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Complex networks :
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Abstract

This article describes a new method and approach of texture characterization. Using complex network
representation of an image, classical and derived (hierarchical) measurements, we present how to have good
performance in texture classification. Image is represented by a complex networks : one pixel as a node.
Node degree and clustering coefficient, using with traditional and extended hierarchical measurements, are
used to characterize ”organization” of textures.
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1 Introduction

Texture analysis have important role in numerous application of image processing. Many different approaches
to texture analysis have been proposed. Among the most widely used texturemeasures are those derived from
gray level co-occurence matrices or difference histograms, ”texture energy” measures obtained by local linear
transforms, and features based on multi-channel Gabor filtering or Markov random field model [1, 2].

Introduced recently [3, 4, 5], complex networks can be adapted to represent the relation and characteriza-
tion between elements and become appropriate to characterize picture pattern. It is possible to represent an
image as a complex network and used tools from texture networks theory to characterize the created image:
segmentation [6], texture analysis [7].

This paper overviews our approach, presents in the first part complexnetworks and image representation, in
the second part methods that were used for comparison. The third part exposes complex networks method’s
results, with the efficiency of hierarchical measurements. The last part concludes with an overview of the
obtained results and suggest possibilities for further improvements and complementary work.
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2 Complex Network And Image Representation

2.1 Complex networks and measurements

A complex network is a set of nodes connected between them. One connection (or edge) between two nodes
(or vertices) indicates an interaction between these two edges. Edges canbe binary (i.e. presence or absence of
connection) or weighted, and directed or not. The present work is limited to non-directed edges. All complex
networks can be represented mathematically by a matrix calledthe adjacency matrix. With a complex network
with N nodes, the adjacency matrix (W ) have a dimensionN × N . The weight of the connection from each
nodej to each nodei (i, j = 1, 2..., N ) is represented asW (i, j), with null value being assigned in the absence
of such a connection. A second matrixWT , binary, is also obtained. It contains only the most significant
connections. For example, connections wich are greater weight(only elements ofW which are greater than or
equal to a thresholdT are kept); it can be seen in the example in Figure 1. The characterization ofthe topological
and connectivity properties of complex networks can be achieved by using measurements borrowed from graph
theory [8] and complex network research [5] including but being by no means limited to:

(a)

0 0 2 3

0 0 0 2

2 0 0 1

3 2 1 0

(b)

0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

(c)

Figure 1: (a): Weighted small complex network (b): the adjacency matrixW , (c): WT matrix (binary) obtain
with T = 2.

Degree: The degree of a given node is equal to the number of connections which itmakes. For weighted
connections the degree of a node is called strength and corresponds to the sum of all the weights of the
respective links. An example in Figure 2 illustrates this definition. The frequency histograms of the
degrees provide an important characterization of the connectivity of the network under analysis.

Clustering Coefficient: The clustering coefficient of a given nodei is defined as:

Ci =
Number of connections between nodes connected to node i

Number of possible connections between these nodes
(1)

whenever the denominator is equal to zero, we imposeCi = 0. Note that it follows that0 < Ci < 1 for
any possible node. Figure 2 illustrates the calculation of the clustering coefficient for a simple network.

Figure 2: Illustration of degree (D) and clustering coefficient (C) calculation of the node represented in black:
D = 5 andC = 3

5×4\2 = 3
10 .
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Hierarchical Measurements: Several complex networks measurements, including the node degree and clus-
tering coefficient, can be generalized to take into account not only the immediate neighborhood of a node,
but also those which are at successive distances (i.e. 2, 3, ...) from thatspecific node [9] (example in Fig-
ure 3). In particular, the hierarchical degree of a node for hierarchical leveli corresponds to the number
of edges connecting the nodes at distancei to the nodes at distancei + 1. The hierarchical clustering co-
efficient of a given node for hierarchical leveli is calculated in the same way as the traditional clustering
measurement, but considering the edges between the nodes at distancei and the nodes at distancei + 1.

(a) (b)

Figure 3: Hierarchical representation (b) of the complex network (a) for the node 1.

For all measurements, all nodes of the complex network are characterized. To have a global information
of the complex network, two parameters are extracted from these histograms: the mean and the standard
deviation.

2.2 Image representation

To transform an image into a complex network, we assume that each pixel is represented by one node. Weights
of edges are defined with the grey level of pixels. The connection between two nodesi andj is defined by :

W (i, j) =
255 − |G(i) − G(j)|

255
(2)

whereG(i) represents the grey level of nodei ∈ [0, 255]. Weights are defined in the[0, 1], zero define no
connection, and1 the maximum connection between two nodes.

Connections between edges are defined only inside a circular region of radiusr centered on each pixel. The
matrix WT is a thresholded matrix. It is a binary matrix where the value1 define a connection, and0 not. An
example of construction of the two matricesW andWT can be seen in Figure 4 and a complete representation
in complex networks of image is illustrated in Figure 5.

3 Comparatives methods

The results obtained by using the complex network methodology have been compared to those provided by the
co-occurrence matrices introduced by Haralick [10] and by Gabor filters [11, 2].

3.1 Co-occurence features :

Co-occurrence matrices consider repeated occurrences of some grey level configuration in the texture. A
co-occurrence matrix is constructed by observing pairs of pixels separated by a distanced and increment-
ing the matrix position corresponding to the grey level of both pixels. The value p(i, j) represents the fre-
quency of occurrence of the situationf(x1, y1) = i, f(x2, y2) = j, |x1 − x2| = d or |y1 − y2| = d or
√

(x2 − x1)2 + (y2 − y1)2 = d.
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Figure 4: (a): part of image in Grey level (b): adgency matrix (W ) of the sub-image representation in complex
network , (c):WT matrix with threshold = 8 .

(a) (b) (c)

Figure 5: (a): A30 × 30 sub-image with the20 × 20 usable centered zone (radiusr = 5), (b): typical
representation of the complex network withthreshold = 0.99, and (c): representation withthreshold = 0.98

Various characteristics can be extracted from the co-occurrence matrix: Energy, Contrast, Correlation, Dis-
similarity, Homogeneity. In our case, these characteristics were determined with d = 1 andd = 5 [12].

3.2 Gabor filters :

Gabor filters which perform a local Fourier analysis, are essentially sineand cosine (complex exponential)
modulated by a Gaussian window. In the complex space these filters are expressed as:

h(x, y) = g(x′, y′).ej2π(Ux+Vy) (3)

whereg(x, y) = 2
2πλσ .e

−
(x/λ)2+y2

2σ2 and

[

x′

y′

]

=

[

x.cos(φ) + y.sin(φ)
−x.sin(φ) + y.cos(φ)

]

φ is a clockwise rotation along thex axis,U andV represent the frequency coordinates.
σ is the standard deviation of the Gaussian envelope (which defines its size) andλ is the shape parameter of the
Gaussian.
The Gaussian has a circular shape forλ = 1.
The transfer function ofh(x, y) is expressed as:

H(x, y) = G(u′ − U ′, v′ − U ′) (4)

with G(u, v) = e−2π2σ2(u2λ2+v2) and

[

u′

v′

]

=

[

u.cos(φ) + v.sin(φ)
−u.sin(φ) + v.cos(φ)

]

H(u, v) is therefore a Gaussian band-pass filter, which principal axis is orientedat φ degree from theu axis
and with central frequencyF defined by :F = (U + V )1/2 oriented according to the polar angleθ , as shown
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Figure 6: : General Gabor filter in the Fourier spaceθ 6= φ .

in Figure 6. In our case, 3 frequency and 6 angles are used, withθ = φ. Parameter extracted of this results is
the energy :

Energy =
∑

pixel2; (5)

3.3 Wavelets :

In practice, the 2-D discrete wavelet decomposition can be obtained by using a separable filter bank to the
image [13]:

Ln(bi, bj) =
[

Hx ∗ [Hy ∗ Ln−1]↓2,1

]

↓1,2
(bi, bj)

Dn1(bi, bj) =
[

Hx ∗ [Gy ∗ Ln−1]↓2,1

]

↓1,2
(bi, bj)

Dn2(bi, bj) =
[

Gx ∗ [Hy ∗ Ln−1]↓2,1

]

↓1,2
(bi, bj)

Dn3(bi, bj) =
[

Gx ∗ [Gy ∗ Ln−1]↓2,1

]

↓1,2
(bi, bj)

(6)

where∗ denotes the convolution operator,↓ 2, 1 sub sampling along the rows and↓ 1, 2 sub sampling along
the columns.L0 is the original image.H andG are lowpass and highpass filters.
The decomposition is obtained onn levels by applying recursively the filter bank n times on the image. Figure 7
shows examples of decomposition for two different levels.

Figure 7: Example of image of texture (a) and 2D discrete wavelet decomposition at level 1(b) and 2(c) with
Haar wavelet.

To extract wavelet texture features, the texture is decomposed with the discrete wavelet transform first. Once
the image is decomposed, each sub band is characterized by signatures. In our case, the energy signature is



98 Chalumeau et al. / Electronic Letters on Computer Vision andImage Analysis 7(3):93-100, 2008

used. To a sub band, the energy is:

El,d =
1

MN

M
∑

i=1

N
∑

j=1

(Il,d(i, j))
2 (7)

whereIl,d is the coefficient of thed sub image, at thel level of decomposition.

4 Results

The comparative study was performed while considering different textures resulting from Brodatz data base.
Six different types of textures, illustrated in Figure 8, were used. For alltextures, 20 ”sub-images” are consid-
ered.

Figure 8: Samples of the 6 classes of textures used.

The classification is performed by a multilayer perceptron, issue of the software TANAGRA [14], with 25
neurons, 500 maximum iterations and a learning rate equal to 0.25. The method uses70% of ”sub-images”
for training and30% for classification. To compare our results of classification with comparative’s method, the
Error Rate is defined as the number of bad recognitions divided by the number of samples.

Figure 9 shows error rate of classification for our method and Table 1 forcomparison methods (only best re-
sults of comparative methods are visible). Different experiments was made for complex networks method, with
several thresholds and several hierarchical levels. Note that each hierarchical levelk in thex−axis indicates
the use of all hierarchical levels up tok, and not just the hierarchical valuek.

With these results it appears that the use of measurements considering progressive hierarchical levels has a
definite effect in improving the classification rate (lower error rate). The minimum of Error Rate is obtained for
the level 4 for the threshold equal to0.75. The error rate of classification stop to level 5 (defined manually); if
higher levels are used, the error rate increase. This is the limit of the hierarchical measurements. This limit is
due to the low density or non-existent of connections on higher levels and thus parameters determined (degree
and clustering coefficient) can not be good to discriminate classes of networks. This better hierarchical level
depends of the image database and the threshold used [7].

Method Error Rate
co occurence 0.04

Gabor 0.4
Wavelet 0.35

Table 1: Error Rate for comparative methods : Haralick’s approach (distanced = 1 to 5 with 8 angles), Gabor
filters(3 frequencies and 6 angles) and Wavelet(Bior wavelet), using theperceptron classifier .

5 Conclusion

Method for texture classification using complex networks had been presented and compared. Two methods
for texture classification using complex networks had been presented andcompared. ur simple method, us-
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Figure 9: Evolution of Error Rate in function of hierarchical measurementsused. Results of classification is
obtained by the multilayer perceptron.

ing Complex networks with measurements of topology and connectivity, has a good ability to represent and
characterize textures. The interest of hierarchical levels was made andincrease the efficiency of the classifica-
tion of characterization of textures. Although promising results have been obtained, our method used simples
parameters (mean and standard deviation).

We are currently working to improve this shortcoming : use more informations about the histograms (i.e.
moments and coefficients), an automatic determination of the better hierarchicallevel to improve the classifica-
tion. An improvement of the method in relation of the determination of the better threshold can be done using
measurements for weighted networks [16].
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