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EQUIVARIANT MAPS UP TOQ HOMOTOPY
AND BOREL SPACES

Martin Fuchs

Egquivariant maps between G-spaces induce fiber
preserving maps betﬁeen the associated Borel spaces.
We will show that not all fiber preserving maps between
Borel spaces are induced that way, not even all fiber
homotopy classes of such maps. However there is a
one-to-one correspondence bhetween homotopy classes of
G_-maps (i.e. maps equivariant up tc homotopy in-a way,
see section 1 for definitions) between G-spaces and fiber
homotopy classes of maps between Borel spaces. This
one-to-one correspondence is cbtained by a functor
eguivalence between the respective categories (Theorem
1 and 2 in section 4}. As a result equivariant homotopy
theory (in a modified sense) is eguivalent to the theory

of homotepy fibrations,

To prove these theorems we have to include H-spaces
into our discussion: In fact, the functor equivalence
ment;oned above is an extension of the equivalence bhetween
the categories of H-spaces and classifying spaces presented
in {2}. Therefore we need the notion of_a Bo;el space

for H-spaces.

The Borel space we use, is associated with the

medified Dold-Lashof construction in {31.



In section seven we present a number of examples
of G-spaces with differing fix point sets, such that
these differences cannot be deteacted by studying the
cohomology of their Borel spaces, nor by studying the
Borel space itself, The groups in most examples are %
or Sl. but the G-spaces are not all of finite dimension.
Thus we illustrate the limits of theorems like the local-
ization theorem by Hsiang ([5], p. 47). B2all the examples
arise from the fact that if h = {hn] n=o,l,... is a
G, -map between the G-spaces Xl and X, and h 1is an

ordinary homotopy eguivalence, then the fiber map induced

between the Borel spaces is a fiber homotopy equivalence.

1. Definitions

1.1. The H-spaces H we are using are supposed to be
strictly associative and to have a strict unit element
e. Furthermore we assume H has a homotopy inverse w
A Lyxv W . .
(such that H—5 H x H—5 HxHE —>» H 1is homotopic

to idH).

1.2. We say that a topological space X 1s a G-space,
if an H-space H acts on X from the left continuously
and in a strictly associative manner. We assume that

ex = x for all x ¢ X.

1.3, As usual, an Hm—map h from Hl to H (of

2
length r) 1is a sequence of continuocus maps

h s (H) x Ir}“ xH, *H, (n=0,1,2,...) such that
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hn(go'tl""'tn’gn)

R TR L e A

hi_l{go’tl"‘"gi—l)hn—ifgi"“'gn) 5, =0

for n >» 0O, go,...,gn € Hl, and tl""’t 2 1 =
[0,r] c R. 1f v = O, the map ho is a homomorphism

in the usual sense.

1.4. If 8 acts on X and H acts on X from

1 1 2 2
the left, and if h is an H_-map from Hl to H2 of
length r, then we define a G_-map £ from X1 to
X2 of length r associated with h to be & sequence of
maps
fn: Uﬁ‘xIrf}xXl + X, fn=0,1,2,...}

such that for n > O
x)

fn(go’tl""'gn—l’tn‘

R R o o R T

Ry 09geeergy )E, 5(F50reeeegy 108X £y =0

Composition of H -maps and G -maps is defined as in [3].

1.5. If £ is a G _-map from xl to X2 associated to

the H -map h from Hl to HZ’ then f 1is called a

G_-homotopy equivalence if there exists an H -map X

from H2 to Hl and a G_-map g from X, to Xl
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associated with %k such that ge£f and £eg are

G -homotopic to idX and idx respectively (associated
“ 1 2

to the H_-homotopies between keh respectively hok

and id respectively id, ).
! Hy

We are geoing to use the theorem from [4]:

Theorem. If- Hl acts on Xl and H2 acts on X2

and if h s Hy »+ H, is an H_-map such that ho is an

ordinary homotopy equivalence, and if £ :Xl -+ X2 is
a G _-map assoclated with h such that f is an
ordinary homotopy equivalence, then h 1is an H_-homotopy

eguivalence and £ is a G_-homotopy equivalence associated

to h.

1.6. H-spaces and H _-maps form the category ¥ and
G-spaces and G_-maps form the category 4. The associated

hemotopy categories are denoted by % and 4.

2, Construction of the Borel Space

In this section we rely heavily on {3], where many

additional details can be found.

2.1. Let (p,xr} be an H-principal fibration

ExH — %

or l
B

—_—

wE—
o
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as described in [3] and let X be a G-space with respect
to H with action s :H xX < X. Assume that p, : EX » B
is a fibration with fiber X associated to p:E » B in
the following sense: 1} The two fibrations are fiber
homotopy trivial with respect to the same numerable
covering % of B and every U € Y is contractible

in B. 2} There isla map r, :ExX + EX such that for

X
each U ¢ 9 the diagram

1xs
UxHyxX ————> U ¢ X

(1) = B ux”Hﬁx
-1 ~1 ‘
p (U) xX -——T——>px ()
X

is commutative ((G.B.UX,BX] are the obvious coordinate

maps:. In additipn we want
ExHxX ___ﬁlxs E xX
{2) rxl Ty
E x X —————LT——} EX

to be commutative.

2.2, For the general step of the Borel space constructicn
we look at the H-principal fibration fE,Ej as describead

in [3], p. 329-331.

The base space B of the new fibration is the
mapping cone of p:E 4 B with the coordinate topology.

We consider the covering of B consisting of
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J1 . 2
By = (yat |t 3] and B, = fyrt |t < 3].

Let 12 :El - Bl respectively Pix :ElX - Bl he
the fibrations induced by fiy:t) = pfy), the map
collapsing B, to the range space B of the mapping

cone B. P1x is associated to Py if we define

rlX :Elx}( - ElX by

rl(Yxt:yl,x) = (y;t.rx(yl.x)} -

Furthermore let E, = 82 xH and EX = B, x¥.

2 2 2
Define rzx{y Lt,h,x) = {y Lt,hx). Obviously these
fibrations are associated.

We recall from (3], p. 330, that the map

-1 1

F:p, {B,N B} + p; (B, N B,) defined by

F{y s t,h} = {y at,yh)

is a strictly equivariant fiber homotopy equivalence. We
. - -1 -1

H f

define the associated map FX .pzxfBl n B2} * Py B1 fl sz

by
Foly 1 £,x) = {y 1 t,xy(y,x}}

Fx is a map over B, n B, and a homotopy equivalence on
each fiber f(this follows from diagram (1) and the fact
that H has a homotopy inverse) and hence is a fiber

homotopy equivalence according to Theorem 6.3 in [1}.

2.3. As in [3], p. 330 we now form the mapping cylinder

of F and of Fy and construct the H-principal fibration

p:E = B and similarly the associated fibration



Py @ EX 9 BX, With the help of Iy and Iy, Wwe
cons truct ;X :ExX 4 FX in the obvious manner. No
problem arises since the diagram
r
(Y«Lt:hfx) _-_-'-—g){_'é (Y:.t;hx)
. 1 2
Fyxid l’FX 3 <t <& 3

W
{Y.Lt,yh,x) _-—-'—H ‘ylt:r (Yh:x”
rlx X

commutes as a conseguence of diagram {2}. So it is easy

to see that E and EX are associated.

2.4. To construct the Borel space of X we start out

] - E = = % = i
with pg i Eq By where E, = H and B, {*} point,

and with Pox :EOX -+ BO, where EOX = X. From P, and

we construct and p ‘by letting

an Phey

En+l = En, Bn+1 = Bn and E

nt+1.,X
n+lx = EnX. Cbhviously

Prdl ~ Pn and pn+l,X = Pnx
p. 333 in {3] we use telescopes to finally get the

are associated. BAs on

universal H-principal fibration Py BEH » BH and the
associated fibration Py :EX + BH. We call EX the
Borel space of X and Py the Borel fibrationlof X.
Notice that Py is a numerable, locally fibef homotopy
trivial fibration with fiber X associated with Py

through the map r_, : EH xX = EX., r is essentially

X X
the direct limit of the maps rooxe and it is continuous
because we used the telescope construction. fCompare the

continuity of ry in {3}, p. 333}.
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3. 1Induced Maps Between Borel-5paces

3.1. Before we can discuss G-spaces, we have to know

more about H-spaces, So let h:H, + H be an H_-map

1 2
between the H-spaces Hl and H,. We define a G —map
th :EOHl - EOH2 as th = h, (Note that all the spaces

EnH have a right action, so the notion of G_-map has to
be modified accordingly). Alsoc we let Boh: BOHl - BOH2
be the trivial map.
assume that th has been extended to a G_-map
Eh:EH -+ EH associated with h and B . h has been
n n'l n 2 O
extended to Bnh such that

Po °Enhk(y,tl,gl,..‘,tk.gk) = Bnh<°pn1fy).-

(We will call a G_-map with this property fiber preserving).

First we extend Bnh from BnHl to EnHl by defining
B h(y s t) = (Eh (y)1t)
on EanI we define
Enlho{y Lt,yo) = {B#ho(y) Lt, EnhO(YO}}
and
Bnlhk{y L t.yo.tl,gl. .o .tk.gk)

= (E hy(y) s £, E by (YgetsGys---styg)

for k= 1,2,... .
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¢

Recall {from [31, p. 330) that En2Hl = (Bn2H1 le) u
(Bnl i} Bn2 % I le) and define
¢
Enzhk()’lt.'r;go:tla---:tk;gk}
(E holy) at, By tyr ot ))
1
r=0, 0Lt 3
. (Enhofy) it 2T’hk(go'tl""'tk'gk)
1 1 2
when O < 1 5 and 3<t<3
(B, boly) 18, B hy L (y.27 —L,g .t .00t 09 ))
1 1 2
- when 58 7L 1 and 3<1<3 -
{When =+ = 1 we use that Enhk+1(y,1,go,tl,...) =
Enhk(ygo,tl....). Hence En2hk and Enlh together induce

a G -map BE_h from E_H to EH which satisfies all
= n ol no2
the conditions mentioned before and hence we get

E - together with Bn+ h. In the

Epr1fn 1
chvious manner we obtiain the G_-map Eh :EH1 + EH,

n+ lh : En+ lHl

associated with h.

Because of our definition of E;zhk on the mapping
cylinder part of ﬁnH._ we only get E(hoh’} is
GQHHomotOpic to Ehe¢Eh’ and similarly B(hoh') =
Bh o Bh’. 1In fact the G_-homotopy mentioned is fiber

preserving. We get the
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Theorem. The construction of universal fibrations
described in [3] induces a functor (E.B) from the
category % as described in 1.6 to the category Y of
universal fibrations and fiber homotopy c<lasses of

G,-maps (with distinguished fiber]),

3.2, Now let X be a topological space on which the
H-space H acts from the left; The map ry : EH x X 2+ EX
discussed in section 2 is part of the structure of EX.
A map between two Borel spaces has to preserve this
structure at least up to homotaopy. This leads to the

following,

Definition. Let Y and Y be topological spaces

1 2
on which Hl and H, respectively act from the right,
let Xl and X2 be topological spaces on which Hl
and H2 respectively act from the left, and let I
£, :Yl xXl + 2l and X, ;Y2 xX2 -+ 22 be maps (Zl and
Z2 are topological spaces) such that
Ixg . .
leHlx){l leXl
Mggxl T3
Y. xX. > Z
i i r. b
i
are commutative (i = 1,2), Assume h :Hl - H2 is a
G_=-map and k :Yl + Y2 and f.:X1 -+ X2 are G_-maps

assocliated with h, then a G_-map associated with
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h,k, and f 1is a sequence of maps FO,F such that

'

and

k-1
Fk .Yl ¥ I x{Hl wI) xXl -+ 22 k

1,2,...
with

Fk(y,tl,ql.....gk_l.tk.X)

ry(ky g yetyeeeingy g )ufy 5950 x) by =0
Fk—l(y'tl""'gi—lgi""'tk'X} ti = 1
and apprépriate modifications in special cases (like
k=1 or i=0 and i = k).
3.3. Now we are ready to disucss Borel fibrations. Let

Xl and X2 be topological spaces on which Hl and

H, respectively act from the left. Aassume f :X; -+ X,

is a G_-map associated with the H_-map h :Hl - Hz.

Again we define the G ~map E. f:E X, » E X by Eof = f.
L=

0 gl o2

Assume we defined a G_-map Enf :Enﬁi xXl -+ Enxz

in the sanse of 3.2, associated with Enh’ £, and h.
Furthermore we assume that all maps in E £ are “fiber-
maps" over Bnh in the obvious manner. Let us extend

Enf to Enf :EnHlx Xl -+ Enxz. We define

Enfo :Enxl -+ EnX2 first on
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BaXp = Hyatox) |yt € B A, x € EX, ply) =p,ly.})

nl 1

as

(y rt,x ) = (B h (y}).t, E f(x))

Enifo
Then we define for k = 1,2,...

Enlfk(y 1 t.YO:tl; LI cgk_l:tkix)

= (B hy(y) v t, E £ x))

k{VorEyre o r Gy oty
where (y ;t,yo) € Eanl’ X £ Xl' g; € Hl and ti € I.

On X! we define for k = 0

En2 1

n2 O{Y Lt.T %)

-

O

1
{Enhol’y) ,Lt,fo{x)) <t ii' T =0

1 2
= ((E boly) o t,20,£ (%)) F<ECT 0T g
fE h (v) Lt,BE_f_(y,2+r-1,%) l<t<-2~ ig-r 1
SR IR A b R A 3 30 2 <
= . I + L) !
and for k 1,2,... we define En2fk just like En2hk
with the follewing changes: replace hk and hk+l by
fk and fk+1 respectively and Iy by =x. En2fk and
Enlfk can be pieced together to obtain Enfk for
k=0,1,2,... . Ultimately we get the G_-map
{Ef] : EH, xX, + EX "over" Bh :BH, - BH associated

1 1 2 1 2

with Eh, £ and h.

3.3. We point out that if h,k :Hy 9 H2 are H_-maps

which are H_-homotopic, then Bh is homotopic to Bk
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leaving the base point fixed, and Eh 1is G _-fibsr

homotopic to Ek  over the homotopy between Bh and Bk,

Furthermore if f£,qg P ¥ X2 are G_-maps associated
toe h and k, and if £, g are Guuhomotopic assgciated
to the H_-homotopy hetween h and k, then Ef and Eg
are fiber homotopic associated with the G_-fiber homotopy
hbetween Eh and Bk etc. and over the homotopy between

Bh and Bk,

Definjition. Let % be the category whose objects
are fibrations p:E » B which are locally fiber homotopy
trivial with respect to a numerable covering of sets
contractible in B, and whose morphisms are fiber
homotopy classes of fiber preserving maps. Let F,
be the associated category of fibrations with a distin-
guished fiber ove¥ a basepoint *, and let F and F,

be the associated homotopy categoxries.

Theorem. The constructions EH, BH, and EX define

a functer B:% ~+ F,, the Borel functor.

4., The Inverse Functor of B

For every topclogical space X and subsets A, BcC X

we recall that

LiX;A,8) = {{w.r) Ju:R +X, w(0O)¢ A,

wlt) = wfry ¢ B for & > r}

Often we omit r in our notation for the sake of simplicity.
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Definition, For every fibration p:E =+ B with

distinguished fiber F, = p */*) we define

E= (fw,y)|y € E, w € L{B;B,B), w(x} = ply)]

and p:E B as ply.y) wi{o).

I1f the fibration p :E 4+ B 1is an object in F_
then the fiber map <7 :E 4 E defined by 1(y) = (wy,y)
is a fiber homotopy equivalence, see [l], Theorem 6.3
(wy :R 4 E is defined as wy(t] = y for all
t e R, r=o0).

Let WE = p 1(*) be the distinguished fiber of

©, then +|F, 1is a homotopy equivalence between F,
arid WE. We observe that the loopspace of B, QfB,*),
acts on WE from the left ({3{B,*) = Li{(B;*,*} is an
H-space). Furthermore if p., p’' are two fibrations

in ¥, and if (F,f) is a based fiber map from p ¢to
p’, theﬂ WE :WE 4 WE’ defined by Wfly.y) =
(LE(w).F(y)) is an eguivariant map associated with

the induced homomorphism Qf : Q(B,*} = (B’ ;*). We

summarize this observation in the
Definition. W induces a functor
W:F, » &,

the inverse functor to B, as we shall see in the

following

Theorem 1. WB is equivalent to 1.

&
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and

Thecrem 2. BW is egquivalent to 1?.

5. Proof of Theorem 1

To prove Theorem 1 we have to review the natural

transformation 5 : H - (BH.
5.1. We need from [3], p. 333 the

Theorem. EH is contractible.

Let k :EHxI » EH be a contraction with
kiy,0) = yv and ki{y,1) = * = k{(*,t}. (For this it is
necessary that * £ H is a nondegenerate base point.

If necessary one can switch te Hwv I, see [2], p. 215).

Associated with the contraction k is the map

K:EH + L{FH;EH,*) defined by Kiy) = (kf{y,t),1).
5.2. Define So :H 3 q(BH,*) as

So{y) = Lp, °K[EOH
with Lpy : L(EH;EH,*) » L(BH:BH,*} induced by Py

Lemma 1. SO is a homotopy equivalence.

Proof: L(BH:BH,*) is the total space of a
nmamerable fibration over BH, and so is EH. Both

total spaces are contractible, SO "is the restriction

of Lpy oK, which is a fiber map over idBH and which

is also a homotopy equivalence. Theorem 6.1 in [1]
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implies that Lyy oK 1is a fiber homotopy edquivalence

and hence SO is a homotopy eguivalence.

Lemma 2. SO can be extended to an R _-map.

Proof: Let K |E0H = K|H = K,- Then we have to
find maps 51,52,... which make S = LpH °K, :H =+ OBH

into an H -nmap. Assume we already constructed

Si = Lpy o K; (i = 0,1,...,n). Then S .4 and hence
K1 is defined on aH{n+ 1) through the maps Si and
Ki respectively (1= 0,...,n).

Associated with K, are the maps

k., :H(i) x RV + EH

i
and
r, s H(1) + B
i

- -
with X, fgo.tl.....ti.gi.o) and
ki (go,tl,...,ti,gi.T} = gy .- 9y for
T > ri(go'tl""’ti'gi)' These maps define kn+l - and

. . + .

o+l respectively on 3H{n+1l). Since R is

contractible we can extend r

n+l to all of Hin+1).

Then we can extend kn+1 to all of H{n+1l) such that

K1 9oty e By s9ny 0@ = % and

Kop1{9ge e b1 9ne1 Fne1 (00 7 9o -0 - Ingae

since EH 1is contractible.
Define

K = {k

1 and Sn+l = LpH o K

n+l

n+l’rn+l)
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For further detalils compare [2], p. 214-215., (Note the

addition of paths on p. 213 should be reversed.)

5.2. Propesition. § is a natural transformation

between

%V and QB .

Proof: In the diagram

n —P 5w

| K
W

s L{EH:EH,*) —ZED s 1 (En’/;EH’,*)

ateE,*) —2BN 4 qemar )

the lower portion commutes for all the maps ¢f LEh.

To see that the upper portion commutes up to an H_-
homotopy, one has to look again at the associated maps
into EII’. Since EH’ 1is contractible, all extensions
necessary to construct the H -homotopy between LEh oK
and Xe°h «can be carried out. Further details in [2].
{In [2) the G_-map Eh was not discussed. Instead

the notion of a "regular" H-homomorphism had to be used.
Now EH provides the homotopy between formula 2 and

2a on p. 217 in 2 , translated from right to left

actions.)

5.3. With S out of the way we define for any G-space X:

95



Ty X » WE  as Ty = 7 [ X

We already know that To{y) = {(*,y] is a homotopy

equivalence, We define Tn : {H xI)n xX <+ WE as
T (9gityeeeeit ,X)
(pKn_l(go, R ,tn_l,gn_l] (tn+ gl,
rX{Kn—l(gO'""tn—l'gnwl){tn)’x))
Y and

with 0O ¢ tn g_rn

—lfgo""'tn—l'gn—l

0oL r, _;-t,- Recall r, : EHxX + EX. We have

Tn(go'tl""’gnvl'tn‘x)

1l
o

J}sn_l(go,tl.....gndll,x) £,
n

L{*.gogl O N t = r

The "G_~homotopy” bhetween LEh oK and Koh implies

that T is a natural transformation between 1 and

&

WB.

6. Proof of Theorem 2

6.1, Let JF, be the category of based-topological

spaces X, which have a numerable covering % such
that every U € ¥ is contractible in X, and based
continuous maps. Let J, " be the associated homotopy

category.
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Remark. It is easy to see that for every H in
% the classifying space BH is in 7.
In preparation for the proofof Theorem 2 we list

three universal fibrations with fiber Q(X,*} for

X e7,.

a) Application of the modified Dold-Lashof
construction to the trivial fibration [QfX,*} 4 *

leads to

pQX : BENX =+ BOX

b) It is well-known that

H KL x
P L{X;X,*) =

also classifies numerable Q{X,*)-fibrations.

c¢) If we apply the modified Dold-Lashof
construction to Py, of b}, we get agaln a universal

fibration

py; * ELX = BLX

211 three constructions induce functors from J, to

6.2. The inclusion of QfX.*) as distinguished fiber
of Pr, L{X;X,*) + X can be interpreted as a principal
map of principal fibrations and hence it induces the

fiber map (f,f):

—_—
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E{aX) -f—} EfLX)

Pax Frx
B(OX) ~———3 B(IX)
which is a principal fiber homotopy equivalence; (£,F)
15 an inclusion, hence - an is principal fiber homotopy

equivalent to the pullpack of For universal

Pry-
fibrations this implies f is a homotopy equivalence.

Let g be a homotopy inverse of T.

As a result, (f,?} represents a funcitor eguivalence
between the functors from J, to F, induced by a} and

cl.

6.3. The inclusion

LOX:X,*) ——— EIX
pL Prx
_ W
M k
X ———> BIX
is a fiber homotopy equivalence by the same reasoning as

described in 6,2. 5o (k,?) represents a functor

equivalence betwsen the functeors arising from b) and c).

6.4. Now consider a fibration p:E + X from the

category %,. The associated Hurewicz-fibration p:E+X

admits a map

rg t LIX;X,*) xWE 4 E
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defined through the addition of paths, which makes E

a look alike of a Borel space associated to WE.

Assigning te p the Hurewicz fibration p induces

a functor Hr on %, which is obviously eguivalent to

idS . We are now going tc show EW = Hr. Consider the
. LA 2

diagram of Borel spaces:

L(X:X,*) xWE —XL 3y prix ywe — 9%y EaX x WE
o J
—}5——9 EL(WE) —E_ﬁ\ E(WE)

- v _
—k 5 mix — 9.y B

kol
M bl &

K 1s induced by applying the Borel space construction
tc p lan obvious modification) and G is induced by

9. the homotopy inverse of f £from 6.2,

(K, k) and (G,g) represent functor eguivalences
associated to the eguivalences {(k,x) and (g,g)
discussed in 6.2 and 6.3. Since the right side of the
diagram represents BW and the left side represents

H., the proof is complete.

7. Two Applications

7.1. Let G= R' and X = R?®. Consider the two

r! -spaces X, and Xy defined by the two actions

My : Rl x ®? - R?, ul(t.rew) = et (¥t

1 2 2

v s m g R 4 ®2, uz(t,relw} rel(@+t(1—r))
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L 2
The fix point set of My is just the origin of R
and the fix point set of oo is the origin and the
unit circle. Obviously we could define actions with

more complicated fix point sets.

The constant map from one of these spaces to the
origin of the other is an equivariant map which is also
an ordinary homotopy eguivalence. It induces (according
to section four) a homotopy equivalence between the

Borel spaces of the two spaces.

7.2. a} Let P be an acyclic finite polyhedron with
nontrivial fundamental group. Then the suspension 2P

is a contractible Z,_ -space with fix point set P, and

1

2

the join P*Sl is a constractible 5 or Zp -space
(p # 2) with fix point set P in the obvious manner

(notice P=» S]' = 22 By,

) Let P be any finite polyhedron, The obvious
. 2
Z, ~action on XZP can be extended to Z“P etc. so

that 1lim Z"P is a contractible %, -space with fix
R _
point set P.

For G = Zp (pF 2) and G = sl we-can do the
same by reiterating the join with Sl.

7.3. Let G be either Zp or 51 and let X be a

G-space with fix points. Let ¥ be a contractible
G-space with nonempty fix point set F, e.g. let Y
be one of the spaces mentioned above. The one point

union W of X and 'Y formed by identifying two

100



fix points 15 & naw G-space in the obvious manner and
the inclusion of X into W is an eguivariant map

and also an ordinary homotopy eqguivalence.

By the theorem in {41 the inclusion represents
an isomorphism in & and induces a fiber homotopy
equivalence between BX and BW by section 4,
Hence the cchomology of these Borel spaces carries
ne information about F.

7.4. BAssume G is either :E: or (Sl)k and X, .,X

1772
are G-spaces which satisfy the assumptions for Borel's

theorem as described in Proposition 1 of Chapter IV in

(93, 1.e.., let xl'x2 he paracompact G-spaces with
finitse cohomology dimension. Let £ :Xl -+ X2 be an

equivariant map which is also an ordinary homotopy

eqguivalence. Again Ef $EXy 2 EX2 is a fiber homotopy

eguivalence between Borel spaces. Ef induces isomor-

* * * -
phisms between HG(X2) and HG(Xl) as H {BG) modules.

Hence Proposition 1 on p.45 in [5] tells us, that

f{Fl :Fl = F2 induces an isomorphism of the cochomology
. * * .

rings H (82) @k RO and H (Fl) ®k RO of the fix

point sets Fl and F2.

T. Petrie in {7} and elsewhere, Ch. N. Lee and
A, Wasserman in {6] have constructed examples of such
maps which do not have equivariant homotopy inverses.
Hence the fiber homotopy inverse of Ef is not
induced by an equivariant map from x2 to Xl. This
answers the cpening statement of the introduction of

this paper.
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