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1 . INTRODUCTION

COHOMOLOGY OPERATIONS AND H-SPACES

A . Zabrodsky

The theory of cohomology operations and the theory of H-spaces were

interlocked thrcuqhout their various stages of development :

The.first systematic approach to the theory of (high order) cohomology.

operations is due to J . F . Adams ([Adams]) . In that celabrated paper a solution

was given to a question whose one formulation is the following : What spheres

support continuous multiplications with units (i .e . H-structures)?

The cohomology operations of the

operations . These were tied together

Bockstein spectral sequence which was

dimensional H-spaces .

[Zabrodsky]
1,2,3' [Kane]1 , [Lir]1,2,3 and others used high order

operations to .farther analyze the cohomology of finite H-spaces . In particular,

[Lin]1,2 proved the classical "loop space congecture" : The homology of the loop

space of a finite dimensional H-space is torsion free .

[Hubbuck]1 ~ 2,3 used k-theory operations to study the cohomology and

topology of finite H-spaces . He found restrietions on their possible types and

their Pontriagin rings . Among other theorems he proved ([Hubbuck] 1 ) that a

simplest type are the Bockstein

by Browder ([Browder] 1 2 ,3 ) to form the

used to study the cohomology of finite
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homotopy commutative finite H-space has the homotopy type of a torus .

Finally [Kane1 2,3 recently used BP operations to study the cohomology of

H-spaces .

Going in the other direction, the theory of H-spaces was used in the

cbnstructións and-evaluations of high order operations .

in the following lectures I shall try to demonstrate by some examples

these relations between the two theories .



2 . BASIC DEFINITIONS

Wle usually assume spaces to be of .the homotopy type of CW complexes

with a (non-degenerate) base point . Maps and homotopies are base point preserv-

ing . Thus, an H-space could be assumed to be a space X with a multiplication

v so that the base point *xo is an actual'unit : u(x,x0 ) = x = u(xo,x) .

The definition of a cohomology operation has various degrees of

abstractions . . One of the most general form is the following :

A cohomology o eration ¿ consists of three .spaces and two maps

_ <Ko , E, K 1 , r, h> : r : E - KoY h : E-" K 1 :

defines a "natural transformation" from im([ , E] -" [ , Ko]) to the

family of subsets of [ , K 1 ] . In a more direct terms : For any space X m

defines a function from a subset of the set [X, Ko] of homotopy classes of

maps X -" Ko to the set of subsets of [X, K1] in the following way : The

domain of 0 is the set .im(r ., : [X, E] -> [X, Ko ]) where r* is the left

composition with

	

r : r* ([f] = [r .f]

	

([u]

	

the homotopy class of

	

u) .

	

Hence,

[f] E [(,,K0] . is in the domain of o if and only if [f] "lifts" to

[f] . E [X, E], ro f ti'f . (see diagram D1) .

	

The value ~D([f])

	

is then the set

{[h of]1 r of % f} c [X, K 1 ]



(Dl)

In case E = Ko , r = 1 the operation is called rimar and is simply

the right composition with h . The domain of o is then all of [X,K0 ] and

its values are singletons, i .e . : elements of [X, K 1 ] .

This is a general formulation which is not very useful if one does

not restrict oneself .to some speciaL cases .

	

Normally we consider cohomology

operations reTated to .(generalized) cohomology theories (hence the name) . Al]

cohomology operations here will be given in terms of si-spectra :

An .

	

9.

	

spectrum is a sequence . .E* = {En , `pn}n=o

	

where

	

E n

	

are spaces and

are homotopy equivalences, (pn : En
a

	

n+l'

The cohomology theory E* associated with the sa-spectrum Er is

a. L, .,

	

sequence

	

oi

	

f u
r

	

r . .nco

	

s
a . . .. . .

	

l
r r.Ln ,

I

	

_

	

L
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,

	

Er n l
J

	

a1. .. athe

	

-

	

~

	

wiat

	

is :

	

For á

	

space

X - En(X) = [X, Err' . For a .map f : X -" Y En (f) : E n (Y) - En (X) is the right

composition witli f : En (f)[u] = .[u of] (u : Y - E n ) . As E n are double loop

spaces (and much more) . E n (X) are .abelian groups and En (f) are homomorphisms .



3 . PRIMARY OPERATIONS . STABLE OPERATIONS

An elementary primary operation of type m,n in the cohomology theory

E*	is an element

	

[a] E

	

En -r E n .

	

It defines a primary operation

m =
<Ko

= Em = E, K 1 = En , r = l, h = a> which is obviously the left compesit-

ion with a . The set of all primary operations of type m,n is the set

[E m , E n ] .

	

As an operation a is a function Em (X) -. En(X) .

A stable elementary primary operation of degree k is a sequence

a = {a n E [E n'

	

En+k]ln=o

	

(for k < o we consider Et = point for t < o) .

	

These

are related by the following (homotopy) commutative diagram :

i

	

a nEn En+k

(D2)

	

(Dnl

	

1 On+k
Sia.n+l

í2 E n+l

	

--, í? E n+l+k

In this case an : En (X) -. En+k (X) are homomorphisms .

The set of stable cohomology operations in the theory E

	

forms a

graded .ring :

	

One can add any two operations of the same degree as

	

[E n, E n+

is an abelian

	

group .

	

The product

	

is given by :

	

(n" "a') n = a~+k o a~

if a' is of degree k . The degree of a" " a' is the sum of the degrees of

a'

	

and a" .

	

These definitions are consistent with the defining relations of a

stable operation (D2) .

Exam le :

	

The Steenrod Algebra .

	

Let

	

E n = K(Z/pZ,n) - the Eilenberg

MacLane spaces, p-a prime,(E,, is then called the Eilenberg MacLane spectrum

K(Z/pZ)) . The ring of elementary stable cohomology operations is called the

Steenrod algebra a(p) . For p = 2 a(2) is generated by operations Sq~ of

degree i

	

(Sq
o .= 1) subject to relations known as the Adem relations .

Reference : [Steenrod-Epstein] .
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A non elementary primary cohomology operation in E

	

is a map

a : E(0) -r E(1) where E(i) = n E(') i = 0,1 . One can easily see how to

define a non elementary stable primary operation . Such an operation is given

by a matrix whose entries (aij ) are elementary stable operations with the

property : degree a .

	

- degree a .

	

. is independent of j .



*
Fix the cohomology theory E . By E(i) we always denote a product

of terms

	

ni _Ek~ ) . (E(i,j) will denote other types of spaces as will be seen
j = 1 j

in the sequel) .

Given (non elementary and not necessarily stable) operations

01 0 : E(0) ~ E(1), a l : E(1) -" É(2) . " A relation among primary operations is a

relation of the type a 1 , no ti * . (*-the constant maP) " (If a l are stable,

and therefore given by martices, this relation describes ordinary relations in

the ring of stable operations) .

The relation a l o no
% * induces a commutative diagram :

4 . SECONDARY OPERATIONS ASSOCIATED WITH A RELATION

n E(2)

where E(i,i+1) is'the homotopy fiber of ai , i = 0,1 . j1 is the inclusion

of the fiber of r 1 . 01 0,1 exists since a l o no % * . ao,1,2 is induced by

eloj .

	

no,1

	

and

	

ao,1,2

	

are uniquely determined by the choice of the homotopy

E(0) x I + E(2), * ti a l o 010 . The operation o = < E(0), E(0,1), n E (2),

r0, no,1,2 >

	

is called a secondary operation associated with the relation



The above operation

	

o depends on the choice of ao,l , or as

remarked, on the choice of the homotopy * ti al o no . The difference between

choices of such homotopies is given by a map

	

w : E(0) --

	

2 E(2) .

	

The difference

between the two maps
ao,l .2

and
ao,l,2

induced by the two choices of homo-

topies is then given by
ao,l,2 - ao,l,2 = w , ro .

Given a space X and a cohomology class

	

x E [X, E(0)] . (x is
n .

actually a "vector" of cohomology classes xn . (0)E E J(X)) . x is in the do-
J

_

main of o (for any o, induced by any null homotopy * L a l . ao ) if and only

if

	

aox = 0 .

	

The

	

value

	

o(x)

	

is

	

then

	

[ao,1,2

	

° x]

	

where

	

x

	

:

	

X

	

, E(0,1)

is a "lifting" of x : X - E(0), ro o x ti x .

	

lf a', <D" correspond to two

different homotopies * ti al , ao whose difference, as above, is

w : E(0) , 9 E(2)

	

then

	

[ao,l,2 o x] - [ao~,] ,2 0 X] = [w o r
o o X] = Lw o x] .

Hence, D"(x) is obtained by translating <D'(x) by w . x where

w E [Eo , 2 E(2)] is a primary operation . This could be formulated as follows :

A relation

	

alo ao ti * among primary operations induces secondary

operations {m} . Any two .such operations differ by a primáry operation .



5 . MASSEY PRODUCTS - TODA BRACKETS . HIGH ORDER OPERATIONS

Let ao : E(0) -- E(1), a l : E(1)

	

E(2), a2 : E(2) y E(3) be primary

operations and suppose a l o ao ti *, a2 o a l ti * . Again, E(i) are products

ni Eñ e) . Extend diagram (D3) to obtain :
J=1

E(i,i+1) - the homotopy fiber of a i , 3 i - the inclusion of the

fibre . ao,l,
a
l,2'a l,2,3' ao,1,2 exist as a l o ao	a 2 o al * . They are

uniquely determined by choices of ` homotopies * ti a l o ao , * ti a 2 a a l .

The class [(11,2,3 - ao,l ] E [E(0), 2 E(3)] is a primary operation .

Two different choices of the homotopy * ti a l o ao will yield'two maps ao ,l ,

a~ ,l . These maps are related by [al,2,3 - ao,l]-[x 1,2,3

	

[í2a2 ° wo]'
where wo E [E(0), o E(2)] measures the difference between the two choices of

homotopies

	

* ti al

	

o ao .

	

(Note that the difference

	

(11,2,3 0 ao,1

	

- a]

	

2,3 ° ao,l
is independent of the choice of the homotopy

	

* ti a2 a a l and its induced

map (11,2,3')



Similarly, two distinct choices of the homotopies * % a2 � «1

(with a difference measured by a map w 1 : E(1) -" P E(3)) yield two maps

«1,2,3' al. ,2,3 : E(1,2) - " 9 E(3) related by 1«1,2,3]-[al,2,3] = [wl , r1] .

It follows that

	

['1,2,3 ° a0,1]-['1,2,3 - ao,l] = [2 a2 O .W.0 1 + [w 1

	

0 r1]

and the coset of T a l 2,3 0
ao, l] in

[E(0), o E(3)] / (í2 a 2 ) * [E(0), 9 E(2)] + r l [E(l), 2 E(3)]

is independent of any choices of homotopies, is denoted by <ao , a1 , « 2> and

is called the Massey product or Toda bracket of ao , 0«1, a2'

Note that o E <a0 , a l ' a 2> if and only if one can choose ao,1

and «1,2,3 so that «1,2,3 o ao,l
ti

*'

Exam le : Reexamine the Steenrod algebra A(2) generated by Sqi of

degree i . By the Adem relations Sq i for i y 2i could be déscribed as a sum

E

Sq(k)
"

Sq(k)
t(i , ) s(i),

	

. It follows that as a ring A(2) is generated by

k

	

k k

	

,. .ij

	

c -
Sq 2 . However, the main result of [Adams] is that Sq

	

for j > 3 could be

decomposed in terms of Massey products . More precisely : There exist primary

operations :

« o : E(0) -" E(1), E(0) = K(Z/2Z,N), N > 2j

a l : E(1) -" E(2), a2 : E(2) -> .E(3) = K(Z/2Z,N+241)

E(1), E(2) have the properties :

n i (E(1)) ~ 0 only if N < i < 2j-l .

n i (E(2)) # 0 only if N + 1 < i < N + 2j .

n i (E(j)) are Z/2Z vector spaces

al

	

0

	

no 'v *,

	

a2

	

0
al

	

'~ *

	

and

	

Sq2j	E <ao ,

	

a1e

	

a2> .



This implies the following :

There is no space X so that :

H i (X, Z/2Z) ¢ 0 only if i=0, N, N+2j , j > 3,

N

	

N+2j 2j
H (X, Z/2Z) = Z/2Z = H

	

(X, Z/2Z) and Sq xN ~ 0, where

xN E H N (X, Z/2Z) is the generator . Indeed, suppose such a space X exists .

One obtains the following extension of (D4) :

s~ E(2) 2~,~ 2 E(3)

j2

(D5)

	

E(1,2) E(2,3)

2
Sq

	

E <ao , a l , n 2> means that one can choose al 2 > 3 > no,]

	

so that
j

	

>
2

[x 1,2,3 - xo .l ] - S q . As H l (X, Z/2Z) = 0

obstruction theory [X, E(1)] = 0 and [X, 9 E(2)] = 0 and therefore

[X,

	

E(0,1)]

	

=

	

0,

	

ao,l

	

o xn	SgJ xN	=

	

[x1,2,3 -

	

xo,1

	

'

	

xN]

	

= 0 .

	

A contra-

diction .

for N < i < N+2j by simple

Now suppose ao , a l , a2 are given, a l o no ti *, a2 o a l ti * and

suppose

	

0 E <a0 , a l , a2> .

	

One can extend (D4) to obtain :



ao .1 .2 .3 :

	

E(o,1,2) + n2 E(3) .

si 2E(3)

E(0,1,2) - the homotopy fiber of

	

ao,1,2 .

	

If

	

ao,l, a1,2,3

	

are chosen so that

al,2,3 0 ao,1 " * . na2 0 ao,1,2 " a l 2,3 0 ao,l ' * and ao,l,2
lifts to the

homotopy fiber of na2, ao,l,3 :
E(0,1) - Q E (2,3), this map induces a map

The operation

	

o'

	

= <E(0), E(0,1,2), n2E(3), ro o ro,1' ao,1,2,3>

is called a third order operation associated with the relation

0 E <a0 3

	

al ,

	

a2> .

One can proceed inductively to define a k-fold Massey product

<a0,

	

.ak> . a¡ -primary . This is defined whenever <a0, al, . . .ak-l> is

defined and contains

	

0

	

and

	

ak o ak-l

	

If

	

0 E <ao , a l . . .ak>

	

one can

define a k+1 order cohomology operation .



6 . COHOMOLOGY OPERATIONS .AND H-SPACES

If X is any space, (assume connected .for .simplicity) then

We shall demonstrate how one uses the theory of cohomology operations

to study the cohomology of H-spaces .

H*(X, Z/2Z) is a ring (more precisely, an algebra over Z/2Z) . x E H*(X, Z/2Z)

is said to be indecomposable if x' cannot be written as x = E xi " x

	

where
i

x!, x? are of .positive dimensions .

Suppose X is an H-space . x E Hm(X, Z/2Z) is called a primitive

element if x is represented by an H-map X - K(Z/2Z, m) . We shall prove

the following :

Theorem : Let X be a connected H-space . Suppose H*(X, Z/2Z) is an

exterior algebra on generators of dim a 1 (mod 4), i .e . : H*(X, Z/2Z) is a

free commutative graded algebra with generators of dimension 4ki+l,i=1,2 . . . .

Then if x .E
H4k+1(X, Z/2Z) is a primitive element (hence

4n
x : X -> K(Z/2Z, 4n+1) is an H-map) then Sq x ~ 0 . (and is again primitive) .

Consequently :

(i) X cannot be finite dimensional .

(ii) Consider the Pontrjagi .n ring H* (X, Z/2Z) of X . (I .e . : This is the

ring structure

	

H *(X, Z/2Z)_c. H* (X, Z/2Z) -* H*(X, Z/2Z)

	

induced by

the multiplication y : X x X i X) .

If .

	

H*(X, Z/2Z)

	

i.s .an.associative algebra then

	

H* (OX, Z/2Z)

	

is

a polynomial algebra .on generators of dimensions a 0 (mod 4) .



Given an H-space X satisfying the hypothesis of the theorem .

Then :
*

a) H (X, Z) is 2-torsion free .

(the proof uses the Bockstein spectral sequence on the Hopf algebra

H*(x,

	

Z/2Z)) .

	

Consequently,

	

Sg 1 H* (X, Z/2Z) = 0) .

b) A primitive element x in H* (X, Z/2Z) is not decomposable .
*

Consequently, all primitive elements of H (X, Z/2Z) are of dimension

Ea 1 mod 4 .

	

.

c) If H* (X, Z/2Z) is an associative algebra H* (X, Z/2Z) is then

primitively generated, i .e . : One can choose the primitives of
*

H (X, Z/2Z) as free algebra generators .

i)

	

Sg4n :

	

H4n+l (X,

	

Z/2Z) - H8n+1 (X, Z/2Z)

	

is

	

injective on primitives .

	

If
*H

	

(X, Z/2Z)

	

is not trivial

	

there exists a non zero class

	

x E H4n+1 (X,

	

Z/2Z)

of lowest positive dimension . This class has to be primitive . The

set

	

{x, Sg4nx, Sg8n Sg4nx_ . .(Sg2tn
Sg2t-~

. . .Sg4nx) . . .}

	

is an in-

*
ii) Here one uses spectral .sequences to compute H (2X, Z/2Z), e .g . :

The Eilenberg Moore spectral sequence . One can see that

Hi (2X, Z/2Z) = 0 if i 0 0 mod 4 and that Sg4ny = y2 # 0 for

any primitive element in H4n (9X, Z/2Z) . This implies (ii) .

The conclusions (i) and (ii) follow from the theorem as follows :

finite set of non zero cohomology classes of increasing dimensions .

To prove the theorem we need the following properties of the Steenrod

algebra (see [Steenrod-Epstine]) :



x2 if x E H~(X, Z/2Z)
Non Stability : Sg i x =

l0

	

if x E Hj (X, Z/2Z), j > i

Preservation of alnebra filtrations .

	

(Follows from the Cartan formula ) :

Let FrH* (X, Z/22.) be the ideal of H* (X, Z/2Z) generated by r fold products

*x 1 , x2� " xr	of elements

	

x i	ofpositive dimensions .

	

Then

	

FrH (X, Z/2Z)

	

are

A(2)

	

invariant,

	

i .e . :

	

if

	

a E A(2),

	

x E

	

Fr
H
* (X,

	

Z/2Z)

	

then

	

ax E FrH*(X,

	

Z/2Z) .

A(2) preserve primitive elements : If X is an H-space and x E H
*
(X, Z/2Z)

is primitive then ax is primitive for any a E A(2) .

Consider the following Adem relation in A(2) :

( R) Sq2 Sg4n + Sg4n+1 Sg 1 = Sg4n+2

(R) defines a .secondary operation as follows :

Let

E(0) = .K(Z/2Z, 4n+1), E(1) = K(Z/2Z, .4n+2) - K(Z/2Z, 8n+1)

E(2) = K(Z/2Z, 8n+3) .

ao : E(0) -. E(1) is given by

Sq 1

K(Z/2Z, 4n+1)

Sg4n

a l : E(1) - E(2) is given by

a1= Sg4n+1 o P 1 + sq2 o P2 where

multiplication on [ , E(2)] .

K(Z/2Z, 4n+2)

Pl
K(Z/2Z, 4n+2) X K(Z/2Z, 8n+1)

IP2

K(Z/2Z, 8n+1)

is the addition induced by the loop



(R)

	

implies

	

[al

	

o no] = Sq4n+1 Sq 1

	

+ Sq2Sq4n = Sq4n+2 = 0

	

(the latter vanishes

by the non stability condition

	

Sg4n+2[1
E(o)

] = 0

	

as

1 E(o) :

	

E(0) -> E(0)

	

is an element of

	

H4n+l (E(0),

	

Z/2Z)) .

We shall investigate the value of a secondary operation i associated

with * ti a l ~ no on a primitive

	

class

	

x E H4n+l (X, Z/2Z) in the domain of

(We shall conclude that there is no such class and therefore Sg4nx ~ 0

for.any primitive element of dimension 4n+l .)

H deviations : Let X,p, Y, _p ' be H-space .

Given a map f : X } Y there exists a map Df : X n X - . Y called

the H-deviation of f with the following propertíes . (Compare with

[Zabrodsky] 4 , Chapter 1 where Df is denoted by H D(f, v, p')) :

i)

	

The two maps X

	

X : Y given by x, y - f(x.y) and

x, y - Df (x,y) " [f(x) " f(y)] are homotopic (here ( ) " ( )

denotes both products u and u') or in a functional notation :

f o u ti po{Dfvn x [u .(f-f)]1 -, áxxx where

áX-X (x,y) ` (x,y, x,y) is the .diagonal map and

n : .X x .X y X n X - the projection .

ii) f is an H-map if and only if Df ti * .

iii) Let Xo "X i be H-spaces and X2 - a loop space . Given maps

f0 : X o - X 1 , f : X 1 ~ X2 . Suppose Dflo (Df0Al) : X0 n . X 0 n X l ~
X2

is null

	

homotopic .

	

Then

	

[Df
1
o f
0
]

	

= [Df1o (f0nfo )] + [f l ,Df ] .
0

In particular : If fl is an H-map Df a f % f l o Df	and if
1 0

	

0

fo is an H-map Df ,f ti Df , (fonfo) .
1 0 1



Now consider again the operation 1 associated with (p) and the

following commutative diagrams :

K(Z/2Z, 8n_+3)

Bj

(D7)

	

B E(1,2)

Br

	

1 Br1

	

gK(Z/2Z, 4n+2) - o-, K(Z/2Z, 4n+3) x K(Z/2Z, Sn+2) --1 - K(Z/2Z, 8n;l4)

Bao is given by p l ° Bao = Sq l : K(Z/2Z, 4n+2) - K(Z/2Z, 4n+3),

p2 ° Bao = Sg4n : K(Z/2Z, 4n+2) -. K(Z/2Z, 8n+2) .

Ba1	= Sg4nó1p,

	

+ Sq 2	°

	

p2 ,

	

hence

	

2 Bao %
CCo ,

	

s2 Ba l	ti a l .

	

E -

	

the

homotopy fiber of Sg4 n+2 , B E(1,2) - the homotopy fiber of Ba l ,

sz B E(1,2) = E(1,2) as in the (D4) diagram defining m . Loop the above diagram

and observe that 9 E _ K(Z/2Z, 4n+1) x K(Z/2Z, 8n+2) and therefore

r = s2 B r : 9 É

	

K(Z/2Z, 4n+1) admits a left inverse x : K(Z/2Z, 4n+1)

r ° x ti 1 . Oné can see that the choices of such inverses (also called cross

sections) are in 1-1 correspondence with liftings

ao,l : E(0) = K(Z/2Z, 4n+1) - E(1,2) of diagram 04 for D . Thus, looping

(D7) one obtains :

(D8)

RBj=j

Sa É

SZ &

1r112

E(O)= K(Z/2Z, 4n+1)

1; 1

E(1,2)

1

.r 1

E(1)



If 1 (any choice!) is an H-map one can use some obstruction theory

to show that then x is indeed a loop map . Hence, Br admits a cross section

B2,

	

Br , Bl

	

1 BE(o)'

	

This will

	

imply that

	

Sg4n+2 :

	

K(Z/2Z, 4n+2) --

K(Z/2Z, 8n+4) is null homotopic which is false . It follows that x is not an

H-map and D :
X

E(0) A E(0) -" 2E is not null homotopic . Now,

[E(0) n E(0) = K(Z/2Z, 4n+1) A K(Z/2Z, 4n+1), 2 E a K(Z/2Z, 4n+1)%K(Z/2Z, 8n+2)]

a H4n+1 (K(Z/2Z, 4n+1) A K(Z/2Z, 4n+1), Z/2Z) +

H8n+2 (K(Z/2Z, 4n+1) A K(Z/2Z, 4n+1), Z/2Z) .

The first summand is zero (E(0) A E(0) is 8n+1 connected) the second equals

Z/2Z . . Hence, the only non trivial map in

	

[E(0) A E(0), 2 E]

	

is given by

w
K(Z/2Z, 4n+1) A K(Z/2Z, 4n+1)

	

- K(Z/2Z, 8n+2) -~-, n E and DX

	

w
d

(wd.is also denoted by '4n+1 (x) `4n+1)'

	

By the properties of H-deviations

[property (iii)]
[Da

	

] _ [s2 a o D
ic ] , _ En a o J o wo] = [J l o wo]

0,1

And again, this is true for any choice of

	

ao ~ l .

Now consider the (D4) diagram for D and its evaluation on a

primitive class

	

x E H4n+1 (X, Z/2Z), x E ker Sg4n ,

	

(x E ker -Sg l	by remark a)) .

(D9)

P E(1)

	

s~-+ 2 E(2)
CLo,1,2

~1



Sg4n x=0, Sg l x=0 implies a0 . x ti * and x

	

exists . Now, x, r0 .

are H-maps hence :

0

	

=

	

EDx]

	

=

	

ID.r

	

0X]

	

=

	

Er0

	

0

	

DX],

	

hence,

	

.
0

DX : X ,
E0,1 lifts to a map w : X n X -. 9 E(1), DX ti

jo
0 w .

Ej l

	

0

	

Da	]

	

=

	

ID .

	

a

	

]

	

=

	

IDa

	

0 ( r
0

	

A

	

r0)]

	

=

	

Ej 1

	

0

	

w0

	

.(ro

	

n

	

ro] .
0,1 ,2

	

~l° 0,1 .2

	

0,1

Now, E(0) n E(0) is 8n+l connected, n i (sz E(1))= 0 for i

hence EE(0) n E(0), si E(1)] = 0 and consequently

j l* : EE(0) n E(0), sZ E(2)] -. EE(0) n E(0), E(1,2)] is injective and

0 (r nr) .e¿o .1 .2

	

w0

	

0

	

0

Now, Da

	

0 (Dx A 1) ,, wo 0 (r0 ^ r0 )0(Dx n 1) _
o,1,2

On the other hand, consider

	

w ' E EX n X, 2 E(])] a

r 1 . j0 .

wo 0 (ro 0 DX n r0 ) -n. * as ro 0 DX ti Dx	Hencethe conditions in

property (iii) of H-deviation hold and

8n,

ED"o,1,2
0x]

- Eao .l .2 0 Dx]
+ EDao l 2 ° (x n x)] =

[ao,1,2 0 j o	w] +
. .

+ Ew0 0 (r0 ^ r0 ) 0 (x n x)] = Esza l 0 w] + No o (x n x)] .

Ew0] - 14n+l 0 '4n+1' Ew0 0 (x n x)] = x i. x E H* (X n X, Z/2Z),

*
Now, the image of

	

xOx

	

in

	

H (X x X, Z/2Z)

	

is of algebra filtration

2 (and not of filtration > 2) as

	

x © x = (x 0 1) "

	

(1 U x), and

	

x

	

is in-

decomposable .

H4n+1 (X ^ X, Z/2Z) + H8n(X n X, Z/2Z) .

	

For dimension reasons the image of

	

w

in EX x X, sa E(1)] must have algebra filtration at least .4 : The image of

H* (X n X,

	

Z/2Z) - . H* (X x X,

	

Z/2Z)

	

has filtration

	

> 2 .

	

As all

	

generators in



H
*
(X x X, Z/2Z)

	

are of congruency

	

s 1

	

(mod 4)

	

elements of dimension

mod 4 have filtration > 4 . Elements of dimension

filtration > 1 must have filtration % 5 .

-t H* (X x X,

	

Z/2Z)

	

is

	

injective)

sequently

	

[D

	

n,] $ x 0 x

D

	

ti ~ * andao,l ,2 ' x

there are no algebra generators in these dimensions .

* . As this holds, for all choices of

ao,l , 0 1 o(x) . Moreover, one can use Hopf algebra properties of

The conclusion is therefore that there are no primitive elements

o 1 mod 4 and of

As the Steenrod algebra preserve filtration (and H
*
(X A X, Z/2Z)

[ga l o w] has filtration > 4 and con-

mod F4H* (X x X, Z/2Z)) . In particular,

*
H (X, Z/2Z)

and the above evaluation of D

	

ti to conclude that the elements ine,

o,1,2

	

-

	

x

m(x)

	

are al]

	

generators .

	

This is impossible for

	

P(x) c H8n+2 (X,

	

Z/2Z)

	

and

in

	

H*(X .

	

Z/2Z)

	

in the domain of

	

o .

	

As

	

Sq
l
x = 0

	

for every

	

x E H* (X,

	

Z/2Z)

Sg4nx # 0

	

for every primitive el.ement

	

x

	

in

	

H4n+1 (X, Z/2Z) .

Remark : There are H-spaces with this type of cohomology : If Sp is the

simplectic group then Sp p 52 2X .

	

Both X and the universal covering space of

92Sp are H-spaces with ..cohomology of the type described in the theorem .



We shall show here how the theory of cohomology operations uses

H-space theory .

Consider the Adem relation

(R 1 )

	

Sq
2
Sq

2 + Sg lSq 2Sq 1	=0

R1 induces a secondary operation o
1

described by the (D4) type diagram

as follows :

a

PE(2) = K(Z/2Z,N+3)

K(Z/2Z,N) = E(O) - O ~ E(1) = K(Z/2Z,N+2) - K(Z/2Z,N+3) -~ E(2) = K(Z/2Z,N+4)

o¡0 is given by p l e ao = Sq
2

, P2 , ao

al is given by [a l ] = [Sg2 " p l ] + [Sql

al

	

o

	

lo
ti

	

*

	

by

	

(Rl ) .

7 . H-SPACES AND COHOMOLOGY OPERATIONS

Sg
2
Sg

1

P2]

the .previous chapter

[Pl a ao o Sg4n] = [Pl o ao o .Sg4n
o p] = [Sq2 o Sg4n o p] _

_ [Sg4n+t o p + Sg4n+l .e Sq l o p] .

(Di 0)

Consider the composition Sg4n as in the last chapter
° 4n

K(Z, 4n+1) p-. K(Z/2Z, 4n+1) -Sg---~ K(Z/2Z, 8n+1)

where p is induced by the reduction Z - Z/2Z .

Sg4n is in the domain of t i (for N = 8n+1) . Indeed, by (R) of



loop maps .

Now, Sq4n+2[p] = 0 as p is of dimension 4n+1 (using the non

stability condition of the Steenrod algebra) . [Sgl op] = 0 as

H4n+2 (K(Z,4n+1),M) = 0 for any coefficients module M .

Consequently, [p l oa o oSg4n] = 0, [p2 oa°oSg4n] = [Sg2SgluSq4noa] .

Using Adem relations one has Sg2Sg1Sq4n = Sg4n+2Sg1 and as Sq l [p] = 0,

[P2oao,Sg4n] = 0 and [Sg4n] E Ker ao .

We shall evaluate o[[Sg4n] :

As in the previous chapter :

D&	_ [n&~ °) 0 x ] _ [a&~°) oj oowo] = [j ooi l owo]
0

	

0

K(Z,4h+1) Sg~

	

K(Z/2Z 8n+1)

	

a°

	

. E ( lj

	

a

	

--. E(2)

wo = p 0 p E [K(Z,4n+1) n K(Z,4n+1), K(Z/2Z,8n+2)] .

¡Pl

SQ4n+2 1

°-----------------. K(j/2Z,8n+3)

d o' ro , xo , nEo are analogous to j, r, x, siE in (D8) and share similar

properties . All spáces and maps except for xo and &° are loop spaces and

4n _

where



As

	

ao,1,2

	

is an H-map

	

Dao,1,2'a0 =

	

[ao,l,2 ]	`

	

Da0 =

_ [ao11,2 � jo~i 1 1w01 = [na l ~ i l ow0 ] = Sq2 o w0 (2al`i1 = Sq2 * K(Z/2Z,8n+2) .,

K(Z/2Z,8n+4)) .

Using the Cartan formula ([Steenrod Epstein]) one obtains for any

lifting a0 of Sg04n :

Da

	

a

	

= Sq 2w0 = Sq2 (pop) = Sg 2 p op + p © Sg2p

	

(Sq' p=D) .
0,1,2` o

s

u : K(Z,4n+1) -> K(Z/2Z,8n+4) is being given algebraically by [u] = [p]-S9~[p]

(or "geometrically" by the composition

K(Z,4n+1) Ay K(Z,4n+l) - K(Z,4n+1) -px-P--> K(Z/2Z,4n+1) X K(Z/2Z,4n+1)

Sq2 xl

	

_ K(Z/2Z,4n+3) ri K(Z/2Z,4n+1) -"-+ K(Z/2Z,4n+3) A K(Z/2Z,4n+1)

K(Z/2Z,8n+3)] where ® represents the nenerator of

H8n+3 (K(Z/2Z,4n+3) A K(Z/2Z,4n+1), Z/2Z = Z/2Z) .

	

Then

	

Du = Sg2p 0p + p ® Sg2p

of a cohomology class u of an H-space X is the reduced coproduct in(D
u

the Hopf algebra H (X,Z/2Z)) .

lt follows easily that if

	

v = [a0,1,2'ao] E P,(Sg4n )

	

is any element

v-u is primitive . Now, one can show that á0 can be chosen so that v=u

and [p] " Sq2 [p] E o l (Sg4n ) .

(Out]ine
1oopino

of proof :,,(Dll) twice one obtains 22(Sg0on) ti * and

for some z : K(Z/2Z,4n-1) -> n3E(1) = K(Z/2Z,8n) x K(Z/2Z,8n+1)

jo
H-map as

	

9
2
% % n2

	

oz

	

is

	

an

	

H-map,

	

0 =

	

[9
2
j o ]

	

o

	

Dz ,

n K(Z/2Z,4n-1), 23E(o) = K(Z/2Z,8n-2)] = 0 (2 2jo ) * on
3

A K(Z/2Z,4n-1), 0 E(1)]

	

is injective, Dz = 0 .

	

Any H-map between

22 6, 0 %. 22 jo ,z

z must be an

[K(Z/2Z,4n-1)

[K(Z/2Z,4n-1)

Eilenberg MacLane spaces is an r-loop map for any

	

r

	

and

	

z ti n2z

	

for some

and as



z : K(Z/2Z,4n+1) -,- s2E(1) . Use z to change the homotopy

ti ao o Sqo	andthen, for the new ao one has 2 [no,1,2oáo] = 0,

* ti 22v ti áa 2 (v-u) (as P2u ti *, since 51 2A `, * in the "geometric" definition

of u) .

	

But

	

one

	

can see that

	

o2 : H8n+4 (K/Z,4n+1), Z/2Z)

	

+ H8n+2(K(Z,4n-1),Z/2Z)

is injective on primitives (Eilenberg Moore spectral sequence) and u .ti v) .

Consequently :

01(Sgo
n

) _ [p] o Sq2[p] + im Sq 2 +

Corollary I :

	

Let

	

x E H4n+1 (X,Z) be any class > X - any space . If
4n 4n

	

2 2 1

	

8n+2Sqo x = Sq

	

px = 0

	

then

	

px " Sq px = Sq yl

	

+ Sq y2

	

for some

	

yl

	

E H

	

(X,Z/2Z),

y2 E H8n+3 (X,Z/2Z) .

Proof of I : Consider the following

i

	

J oI , ao,1,2
1-1

E(0,1)

im Sq l .

X -X" K(Z,4n+l)-o--" K(Z/2Z,8n+1)

2)

ao' °`o,1,2 as in D11, do chosen so that ao,1,2 ,ao = [p] Sq2[p] . As

Sg4nx = 0 ao � x = j o , y for some y : X , iE(1) d K(Z/2Z,8n+2) - K(Z/2Z,8n+3) .

Put yi = p i y and then px " Sg2px = [ao,l,2oaoox] _ [paloy] = Sg2yl + Sg1y2 .

Corollary II : There is no space X with H
*
(X,Z/2Z) being the exterior

algebra on- x

	

and

	

Sq 2x,

	

dim x = 4n+1 .

	

(I .e .

	

X satisfies :

	

H
i
(X,Z/2Z)

	

~ 0

only if i=0, 4n+1, 4n+3, 8n+4, and in these dimensions H i (X,Z/2Z) s:d Z/2Z with

non zero elements 1, x, Sg 2x and x " Sg 2x for i=0, 4n+l, 4n+3 and 8n+4

respectively1



Proof of Corollary II : In such a space Sgónx = 0 (as H8n+1 (X,Z/2Z) = 0)

but 0 ~ x o Sg2x = Sg2y 1 + Sg l y 2 is impossible for there are no elements

in the dimensions of yl and y2 .



Corolla ;ry

	

III :

	

([Hilton-Whitehead]),

	

(4 .11) P .435) .

	

If

	

1 E n4n+1(S4n+1)

	

= Z

is a generator and

	

o ¢ n E n4n+2(S4n+l)

	

= Z/2Z

	

(n >

	

0)

	

then

	

< , ,n

	

> ¢ 0

where < > is the Whitehead product .

Proof of .Corollary III . If <<,n> = 0 one can form a space X which is a

S4n+1

	

fibration over

	

54n+3

	

with

	

n

	

as the first attaching map, i .e . :

X a S4n+1 U e4n+3 U e8n+4 , X/S4n+l p S4n+3 v S8n+4

	

and

	

S4n+1

	

is the homotopy

fiber of X ->. X/S4n+l á S4n+3 v S8n+4

	

S4n+3,

	

gut such a space will have the

cohomology .of the space described in Corollary II .



8 . CONCLUDING REP4ARKS

This is by no means the end of the road for the two theories and

their partnership . A work in progress ([Harper-Zabrodsky]) attempts to

generalize al] that was said .i n chapter 7 for odd primes - p . Here one requires

p-th order operations which naturally are far harder to define and evaluate .
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