Pub. Mat. UAB

Vol. 30 nº 2-3 Des. 1986

A GEOMETRICAL CHARACTERIZATION

OF REFLEXIVITY IN BANACH SPACES

M.J.Chasco and Esteban Indurain

<u>Summary</u> : The main result in this paper is the equivalence, for any Banach space B , between

(i) "Every normalized basic sequence $(a_n)_{n \in \mathbb{N}}$ in B is weakly null" , and

(ii) "For every normalized basic sequence $(a_n)_{n \in \mathbb{N}}$ in B ,

 $a_1 \in \overline{\text{span}} (a_n - a_{n+1})_{n \in \mathbb{N}}$ ".

Pelczyński proved that (i) characterizes the fact of B being reflexive. So, the same holds for (ii) and we have a "geometrical" characterization of reflexivity.

We finish quoting some equivalent version of the above result.

AMS Subject Class. 1980 : 46 b 10 , 46 b 15 Key words : Reflexive Banach spaces, basic sequences, sequence of differences.

1. Previous Concepts .

-Let B denote a Banach space and K its scalar field, N the set of natural numbers, $[\dots]$ "closed linear span", and $f = (a_n)_{n \in \mathbb{N}}$ be a linearly independent sequence of vectors in B.

Call $K(f) = \bigcap_{n \in \mathbb{N}} [a_n, a_{n+1}, \dots]$ (kernel of f) and

 $K_{g}(f) = \{K(f') ; f' \text{ is a subsequence (infinite) of } f\} (strict kernel of f)$ $f \text{ is normalized if } || a_{n} || = 1 (n \in N)$

/ is <u>basic</u> if there is a unique sequence of scalars $(\lambda_n)_{n\in\mathbb{N}}$ such that

$$x = \sum_{n=1}^{\infty} \lambda_n a_n$$
, for every $x \in [I]$.

The sequence $(a_n - a_{n+1})_{n \in \mathbb{N}}$ is called <u>sequence of differences</u> of f. f is said to be <u>weakly convergent</u> to $x \in B$ if $\lim_{n} f(a_n) = f(x)$, for $every \ f \in B^*$ (dual of B). f is said to be <u>minimal</u> if there exists a sequence $(a_n^*)_{n \in \mathbb{N}}$ in $[f]^*$ with $a_n^*(a_m) = \delta_{nm}$ (Kronecker indices), and <u>uniformly minimal</u> if it also verifies sup $|| a_n || || a_n^* || < \infty$

2. The main result .

.

The result leans on the following two lemmas : Lemma 1 : Every subsequence f' of a given sequence $f = (a_n)_{n \in \mathbb{N}}$ has zero strict kernel if and only if the normalized sequence $f_{\mathbb{N}} = (a_n/||a_n||)_n$ has no subsequence weakly convergent to some vector distinct from zero. Proo_ : See $|\mathbf{T}|$, p. 172.

110

Lemma 2 : Let $f = \{a_n\}_{n \in \mathbb{N}}$ be a minimal sequence with zero kernel, Let $x \in [f]$ such that the set $S_x = \{k \in \mathbb{N} : a_k^*(x) \neq 0\}$ is infinite. We note $S_x = (p_n)_{n \in \mathbb{N}}$. Then $x \in K_s(\{\sum_{h=1}^n a_{p_h}^*(x) | a_{p_h}^*\}_{n \in \mathbb{N}})$ if and only if the sequence $(\sum_{h=1}^n a_{p_h}^*(x) | a_{p_h}^*\}_{n \in \mathbb{N}}$ is weakly convergent to x. <u>Proof</u> : (See |I-T|). It follows from lemma 1 and the third Fréchet s axiom of convergence (see |K|).

Now, we finally have the <u>Theorem</u> : Let B be a Banach space. Then the following statements are equivalent :

- B is reflexive ,
- (ii) Every normalized basic sequence $(a_n)_{n \in N}$ in B is weakly convergent to zero ,
- (iii) Every normalized basic sequence $\binom{a}{n} \underset{n \in \mathbb{N}}{n \in \mathbb{N}}$ in B verifies

ale[a-an+1; neN].

<u>Proof</u>: In |P| has been proved that (i) is equivalent to (ii) . -(ii) implies (iii) is obvious , considering

٦

$$a_1 - a_n = \sum_{i=1}^{n-1} (a_i - a_{i+1})$$

(iii) implies (ii) :

-Suppose that for every normalized basic sequence $f = (a_n)_{n \in \mathbb{N}}$, $a_1 \in [a_n - a_{n+1} ; n \in \mathbb{N}].$ Notice that $a_1 \in [a_n - a_{n+1}; n \in N]$ if and only if $a_1 \in K\{(a_1 - a_n)_n\}$ (see, for instance, |R|, proposition 2.2) Take $(p_n)_{n\in\mathbb{N}}$ a subsequence of N, with $p_1 = 1$. By hypothesis, the sequence $(a_p)_{n\in\mathbb{N}}$ also verifies $a_1 \in [a_{p_n} - a_{p_{n+1}}; n \in N]$, so, it follows that $a_1 \in K_s((a_1 - a_n)_{n\in\mathbb{N}})$. Now, applying lemma 2 to a_1 and $(a_n - a_{n+1})_{n\in\mathbb{N}}$, we have that $(a_1 - a_n)_{n\in\mathbb{N}}$ is weakly convergent to a_1 , and therefore $(a_n)_{n\in\mathbb{N}}$ is weakly convergent to zero.

3. Equivalent versions .

-In |CH-I| (preprint of this paper) the following equivalent versions of the theorem are given :

- (iv) $[a_n; n \in N] = [a_n a_{n+1}; n \in N]$, for every normalized basic sequence $(a_n)_{n \in N}$ in B,
- (v) Let $(a_n)_{n\in\mathbb{N}}$ be a normalized basic sequence in B. Then , its sequence of differences cannot be uniformly minimal ,
- (vi) For every normalized basic sequence $(a_n)_{n\in N}$ in B, $[a_n-a_{n+1} ; n \in N]$ cannot be an hyperplane in $[a_n ; n \in N]$.

Acknowledgement. We thank the referee for his valuable suggestions.

4. References .

CH-I	CHASCO, M.J INDURAIN, E.	: Caracterizaciones geométricas de la reflexivi- dad en espacios de Banach. (Preprint) . Pub. S. Mat. Carcía de Caldeano. Serie II. Sección 1 nº 102 . Zaragoza 1986
I-T	INDURAIN, E TERENZI, P.	: A characterization of basic sequences in Banach spaces . Rend. Acc. Naz. dei XL 1049 vol X 1986 (to appear)
K	KURATOWSKI, K.	: Topologie, vol I. PWN Warsaw 1952
K P	PEECZYNSKI, A.	: A note on the paper of I. Singer "Basic sequen- ces and reflexivity of Banach spaces". Studia Math. 21, 371-374 (1962).
R	REYES, A.	: A geometrical characterization of Schauder basis
		Arch. Math. 39 , 176-179 (1982).
T	TEREN2I, P.	: Biorthogonal systems in Banach spaces. Riv. Mat. Univ. Parma 4(4) 165–204 (1978) .

Rebut el 18 d'Agost de 1986

Departamento de Geometría y Topología Facultad de Ciencias 50009-ZARAGOZA ESPAÑA