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COHOMOLOGY QPERATIONS AND H-SPACES

A. Zabrodsky

1. INTRODUCTION

The theory of cohomology operations and the theory of H-spaces were
interlocked thrcuqhout their various stages of development:

The first systematic approach to the theory of (high order} cohomology.
operations is due to J. F. Adams ([Adams}). In that celabrated paper a solution
was given to a question whose one formulation is the following: What spheres
suppert continuous multiplications with units (i.e. H-structures)?

The cchomelogy operations of the simplest type are the Bockstein
operations. These were tied together by Browder ({Browder]1’2,3) to form the
Bockstein spectral sequence which was used to study the cohomology of finite
dimensional H-spaces.

[Zabrodsky]]’2’3, [Kane]], [Lin]1,2,3 and others used high order
operations to . farther analyze the cohomoioqy of finite H-spaces. In particular,
[L‘In}]’2 proved the classical "loop space congecture": The homology of the loop
space of a finite dimensional H-space is torsion free .

[HL.'IJbuck]]'z’3 used k-theory operations to study the cchomology and
topology of finite K-spaces. He found restrictions on their possible types and

their Pontrjagin rings. Among other theorems he proved ([Hubbuck]l} that a
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homotopy commutative finite H-space has the homotopy type of a torus.

Finally [I-:ane]z’3 recently used BP operations to study the cohomoloay of
H-spaces.

Going in the other direction, the theory of H-spaces was uSed in the
cbnstructions and. evaluations of high order operations.

In the following lectures I shall try to demonstrate by some examples

these relaticns between the two theories.
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2. BASIC DEFINITIONS

We usually assume spaces to be of. the homotopy type of CW complexes
with a {non-degenerate) base point. Maps and homotopies are base point preserv-
ing. Thus, an H-space could be assumed to be a space X with a multiplication

b so that the base point 'x_ is an actual unit: ulxyx ) = x = ulx x).

The definition of a cohomology operation has various degrees of

abstractions.. One of the most general form is the following:

A cohomploay operation ¢ consists of three spaces and two maps

¢ = <K0, E, K], r, h>: r: E = Kor h: £ =+ K]:

¢ defines a "natural transformation" from im{[ , E] - [ . KOJ) to the
family of subsets of [ , K]j. In a more direct terms: For any space X ¢
defines a function from a subset of the set [X, Ko] of homotopy classes of
maps X -+ K, to the set of subsets of [X, K]] in the following way: The
domain of ¢ s the set dim{r, ¢ [X, E] > [X, KOJ) where r, fis the left
composition with r: r*([%] = [re %] {[u] the homotopy class of u). Hence,
[fle [x,,KOJ ds in the domain of ¢ if and only if [f] "l1ifts“ to

[%] € [X, E], rof n'F. (see diagram D1). The value ¢{[f]) 1is then the set
{[h of]| r of ~ f} < [X, K,
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In case E =K, r= 1 the operation is called primary and is simply
the right composition with h. The domain of ¢ is then all of {X,Ko] and

its values are singletons, i.e.: elements of [X, K]].

This is a general formulation which is not very useful if one does
not restrict cneself. to some special_cases. Normally we consider cohomology
operations related to.{generalized) cohomology theories (hence the name}. All

cohomology coperations here will be ¢iven in terms of Q-spectra:

=]
An. o spectrum is 2 sequence_.g* = {En’ wn}n=o where gn are spaces and

har - . &
¢, are homotopy equ1va1ences_, 9, En. nEnﬂ.

*
The cohomoloay theory E  associated with the q-spectrum E, is
i n

the sequence of functors {E) =[ , E/ 1. For a space
X - €"(x) = [X, E]. Foramp f:X-Y E"(F): EM(Y) ~ EM(X) s the right
composition with f: E"(F)[u] =.[u of] {u: Y » En). As E are double loop

spaces (and much more} . E"(X) are.abelian groups and E"(f) are homomorphisms.
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3. PRIMARY OPERATIONS. STABLE OPERATIONS

An elementary primary operation of type m,n din the cohomology theory

£ is an element [o] € [E.+ E,ds et By~ E - It defines a primary operation

¢ = «KO = Em =E, K] = En, r =1, h =a> which is cbvfously the left compssit-

ion with «. The set of all primary operations of type m,n is the set

Lgm » B 1. As an operation < is a function Mx) - M),

A stable elementary primary operation of degree k is a sequence

a={a € (E {for k < o we consider E; = point for t < o). These

n n+k}}n =0
are related by the following (homotopy) commutative diagram:

E—— En+k
N
E E

i * 8 Enh+k

In this case o, e"(x) » E”+k(x) are homomorphisms.

*
The set of stable cohomoloqy operations in the theory E  forms a

graded. ring: One can add any two operations of the same degree as [gn’-gn+d

.is an abelian group. The product o" - @' is given by: (u"-a'}n = a;+k o aé

if a' is of degree k. The degree of «" - o' is the sum of the degrees of

a' and «". These definitions are consistent with the defining relations of a

stabie operation {D2).

Example: The Steenrod Algebra. Let En = K(Z/pZ,n) - the Eilenberg

MacLane spaces, p-a prime,(E, is then called the Eilenberg Maclane spectrum
K(Z/pZ}). The ring of elementary stable cohomo]og} operations is called the
Steenrod algebra a(p); For .p = 2 a{2) is generated by operations Sqi of
degree i (Sq°.= 1) subject to relations known as the Adem relations.

Reference: [Steenrod-Epstein].
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*
A non_elementary primary cchomoloay operation in E 15 a map

. 5, .
a: E{O) + E(1} where E(i) = 1 EE:) i=10,1. One can easily see how to
J=1 ]
define a non elementary stable primary operation. Such an operation is given
by a matrix whose entries (aij) are elementary stable cperations with the

property: degree LRI degree T is independent of J.
1’ 2
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4. SECONDARY OPERATIONS ASSOCIATED WITH A RELATIGM

L
Fix the cohomolagy theory E . By E(i) we always denote a product
5. ,
n §i1). (E{i,j) will denote other types of spaces as will be seen
J

of terms
i=

in the sequel).

Given (non elementary and not necessarily stable) operations

o E(0} - E{1), o) E(1} + E{2). "A relation among primary operations is a

relation of the type 4y o Gy v *,  (*-the constant map}. (If ay are stable,
and therefore qiven by martices, this relation describes ordinary relations in

the ring of stable operations}.

The relation 4) 0 @y v * Jnduces a commutative diagram:

2 E(2)

“0,1, 131
(D3) E(0,1) E(1,2)
"o | %o.] "

4

£(0) —2, £(1) E(2)

where E(i,i+1) is the homotopy fiber of o i=0,1. Iy is the inclusion

of the fiber of r1. o exists since Gy o @y v x, 8,1,2 is induced by

0,1
@, 1. @ and o are uniquely determined by the choice of the homotopy
0,] 0,] 0,1,2
E{0) » I + E(2), * n @ o a - The operation ¢ = < E{(0}, E{0,1), » E (2},
Yor 85 1.2 2 is called a secondary operation asscciated with the relation
10y

v oF,
u1gﬂo
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The above operation ¢ depends on the choice of 4q 12 OF 38

remarked, on the choice of the homotopy * ~ @y o Q- The difference between

choices of such homotopies is afven by a map w: E(0) ~ @E{2). The difference

between the two maps and & g 2 induced by the two choices of homo-

%,1,2

topies is then given by G 1,2 "%, 1,2 Warl,.

Given a space X and a cohomology class x € [%, E(0}]. {x is
actually a "vector” of cohomology classes xn'(o)e E?j(xj). X .15 in the do-
main of ¢ (for any ¢, induced by any null homotopy * ~ ap o ao) if and only
if e X = 0. The value &{x) 1is then £a0’1’2 e X] where x : X - E{0,1)

is a "ifting” of x: X E{0), r_ o X~ x. If @', ¢" correspond to two

0

different homotopies * ~ @y o o whose difference, as above, is

0
w: £{0) » g E(2) then [a;’m o X] - {a;’],z o X1 = [wory o Xl = [wox]
Hence, &"{x) is obtained by translating ¢'(x} by w . x where

W E [Eo’ R E(2)] 1is a primary operation. This could be formulated as follows:

A relation oy, ~ * among primary operations induces secondary
1 ] 9 :

operations (¢}, BAny two such operations differ by a primary operation,
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5. MASSEY PRODUCTS - TODA BRACKETS. HIGH ORDER OPERATIONS

Let o : E{Q) ~ E(1), 0y E(1) -~ E(2), ap t E{2) + E(3) be primary

operations and suppose 31 0 0y v *, dy o g N *_  Again, E(i] are producfs

]
111 g . Extend diagram (D3} to obtain:
:'| J
Qaz
o E(2) —— g E(3)
“p,1, . .2, .
i i
(D4) E(0,1) o4 E0L,2) £(2,3)
] [+ o
r 0, r 1 r
0 1 4

- 0 N %2
E{0} ——— E{1) —— E{2) —5~ E(3)
E{i,i+1) - the homotopy fiber of ayr 35 - the inclusion of the
fibre. %,1° 4,278 2,30 %.1,2 exist as a) o oy Y *, By o O *, They are

uniquely determined by choices of homotopies * ~ 2 o Yy *oa Gy 0 O1-

The class [u1 REEN 1] € [E{0), 2 E(3)] is a primary operation.
Two different choices of the homotopy * A a1 o By will yield two maps a; 1
These maps are related by [a] 5 9 0 0p ]]-[u1 23 0 ué’]] = (s, o wo].

{ .
0,1
where w € [E{0), 2 E(2)] measures the difference between the two choices of
homotopies * A 4 e A {Mote that the difference % 2,30 o

is independent of the choice of the homotopy * ~ 95 o Oy and its induced

map a]’2,3.)
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Similarly, two distinct choices of the homotopies * 0y o Oy
{with a difference measured by a map w, E{1) - o E{3)} yield two maps
ai 2,3 u; 2,3 E(1,2) »+ o E(3) related by [u] 2 3]-[u],2’31 = [w] o r]].
1t follows that fa] 2,3 © a l] [a] 2,3 ° ao ]] [n 5 o wo] + [w] o r11
and the ceset of Iu] 2,3 ° %, 1] in

[E(0), @ E{3)] / (@ u,), [E(O), @ 5(2)] Y LE(), @ E(3)]

is independent of any choices of homotopies, is denoted by <ags Gps > and

s called the Massey product or Toda bracket of a« . ay, a,.

Mote that o € <oy 0y Gp> if and only if one can choose LI

and N .2,3 so that a.2.3 ° %, "

Example: Reexamine the Steenrod algebra A{2) ogenerated by S‘qi of
deqree 1i. By the Adem relations Sqi for 1 ¢ 2j could be déscribed as a sum
£ SE{LJ . S:(LJ tit)siil D. It follows that as a rina A{2) is generated by
k . . i
SqZJ. However, the main result of [Adams] is that Sg for j = 3 could be
decomposed in terms of Massey products. More precisely: There exist primary
operations:
5t E(0) + E(), E(0) = K(Z/2ZN)s N3 23
ay: E(1)} = E(2), oy E(2) - E(3) = K(Z/2Z N+29+1)
E(1), E(Z}' have the properties:
n(E(1)) £ 0 only if N <i <27
ME(2)) # 0 only if N+1<i N+ 27,
(E(J)J are Z/27 vector spaces

* *
8y o ay v ¥y 0y o oy ~ and Sq € <Gos Gps Gy
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This implies the followinag:

There is no space X so that:

H'(X, 2/22) # 0 only if i=0, N, W2?, j > 3,

: i
N i Ced 2
Wx, 2722) = 7722 = H (X, 2/22) and Sq x # 0, where

Xy € HN(X, Z/22} is the generator. Indeed, suppose such z space X exists.
One obtains the following extension of (D4):

ag
g E(2) ——  E{3)

‘ il;;,a‘ o
9 3s

(05) _ E{1.2) E(2,3)
Il IS .
0,1 1,2
/ r'/ 1‘"2
XN / (10 r Cl,-l C[2
] X —— K(Z/2Z,N) = E(0) —— E{1}) ——— E(2} —5— E(3)
2
Sqg € <agr aps ay>  Means that one can choose % 5.3 , %4 1 so that

23 . .
[a7 5 300091253 . As H'(X, 2/22) = 0 for N<i< M2 by simple

obstruction theory [X, E(1)] =0 .and [X, 2 E{2)] = 0 and therefore
* 2J
[x, £(0,1)] = 0, %1 © Xq v X SA Xy = [u]’2,3 R xy] = 0. A contra-

dictian.

Now suppose Gys Gy @y ATE given, By o my *, 8y o Oy ™ * and

suppose 0 € <@gy Ay ap>. One can extend {D4) to obtain:
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20,1,2, P
E(2,3)
s ]
01,3/ far,

L Quz

rc’aJ4 /42‘].1/43{‘12
E£(0,1) E(1,2) E(2,3)
T‘o uO,] T‘-I U:-l, rz
(0] —0s B L E(2) —2— £(3)

E{0,1,2) - the homotopy fiber of “,1,2° If %17 %1,2,3 "¢ chosen so that
El] '2,3 ¢ C"O,] n ¥ 932 o uo,‘i ,2 v C('I'z’a [ E‘-o’] A~ % and CI'.O’-l ’2 1ifts to the
homotopy fiber of fa,, aj 5 31 E(0,1) =@ E (2,3), this map induces a map

2 .
8.1,2,3° E(0.1,2) + 07E(3).

Voo 2
The operation &' = <E{0), £(0,1,2), @"E(3), o o Ta1’ %,1,2,3
is called a third order operation associated with the relation

0€ <a0, aps uz).

Gne can proceed inductively to define a k-fold Massey product
<Ugs O seieap>s ag-primary. This is defined whenex:‘er‘ <oy Gpaeees > 35
defined and contains 0 and O o dpq ™ * If O¢€ <a,s 9.0 > ONe can
define a k+1 order cohomology operation.
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6. COHOMOLOGY OPERATIONS AND H-SPACES

We shall demonstrate how one uses the theory of cchomology operations

to study the cohomology of H-spaces.

If X 1is any space, (assume connected. for. simplicity} then

H*{X, Z/2Z) 1is a ring (mare precisely, an algebra over Z/2Z). x € H*{¥, Z/2)

is said to be indecomposable if x* cannot be written as x = L x% . x; where
: i

)
X;

s x? are of positive dimensions.
Suppose X is an H-space. x € HT(X, 2/2Z) is called a primitive
element if x 1is represented by an H-map X -+ K{Z/2Z, m). We shall prove

the following:

Theorem: Let X be a connected H-space. Suppose H*(X, Z/22Z) is an

exterior algebra on generators of dim= 1 (mod 4}, T.e.: H*(X, 2/2Z) is a

free commutative graded algebra with generators of dimension 4k1+1,i=1,2....

Then if x. € H4k+1{x, Z/22) is a priﬁitive element (hence

4n

x: X + K(Z/2Z, 4n+1} is an H-map) then Sq x # 0. (and is again primitive).

Consequently:

(i} X cannot be finite dimensional.

(i1) Consider the Pontrjagin ring H_(X, 2/2Z) of X. (l.e.: This is the
ring structure H,(X, 7/2Z).& H. (X, Z/2Z} + H,(X, Z/2Z) induced by

the multiplication p: X x X ~ ¥).

If. Ho(X,.Z/2Z) 1is an associative algebra than H*(QX, Z/27) is

a polynomia)l algebra.on generators of dimensions = D (mod 4).
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Given an H-space X satisfying the hypothesis of the theorem.
Then: ‘
a) H*(K, Z) is 2-torsien free.
{the proof uses the Bockstein spectral sequence on the Hopf algebra

WX, 7/22)). Consequently, Sq'H'(X, z/22) = 0).

b) A primitive element x in H*{X, Z/2Z} 1s not decomposable.
*
Consequently, all primitive elements of H (X, Z/27) are of dimension

= 1 mod 4.

N *
¢) If H.(X, Z/2Z) 1is an associative algebra H (X, Z/2Z} 1is then
primitively generated, i.e.: One can choose the primitives of

*
H (X, Z/22) as free algebra generators.
The conclusions (i) and {ii) follow from the theorem as follows:

3y s Wx, z722) - H8N(x, 7/22) is injective on primitives. If

4n+l (

*
H (X, Z/2Z} 1is not trivial there exists a non zero class x € H X, Z2/27)

of lowest positive dimension. This class has to be primitive. The

8 sl an

t
set {x, Sq4nx, 5q°" Sq4nx,...(5q2 Msg M. .5q""x}...} 1is an in-

finite set of non zero cohomolony classes of increasing dimensions.

*
i1} Here one uses spectral .sequences to compute K {aX, Z/2Z), e.q.:
The Eilenberg Moore spectral seguence. One can see that
(ax, 2/22) =0 if 140 mod 4 and that Sq™y = 42 £ 0 for
4”(

any primitive element in H' '(aX, 7/2Z). This implies {ii).

To prove the theorem we need the following properties of the Steenrod

alnebra (see [Steenrod-Epstine]):
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Woit xenl(x, z/22)

Non Stability: Sqix =4 ) .
0 if xeH(X, z/22), 3> i

Preservation of alaebra filtrations. {(Follows from the Cartan formula ):

*
Let FPH*(X, Z/22) be the ideal of H (X, Z/2Z) generated by r fold products
Xy Xpeoot X of elements X of positive dimensions, Then FrH*(X, 2/22) are

A(2) invariant, i.e.: if o € A(2), x € FrH*(X, 7722} then ox € FrH*(X, 721},

A{2) preserve primitive elements: If X is an H-space and x € H*(X, Z/21)

is primitive then ¢x is primitive for any a € A{2).

Consider the following Adem relation in A{2):

(R) qu Sq4n + sq4n+lsq1 - Sq4n+2

{R) defines a secondary operation as follows:

Let
EL0) = K(Z/2Z, 4n+1), E(3) = K{Z/2Z, 8n+2) x K{Z/2Z, Bn+1)
E(2) = K{(2/2Z, 8n+3).
oy E{C} - E(1) s given by
sq! 2 K(2/21, 4n+2)

o IP]
k(Z/2Z, 4n+1) ——2—— K(Z/2Z, 4n+2) x K(Z/2Z, Bn+1)
P2
5ot

= y(2/22, 8n+l)
o E(1) = E{2) is qiven by '

4n+]

O Sg o Py ¥ sqz > Py where + is the addition induced by the Toap

miltiplication on [ , E{2)].
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4n+1,. 1 2

{R} implies [a] o uo] = Sq 5q + Sq iz g

Sqqn = $9 (the latter vanishes
by the non stability condition Sq4"+2[1E(0)] =0 as

In+1

1E(0): E(0} - E{0) 1is an element of H (E{0), Z/22)).

We shall investigate the value of a secondary operation o associated

with =+ 4y » @, ONna primitive class x € H4"+1(X, 2/22} in the domain of

a
¢. (We shall conclude that there is no such ciass and therefore Sq4nx £ 0
for. any primitive element of dimension 4n+1.)

H deviations: let ¥X,u, Y,u' be H-space.

Given a map f: X > Y there exists a map Df: XA XY called
the H-deviation of f with the following properties. (Compare with

[Zabrodsky]q, Chapter 1 where D. is denoted by H D{f, u, n')}:

5
i} The twomaps X - X = ¥ agiven by x, y - f(x«y} and
Ky ¥ Df(x,y) « [f(x) - f{y)] are homotopic {here { )-( )
.denotes both products u and u') or in a functicnal notation:
foun u;{DfQA s Lug(F=F)] by.x Where
&X;X(x’y) = {x,¥y x,¥) 18 the diagonal map and

A x X~ XA X - the projection.
ii) f 15 an H-map if and only if [}f Ak

iii) Let XO-X] be H-spaces and X2 - a loop space. Given maps

for Xg = Xps 2 Xy > X Suppose Df1°(nfoa1); N A
is null homotopic. Then [Dflofoj = fo]n(FOAfO)} + [flono].
In particular: If f] is an H-map Df]OfO “ f1 o Dfo and if
f, is an H-map Df10f ~ D

A : o (fonfo).
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Now consider again the operation ¢ asscciated with (R) and the

following conmutative diagrams:

K(Z/2Z, 8n+3)
B

(07) E ——% LB EN,2)

B; Br
Ba ! By
K{Z/27, dnv2) —25 k{2722, 4n+3) x K{2/2Z, Bn+2) — K[Z/2Z, 8n+4)

1

Ba, is given by Py o Ba Sq : K(Z/2Z, 4n+2)} » X(Z/2Z, 4n+3},

4n

Pp o Bao : K{Z/2Z, 4n+2} » K(2/2Z, 8n+2).

Ba] = Sq4n:]p] + qu o Pys hence Ba vags BcI ~oay é - thg

homotopy fiber of Sq4n+2, 8 £{1,2) - the homotopy fiber of Bay s
o B E{1,2) = E(1,2) as in the (D4) diagram defining ¢. Loop the above diagram
and observe that @ £ = K(Z/2Z, 4n+1) x K(Z/2Z, 8n+2} and therefore
=08 r:af - K(2/2Z, 4n+1) admits a Teft inverse x: K(Z/2Z, 4n+1) > o E,
° ; n 1. Oné can éée that the choices of such inverses {also called cross
sections) are in 1-1 correspondence with liftings
ag 1 E{0) = K(Z/22, 4n+1) - £{1,2) of diagram D& for ¢. Thus, looping
{07) one obtains:

1

K(2/22, 8n+2) ——— RE(2)
o83 l 5
} 2 & i
(p8) gf — ————  E(1,2)
r l )2 " %,1 7 % o %
£{0)= K(Z/27, 4n+1) —1—3 £(1) Po %% Igrgy
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If ¢ ({any choice!} i{s an H-map one can use some obstruction theory
to show that then % 1is indeed a loop map. Hence, Br admits a cross section

B, Br o 8% & 1 This will imply that Sa™*%. x(2/27, 4n+2) -

BE{o}"
K(Z/2Z, 8n+4)} 1is nul) homotopic which is false, 1t follows that x 35 not an

-~

H-map and Dx: E{Q) A E{0) ~ gE is not null homotopic. Now,
[ECQ) A E(O) = K(Z/2Z, 4n+3) A K(Z/22, 4n+1), Q E & K(Z/2Z, 41 )=K(2/2Z, 8n+2}]
5 HanH(K(Z/ZZ, An+1) A K{Z/2Z, dn+l), 2727) +
W2 (g(2/22, antl) A K(Z/2Z, 4n#1), 2/27).
The first summand is zero (E{0) A E(0) 1is 8n+l connected) the second equals

Z/2Z. . Hence, the only non trivial map in [E{0) A E(0Q)}, n E] is given by
K(Z/2Z, 8n+1) A K{Z/2Z, 4n+1) L K{Z/2Z, 8n+2) ~—J——- o £ and Dg =3, W
(wo.. is also denoted by Yane] ] 14n+1}' By the properties of H-.tlieviations
[roperty (i19)3 [0, 1=fae.0l=las. Jowgl=[iy 0wl

And again?.th‘is 1.5 true for any choice of LN
Now consider the (D4} diagram for ¢ and its evaluation on a

4n+1(

p_r‘imitive class x € H X, 2/27), % € ker Sqqn, {x € ker ‘Sq] by remark a)).

f:al
£ E(1Y ——— 9 E(2)
%5,1,2
J‘0 N
}
(0%) E(0,1) £(1,2)
y [+
k' Yo 0,1 L
o

¥ X k{2722, 4ntl) = £{0} —°. %(1)
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Sqdnx=0, Sq]x=0 impiies xg e XV * and X exists. HNow, X, res Ty jo’ j]

are H-maps hence:
¢ = [Dx} = [Drookj = [ry o DQ]’ hence,
: i i : -+ E ]
D}. X 20’1 Tifts to amap w: X A X -+ g E{1}, D} v g o ¥

"L = [D, =0 . =[Gy o W_ o )
L3 Dco,]’zl [31°°‘o,1,2] [%’T (rg A vgdl =[5 o W, {rg a1l

Now, E{0) A E{0) 1is 8&n+1 connected, n (o E(1¥=0 for i 8n,
hence {E{0) A~ E(0}, 2 E(1d =0 and consequently
Jyat LE(O) A E(0), 2 E(2)] - [E(0) A E(0), EQ),2)] is injective and

) ww o {r o ar).
ao,]’z o} la] 0
Now, D“o 5T (D} Alln LA (ro A r0)°(0§ Al) =
W, o {TO oDy AT }a* as ro o Dy ~ D~ *. Hence the conditions in
property {iii} of H-deviation hold and
T IS .
[B ;\{] = [ao’-l'z o D;} + [BG o {X A X)] [00'-1’2 o JO W] +

c03.|32° 0,1,2
t Ly o (rgarg) o (KA R = [nog o W]+ (w0 (x A x)].

£w03 = 14““‘1 @ 14n+‘|9 [wo @ (X A x)] = xﬁ}«x £ H*(x A x, Z/ZZ).

Now, the image of x@®@x 1in H*{X ; X, Z/2Z) 1is of algebra filtration
2 (and not of filtration: 2} as x@x=(x& 1)+ (I®x), and x is in-
decomposable.

On the other hand, consider w.e IXaX, (1)) w
H4"+1{x A Xy 2722 + Han(x A X, Z/2Z). For dimension reasons the image of w
in [X = X, 2 E{1)] must have algebra filtration at least 4; The image of

H'UX A X, 2/22) » H'(X = X, 2/22) has filtration > 2. As all generators in
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"
H (X x X, Z/2Z} are of congruency =1 {mod 4} elements of dimension =0
mod 4 have filtration > 4. Elements of dimension = 1 mod 4 and of

filtration > 1 must have fiitration > 5.

* ' .
As the Steenrcd algebra preserve filtration {and H (X A X, Z/2I) -
.
+ H (X x X, Z/2Z} 1is injective) [ﬂu] o W] has filtration > 4 and con-

sequently [Du ;I a X & x mod FqH*(X = X, 2/2Z)}. 1n particular,
: 0,1,2°

i % £ * and SPIPR ¥ 4 *. As this holds, for all choices of

*
o 0 ¢ #{x). Moreover, one can use Hopf algebra properties of H (X, Z/27)

o,

and the above evajuation of Ba % to conclude that the elements in
0,1,2 °

8n+2{

#{x) are all generators. This is impossible for #{x) c H %, Z/2Z) and

there are no alagebra generators in these dimensions.

The conclusion is therefore that there are no primitive elements

in H*{X, 2/22} in the domain of @. As Sqlx = 0 for every x € H*{X, 1/2Z}

Sqqnx # 0 for every primitive element x in H4“+1{x, 722},
Remark: There are H-spaces with this fype of cohomolegy: If Sp is the
simplectic arcup then Spw QZX. Both X and the universal covering space of

QZSD are H-spaces with.cohomology of the type described in the theorem.
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7. H-SPACES AND COROMOLOGY OPERATIONS

We shall show here how the theory of cohomology operations uses

H-space theory.

Consider the Adem relation
(R) Sa%se® + sq’sa’sq’ = 0
R1 induces a secondary operation @1 described by the (D4} type diagram

as follows:

QE{1) QE(2} = K{(Z/2Z,0+3)

o e I
E{O,T) E{(1,2) " (D10}
[+

Ty 0,1 r-1

K(Z/2Z,N) = E(0) —20 £(1) = K(Z/2Z,N42) x K(Z/2Z,N43) — L E(2) = K(z/22,444)

s s 2 2.1
o, 1s given by Pl o8y =547, Py oo @ = Sq75q

ap Ts given by [o] = [qu'-p]] + 5" s p,]
4 o, v ¥ by (R1}.
Consider the composition ngn as in the last chapfer
K(Z, 4ne1) —2—, (2722, 4n+) -5511. K(Z/2Z, 8n+1)
where p s induced by the reduction Z » Z/2%.

dn
o

the previous chapter

5q is in the domain of 2 {for N = 8n+i). Indeed, by (R} of
]
£p'| 2 00 < ngn] = [p'l -] GO osqq." o ﬂ] = [qu o Sq n o D] =

§n+2 o+ Sq4n+1

= [Sq e 5q1 o D]-
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fow, Sq4n+2{p] =0 as p is of dimenrsion 4n+l (using the non
stability condition of the Steenrod algebra). [Sq‘op] =0 as
Han+2(K(Z,4n+1),M) = 0 for any coefficients module M.

1

Consequentiy, [P]oaOGSqin] = 0, [pzaaOOSqin] = [SqZSq 0Sqqnop}.

Using Adem relations one has SqZSq‘Sqqn = Sq4n+2

Sq] and as Sq1£p] = @,
[p2°a0a5q4n] =0 and [ngn] € Ker a.

We shall evaluate @l[ngn]:

'i-l Qc;.l
K(2/27,80+2) —— QE(1} ——— QE(2)
3 . 4] i
Jo JOJ 0,152
b aslo)
QE, E(0,1) - E(1,2}
~ A - &O Cl-o,-l
{D11) Toll %o
Sqﬁn ) %o *
K(Z,4h+]) —— K(2/22,8n+1) ——— E{1} ———— E£{2)
"
SCT$n+2 .
_, K{Z/27,8n+3)
Jg+ Yo Xgs RE, are analogous to J, r, x, @E in (D8) and share similar

properties. All spaces and maps except for ;0 and &, are loop spaces and

loop maps.

As in the previous chapter:

¥
%

w, = s e € [K(Z,4nr1} & K(Z,4041), K(2/22,8n+2)] .

e [ast®) ne 12 fesl®) s 71 rs 5o
= [ng; oD,(n] = (o)™ od 0¥, ] = [goiyow ] where
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As is an H-map D [30,1,2] o B,

%,1,2°% 0
oy 1 godget gl = [upoiqoi] = S6% o W {aayoiy = %3 K(2/22,8ne2)

“6,1,2

- K{2/2Z.8n+4)).

Using the Cartan formula {[Steenrod Epstein]) one obtains for any
s e s . 4n_
1ifting &, of ch : , 1
R 2: Z2 - 2 B
D“o,],Z“&a =Sgw, = Sq (o@) = S e Do + 0 ®SG (Sq =0},

'
u: K{Z.4n41) -~ K(Z/2Z,8n+4} 1is being given algebraically by {u] = {o]-Sqifp]
{or "geometrically" by the coemposition
K(Z,80+1) -2 K(Z,8n41) « K{Z,8n%1) 822 K(7/22,8041) x K(Z/2Z,4n%1)
ST (2722,8m43) + K(Z/2ZA0 1)~ K(2722,8m3) & K(2/27,8001)
Qﬁﬂ K(Z/22,8n+3'}] where @ represents the aensrator of
KO3 (R(2/22,4n%3) A K(2/2Z,8n%1), /27 = 2/22). Then D, = Sa%e o + o ® Sa%e
(Du of a cohomology ciass u of an H-space X is the reduced coproduct in

the Hopf alaebra K (X,2/22}).

it follows easily that if v = [ 2060] € ¢ﬁ$qgn) is any element

%a,1

v-u is primitive. Now, cne can show that do can be chosen s¢ that wv=u

and [p]-59°003 € ¢, (5q.").
looping > 4n
{Outiine of proof:,(D11) twice one obtains @ {Sq0 )} o * and
ofa, ~ a%j oz for some z: K(Z/2Z,4n-1) + OE(1) = K(Z/2Z,8n) x K(Z/21,8n+1).

it

[92j0] o BZ. and as
(K(2/2Z,4n-1) A K(Z/2Z,40-1), E(0) = R(Z/22,8n-2)] = 0 (275 ), on

3
[(k{Z/2Z,4n-1} A K{Z/2Z,4n-1},%E{1}] is injective, D,

2 must be an H-map as nzﬁo N nzjooz is an H-map, O

0. Any H-map between

Eilenberg MacLane spaces 1s an r-loop map for any r and 2~ 925 for some
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z: K{Z/2Z,4n+1} > QE(1). Use z to change the homotopy
4n 2 1 =
* . 4y o Sqo and then, for the new &, one has [00,1'2030] =0,
* nzv W nz(v-u) (as nzu ~ ¥, since QZA A * jn the “naometric" definition
of u). But one can see that o°: WO'P(k/z,4n41), 7/22) -+ #82(K(7 8n-1),2/27)

is injective on primitives (EilenbergMoore spectral sequence) and u ~ v).

Consequently:
¢](5qgn) = [e] & $6%[e] + im qu + im Sq'.

Corollary I: Llet x € H4n+I{X,Z) be any class, X - any space., If

4n 4n

Sq0 X = $q 8n+2

px = 0 then px-qupx = quy] + Sq1y2 for some ¥ €H {X,2/21),

8n+3

Yo € H {X,Z/27).

Proof of 1: Consider the fellowing

Qd'l
aE{1} ——— nE{2)
y - ,43-0 %0,1,2
/ a »
PN { (A
// An j

X —2—u K(Z,8041) —2— K{Z2/2Z,8n+1)

. _ 2
bgs @51 p 25 i Dy, & chosen so that % 1,298 * (6] 56°[p]. &s

4n

Sq0

Xx =0 G o X = jo o ¥ for some y: X » QE{1) = K{Z/27,8n+2) = K{Z/27,8n+3).
Put y, = p;y and then px-Sqpr = [ao,l,zo&ocx] = [Qa]OY} = quy1 * Squz-
Corollary II: There is no space X with H*(X,ZIZZ) being the exterior
algebra on x and qux, dim x = 4n+¢3,  (l.e. X satisfies: Hi(X,Z/ZZ) 0

only if 1i=0, 4n+l, 4n+3, 8n+4, and in these dimensions Hi{X,ZXZZ) e Z2/27 wWith
non zerc elemenis 1, x, qux and xTqux for 1=0, 4n+1, 4n+3 and 8n+4

respectively)
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4nx
0

but 0 # %, qux = quy] + Sq]y2 is impossible for there are no elements

Proof of Corollary II: In such a space Sq =0 (as H8n+](X,Z/ZZ] = 0)

in the dimensions of ¥y and Yo
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Corollary ITI: ([Hilton-Whitehead]), {4.11) P.435). If 1 €n 4n+l

dn+1

a1 ) = 2

ts a generator and o # n € n4n+2(5 ) = 2/22 {n > 0) then <(,n > #0

where < > 1is the Whitehead product.

Proof ﬁf.CoroI1ary I1T. If <(,n> = 0 one can form a space X which is a

54n+] fibration over $4n+3 with n as the first attaching map, i.e.:

¥ g s4n+'| U e4n+3 U e8n+4 4n+1m 4n+3 v S8n+4 and S4n+1

, X/8 5 is the homotopy
tiber of X » x/sTMH g3 B0 AR b cich a space will have the

cohomoloqy .of the space described in Corollary II.
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8. CONCLUDIKG REMARKS

This is by no means the end of the road for the two theories and
their partnership. A work in proaress ([Harper-Zabrodsky]) attempts to
generalize all that was said. in chapter 7 for odd primes - p. Here one requires

p~th order operations which naturally are far harder to define and evaluate.

* k%
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