Pub. Mat. UAB Vol. 30 № 1 Maig 1986

> ON F' - CLOSURE OF \tilde{F} - HOMOGENEOUS GROUPS J.M. Olazábal & P.A. Ferguson*

ABSTRACT: Given a homomorph F, a finite group G is a \widetilde{D}_F group if G has an F-projector F such that every solvable F-subgroup is contained in some conjugate of F. G is \widetilde{F} -homogeneous if $N_G(X)/C_G(X) \in F$ for every solvable F-subgroup of G. The following theorem is proved. Assume that F is an s-closed extensible homomorph and G is a \widetilde{D}_F group which is \widetilde{F} -homogeneous, then $G \in F^* F$.

This theorem generalizes results about D_{π} π -homogeneous groups and π '-closure.

Introduction

All groups considered in this paper are finite. In [1], it is shown that if π is a set of prime numbers, then every π -homogeneous D_{π} -group is π '-closed. The following equivalen ce is then trivial: G/O $_{\pi}$,(G) is a solvable π -group if and only if G is a π -homogeneous D_{π} -group with solvable Hall π -subgroups.

1980 <u>Mathematics Subject Classification</u> 20D99 Key words and phrases, s-closed extensible homomorph, $D_{\widetilde{F}}$ group, \widetilde{F} -homogeneity.

* The second author was partially supported by a National Science Foundation Grant.

In this paper, as in [4], we consider an extensible ans s-closed homomorph F and generalize these results.

We recall that a non-empty class of groups F is a <u>homomorph</u> if whenever $G \in F$, then all homomorphic images of G are contained in F. A homomorph is <u>s-closed</u> if whenever $G \in F$, then all subgroups of G are contained in F. A homomorph F is <u>extensible</u> if whenever both G/N and N are contained in F, then $G \in F$. Let F denote any homomorph which is closed under normal subgroups; then F', the derived class of F, is defined by $F' = \{G|S/N \in F \text{ implies that } S = N \text{ for each subgroup } S \text{ of } G\}$. (See [4]). For such a homomorph F, the radical $G_{F'}$ is defined for a group G by $G_{F'} = (N\Delta G|N \in F')$ is defined for a group G. A group G is defined to be F'-closed if $G/G_{F'} \in F$ or equivalently if $G \in F' F$.

Let F be a homomorph, a group G is defined to be a D_F group if G has an F-projector F such that every solvable F-subgroup of G is contained in some conjugate of F.

G is defined to be a \underline{D}_F group if G has exactly one conjugacy class of F-projectors and every F-subgroup of G is contained in an F-projector.

G is defined to be <u>F-homogeneous</u> if $N_{G}(X)/C_{G}(X) \in F$ for every solvable F-subgroup X of G, is <u>F-homogeneous</u> if $N_{G}(X)/C_{G}(X) \in F$ for every F-subgroup X of G.

We note that if G is a π -homogeneous D_{π} -group, then it is direct to see that G is an F-homogeneous D_{F} -group where F is s-closed extensible homomorph of π -groups. We show

30

¢

(Lemma 3) that $G_{F'} = 0_{\pi}$, (G) for this F. Thus the following theorem is a generalization of the result mentioned in the first paragraph.

Theorem A

Assume that F is an s-closed extensible homomorph and G is a \widetilde{D}_r group which is \widetilde{F} -homogeneous, then $G \in F' F$.

The following corollary generalizes the second remark in the first paragraph and characterizes the product class $F'(F \cap H)$ when H is a solvable class.

Corollary B

Let F be an s-closed and extensible homomorph and H a class of solvable groups. Then the following are equivalent:

(i) $G \in F'(F \cap H)$.

(ii) G is a D_F -group with F-projectors belonging to H and G is F-homogeneous.

(iii) G is a \widetilde{D}_{F} -group with an F-projector F belonging to H an G is F-homogeneous.

Corollary B strengthens Theorem III 2.6 of [4] by replacing the nilpotency hypothesis in the F-projectors of that theorem by solvability.

Section One

Lemma l

Let F be an s-closed homomorph. Every subgroup H of an \widetilde{F} -homogeneous group G is an \widetilde{F} -homogeneous group.

Proof:

Let X be a solvable F-subgroup of H, then X is an F-subgroup of G. Whence $N_{G}(X)/C_{G}(X) \in F$. Now $N_{H}(X)/C_{H}(X) = (N_{G}(X) \cap H)/(C_{G}(X) \cap H) \cong (N_{G}(X) \cap H)C_{G}(X)/C_{G}(X)$ implies that $N_{H}(X)/C_{H}(X)$ is isomorphic to a subgroup of $N_{G}(X)/C_{G}(X)$. Since F is s-closed, $N_{H}(X)/C_{H}(X) \in F$.

Lemma 2

Let F an extensible homomorph of finite groups and let G be an F-homogeneous group. Then:

(i) G/K is an \tilde{F} -homogeneous group for each normal solvable F-subgroup K of G.

(ii) If F is also an s-closed homomorph, with $G/K \in F'$ F and $K \in F$ where K is solvable, then $G \in F'$ F.

Proof:

(i) Let X/K be a solvable F-subgroup of G, then X is solvable so $N_{G}(X)/C_{G}(X) \in F$. Now $\rho : N_{G}(X) \longrightarrow N_{G/K}(X/K)/$ $/ C_{G/K}(X/K)$ defined by $\rho(g) = \overline{gK}$ is an epimorhism whose kernel

contains $C_{G}(X)$.

Therefore, $N_{G/K}(X/K) / C_{G/K}(X/K)$ is an epimorphic image of the F-group $N_G(X)/C_G(X)$. Since F is a homomorph, $N_{G/K}(X/K) / C_{G/K}(X/K)$ lies in F. Hence G/K is a \tilde{F} -homoge neous group.

(ii) Let M/K be the F'-radical $(G/K)_F$, of G/K. Since $K \in F$ and M/K \in F', (|K|, |M:K|) = 1 as f is s-closed. Now the Schur-Zassenhaus theorem yields a subgroup L of M such that M = KL and M/K \cong L. Let K_p denote a Sylow p subgroup of K. By the Frattini argument M = N_M(K_p)K. Thus $|L| \mid |N_M(K_p)|$.

Further, $N_M(K_p) \cap K$ is a normal Hall subgroup of $N_M(K_p)$. Hence by the Schur-Zassenhaus theorem, $N_M(K_p)$ has a Hall subgroup L_1 of order |L| and L_1 and L are conjuga te in M. Thus, by Sylow theory, we may choose notation so that $L \subseteq N_M(K_p)$.

Therefore, $LC_M(K_p)/C_M(K_p)$ is contained in $N_M(K_p)/C_M(K_p)$. Since G is \tilde{F} -homogeneous, Lemma 1 implies that $N_M(K_p)/C_M(K_p) \in F$. Now $LC_M(K_p)/C_M(K_p)$ must be an F-group because F is s-closed. However, $L \in F'$ implies that $LC_M(K_p)/C_M(K_p) \in F'$.

Thus, $|LC_M(K_p)/C_M/K_p| = 1$ and $[L,K_p] = 1$. Repeating the argument for all primes p dividing |K|, we conclude that $M = L \times K$ and $L = M_F$.

Now L is a characteristic subgroup of M so $L \Delta G$. Finally, $G/L / M/L \cong G/M$, $M/L \cong K \in F$, and $G/M \cong G/K / M/K \in F$. Since F is extensible, $G/L \in F' F$.

We state Lemma 3 and Proposition 4 in greater generality

than needed for independent interest. We note that every s-closed extensible homomorph F is an s-closed and saturated forma tion by [5, I (1.2), (2.1), I 2.5)] and the proof of [5, I (1.14)].

Lemma 3

Assume F is an s-closed and saturated formation and G is a \widetilde{D}_{F} -group with F-projector F such that every solvable F-group in G lies in some F^{G} , $g \in G$. Let π denote the set of prime divisors of |F|, then F is a Hall π -subgroup of G and G_{F} , = $0_{\pi^{+}}$ (G).

Proof:

Let F_p denote a non-trivial Sylow p-subgroup of F. If F_p is not a Sylow p-subgroup of G, there is a p-group K such that $F_p \Delta K$ and $[K : F_p] = p$.

Since F is s-closed and saturated, K must belong to F following [5, I: (3.1)]. But K is solvable so $K \subseteq F^{g}$ which is a contradiction. Hence F is a Hall π -subgroup of G.

Let R be any π '-subgroup of G. If $R \notin F'$, there is N Δ T with T/N \in F and $R \supseteq$ T \supset N. Let v be a prime dividing [T:N], then F contains Z_v , a cyclic group of order v. However, R also contains $\leq x \geq$ a cyclic group of order v and $\leq x \geq F$.

Since $\langle x \rangle$ is solvable, $\langle x \rangle \subseteq F^{\mathcal{G}}$ which contradicts (|F|, |R|) = 1. Thus $R \in F^{*}$ and in particular $0_{\pi^{+}}(G) \subseteq G_{F^{+}}$. If $v!(|G_{F^{+}}|, |F|)$, then both F and F' contain a cyclic

group of order v since F and F' are s-closed. This contradicts $F \cap F' = \{1\}$. Hence, $G_{F'} = 0_{\pi'}(G)$.

Proposition 4

Let F be an s-closed saturated formation. Assume G is a \widetilde{D}_{F} -group with F-projector F such that every solvable F-subgroup of G lies in some F^{g} . If whenever two elements in F are conjugate in G then they are conjugate in F, then $G \in F'$ F.

Proof:

Let π denote the set of prime divisors of |F|. By Lemma 3, F is a Hall π -subgroup of G. Let E be an elemen tary subgroup of G such that |E| | |F|, then $E = Z \times P$ where P is a p-group and Z is cyclic. Following $\{5, I. (3.1)\},$ P and every Sylow subgroup of Z lie in F. Now F a formation yields $E \in F$. Hence, $E \subseteq F^{g}$ for some $g \in G$. The Brauer-Suzuki Theorem $\{3, Th. (8.22)\}$ implies that $G = 0_{\pi}, \{G\}F$. By Lemma 3, $0_{r}, \{G\} = G_{r}$, whence $G \in F'F$.

Proof of Theorem A;

The proof is divided into three parts. Let G be a minimal counterexample to the theorem, F be a F-projector such that every solvable F-subgroup lies in a conjugate of F, and let π denote the set of prime divisors of |F|.

(A) There are no normal non-trivial solvable F-subgroups of G.

Assume K is a nontrivial normal solvable F-subgroup of G, then $K \subseteq F$ and F/K is a F-projector of G/K. Suppose X/K is any solvable F-subgroup of G/K, then X is solvable and $X \in F$. Thus, $X \subseteq F^{g}$ and $X/K \in (F/K)^{gK}$. Hence, G/K is a \widetilde{D}_{F} -group. By Lemma 2, G/K is \widetilde{F} -homogeneous. The minimality of G yields G/K \in F' F. Now $G \in$ F' F follows from Lemma 2.

> (B) Let S be a non-trivial p-subgroup of F. Then (i) $N_{G}(S)$ is F'-closed. (ii) $N_{G}(S) = N_{F}(S) 0_{\pi}$, $(C_{G}(S))$, and (iii) $S \subseteq F^{W}$ implies that $F^{W} = F^{Y}$ where $y \in 0_{\pi}$, $(C_{G}(S))$.

We first show that (B)(i) and (ii) hold for any . 1 \neq S such that

 $(*) S \subseteq F^{W} \text{ implies } N_{F^{W}}(S) = (N_{F}(S))^{T}$ for $r \in N_{G}(S)$.

Assume (*) holds, we will show $N_{G}(S)$ is a \widetilde{D}_{F} -group and that $N_{F}(S)$ is an F-projector of $N_{G}(S)$. IF K is any Sylow v subgroup of $N_{G}(S)$ for v a prime in π , then KS is a p group if v = p or a {p,v}-group. In particular, KS is solvable so $KS \subseteq F^{W}$. By (*) $KS \subseteq (N_{F}(S))^{r}$ for some $r \in N_{G}(S)$. Thus, $N_{F}(S)$ is a Hall π -subgroup of $N_{G}(S)$.

Let U be a subgroup of $N_{G}(S)$ which contains $N_{F}(S)$ with W Δ U and U/W \in F. If t is any prime dividing [U:W], then F s-closed implies that F contains a cyclic group of

order t. However, U also contains a cyclic subgroup $\langle x \rangle$ of order t. Since $\langle x \rangle$ is a solvable F-group, $\langle x \rangle \subseteq F^{g}$. Therefore, U/W is a π -group. Since $N_{F}(S)$ is a Hall π -subgroup of $N_{G}(S)$, U = WN_{F}(S). Hence, $N_{F}(S)$ is an F-projector. It T is a solvable F-subgroup of $N_{G}(S)$, then TS is solvable and TS $\subseteq F^{W}$ for some $w \in G$.

Now (*) implies that TS $\subseteq (N_F(S))^T$ for some $r \in N_G(S)$. Hence $N_G(S)$ is a \widetilde{D}_F -group. By Lemma 1, $N_G(S)$ is \widetilde{F} -homogeneous. Using (A), $|N_G(S)| \leq |G|$ so $N_G(S)$ is F^* -closed. Lemma 3 implies that $N_G(S)_{F^*} = 0_{\pi^*}(N_G(S))$. However, $0_{\pi^*}(N_G(S)) \subseteq C_G(S)$) since $N_G(S)/C_G(S) \in F$ and is thus a π -group. Hence $N_G(S)_{F^*} = 0_{\pi^*}(C_G(S))N_F(S)$ follows directly.

We now prove (B) by induction on $[F_p:S]$ where F_p is a Sylow p subgroup of F. Assume first that $[F_p:S] = 1$, then S is a Sylow p-subgroup of G. Hence, $S \subseteq F \cap F^W$ yields $S = S^{f_W}$ where $f \in F$. Therefore, $f_W \in N_G(S)$ and (*) is satisfied so (i) and (ii) are proved.

Now $N_G(S) = N_F(S) 0_{\pi}$, $(C_G(S))$ yields fw = f₁y where f₁ $\in N_F(S)$ and $y \in 0_{\pi}$, $(C_G(S))$. Hence $F^W = F^Y$ and (iii) follows.

We assume (B) is proved for all p-subgroups T of F_p such that $[F_p:T] \leq [F_p:S]$ and $|S| \geq 1$. Let T be a Sylow p subgroup of $N_F(S)$, then $|T| \geq |S|$ and $S \subseteq T \subseteq S_1 \subseteq F^g$ where S_1 is a Sylow p-subgroup of $N_G(S)$.

By induction $F^{g} = F^{Y}$ where $y \in 0_{\pi}, (C_{G}(T))$. Hence, $N_{F}g(S) = (N_{F}(S))^{Y}$ so T is a Sylow subgroup of $N_{G}(S)$. If $S \subseteq F \cap F^{W}$, let U be a Sylow p-subgroup of $N_{F^{W}}(S)$. Then $S \subseteq U = T_1^r \subseteq T^r$ where $r \in N_G(S)$ and $|T_1| \ge |S|$. Now $T_1 \subseteq F^{wr^{-1}} \cap F$ yields $F^{wr^{-1}} = F^{Y_1}$ where $y_1 \in \mathcal{O}_{\pi^*}(C_G(T_1))$. Therefore, $N_F^w(S) = (N_F(S))^{Y_1}r^r$ where $y_1r \in N_G(S)$ and (*) is satisfied.

Hence, (B) (i) and (ii) are proved. Further, $F^{W} = F^{Y_{1}r}$ where $Y_{1}r \in N_{G}(S) = N_{F}(S)0_{\pi}$, $(C_{G}(S))$ yields $Y_{1}r = fy$ where $f \in N_{F}(S)$ and $y \in 0_{\pi}$, $(C_{G}(S))$. Now (B) (iii) follows.

(C) Final Contradiction.

By Lemma 3, F is a Hall π -subgroup of G. Thus, $N_{G}(F) = FM$ where M is a Hall π '-subgroup of $N_{G}(F)$. Let $p \in \pi$, then the Frattini argument and the Schur-Zassenhaus theorem imply that there is a Sylow p subgroup F_{p} of F Such that $N_{G}(F) = N_{G}(F_{p})F$ and $M \subseteq N_{C}(F_{p})$. By (B) (ii), $M \subseteq C_{G}(F_{p})$. Repeating this argument for all primes p in π , we see that $M \subseteq C_{C}(F)$ and $N_{C}(F) = F \times M$.

Suppose $z_1 = z_2^w$ where z_1 and $z_2 \in F^{\#}$, then $z_1 \in F^w \cap F$. Because of (B), an argument analogous to that used in the proof of [1, Lemma 5] implies that $F^w = F^y$ for some $y \in 0_{\pi}, (C_G(z_1))$. Thus, $wy^{-1} \in N_G(F)$ and by the previous paragrah w = fmy where $f \in F$ and $m \in M$. Hence $z_2 = z_1^{y^{-1}m^{-1}f^{-1}} = z_1^{f^{-1}}$ so z_1 and z_2 are conjugate in F. The theorem now follows from Proposition 4.

Proof of Corollary B:

(i) \Rightarrow (ii). [4,II. (2.7)] yields that G is a D_F -group, and [4, III (2.2)] implies that G is F-homogeneous. Let F be an F-projector of G, then G/G_F , \cong F and G/G_F , \in F \cap H. Therefore, $F \in H$.

(ii) \Rightarrow (iii) It is obvious.

(iii) \Rightarrow (i) By Theorem A, $G \in F^* F$.

Now G/G_r , $\cong F \in F$ implies that $G \in F'(F \cap H)$.

As noted in the introduction if a group G is π -homogeneous and D_{π} , then G is \tilde{F} -homogeneous and \tilde{D}_{F} where F is the s-closed extensible homomorph of π -groups.

The following generalization of the theorem in [1] may be obtained easily from Theorem A and Lemma 3.

Corollary C:

Assume G is a finite group which is π -homogeneous and has a Hall π -subgroup which contains a conjugate of every solvable π -subgroup of G, then G is π '-closed.

BIBLIOGRAFHY

1. Ferguson, P. "On π '-closure of π -homogeneous groups". Proc. AMS, Vol. 66, Nº 1, Sept. 1977, 9-12.

2. Gorenstein, D. Finite Groups, Harper and Row, New York, 1967.

- Isaacs, I.M., Character Theory of Finite Groups, Academic Press, New York, 1976.
- de Olazábal, J. "Grupos finitos F'-cerrados", Public, Dept, Algebra y Fundamentos. Zaragoza, 1975.

5. Perez, Monasor, F. "Grupos finitos separados de una formación de Fitting", Rev. Acad. Ciencias Zaragoza, (2^S) Vol. 28, № 3, 1973, pp. 253-301.

Rebut el 6 de juny del 1985

J. M. Olazábal Departamento de Geometría y Topología Facultad de Ciencias Universidad de Santander Santander, España. SPAIN P.A. Ferguson Departament of Mathematics and Computer Science University of Miami Coral Gables, Florida. USA