 μl DTT [0.1 M] 

(Invitrogen) and 1 μl  RNaseOUT Recombinant  Ribonuclease Inhibitor  [40 U/μl] 

(Invitrogen). The reaction mixtures, after being stirred gently, were incubated at 

37° C for 2 minutes. Afterwards, by pipetting gently, 1 μl M-MLV RT enzyme [200 

U/μl] (Invitrogen) was added to each sample. After incubating the samples at 37°C 

for 50 minutes, the reaction was inactivated by heating the samples to 70°C for 15 

minutes.

The so obtained cDNA was preserved at -20°C until its use as a template for PCR 

amplification.

Real-Time PCR

Real-Time PCR is an advanced version of polymerase chain reaction (PCR) that 

allows, through the use of dyes or fluorescent probes, to quantify in real time DNA 
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amplification by correlating  fluorescence intensity  with the concentration of  the 

PCR products. Each Real-Time PCR reaction is characterized by an accumulation 

of fluorescent signal that is defined by the Ct (cycle threshold), that is to say, by  

the number of cycles required to obtain a signal intensity higher than the ground 

noise of the system. To high amounts of initial DNA corresponds a fast increase in 

the fluorescent signal and, therefore, a low Ct value.

The fluorescent signal was generated by adding to the reaction mixture the SYBR 

Green I  fluorescent  dye.  It  is  an asymmetric  cyanine intercalating  the  double-

strand DNA. When the SYBR Green I molecules are free in solution they show no 

relevant fluorescence; on the contrary, when they bind to the double-helix DNA (in 

correspondence of the minor groove), they undergo a conformational change and 

considerably increase the amount of fluorescence emitted.

For each sample, 2.5 l cDNA were amplified in a reaction volume equal to 25 l. 

In nuclease-free 200-l  microtubes were mixed: 12.5 μl  FastStart  SYBR Green 

Master [2X] (Roche); 0.75 μl Forward primer [10 M]; 0.75 μl Reverse primer [10 

M];  8.5  l  Dnase-Rnase  free  water  (GIBCO).  After  gently  mixing  and  shortly 

centrifuging each mixture, 2.5μl cDNA were added. 

The  Real-Time  PCR  reactions  were  carried  out  in  a  Rotor-Gene  RG-3000A 

thermal  cycler  (Corbett  Research,  Australia),  following  the  amplification 

programme shown in Table 4.

Table 4: Amplification programme of the Real-Time PCR.

Cycles Passage
Temperatur

e
Time

1 Initial denaturation of cDNA 95 °C 10 minutes

40
Denaturation 95 °C 10 seconds
Primer pairing 60 °C 30 seconds

Extension 72 °C 30 seconds

1 Final extension 72 °C 10 minutes

The cDNA samples were analysed in triple copy using the Primer pairs shown in 

Table 5.

The  genic  expression  analysis  was  determined  by  normalizing  the  amount  of 
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transcript of the gene of interest with that of the gene of reference (GAPDH) in the 

same sample. Normalization was carried out by applying the following formula:

2Ct

wherein 2 represents amplification efficiency equal to 100%,

Ct = Ct gene of reference - Ct gene of interest

Finally, the genic profiles were presented as the ratio (R) between the 2 Ct of the 

condition of reference (cell culture in the presence of differentiation factors) and 

the  normalized  2Ct of  the  control  condition  (cell  cultures  in  non-differentiation 

medium).

Table 5: Forward and Reverse Primers used in the Real-Time PCR analyses.
Gene Forward Primer (5’→3’) Reverse Primer (5’→3’)

CD31 TCCAGCCAACTTCACCATCC TGGGAGAGCATTTCACATACGA

I  Collagen 
1

TGAGCCAGCAGATCGAGA ACCAGTCTCCATGTTGCAGA

CNPase AGATGCGGTGGCTAAAGGTC TCTTAGGCAGCTCTTTGGGA

GAPDH TCAACAGCGACACCCAC GGGTCTCTCTCTTCCTCTTGTG

GFAP AGATCCGCACGCAGTATGAG AGGTCGCAGGTCAAGGA

Nestin TCAGAGGGAAGGAGATAGAGAGTC AGCCAGAAACCATATGTCAAGAGA

Osteocalcin GCAGCGAGGTAGTGAAGAGAC AGCAGAGCGACACCCTA

Osteonectin TGCATGTGTCTTAGTCTTAGTCACC GCTAACTTAGTGCTTACAGGAACCA

Osteopontin TGGAAAGCGAGGAGTTGAATGG GCTCATTGCTCTCATCATTGGC

PPAR CAGGAGATCACAGAGTATGCCAA TCCCTTGTCATGAAGCCTTGG

RUNX2 AGCCTTACCAAACAACACAACAG CCATATGTCCTCTCAGCTCAGC

S100 GACAAGTACAAGCTGAGCAAGAAG CCACAAGCACCACATACTCCTG

VEGFA GGACAGAAAGACAGATCACAGGTAC GCAGGTGAGAGTAAGCGAAGG

Vimentin CAGATGCGTGAAATGGAAGAGAAC GGTGGCAATCTCAATGTCAAGG

vWF ACGTATGGTCTGTGTGGGATC GACAAGACACTGCTCCTCCA

III 
≥ Tubulin

CTCAGGGGCCTTTGGACATC CAGGCAGTCGCAGTTTTCAC

Cytogenetic analyses

Karyotype

The karyotype is a cytogenetic analysis that allows to visualize the chromosomes 

that  make up the  whole  genome of  an  eukaryotic  cell.  Therefore,  it  allows to 

distinguish the chromosomes on the basis of their number, shape and size and to 

appreciate any anomaly both in the number (trisomies and monosomies) and in 
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the structure (translocations, deletions and inversions).

In the cells the DNA appears like a non-analyzable disorganized mass, except for 

a  particular  phase  of  cell  division,  the  metaphase,  when  it  condenses  in  tidy 

structures: the chromosomes. The metaphase chromosomes can be marked with 

particular substances that bind to specific chromosome regions and that give them 

their typical band aspect. The marked chromosomes appear at the microscope like 

well-defined and easily identifiable structures; this allows to develop a cariogram, a 

tidy representation of the chromosomes paired on the basis of size, of the position 

of  the  centromere  and  of  the  banding.  Furthermore,  in  accordance  with 

international nomenclature, each pair is assigned a number from 1 to 22, and the 

sexual chromosomes are placed next to them.

The cells, previously inoculated in chamber slides (Lab Tek), were treated for 3 

hours with the alkaloid Colchicine 10 g/ml (Sigma Aldrich) to stop cell division at 

the  metaphase  stage.  Afterwards,  they  were  treated  for  15  minutes  with  a 

hypotonic  solution  (1%  solution  of  sodium  citrate  in  water)  to  break  the  cell 

membranes and disperse the chromosomes in a larger area. Afterwards the action 

of the hypotonic solution was blocked for 5 minutes with a fixative made up of 

ethanol and acetic acid in a 3:1 ratio. Then the fixative was applied twice more for  

15 minutes and the slides were left to dry in a humid environment.

The chromosomes were marked using the dye Quinacrine and were observed with 

the fluorescence microscope.

CGH array

The Comparative Genomic Hybridization (CGH) array is a technique that allows to 

identify any changes in the number of copies of the genes distributed all along the 

genome. It allows to quantify deletions or amplifications in the genome with an 

average resolution of 100 Kb, precisely defining the sizes and the start and end 

points of the regions involved in the unbalance.

It is possible to carry out a CGH array on any tissue from which it is possible to  

extract DNA, such as: peripheral blood, skin biopsy, solid tumours, marrow, chorial 

villi, amniotic fluid, fetal blood and cell cultures. For this reason, the CGH array 

finds application in several fields, such as: neuropsychiatry (in the diagnosis of 

mental  retardation,  autism,  epilepsy  and  malformation  of  the  cerebral  cortex), 

paediatrics  (to  confirm  congenital  anomalies,  developmental  alterations), 

obstetrics (in a suspected case of fetal chromosomal anomaly) and oncology (in 

the diagnosis of tumours of the hematopoietic lineage and solid tissues). 
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The CGH array was carried out by following the protocol  Agilent Oligonucleotide  

Array-Based  CGH for  Genomic  DNA Analysis (Agilent  Technologies),  which  is 

divided into the following phases:

- DNA Extraction: the target DNA was extracted from the samples using a ge-

nomic DNA extraction kit (Sigma).

- DNA Digestion: 500 ng target DNA and 500 ng control DNA were digested 

for 2 hours at 37°C with the enzymes RsaI and Alu I (Promega), which were 

subsequently inactivated for 20 minutes at 65°C.

- DNA marking and purification: The samples were marked for two hours us-

ing the marking Kit Quick Amp, two-colour (Agilent) by means of the “ran-

dom priming” technique with the cyanines Cy5-dUTP for the target DNA and 

Cy3-dUTP for the control DNA. Afterwards the marked products were puri-

fied with Amicon Ultra-0.5 30 K (Millipore).

- Hybridization on slides: The purified products were denatured and co-hy-

bridized on a 44K slide (Human Genome CGH Microarray, 4x44K, Agilent) 

loaded with probes (60bp oligomers) with an average resolution of about 

100 Kb. Hybridization was carried out in rotation at the controlled temperat-

ure of 65°C for 40 hours.

- Scanner reading and data analysis: At the end of incubation the slides were 

washed with particular washing buffers (Agilent) and read with the scanner 

G2505B  Agilent.  Data  were  processed  by  means  of  specific  software 

provided by Agilent (Feature Extraction and CGH-Analytics).

Use of CGH array for perimplantitis

To assess whether there is a relation to genetic predisposition and risk of peri-im-

plantitis, we have used this materials and methods.

We identified 20 patients with peri-implantitis and requested a blood test.

From a clinical point of view the diagnosis was performed by probing and radio-

graphic examination. 

All patients had infection with suppuration and marginal bone loss.

As a test, we have identified 5 patients with implants but without peri-implantitis. 

All patients had received treatment with implants at least 3 years with at least 2 im-

plants.

For all patients we required informed consent
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Array CGH has been conducted using the Agilent Human Genome CGH Microar-

ray Kit 44K and 180K (Agilent Technologies, Palo Alto, CA, USA) with a resolution 

of w75 kb.

Labeling and hybridization has been performed following the supplier’s protocols. 

We have used 4 mg of purified DNA obtained from 20 patient’s blood (with perim-

plantitis) and DNA obtained from  5 patients  without  perimplantitis as control . For 

all patients we required informed consent

It has been double-digested with RsaI and AluI for two hours at 37°C. 

After column purification, 1 mg of each digested sample has been labeled by ran-

dom priming (Invitrogen) for 2 hours using Cy5-dUTP for the patient’s DNA and 

Cy3- dUTP for the control DNA.

Labeled products has been column purified and prepared according to the Agilent 

protocol. After probe denaturation and pre-annealing with 50 mg of Cot-1 DNA, hy-

bridization has been performed at 65°C under rotation for 40 h. 

After two washing steps the array has been analyzed with the Agilent scanner and 

the Feature Extraction software (v8.0). 

Graphical overview has been obtained using the CGH analytics software (v3.1) 

(Agilent Technologies).

In Vivo

To test the ability of stem cells to promote bone regeneration and to test stem cells 

anti inflammatory capability we have have used those materials and methods with 

in vivo experiments. We have used both on small and large size animal.

In vivo rat model

The  in  vivo experiments were carried out  on four  immunocompromised female 

Wistar rats (Charles River) of 8 weeks. At the level of the cranial  bones some 

lesions were made,  which were then covered with the sample to be tested (a 

hydroxyapatite-based support previously cultured for one week with ADSCs in the 

presence  of  osteogenic  and  endothelial  factors)  or  with  the  control  (the 

hydroxyapatite-based support only).

All the operations were carried out upon general anaesthesia by means of the 
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intraperitoneal injection of ketamine hydrochloride (Ketaras, Yuhan Corporation, 

Korea, 40mg/kg) mixed with xylazine (Rompuns, Bayer Korea, Korea, 10 mg/kg). 

After  disinfecting  the  cutis  of  the  head  with  Betadine  10%  (Potadine,  Sam-Il  

Pharmacology, Korea) and injecting lidocaine (2% lidocaine containing. 1:100000 

epinephrine,  Lidocaine  HCL Injs.Yuhan  Corp.,  Korea)  into  the  skull  bone,  an 

incision was made along the sagittal suture, the periost was lifted and a lesion of 5 

mm of diameter was made using a trephine without perforating the dura.

Then the lesions were filled with the hydroxyapatite-based scaffold (control) only or 

with  the  scaffold  inoculated with  ADSCs.  After  the operation the animals were 

placed separately  in  cages thermostated at  22°C with  a  day/night  cycle  of  12 

hours and with food  ad libitum.  Three weeks after the operation the rats  were 

sacrificed by cervical dislocation.

All the animals were treated following the “Recommendations for the management 

of laboratory animals in biomedical research” issued by the Ethical Committee for 

Animal Experimentation of the University of Padua.

Goldner trichrome staining

The samples recovered from the  in vivo experiments were fixed for one night in 

3.7% formalin at 4°C, decalcified for 20 days with a solution based on formalin and 

formic acid, and included in paraffin. The inclusion in paraffin was carried out with 

the following passages:

- two 30-minute passages in 50% ethanol;

- three 30-minute passages in 70% ethanol;

- two 30-minute passages in 95% ethanol;

- two 30-minute passages in 100% ethanol;

- xylene until clearing;

- two one-hour passages in liquid paraffin in a heater at 60°C;

- inclusion.

The included samples were cut into slices having a thickness of 7 m, which were 

rehydrated  through  ascending  alcohols  and  submitted  to  Goldner  trichrome 

staining,  in  order  to  distinguish  the  mineralized bone from the  (unmineralized) 

osteoid.

Goldner trichrome staining (also known as Masson-Goldner) uses several dyes to 

stain the different structures. In particular, we used: ferric hematoxylin to make the 

nuclei brown-black, Light Green to make the collagen fibres green, acid fuchsin 
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and xylidine ponceau to  make the cytoplasm red,  and Orange G to  make the 

erythrocytes orange.

Staining was carried out as follows:

- ferric hematoxylin for 10 minutes;

- washed in distilled water;

- differentiated in spring water;

- acid fuchsin and xylidine ponceau for 5 minutes;

- washed in 1% acetic acid;

- differentiated in 1% phosphomolybdic acid for 5 minutes;

- washed in 1% acetic acid;

- Light Green for 2 minutes;

- washed in 1% acetic acid.

In vivo sheep model

Twenty  adult  female  sheep  were  used  for  the  experiment.  During  surgical 

procedures, the animals were premedicated with IM methadone (0.2-0.3 mg / kg) 

and xylazine (0.1 mg / kg), and then anesthesia was induced with propofol (3-5 

mg / kg IV). After the oro-tracheal intubation, general anesthesia was maintained 

with inhaled Isoflurane (1-1.6%, from 1.19 to 1.56 MAC) in oxygen/medical air.

The surgical field was prepared by shaving the skin to visualize main landmarks, 

namely, the angular vein of the eye and the transverse artery of the face. The 

sheep were prepped and draped in  a customary  manner  for  a  sterile  surgical 

procedure. The surgical site and the incision line were located and prepared with 

iodine.  Approximately  3.6  mL  of  local  anesthesia  (Polocaine  2%,  1:20  000 

levonordefrin;  Astra Pharmaceuticals,  Westborough, Mass) was administered in 

the surgical site. 

An oblique caudodorsal,  rostroventral,  extraoral  incision approximately  5  cm in 

length  was  made  over  the  most  ventral  aspect  of  the  maxillary  sinus. 

Subcutaneous  tissue  and  the  masseter  muscle  were  divided  to  expose  the 

maxillary periosteum, which was incised and elevated dorsally.  

The lateral wall of the sinus was approached with a surgical rotating tungsten bur 

to perform a rectangular surface antrostomy (Figure 10) under abundant irrigation 

with saline solution. 
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Figure  10:  rectangular  antrostomy  performed  with 
surgical bur to access the maxillary sinus

The antrum window was removed by fracturing along the osteotomy with a chisel 

instrument (Figure 11). 

Figure  11:  antrum window was removed. Schneiderian 
membrane was exposed

The sinus lining and floor were meticulously evaluated to remove any remaining 

soft tissue.

Maxillary sinus elevation was performed bilaterally in each sheep.

Sheep were divided into two groups of healing before sacrifice: 15 and 30 days. 

Each group consisted of 10 sheep of which six have received as a graft material in 
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one maxillary sinus hydroxyapatite based granular scaffolds biomaterial (Bio-oss® 

Bio-Oss;  Geistlich  Pharma  AG,  Wohlhusen,  Switzerland)  alone  whereas  the 

contralateral  side  received  granular  scaffolds  biomaterial  (Bio-oss® Bio-Oss; 

Geistlich Pharma AG, Wohlhusen, Switzerland) in presence of ADPSc. (Figure 12) 

Figure  12:  Schneiderian  membrane  was  elevated. 
Sinus  was  grafted  with  biomaterial  and  non  woven 
scaffold with ADPSc.

The  others  four  sheep  received  as  a  graft  material  in  one  maxillary  sinus 

hydroxyapatite based granular scaffolds biomaterial (Bio-oss® Bio-Oss; Geistlich 

Pharma AG,  Wohlhusen,  Switzerland)  alone plus  TNFα (10 mM) to  induce an 

inflammatory state whereas the contralateral side received hydroxyapatite based 

granular  scaffolds  biomaterial  (Bio-oss® Bio-Oss;  Geistlich  Pharma  AG, 

Wohlhusen, Switzerland) plus ADSc and TNFα (10 mM) to induce an inflammatory 

state.

An equal volume of graft material was used (3 cm3) within each sinus cavity. Deep 

and superficial fasciae of the masseter muscle were reapposed with 3–0 vicryl in a 

simple  continuous  pattern.  Subcutaneous  tissue  and  the  skin  were  closed 

separately in a similar manner with 3-0 vicryl. (Figure 13)
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Figure  13:  Subcutaneous  tissue  and  the  skin  were 
closed separately in a simple continuous pattern

The animals were treated i.v. with 15 mg/kg of ampicillin (Vetamplius®, Fatro) every 

12 h for 3 days and and tramadol 2 mg/kg. Surgical wounds were inspected daily. 

Groups of animals were euthanized at 15 and 30 days by applying an overdose of 

thiopental (Pentothal Sodium, Intervet) 10-15 mg/kg IV and embutramide (Tanax®).

The head were removed, and individual bone blocks containing the augmented 

sinus and the surrounding hard tissues were fixed.

Histological preparation

The  cellularized  scaffolds  were  fixed for  one  night  in  3.7%  formalin  at  4°C, 

decalcified for 20 days with a solution based on formalin and formic acid,  and 

included in paraffin.  The inclusion in paraffin was carried out with the following 

passages:

- two 30-minute passages in 50% ethanol;

- three 30-minute passages in 70% ethanol;

- two 30-minute passages in 95% ethanol;

- two 30-minute passages in 100% ethanol;

- xylene until clearing;

- two one-hour passages in liquid paraffin in a heater at 60°C;

- inclusion.

Serial  7-mm  sections  were  cut  perpendicular  to  the  osseous  defects  and 

surrounding bone (Reichert-Jung 2050, Nussloch, Germany). 

The  bone  sections  were  stained  with  haematoxylin  and  eosin  staining and 

Masson’s trichrome (MT) and observed under a light microscope.
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Semi-quantitative analysis of cells

In  order  to  analyze  the  cellular  response  to  treatments,  masked  microscopic 

examinations were performed on sections. Cells were identified by: haematoxylin 

and eosin staining, for: inflammatory cells, endothelial cells and fibroblasts;

by  Masson’s  trichrome (MT)  for  the  detection  bone  structure  (type  I  collagen, 

mature bone, woven bone). Briefly, two investigators analyzed in a masked fashion 

at  least  3  slides  for  each  experiment  by  light  microscopy  using  as  the  initial 

magnification. 

In vivo dog model

Six Labrador dogs were used for the experiment. During surgical procedures, the 

animals were pre-anaesthetized with atropina 0.04 mg/kg + medetomidina 0.04 

mg/kg + ketamina 5 mg/kg and sedated with isoflurano 1,5 a 3% CAM + O2 al 

95%.

All  mandibular  premolars and  the  first  molars  were  extracted bilaterally.  Three 

months after tooth extractions, a crestal incision was performed in the premolar-

molar  region  in  both  side of  the  mandible.  Full-thickness mucoperiosteal  flaps 

were  elevated,  and  six  experimental  sites  were  identified  in  the  edentulous 

alveolar ridges, each side of the mandible. The surgical preparation of the sites 

was performed according to the manual of the implant system (Sweden & Martina, 

Due Carrare, Padova, Italy). Twist drills were used to prepare each recipient site 

for  implants,  10  mm  long  and  3.3  mm  in  diameter  (Premium™,  Sweden  & 

Martina). 

Subsequently, especially designed step drills were used to widen the marginal 5 

mm of the implant bed to 5.4 mm. (Figure 14)
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Figure  14:  Surgical preparation of the sites. Especially 
designed step drills were used to widen the marginal 5 
mm of the implant bed to 5.4 mm

Implants were subsequently installed with their margin flush to the bone crest and 

healing caps were screwed on the implants.

Following installation, a marginal gap occurred around the implants. (Figure 15)

Figure  15:  Implants  were  installed  with  their  margin 
flush to the bone crest. A marginal gap occurred around 
the implants

The  marginal  defects  in  the  right  side  of  the  mandible  were  filled  with 

hydroxyapatite based granular scaffolds biomaterial (Bio-Oss®; spongious granule, 

particle size 0.25-1 mm; Geistlich Pharmaceutical, Wolhusen, Switzerland) mixed 

71



with  a  concentrate  of  stem  cells  (ADSc).  The  defects  in  the  left  side  of  the 

mandible were filled with hydroxyapatite based granular scaffolds biomaterial (Bio-

Oss®;  spongious  granule,  particle  size  0.25-1  mm;  Geistlich  Pharmaceutical, 

Wolhusen, Switzerland) alone. (Figure 16)

  

Figure 16: A: marginal defects in the right side of the mandible were filled with 
biomaterial mixed with a concentrate of stem cells (ADSc). B: postoperative x-
ray showing implants with marginal defect. 

The flaps were sutured allowing a fully-submerge healing.

The sacrifice of the animals were planned after 1 month of healing. 

After  the  surgeries  the  animals  received antibiotic  for  8  days  (enrofloxacina  3 

ml/48 kg) and tramadol 2 mg/kg.

The animals were kept in kennels and on concrete runs at the university’s field 

laboratory with free access to water and fed with moistened balanced dogs’ chow.

Postoperatively,  the  wounds  were  inspected  daily  for  clinical  signs  of 

complications.  Check-ups  were  performed  on  regular  basis  throughout  the 

experiment.  The  animals  were  euthanatized  according  the  following  protocol: 

eparina 1000 UI + ketamine 10 mg/kg + xilacina 1mg/kg + succinilcolina 0.2 mg/kg 

and KCl 25 meq.

Histological preparation

The mandibles were removed, and individual bone blocks containing the implant 

and the surrounding soft and hard tissues were fixed in 4% formaldehyde solution. 

The  specimens  were  dehydrated  in  a  series  of  graded  ethanol  solutions,  and 

finally embedded in resin. 

The  blocks  were  cut  in  a  bucco-lingual  plane  following  the  long  axis  of  the 

A B
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implants, using a diamond band saw fitted in a precision slicing machine. A central  

section were harvested and then hand-polished and thinned to about 50 µm using 

a grinding machine. The histological slides were stained with Stevenel's blue with 

alizarin  red  and  examined  under  a  standard  light  microscope  for  histological 

analysis. (Figure 17)

Figure 17: histological slides were thinned to about 50 µm and 
stained with Stevenel's blue with alizarin red

With a light microscope for histological analysis (20x), all histological slides were 

observed  in  order  to  detect:  PMNs,  phagocytic  and  non  phagocytic  cells, 

fibroblasts,  endothelial  cells,  collagen  type  I  and  new  bone  formation. 

Neoangiogenesis  was  investigated  to  see  if  in  the  first  time  of  healing 

neoangiogenesis is accelerated by stem cells.
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Results

In Vitro

Culture of adult stem cells

Two different types of adult stem cells were isolated from their tissues of origin:

- Adipose derived Stem Cells (ADSCs) from the adipose tissue;

- Dental Pulp Stem Cells (DPSCs) from the dental pulp.

The  cell  suspensions  obtained  by  enzymatic  digestion  were  inoculated  on 

standard cell culture plates. After three days of culture, with the optical microscope 

one can see the presence of cells with fibroblastoid morphology adhering to the 

plastic (Figure 18).

a b

Figure  18: Optical  microscopiy  analysis  of  the 
primary culture of ADSCs (a) and DPSCs (b). 10X 
enlargements.

Before being inoculated on the biomaterial,  the adult stem cells were analyzed 

phenotypically by immunofluorescence (Figure 19) for the purpose of assessing 

the presence of the following markers on the cell surface:

- CD 73: also known as ecto-5'-nucleotidase. It is a 69 kDa protein anchored 

to the plasma membrane, where it catalyzes the conversion of extracellular 

nucleotides into nucleotides permeable to the cell membrane. It was found 

in hematocytes, in bone marrow cells and in thymic, renal and liver epitheli-

al cells.
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- CD 90: also known as Thy-1 (THYmocyte differentiation antigen 1) due to 

its first identification in thymocytes. It was also found on the surface of neur-

onal  cells,  endothelial  cells,  mesenchymal  stem cells  and hematopoietic 

stem cells.

- CD 105: also known as endoglin. It is a 180 kDa homodimeric transmem-

brane glycoprotein whose expression was found in endothelial cells and in 

embryonic stem cells, mesenchymal stem cells and bone marrow cells

CD73 CD90 CD105

a

b

Figure 19: Fluorescence microscopy analysis of the primary culture of ADSCs (a) 
and  DPSCs  (b).  Expression  of  CD73,  CD90  and  CD105  markers.  40X 
enlargements.

In vitro hard tissue reconstruction 

ADSC  and  DPSC  adult  stem  cells  were  used  in  combination  with  suitable 

biomaterials and differentiation factors in order to reconstruct hard tissue in vitro. 

In particular, the following tissue was reconstructed:

- vascularised bone tissue from ADSCs/DPSC inoculated on hydroxyapatite-

based scaffolds:
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Differentiation of ADSCs on a hydroxyapatite-based support

By means of enzymatic digestion, the adipose tissue-derived mesenchymal stem 

cells (ADSCs) were isolated and then amplified in complete DMEM medium for 

two weeks. Afterwards, the ADSCs were inoculated with a density of 106 cells/cm2 

on hydroxyapatite-based matrices, previously treated with fibronectin to favour cell 

adhesion. The matrices inoculated with the ADSCs were cultured in the presence 

of  differentiation  medium  made  up  of  osteogenic  and  endothelial  factors. 

Differentiation  was  prolonged  for  21  days  and  morphological  analyses, 

proliferation  tests,  gene  expression  and  molecular  cytogenetic  analyses  were 

carried out at intervals of 7 days.

A B

C D

Figure  20: Scanning electron microscopy (SEM) analysis  of  the construct 
based on hydroxyapatite (A) and inoculated with ADSCs after 7 (B), 14 (C) 
and 21 (D) days of culture in osteo-endothelial differentiation medium.

The morphological analysis of the constructs was carried out by SEM after 7, 14 

and  21  days  of  culture  in  osteo-endothelial  medium (Figure  20).  The  images 

acquired by SEM show that the ADSCs progressively colonized the biomaterial, 
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also proliferating inside the porous structure, until  constituting, after 21 days of 

culture, a continuous layer of cells (Figure 20 D).

The proliferation of the ADSCs inoculated on the hydroxyapatite-based scaffolds 

was also assessed by MTT assay (Figure 21 A) and by quantification of the cells 

adhering to the matrices (Figure 21 B) after 7, 14 and 21 days of culture in osteo-

endothelial  differentiation medium.  The quantification of  the adhering cells  was 

determined indirectly through a previously built calibration curve that correlates the 

amount of DNA extracted from the ADSCs to the number of cells subjected to 

extraction. The data collected show an increase in the proliferation time and in the 

number of ADSCs inoculated on the scaffolds.

A B

Figure  21: MTT assay  (A)  and  quantification  of  the  cells  adhering  (B)  to  the 
hydroxyapatite-based  supports  after  7,  14  and  21  days  of  culture  in  osteo-
endothelial differentiation medium.

The differentiation of the ADSCs inoculated on the hydroxyapatite-based matrices 

was assessed by genic expression analysis with Real-Time PCR (Figure 22).

To this purpose, three different differentiation conditions were tested:

- Three-dimensional cultures of ADSCs in the presence of osteogenic factors;

- Three-dimensional cultures of ADSCs in the presence of endothelial factors;

- Three-dimensional cultures of ADSCs in the presence of both factors.

Osteogenic differentiation was determined by assessing the expression of some 

bone matrix markers, such as Osteopontin, Osteonectin, Osteocalcin and Type I 

Collagen  [Ma  et  al.  2010].  On  the  other  hand,  endothelial  differentiation  was 

assessed by determining the expression of  the marker  CD 31 (also known as 
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Platelet Endothelial Cell Adhesion Molecule - PECAM-1), of the von Willebrand 

Factor (vW)  [Marino et al. 2012] and of the Vascular Endothelial Growth Factor 

(VEGF).  Furthermore,  the expression of transcriptional factors was determined: 

Runt-related  transcription  factor  2  (RUNX2),  essential  for  osteogenic 

differentiation, and Peroxisome Proliferator-Activated Receptors gamma (PPAR, 

necessary for the regulation of adipocyte differentiation [Kawai et al. 2009].

A

B

C

Figure  22: Genic  expression  analysis  by  Real-Time  PCR  of  ADSCs  in  the 
presence of osteogenic factors (A), endothelial  factors (B), and osteogenic and 
endothelial factors (C) after a treatment of 7 (black bars), 14 (white bars) and 21 
(grey bars) days.

In the presence of osteogenic factors only (Figure 22 A) there was an increase in 

the time of expression of the markers Osteopontin, Osteonectin, Osteocalcin and 

Type I Collagen. Over time, then, there was an increase in the expression of the 

osteogenic  transcriptional  factor  RUNX2  and  a  contemporary  reduction  in  the 

expression of the transcriptional factor PPAR, specific for adipocyte differentiation. 

In this differentiation condition there was no expression of the endothelial markers 
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CD 31, vW and VEGF.

The association of endothelial factors with osteogenic factors (Figure 22 C), on the 

other hand, showed over time a greater increase in the expression of osteogenic 

markers.  The same increase was also observed for  RUNX2 associated with a 

greater  reduction  in  the  expression  of  PPAR.  Furthermore,  the  presence  of 

endothelial  factors  determined the  expression  of  the  markers  CD 31,  vW and 

VEGF. For the latter, there was an increase in the expression over time like in the 

differentiation condition with endothelial factors only (Figure 22 B).

Genetic analysis of the construct

In order to ensure the genetic stability of the construct based on hydroxyapatite 

and differentiated ADSCs, Comparative Genomic Hybridization (CGH) arrays were 

performed to identify genomic deletions and amplifications.

The DNA extracted from the ADSCs inoculated on hydroxyapatite-based supports 

and treated with osteogenic and endothelial differentiation factors for 7, 14 and 21 

days was analysed by CGH array (Figure 23). This analysis showed the absence 

of  genomic  imbalances,  namely  amplifications  or  deletions  of  regions  of  the 

genome, confirming that long-term culture in the presence of differentiation factors 

cannot  induce DNA structural  alterations.  Figure  23 shows two  regions  as  an 

example of the whole genome of the analyzed samples. In particular, Figure 23 A 

shows  the  DNA region  related  to  the  MYC (myelocytomatosis  viral  oncogene 

homolog)  gene,  while  Figure  23 B  the  DNA  region  related  to  the  RB1 

(retinoblastoma 1) gene of the constructs after 7, 14 and 21 days. Both show no 

alterations, which are clearly evident in the same genomic regions of the positive 

control, represented by the DNA extracted from actinic keratosis cells (Figure 23 B 

and D).
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A B

7 days 14 days 21 days
C D

7 days 14 days 21 days
Figure  23:  CGH array analysis. Two genic regions of the hydroxyapatite-based 
scaffold inoculated with ADSCs in osteo-endothelial differentiation medium after 7, 
14 and 21 days (A, C) compared with the same regions of actinic keratosis (B, D).  
In (B) an amplification and in (D) a deletion.

Donor  age-related  biological  properties  of  human  dental  pulp  stem 
cells

Stemness of DPSCs

The isolation of DPSCs from human dental pulp and their  in vitro differentiation 

capacity  into  various  mesenchymal  tissues  were  first  established  by  using 

standard protocols. Under these conditions (using specific differentiation media), 

the classical adipogenic, osteogenic, and chondrogenic media were highly efficient 

in causing specific differentiation into the expected cell lineages, as confirmed by 

molecular hallmarks (Figure 24). 
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Figure  24:  Gene  expression  according  to  real-time  PCR  on  undifferentiated 
DPSCs  in  basal  culture  medium  (A)  and  in  media  that  induce  differentiation: 
chondrogenic (B), osteogenic (C) or adipogenic (D). One-way analysis of variance 
(ANOVA)  was  used  for  data  analyses.  The  Levene  ı́s  test  was  used  to 
demonstrate the equal  variances of  the variables.  Repeated-measures ANOVA 
with a post-hoc analysis using Bonferroni’s multiple comparison. T tests were used 
to determine significant  differences (p,0.05).  * p,0,05; *  *  p,0,01; *  *  *  p,0,001. 
Repeatability was calculated as the standard deviation of the difference between 
measurements.

Moreover, we analyzed the commitment to these lineages versus the expression 

of endothelial, neuronal and glial like features. First, to confirm that cells isolated 

from dental  pulp  with  our  protocols  were  dental  pulp  stem cells  (DPSCs),  we 

cultured the cells  in the presence of  basal  culture  medium for  undifferentiated 

DPSCs (Figure 24a), and we performed gene expression analyses to detect their 

phenotypes. After 2 days of culture in basal culture medium for undifferentiated 
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DPSCs, real-time PCR was performed. The genes selected for this screening were 

the following: Endothelial commitment: von Willebrand factor (vWF) and CD31. As 

reported in Figure 24a, no expression for these markers was detectable.

Bone commitment:  osteopontin,  osteonectin,  and osteocalcin.  No expression of 

these markers was detectable (Figure 24).

Neuronal commitment: S100, βIII tubulin, and nestin. Low expression of S100 was 

detectable, whereas no expression of other markers was found.

Glial commitment: GFAP and CNPase. Neither of these was detectable.

Adipogenic commitment: adiponectin, GLUT4, PPARγ. No expression was found.

Fibroblastic commitment: collagen type I was detected at 45% of the expression 

level of the control. 

Twin cultures were then performed for 21 days in different media: chondrogenic 

(Figure 24b),  osteogenic  (Figure  24c),  and adipogenic  (Figure  24d).  The gene 

expression patterns of the cultures confirmed the correct commitment. Indeed, in 

chondrogenic medium, only collagen type II was detectable, and no endothelial or 

neuronal  markers  were  present.  In  osteogenic  medium,  collagen  type  I, 

osteopontin, osteonectin, and osteocalcin were abundant, whereas no traces of 

collagen type II or adipogenic genes were observable. In adipogenic medium, no 

neuronal,  endothelial,  bone  or  cartilage  markers  were  detected.  PPARγ, 

adiponectin and GLUT4 (specific for adipogenesis) were observed (Figure 24d).

Proliferative activity

Population  doubling  time  (PDT)  is  used  to  evaluate  the  ability  of  the  cell  to 

duplicate in number and is therefore a direct marker of the proliferative ability of 

the  cell.  In  this  experiment,  we analyzed the  PDT of  DPSCs cultured in  non-

differentiative medium. PDT was evaluated at 3 different in vitro passages (p) of 

the cultures: 

 p2: early passage 

 p5: medium-term culture 

 p8: long-term culture 
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Figure 25: Population doubling time (PDT) of DPSCs cultured in the presence of 
basal culture medium for undifferentiated DPSCs. The graph shows in vitro pas-
sage (starting from p2 for young cells (black bar) to p8 (white bar)) and the age of 
the donor (from 16 to over 67). T tests were used to determine significant differ-
ences (p,0.05). * p,0,05; * * p,0,01; * * * p,0,001

As reported in Figure 25, we observed well-defined cell growth for each passage 

in  each  age  class.  For  the  aged  group  (up  to  67  years),  proliferative  ability 

decreased in time and during in vitro aging. This property was not evident for stem 

cells  derived  from young  donors  (up  to  25  years),  as  a  high  PDT value  was 

maintained in all cell passages. These data confirm the good proliferative ability of 

stem cells. After age 25, this ability decreased in proportion to the in vitro passage. 

Interestingly, up to age 56, a high level of proliferation was detectable at p2.

Qualitative analyses of lineage commitment

Qualitative and quantitative analyses of stemness were performed, starting from 

the data reported in the literature [Zhang et al. 2008; Volponi et al. 2010; Yan et al. 

2011;  Yang  et  al.  2010;  Huo  et  al.  2010;  Nakashima  et  al.  2009;  Sloan  and 

Waddington 2009]. The commitment ability of DPSCs was tested by culturing them 

in  the  presence  of  differentiation  media.   Markers  for  endothelium,  bone,  and 

nervous system were detected by immunostaining (Figure 26 and  Figure 27 for 

negative controls) and real-time PCR (Figure 28). 
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Figure  26:  Immunofluorescence  analyses  of  DPSCs  committed  to  several  cell 
lineages. (A) CD31 for endothelial cells (red cells). (B) Osteonectin for osteogenic 
commitment.  (C)  S100 (red cells,  for  neurogenic commitment),  (D)  nestin  (red 
fibers) and bIII tubulin (green), (E) GFAP (red staining), (F) CNPase (green) and 
nestin (red) (406) for glial-like commitment. (G) Negative control: DPSCs cultured 
in non-differentiative medium and stained with primary Ab against GFAP (no red-
positive cell  are detectable) and primary Ab against CNPase (no green-positive 
cells are detectable). Bar: 30 mm.
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Figure 27:  Immunofluorescence analyses of human fibroblasts (used as control). 
Bar: 30 mm.

Figure 28: Gene expression by real-time PCR on DPSCs in endothelial, neuronal 
or glial differentiation medium. One-way analysis of variance was used for data 
analyses. T tests were used to determine significant differences (p,0.05). * p,0,05; 
* * p,0,01; * * * p,0,001. Repeatability was calculated as the standard deviation of  
the difference between measurements.
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As control, DPSCs cultured in basal culture medium for undifferentiated DPSCs 

was. To test the specificity of the antibodies used for immunostaining, fibroblast 

cells were used as control. To analyze the results, we determined whether DPSCs 

always  expressed  the  correct  specific  markers  in  the  presence  of  a  given 

differentiation medium. If DPSCs expressed the expected markers, we referred to 

them as maintaining that differentiation phenotype, and if they did not, we referred 

to them as losing this ability.

Endothelial markers

Specific  markers  for  endothelial  commitment,  CD31  and  vWF,  were  selected. 

DPSCs cultured in the presence of endothelial differentiation medium expressed 

CD31,  as  indicated  by  the  well-defined  red  staining  (Figure  27 a).  Thus,  the 

DPSCs  correctly  committed  to  the  endothelial  phenotype.  Corroborating  the 

immunocytochemistry results, the gene expression (Figure 28) of CD31 and vWF 

also indicated endothelial differentiation.

Bone markers

Osteonectin, a bone-specific protein that binds selectively to both hydroxyapatite 

and collagen, was selected as a marker of commitment to bone cells. Osteonectin 

links  the  bone  mineral  and  collagen  phases,  perhaps  initiating  active 

mineralization in normal skeletal tissue. In the osteogenic medium, the red positive 

reaction (Figure 26 b) indicated the novel bone phenotype acquired by the cells. 

This  result  was  supported  by  the  expression  of  osteopontin,  osteocalcin  and 

collagen type I (Figure 28).

Neuronal markers 

To analyze neuronal  commitment  capacity,  we detected S100 (Figure 26 c),  a 

calcium-binding protein  normally  present  in cells  derived from the neural  crest 

(Schwann  cells  and  glial  cells),  in  mesenchymal-derived  cells  such  as 

chondrocytes and adipocytes, and in dendritic cells. In  Figure 26 c, it is evident 

that DPSCs expressed S100, as confirmed by the red fluorescent staining. Nestin, 

a type VI intermediate filament (IF) protein, is a protein marker for neural stem 

cells because it is mostly expressed in nerve cells. In our monolayer cell cultures, 

DPSCs in the presence of neuronal medium expressed nestin (Figure 26 d, red 

staining), further indicating neuronal commitment. The last protein tested for the 

neuronal  phenotype  was  βIII  tubulin,  a  protein  abundant  in  the  central  and 

peripheral nervous systems, where it is prominently expressed during fetal  and 

86



post-natal  development.  All  of  the  DPSCs  cultured  in  neuronal  differentiation 

medium showed a positive expression of this neuronal protein (Figure 26 d, green 

staining; Figure 27, negative control). The gene expression detected with real-time 

PCR (Figure 28) confirmed the immunocytochemistry results.

Glial markers 

During gliogenesis, nestin is replaced by other IF proteins, such as glial fibrillary 

acidic protein (GFAP). In our cultures, indeed, no cells expressed GFAP if cultured 

in neuronal medium (data not shown), whereas in the presence of glial medium, a 

well-defined cytoskeletal structure positive for GFAP was evident (Figure 25 e, red 

staining).  Another  important  signal  related  to  glial  phenotypes  was  the  co-

expression of nestin and CNPase (Figure 25 f). CNPase (2',3'-cyclic nucleotide 3'-

phosphodiesterase) is expressed at high levels by oligodendrocytes in the central 

nervous system and by Schwann cells in the peripheral nervous system (Figure

25f,  green  staining).  Its  co-expression  with  nestin  (Figure  25f,  red  staining) 

confirmed the commitment of DPSCs to the correct phenotype. In  Figure 28, the 

gene expression levels of these proteins are shown. 

Quantitative analyses

We analyzed the percent of  positive cells for  each marker and compared their 

lineage  commitment  abilities.  These  analyses  were  performed  at  the  3  most 

significant in vitro passages of DPSCs (P2, P5, P8) for each age group (Figure 29) 

to test if the stemness of DPSCs is related to the  in vitro (passage) and  in vivo 

(age of donor) aging of the cells.

87



88



Bone commitment

A marked in vitro commitment of DPSCs was detectable for each in vitro passage 

and for each age. Figure 29b shows that approximately 80% of DPSCs from both 

p2 and p5 acquired a bone phenotype when they were derived from patient of less 

of 55 years old. After this age, a strong commitment (approximately 70%) was still 

evident up to p8. 

Neuronal commitment

Nestin- (Figure 29c) and S100-positive cells (Figure 29d) were present at higher 

levels (100% of the cell population) during p2 (black bars) from donors up to 36 

years  old.  In  cells  from  donors  up  to  45  years  old,  Nestin  (Figure  29e)  was 

detectable in a smaller percentage of cell the population (80%), but its expression 

endured during the in vitro aging (from p2 to p8). Cells from senior donors showed 

a decrease in this marker over time in vitro.

GFAP (Figure 29f) and CNPase (Figure 29g) were present in approximately 70% 

of the cells in all p2 cultures for all ages. Starting from 45 years old, their presence 

dramatically decreased at p5 (gray bar) and at p8 (white bar).

3D cultures

Cells of the most representative groups, the 16-25 age group and the senior age 

group  (over  66)  at  p5,  were  seeded  onto  HA granules,  and  their  osteogenic 

potential was evaluated. The marker expression in monolayer conditions versus 

3D conditions were then compared. As shown in  Figure 30, the presence of HA 

considerably  improved  the  osteogenic  population:  osteopontin,  osteonectin, 

osteocalcin, collagen type I, collagen type III, cathepsin B (CTSB), cathepsin D 

CTSD,  distal-less  homeobox  1  (DLX1),  DLX5,  dental  sialoprotein  (DSPP), 

fibroblast growth factor 8 (FGF8),  transforming growth factor β1 (TGF-β1),  and 

RANK were more strongly expressed when cells where mixed with HA than in 

monolayer conditions from both donor age groups.
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Figure 30: Gene expression by real-time PCR on DPSCs derived from the younger 
donor group (16–25) and from the senior group (over 66) in monolayers and in 
nanostructured scaffolds. Markers selected were bone morphogenic protein (BMP) 
2, BMP-3, cathepsin B (CTSB), CTSD, collagen type I (Col1A1), collagen type III  
(Col3A1),  Distal-less homeobox (DLX) 1,  DLX5, fibroblast  growth factor  (FGF), 
transforming growth factor b1 (TGFb1), receptor activator of nuclear factor kappa-
B  (RANK),  osteopontin,  osteonectin,  and  osteocalcin.  The  results  for  each 
experiment  are  from quadruplicate  experiments.  Values  are  expressed  as  the 
mean 6  SD.  T tests  were  used to  determine significant  differences (p,0.05).  * 
p,0,05; * * p,0,01; * * * p,0,001.

Perimplantitis and CGH analysis: chromosomal aberration 

The  results  we  obtained  from  this  preliminary  study  of  20  patients  with  peri-

implantitis are the following

CGH array has been performed on DNA derived from blood sample collected from 

20 patients affected with perimplantitis. 

The result obtained, reported in fig.17 show for all the patient affected by perim-

plantitis, the presence of a duplication in omozygosis (red square) of a genome 

portion corresponding to the position at the chromosome 6, with starting point at 

43846044 pb position, and stop point position at 43862079 pb, for a total of 16 kb 

ca.

DNA derived from 5 patient with implants and not affected by perimplantitis has 

been also analised by CGH array and this duplication has not been detected (Fig-
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ure 31b ). A detailed analyses of this genomic portion revealed that this position 

correspond to the exon 8 of VEGF gene. 

Figure 31: A: presence of a duplication in omozygosis (red square) of a genome 
portion corresponding to the position at the chromosome 6. B: duplication has not 
been detected

In Vivo

In vivo rat implantation of the construct with ADSCs

For the purpose of testing the osteo-regenerative capacilities of the ADSCs,  in 

vivo experiments  were  carried  out  on  immunocompromised  Wistar  rats.  The 

experiments  of  implantation  on  the  animals  were  preceded  by  the  in  vitro 

preparation of the constructs: the ADSCs were inoculated on the hydroxyapatite-

based matrices with a density of 106 cells/cm2 and were later incubated for 7 days 

with  osteo-endothelial  medium.  These  constructs  were  then  implanted  in 

A                     B
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correspondence of lesions of the flat bones of the skull of immunocompromised 

rats.  The experiments were carried out by comparing the constructs previously 

prepared  in  vitro  (Figure  32b)  with  a  control  situation,  that  is  to  say,  the 

hydroxyapatite-based matrices with no cells (Figure 32a).

Figure  32: In vivo experiments. Implantation of the hydroxyapatite-based matrix 

with no cells (A) and of the hydroxyapatite-based matrix with ADSCs (B) in the flat 
bones of the rat skull. Goldner trichrome staining; 20x enlargements. In (C) genic 
expression analysis by Real-Time PCR of the hydroxyapatite-based matrix with no 
cells (white bars) and of the hydroxyapatite-based matrix with ADSCs (black bars).

Goldner trichrome staining performed on two different implants shows that both 

scaffolds  are  infiltrated  by  cells  with  the  deposition  of  extracellular  matrix,  in 

particular of Type I Collagen. What distinguishes the two implants is the presence 

of vessels in correspondence of the hydroxyapatite-based support inoculated with 

ADSCs.

Genic expression experiments were carried out on the implants by Real-Time PCR 

to confirm the histological analysis (Figure 32c). The data collected show that the 

presence of ADSCs in the construct guarantees the presence of a population of 

cells  from  the  osteogenic  phenotype  characterized  by  the  expression  of  the 

A B

C
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markers Osteopontin, Osteonectin, Osteocalcin, Type I Collagen and RUNX2 and 

of a population of endothelial cells that express the markers CD 32, vW and VEGF.

In vivo rat implantation of the construct with DPSCs

The bone regeneration activity of the DPSCs was assessed in vivo using a rat 

calvarial defect model (Figure 33a; c).

Figure 33: Critical size defect (A, C) before 
the  treatment  with  DPSCs.  Defect  after 
treatment  with  DPSCs  from  the  younger 
group (B) and older group (D).

We considered 2  different  groups to  ascertain the influence of  undifferentiated 

DPSCs on new bone formation: DPSCs from the 16-25-year donor group (Figure

33b) and from the over-66 group at p5 (Figure 33d).  As controls,  HA granules 

without cells were used.

Concerning  the  cell  populations  filling  the  implants,  it  was  evident  that  no 

inflammatory reaction around or inside the implant containing stem cells (Figure

34) from either donor age group occurred (Figure 34a from the younger donor 

group; Figure 34b from the senior donor group).
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Figure  34:  In  vivo  engraftment  of  HA nanostructured  scaffolds  (van  Gieson 
staining, 206). (A) DPSCs from the younger group (16–25). (B) DPSCs from the 
senior group (.66). *, HA granules; black arrows, extracellular matrix. (C) Real-time 
PCR. Time course of osteogenic (osteopontin, osteonectin, osteocalcin, collagen 
type I, Runx2) and vasculogenic (CD31, vWF, VEGF) mRNA expression analyzed 
by  semi-quantitative  real-time  PCR  of  HA  nanostructured  scaffolds  in  vivo 
embedded with DPSCs after 21 days. The results for each experiment are from 
quadruplicate experiments. Values are expressed as the mean 6 SD. T tests were 
used to determine significant differences (p,0.05). * p,0,05; * * p,0,01; * * * p,0,001.

In both implants enriched with stem cells, the HA nanostructured granules (Figure

34c *) were fully embedded with osteoblast-like cells capable of producing a good 

extracellular matrix consisting mainly of collagen type I, as revealed by van Gieson 

staining (Figure 34c, black arrows). A more detailed analysis of the cell population 

was performed using real-time PCR for osteogenic markers. As shown in  Figure

33c,  the presence of HA considerably improved the osteogenic population: the 

markers for osteopontin, osteonectin, osteocalcin, collagen type I, RUNX, VEGF, 

CD31, vWF, and vascular endothelial growth factor (VEGF) were more strongly 

expressed when cells where mixed with HA than in monolayer conditions from 

both donor age groups.
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Sheep cellular response to scaffolds

Cellular events involved in bone regeneration are summarised in Table 6.

In normal regenerated tissue, the sites treated with HA and with HA with stem cells 

show at  15 days no infiltration  of  inflammatory  cells  population.  There are no 

polymorphic  nuclear  cells  (i.e.  granulocytes),  phagocytic  cells  (include 

macrophages and monocyte-derived giant cells) and non-phagocytic cells, plasma 

cells and mast cells. It should be noted that absolute numbers of PMNs and non-

phagocytic cells are lower than for phagocytic cells. Even if the sites without stem 

cells show a presence of fibroblasts, endothelial cells and type I collagen, sites 

treated with stem cells exhibit a greater number of these cells.

At day 30 with HA scaffolds alone a moderate presence of fibroblast, endothelial 

cells and collagen fibers is observable, while higher presence of all cells types and 

of  a  extracellular  matrix  well  structured is  revealed in  presence of  stem cells. 

(Table 6)

Table 6: Cells were scored from not present (-) to abundantly present (+++)

a PMNs = polymorphic nuclear cells, i.e. granulocytes
b Phagocytic cells include macrophages and monocyte-derived giant cells
c Non-phagocytic cells include lymphocytes, plasma cells and mast cells

At day 15, the presence of an inflammatory state  created using TNFα (10 mM), 

without  stem cells,  showed high  infiltration  of  granulocytes  and  macrophages. 

Scarce fibroblast,  endtothelial  cells and collagen fibers were observable in any 

site.  Treatment  with  stem cells  in  presence of  inflammed tissue showed a big 

Days after implantation PMNs
a

Phagocyt
ic cellsb

Non-
phagocyti
c
cells

Fibroblast
s

Endotheli
al
cells

Collag
en
type I

15  days  without  stem 
cells

- - - + + +

30  days  without  stem 
cells

- - - ++ ++ ++

15 days with stem cells - - - ++ ++ ++
30 days with stem cells - - - +++ +++ +++
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presence of inflammatory cells such as granulocytes and macrophages, scarce 

presence of fibroblast, and moderate quantity of endothelial cells and collagene 

type I fibers.

At day 30 the sites without stem cells showed a moderate amount of polymorphic 

nuclear  cells  (granulocytes),  phagocytic  cells  (macrophages)  and  some  non-

phagocytic  cells.  There is also a moderate presence of  fibroblasts,  endothelial 

cells and collagen type I cells. 

At  day  30  the  cellular  response  at  the  treatment  with  stem  cells  included  a 

significative  amount  of  endothelial  cells,  collagen  type  I  cells  and  fibroblasts.  

Polymorphic nuclear cells, phagocytic cells and non-phagocytic cells were scarce. 

Collagen fibers were present overall in stem cells-treated tissue. (Table 7)

Table 7: Cells were scored from not present (-) to abundantly present (+++)
HA scaffold treated with TNFα (10 mM)

Days  after 
implantation

PMNsa Phagocytic 
cellsb

Non-
phagocytic
cells

Fibroblasts Endothelial
cells

Collagen
type I

15  days 
without 
stem cells

+++ +++ ++ + + +

30  days 
without 
stem cells

++ ++ + ++ ++ ++

15  days 
with  stem 
cells

+++ +++ ++ + ++ ++

30  days 
with  stem 
cells

+ + + +++ +++ +++

In the site enriched with stem cells the HA granules were fully embedded with 

fibroblast-like  cells.  These cells  are  capable  of  producing  a  good  extracellular 

matrix consisting mainly of collagen type I, as revealed by Alzan Mallory staining in 

blue (black arrows). Also significantly vessel (yellow arrows) could be found inside 

the scaffolds. (Figure 35, Figure 36) The presence of extracellular matrix and neo 

angiogenesis is crucial in the process of healing.
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Figure 35: 15 days of healing. Site with HA scaffold treated 
with  TNFα and stem cells.  Upper images are stained with 
EE, lower with Alzan Mallory. Yellow arrows indicate vessels, 
black ones fibroblasts. In EE staining, dark dots represents 
inflammatory cells.
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Figure  36: 30 days of healing. Site with HA scaffold treated 
with TNFα and stem cells. Upper images are stained with EE, 
lower with  Alzan Mallory. Black arrows indicate extracellular 
matrix.

Dogs cellular response to scaffolds

Cellular events involved in bone regeneration have been analyzed with Stevenel’s 

blue and alizarin  red.  These solutions stein  in  blue collagen fibers  and in  red 

mineralized tissues. (Figure 37)

Figure 37: Specimen 30 days after dental implant insertion. This preparation was 
obtained with Stevenel’s  blue and alizarin  red staining.  Note  the marginal  gap 
occurred around the implant filled with HA scaffold.

Histological specimen represented in (Figure 38 Figure 39) is a sample of healing 

30 days after fixture insertion. The site was regenerated with HA scaffold with stem 

cells. It can be noticed in black a portion of fixture, in pink the HA scaffold, in red 

the mineralized tissues and in blue collagen fibers.

In the site enriched with stem cells the HA granules were fully embedded with 

fibroblast-like  cells  capable of  producing  a  good extracellular  matrix  consisting 

mainly  of  collagen  type  I,  and  properly  mineralized  tissue.  No  inflammatory 

infiltrates are presents in the tissue. Significantly vessel (yellow arrows) could be 

found inside the scaffolds. Dental implant is well integrated with a good contact 

between new bone and implant surface. Where a large bone-to-implant contact 
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(BIC) is present, implant show a good stability and is considered osteointegrated.

Figure  38:  30  days  of  healing.  Stevenel’s  blue  and  alizarin  red 
staining.  The  site  was  regenerated  with  HA scaffold  with  stem 
cells. Pink staining indicate the HA scaffold, red the mineralized 
tissues and in blue collagen fibers. Yellow arrows indicate vessels. 
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Figure  39:  30 days of  healing.  Stevenel’s  blue and alizarin  red 
staining.  The  site  was  regenerated  with  HA scaffold  with  stem 
cells. Pink staining indicate the HA scaffold, red the mineralized 
tissues and in blue collagen fibers. Yellow arrows indicate vessels. 
Note the new bone formation.

Figure 39 shows a higher magnification (40x) the deposition of new bone matrix. 

There are numerous vessels that indicate a process of neo-angiogenesis and the 

scaffold of  HA stained in pink closer with osteoblasts stained in blue.  The red 

portion represent the new bone that is placed by osteoblasts directly in contact 

with the surface of the HA scaffolds.

At  day  30  after  surgery  both  sites  with  or  without  stem  cells  do  not  show 

polymorphic  nuclear  cells  (i.e.  granulocytes),  phagocytic  cells  (include 

macrophages and monocyte-derived giant cells) and non-phagocytic cells, plasma 

cells and mast cells. It should be noted that absolute numbers of PMNs and non-

phagocytic cells are lower than for phagocytic cells. 

Site without stem cells show a scarce amount of fibroblasts, endothelial cells and 

collagen type I cells. Also the new bone formation is scarce. In site treated with HA 

scaffold with stem cells there is larger amount of endothelial cells, collagen type I 

cells and the new bone formation is more evident. (Table 8)

Table 8: Cells were scored from not present (-) to abundantly present (+++)

Days after 
implantation

PMNsa Phagocytic 
cellsb

Non-phagocytic
cellsc

Fibroblasts Endothelial
cells

Collagen
type I

New 
bone

30 days without 
stem cells

- - - + + + +

30 days with stem 
cells

- - - + ++ ++ ++

a PMNs = polymorphic nuclear cells, i.e. granulocytes
b Phagocytic cells include macrophages and monocyte-derived giant cells
c Non-phagocytic cells include lymphocytes, plasma cells and mast cells
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Discussion

Injuries caused by trauma, edentulism condition, tumor or cyst resection, infectious 

diseases,  extreme  atrophy  after  tooth  extractions  may  result  into  serious 

functional, aesthetical and psychological sequelae [Cohen 1995; Hunt and Hobar 

2003].

In such situations, absence of hard and soft tissues can be disfiguring and often 

compromise basic functions such as : mastication, speech and also psychological 

conditions [Davis and Telischi 1994; Kadota et al. 2008; Curtis et al. 1997; Urken 

et  al.  1991].  The  progression  of  certain  oral  conditions  may  also  result  in 

craniofacial defects of difficult resolution. (Figure 40)

Periodontitis is a chronic inflammatory disease of bacterial etiology, characterized 

by the loss of support around teeth, including alveolar bone resorption and soft 

tissue alterations  [Genco 1992;  Kinane and Bartold  2007;  Feng and Weinberg 

2006]. 

Dental implant tooth replacements, one of the most popular therapies for total or 

partial edentulism, may be affected by a similar condition known as periimplantitis 

[Misch 2008]. Achieving predictable regeneration in the treatment of craniofacial 

defects  is  remarkably  challenging  in  most  clinical  scenarios  given  the  loss  of 

structural support and different embryologic origins of the affected tissues, among 

other factors.

Autogenous tissues have been widely used and are still considered as the gold 

standard to which all other biomaterials are compared [Dimitriou et al. 2011a]. 

Nevertheless,  even  the  most  advanced  reconstructive  techniques  using 

autologous  materials  are  often  insufficient  to  restore  extensive  or  complex 

maxillofacial defects [Susarla et al. 2011]. 
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Figure 40: Severe atrophy in the posterior mandibular. Lateral view (A, B); frontal 
view (C); occlusal view (D)

Figure  41:  sample  taking  of  bone  from 
retromolar zone
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Figure  42:  reconstructive  techniques  using 
autologous materials

Figure  43:  panoramic radiograph showing good bone 
regeneration and implant placement

  

Figure 44: Implant prosthetic rehabilitation in the posterior region
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Autografts contain all of the basic elements necessary to induce effective tissue 

regeneration, provided cells, extracellular matrix and cytokines [Pape et al. 2010; 

Khan et al. 2005]. However, the use of autogenous tissue involves the need of 

harvesting it from a donor site, with the consequent drawbacks in terms of costs, 

procedure time, patient discomfort and possible complications. (Figure 41,Figure

42,Figure 43, Figure 44)

Additionally, oftentimes the volume of harvested tissues is not sufficient to fill or 

cover a defect, given the limited availability of autogenous tissues [Dimitriou et al. 

2011b;  Zouhary  2010].  To  overcome these  limitations,  a  variety  of  exogenous 

substitute  materials,  including  allografts,  xenografts  and  alloplasts,  have  been 

introduced in clinical practice over the last three decades  [Bauer and Muschler 

2000; De Long et al. 2007]. These materials primarily act as scaffolds, supporting 

the  migration  of  cells  from the  periphery  of  the  grafted  area.  Substitutes  are 

indicated in the treatment of cases where the application of autografts alone may 

not  be  possible  [Finkemeier  2002].  Unfortunately,  when  comparing  these 

biomaterials  to  autografts  other  limitations  emerge.  The  presence  of  cellular 

populations, orchestrate the release of growth factors,  maintenance of a stable 

scaffold,  and  stimulate  angiogenesis  and  are  key  for  successful  tissue 

regeneration as they play a fundamental role on the healing process [Taba et al. 

2005]. Controlling the dynamics of these elements allows for a more predictable 

treatment of challenging craniofacial defect.

Novel  tissue  engineering  therapies  aimed  at  enabling  clinicians  to  achieve 

predictable regeneration have been recently developed.

The  idea  of  using  stem cells  for  therapeutic  purposes  has  become genuinely 

feasible, though it is clear from the scientific evidence accumulated to date that 

more research is needed first because there are still numerous problems to solve. 

In  particular,  although  embryonic  stem  cells  have  an  unlimited  potential  for 

differentiation, their use is restricted for various reasons. There are not only ethical 

issues to consider that hinder their transplantation, but also rejection phenomena 

and the risk of generating teratomas [Yu and Thomson 2008].

These are some of the reasons why adult mesenchymal stem cells (MSC) have 

been used in the field of tissue engineering. MSCs form a population of stromal 

cells  contained  in  the  bone  marrow  and  the  majority  of  postnatal  connective 

tissues.  They are capable of  differentiating not  only  into cells  of  mesenchymal 

derivation, but also into non-mesenchymal cell lines. In addition, cultured MSCs 
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have  a  marked  proliferative  capacity  as  well  as  retaining  their  potential  for 

multilinear differentiation, and this makes them interesting candidates for tissue 

regeneration purposes  [Augello and De Bari 2010].  Another favorable feature of 

MSCs lies in that they are readily available in postnatal tissues such as adipose 

tissue, and also – of more interest in dentistry – in dental pulp. 

Having the chance to harvest stem cells from teeth and then use them for bone 

regeneration  therapies  or  to  control  inflammatory  phenomena  such  as  peri-

implantitis  in the same patient is  undeniably  fascinating.  This would enable us 

biologically to ‘come full circle’, so that patients can use their own cells to treat  

themselves.

However  about  the  capacity  of  regeneration  of  bone  tissue,  it  has  an  innate 

capacity. 

It  is  generally  by  no  means  easy  for  it  to  heal  spontaneously  after  major 

resections, severe trauma, fractures or tumors and, when it comes to the world of 

dentistry, tooth extractions are always followed by some degree of physiological 

alveolar bone resorption.  Extracting a tooth entails the loss of the periodontal 

ligament and, with it, an associated loss of most of the blood flow to the bone 

tissue.  Studies in vitro (Pietrusson) and on animal models (Lindhe), and clinical 

studies too (Lindhe, Caneva) have all demonstrated shrinkage of the hard and soft 

tissues after a tooth has been extracted. The resulting condition of bone atrophy 

can also be exacerbated by the presence of movable prosthetics that come to 

bear directly on the alveolar mucosa, giving rise to severe bone resorption. Dental 

implants are a good therapeutic solution for edentulous patients because they can 

be used to support movable prostheses, and by transferring the masticatory load 

directly to the bone, they reduce bone resorption phenomena.  The amount of 

bone  available  is  not  always  sufficient  for  the  clinician  to  insert  an  implant, 

however, in which case it becomes necessary to resort to grafts of autologous or 

allogeneic  bone  tissue.   Autotransplants  and  allotransplants  have  produced 

promising results, but their use is limited for various reasons, including a limited 

availability, donor site morbidity, long recovery times, and the risk of transmitting 

disease [De Long et al. 2007] 

In  recent  years,  the  adoption  of  bone  substitutes  bio-engineered  with 

mesenchymal  stem  cells  (MSC)  has  developed  into  a  promising  alternative 

approach for the treatment of large bone defects without any of the side-effects 

associated with the more conventional therapies.  The use of cellularized bone 
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substitutes is also restricted, however,  because of their limited osteointegration, 

and this is due to the graft being poorly vascularized.

The cells in natural tissues are distributed so that they are never more than 200 

nm away from a capillary,  and this distance suffices to ensure the diffusion of 

oxygen, nutritional substances and waste.  Once implanted, the cells of tissues 

engineered in the laboratory should likewise come to be no further away from the 

nearest capillary in order to guarantee their survival [Lovett et al. 2009].  Generally 

speaking, when bone substitutes are transplanted into the host bone they become 

vascularized  as  a  consequence  of  the  inflammatory  response  needed  for  the 

lesion to heal.  The implanted cells’ state of hypoxia can also facilitate the graft’s 

vascularization  through  the  release  of  angiogenic  growth  factors.  This 

spontaneous vascularization is very limited, however, and the process is too slow 

to  reach  the  innermost  cells  of  the  implant.  The  vascularization  of  bone 

replacement  tissues  thus  remains  a  major  obstacle  to  overcome  before 

satisfactory clinical results can be obtained. 

In the light of these considerations, an in vitro model of vascularized bone tissue 

was  developed  starting  from  MSCs  harvested  from  adipose  tissue  (ADSCs). 

Adipose  tissue  is  an  interesting  source  of  MSCs  because  it  is  available  in 

abundance and readily accessible. In addition, it has been possible to obtain large 

numbers of cells in vitro in just a few culture steps, avoiding the risk of senescence 

and the onset of chromosomal anomalies. The multi-potency of ADSCs, thanks to 

their  mesenchymal  origin,  has  been  amply  demonstrated,  and  so  has  their 

capacity  for  osteogenic  differentiation  [Zuk  et  al.  2002].   ADSCs  are  also 

characterized  by  a  particular  plasticity  towards  the  endothelial  phenotype,  a 

feature  relating  to  the  origin  and  physiology  of  adipose  tissue.  In  fact,  the 

development  of  adipose  tissue correlates  closely  with  the  development  of  the 

capillary network essential to its maintenance: angiogenesis and adipogenesis are 

coordinated in time and space [Casteilla et al. 2011].  

Given the above considerations, the properties of ADSCs have been exploited in 

vitro  to  reconstruct  bone  tissue  with  vascular  elements  for  the  purpose  of  

facilitating cell survival after the graft has been implanted.  ADSCs were seeded on 

hydroxyapatite-based  matrices  and  grown  in  the  presence  of  osteogenic  and 

endothelial factors for 21 days. Morphological analyses, proliferation tests, gene 

expression analysis and molecular cytogenetic tests were completed every 7 days. 

Using SEM, the morphological analyses demonstrated a gradual proliferation of 
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the ADSCs also within the cavities in the biomaterial. After 21 days of culture in 

osteo-endothelial differentiating medium, the cells had formed a thin continuous 

layer over the surface of the biomaterial. The cells’ proliferation on the scaffold was 

also confirmed by means of the MTT-dye viability test and quantification of the 

cells adhering to the matrices. The osteogenic and endothelial differentiation of the 

ADSCs was established by means of gene expression analyses using real-time 

PCR.  Three differentiation methods were tested: 

(a) Three-dimensional culture of ADSCs in the presence of osteogenic factors; 

(b) Three-dimensional culture of ADSCs in the presence of endothelial factors; 

(c) Three-dimensional culture of ADSCs in the presence of both factors.

Already  after  a  week  of  culture  on  the  three-dimensional  support,  osteogenic 

differentiation had given rise to the expression of the bone matrix components 

osteopontin, osteonectin, and osteocalcin that are fundamental to the interaction 

between the extracellular matrix and the cells, and essential for the mineralization 

of the matrix.  The appropriate composition of the extracellular matrix was also 

confirmed by the expression of collagen type I, which is essential to the formation 

and  maturation  of  hydroxyapatite  crystals.  Osteogenic  differentiation  was  also 

ascertained by assessing the expression of the transcription factors RUNX2 and 

PPAR.  The  differentiation  of  MSCs  is  governed  by  the  expression  and/or 

activation of these transcription factors: RUNX2 determines their differentiation into 

osteoblasts, while PPAR prompts their differentiation into adipocytes.  PPAR also 

has  an  important  role  in  bone  metabolism  [Viccica  et  al.  2010].  It  facilitates 

adipogenesis at  the expense of  osteogenesis,  particularly  by inhibiting RUNX2 

function and reducing the number of osteoblasts in the bone marrow. Vice versa, 

an increase in RUNX2 expression inhibits adipogenesis and favors osteogenesis 

[Kawai  et  al.  2009].  In  the  presence  of  osteogenic  factors,  three-dimensional 

cultures of ADSCs reveal a gradual increase in RUNX2 expression coinciding with 

a  marked  reduction  in  the  expression  of  PPAR,  confirming  that  osteogenic 

differentiation occurs at the expense of adipogenic differentiation.  On the other 

hand, the osteogenic and endothelial  co-differentiation of the three-dimensional 

cultures of ADSCs prompted a faster increase in the expression of all the above-

mentioned  osteogenic  markers,  associated  with  a  prolonged  increase  in  the 

expression of the endothelial surface marker CD31, and of the soluble endothelial 

factors vW and VEGF. The three-dimensional co-differentiation thus led to the in 

vitro  reconstruction  of  a  cellularized  bone  substitute  comprising  an  osseous 
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component  and  an  endothelial  component  essential  to  the  bone  substitute’s 

preservation  and  growth.  After  these  co-differentiated  constructs  had  been 

transplanted in vivo into immunocompromised rats, there was evidence of a proper 

capillary network having formed inside the material.

Scaffolds with  and  without  osteogenic  and endothelial  differentiated cells  were 

grafted on lesions prepared on flat cranial bones and, here again, morphological 

and molecular analyses conducted on the grafts 3 weeks after their implantation in 

vivo revealed the presence of  both  endothelial  osteogenic cell  lines  within  the 

grafts containing the stem cells. 

For  some  years  now,  any  transplantation  of  tissues  bio-engineered  in  the 

laboratory in humans has been subject to validation to ensure that they are safe in 

terms of the absence of any genetic alterations. Their safety in this sense could be 

ascertained by validating their  chromosomal  stability  by means of  a  karyotype 

analysis.  This  is  one  of  the  diagnostic  tests  most  commonly  used  to  identify 

chromosomal anomalies in the fields of oncology, gynecology and pediatrics. The 

method  is  based  on  the  culture  of  a  monolayer  of  cells  and  the  subsequent 

analysis under the microscope of the cells in metaphase after treating them with a 

mitotic  spindle blocker.  This  means that  karyotyping is not  applicable to  three-

dimensional cultures, and that is why the genetic stability of the osteo-endothelial  

constructs  was  analyzed  using  an  innovative  approach,  called  comparative 

genomic hybridization (CGH). This is a molecular cytogenetic technique based on 

the extraction of the cells’ DNA and the subsequent identification of any variations 

in  the  number  of  gene  pairs  distributed  throughout  the  genome.  This  method 

enables deletions and amplifications in the gene to be quantified with a greater 

resolution  than  karyotyping,  accurately  identifying  the  domains  and  the  points 

where  the  regions  involved  in  any  imbalance  start  and  end.   CGH  arrays 

demonstrated the genetic stability of the three-dimensional constructs, confirming 

that the long-term culture in the presence of differentiation factors is unable to 

induce structural DNA changes.

In conclusion, vascularized bone tissue was reconstructed in vitro by combining 

ADSCs  with  a  hydroxyapatite  scaffold.  Tests  demonstrated  that  the  ADSCs 

simultaneously differentiated into endothelial cells and osteogenic cells inside the 

same three-dimensional support, facilitating angiogenesis in the construct after its 

in vivo implantation. The development of new vessels inside the graft is a process 

essential  to  the  long-term  survival  of  the  implanted  cells  and  to  the 
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osteointegration of bio-engineered bone substitutes. CGH array analysis enabled 

us to  establish the genetic  safety  of  the construct  for  potential  implantation in 

humans.

In  the  light  of  the  findings  of  this  study  on  bone  reconstruction  in  vitro,  the 

feasibility of bone regeneration and/or post-extraction alveolar preservation with 

the  aid  of  stem  cells  and  biomaterials  would  pave  the  way  to  new  clinical 

strategies in the field of dentistry. From a social standpoint, this would be a great 

revolution for all the previously-mentioned biological reasons. More patients would 

be able to benefit from bone regeneration techniques, eliminating the problems 

relating to edentulism, and also those relating to bone harvesting from intra- or 

extra-oral sites and the associated morbidity. Last but not least, there would be 

advantages for both clinician and patient in terms of the timing and consequent 

costs of such treatments.

Regarding teeth istead, although they have complex structures that make them 

hard and strong,  they are vulnerable to  trauma and bacterial  infections.  When 

damaged teeth are still repairable, regenerating some parts of their structure may 

prevent or delay the loss of the whole tooth. This is important because tooth loss 

has more than just aesthetic consequences; it also affects the basal functions of 

the mouth and quality of life  [Huang 2009].  How tooth loss caused by trauma, 

caries or periodontal disease can be regenerated depends on the compartment 

involved because a tooth consists of tissues rich in cells, such as the periodontal 

ligament,  cement  and  pulp,  and  also  noncellular  tissues  like  the  enamel  and 

dentin. Of all the structural components of a tooth, only the enamel is incapable of 

regeneration;  all  the  other  tissues  have  a  more  or  less  marked  capacity  for 

regeneration, depending on a number of factors  [Inanç and Elçin 2011]. 

When the structure of a tooth is damaged, the pulp has an important role in its 

regeneration,  participating  in  a  process  called  the  reparative  dentinogenesis. 

When the dental pulp is exposed due to the enamel and the overlying dentin being 

lost,  coating  it  with  a  material  containing  calcium  oxide  enables  the  pulp  to 

generate new dentin.  The healthy pulp cells migrate to the site of  the damage 

where they proliferate thanks to the presence of growth factors released into the 

surrounding dentin matrix, and they form osteodentin over the necrotic layer. The 

cells  in  the  osteodentin  subsequently  differentiate  into  odontoblasts  that 

synthesize  the  reparative  dentin.  This  mineralized  tissue serves  two  important 

purposes: it keeps the pulp intact and it acts as a protective barrier  [Nakashima 
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2005]. 

Dentin regeneration is no longer possible, however, in cases of severe trauma, 

root  fractures,  or  destructive  caries,  when  it  becomes  necessary  to  either 

devitalize or extract the tooth. Since a vital dental pulp is fundamental to a tooth’s 

homeostasis and longevity, in cases where destructive caries have led to dental 

pulp necrosis, the ideal treatment would be a regenerative approach involving the 

removal of the diseased tissues and necrotic pulp and their replacement with new 

pulp tissue in order to revitalize the tooth. The goal of such regenerative therapy 

on the dental pulp is to reconstitute healthy pulp tissue for placing in the area 

adjacent to the dentin in order to prompt a process of reparative dentinogenesis. 

Depending  on  the  patient’s  clinical  conditions,  two  types  of  dental  pulp 

regeneration can be performed, i.e. a partial pulp regeneration in situ, or a total 

pulp replacement with de novo synthesized pulp [Sun et al. 2011].  

Sadly, dental pulp tissue regeneration and engineering is still difficult to achieve. 

The tissue of an engineered pulp needs to be fully functionalized: it  should be 

vascularized and innervated; it should have a cell density and extracellular matrix 

structurally similar to those of natural pulp; and it should be capable of generating 

new  odontoblasts  and  new  dentin.  The  first  step  in  dental  pulp  regeneration 

involves  the  isolation  and  amplification  of  cells  capable  of  differentiating  and 

producing  the  above-mentioned  structures.  The  use  of  dental  pulp  stem  cells 

(DPSCs) has been suggested for this purpose,  not  only because they are the 

physiological constituents of dental pulp, but also for their mesenchymal origin and 

capacity  to  differentiate  into  odontoblasts  [Gronthos  et  al.  2000] and  neurons 

[d'Aquino et al. 2009]. 

In  our  study,  as  illustrated  in  the  Materials  and  Methods  section,  and  in  the 

Results,  we succeeded in isolating stem cells from dental  pulp harvested from 

lower third molars.  By means of enzymatic digestion,  we isolated DPSCs from 

third molars extracted from donors of various ages to establish which age group 

enables large quantities of stem cells to be harvested in the shortest time possible.  

For this purpose, at various culture steps we calculated the population doubling 

time (PDT) for cells obtained from donors of various ages in the presence of non-

differentiating medium. 

The data obtained indicate that the DPSCs proliferate rapidly in the first culture 

steps irrespective of the donor’s age, while there was evidence of the PDT values 

dropping with increasing amplification steps. Only the DPSCs isolated from donors 
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who were between 16 and 25 years old followed a different trend, maintaining a 

constant proliferation rate irrespective of the number of culture steps. Given this 

feature, DPSCs deriving from individuals belonging to this age group were used 

for the reconstruction in vitro of  tooth-like tissue.  Before making the construct, 

preliminary immunofluorescence and gene expression tests were conducted on 

monolayers  of  cells  to  assess  the  DPSCs’  capacity  for  differentiation.  They 

underwent  glial,  neuronal  and  endothelial  differentiation,  demonstrating  the 

expression of the following markers: nestin, S100, CNPase and GFAP in the case 

of glial differentiation; nestin and III tubulin in the case of neuronal differentiation; 

and CD31 and vW in the case of endothelial differentiation. Having ascertained the 

DPSCs’  capacity  for  differentiation,  we  prepared  three-dimensional  constructs 

using a biomaterial obtained from the complete esterification of hyaluronic acid in 

order to mimic the fiber-rich structure of the extracellular matrix of dental pulp. 

These scaffolds were  steeped in  a  mixture of  glial  and neuronal  factors,  then 

DPSCs  were  seeded  on  them  in  the  presence  of  endothelial  differentiating 

medium.  After  14  days  of  differentiation,  the  constructs  were  analyzed  using 

immunofluorescence after  staining  with  hematoxylin  and eosin,  which  revealed 

cells  infiltrating  the  three-dimensional  scaffold,  the  deposition  of  extracellular 

matrix (and collagen type I in particular), and the expression of GFAP,  III tubulin 

and  vW,  which  are  markers  of  glial,  neuronal  and  endothelial  differentiation, 

respectively.

These results  thus enabled us to identify  a suitable source for obtaining large 

quantities of DPSCs within a short amount of time. Seeding these cells on a three-

dimensional scaffold consisting of hyaluronic acid in the form of the nonwoven 

fabric - similar to the extracellular matrix of dental pulp - could provide a model for  

dental pulp regeneration.  Moreover,  the DPSCs’ glial,  neuronal  and endothelial 

differentiation on these scaffolds makes the use of such substitutes promising for 

the regeneration of the nerve and vessel components of dental pulp.

These findings are not enough for any considerations on the efficacy of the model, 

however. Further analyses will need to be conducted to establish the utility of such 

a  construct  in  the  regeneration  of  dental  pulp.  Having said  that,  an  important 

aspect to emphasize of our study conducted on dental pulp is that we succeeded 

in demonstrating that stem cells can be isolated not only from the pulp of patients 

under thirty,  but also from that of adults between 60 and 70 years of age. We 

found the proliferative capacity of the latter’s DPSCs lower than in the case of 
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younger individuals, but it is important to know that even older adults can obtain 

stem cells from their own dental pulp for bone regeneration purposes.

Another issue to bear in mind when it comes to isolating stem cells from dental 

pulp is the type of tooth involved. The most suitable teeth for this purpose are 

those chosen for the present study, i.e. third molars (whether they have erupted or 

not), because the amount of pulp that can be extracted from an incisor or premolar 

tooth is not enough to enable the isolation of an adequate quantity of stem cells.

The  studies  carried  out on  animal  models have  shown the  potential of 

mesenchymal stem cells in the field of bone regeneration and of inflammation.  

Both in experiments on sheep and dogs, the presence of new blood vessels and 

extracellular matrix allows us to state how stem cells, with an appropriate scaffold, 

are able to promote bone regeneration faster. 

From a clinical point of view the advantages are manifold such as fewer surgeries, 

elimination of sample taking from the donor site, and a faster regeneration.

From a point of view of inflammation, mesenchymal stem cells (MSCs) are known 

to  migrate  to  tissue  injury  sites  to  participate  in  immune  modulation,  tissue 

remodeling and wound healing.

Indeed in dentistry,  tissue engineering could be consider  a  new frontier  in  the 

regeneration of missing oral  tissues/organs  [Koyano 2012; Kaigler and Mooney 

2001]. 

Our  results  are  comparable  with  other  reserch  where  stem cell-based  tissue 

engineering has already been applied to clinical trials with demonstrated efficacy 

in  orofacial  bone  tissue  regeneration  [Yamada et  al.  2006;  Ueda  et  al.  2008; 

Yamada et al. 2008; Kaigler et al. 2013].

Pieri et al.  [Pieri et al. 2010] demonstrated that the transplantation of autologous 

ASCs with an inorganic bovine bone scaffold (Bio-Oss1 )  enhanced new bone 

formation and implant osseointegration following vertical bone augmentation of the 

calvarial  bone of rabbits,  which suggests that  ASCs may be useful  for  vertical  

alveolar bone augmentation for implant treatment. [Wen et al. 2011]. 

Moreover,  Ishizaka  et  al.  [Ishizaka  et  al.  2012] demonstrated  that  ASC 

transplantation induced pulp regeneration in the root  canal  after pulpectomy in 

dogs, and Hung et al.  [Hung et al. 2011] demonstrated that ASCs implants were 

able to grow self assembled new teeth containing dentin, periodontal ligament and 

alveolar bone in adult rabbit extraction sockets with a high success rate. 

In addition to tissue repair and regeneration, immunomodulatory properties have 
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also recently been identified for MSCs in animals and humans that may be related 

to therapeutic effects such as angiogenesis, anti-inflammation and antiapoptosis 

[Nauta and Fibbe 2007]. Furthermore, recent reports suggest that MSCs have low 

inherent  immunogenicity  [Rasmusson  et  al.  2007].  Therefore,  the 

immunomodulatory properties of MSCs may make them more attractive than other 

types of stem cells for some applications in cell transplantation. 

In  a  recent  review  Ren  et  al. [Ren  et  al.  2012] underline  that  therapeutic 

mechanisms of MSCs include their homing efficiency to the tissue injury sites, their 

differentiation  potential,  their  capability  to  produce  a  large  amount  of  trophic 

factors,  and  their  immunomodulatory  effect.  Because  tissue  damage sites  are 

complicated milieus with distinct types of inflammatory cells and factors, available 

data  have  demonstrated  that  the  properties  of  MSCs  could  be  fundamentally 

influenced by the inflammatory elements.

The results obtained with the analysis of cgh for peri-implantitis are preliminary but 

are encouraging. We found a very interesting correspondence between  duplica-

tion-DNA and the presence of peri-implantitis. Unfortunately, we know little about 

the early diagnosis of peri-implantitis. However, this might be the right way to find 

those predisposed to the peri-implant disease. More studies are needed to confirm 

our results. 

In conclusion, research on all available stem cells in dentistry should be continued 

to  permit  their  manipulation for  the regeneration of  oral  tissues.  Based on the 

accumulated knowledge, the type of stem cell to be used for a given application 

will  be  decided  by  considering  a  balance  of  the  differentiation  capacity  with 

accessibility/availability, which may vary on a case-by-case basis.

Research  efforts  on  adult  stem  cells  and  pluripotent  stem  cells  should  be 

concomitantly performed with cross-communication to permit the development of 

new and effective strategies for regenerative dentistry.
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