Pub. Mat. UAB
Vol. 29 No $2-3$ Nov. 1985

ON THE MEAN VALUES OF AN INTEGRAL FUNCTION
REPRESENTED BY DIRICHLET SERIES
Poonam Sharma*

1. Consider the Dirichlet series

$$
\begin{equation*}
f(s)=\sum_{n=1}^{\infty} a_{n} \exp \left[s \lambda_{n}\right\}, \tag{1.1}
\end{equation*}
$$

where $s=\sigma+$ it, $\lambda_{1} \geqslant 0, \lambda_{n}<\lambda_{n+1} \longrightarrow \infty$, as $n \rightarrow \infty$
and
(1.2) $\quad \lim _{n \rightarrow \infty} \sup \frac{\log n}{\lambda_{n}}=D<\infty$.

Let σ_{c} and σ_{a} be the abscissa of convergence and the abscissa of absolute convergence, respectively, of $f(s)$. Let $\sigma_{c}=\infty$ and σ_{a} will also be infinite, since according to a known result ([l], p.4) a Dirichlet series which satisfies (1.2) has its abscissa of convergence equal to its abscissa of absolute convergence, and so, $f(s)$ is an integral function.

[^0]Let $E=\{f(s):$ defined by (1.1), satisfying (1.2) and $\left.\sigma_{c}=\infty\right\}$. Let the maximum modulus of $f(s), f(s) \in E$, over a vertical line be

$$
M(\sigma)={ }_{-\infty}^{1 \cdot u}<\mathrm{b}<\infty|\mathrm{f}(\sigma+i t)| .
$$

The (kit) order ρ and the lower order λ are defined by Ritz. (\{ 2] , p.78) as

$$
\begin{equation*}
\lim _{\sigma+\infty} \sup _{\inf } \frac{\log \log M(\sigma)}{\sigma}=\frac{\rho}{\lambda} \tag{1.3}
\end{equation*}
$$

and he also defined the type τ and the lower type t as

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log M(\sigma)}{e^{n \sigma}}=t_{t}^{t} \tag{1,4}
\end{equation*}
$$

Let the mean values of $|f(s)|, f(s) \in E$, be

$$
\begin{equation*}
\left.\left.I_{\delta}(\sigma, f)=I_{\delta}(\sigma)=\lim _{T+\infty} \frac{1}{2 T} \int_{-T}^{T} \right\rvert\, f(\sigma+i t)\right\}^{\delta} d t \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{\delta, k}(\sigma, f)=m_{\delta, k}(\sigma)=\frac{2}{e^{k \sigma}} \int_{0}^{\sigma} I_{\delta}(x) e^{k x_{\alpha x}} \tag{1.6}
\end{equation*}
$$

where $\delta, k \in \mathrm{R}^{+}$, the set of positive real numbers.

Some properties of these mean values were also studied by Rizvi, M.I. [3] and he obtained a number of valuable results.

In this paper we have obtained some inequalities, growth propexties and asymptotic relations involving $m_{\delta, k}(\sigma, f)$ and $I_{\delta}(0, f)$ for $f(s) \in E$. The results obtained are best possible. The results of ([4],pp. 43-48) and ([5],pp. 51.56) follow from ours.

Dikshit [6] in 1972 established the following theorems. Theorem A. $I_{\delta}(\sigma)$ increases steadly with σ and $\log I_{\delta}(\sigma)$ is a convex function of a for $\sigma>\sigma_{0}=\sigma_{0}(f)>0$.

Proof: - Let $0<\sigma_{0}<\sigma_{1}<\sigma_{2}<\sigma_{3}$ and $h(t)$ and $F(s)$ be defined as

$$
h(t)\left\{f\left(\sigma_{2}+i t\right)\right\}^{\delta}=\left|f\left(\sigma_{2}+i t\right)\right|^{\delta},(-\infty<t<\infty)
$$

and

$$
F(s)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\{f(s+i t)\}^{\delta} h(t) d t .
$$

Then $F(s)$ is regular for $0<\sigma_{0} \leqslant \operatorname{Re}(s)<\sigma_{3}$ and its least upper bound is obtained on its boundary say at $s=\sigma_{3}+i t_{3}$. Hence,

$$
I_{\delta}\left(\sigma_{2}\right)=F\left(\sigma_{2}\right) \leqslant\left|f\left(\sigma_{3}+i t_{3}\right)\right| \leqslant I_{\delta}\left(\sigma_{3}\right)
$$

which proves the first part. To prove the second part we choose α, such that

$$
\mathrm{e}^{\alpha \sigma} \mathrm{I}_{\delta}\left(\sigma_{1}\right)=e^{\alpha \sigma 3} \mathrm{r}_{\delta}\left(\sigma_{3}\right)
$$

Therefore,

$$
\begin{aligned}
e^{\alpha \sigma_{2}} I_{\delta}\left(\sigma_{2}\right) & =e^{\alpha \sigma} 2 \\
F\left(\sigma_{2}\right) \leqslant-\infty<t<\infty & 1 . e^{\alpha s} f(s) \mid \leqslant \\
\leqslant e^{\alpha \sigma} 1 & I_{\delta}\left(\sigma_{1}\right)=e^{\alpha \sigma_{3}} I_{\delta}\left(\sigma_{3}\right)
\end{aligned}
$$

which gives on eliminating α,

$$
\log I_{\delta}\left(\sigma_{2}\right) \leqslant \frac{\sigma_{3}^{-\sigma_{2}}}{\sigma_{3}^{-\sigma} 1} \log I_{\delta}\left(\sigma_{1}\right) \quad \frac{\sigma_{2}^{-\sigma} 1}{\sigma_{3}^{-\sigma} 1} \log I_{\delta}\left(\sigma_{3}\right)
$$

and the result follows.
Theorem B. $e^{k \sigma} I_{\delta}(\sigma)$ is a convex function of $e^{k \sigma} m_{\delta, k}(\sigma)$ and $\log \mathrm{m}_{\delta, k}(\sigma)$ is a convex function of σ, for $\sigma>\sigma_{0}=\sigma_{0}(f)>0$.

Proof: - We have

$$
\begin{gathered}
\frac{d\left\{e^{k \sigma} \mathrm{I}_{\delta}(\sigma)\right\}}{d\left\{\mathrm{e}^{k \sigma} \mathrm{~m}_{\delta, k}(\sigma)\right\}}=\frac{\mathrm{k} e^{\mathrm{k} \sigma} \mathrm{I}_{\delta}(\sigma)+\mathrm{e}^{\mathrm{k} \sigma} \mathrm{I}_{\delta}^{1}(\sigma)}{2 \mathrm{I}_{\delta}(\sigma) e^{\mathrm{k} \sigma}} \\
=\frac{1}{2}\left\{\mathrm{k}+\frac{\mathrm{I}_{\delta}^{\prime}(\sigma)}{\mathrm{I}_{\delta}(\sigma)}\right\}
\end{gathered}
$$

for $\sigma>\sigma_{0}=\sigma_{0}(f)>0$ and increases with σ by Theorem A, since $\log I_{\delta}(\sigma)$ is a convex function of σ. This proves the first part. To prove the second part, we have

$$
\frac{\mathrm{d}}{\mathrm{~d}(\sigma)}\left\{\log \mathrm{m}_{\delta, \mathrm{k}}(\sigma)\right\}=\frac{2 \mathrm{I}_{\delta}(\sigma)-\mathrm{k} \mathrm{~m}_{\delta, \mathrm{k}}(\sigma)}{\mathrm{m}_{\delta, \mathrm{k}}(\sigma)}
$$

$$
=\left\{\frac{2 I_{\delta}(\sigma)}{m_{, \delta, k}^{(\sigma)}}-k\right\}
$$

for $\sigma>\sigma_{0}=\sigma_{0}(£)>0$ and increases with σ, since $e^{k \sigma} I_{\delta}(\sigma)$ is a convex function of $e^{k \sigma} m_{\delta, k}(\sigma)$.
2. In theorem 1 we estimate the ratio of $m_{\delta, k}{ }^{(\sigma)}$ for any two positive values of σ in terms of the ratio of $I_{\delta}(\sigma)$ and $m_{\delta, k}(\sigma)$ for those values of σ.
Theorem 1. If $f(s) \in E$ and $0<\sigma_{0}<\sigma_{1}<\sigma_{2}$, then
(2.1) $\frac{I_{\delta}\left(\sigma_{1}\right)}{m_{\delta, k}\left(\sigma_{1}\right)}-\frac{k}{2} \leqslant \frac{1}{2\left(\sigma_{2} \sigma_{2}\right)} \log \frac{m_{\delta, k}{ }^{\left(\sigma_{2}\right)}}{m_{\delta, k}{ }^{\left(\sigma_{1}\right)}} \leqslant \frac{I_{\delta}\left(\sigma_{2}\right)}{m_{\delta, k}\left(\sigma_{2}\right)}-\frac{k}{2}$.

Proof. From (1.6), we have
(2.2) $\left\{\log e^{k \sigma} m_{\delta, k}(\sigma)\right\}=\log \left\{e^{k \sigma} 0^{m} m_{\delta, k}\left(\sigma_{0}\right)\right\}+2 f_{\dot{v}_{0}}^{\sigma} \frac{I_{\delta}(x)}{m_{\delta, k}(x)} d x$.

Therefore,

$$
\begin{gathered}
\log \left\{\mathrm{e}^{\mathrm{k}\left(\sigma_{2}-\sigma_{1}\right) \frac{m_{\delta, k}\left(\sigma_{2}\right)}{\left.m_{\delta, k}^{\left(\sigma_{1}\right)}\right\}}=2 \int_{\sigma_{1}}^{\sigma_{2}} \frac{\mathrm{I}_{b}(\mathrm{x})}{\bar{m}_{\delta, \mathrm{k}}^{(\mathrm{x})}} \mathrm{dx}}\right. \\
\geqslant \frac{2 \mathrm{I}_{\delta}\left(\sigma_{1}\right)}{m_{\delta, \mathrm{k}^{\left(\sigma_{1}\right)}}\left(\sigma_{2}-\sigma_{1}\right), \sigma_{1}>\sigma_{0}}
\end{gathered}
$$

and

$$
\log \left\{e^{k\left(\sigma_{2}-\sigma_{1}\right) \frac{m_{\delta, k}\left(\sigma_{2}\right)}{m_{\delta, k}^{\left(\sigma_{1}\right)}} \leqslant \frac{2 \mathrm{I}_{\delta}\left(\sigma_{2}\right)}{m_{\delta, k}\left(\sigma_{2}\right)}\left(\sigma_{2}^{-\sigma_{1}}\right), \sigma_{1}>\sigma_{0}, ~}\right.
$$

From Theorem B, we have $e^{k \sigma} I_{\delta}(\sigma)$ is convex function of $e^{\mathrm{k} \sigma} \mathrm{m}_{\delta, \mathrm{k}}(\sigma)$, and therefore $\left\{\frac{\mathrm{I}_{\delta}(\sigma)}{\mathrm{m}_{\delta, \mathrm{k}}(\sigma)}\right\}$ increase for $\sigma>\sigma_{0}$.

Corollary. If $f(s) \in E$, other than a constant and $0<\alpha<1$, then
(2.3)

$$
\lim _{\sigma \rightarrow \infty}\left\{\frac{m_{\delta, k}(\alpha \sigma)}{e^{k \sigma} m_{\delta, k}(\sigma)}\right\}=0
$$

If we put $\sigma_{1}=\alpha \sigma$ and $\sigma_{2}=\sigma$ in (2.1), then

$$
\begin{gathered}
\exp \left[-2\left\{\frac{\mathrm{I}_{\delta}(\sigma)}{m_{\delta, k}^{(\sigma)}}\right\} \sigma(1-\alpha)\right] \leqslant \frac{\mathrm{m}_{\delta, \mathrm{k}}^{(\alpha \sigma)}}{\mathrm{m}_{\delta, k}(\sigma)} \cdot \exp [\mathrm{k} \sigma(\alpha-1)] \\
\leqslant \exp \left[-2\left\{\frac{\mathrm{I}_{\delta}(\alpha \sigma)}{m_{\delta, k}(\alpha \sigma)}\right\} \sigma(1-\alpha)\right]
\end{gathered}
$$

The result follows on taking limits of both the sides after dividing by $e^{k \alpha \sigma}$.
3. Theorem 2. If $f(s) \in E$ and is of Pitt order $\rho(0<\rho<\infty)$, type r and lover type t, then
(3.1)

$$
\lim _{\sigma \rightarrow \infty}^{\operatorname{lin}} \sup \frac{\left\{\frac{\mathrm{I}_{\delta(\sigma)}}{\mathrm{m}_{\delta, k(\sigma)}}\right\}}{\mathrm{e}^{\rho \sigma}} \leqslant \text { e } \rho \delta \tau / 2
$$

Proof. From (2.2) we have for $h>0$

$$
\begin{aligned}
& \log \left\{e^{\mathrm{k}(\sigma+\mathrm{h})} \mathrm{m}_{\delta, k}(\sigma+\mathrm{h})\right\}=0(1)+2 \int_{\sigma}^{\sigma+h} \frac{\mathrm{I}_{\delta}(\mathrm{x})}{\mathrm{m}_{\delta, k}(\mathrm{x})} \mathrm{dx} \\
& >2 \int_{\sigma}^{\sigma+\mathrm{h}} \frac{\mathrm{I}_{\delta}(\mathrm{x})}{\mathrm{m}_{\delta, \mathrm{k}}(\mathrm{x})} \mathrm{dx}, \quad \sigma>\sigma_{0} \\
& \geqslant 2 \frac{\mathrm{I}_{\delta}(\sigma)}{m_{\delta, k}(\sigma)} \mathrm{h} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \lim _{\sigma \rightarrow \infty \inf } \sup \frac{\left\{\frac{\mathrm{I}_{\delta}(\sigma)}{\mathrm{m}_{\delta, k} \mathrm{k}(\sigma)}\right.}{e^{\rho \sigma}} \leqslant \frac{\mathrm{e}^{\rho \mathrm{h}}}{2 \mathrm{~h}} \lim _{\sigma \rightarrow \infty} \frac{\log \mathrm{m}_{\delta, \mathrm{k}}(\sigma+\mathrm{h})}{e^{\rho \cdot(\sigma+\mathrm{h})}} \\
& \leqslant \frac{\delta \mathrm{e}^{\rho \mathrm{h}}}{2 h} \lim _{\sigma \rightarrow \infty} \frac{\log M(\sigma+\mathrm{h})}{\mathrm{e}^{\rho(\sigma+\bar{h})}} \\
& =\delta e^{\rho h} \tau / 2 h \\
& \delta e^{\rho h} t / 2 h
\end{aligned}
$$

Taking $h=\frac{1}{\rho}$, we get (3.1).
4. Let $L\left(e^{\sigma}\right)$ be a slowly changing function, i.e.
(i) $L\left(e^{\sigma}\right)>0$ and is continuous for $\sigma>\sigma_{0}$,
(ii) $L\left(\ell e^{\sigma}\right) \sim L\left(e^{\sigma}\right)$ as $\sigma \longrightarrow \infty$ for every constant $\ell>0$.

Let, for $0<\rho<\infty$,

$$
\lim _{\sigma \rightarrow \infty \text { inf }} \frac{\left\{\frac{\mathrm{I}_{\delta}(\sigma)}{\mathrm{m}_{\delta, k} \mathrm{~K}^{(\sigma)}}\right.}{\mathrm{e}^{\rho \sigma} \frac{\mathrm{L}\left(\mathrm{e}^{\sigma}\right)}{\mathrm{p}}}=\mathrm{q}_{\mathrm{q}}, \quad(0<q \leqslant p<\infty)
$$

4. Theorem 3. If $\mathrm{f}(\mathrm{s}) \in \mathrm{E}$ and is of Rite order $\rho(0<\rho<\infty)$, then
(i) $\frac{2 g}{\rho} \leqslant t \leqslant T \leqslant \frac{2 p}{\rho}$
(ii) $\quad \mathrm{t} \leqslant \frac{2 \mathrm{q}}{\rho} \log \left(\frac{\mathrm{ep}}{\mathrm{q}}\right)$, and
(iii) $T \geqslant \frac{2 p}{e \rho} e^{q / p}$

Proof. Writing (2.2) as

$$
\begin{aligned}
& \log \left\{\mathrm{e}^{\mathrm{k}(\sigma+\mathrm{h})} \mathrm{m}_{\delta, k}(\sigma+\mathrm{h})\right\} \\
& =0(1)+2 \int_{\sigma_{0}}^{\sigma} \frac{I_{\delta}(x)}{m_{\delta, k}(x)} d x+2 \int_{\sigma}^{\sigma+h} \frac{I_{\delta}(x)}{m_{\delta, k}(x)} d x,\left(\sigma>\sigma_{0}\right) \\
& <0(1)+2(p+\epsilon) \int_{\sigma_{0}}^{\sigma} \mathrm{e}^{p \mathrm{x}} \mathrm{~L}\left(\mathrm{e}^{\mathrm{x}}\right) \mathrm{dx}+2 \frac{\mathrm{I}_{\delta}(\sigma+\mathrm{h})}{\mathrm{m}_{\delta, \mathrm{k}}^{(\sigma+\mathrm{h})}} \mathrm{h} \\
& =0(1)+2(\mathrm{p}+\epsilon) \int_{\mathrm{e}^{\sigma} \mathrm{e}_{0}^{\sigma}}^{\mathrm{x}^{\rho-1} \mathrm{~L}(\mathrm{x}) \mathrm{dx}+2 \frac{\mathrm{I}_{\delta}(\sigma+\mathrm{h})}{\mathrm{m}_{\delta, \mathrm{k}}(\sigma+\mathrm{h})} \mathrm{h}} \\
& \sim 2(\mathrm{p}+\epsilon) \frac{\mathrm{e}^{\rho \sigma}}{\rho} \mathrm{L}\left(\mathrm{e}^{\sigma}\right)+2 \frac{\mathrm{I}_{\delta}(\sigma+\mathrm{h})}{\mathrm{m}_{\delta, \mathrm{k}}(\sigma+\mathrm{h})} \mathrm{h},
\end{aligned}
$$

by ([7], Lemma 5).
Dividing by $e^{\rho \sigma} \mathrm{L}\left(\mathrm{e}^{\sigma}\right)$, taking limits and using (4.1), we get

$$
\begin{equation*}
e^{\rho h} T \leqslant \frac{2 p}{\rho}+2 h e^{\rho h} p, \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{e}^{\rho \mathrm{h}} \mathrm{t} \leqslant \frac{2 \mathrm{p}}{\rho}+2 \mathrm{~h} \mathrm{e}^{\rho \mathrm{h}} \mathrm{q} \tag{4.3}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
\mathrm{e}^{\rho \mathrm{h}} \mathrm{~T} \geqslant \frac{2 \mathrm{q}}{\rho}+2 \mathrm{hp} \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
e^{\rho h} t \geqslant \frac{2 g}{\rho}+2 h q \tag{4.5}
\end{equation*}
$$

It can be seen that minima of the right hand expressions of (4.2) and (4.3) occur at $h=0$ and $e^{p h}=p / q$. Substituting $h=0$ in (4.2) and $e^{p h}=p / q$ in (4.3) we get second part of (i) and (ii) respectively. Taking $h=\left(\frac{(p-q)}{\rho p}\right)$ in (4.4) and $h=0$ in (4.5), we get (iji) and first part of (i) respec tively.
5. Theorem 4. If $\log m t_{, k}(\sigma) \sim T e^{\rho \sigma} L\left(e^{\sigma}\right)$, then

$$
\frac{I_{\delta}(\sigma)}{m_{\delta, k}(\sigma)} \sim \frac{T \rho}{2} e^{\rho \sigma} L\left(e^{\sigma}\right)
$$

Proof. Suppose now $\mathrm{T}=\mathrm{t}$. If $0<\eta<1$, we have from (2.2) for $\quad \sigma>\sigma_{0}$.

$$
\begin{gathered}
\frac{\mathrm{I}_{\delta}(\sigma) \eta}{\mathrm{m}_{\delta, k}(\sigma)}<f_{\sigma}^{\sigma+\eta} \frac{\mathrm{I}_{\delta}(\mathrm{x})}{\mathrm{m}_{\delta, \mathrm{k}}(\mathrm{x})} \mathrm{dx} \\
=\frac{1}{2} \log \mathrm{e}^{\mathrm{k}(\sigma+\eta) \mathrm{m}_{\delta, \mathrm{k}}(\sigma+\eta)-\frac{1}{2} \log \left\{\mathrm{e}^{\mathrm{k} \sigma} \mathrm{~m}_{\delta, \mathrm{k}}(\sigma)\right\}} \\
=\frac{T}{2} \mathrm{e}^{\rho \sigma}\left\{1+\rho^{\eta}+0\left(\eta^{2}\right)\right\}\{1+0(1)) \mathrm{L}\left(\mathrm{e}^{\sigma}\right)- \\
-\frac{T}{2} \mathrm{e}^{\rho \sigma} \mathrm{L}\left(\mathrm{e}^{\sigma}\right)+0\left(\mathrm{e}^{\rho \sigma} \mathrm{L}\left(\mathrm{e}^{\sigma}\right)\right) .
\end{gathered}
$$

Hence,

$$
\lim _{\sigma \rightarrow \infty} \sup \frac{\left\{\frac{I_{\delta}(\sigma)}{\mathrm{m}_{\delta, \mathrm{k}^{(\sigma)}}} \frac{\mathrm{e}^{\rho \sigma} \mathrm{L}\left(\mathrm{e}^{\sigma}\right)}{2}\right.}{5}(\rho+\mathrm{H} \eta)
$$

where H is a constant. Since η is arbitrary, we get

$$
\lim _{\sigma \rightarrow \infty} \sup \frac{\left\{\frac{I_{\delta}(o)}{m_{\hat{\delta}, \mathrm{k}}(\sigma)}\right\}}{\mathrm{e}^{\rho \sigma} \mathrm{L}\left(\mathrm{e}^{\sigma}\right)} \leqslant \frac{\mathrm{T} \rho}{2}
$$

Constdering $\frac{1}{2} \log \left\{e^{k \sigma} m_{\delta, k}(\sigma)\right\}-\frac{1}{2} \log \left\{e^{\left.k(o-\eta)_{m_{\delta, k}}(o-\eta)\right\}}\right.$ amb proceeding as above, we get

$$
\lim _{\sigma \rightarrow \infty} \inf \frac{\left\{\frac{I_{\delta}(o)}{m_{\delta, k^{(\sigma)}}}\right\}}{e^{p \sigma} \mathrm{~L}\left(e^{\sigma}\right)} \geqslant \frac{\mathrm{T} \rho}{2},
$$

and hence, $\mathrm{I}_{\delta}(\sigma) \sim \frac{\mathrm{T} \rho}{2} e^{\rho \sigma} \mathrm{L}\left(\mathrm{e}^{\sigma}\right)$.

Corollary. If $\frac{I_{\delta}(0)}{m_{\delta, k}(\sigma)} \sim p e^{\rho \sigma} \mathrm{L}\left(e^{\sigma}\right)$, then

$$
\log m_{\delta, k}(o) \sim \frac{2 p}{\rho} e^{\rho \sigma} \mathrm{L}\left(\mathrm{e}^{\sigma}\right)
$$

From (i) of Theorem 3, if $p=q, T=t=2 p / p$.

It is my privilege to thank Dr. S.N. Srivastava for his valuable suggestions and guidance in the preparation of this pa per.

References

1. Bernsten, V. Leqons sur les progress recents de la theorie des sertes de Dirichlet. Gouthier-Viliars, Paris, 1933.
2. Ritt, J.F. On certain points in the theory of Dirichlet series. Amer. Jour. Math. $50(1928) \mathrm{pp} .73-86$.
3. Rizvi, M.I. On the mean values of an Entire Dirichlet Series of order zero. Communicated for publication.
4. Bose, S.K. and Srivastava, S.N. On the mean values of an integral function represented by Dirichlet series (IV). Ganita, Vol. 23, No 1, June 1972.
5. Bose, S.K. and Srivastava, S.N. On the mean values of an integral function represented by Dirichlet series. Ganita, Vol. 24, no 2, Dec. 1973.
6. Dikshit, G.P. Ph.D. Thesis, Lucknow University India (1972).
7. Hardy, G.H. Notes on Fourier Series (III) Quart. Jour. Math. 16, 49-58.

Rebut el 6 d'agost del 1984
Department of Mathematics and Astronomy Lucknow University Lucknow
INDIA

[^0]: *Tbis work has been suported by J.R.F. of C.S.I.R. (New Delhi).

