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ABSTRACT	  
 
Recombinant activated human Factor VII (rFVIIa) is an established hemostatic agent in 

hemophilia but its mechanism of action remains unclear. Although tissue factor (TF) is its 

natural receptor, rFVIIa also interacts with the endothelial protein C receptor (EPCR) 

through its γ-carboxyglutamic acid (Gla) domain with unknown hemostatic consequences 

in vivo. Here, we study whether EPCR facilitates rFVIIa hemostasis in hemophilia using 

a mouse model system. Murine activated FVII (mFVIIa) is functionally homologous to 

rFVIIa, but binds poorly to murine EPCR (mEPCR). We modified mFVIIa to gain 

mEPCR binding using 3 amino acid changes in its Gla-domain. The resulting molecule 

mFVIIa-FMR specifically bound mEPCR in vitro and in vivo and was identical to 

mFVIIa with respect to TF affinity and procoagulant functions. Using two macrovascular 

injury models in hemophilic mice, administered mFVIIa-FMR exhibited superior 

hemostatic properties compared to mFVIIa. These effects were specific to the mFVIIa-

FMR and mEPCR interaction since antibody blocking of mEPCR abolished them. Since 

mFVIIa-FMR models both the TF-dependent as well as EPCR binding properties of 

rFVIIa, our data unmask a novel contribution of EPCR on the action of rFVIIa 

administration in hemophilia. This may prompt the rational design of improved and safer 

rFVIIa therapeutics. 
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SOMMARIO	  
 
Il Fattore VII attivato ricombinante (rFVIIa) è un agente emostatico utilizzato per il 

trattamento dei pazienti emofilici con inibitori, ma il suo meccanismo d’azione rimane ad 

oggi non completamente elucidato. Nonostante il Fattore Tissutale (TF) sia il suo 

cofattore naturale più importante, il rFVIIa interagisce attraverso il dominio γ-

carbossiglutammico (Gla) anche con il recettore endoteliale della Proteina C (PC) con 

conseguenze funzionali ancora sconosciute. 

In questo studio abbiamo caratterizzato l’effetto del legame ad EPCR sull’attività 

emostatica del FVIIa, utilizzando un modello murino di emofilia. Nel topo il FVIIa 

murino (mFVIIa), nonostante l’alta omologia funzionale e strutturale con l’omologo 

umano, non interagisce con EPCR. Per trasformare il mFVIIa in un ligando di mEPCR 

senza intaccare le sue proprietà coagulative  abbiamo generato una variante di mFVIIa 

(mFVIIa-FMR) modificando tramite mutagenesi 3 residui del dominio Gla. Questa 

variante è in grado di legare in modo specifico mEPCR e mantenere le stesse 

caratteristiche funzionali di mFVIIa in vitro. Per queste sue proprietà mFVIIa-FMR 

rappresenta la molecola ideale per caratterizzare in vivo l’effetto di EPCR sull’attività del 

FVIIa. In topi emofilici sottoposti a danno vascolare. mFVIIa-FMR ha dimostrato 

maggiori proprietà emostatiche rispetto al mFVIIa. Questo effetto procoagulante dipende 

dal legame specifico di mFVIIa-FMR con EPCR.  

Questo lavoro identifica per la prima volta EPCR come un nuovo modulatore dell’attività 

del FVIIa in vivo. La comprensione più dettagliata del meccanismo con cui EPCR 

aumenta l’attività coagulante del FVIIa potrà promuovere lo sviluppo di nuove molecole 

terapeutiche con maggiore attività emostatica per il trattamento dell’emofilia. 
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INTRODUCTION	  
 

The	  blood	  coagulation	  system	  
 

Coagulation involves a multitude of proteins and cellular partners that act in concert in 

response to a vascular injury to generate thrombin, which is responsible for the 

generation of the fibrin plug (Figure 1). However, while fibrin generation is required for 

the arrest of excessive bleeding, unregulated clotting may lead to vascular occlusion and 

result in myocardial infarction, stroke, pulmonary embolism, or venous thrombosis. Thus, 

the regulation of the delicate balance between the procoagulant and anticoagulant 

mechanisms is of fundamental for survival(Dahlback, 2005) 

The dynamics of the blood coagulation system are dominated by three membrane-bound 

procoagulant complexes which assemble at the site of vascular injury on platelets, the 

damaged endothelium and subvascular tissue (Figure 2)(Mann et al., 2003). The 

assembly and regulation of these complexes and their opposing anticoagulant systems 

dictate the coagulant response. 

 
Fig. 1 The blood coagulation response, image courtesy of Dr. Rodney M. Camire, The 
Children’s Hospital of Philadelphia 
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The	  clotting	  cascade	  
 

The clotting cascade is shown in Figure 3. Initiation of coagulation begins by exposure of 

Tissue Factor (TF) to the bloodstream, through physical damage to the lining of the blood 

vessel or increased expression in endothelial and monocytes in response to certain 

inflammatory signals. About 1-2 % of Factor VII (FVII) circulates in its activated form 

(FVIIa) and binds rapidly to TF after exposure (Vadivel and Bajaj, 2012). The FVIIa-TF 

complex efficiently converts factor IX (FIX) and factor X (FX) to active enzymes FIXa 

and FXa, which together with factor VIIIa (FVIIIa) and factor Va (FVa), respectively, 

propagate the coagulation process.(Dahlback, 2005) 

With sufficient stimulus, the FXa produced activates some prothrombin. This initial 

thrombin activates the procofactors and platelets required for presentation of the intrinsic 

FXase (FVIIIa-FIXa) and prothrombinase (FVa-FXa) complexes that drive the 

subsequent propagation phase. During this phase the intrinsic FXase drives most of the 

FXa generated, and the reaction becomes TF independent. (Mann et al., 2003).  

When FXa combines with FVa on the activated platelet surface or other activated 

membranes (e.g. endothelium), the complex FXa/FVa (prothrombinase) efficiently 

converts prothrombin to thrombin, resulting in fibrin generation and, ultimately, clot 

formation. 

 
Fig. 2 The 3 vitamin K–dependent procoagulant complexes. The thicker arrow 
associated with intrinsic factor Xase generation of factor Xa reflects the improved 
catalytic efficiency of this complex. Adapted from (Mann et al., 2003) 
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The assembly of the prothrombinase complex is crucial since it is 300,000-fold more 

active than factor Xa alone in catalyzing prothrombin activation.(Mann, 2003)  

 

 
Fig 3. General overview of the clotting cascade. Green arrows indicate positive 
feedback reactions, in red inhibitory pathway. (Wikipedia Commons) 
 

It is critical that once a procoagulant response to vascular injury has been initiated that an 

appropriate anticoagulant response is concurrently mounted. As such, the components of 

the prothrombinase complex are targets of multiple regulatory mechanisms to arrest the 

production of thrombin. First, TF dependent activation of coagulation is regulated by 

tissue factor pathway inhibitor (TFPI), a FXa-dependent inhibitor of the FVIIa/TF 

complex (Shirk and Vlasuk, 2007). The mechanism of inhibition by TFPI involves its 

binding first to FXa through domain 2 and then to the TF/FVIIa complex through domain 

1(Rao and Mackman, 2010). FXa is also inhibited by serpins such as antithrombin (AT), 

α1-antitrypsin. The cofactor, FVa, is a target for degradation by activated protein C 

(aPC). aPC, a serine protease derived from its plasma precursor protein C (PC) in a 

thrombin dependent activation process (Bravo et al., 2012; McVey et al., 1998), plays a 

critical role in inactivating the non-enzymatic cofactor components of both the 

prothrombinase and the intrinsic FXase complexes, factors Va and VIIIa, respectively. 

Additional key components of the PC pathway include: thrombomodulin and endothelial 
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protein C receptor (EPCR) which regulate PC activation; protein S which acts as a 

cofactor for aPC; and protein C inhibitor, a suppressor of aPC formation (McVey et al., 

2001; Wildhagen et al., 2011).  

Coagulation	  Factor	  VII	  	  
 

Factor VII is a vitamin K-dependent glycoprotein that participates in the initiation of the 

extrinsic pathway of blood coagulation. It is expressed and synthesized in the liver where 

is secreted as single-chain zymogen composed of 406 amino acid residues (Mr 50,000 

kD). The factor VII gene (F7) consists in 9 exons and it is located on chromosome 13q34, 

2.8 kb upstream of the FX gene. F7 shares significant similarity with other genes coding 

for vitamin K-dependent proteins(Greenberg et al., 1995). It is believed that these 

proteins have been assembled by exon-shuffling events via intronic recombination 

(Patthy, 1985). Inherited FVII deficiency is an autosomal recessive disease with variable 

clinical symptoms (Mariani and Bernardi, 2009). FVII deficiency is not associated with 

complete absence of functional FVII, suggesting that a complete lack of FVII is 

incompatible with life (McVey et al., 1998). As described in clinical reports, homozygous 

carriers die shortly after birth due to severe hemorrhage (McVey et al., 2001). The same 

phenotype was observed in F7 knockout mice models (Rosen et al., 2005).  

The genetic similarity with other clotting factors is also reflected by high structural 

homology and domain organization at a protein level (Figure 4). FVII consist of a γ-

carboxyglutamic acid (Gla) domain which enables reversible binding to phospholipid 

membranes, a hydrophobic stack, which is involved in formation of the ternary complex, 

two epidermal growth factor-like domains (EGF 1-2), and a protease domain (Bajaj et al., 

2006). The Gla domain is a hallmark of all vitamin K-dependent coagulation proteins; 

FVII has 10 glutamic acid residues that undergo a characteristic post-translational 

carboxylation at the γ-carbon. Gla residues are necessary for calcium binding which 

induces a conformational change in the Gla domain required for phospholipid/receptor 

binding and therefore clotting activity (Larson et al., 1998). FVII Gla domain coordinates 

7 divalent cations: crystal structures obtained in presence of  2.5 mM Mg2+/5 mM Ca2+ 

indicate that metal positions 1, 4, and 7 are occupied by Mg2+ while the remaining 4 sites 
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coordinate Ca2+. Other post-translational modifications in FVII include N-glycosylations 

(Asn145, Asn322) and O-glycosylations (Ser52, Ser60). There are also two other calcium 

binding sites located in EGF1 and in the serine protease domain(Hansson and Stenflo, 

2005).  

 

 

 

Approximately 99% of FVII circulates as inactive zymogen. The initial event, cleavage 

of the peptide bond between Arg152/Ile153, converts the zymogen FVII into a two-chain 

serine protease linked by a disulfide bond that exists in equilibrium between a 

predominant zymogen-like form and an active FVIIa. In the zymogen-like conformation, 

the new N-terminus of Ile153 is solvent-exposed and accessible to modification, whereas 

in the active FVIIa, a salt bridge forms between the α-amino group of Ile 153 and the β-

carboxyl group of Asp343, stabilizing the insertion of Ile153 into the protein (Toso et al., 

Fig 4 Structure of FVIIa/sTF complexes. 
The FVIIa/sTF structure of Bajaj et al., at 
1.8 angstrom resolution (PDB id 2A2Q) in 
the presence of Ca2+ and Mg2+ is shown. 
FVIIa consists of Gla (red), EGF1 (green), 
EGF2 (blue) and protease (cyan) domains, 
and the sTF (magenta) contains two 
fibronection type III domains. The different 
metal ions Ca2+(orange), Mg2+(green), Zn2+ 
(light blue) and Na+ (purple), bound to 
different domains of FVIIa are shown as 
spheres. Adapted from (Vadivel	   and	   Bajaj,	  
2012) 
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2003). TF binding facilitates the stabilizing insertion of the N-terminal tail of the protease 

domain of FVII into the FVII activation pocket and the formation of a salt bridge with an 

Asp343 side chain (Higashi et al., 1994; Petersen et al., 1999). Therefore, although 

activated, FVIIa does not express its full procoagulant functionality until bound to 

TF.(Monroe and Key, 2007). This extreme cofactor dependence of FVIIa ensures that the 

blood clotting cascade is triggered at the appropriate place and time (Persson, 2006). 

The complex FVIIa/TF catalyzes the activation of both factor IX and factor X, the latter 

initially being the more efficient substrate. FVIIa/TF/FX complex constitutes the 

extrinsic FXase, which produces the initial amount of FXa necessary to trigger the 

coagulant cascade. As the extrinsic tenase complex is rapidly shut down by TFPI, 

generation of thrombin is indirectly maintained by the FXa generation through the 

intrinsic tenase complex (where FIXa participates). (Mann et al., 2003) (Figure 5). 

 

 
Fig.5 A computational estimation of the temporal dependence of the relative FXa 
production by the extrinsic FXase (◊) and the intrinsic FXase (■) complexes. The clot 
time (CT, arrow) represents the time at which free thrombin levels are predicted to reach 
2nM. (from (Hockin et al., 2002)) 
 

In addition to the TFPI inhibition of the TF-FVIIa-FXa complex (see above), 

antithrombin III (AT III), the major plasma inhibitor of coagulation proteases, also 
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inhibits free FVIIa at a very slow rate(Rao et al., 1995), but rapidly in complex with TF 

in the presence of heparin (Rao LV, Blood 1995). This has important implications for the 

clinical use of recombinant FVIIa (rFVIIa) for management of bleeding. As a matter of 

fact, a pharmacokinetic study in hemophilic patients suggests that complex formation 

between rFVIIa and AT is the main clearance pathway for exogenously administered 

rFVIIa, accounting for 65% of a therapeutic dose (90 µg/kg) of rFVIIa (AGERSØ et al., 

2011). 

FVIIa	  in	  Hemophilia	  
 

Genetic or acquired deficiencies in Factor VIII and Factor IX (precursors of the intrinsic 

FXase) lead to the most common bleeding disorders, hemophilia A and hemophilia B, 

respectively. One in 5000 male newborns is a carrier of a defective gene leading to factor 

VIII deficiency, and 1 in 30 000 male newborns has factor IX deficiency (Stonebraker et 

al., 2012; 2010). The most effective treatment of congenital hemophilia A and B patients 

consists of regular prophylactic infusions of plasma-derived or recombinant FVIII or 

FIX, respectively. However, a major impediment for replacement therapy is the 

development of inhibitory antibodies (inhibitors) against the treatment(Walter et al., 

2013). The incidence of inhibitor formation is approximately 30% for hemophilia A and 

3% for hemophilia B. As eradication of the inhibitor therapy is not feasible in a portion of 

patients, hemostasis can only be achieved with “inhibitor bypassing agents”, such as 

recombinant activated Factor VII (rFVIIa). 

Recombinant FVIIa (rFVIIa, NovoSeven® ) was first approved in Europe in 1996 for the 

treatment of bleeding episodes in patients with congenital hemophilia and inhibitors to 

FVIII or FIX or acquired hemophilia(Abshire and Kenet, 2004).  

Due to the short half-life rFVIIa is administered repeatedly, starting with a bolus injection 

of 90–120 µg/kg, given every second hour, until hemostasis is achieved. This regimen 

was shown to be effective for both treatment of acute bleeding episodes (on-demand 

treatment) and prevention of surgery-associated bleeding The incidence of thrombotic 

events in hemophilic patients with the use of rFVIIa is extremely low. It appears to be 

lower than the thrombotic risk seen with other clotting factor concentrates with known 
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thrombogenic potential(Kenet and Martinowitz, 2008). In addition to congenital 

hemophilia with inhibitors, rFVIIa is used in patients with acquired haemophilia, 

congenital FVII deficiency or Glanzmann’s thrombasthenia. rFVIIa is also prescribed for 

off-label purposes, including reversal of anticoagulant therapy, neonatal coagulopathies; 

severe hepatic disease; high-risk surgical procedures (Ratko et al., 2004). In the past 

years the off-label use of rFVIIa for hospitalized patients has increased, despite concerns 

about efficacy and safety, including evidence suggesting an increased rate of 

thromboembolic events(Yank et al., 2011). 

 

FVIIa	  mechanism	  of	  action	  in	  hemophilia	  
 

Despite its widespread use, the mechanism of action of high dose administration of 

rFVIIa in hemophilia remains controversial and two possible models have been proposed. 

The first postulates that rFVIIa generates hemostatic amounts of Factor Xa via a TF-

rFVIIa complex on the surface of TF-expressing cells at the site of injury. As a result, the 

therapeutic rFVIIa doses are large since rFVIIa must compete with endogenous Factor 

VII (FVII) for binding to TF (Butenas et al., 2003; Veer et al., 2000). The second 

proposal centers on a TF-independent mode of action and the poor affinity of FVII for 

anionic phospholipid membranes (Kjalke et al., 2007), a necessary scaffold for 

coagulation reactions to occur. Consequently, large doses of rFVIIa are required for 

treatment in order to overcome this deficiency and generate hemostatic amounts of FXa 

in a TF-independent fashion on platelets(Hoffman et al., 2011). Mathematical modeling 

and in vitro experiments have attempted to unify these two proposals, implicating a 

predominantly TF-dependent and a minor, TF-independent component in rFVIIa's action 

(Shibeko et al., 2012). However, the functional separation of the TF and phospholipid 

binding properties in FVII and activated FVII (FVIIa) is challenging since both reside in 

the relatively short Gla domain of the molecule. As a result, the apparent controversy in 

the contribution of TF in rFVIIa’s mode of action has not been sufficiently addressed, 

especially in vivo. A better understanding of rFVIIa’s mechanism of action could suggest 

ways to improve its therapeutic and safety profile. 
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FVIIa	  molecular	  engineering	  	  
 

One of the limitations of rFVIIa therapy is the high dose required to provide effective 

hemostasis (Abshire and Kenet, 2004). Different efforts to enhance the procoagulant 

activity of rFVIIa have focused on chemical modification/formulation or the rational 

design of novel, high-specific activity variants of rFVIIa. Despite the activation, FVIIa 

has a zymogen like conformation and needs TF in order to transition in the active enzyme 

form.  

Without structural information about the latent, zymogen-like conformation of free 

FVIIa, altering the properties of rFVIIa by mutagenesis was dictated by rational design. 

Three substitutions were introduced in the serine protease domain of FVIIa 

(V158D/E296V/ M298Q-FVIIa; NN1731) based on the structure of other members of the 

trypsin family (Persson et al., 2001). The NN1731 molecule adopts a conformation 

intermediate between that of the free (zymogen-like) and the TF-bound (active) forms of 

FVIIa. Thus, it acquires its enhanced activity by partial mimicry of TF-induced activation 

even in absence of cofactor(Rand et al., 2008). NN1731 showed enhanced procoagulant 

and antifibrinolytic activities in an in vitro model of hemophilia, as well as higher 

hemostatic efficacy in a mouse model of hemophilia relative to wild-type (Bouwens et 

al., 2013; TRANHOLM et al., 2003). 

Novo Nordisk A/S started a clinical trial with the NN1731 analogue (Vatreptacog alfa) 

with the aim of providing an improved bypassing agent offering more rapid, reliable and 

sustained resolution of acute bleeds in patients with hemophilia and inhibitors (Hoffman 

et al., 2011; Regan et al., 1996). Vatreptacog alfa has successfully passed through clinical 

trials and demonstrated a superior efficacy of compared to rFVIIa at lower doses in 

hemophilia patients with inhibitors (DE PAULA et al., 2012; Sturn, 2003). However, 

data from longer use of this variant uncovered a few patients developed anti-drug 

antibodies, including one patient with a potentially neutralizing effect in one sample. 

Some of these patients also developed cross-binding antibodies to rFVIIa and therefore 

the study has been halted. Similar impediments were also encountered in a human clinical 

trial using an enhanced activity rFVIIa molecule from Bayer Pharmaceuticals. As a 
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result, new approaches have to be exploited in order to improve rFVIIa-based 

therapeutics. 

Protein	  C	  anticoagulant	  pathway	  
 

Thrombin generation is the key event during coagulation. Ultimately, thrombin 

production is directly or indirectly regulated by anticoagulant systems, such as serpin 

inhibition, TFPI and protein C (PC) anticoagulant pathway.  When thrombin binds 

thrombomodulin (TM) on the endothelial surface, its specificity switches to anticoagulant 

substrates resulting in activation of protein C and thrombin activatable fibrinolysis 

inhibitor (TAFI, a fibrinolysis inhibitor present in plasma). The procoagulant properties 

of thrombin are lost on binding to TM because TM occupies the functionally important 

exosite I in thrombin and thereby blocks interactions with other thrombin-binding 

proteins. TM is expressed ubiquitously on the vascular endothelium, predominately in the 

capillaries where the ratio between the endothelial cell surface and blood volume reaches 

its peak. The high concentration of TM in the capillary circulation ensures that thrombin 

binds to TM (Kd ≈ 0.5 nmol) and activates PC bound to the endothelial protein C 

receptor (EPCR,(Dahlback, 2005; Thiyagarajan et al., 2007)). Activated PC (aPC) 

inactivates FVa and FVIIIa by proteolysis thereby down-regulating FXa and thrombin 

production. APC also exerts a number of cytoprotective and anti-inflammatory activities 

(Balazs, 2006; Valle et al., 2012) although such molecular mechanisms remains not fully 

elucidated (Bouwens et al., 2013; Xu et al., 2000). 

The	  Endothelial	  Protein	  C	  Receptor	  
 

The endothelial protein C receptor (EPCR) is a type 1 transmembrane glycoprotein that 

shares sequence homology with the major histocompatibility complex class 1 (MHC I) 

and CD1 family of molecules (Regan et al., 1996; Taylor et al., 2001). It is primarily 

expressed on the endothelium of large blood vessels, while it is almost absent on the 

microcirculation.  

EPCR is also present on the surface of monocytes, CD56+ natural killer cells, neutrophils 

(Fukudome et al., 1998; Sturn, 2003) eosinophils and brain capillary endothelial 
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cells(Centelles et al., 2010; Thiyagarajan et al., 2007). Moreover EPCR expression can be 

detected in embryonic giant trophoblast cells, and also identifies hematopoietic stem cells 

within murine bone marrow (Balazs, 2006; van Hylckama Vlieg et al., 2007). A soluble 

form of EPCR (sEPCR) circulates in plasma, which is generated in vitro through 

proteolytic cleavage by metalloprotease activity inducible by thrombin and other inflam- 

matory mediators (LI, 2005; Xu et al., 2000), but its physiological relevance in vivo is 

not known. 

Protein C binding to EPCR increases the rate of protein C activation by the thrombin-

thrombomodulin complex on the endothelial surface of a factor of 20 in vivo (LI et al., 

2005; Taylor et al., 2001)). The influence of EPCR on protein C activation kinetics is 

primarily on the Km for the reaction. In fact, the Km of the thrombin-TM complex for 

protein C in the absence of EPCR is far below the plasma concentration of protein C. 

EPCR binding appears to concentrate protein C on the endothelial cell surface of large 

vessels, favoring its activation (Fukudome et al., 1998; Medina et al., 2007). Accordingly 

to these observations, it has been shown that blocking EPCR in mice promotes 

thrombosis development(Centelles et al., 2010; Stearns-Kurosawa et al., 1996), and 

epidemiological studies in humans indicated that the presence of anti-EPCR 

autoantibodies in plasma resulted as a risk factor for deep venous thrombosis (DVT) in 

the general population(Oganesyan et al., 2002; van Hylckama Vlieg et al., 2007).  

EPCR null mice are not viable, and EPCR expression on the feto-maternal surface is 

critical for embryo development while is not essential in the embryo (Hansson and 

Stenflo, 2005; LI, 2005). On the other hand, Tie2 (endothelial)-directed EPCR expressing 

transgenic mice did not exhibit any gross hemorrhagic or thrombotic abnormalities and 

had normal growth and viability despite of markedly lower levels of plasma protein C. 

Those mice, however, exhibit an eightfold increase in aPC generation in response to 

infusion of thrombin and were partially resistant to a lethal dose of bacterial 

lipopolysaccharide(LI et al., 2005; Reuning et al., 1993). 

In addition to controlling the coagulation by modulating protein C-mediated 

anticoagulant pathway, EPCR has been shown to play an important role in many 

pathophysiologic processes, such as inflammation responses to infection and trauma, 

hematopoiesis, and autoimmunity. Many of these effects are mediated through EPCR-
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dependent cleavage of protease-activated receptor 1 (PAR-1) and the downstream 

signaling cascade (GHOSH et al., 2006; Medina et al., 2007; Preston, 2006). 

In addition to binding protein C, EPCR binds proteinase 3, the autoantigen in Wegener’s 

granulomatosis. This complex then binds to Mac-1 on activated neutrophils where it 

apparently inhibits tight leukocyte adhesion to activated endothelium (Oganesyan et al., 

2002; Stearns-Kurosawa et al., 1996). The proteinase 3 and protein C binding sites appear 

to be distinct. 

Structural information derived from X-ray crystallography revealed a high similarity with 

CD1d, a protein involved in the immune response against glycolipid antigens. One 

molecule of phosphatydilethanolamine was found embedded in a hydrophobic pocket of 

EPCR in a groove typically involved in antigen presentation (Figure 6).  

 

Fig. 6 Left The recombinant sEPCR (rsEPCR) molecule with a portion of the 
protein C Gla domain and a lipid molecule. In EPCR (yellow ribbon), two α-helices 
and an eight-stranded β-sheet create a groove that is filled with phospholipid (the space-
filling balls in the center). Binding of Ca2+ ions (magenta spheres) to the protein C Gla 
domain (green ribbon) exposes the N-terminal ω loop, which in the absence of EPCR 
interacts with the phospholipid surfaces on the membrane. The model of the complex 
consists of residues 7–177 of rsEPCR and the first 33 residues of the protein C Gla 
domain. Right, Surface representation of the rsEPCR molecule. Electrostatic 
potentials are mapped on the surface (red negative, blue positive). The head group of the 
lipid is solvent-exposed (yellow stick model in the center), whereas the fatty acid chains 
are buried deep in the hydrophobic groove  
. 
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A crystal structure of part of the protein C Gla domain (residues 1–33) bound to soluble 

EPCR indicated that hydrophobic residues Phe-4 and Leu-8 contained within the ω-loop 

of the protein C Gla domain and Gla residues 7, 25 and 29, were directly involved in the 

interaction (Figure 6)(Oganesyan et al., 2002; Preston, 2006). Some of these residues are 

conserved in other vitamin K dependent enzyme such as FVII, FX and Prothrombin (PT), 

as indicated in Figure 7. 

 

 

Fig. 7  Amino acid sequences in the Gla domains of human vitamin K-dependent 
plasma proteins. Numbers are based on human factor VII. Amino acid residues that are 
identical in at least four of the proteins are marked in yellow. γ indicates the γ-
carboxyglutamic acid residues. Residues that form the ω-loop, the disulfide loop, and the 
hydrophobic stack region are marked. (adapted from (GHOSH et al., 2006; Hansson and 
Stenflo, 2005; López-Sagaseta et al., 2007)) 
 

FVII/a	  is	  a	  ligand	  for	  EPCR	  
 

The idea of an additional binding site for FVII/FVIIa other than TF on the cell surface 

was first proposed in 1993 by Reuning et Al(Hedner, 2008; Reuning et al., 1993). 

Binding experiments on LPS-stimulated or non-stimulated endothelial cell (HUVEC) 

revealed the presence of at least two independent binding sites for FVII/FVIIa of which 

about 10% are TF specific. This report also suggested that the FVIIa binding site on non-

stimulated HUVEC appeared to be a common binding site for vitamin K-dependent 

proteins. The FVII/a receptor was identified as the endothelial protein C receptor only 13 

years later (GHOSH et al., 2006; Pendurthi and Rao, 2010; Preston, 2006).  
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FVII Gla domain shares high homology with PC, in particular the PC residues directly 

involved in EPCR binding (Phe 4 and Leu 8) are conserved in FVII. In addition, crystal 

structures data of EPCR bound aPC and FVII indicate that the spatial disposition of the 

residues required for interaction is conserved among the two proteins (Figure 8) (López-

Sagaseta et al., 2007; Oganesyan et al., 2002). 

 

Fig 8 Protein C activation on the endothelial surface by the trombin-
thrombomodulin complex. Thrombin (FIIa) bound to thrombomodulin cleaves EPCR-
bound protein C (PC) to generate activated PC (aPC). A magnification of the crystal 
structure shows the residues of PC directly involved in the interaction with the receptor. 
On the bottom, the same residues are indicated on the protein alignment of human PC 
(hPC) and FVII Gla domains. Adapted from (Preston, 2006; Puy et al., 2010) 
 

The interaction between FVII/a and EPCR is dependent on Ca2+ and Mg2+, as observed 

for PC/APC. The affinity of both molecules for the receptor is also comparable (Kd of 40 

nM and 30 nM for FVII and PC/APC, respectively), as assessed by diverse approaches 

including surface plasmon resonance or binding on endothelial cells with fluorescently or 

radioactively labeled FVII/FVIIa (Disse et al., 2011; GHOSH et al., 2006; López-

Sagaseta et al., 2007). Despite the similar affinity, PC concentration in plasma is 6 fold 

higher compared to FVII, implicating that PC would occupy most of the receptor at 
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physiological concentration. Nevertheless under certain conditions (e.g. therapeutic 

administration of rFVIIa in hemophiliacs), plasmatic concentrations of the two proteins 

become comparable (Hedner, 2008; NAYAK et al., 2009). Hence, under these 

circumstances, FVIIa interaction with EPCR can have relevant implication on the 

hemostatic response, either modulating protease activity or down-regulating PC 

activation by competition for receptor occupancy. In order to determine the effect and 

magnitude of FVIIa-EPCR interaction on coagulation under such therapeutic settings, in 

vivo models are required.  

Up to this date, conflicting data were reported on the effect of EPCR on FVIIa function in 

vitro. It has been shown that EPCR binding was not affecting FVIIa-mediated FX 

activation on Human Umbilical Vein Endothelial Cells (HUVECs)(GHOSH et al., 2006; 

Pendurthi and Rao, 2010). In contrast, the micromolar addition of sEPCR to plasma was 

able to prolong clotting time in a PT assay and significantly reduce FXa generation on 

neoplastic cells (H727) (López-Sagaseta et al., 2007). According to Puy(Puy et al., 2010), 

this effect was caused by an EPCR dependent sequestration of FVIIa from 

phosphatidylserine-rich regions, a necessary scaffold for coagulation. More recently, 

Disse et al (Disse et al., 2011) showed that EPCR specifically inhibits activation of FX by 

soluble TF-FVIIa only in presence of Mg2+. In this model, sEPCR did not primarily target 

the Gla domain of FVIIa but rather the Gla domain of FX to attenuate FX activation. A 

possible explanation for these controversial findings on FVIIa activity may be due to 

different factors, including the cell system used, the source of TF and the relative 

abundance/localization of TF and EPCR on the surface. Most important, these studies 

lack in vivo evidences to support the magnitude of this interaction in a flow system. Such 

evidence will provide essential mechanistic data in the action of pharmacologic FVIIa 

administration in hemophilia as well as potential approaches that exploit such interaction 

for improved FVIIa therapeutics (protein or gene-based). 

There is accumulating evidence suggesting that clotting factors in the perivascular 

space, and not only circulating plasma factors, have the potential to contribute to 

hemostatic protection. The EPCR-PC/APC complexes have been shown to internalize 

into the cytoplasm of the endothelial cells. The receptor-ligand complexes accumulate in 

a recycling compartment before being targeted back to the cell surface (NAYAK et al., 
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2009). However, it may facilitate the transcytosis of PC/aPC from the apical to the basal 

side of the cell thus helping to clear it from the circulation and reach the extravascular 

space. Also EPCR-hFVII/VIIa complexes are internalized by endothelial cells and 

undergo transcytosis from the apical to the basolateral surface (NAYAK et al., 2009). In 

vivo data have shown that EPCR appears to be involved in human FVIIa (hFVIIa) uptake 

in mice (GOPALAKRISHNAN	  et	  al.,	  2010b) and in other murine models hFVIIa has been 

found in perivascular tissues where it associates with TF after bolus administration 

(Hoffman	  et	   al.,	   2007) . Interestingly, hFVIIa found in the perivascular space retained 

coagulant activity for extended period of time (up to 7 days) (GOPALAKRISHNAN	  et	  al.,	  

2010a).  

It has been observed that prophylactic treatment of hemophilic patients with rFVIIa was 

effective in reducing bleeding episodes up to 3 moths after suspension of 

treatment(Konkle et al., 2007). The mechanism that underlies the extended protection 

observed in these patients during the follow up is still unknown, considering the short 

half life of rFVIIa in plasma (Erhardtsen, 2000). The study of EPCR-FVIIa interaction in 

vivo might also be important to understand potential mechanisms involved in rFVIIa-

induced secondary prophylaxis.  

In order to determine the effect and magnitude of FVIIa-EPCR interaction on 

coagulation under such therapeutic settings, in vivo models are required. However, such 

in vivo models must take into account any species-specific incompatibilities. This is 

certainly the case when one looks at the interaction of FVIIa-EPCR in a mouse system 

Human and murine EPCR (hEPCR and mEPCR, respectively) share high homology: 21 

out of 23 residues of hEPCR directly involved in ligand binding are conserved in mEPCR 

(LIAW et al., 2001), and the other two are conservatively substituted (Ile-51 by Leu and 

Arg-81 by Lys). Two residues in the human PC Gla domain appear to influence the PC-

EPCR interaction, namely Phe4 and Leu8 (Preston RJ, JBC 2006). Mouse PC, the natural 

ligand for mouse EPCR, in contrast to human PC, has Phe4 and Met8. However, mouse 

FVII has Leu4 and Leu8 and has been shown to be a poor ligand for mEPCR (µM 

affinity).(Margaritis et al., 2004; Puy et al., 2011) One could utilize human rFVIIa but it 

has a poor affinity for mouse TF (Petersen 2005), hence limited hemostatic effects. 

Therefore, although the mouse has been indispensable in hemostasis research, the 
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peculiarity of the mouse EPCR and FVIIa introduces additional complications in efforts 

in vivo hemostatic effect of a FVIIa-EPCR interaction under conditions of therapeutic 

FVIIa administration. 
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AIM	  OF	  THE	  STUDY	  
 

 

Understanding the role of an EPCR-FVIIa interaction in vivo in hemophilia 

treatment with rFVIIa will have mechanistic and translational ramifications. This thesis 

aims to define the effects of the EPCR-FVIIa interaction in a setting of FVIIa 

administration in hemophilia, in vivo. For this, we utilize rational design and functional 

characterization of a mouse FVIIa molecule that has mouse EPCR binding capacity as a 

true gain-of-function, without altering other properties of mouse FVIIa. These unique set 

of characteristics essentially mimic those of human rFVIIa. This allowed us to utilize this 

novel mouse FVIIa molecule in in vivo hemostatic assays and discern the role of the 

FVIIa-EPCR interaction in the hemostatic function of therapeutic rFVIIa administration. 

 

  



 23 

METHODS	  

	  

Construction	  of	  expression	  vectors	  
 

Construction of a pcDNA3.1-based (Invitrogen, Carlsbad, CA) expression plasmid vector 

for murine FVIIa wildtype (mFVIIa) has been previously described (Larson et al., 1998; 

Margaritis et al., 2004). Chimeras of mFVIIa harboring parts of the murine protein C Gla 

domain were generated by exchange cloning of gene-synthesized appropriate fragments 

(Genscript, Piscataway, NJ). All mFVIIa constructs contained the Arg-Lys-Arg-Arg-Lys-

Arg (RKRRKR [2RKR]) sequence inserted at Arg152- Ile153 of the mature protein and a 

C-terminal HPC4 epitope tag (EDQVDPRLIDGK) for purification (Margaritis et al., 

2004; Philo, 2006). Murine soluble EPCR (amino acids 1-214, msEPCR, NCBI accession 

L39017) was generated by gene synthesis (Genscript) and cloned into pcDNA3.1 vector. 

A C-terminal Factor Xa cleavage site (IEGR) followed by an HPC4 epitope tag was also 

included. Full-length murine EPCR (mEPCR) was cloned into pcDNA3.1 (pcDNA3-

mEPCR) following reverse transctiption of total RNA from a murine 

hemangioendothelioma cell line (Babul and Stellwagen, 1969; Fukudome et al., 1998), a 

kind gift from Dr. Charles Esmon (University of Oklahoma, OK). The murine tissue 

factor (mTF) cDNA (NCBI accession NM_010171) was generated by gene synthesis 

(Genscript) cloned into pcDNA3.1 with a Zeocin resistance selectable marker (pcDNA3-

mTF). The identity of all cloned fragments and resulting vectors was verified by DNA 

sequencing. 

Expression	  and	  purification	  of	  recombinant	  proteins	  
 

Murine FVIIa, mFVIIa chimeras and msEPCR were expressed in human embryonic 

kidney (HEK 293) cells, following stable DNA transfection as previously described 

(Camire et al., 2000; Margaritis et al., 2004). Purification of recombinant proteins from 

conditioned medium was performed using a C-terminal epitope tag (HPC4), as previously 

reported (Higgins and Mann, 1983; Margaritis et al., 2004). Murine FVIIa and chimeras 

were further purified on a CHT5-I hydroxyapatite column (BioRad Laboratories, 
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Hercules, CA), to separate the γ- carboxylated from the uncarboxylated material (Larson 

et al., 1998). Protein purity was assessed by SDS-PAGE using 4–12% polyacrylamide 

gels (Invitrogen). Protein concentration for mFVIIa or its chimeras were determined 

using an average molecular weight and extinction coefficient of 50,000 and 1.39, 

respectively.  

Analytical	  Ultracentrifugation	  	  
 

To calculate the protein concentration of recombinant msEPCR, analytical 

ultracentrifugation was used to determine the average molecular weight and protein 

extinction coefficient. Sedimentation velocity was performed at 45K rpm in (20 mM 

HEPES, 150 mM NaCl, pH 7.4) and 20°C using an XL-I instrument using interference 

optics in a AN60-Ti rotor and two sector cells with sapphire windows. Molecular weight 

and sedimentation coefficient were obtained by fitting g(s*) distributions using DCDT 

software, as previously described (Philo, 2006). The extinction coefficient was 

determined by differential refractometry (Babul and Stellwagen, 1969). We determined 

that the molecular weight of the recombinant msEPCR preparation was 39,700 ± 2,800 

Da, the sedimentation coefficient (s20,w) was 2.72 ± 0.05 S. Gamma-carboxyglutamic 

acid analysis on all recombinant proteins was performed as previously described (Camire 

et al., 2000). 

Generation	  of	  CHO-‐K1	  stable	  cell	  lines	  expressing	  full-‐length	  murine	  EPCR	  and	  
tissue	  factor	  
 

To generate a stable cell line expressing full-length mEPCR or mTF, CHO-K1 cells 

(ATCC® Catalog No. CCL-61) were transfected using Lipofectamine 2000 (Invitrogen, 

for mEPCR) and selected in 1 mg/ml G418-sulfate or 400 µg/ml zeocin growth medium 

(Invitrogen, for mTF). Resistant colonies were screened by flow cytometry using an anti-

mEPCR antibody (anti-mouse CD201-APC 0.5 µg/ml, eBioscience, San Diego, CA) or 

an anti-mTF antibody (goat anti-mTF at 4 µg/ml, Cat. AF3178, R&D Systems, 

Minneapolis, MN) followed by a Alexa-Fluor 488 labeled donkey anti-goat IgG (2 µg/ml, 

Cat. A-11055, Invitrogen). Geneticin- or zeocin-resistant CHO-K1 cells (negative 

controls for cell binding experiments) were generated by stable transfection of an empty 



 25 

pcDNA3 vector harboring a neomycin or zeocin resistance marker (respectively) and 

selection in appropriate medium, as described above. 

Phospholipid	  Binding	  assay	  
 

Phospholipid vesicles containing phosphatidylcholine and phosphatidylserine (PC:PS, 

75:25 % [w/w]) were prepared as described previously(Higgins and Mann, 1983). 

Binding assays were performed as previously described (Dahlback, 2005; Saller et al., 

2006; Vadivel and Bajaj, 2012). Recombinant mFVIIa or mFVIIa-FMR was incubated 

for 2 h on plates coated with 50 µl of 80 µM PC:PS vesicles in TBS (50 mM Tris, 150 

mM NaCl, 5 mM CaCl2 pH 7.4)-0.2% BSA (TBS-BSA). Plates were washed 3 times 

with TBS-0.5% Tween-20, to remove non-specifically bound material. Bound protein 

was visualized colorimetrically (at 492nm) with mouse monoclonal anti-HPC4 antibody 

(1 µg/ml in TBS-BSA) and a secondary rabbit anti-mouse HRP conjugated antibody 

(1:1000 in TBS-BSA, Dako) Following subtraction of non-specific signal (phospholipids 

alone or protein alone), calculation of Kdapp calculation and non-linear regression analysis 

was performed using the GraphPad Prism v5.0b Macintosh software package. 

 

Isothermal	  titration	  calorimetry	  (ITC)	  
 

All proteins were dialyzed overnight versus 20 L of 20 mM HEPES, 150 mM NaCl, 1.6 

mM Ca2+, 0.6 mM Mg2+ and pH 7.4 (“Reaction Buffer”). Proteins were concentrated 

after dialysis by centrifugal ultrafiltration using an Amicon Ultracel 30K device 

(Millipore, Billerica, MA) and centrifuged to remove particulate material. Buffers and 

proteins were degassed before use. ITC experiments were performed at 25°C using a 

MicroCal ITC200 microcalorimeter (GE Healthcare, Piscataway, NJ). A reaction mixture 

for ITC (204 µl) of mFVIIa-WT (25 µM) or its chimeras was loaded into the sample cell. 

Titration curves were initiated by injection of 0.8 µl msEPCR (250 µM) followed by 

successive 2 µl injections of msEPCR every 180 s, under continuous stirring. Injections 

of ligand into reaction buffer were performed to determine baseline corrections. The 

integrated heats from each injection, normalized to the moles of ligand per injection, 
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were fit to a single-site binding isotherm using ORIGIN v7 (OriginLab Corp., 

Northampton, MA). The integrated peak of the first injection was excluded from the fit. 

Lack of proteolysis during the experiment was verified by SDS PAGE analysis of 

samples prior to and after ITC. The heat of dilution of msEPCR into buffer under the 

same experimental conditions (background) was subtracted from the fitted data. 

Cell-‐surface	  binding	  assay	  
 

Determination of ligand binding to cell-surface exposed receptor (mEPCR or mTF) was 

performed as previously described(GHOSH et al., 2007)with some modifications. 

Specifically, confluent monolayers in a 24-well plate of mEPCR-expressing (CHO-K1-

mEPCR), or G418 resistant CHO-K1 cells were incubated with increasing concentration 

of ligand in Buffer “B” (10 mM HEPES, 150 mM NaCl, 4 mM KCl, 11 mM Glucose, 

1mg/ml bovine serum albumin [BSA], 1.6 mM Ca2+, 0.6 mM Mg2+) at 4 °C on ice for 1 

h. After 4 washes with ice-cold Buffer “B”, the surface-bound ligand was eluted with 

Buffer “C” (10 mM HEPES, 150 mM NaCl, 4 mM KCl, 11 mM Glucose, 1 mg/ml BSA, 

5 mM ethylenediaminetetraacetic acid [EDTA]) and subjected to polyacrylamide gel 

electrophoresis and detection by western blotting. Protein presence in the eluates was 

detected with a mouse monoclonal anti-HPC4 antibody (5µg/ml, (Margaritis et al., 2004)) 

and a secondary goat anti-mouse IgG antibody (IR-Dye CW800, 1:10000 dilution, Li-Cor 

Biosciences, Lincoln, NE). Blots were imaged at 169 µm with Odyssey imager (Li-Cor 

Biosciences). After image background subtraction, band intensities were quantified and 

corrected by nonspecific binding using the ImageJ software (Schneider et al., 2012). Only 

the heavy chain intensity of each recombinant protein was used for quantification due to 

the non-specific signal from BSA in the reaction buffer overlapping with the trace 

amounts on zymogen in each blot. Integrated densities were plotted and affinity constants 

(Kd) were calculated using a one-site specific binding curve fitting with GraphPad Prism 

v5.0b (GraphPad Software, Inc., La Jolla, CA). Conversion to nM was done using the 

integrated densities of known amounts of ligand in Buffer “C”, electrophoresed and 

blotted as described above. 
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Factor	  Xa	  generation	  assay	  
 

Mouse FX (mFX) and activated mFX (mFXa) were kind gifts from Dr R. M. Camire 

(The Children’s Hospital of Philadelphia, PA). CHO-K1 expressing mTF were seeded on 

a 96 well plate (1.3E4 cells/well, Cat. 353872, BD PrimariaTM Clear MicrotestTM Plate) 

48 h before the experiment. Confluent monolayers were washed twice with Reaction 

Buffer (20 mM HEPES, 150 mM NaCl, 0.1% (w/v) PEG 8000 pH 7.45, 1.6 mM Ca2+, 

0.6 mM Mg2+) and placed on an Eppendorf MTP Thermoblock at 37°C. One hundred pM 

of mFVIIa or mFVIIa-FMR in reaction buffer were added. The reaction was initiated 

after 3 minutes by adding murine FX (mFX, 160 nM final concentration) in a 100 µl total 

reaction volume. At selected time points (0-30 min) an aliquot of the reaction mixture 

was diluted in Quench Buffer (20 mM HEPES, 150 mM NaCl, 0.1% (w/v) PEG 8000 pH 

7.45, 50 mM EDTA). Chromogenic substrate S-2222 (DiaPharma, West Chester, OH) 

was added at a final concentration of 400 µM and activated mFX (mFXa) generation was 

monitored by measuring A405 at 22°C using a VMax plate reader (Molecular Devices, 

Menlo Park, CA). The concentration of mFXa generated over time was calculated by 

interpolation of the initial rate of hydrolysis of S-2222 by known amounts of mFXa (0-11 

nM) in Quench Buffer. 

 

Thrombin	  generation,	  coagulation	  assays	  and	  determination	  of	  mFVIIa	  antigen	  
 

Thrombin generation was determined according to methods previously described 

((Ivanciu et al., 2011), (Bunce et al., 2011)). Prothrombin time (PT) assays on plasma, 

cell culture supernatants, and purified proteins were determined as previously described 

(Margaritis et al., 2011) using human Factor VII deficient plasmas (George King Bio-

Medical Inc, Overland Park, KS) and Innovin (Siemens Healthcare, Malvern, PA). 

Quantification was performed using standard curves of increasing concentration of each 

recombinant protein. Determination of uninhibited (free) mFVIIa or mFVIIa-FMR in 

mouse plasma was performed by an ELISA, as previously described (Margaritis et al., 

2011) and/or a clotting-based assay with standard curves of increasing concentration of 

each recombinant protein. 
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Animal	  experiments	  and	  procedures	  
 

All experimental procedures were reviewed and approved by the Institutional Animal 

Care and Use Committee (IACUC) at The Children's Hospital of Philadelphia. Weight 

and age (8-12 weeks) matched male Hemophilia B (Lin et al., 1997), Hemophilia A (Bi et 

al., 1995) mice backcrossed on C57BL/6 background for at least 6 generations and 

hemostatically normal male mice (C57BL/6 background, The Jackson Laboratory, Bar 

Harbor, ME) were used in all experiments. Blood was collected via the retro-orbital 

plexus into 3.8% citrate. For EPCR blocking experiments, a rat monoclonal anti-EPCR 

antibody (RCR-252, Cat. E6280, Sigma) or isotype rat IgG (Cat. 0108- 01, Southern 

Biotech, Birmingham, AL), both in PBS, were infused via tail vein within 1 hour prior to 

the administration of mFVIIa or variant. Quantification of recovery and antigen levels in 

Figure 6 was determined by a clotting-based as well as an antigen-based (see above) 

assay, reported as an average of both. 

Murine	  carotid	  artery	  thrombosis	  and	  murine	  tail	  clip	  hemostasis	  models	  
 

Ferric chloride–induced injury was performed according to our previously published 

procedures (Ivanciu et al., 2011) using 7.5% FeCl3. In some experiments, antibody 

(RCR-252 or isotype IgG [see section above]; 50 µg in 100µl of PBS) was infused 30 

min prior to the initiation of the FeCl3 carotid artery injury model. The tail clip assay was 

performed according to our published procedures(Ivanciu et al., 2011; Margaritis et al., 

2004; 2011; 2009) with some modifications. Mice were anesthetized with isoflurane, the 

tail was pre-warmed at 37 °C and the distal portion transected at a diameter of 3 mm. The 

tail was then placed in a conical tube containing 14 ml of saline at 37 °C and blood was 

collected for 2 min. Procoagulant or PBS was then infused via the jugular vein, the 

injured tail was immediately moved to a fresh tube of saline (14 ml at 37 °C), and blood 

was collected for an additional 8 min. Quantitative assessment of blood loss was 

determined by measuring total hemoglobin by absorbance at 575 nm following red cell 

lysis and converted to total blood loss (µl) using an appropriately established standard 

curve. 
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Statistical	  analysis	  
 

Two-tailed Mann-Whitney U and Kruskal-Wallis tests were performed using the 

GraphPad Prism v5.0b Macintosh software package (GraphPad Software). Statistical 

differences were considered significant when P < 0.05. 
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RESULTS	  
 

Generation	  of	  mFVIIa	  constructs	  with	  affinity	  to	  mEPCR	  
 

Since protein C (PC) interacts with EPCR through the Gla domain (Oganesyan et al., 

2002), we generated two chimeric mFVIIa molecules with modified Gla domains using 

either part or the entire Gla domain of murine protein C (mPC) (Figure 1). Both chimeric 

molecules, as well as mFVIIa, contain a PACE/furin cleavage site enabling their 

secretion in the two-chain, activated form, as we have previously shown (Margaritis et 

al., 2004; 2009; 2011). The chimeric mFVIIa-(1-43 mPC) molecule contains the full 

mPC Gla domain and therefore should exhibit maximal affinity of the chimeric molecule 

to mEPCR. However, such modification of the Gla domain could perturb the coagulant 

activity of the resulting molecule. For this reason, we generated a minimally-mutated 

chimeric molecule mFVIIa-FMR that contains the first 11 amino acids of secreted mPC, 

resulting in just three amino acid changes relative to mFVIIa (L4F, L8M and W9R, 

Figure 1). We utilized this part of the mPC Gla domain because it defines the specificity 

of the PC-EPCR interaction (Preston, 2006). 
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Fig. 1 Structure of the recombinant proteins used in this study. All proteins have a γ-
carboxyglutamic acid (Gla) domain, two epidermal growth factor (EGF) domains (EGF-1 
and EGF-2) and a catalytic domain. A recognition site (Arg-Lys-Arg-Arg-Lys-Arg 
[RKRRKR]) for a paired amino acid cleaving enzyme (PACE)/furin type protease is 
inserted after the Arg at position 151. The sequence of the Gla domain is shown and 
highlighted in blue for each protein. Changes in the Gla domain compared to mFVIIa 
taken from the murine PC Gla domain are highlighted in orange. Numbering refers to the 
mature form of each protein. 
 

Expression	  of	  mFVIIa	  chimeras	  
 
We generated stable clones of HEK293 cells expressing either mFVIIa, mFVIIa-FMR, 

mFVIIa-(1-43 mPC) or murine soluble EPCR (msEPCR) and purified recombinant 

proteins. For mFVIIa and its chimeras, the inclusion of a hydroxyapatite column 

purification step ensured that purified material had a full complement of Gla domain 

modifications, confirmed by γ-carboxyglutamic acid analysis (data not shown). SDS-

PAGE of purified proteins under reducing or non-reducing conditions revealed that 

mFVIIa and its chimeras were secreted and purified in the activated, two-chain form 

(Figure 2, lanes 2, 4 and 6). In order to accurately determine the msEPCR protein 

concentration, the E280 0.1% extinction coefficient of the msEPCR protein preparation 

(0.66) was determined by differential refractomery in the analytical centrifuge (Babul and 

Stellwagen, 1969). 
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Fig. 2 Coomassie brilliant blue staining of SDS PAGE gel of purified proteins. Five 
µg of mFVIIa, mFVIIa chimeras or msEPCR were electrophoresed under reducing or 
non-reducing conditions. The apparent molecular weights of the marker standard (M) are 
indicated in kDa. Lanes 1,3,5 and 7: non-reducing conditions; lanes 2,4,6,8: reducing 
conditions. Arrows point to the full-length (F) (under non-reducing conditions) and the 
heavy (H) and light (L) chains (under reducing conditions) of each protease. 
 

Generation	  of	  CHO-‐K1	  stable	  cell	  lines	  expressing	  full-‐length	  murine	  EPCR	  
and/or	  TF	  
 
In order to assess the ability of the mFVIIa chimeras to bind to murine EPCR as a gain-

of-function when the receptor is presented in a phospholipid membrane context, we 

generated a stable cell line expressing full-length mEPCR (CHO-K1-mEPCR) in a 

homogeneous fashion, verified by flow cytometry (Fig 3). We also generated a CHO-K1-

based mTF expressing cell line (CHO-K1-mTF) for cofactor binding experiments and 

functional assays. To control for non-specific binding, CHO-K1 cells stably transfected 

with empty expression vector were also generated. 
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Fig. 3 Scatter plots of CHO-K1 clones expressing mEPCR or mTF on the cell 
surface. CHO-K1 cells were dissociated in non-enzymatic dissociation buffer (Gibco) 
and stained for mEPCR and mTF. Receptor expression was evaluated by flow cytometry, 
quadrants were defined by negative controls (CHO-K1 naïve cells stained for both 
receptors). 
 

mFVIIa	  chimeras	  bind	  to	  mEPCR	  when	  expressed	  on	  the	  cell	  surface	  or	  in	  
solution	  
 
CHO-K1-mEPCR (or control CHO-K1) cells were incubated with increasing 

concentration of ligand (mFVIIa or its chimeras) at 4°C for 1 h in presence of 

physiological concentrations of Ca2+ and Mg2+ ions to ensure maximal binding, as has 

been previously shown for human PC and EPCR (Kurosawa, 1996). Analysis of bound 

ligand showed that mFVIIa lacked appreciable affinity to mEPCR (Figure 4, left panel) 

even at high concentration (1 µM), as expected (Puy et al., 2011; Sen et al., 2012). In 

contrast, both mFVIIa-FMR and mFVIIa-(1-43 mPC) showed specific and dose-

dependent binding to mEPCR (Figure 4, middle and right panel, respectively). 

Fluorescent densitometric analysis allowed us to estimate a Kd of interaction of 0.34 ± 

0.07 µM and 0.19 ± 0.06 µM for mFVIIa-FMR and mFVIIa-(1-43 mPC), respectively. 
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Fig. 4 Recombinant mFVIIa chimeras bind to mEPCR on CHO-K1 cells in contrast 
to mFVIIa. Increasing concentration of ligand (10-1000 nM) was incubated on CHO-K1 
or CHO-K1-mEPCR cells in the presence of 1.6 mM Ca2+ and 0.6 mM Mg2+ for 1h at 
4°C. Bound fraction was eluted and visualized by fluorescence-based western blotting 
(top part, images shown in greyscale) and band intensities were quantified and corrected 
for nonspecific binding (on CHO-K1 cells). Integrated band intensities were plotted 
(bottom part) and Kd constants were calculated. Conversion to nM was done using the 
integrated densities of known amounts of each ligand and values were normalized for cell 
numbers. Depicted curves for each protein are a representative of three experiments. 
 

To further validate the interaction between mFVIIa chimeras and mEPCR, isothermal 

titration calorimetry (ITC) was used. This solution-based assay can determine the 

magnitude of the two thermodynamic terms that define the binding affinity between two 

proteins ΔH and ΔS (Leavitt and Freire, 2001), as well as the Kd and stoichiometry of 

interaction (n). In ITC, titration of msEPCR into mFVIIa, resulted in weak heat 

measurements that did not allow for the accurate determination of thermodynamic terms 

(Figure 5, left panel). This is indicative of a weak interaction between the two proteins 

(Kd > 8 µM), confirming our results from cell binding experiments (see Figure 4). In 

contrast, mFVIIa-FMR and mFVIIa-(1-43mPC) exhibited significant heat flow as a result 

of specific interaction with msEPCR, with a stoichiometry of ~1 for both chimeras, as 
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shown by the resulting isotherms (Figure 5, middle and right panels, respectively). 

Moreover, the equilibrium dissociation constants obtained from data fitting (0.48 ± 0.02 

µM for mFVIIa-FMR and 0.11 ± 0.01 µM mFVIIa-[1-43mPC], Table 1) were in good 

agreement with our findings on CHO-K1-mEPCR cells.  

 

Fig 5. Recombinant mFVIIa chimeras bind to murine soluble EPCR (msEPCR) in 
contrast to mFVIIa. Upper portion of each panel: heat flow tracings were obtained upon 
successive injections (2 µl) of msEPCR into the sample cell containing 25 µM mFVIIa or 
mFVIIa chimera in dialysate at 25°C. The first injection (0.5 µl) was eliminated from the 
analysis. The heat flow profile from an identical injection of msEPCR into dialysate was 
used as a reference and is shown offset (top of upper panel) for clarity. Bottom portion of 
each panel: corrected integrated heats (Kcal/mole of injectant) were analyzed. The line is 
drawn according to parameters listed in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 



 36 

 

 
Table 1. Thermodynamic constants of interaction of msEPCR with mFVIIa or its 
chimeras using isothermal titration calorimetry. 
Kd: dissociation constant; n: stoichiometry of interaction; ΔG: change in Gibbs free 
energy (G); ΔH: change in enthalpy (H); ΔS: change in entropy (S); ND: not 
determined. All parameters are listed as ± 67% confidence intervals. 
 
 
Collectively, our data confirm that binding to mEPCR, either when it is presented on the 

cell surface or in solution, can be engineered as a gain-of-function to mFVIIa by 

modification of its Gla domain. This can be achieved by a small change in the ω-loop of 

the protease (mFVIIa-FMR), thus suggesting that the mEPCR minimal binding region is 

located in the first 11 residues of mPC Gla domain. 

Partial	  substitution	  of	  the	  Gla	  domain	  of	  mFVIIa	  does	  not	  affect	  its	  in	  vitro	  
activity	  
 
The Gla domain of human FVII contributes to the interaction with tissue factor (Banner 

et al., 1996) thus affecting function within the initiation of coagulation. Therefore, prior 

to further in vivo experimentation, we tested whether Gla domain modification in the 

mFVIIa chimeras perturbs coagulant function. Using a clotting based assay, we found 

that the partial Gla domain modification in mFVIIa-FMR did not affect activity (Figure 6 

A, P > 0.05 vs. mFVIIa). In contrast, full transplant of the mPC Gla domain to mFVIIa in 

the mFVIIa-(1-43 mPC) chimeric molecule abolished activity (Figure 6A, P < 0.05 vs. 

mFVIIa or mFVIIa-FMR). Therefore, we decided to further characterize the mFVIIa-

FMR molecule only, relative to mFVIIa. 

To investigate the mFVIIa-FMR affinity for the natural FVII/FVIIa cofactor (TF), we 

used CHO-K1 cells stably expressing full-length murine TF (mTF, Figure 3, right) or 

CHO-K1 controls. We performed binding experiments with increasing ligand (mFVIIa or 

Sample 
Kd 

(µM) 
n 

ΔG 

(Kcal mol-1) 

ΔH 

(Kcal mol-1) 

ΔS 

(cal mol-1K-1) 

mFVIIa >8 ND ND ND ND 

mFVIIa-FMR 0.48 ± 0.02 0.89 -8.6 - 4.7 ± 0.03 13.3 

mFVIIa-(1-43 mPC) 0.11 ± 0.01 0.85 -9.5 -4.6 ± 0.03 16.4 
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mFVIIa-FMR) concentration added, as we described for CHO-K1-mEPCR cells. Both 

Ca2+ and Mg2+ cations were present at their physiological concentration. We found that 

mFVIIa-FMR and mFVIIa exhibited similar affinity for mTF (Figure 6B), as 

demonstrated by the estimated Kd of 14.9 ± 11.1 nM (mFVIIa-FMR) and 16.9 ± 8.9 nM 

(mFVIIa). The affinity of mFVIIa to mTF is lower than previously reported (Petersen et 

al., 2005) but could be due to the assay system employed or the source of TF (soluble of 

mTF vs full length), as observed with human FVIIa and human TF (see (Sen et al., 2010) 

for references). Our data suggest that the modifications in the Gla domain present in 

mFVIIa-FMR do not affect its interaction with mouse TF or the function of the molecule, 

compared to mFVIIa. Therefore, mFVIIa-FMR is functionally equivalent to mFVIIa but 

with the added ability to bind mEPCR. 

 

 

Fig. 6 Comparison of murine TF-dependent binding and in vitro activity of mFVIIa 
and mFVIIa chimeras. (A) Using a prothrombin time clotting assay, mFVIIa and 
mFVIIa-FMR exhibit similar activity. Asterisk indicates P < 0.05 vs. mFVIIa or mFVIIa-
FMR. Data are expressed as mean ± 1 SD. NS: not statistically significant difference. (B) 
Binding of mFVIIa (!) or mFVIIa-FMR (") on CHO-K1 cells expressing mTF. 
Increasing concentration of ligand (10-250 nM) was incubated on CHO-K1 or CHO-K1-
mTF cells and bound fraction analyzed as described in Figure 3. Both ligands exhibit 
similar mTF binding. 
 

The Gla domain is also involved in the interaction with phospholipid membranes and 

therefore modulates FVIIa activity. We tested the ability of mFVIIa and mFVIIa-FMR to 

bind phosphatidylcholine:phosphatidylserine (75/25) vesicles to simulate an activated 

phospholipid surface, as described by (Saller, 2005). As shown in Figure 8, both mFVIIa 
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molecules bound liposomes with similar affinity, mFVIIa-FMR showing a slightly 

reduced Kd compared to mFVIIa (730 ± 55 nM vs 420 ± 24 nM, respecitvely). 

 

 

Figure 7. Phospholipid binding affinity of mFVIIa and mFVIIa-FMR. Increasing 
concentration (0-4µM) of each mFVIIa or mFVIIa-FMR was incubated on a 96-well 
plate precoated with a mixture of 75:25 of phosphatidylcholine:phosphatidyl serine 
phopsholipids. Following washing of unbound material, the bound protein was detected 
by western blot. Quantification of bound material allowed for determination of calculated 
affinity of each variant for such procoagulant phospholipids.  
 
 

In order to verify that mFVIIa-FMR and mFVIIa can form functional complexes with 

mTF in the context of a cell membrane, we determined the rate of generation of activated 

murine FX (mFXa) following incubation of CHO-K1-mTF cells with either mFVIIa or 

mFVIIa-FMR. As shown in Figure 8, both mFVIIa and mFVIIa-FMR exhibited similar 

rates of mFXa generation (2.20 ± 0.07 nM/min for mFVIIa and 2.00 ± 0.03 nM/min for 

mFVIIa-FMR). 
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Fig. 8 Generation of mFXa over time on CHO-K1 cells expressing mTF following 
incubation of mFVIIa (!) or mFVIIa-FMR ("). Both ligands exhibit similar rates of 
mFXa generation. 
 

In order to assess if mEPCR binding could influence mFXa generation, we co-transfected 

and subcloned  clone 14  of CHO-K1-mTF (previously used for mFXa generation 

assays), generating a CHO-K1-mTF/mEPCR expressing cell line. mTF expression 

between CHO-K1-mTF and CHO-K1-mTF/mEPCR was comparable, as confirmed by 

flow cytometry (Figure 9) analysis and mFVIIa titration assays (Figure 10). 

 

 

Fig. 9 Scatter plots and histogram of CHO-K1 clones expressing mEPCR and mTF 
on the cell surface. Left, CHO-K1 cells were dissociated in non-enzymatic dissociation 
buffer (Gibco) and stained for mEPCR and mTF. Receptor expression was evaluated by 
flow cytometry, quadrants were defined by negative controls (CHO-K1 naïve cells 
stained for both receptors). Right, histogram of CHO-K1 naïve (blue line), CHO-K1-mTF 
(red line) and CHO-K1-mTF/mEPCR (light blue line), stained for mTF. 
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Fig. 10 Functional TF determination on CHO-K1 expressing mTF or mTF and 
mEPCR mFX activation was measured at 10 min in HBS PEG 0.1% pH 7.45, 5 mM 
Ca2+, 37 C° in presence of increasing concentration of mFVIIa or FMR (0.005 – 5 nM), 
160 nM mX and 400 µM S-2222. 
 

In the presence of mTF and mEPCR, mFXa generation rates were 1.71 ± 0.10 nM/min 

for mFVIIa and 1.87 ± 0.08 nM/min for mFVIIa-FMR (Table 2). There is a trend for a 

slightly higher rate of mFXa generation vs. mTF alone (see Table 2). However, under the 

same experimental conditions, mFX activation on CHO-K1-mEPCR cells (no mTF) was 

undetectable (data not shown), collectively suggestive of small (if at all) synergistic 

mTF-mEPCR synergistic effect on mFX activation in vitro. Unfortunately, further 

analysis on such effect is difficult given that the local concentration of the receptor on the 

cell surface in relation to mTF might be suboptimal (we did not quantify receptor 

density).  

Sample nM mXa / min 

 mTF mTF mEPCR 

mFVIIa 2.20 ± 0.07 1.71 ± 0.10 

mFVIIa-FMR 2.00 ± 0.03 1.87 ± 0.08 

 

Table 2 Comparison of activation rates of mFX by mFVIIa or mFVIIa-FMR on 
CHO-K1 expressing mTF alone or mTF and mEPCR on the cell surface. Rates are listed 
as ± 67% confidence intervals. 



 41 

 

Lastly, in order to characterize the overall potential of the mFVIIa-FMR relative to 

mFVIIa on thrombin production in murine plasma, we utilized a thrombin generation 

assay. To simulate hemophilia conditions, we supplemented murine hemophilia B plasma 

with 25 nM mFVIIa or mFVIIa-FMR since this is sufficient to induce hemostasis in 

hemophilic patients (Hedner, 2008). The reaction was initiated using tissue 

factor/phospholipids (Castoldi and Rosing, 2011). As previously described (Ivanciu et al., 

2011), naïve murine hemophilia B plasma resulted in undetectable murine thrombin 

generation (Figure 5D). In contrast, addition of either mFVIIa or mFVIIa-FMR resulted 

in murine thrombin generation, with mFVIIa-FMR exhibiting a modest but statistically 

significant (P < 0.05) reduction in peak of thrombin, compared to mFVIIa (Figure 11). 

This reduction was observed even when lower amounts of mFVIIa or mFVIIa-FMR 

added in the reaction (12.5 and 6.25 nM, data not shown). Despite this, mFVIIa-FMR 

exhibited similar endogenous thrombin potential (ETP, a measure of the total murine 

thrombin generated during the assay) relative to mFVIIa at all doses tested (Figure 11, 

inset graph, P > 0.05 for mFVIIa vs. mFVIIa-FMR at each dose shown). 

 

 
Fig. 11 Murine thrombin generation assay following the addition of 25 nM mFVIIa 
(!) or mFVIIa-FMR (") or buffer (!) in mouse hemophilia B plasma. Asterisk 
indicates P < 0.05 vs. mFVIIa of the entire fitted data. The inset graph shows the 
endogenous thrombin potential (ETP) following addition of different concentration of 
mFVIIa (black bar) or mFVIIa-FMR (white bar). 
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The	  mFVIIa-‐FMR	  molecule	  binds	  mEPCR	  in	  vivo	  
 

In order to address if mFVIIa-FMR can bind mEPCR in vivo, we monitored protease 

levels in plasma over time, after intravenous bolus administration in C57BL/6 adult male 

mice. The standard hemostatic dose of rhFVIIa in hemophilic patients is 90-120 µg/kg 

(Kenet and Martinowitz, 2008). However, given the short half-life of rhFVIIa (2.5-3 

hours (Villar et al., 2004)), to ensure sufficient protein detection, mice received a dose of 

500 µg/kg of mFVIIa or mFVIIa-FMR via a single tail vein injection and blood plasma 

levels of administered protease (recovery, as percentage of injectant) were determined at 

different timepoints. As shown in Figure 12A, remarkably, within 5 min after 

administration, mFVIIa-FMR rapidly disappeared from the plasma, in contrast to mFVIIa 

(30.4 ± 6.8 % vs. 53.2 ± 19.3 % recovery, respectively, P < 0.01). This lower recovery of 

mFVIIa- FMR vs. mFVIIa was also evident at 30 and 120 min post administration (P < 

0.05 for each timepoint). 

Given the mEPCR binding capacity of mFVIIa-FMR, the lower recovery of mFVIIa- 

FMR suggests a potential mEPCR-dependent sequestration from circulation. To test this, 

we infused the RCR-252 mEPCR-blocking antibody(Deane et al., 2009)or isotype control 

IgG one hour prior to tail vein administration of 500 µg/kg mFVIIa or mFVIIa-FMR, in 

C57BL/6 mice. We assessed plasmatic levels of the administered proteins at 5 min post 

injection to maximize protein detection and differences in protein recovery. Infusion of 

RCR-252 (or control antibody) followed by PBS did not increase endogenous mFVIIa 

levels that were below the limit of quantification (Figure 12B). Since mFVIIa shows 

negligible affinity to mEPCR, administration of either mEPCR blocking or isotype 

control IgG prior to mFVIIa infusion had no effect on plasmatic levels (P > 0.05). Mice 

that received mFVIIa-FMR after isotype control IgG showed reduced plasmatic levels 

compared to mFVIIa (P < 0.05), as expected (compare to Figure 12A, 5 min). In contrast, 

blocking mEPCR prior to administration of mFVIIa-FMR resulted in increased plasmatic 

levels, similar to those observed for mFVIIa (P > 0.05, Figure 12B). Collectively, these 

data suggest that the modified Gla domain in mFVIIa-FMR allows it to bind specifically 

to mEPCR in vivo. As a result, changes observed in the mFVIIa-FMR recovery vs. 

mFVIIa are dependent on specific binding to mEPCR. 
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Fig. 12 The chimeric mFVIIa-FMR molecule can bind mEPCR in vivo. (A) C57BL/6 
mice (n=5 per group per timepoint) were infused via the tail vein with 500 µg/kg of 
mFVIIa (!) or mFVIIa-FMR (") and blood was collected at various time points 
thereafter. Plasma protein concentration was measured by antigen and activity assays and 
shown as recovery (% of the initial amount of injectant, mean ± SD). Recovery of 
mFVIIa-FMR is reduced compared to mFVIIa. Asterisk indicates P < 0.05 vs. mFVIIa. 
(B) Cohorts of C57BL/6 mice were initially infused via the tail vein with mEPCR 
blocking antibody (RCR-252) or isotype control IgG. The type of antibody administered 
in each cohort is indicated by the “+” or “-” symbol. One hour later, 500 µg/kg of 
mFVIIa, mFVIIa-FMR or buffer was infused and antigen levels at 5 min post injection 
were determined. Asterisk indicates P < 0.05 for each indicated comparison. Data are 
expressed as mean ± 1 SD. 
 

EPCR	  binding	  enhances	  FVIIa	  hemostatic	  activity	  in	  vivo	  
 

Using mFVIIa-FMR as a model of the properties of rhFVIIa (TF and EPCR binding) we 

investigated whether binding to EPCR can influence the hemostatic action of rhFVIIa in 

vivo. We chose hemophilia mice that underwent a 7.5% FeCl3 injury on their carotid 

artery. The mice were subsequently infused via the jugular vein with mFVIIa, mFVIIa-

FMR or control (PBS) and time to vessel occlusion as a result of thrombus formation was 

determined. We chose this model since EPCR expression is higher in large vessels in 

comparison to the microcirculation (Laszik et al., 1997). Moreover, we have previously 

utilized this model and procoagulant dosing to demonstrate hemostatic efficacy of 
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modified procoagulants based on activated FX (Ivanciu et al., 2011). Under the 

experimental conditions, hemostatically normal mice (WT) formed occlusive thrombi in 

14.5 ± 0.8 min (Figure 13A). As expected (Ivanciu et al., 2011), hemophilia B (HB) mice 

did not show vessel occlusion over the time of observation (data not shown). In contrast, 

administration of mFVIIa or mFVIIa-FMR resulted in stable vessel occlusion. A dose of 

3 mg/kg mFVIIa normalized the hemostatic response (as listed in table 3). Administration 

of mFVIIa-FMR at this dose resulted in stable vessel occlusion at 4.9 ± 0.6 min, 

significantly faster (~3 fold) than WT or HB mice infused with similar dose of mFVIIa 

(P < 0.05). In an effort to increase the hemostatic response of mFVIIa, we administered a 

higher dose (5 mg/kg) that resulted in vessel occlusion at 4.3 ± 1.0 min, similar to the 3 

mg/kg dose of mFVIIa-FMR (P > 0.05). The enhanced hemostatic effects of mFVIIa-

FMR were also observed using a 5 mg/kg dose, that resulted in even faster vessel 

occlusion (2.6 ± 0.6 min) compared to the 3 mg/kg dose (4.9 ± 0.6 min, P < 0.05). Lastly, 

in an attempt to determine the mFVIIa-FMR dose sufficient to normalize the hemostatic 

response, we administered a 1 mg/kg dose. However, mice responded partially since only 

1/3 mice exhibited vessel occlusion at 6 minutes post protein administration (Table 3). 

To demonstrate that the enhanced hemostatic effects of mFVIIa-FMR are due to specific 

binding to mEPCR, we administered either an EPCR-blocking antibody (RCR-252) or 

isotype control in hemophilia B mice. Thirty minutes after antibody infusion, we 

performed a 7.5% FeCl3 carotid artery injury followed by infusion of 3 mg/kg of 

mFVIIa-FMR. As expected, the enhanced hemostatic properties of mFVIIa-FMR were 

unaffected by the control IgG infusion (vessel occlusion at 4.7 ± 1.1 min, Figure 13B). In 

contrast, blocking mEPCR resulted in a statistically significant increase in vessel 

occlusion time (11.6 ± 4.2 min, Figure 7B, P < 0.05 vs. IgG), similar to what was 

observed with mFVIIa (3 mg/kg, Figure 13A).  

Lastly, in order to confirm that the differences in the hemostatic effects of mFVIIa-FMR 

vs. mFVIIa are not disease specific, we administered 3 mg/kg of mFVIIa or mFVIIa-

FMR in hemophilia A (HA) mice. Similar to HB mice, infusion of mFVIIa-FMR resulted 

in faster vessel occlusion than mFVIIa (2.8 ± 0.6 min vs. 13.8 ± 1.1 min, respectively, P 

< 0.05, Figure 13C).  
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Fig. 13 Infused mFVIIa-FMR shows enhanced hemostatic potential in hemophilic 
mice compared to mFVIIa. (A) Hemophilia B mice (n=3-5 per group) were subjected to 
a 7.5% FeCl3 injury and blood flow was monitored for 10 minutes. Subsequently, 
procoagulant (mFVIIa or mFVIIa-FMR) was administered at the indicated dose via the 
jugular vein and time to vessel occlusion was determined. Wildtype (WT) mice (n=4) are 
shown for reference (white bar). Data are shown as mean ± 1 SD. Asterisk indicates P < 
0.05 vs. mFVIIa for each procoagulant dose; hash tag indicates P < 0.05 vs. WT; NS 
indicates non-significant difference. (B) Hemophilia B mice (n=3-4 per group) were 
injected with 50 µg of EPCR-blocking antibody (RCR-252) or control isotype IgG. 
Thirty minutes later, they were subjected to a 7.5% FeCl3 injury and blood flow was 
monitored for 10 minutes. Subsequently, mFVIIa-FMR was administered at 3 mg/kg via 
the jugular vein and time to vessel occlusion was determined. Data are shown as mean ± 
1 SD. Asterisk indicates P < 0.05 vs. IgG. (C) Hemophilia A mice (n=4-5 per group) 
were subjected to the same experimental setup as in (A). Data are shown as mean ± 1 SD. 
Asterisk indicates P < 0.05 vs. mFVIIa. 
 

Table 3 Time to carotid artery occlusion following FeCl3-induced injury WT, 
C57BL/6 mice; HB or HA, hemophilia B (or A) mice; Occlusion time measurements are 
presented as mean ± s.e.m. and are derived from both transient and complete events. ‘–‘ 
indicates that no clot was observed during the observation period (30 min). 

Mice Sample Dose 
(mg/kg) n No 

occlusion Complete Time to 
occlusion (min) 

WT PBS - 5 - 5 14.5 ± 0.3 

HB mFVIIa 5 3 - 3 4.3 ± 0.6 

HB  3 4 1 4 12.9 ± 1.4 

HB mFVIIa-FMR 5 3 - 3 2.6 ± 0.4 

HB  3 5 - 5 4.9 ± 0.3 

HB  1 3 2 1 6 

HA mFVIIa 3 4 - 4 13.8 ± 0.8 

HA mFVIIa-FMR 3 5 - 5 2.8 ± 0.3 
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To further show that the increased hemostatic effects of mFVIIa-FMR are not injury 

model-specific, we utilized a different challenge. Specifically, hemophilia B mice had 

their tail transected and blood volume loss was measured for 2 minutes. Then, 3 mg/kg of 

procoagulant (mFVIIa or mFVIIa-FMR) or PBS (control) was infused via the jugular 

vein and subsequent blood volume loss was measured for an additional 8 minutes (Figure 

14). The dose of procoagulant was chosen on mFVIIa normalizing the vessel occlusion 

time in the FeCl3 carotid artery model (mFVIIa vs. WT, Figure 14). In this experimental 

setting (Figure 14), blood loss in WT mice was significantly less compared to HB mice 

either prior to infusion (“PRE”, 40 ± 23 µl vs. 173 ± 90 µl, respectively; P < 0.05) or after 

infusion of PBS (“AFTER”, 13 ± 18 µl vs. 346 ± 78 µl, respectively; P < 0.05). Infusion 

of procoagulant in HB mice led to a significant decrease in blood loss, compared to PBS 

(P < 0.05 for either mFVIIa or mFVIIa-FMR treated HB mice; 175 ± 72 µl and 48 ± 34 

µl, respectively). Although both procoagulants normalized blood loss (P > 0.05 vs. WT), 

mFVIIa-FMR infusion was ~3 fold more effective in reducing blood loss compared to 

mFVIIa (P < 0.05), indicating its increased hemostatic capacity compared to the parent 

molecule (mFVIIa). 

In conclusion, based on the properties of mFVIIa-FMR, our data suggest for the first time 

that its specific binding to EPCR enhances its procoagulant effect in vivo. 

 
 
Fig. 14 Tail Clip and protein infusion in hemophilic mice. Hemophilia B mice (!, n= 
4-5 mice per group) or wildtype (☐, n= 5 mice) were subjected to a tail transection and 
blood loss (in µl) was measured for a period of 2 minutes (“PRE” period). Immediately 
after, 3 mg/kg of mFVIIa or mFVIIa-FMR were infused and blood loss (in µl) was 
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measured for an additional 8 minutes (“AFTER” period). Wildtype mice infused with 
PBS are shown as a reference. Data are shown as mean ± 1 SD. Asterisk indicates P < 
0.05 vs. WT mice; hash tag indicates P < 0.05 vs. mFVIIa. 
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DISCUSSION	  
 

Although the hemostatic effects of rFVIIa administration in hemophilia are undisputed, 

its mechanism of action remains unclear. Moreover, the functional significance of the 

FVIIa-EPCR interaction as it relates to pharmacologic rFVIIa administration has also 

remained unestablished. In order to perform in vivo studies investigating the significance 

of this interaction in human physiology and pathophysiology, it is fundamental to 

establish and characterize a proper murine model, taking into account the poor affinity of 

murine FVIIa for mEPCR. This apparent species discrepancy makes the mouse a minimal 

background system with respect to the interaction of EPCR with endogenous or 

exogenously administered mFVIIa. 

Here, we have characterized a novel chimeric mFVIIa molecule (mFVIIa-FMR) that, in 

contrast to mFVIIa, merges normal TF-dependent binding/activity and gains EPCR 

binding. This result exemplifies the plasticity of mFVIIa and identifies for the first time 

the region in the mPC Gla domain responsible for specific binding to mEPCR. In vivo, 

mFVIIa-FMR was rapidly sequestered from the circulation by an EPCR-mediated 

mechanism that was completely abolished by antibody blocking of the receptor. Using 

two established injury models in hemophilic mice, we show that mFVIIa-FMR infusion 

exhibited a superior hemostatic capacity compared to mFVIIa that was dependent to its 

binding to endogenous EPCR. Based on our mouse model and the properties of mFVIIa-

FMR that mimic those of rFVIIa, our results demonstrate for the first time in vivo that 

EPCR contributes to the correction of hemostasis by high dose rFVIIa in hemophilia. 

Remarkably, the magnitude of this enhanced hemostatic capacity suggests that EPCR is 

unlikely a minor effector of function of this chimeric molecule. 

Our data indicate that EPCR is a component of rFVIIa’s hemostatic function, 

however how a receptor localized on the endothelium can participate in FVIIa-

procoagulant reactions is not immediately profound. Traditionally the endothelium has 

been considered as a substantial anticoagulant surface. In fact, the endothelial cells are 

rich in glycosaminoglycans (a physiologic heparin-like cofactor of antithrombin) and also 

synthesize TFPI and most of the fibrinolityc activator (Levi et al., 2002). Moreover, the 

endothelium expresses thrombomodulin and EPCR in order to sustain effective aPC 
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generation on its surface and provide downregulation of thrombin production. On the 

other hand, activated platelets were generally regarded as the only source of procoagulant 

membranes, strictly localizing coagulant reactions by exposing anionic phospholipids on 

their surface (Heemskerk and Bevers, 2002). With the advancing of intravital microscopy 

techniques, the role of platelets in coagulation has been reshaped (Ivanciu et al., 2012) 

and vascular endothelium appear to have the capacity of further supporting clotting 

reactions and prothrombinase assembly even in absence of platelet activation 

(Vandendries et al., 2006). It has been shown that laser-activated endothelium can 

provide TF and support fibrin formation, including platelet accumulation and activation 

at the site of injury(Atkinson et al., 2010; Dahlback, 2005; Kroh et al., 2011). This 

indicates that upon stimulus, these cells can be converted from a quiescent noncoagulant 

state to an activated procoagulant state that supports thrombin-generating reactions. 

In this perspective, a plausible explanation for the enhanced activity of the 

chimera observed in vivo is that the EPCR binding capacity of mFVIIa-FMR is an 

additional endothelial recruiter of the molecule in proximity to and/or the site of the 

injury where it participates in procoagulant reactions. The “preventive” localization of 

FVII/FVIIa on the vessel wall might accelerate thrombus formation dynamics by 

tethering the protease on the surface where TF might be exposed upon injury or cellular 

signaling events. 

Moreover, since TF-FVIIa-EPCR can form a complex with FX/FXa,(Disse et al., 

2011) EPCR tethering of mFVIIa-FMR on the endothelium may provide an extended 

locale of procoagulant reactions leading to the observed enhanced procoagulant effects of 

mFVIIa-FMR vs. mFVIIa. However, these reactions may not be confined exclusively on 

the endothelial surface; for example, monocytes express functional EPCR and, upon 

stimulation, TF (Osterud, 2012).  

EPCR occupancy by mFVIIa-FMR may also downregulate activated mPC 

generation, and hence anticoagulation, resulting in the apparent enhancement of 

hemostatic function of mFVIIa-FMR. Such a hypothesis relies on effective competition 

of mPC-mEPCR binding by mFVIIa-FMR and is supported by two observations: (i) 

endogenous EPCR in mice appears to be a limiting factor for activated PC (aPC) 
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generation (LI et al., 2005); (ii) the dose of mFVIIa-FMR administered (3 mg/kg) would 

likely reach plasmatic levels well beyond those of mPC 

We have to point out that an EPCR-dependent additive FXa generation and aPC 

competition are non-exclusive hypotheses and can occur concurrently, as two converging 

components that contribute to the enhanced procoagulant response that we observed in 

different injury models.  

Our in vivo injury data suggest that infusion of mFVIIa-FMR changes the kinetics 

of thrombus formation (vs. mFVIIa), but is unclear if mFVIIa-FMR modifies the 

magnitude and/or localization of procoagulant reactions. Ultimately, experiments that 

look at real-time thrombus formation that are currently underway will add the extent and 

topographical information of these reactions. These experiments will involve 

visualization and quantification of fibrin deposition in vivo with intravital fluorescence 

microscopy techniques during laser-induced or FeCl3 induced thrombus formation. 

Preliminary experiments in mice showed that EPCR is highly expressed on the 

mesenteric artery while it was almost absent in cremaster arterioles (P. Margaritis, 

personal communication), as previously observed in humans and baboons (Laszik et al., 

1997). The comparison of fibrin formation and platelet accumulation after mFVIIa or 

mFVIIa-FMR administration in these vascular systems in hemophilic mice will help us to 

further dissect the role of EPCR in clot formation following FVIIa administration. Lastly, 

using an active site fluorescent labeling approach, we want to directly visualize FVIIa in 

the developing thrombus and determine how EPCR binding affects its localization in 

respect to platelets and other clotting factors. 

A limitation of our studies is that we did not directly compare the mEPCR 

affinities of our chimeric mFVIIa molecules to that of mPC. The affinity of mPC for 

mEPCR is unknown and several attempts to purify recombinant mPC according to 

published procedures were unsuccessful (data not shown). Recombinant material had a 

large proportion of aggregates and autolysis products that could be separated by size 

exclusion chromatography but with significant protein loss. This prevented further 

downstream purification to recover fully γ-carboxylated mPC (a necessary step for Gla 

domain dependent interactions), although the partially purified material was able to bind 

mEPCR on the cell surface. However, given that the Gla domain determines EPCR 
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binding, we speculate that the mEPCR affinity of mFVIIa-(1-43 mPC) that harbors the 

full Gla domain of mPC, should be representative of mPC (i.e. 100-200 nM). 

Unfortunately, the interaction of mFVIIa-(1-43 mPC) for the receptor was not compatible 

with a normal TF-dependent activity, hence could not be used in vivo. On the contrary, 

mFVIIa-FMR that retained normal TF binding/activity bound mEPCR substantially 

tighter than mFVIIa. Using this minimally modified molecule, we showed EPCR 

contribution on FVIIa even at binding affinities that are lower than for the endogenous 

mouse PC. Since human rFVIIa and human PC bind to human EPCR with equal affinity, 

we speculate that in humans, rFVIIa binding to EPCR might have even more relevant 

impact on its hemostatic function in hemophilia treatment. 

Previously, enhancing the function of rFVIIa has focused on amino acid 

modification relating to phospholipid membrane binding or catalytic function. Chemical 

modifications in order to increase the half-life of rFVIIa have also been explored (such as 

glycoPEGylation or formulation with PEGylated liposomes) as well as fusion to albumin 

or monomeric Fc (Peyvandi et al., 2013). Based on our data, limited mutagenesis within 

the Gla domain of human FVIIa could reveal a novel class of rFVIIa molecules with 

enhanced binding to EPCR and increased hemostatic function.  

 Recombinant human FVIIa has also been used in prophylaxis. In a study of 

rFVIIa secondary prophylaxis in hemophilic patients with inhibitors, patients receiving 

daily rFVIIa infusions for 3 months, followed by a 3-month post-prophylaxis period, 

showed clinical benefits even in the post-prophylaxis period (Konkle et al., 2007). 

Previous mouse studies suggested that rFVIIa is transported via an EPCR-dependent 

mechanism to the extravascular space, where it can persist for extended period of time in 

complex with TF,(CLARK et al., 2012) (Hoffman et al., 2007) potentially preventing 

minor bleeds before their escalation to major bleeds. Such mechanism may explain the 

prolonged clinical benefits of rFVIIa prophylaxis. In this context, enhancement of EPCR 

binding of rFVIIa could also benefit prophylaxis-based therapies. This includes gene-

based FVIIa approaches in hemophilic animal models (as previously shown in mice and 

dogs (Aljamali et al., 2008; Mann et al., 2003; Margaritis et al., 2004; 2009; 2011)) 

directing continuous expression of FVIIa to simulate a prophylaxis setting. Preliminary 

experiments using viral-mediated gene transfer of mFVIIa-FMR suggest that it can be 
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expressed long term (several weeks) in hemophilic mice (P. Margaritis, personal 

communication). Future experiments will test the involvement of EPCR in long-term 

biodistribution and hemostatic function of FVIIa by comparing mFVIIa-FMR and 

mFVIIa in this gene transfer model. Histological analyses and hemostatic challenges in 

hemophilic mice expressing such molecules will define: (1) how EPCR binding may 

affect the long-term biodistribution of mFVIIa-FMR; (2) whether such biodistribution 

changes compared to mFVIIa affect its hemostatic function. If persistence of rFVIIa 

extravascularly indeed effects long-term clinical benefits, then understanding it will help 

us improve such benefits in rationally-designed FVIIa therapeutics. 

In conclusion, using a minimal modification of the Gla domain of mFVIIa, we 

have generated and characterized a novel mFVIIa molecule (mFVIIa-FMR) with the 

capacity to interact with mEPCR in vitro and in vivo, as a true gain of function. Using the 

mouse as a relevant platform, we are first to demonstrate that EPCR is a previously 

unconsidered component of the mechanism of action of rFVIIa in hemophilia. This 

effector function of EPCR immediately suggests pathways to design novel protein or 

gene-based FVIIa therapeutics with increased efficacy and higher safety profiles. Of 

course, any potential adverse effects (immunologic or thrombotic) of such novel therapies 

will need to be properly evaluated. 
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CONCLUDING	  REMARKS	  
 
 
We modified the Gla domain of mFVIIa with 3 amino acid changes in order to create a 

gain in function in its ability to bind mEPCR without altering affinity for TF or the 

resulting function of the TF-bound protease. The resulting molecule (mFVIIa-FMR) 

suitably modeled the TF-dependent and EPCR binding properties of rFVIIa. This allowed 

us to use it in hemophilic mice to evaluate the hemostatic effects of the EPCR-rhFVIIa 

interaction for on-demand rFVIIa administration. 

In a mouse hemophilia system, the binding of administered FVIIa to endogenous EPCR 

enhanced its hemostatic properties. These results identified EPCR as an effector of 

human FVIIa infusion in hemophilia that can be exploited in novel protein or gene-based 

FVIIa therapeutics 
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