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ON CERTAIN ALGORITHMS IN THE PRACTICE OF GEOMETRY
AND THE THEORY OF NUMBERS

0 . Introduction

Peter Hilton and Jean Pedersen

[4e demonstrated in 111 and 131 a systematic method

of folding a straight strip of naper, by what we called a

pn-címaxcf bold¿nq prcoceduke,

	

to approximate, to any desired degree

of accuracy, a regular convex s-gon and certain regular star

s-gons, provided that

	

s E F, the set of 6o1d¡nq numbm .

	

Here

is definéd to be the set of all integers s of the form

2xx	1 , where x > 1, y > 2 .
2 _ 1

Of course, such numbers s are odd .

By introducincT SecokLdaxq folds on the strip of paper we

showed how it is possible to approximate regular 2ks-gons, whe

re

	

s E F and

	

k > 1

	

(and we included, for the sake of comple

teness, the

	

exact

	

constructions of the regular

	

2k-gons, k >2) .

The only remaining numbers > 3 are those of the form

2ka,

	

where a is odd,

	

:P 1

	

and

	

not

	

a folding number and

	

k> 0 .

However, the method for approximating those regular polygons

can be described by a seguence of steps as follows (consult [ll



for details) .

First, since we know that, for any odd number a,

2(D(a) = 1 mod a, where fi(a) is the Euler totient function,

it follows that a is a factor of some element of F, say s,

with s = a£ . We can use the primary folding procedure to ob-

tain a strip of paper suitable for approximating a regular

s-gon . If we then introduce k' secondary fold lines at each

point that would have been a vertex of the regular s-gon, we,

can use a longer strip of this folded tape to construct a regu-

lar 2ks-áon . We then glue this 2 ks-gon to a piece of paper

and fold on the lines connectina every 9th vertex to produce

the desired 2ka-gon . In [2] and [3], we introduced an al-

gorithm for finding the optimal sEF such that als .

In summary, the above procedures (using primary and se-

condary folds) provided us, in conjunction with the algorithm

referred to above, with a systematic method that could be used

to approximate regular convex s-gons for all s % 3 . The same

procedures produced many regular

	

Stax

	

s-gons, where

	

s E F .

	

In

fact, as discussed and proved in [2), for a given

s = (x,y) E F,

	

the exact number of star s-gons produced by the

primary folding procedure is 2 4'(y)xy . Further, these could

be explicitly described .

In [2] we raised the question as to whether by genera-

lizing in a natural way the primary folding, we might be able



to avoid the gluing step described above, and also be able to

fold a,Pl regular star polygons . In this paper we answer that

question, in the affirmative .

Given

	

a,b odd with

	

a < 2 and a prime to b,

	

we des-

cribe in Section 1 a genenatí.zed primary folding procedure which

approximates a regular star {a}-gon . There are, then, very

obvious secondary procedures which allow us to remove the res-

triction that both a and b be odd . The generalization con-

sists in allowing a procedure of arbitrary periodicity . The pró-

cedures in previous papers have all been of period 1 or 2 .

An interesting aspect of the content of this paper, and

the other papers we refer to, is the way the geometry motivates

the number theory, and the subsequent interaction between the

two topics . Indeed, althouqh the

	

Quabí-Ondevc Theonem

	

of Section

2 would stand on its own merits as an interesting piece of num-

ber theory, it is hard to imagine how one would have discovered

it without the geometric motivation . Moreover, although our ge-

neralized primary folding procedure obviates the need to glue a

constructed N-qon to a oiece of paper in order to construct an

M-gon, with MIN, the number theory generated by the gluing

technique, described in [2l and [3], stands in its own

right, and is in no sense superseded by the more sophisticated

paper-folding procedures of this articles, nor subsumed in the

number theory that arises from those more sophisticated procedu

res .



In Section 1 we describe the pacer-folding procedure

which enables us to construct arbitrary star polygons . We have

sought, by including this section, to make the entire paper rea

sonably self-contained, though we are not actually advocating

the neglect of our earlier papers on this subject . Section 2

opens with the definition of a symbol

b
al a2

k1 k2

ar

kr

which may be regarded as encoding the instructions for folding

a strin of tape to form a star {á} -qon, with a i ,b odd, and
i

al < 2 .

	

The "code" is described in a typical case in Section 1

and, in general, in Appendix 1 (Section 4) . However, this sym-

bol also constitutes an interesting algorithm for determining

the quadti-ohdelc of 2 mod b, that is, the smallest positive inte

ger

	

4

	

such that

	

22 = tl mod b .

	

Indeed,

	

if

	

al	is prime
r

to b, then the quasi-order is k = 1 ki and the parity of

k

	

i=1
r determines whether 2 = 1 or 2k - -1 . Of course, the

quasi-order, reinforced with the information provided by the

parity of r, provides much more information than the order

of 2 mod b . Examples are given in Appendix 2 (Section 5) to

show how to apply the algorithm to obtain the symbol (0 .1)

and then how, in a given case, to obtain, from the symbol, the

factor complementary to b in 2k ± 1 .

In Section 2 we describe the symbols, prove some basic



Droperties, and enunciate the Quasi-Order Theorem . The theorem

is proved in Section 3, where we also obtain some refinements

of the theorem of further number-theoretical interest . We re-

mark that an independent proof of the Quasi-Order Theorem was

shown to us by Gerald Preston . This proof was based on the no-

tion of Hasse functions (see, for example, [41) ; however, the

direction of proof does not take us through Theorem 2 .5, which

has an immediate application to paper-folding .

The paper closes with the two appendices already refe-

rred to ; in the first we go back to the geometrical significan-

ce of the symbols, and, in the second, we discuss, as examples,

Fermat and Mersenne non-primes .

A feature of the earlier papers [2] and [31 missing

from the present paper was the aeneralization from 'base 2'

-- the only base of geometrical interest, since we modestly con

fine ourselves to

	

b.ihect:ng

	

angles -- to 'base t' ,

	

where

	

t

is an arbitrary positive integer * 1 . It appears that this

generalization leads to interesting difficulties when we try to

introduce the analogs of our symbols in base t, since, in

this general context, they may fail to exist for a given b .

We propose to devote a sequel [61 to the study of generalized

symbols and the (generalized) quasi-order problem .

1 . How to fold regular star polycTons

First we suppose that appropriate bold, of cAe"e,



lines have been made on our straight strip of paper and we des-

cribe the actual construction nrocess for folding a {a}-gonl ,

where a and b are mutually prime integers with a < b .
SuoDose, as illustrated in Figure 1, that we have a straight

strip of paper that has creases along straight lines emanating

from marked vertices Ai,i=0,1, . . ., at the top and bottom ed-

ges, and that, for a fixed k, those at the particular vertices

Ank, n=0,1,2, . . . . b,

	

which are on the top edge,

	

form identical

angles b r . Suppose further that these vertices are equally

spaced (we describe below how you might obtain such a strip) .

Figure 1 (a) shows the beginning of the strip . If we fold this

strip on AnkAnk+2 (as shown in Figure 1(b)) and then on

AnkAnk+l

	

(as shown in Figure 1(c)),

	

the direction of the

top edge of the tape will be rotated through an angle of 2(b ir)

and the tane will be oriented the same way, with respect to the

center of the polygon being delineated by its top edge . We call

these two folds through Ank, in that order, a 2(b r)-tiuíAt

at Ankl and observe that, if a 2(b r)-twist is performed at

Ank for n = 0, 1, 2, . . ., b-1, the top edge of the tape will

have turned through an angle of 2aw and the point Abk will

then be coincident with Ao . Thus the top edge of the tape

will have visited every a th vertex of a bounding regular con-

vex b-gon, and hence determines a regular star la}-gon .

1 A closed sequence of b edges that visit, in order, every
ath vertex (mod b) of a bounding regular convex b-gon . We
include the regular convex

	

b-gon as the special case

	

a =1.

36



Fígure i

A ktl~

a,

A
ik+).

We now explain how we obtained the desired crease lines

in the strip of tape in the first place . Recall that we are

seeking to construct a star {e}-gon where a, b are mutually

prime positive integers with

	

a < 2 .

	

We assume first that

a, b are odd . Thus we wish to have a strip of paper on which

the angle b u appears at regular intervals along the top edge .

We designate the direction from left to right as the 4oAmAd

direction on the tape . We begin by marking a point Ao on the

top of the tape and making an .ínítíal crease line going in the

downward forward direction from Ao to' A1 at the bottom of

tape, and abz(une that the angle it makes with the top edge is

a

	

we call this the

	

putatíve angle . The we continue to
b

37



form new crease lines according to the following four rules :

(1) The first new crease line emanates from the vertex

A1 .

(2) Each new crease line goes in the forward direction

along the strip of paper .

(3) Each new crease line always bí6ect6 the angle bet-

ween the last crease line and the edge of the tape

from which it emanates .

(4) The bisection of angles at any vertex continues

until a crease line produces a putative angle of

the form b r

	

where a' is an odd number ; then the

folding stops at that vertex and commences at the

intersection point of that last crease line with

the other side of the tape .

Let us consider the example b = 11, a = 3 . Then we

can see that if we begin with an angle of 11 r at Ao (as

shown in Figure 2(a)) and adhere to the above rules we will

obtain a strip of tape with the angles and creases (dotted li-

nes) indicated in Figure 2(b) . Adhering to the notation for

the primary folding procedures in [11, [21 and [31, we

could write this more generalized folding procedure as

As before, this notation means that if we begin folding on the

strip of paper at the place where there is one crease line slo-

ping upwaAdb then the first dl refers to the one bisection

(producing a line in a downward direction) at Al0n (for

an = 0,1,2, . . .) on the top of the tape ; the u3 refers to

3 8

{d 1u3d1 u 1d3u1 }

	

.

	

(1 .1)



the 3 bisections (producing creases in an upward direction) ma-

de at the bottom of the tape through AlOn+l ; etc . However, the

folding process is duplícated halfway through, so it suffices

to write just the first three exponents in (1 .1) . In fact, we

can denote (1 .1) even more simply as

{1,3,1}

	

(1.2)

with the understandina that we fold dkluk2dk3uk4 . . . with the

ki , k2 , k 3 , . . . cycling, in order, repeatedly through the values

1, 3, 1, . . .

We call (1 .1) or (1 .2) a

oA pevú.od 3 . Note that, in this

procedures we have hitherto considered

of period 1 ({dnun})

_a
b

primary folding procedure

terminology, the primary folding

in 11, 2, 3] were all

or period 2

	

(Idmun}, m * n) .

It is easy to see that, starting with any putative angle

a < z),

	

we will always obtain(a, b odd, mutually prime,

by our rules a primary foldina

'produces' this

putative angle

tative angle 11
angle 11 n at

indeed, our crease lines could have been used to fold a star
11{3} -gon, they could also have been used to fold a

11-gon and a star

	

{5}-L}This feature of our

with its crease lines obviously applies in general : other

b-gons will be available to us from the tape yielding the

procedure k1 ,k 2t . . .,kr which

angle . We also note that, starting with the

11 n at the top of the tape, we produced a pu-

ir at the boton of the tape, then a putative

the top of the tape, and so on . Thus if,

convex

tape furnished

star

star



{a}-gon .

More still is true ; for if there are crease lines ena-

bling us to fold a star {a}-gon, there will be crease lines

enabling us to fold star {k}-cions, where

	

k > 0

	

takes all
2 a

values such that 2k+la < b .

	

Thus effectively we may dispose

of the condition that a be odd, although our rules for introdu-

cing the crease lies are based on the assumotion that a is odd .

If a is even, our first step is to write a = 2 ka0 , with ao

odd .

One link is still missing in our chain . What is the rela

ion of the putative angle to the true angle? It turns out

-- the easy proof was given in [2] -- that if we repeat the

folding rules, starting at the successive iterates of AO (thus

at A0 ,A5 tAjo , . . .

	

in Figure 2 (b) ) , then

	

the actual angle Aapíd1y

eonvvLqu -to the putat.í.v e angle. Thus we obtain arbitrarily good

approximations to regular star-polygons by starting sufficiently

far along the tape . Reverting to our example of the
{13}- gon,

we showed in [2] that if our initial fold produces an angle

of 6 r at Ao then the acute angle at A10 would differ

from 11 n by less than

which is about 0,000325
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Figure Z

As pointed out, although we began the folding in

Figure 2 with an interest in producing an angle of 11
at equal intervals along the top of the tape we have produced

much more . Observe that angles of

	

5 w, 4 .ir, 2 ,r and
11 11 11 11

11 n apoear (to the right of downward sloping transversals wiht

equal angles adjacent to them) along the top of the tape . This

means that we can use this tape to fold ang of the star

11-gons . Figure 3 shows the star

	

{11 }-gon formed by making a

11 n-twist at AlOn+6 (n = 0,1,2, . . .10) . The excess tape that

would 'stick out' at each vertex has been folded under to make

the resulting model more apnealing . It is the top of the tape

that delineates the {14} -gon .
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Figure J

It is also not necessary for b to be odd . For, if a

is odd and less than half of b with b even, we can write

b

	

as

	

2kb',

	

where

	

b'

	

is odd .

	

Next carry out the foldind

process, seeking an angle of b, 7 . This tape will always

include a sequence of adjacent angles whose sizes are

bi n, b, n, b, ~ . . ., 2be1 7r . It is then always possible to bi-

sect (by secondary folds) the appropiate angle(s) so as to

create the desired angles b n, but we will not go into details

here, since this would take us from our main purpose . However,

we give an example in Figure 4, which illustrates the construc-



tion of a {10-} -gon where the angle of

	

5 is created first

and then this tape is used to get the necessary angle 10 n .

First the tape is folded by a

	

{d2u2}

	

procedure, which pródu-

ces angles of 5 along the top . Then a secondary fold line is

introduced to bisect

	

A4n+1A4nA4n+2

	

for

	

n = 0,1, . . .9 .

	

The

construction of the { 13O }-gon is then completed by performing

the

	

2 (Z1 7r)-twist at 10 equally spaced intervals along the

top of the tape . The finished { 130 }-gon appears in Figure 5 .
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foldinq procedure (in which a = 3 and b = 11) and look at

the patterns in the arithmetic of the computations . We change

notation in'designating the vertices on the tape now, for conve

nience . 2

2 Here we are only interested in folding {á}-gons with a, b
odd .
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Let us return to the main example of our generalized



that

P3

Figure 6

in the next section) as follows :

Pl

Pc

To bring out the relationship between the number of bi-

sections at a vertex and the angle formed at that vertex we now

change the labeling of the representative case shown in Figure

2(b) so that it appears as shown in Figure 6 . Then we observe

The angle to

	

is of the form

	

and the number of
the right of

	

a

	

bisections at P =
Pn where

	

11n where an =

	

n

n

0

	

3

	

3

1

	

1

	

1

2

	

5

	

1

3

	

3

	

3

4

	

1

	

1

5

	

5

	

1

We could write this in shorthand form (which we will generalize

(a=) 3

	

1

	

5
(b=)11

	

3 1 1

	

(1.3)

As remarked, given any two odd numbbes a and b, with



a < 2,

	

there is always a completely determined unique symbol

like the one above (we do not need a,b relatively prime) .

Appropriately interpreted, we can use this symbol to read off

the folding procedure that produces the angle of

	

a alongb
the top edae of the tape, so that a symbol such (1 .3) encodes a

folding procedure for producing a star {á}-gon, and also tells

us what other star polygons we can obtain from the same tape

(of course, for each symbol a diagram similar to Figure 6 can

be drawn to illustrate the relative positions of the angles
an )
b

Before we close this section we would like to point out

that the folding process described above is the mobt e6bící.ent

one possible . That is, there could not be any folding procedure

ia^ staroY th.i.s type that wouiü procure t.11G rcÑ,t+~-,'redau u

	

ro iy 7 on s wi_th-.. . . ..

fewer folds . It is also optimal from the point of view of "dif-

ficulty of execution", for it keeAs the number of bisections at

each vertex to a minimum . These last comments are explained as

follows . If the folding procedure {kl,k2# . . .0kr} produces

the angle

	

r, then (see (2 .3) and (2 .4) bl 2k±1, wherebr
k = E k . If we adopt the procedures described in this sec-

i=1 i
tion we will have a procedure

	

{£l, 9 2 , . . . . Qs}

	

such that
s

R =

	

E

	

Q .

	

is the

	

smaUut

	

number

	

m

	

such that

	

bl 2m±l,
j=1

that is, the quo-6í-ondeA of 2 mod b . Moreover, r will be

a multiple o.f s and, suitably cycling the Q j , each ki is

a multiple of 2 1 .

46

All these facts are contained in the number-theoretical



results of the next two sections .

2 . S-~rnbols and the quasi-order of 2 mod b

By the symbol

b

al a2 . . . ar

kl k2 . . . kr

b =

	

al +

	

2kiai+l ,

	

i =

	

1, 2,

	

.

we understand that b is an odd positive integer, that al is

an odd positive integer < 2, i = 1,2, . . ., r,

	

and that

kl ,k21 . . .k r are positive integers such that

' r,

	

ar+1

	

=

	

al .

	

(2 .2)

Let us aaree where convenient, to define al for all integers

i by making al periodic in i, with period r, and similar-

ly for ki . We note that, given odd positive integers a, b

with

	

a < 2,

	

there is always a symbol (2 .1) with

	

al = a,

	

and

that the symbol is unique up to .ít~on ; here we say that

(2 .1) arises by iteration if there exists sir such that

al+s = ai' ki+s
= ki ' for all i . A proper iteration, that

is, one in which s ~ r,

	

is called a

	

hepetctdon .

Given b,kl, . . .,kr, the equations (2 .2) have unique solu-

tions, in the "unknowns" a ., namelyi

Bai = bAi , i = 1, 2, . . ., r,

	

(2.3)



r
where

	

B

	

=

	

2k	-

	

(-1) r,

	

k

	

=

	

E

	

ki,

	

(2 .4)
i=1

and

	

A.=21'-ki - 1 -2k-ki-l-kl-2+ . . .+(-1)r2ki-( - 1) r i

	

i=1,2, . . .,r .
(2 .5)

We note, for future use, that Ai ¿s índependent oj ki _ l .

We also remark that the solutions (2 .3) of the equations (2 .2)

always exist, but that (for a given odd positive integer b) the

numbers al given by (2 .3) may fail to be integers . However,

we have immediately

Proposition 2 .1

	

(i)

	

The 6olutc:ou ob (2 .2) avce natíonal numbM

	

a l

satís1yíng

	

0 < al < 2;
(ii) íñ any al .í.6 an ¡rntegeh, then aie a l ah.e odd .ínte.geA6 .

Proof (i) It is clear form (2 .4) and (2 .5) that B, Ai are

odd positive integers . Thus from (2 .3), each al is a positive

rational number . Now 2k¡ai+l = b - al < b,

	

since al > 0 .

Since

	

al+1

	

is positive and

	

k i > 1,

	

we infer that

	

al+1 <2'
ki-1

To prove (ii), observe that al-l = b - 2

	

a . . Thus if al

is an integer,

	

ai_1

	

is an odd integer, and the result follows

by finite induction .

48

As an application, consider B, Ai , given by (2 .4),

(2 .5) . As already observed, B and Ai are odd positive

integers for all i . Moreover, it follows immediately from
k i

(2 .3) that the solution of the equations B = xi + 2 xi+l , i

= 1,2, . . . . r,xi+l = xl ,

	

is

	

xi	= Ai,

	

so that

k .
B = Ai + 2 1Ai+.l .

	

(2 .6)



is a svmbol .

Thus, by Proposition 2 .1,

Al A2 . . . Ar

k1 k2 . . . kr
B (2 .7)

we will also need the following elementary propositions ;

the first is proved in [21 .

Proposition 2 .2

	

In .the bymbal

	

(2 .1) , gcd (b,ai )

	

-í.6 Lndependent

Ul 1 .

Proposition 2 .3

	

tiñ, ín .the bymbal

	

(2 .1) , ki > n, .then al+1 < ñ.2

Proof This is obvious from (2 .2) .

Proposition 2 .4

	

(Periodicity lemma)

	

11, .i.n (2 .1), theh.e exis.ts

an

	

s

	

euch that

	

s i r

	

and

	

k i+s - k i	joh

	

aP,C

	

i,

	

then

	

al+s = al

dan aCQ.

	

i .

Proof It is clear from (2 .5) that if ki+s = ki for all i,

then Ai+s -_
Ai for all i . The result now follows from (2 .3) .

The periodicity lemma asserts that if the sequence

k1,k2, . . .,kr is a repeating sequence, then the symbol (2 .1) is

obtainéd by the same repetition . If there is no proper repeti

tion, we say that the symbol (2 .1) is neduced añd write



b
al a2

k1 k2

a r

kr

(2 .8)

Then a general symbol (2 .1) is obtained by nepeatíng

	

a

unique reduced symbol ; and a reduced symbol (2 .8) is obtained

by compkUsb.íng a general symbol . Given positive odd integers a

with a < 2,

	

there is a unique reduced symbol (2 .8)

= a .

and b

with

We come now to our main preliminary result .

Theorem 2 .5

	

Let

	

kl ,k 2 , . . . . kr

	

be poeítíve .íníegeu a.~íth

E

	

ki = k > 2 .

	

Then, bon a g.íven odd .íntegeA

	

a l < .2

	

,

	

we have
i=1

k

	

ala2 . . .ar

	

ala2 . . .ar-1 ar

2 -1

	

.í6 and onty -í~

	

2k+l-1
k1k 2 . . . .kr

	

k1k2 . . .kr-1 kr+l

in eítheA ccue,

	

r la even .

Proof Assume the left-hand symbol . Then, by (2 .3),

If r were odd, we would have 2k-llai , an evident

contradiction . Thus r is even and a l = Ai , for all i .

So

(2k	-

	

( -1)
r
)ai	=

	

(2k	-

	

1)Ai.

Loe now solve the equations 2k+1 - 1 = Xi
+ 2ki Xi+l'



r
where

	

k' i = ki , 1 <-i -<r-1, kr = kr + 1,

	

so that

	

E ki =k+1 =k',
i=1

sav, to obtain (compare (2 .6)) xi = A!,

with (compare (2 .5))

A1-2k'-k!_

	

~.1 - 2k'-k1!_1-k1!_2+ . . .+ . (-1)
r2kl

	

-

	

(-1)r

	

(2 .9)

Thus we obtain the symbol

However, we see from (2 .9), recalling that Al is independent

of kr, that Al = A1 = a l , establishing the existence of the

right-hand symbol of the theorem. The converse is proved simi-

larly .

There is a companion theorem as follows ; we need not gi-

ve an exnlicit nroof .

Theorem 2 .5 *

	

Let

	

kl,k2, . . . ,kr

	

be pos.ítive íntegeu wíth
r
E ki = k ? 1 .

	

Then, Son a gíven odd íntegeA

	

al
< 2k-1,

	

we have
i=1

A ' A' . . . A'r- A'1 2

	

1 r

kl	k 2

	

. . .

	

kr-1

	

kr+l

2k+1
al a 2

kl k2

. . .

. . .

ar

kr
tis and ovney íS

a l a2 . . ar-1 ar
2k+1+ 1

k l k 2 . . kr-1 kr + 1



In "eA case,

	

r .írs odd.

Quasi-Order Theorem

	

Le-t

	

b

	

be an odd pos.ítc:ve íwtegen, and .let

	

a .i

	

be an

odd pos.í tíve .íntegen wíth

	

al < 2

	

and a

	

p~u:me

xo b. Then í6

	

b

T4e prove this theorem in the next section but we may imme

diately anounce the following corollary, relating to the ohden

of 2 mod b .

Corollary 2 .6

	

eU.ith che dame hupo.thehes as ín .the 9.ua~sí-Ondet Theorem, «úe

have

(i)

	

.í~

	

r

	

íz even,

	

then the anden o6

	

2 mod b

	

.í s

	

k

	

and,

even í6

	

k .ír5 even,

	

2k/2 P--1 mod b ;

(ii)

	

í6

	

r

	

.í6 odd, then the oAden o6

	

2 mod b

	

í s

	

2k,

	

and

2k	-1mod b .

3 . Proof of the Main Theorem

prove

We are now ready to state our main theorem .

al a 2 . . . ar

kl k 2 . . . kr

r
wíth

	

E ki = k, we have
i=1

(i)

	

k

	

.í,b -the m.Lní.mal Q sueh that

	

bi~~±1,

(ii)

	

b 12k-1 ,¿~

	

r

	

.írs even,

	

bl2k+1

	

í5

	

r

	

.irs odd .

We first study a special case of the main theorem and



Theorem 3 .1

	

Let

	

Q > 2 .

	

Then í~

	

~ -1

r
we have

	

E

	

Q
ii=1

Proof We argue by inductivn on Q , the case Q = 2 being tr_i
l

vial since

	

3
Cl~

.

	

Thus we assume the theorem for

	

Q > 2

	

and

prove it for Q +1 .

	

Let

hypothesis, we have

2' -"-1

If

	

r=1

	

and

	

2 1 =l,

	

the conclusion is trivially true . If not,

it follows from the periodicity lemma that, for some

	

i, Qi > 2 .

Without real loss of generality we may assume that Qr > 2 so

that, by Proposition 2 .3, a l < 2Q-1 . Thus, by our inductive

A

a l a2 . . . as
22 - 1 (3 .2)

k 1 k 2 . . . ks

s
with E ki IQ . By repetition, if necessary, we find the

i=1
symbol

al a2 . . . at

29 - 1 (3 .3)
k1 k 2 . . . kt

t
with E ki = Q . By Theorem 2 .5 we deduce the symbol

i=1



t
Plrite ki = ki , 1 -< i -< t-1, kt = kt+1 .

	

Then 1E1 ki = Q+1 .

Compressing, if necessary, we obtain

u
with

	

E k' I (Q+1) .

	

By the uniqueness of the reduced symbol, as
i=1 1

a function of b and ao , we infer that (3 .5) is identical

with (3 .1), so that the inductive step is achieved and the theo

rem is proved .

There is, of course, a companion theorem, with almost ¡den

tical proof, namely,

	

.

Theorem 3 .1*	Let

	

Q > 1 .

	

Then

r
we have

	

E

	

Q¡

	

I

	

Q .i=1

11

	

11

	

11al a2 . . . at-1

	

at

k1	k 2 . . .

	

kt-1

	

kt+l

al a 2 . . . ar

2 1

a a" . . . all
1 2

	

u

k ' k' . . . k'1 2

	

u

2 2 Qr J

Proof of the Quasi-Order Theorem First let

(3 .4)

(3 .5)



Thus, by Theorem 3 .1 or 3 .1*, klk 0 .

with no restriction on gcd(a l ,b) .

r
Let

	

E k . = k and let k

	

be the minimal Q such that
1=1 1

	

k

	

0
bl2Q ± 1 .

	

If 2 0 ± 1 = bq,

	

then, obviously,

k

	

alq a2q . . . arq
2 0 ±1

Now suppose that al is prime to b . Then, by (2 .3)

and (2 .4),

(2k -

	

(_,)r)a ¡	= bAl .

Since b is prime to a i , we have bl2k - (-1) r . Since klk0 ,

the minimality of k0 implies that k = k0 . Moreover it is

plain that bl2k -1 if r is even and bl2k + 1 if r is

odd .

Remarks . (i) Note that we have proved that, if we remove from

the hypotheses of the Quasi-Order Theorem the condition that

al be prime to b, and if k is dejíned as the minimal Q

Q

	

r
such that bl2 ± 1, then

	

E ki ¡k . If we write quo(b) for
i=1

the cguasi-order of ,?. mod b, then this says that if

al a 2 . . . ar

	

r

b

	

I , then E kil áuo(b) . Moreover, the
kl k2 . . . kr i=1



r
Quasi-Order Theorem itself tells us that

	

E ki = quo(á), where
i=1

d = gcd(b,ai ) . Of course, it is obvious on elementary grounds

that

	

quo (b') I quo (b)

	

if

	

b' i b .

(ii) If we confine attention to odd numbers b of the

form 29 t 1, then we immediately infer from what we have pro-

ved

Proposition 3 .2 I~

	

R > 3.

	

and

	

2~ - 1

19 1 2 2 . . . ari
r

iuíth

	

al

	

pxíme to

	

2~ - 1,

	

then

	

E Q i = Q ,

	

and

	

r

	

,c;6 even.
i=1

Ial a 2 . . .
ar_

Pronosition 3 .2 *

	

11

	

Q >1

	

and

	

29 +

	

1
Q
1

2 . . . ~r
_

	

Q ,

	

r_

	

, nal	p:~íiñe t
,i.v 2 +

l,

	

,trcei'"i

	

,

	

_ ,

	

and i íi~ Guu .

i=1

However, sharper results are available for such odd num-

bers 2 9 ± 1 . To prove these, we first present a combinatorial

lemma . [ve adopt the notion of a hepeatcng sequence used in the

previous section . (See the remarks following Proposition 2 .4) .

Lemma 3 .3

	

Let

	

kl,

	

k2'

	

. . . .

	

kr-1

	

be 4.íxed pob.ítc:ve .íntegeu 3.

Then theAe exd~sfi,6 at mobt one poS.í tc:ve .íntegeA

	

k

	

6ueh that

(kl r

	

k2 r

	

. . . ,

	

kr-l,

	

k)

	

í6 a nepeatí.n g sequence .

3 Note that this lemma really has nothing to do with positive
integers . The elements k l ,k 2 , . . ., k r-l , k could be drawn
from any set .
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Proof

period s ;

with period t ; and let k ,- = M1 , i = 1, 2, . . . . r-1 . We will
1 1-Y y .z '

	

izprdv.e "that -1	k

	

=áS. J 1 telt

	

lcffl

	

P- ince, :! s 1 ry, ; P-]
r r

have £ir, so r = £u . If

so
j=lucis

	

-ii Y Then jij sinpe b újenl,

r = t and a sequence of length

	

.-c'ánr~dt re~pleat- ~vilith period
1

te

	

-,4ha

	

nowl,, -

	

~w

	

r

We now adopt the convention that the indices are residues

módulo: r", :yfor tbq~sl~lq,,gf~ ,,,, .simlicity of statemen -'.- . Lett . .

	

-. . .J_,
mm gcd<sztf j cjj Ipl .,,Tnqp7 r,~nt,. t-XY~s, E . ,~ d ,,, so

and

llows .

Thearem 3 .4

	

Fíx

	

a1

value oj 2,

kd

	

=

	

knti=

	

knt =

	

kr'

	

,

Since kd	ká 1 ¡t follows that kr	kr .

We ñow.,, improve on our Prgpos .itions

	

3 .2, 3 .2"

	

as fo-

and let

	

9

	

b! cha6cñ isó thú

	

2

	

"a

ar 1
:then, wíth at moat

"
one exceptíonal

2- r

and

r .11
Jis'- aF-, repéating

a ~r.epe:at--?tng-.,peqVen e.,r

	

~

. F . k .ms r-

151 su 1 P.-

u > 1--,

	

the!~ , k

	

kl = k~,

, 9

	

lo impu.
lz- .L

_ . .tic Ante 1 : prVD1-,-,

úen. 11

	

a, = 1,

	

che excep-



V.onal value .í,e

	

Q

	

= 2 .

	

16

	

al > 1,

	

the exceptc:onal va.2ue, í6 ít

occuica, .ís buch that

	

al

	

¡e not px me -to

	

22 - 1 .

Theorem 3 .4 *

	

Fíx

	

al

	

and ket

	

Q

	

be choeen eso that

	

2Q -1 > al.

al a2 . . . ar

vale o6

	

Q,

	

E Q i = Q

	

and

	

r

	

d,& odd .

	

The exceptíonak value, .t6 ít
i=1

occuhz, .í,6 such that

	

al

	

.íl not pníme -to

	

2Q + 1 .

Proof We will be content to vrove Theorem 3 .4 . Let Q be the

least Q

	

such that 2Q -1 > al . Then we know from Theorem 3 .1,

by repetition if necessary, that

i c

	

r

	

_
22 - 1

	

, with

	

Qi = Q.

	

(3 .6)
i=12 1

	

Q2

	

. . .

	

Qr

Then, by Theorem 2 .5, for any m > 0,

a l a2

	

. . .

	

ar

Q l Q 2 . . . Qr-1 Qr+m

Now,

	

by Lemma

	

3.3,

	

the sequence

	

(£l . 2 2 #

	

. . . . Q r-1 ' Q r +m)

	

re

peats for at most one value of m, so that, with this single

possible exception,

2Q +m - 1

then, with at moet one exceptíonak

(3 .7)

(3 .8)
L 2 1

	

Q 2

	

. . .

	

R r-1

	

Q r+m

Theorem 2 .5 also tells us that if (3 .8) holds r is even . If
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a 1, . then
pFoof of the .theprem

Remarks,, i i i- Olsorrio.

is,gxceptionial .- If a, > 1, then the

Figure 7 "

qoMpletqd by appeal to the Quasi-Order

j:n: nTA p,_¡, ; ~

ibe excepcional case- .
(ii- ) T-hé 'sin-al*lest' - nuffiber --- wlY .'-such itha-t -thpre ip- no, except

for' 2;

	

Ck ,

4 . AP -Pendix 1 : remark on notation, with reference, to -f..olding, .,
procedures .

` .- : !

	

Let us start - with an example . if ~"we,-w,ish to fold an an-
gle of 63' appearing at the top of the tape, then our proce-
dúré, -g'ivéií , árv '- árbitt-ary starting .., lliné . PA-Ad-i on,tbea,,tqpe i

	

t
1 2 21 .fold ��d u , d ú7

	

(see -Figure » : W

	

aLimpl_ ,

	

eu , sjn,p- . u -

7TThen the angle 19

	

appears, to a - bitiár - ánd''bett'er approxima-63
Now wé - haNié'the r'é'ducé'd - syinb¿)1

The entries áíbng'the "fir-'á -t ro,,-", ""

	

-19,

	

11,

	

133, 25,

	

re-Yp'réle'nt

o sal '



the angles appearing sequentially at

	

P4n, P4n+1, P4n+2, P4n+3
respectively; however the entries along the second row 2, 2, 1,

1,

	

represent the folding instructions pertaining to

	

P4n+1'

P4n+2' P4n+3' P 4n'

	

This discrepancy suggests that we should

consider rewriting the symbol so that the folding instruction

at a particular vertex appears immediately below the 'star-num-

ber' corresponding to that vertex . This would require us to

rewrite (4 .1) as, say.

63

We pass from (4 .1) to (4 .2) by a cyclic permutation of the fol-

ding instructions, bringing the last into the first position .

60

19 11 13 25

1 2 2 1

Now in practice we are given b and al and wish to

(4 .2)

obtain a (reduced) symbol (4 .3) . F]e could,,of course, then form

the modified symbol (4 .4), which encodes the folding instruc-

tions and the list of star b-gons which can be folded from the

same tape as that used to fold a { á }-gon . If we are impa-
1

tient to begin the folding we may well wish to find kr in

Thus, given a symbol

a l a2 . . . ar
b (4 .3)

kl k2 . . . kr

we define the modl,bíed 6«mboI to be

a l a 2 . . . ar

b (4 .4)

kr k1 . . . kr-1



(4 .4) without going through the entire process of obtaining

the (reduced) symbol (4 .3) . This, however, is easy .

For a symbol is generated by considering the permutation

f of the set S = Sb of odd ntimbers <2

	

given by the rule :

write

	

b - a,

	

for

	

aES,

	

as

	

2ka',

	

where a'

	

is an odd number,

and set f(a) =a' . We would then write, in our symbol,

b

the key Theorem 2 .5 reads

Thus, to determine what appears below a in our modified symbol,

we must consider the permutation g inverse to f . Then g

is given by the rule : choose Q maximal so that 2 Qa < b,

and

	

set

	

g(a)

	

= b -

	

2
Q
a . This maximal Q. is then precisely

what appears below a in the modified symbol .

The modified symbol has a further aesthetic advantage

over the symbol we have used . For, with the modified symbol,

Such a reformulation (as also of Theorem 2 .5 * ) is then

Theorem
r
E
i=l
have

ki =

2 .5 Let

k > 2 . Then

kl,k2, . . .
, kr be

bon a given odd

po~s.ítíve

íntegen a l

.íntegens wíth

<
2k-l,

we

al a2 . . . ar ~ al a 2 - . . ar
2k-1 I í6 and on.~y í6 2 k +1-1

k1 k2 . . . k
rJ

kl +l k 2 . . . kr



.immedc:ateey translatable into fold-theoretic language! For it

tells us that, if we know how to fold our strip of paper to pro
k

	

k+1
duce a star

	

{2 a l }-gon, then, to produce a star

	

{2

	

a-1}-gon,

we introduce one more fold line precisely at those vertices on

the top edge of the tape which are destined to become vertices

of our polygon .

5 . Appendix 2 : á few well-chosen examples

where, by (2 .5)

We note that, if

I a l a2 . . . ar

b

with al = 1, then, by (2 .3),

2k - (- 1) r = bAl,

A

	

=

	

20r-1

	

-

	

Zar-2

	

+

	

.1

J

r
Ek . =k,

i=1 1

(5 .2)

with

	

a . =

	

E k . .

	

(5 .3)
i=1 1

Moreover, by our main theorem,

k = quo (b) .

Let us apply this to case b = 641 . We obtain, by our algorithm,



641 [
1 5 159 241 25 77 141 125 129

7 2 1 4 3 2 2 2 9

Thus we infer, since k = 32, r = 9, that

and, from (5 .2)

auo(641) = 32

and, indeed, that

	

232 + 1 =-- 0 mod 641 .

Moreover, we know from (5 .1)

2 32 + 1 = 641Al,

(5 .4)

A1 = 2 23 - 2 21 + 2 19 - 2 17 + 2 14 - 210 + 2 9 - 27 + 1

= 6700417 .

This is, of course, Euler's famous factorization showing
5

that 22 + 1 is not a (Fermat) prime . 4 Only the paper-folding

fanatic would take the view that the principal interest of (5 .4)

is that it shows how to fold the regular convex 641-gon and cer

tain star 641-gons .

As a second example, consider the symbol

23

Here k = 11, r = 6, so that

1 11 3 5 9 7

1 2 2 1 1 4

4 See, for example, the front cover of [5] .



quo(23) = 11, 211 - 1

	

0 mod 23,

and, again by (5 .2), the complementary factor is
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