Pub. Mat. UAB
Vol. 26 № 3 Des. 1982

COHOMOLOGY OPERATIONS AND H-SPACES

A. Zabrodsky

1. INTRODUCTION

The theory of cohomology operations and the theory of H -spaces were interlocked throughout their various stages of development:

The first systematic approach to the theory of (high order) cohomology. operations is due to J. F. Adams ([Adams]). In that celabrated paper a solution was given to a question whose one formulation is the following: What spheres support continuous multiplications with units (i.e. H-structures)?

The cohomology operations of the simplest type are the Bockstein operations. These were tied together by Browder ([Browder] $]_{, 2,3 \text {) to form the }}$ Bockstein spectral sequence which was used to study the cohomology of finite dimensional H -spaces.
$[\text { Zabrodsky }]_{1,2,3},[\text { Kane }]_{1},[\text { Lini }]_{1,2,3}$ and others used high order operations to farther analyze the cohomology of finite H-spaces. In particular, [Lin] $]_{1,2}$ proved the classical "loop space congecture": The homology of the loop space of a finite dimensional H -space is torsion free.
[Hubbuck] ${ }_{1,2,3}$ used k-theory operations to study the cohomology and topology of finite H-spaces. He found restrictions on their possible types and their Pontrjagin rings. Among other theorems he proved ([Hubbuck], that a
homotopy commutative finite H -space has the homotopy type of a torus.
Finally [Kane] ${ }_{2,3}$ recently used BP operations to study the cohomology of H-spaces.

Going in the other direction, the theory of H -spaces was used in the constructions and evaluations of high order operations.

In the following lectures I shall try to demonstrate by some examples these relations between the two theories.

2. BASIC DEFINITIONS

We usually assume spaces to be of the homotopy type of CW complexes with a (non-degenerate) base point. Maps and homotopies are base point preserveing. Thus, an H-space could be assumed to be a space X with a multiplication μ so that the base point x_{0} is an actual unit: $\mu\left(x_{s} x_{0}\right)=x=\mu\left(x_{0}, x\right)$.

The definition of a cohomology operation has various degrees of abstractions. One of the most general form is the following:

A cohomology operation $\$$ consists of three spaces and two maps $\phi=\left\langle K_{0}, E, K_{1}, r, h\right\rangle: r: E \rightarrow K_{0}, h: E+K_{1}:$

© defines a "natural transformation" from $\operatorname{im}\left([, E] \rightarrow\left[, K_{0}\right]\right)$ to the family of subsets of $\left[, K_{j}\right]$. In a more direct terms: For any space $X \quad \Phi$ defines a function from a subset of the set $\left[X, K_{0}\right]$ of homotopy classes of maps $X \rightarrow K_{0}$ to the set of subsets of $\left[X, K_{]}\right]$in the following way: The domain of is the set $\operatorname{im}\left(r_{*}:[X, E] \rightarrow\left[X, K_{0}\right]\right)$ where r_{*} is the left composition with $r: r_{*}(\hat{f}]=[r \circ \hat{f}]$ ([u] the homotopy class of u). Hence, $[f] \in\left[X, K_{0}\right]$ is in the domain of if and only if $[f]$ "lifts" to $[\hat{f}] \in[X, E], r \circ \hat{f} w^{\prime} f$. (see diagram $\left.D l\right)$. The value $\Phi([f])$ is then the set $\{[h \circ \hat{f}] \mid r o \hat{f} \sim f\} \in\left[X, K_{1}\right]$
(DI)

In case $E=K_{0}, r=1$ the operation is called primary and is simply the right composition with h. The domain of Φ is then all of $\left[X, K_{0}\right]$ and its values are singletons, i.e.: elements of $\left[x, K_{1}\right]$.

This is a general formulation which is not very useful if one does not restrict oneself to some special cases. Normally we consider cohomology operations related to (generalized) cohomology theories (hence the name). All cohomology operations here will be given in terms of Ω-spectra:

An. Q spectrum is a sequence $E_{t}=\left\{E_{n}, \varphi_{n}\right\}_{n=0}^{\infty}$ where E_{n} are spaces and φ_{n} are homotopy equivalences, $\varphi_{n}: E_{n} \xrightarrow{\approx} \Omega E_{n+1}$.

The cohomoloay theory E^{*} associated with the Ω-spectrum E_{*} is the sequence of fianctors $\left\{E^{n}\right\}=\left[, E_{n}\right]$, that is: For a space $X-E^{n}(X)=\left[X, E_{n}\right]$. For a.map $f: X \rightarrow Y E^{n}(f): E^{n}(Y) \rightarrow E^{n}(X)$ is the right composition with $f: E^{n}(f)[u]=$. [u of] (u: Y $\rightarrow \underline{E}_{n}$). As \underline{E}_{n} are double loop spaces (and much more). $E^{n}(X)$ are abelian groups and $E^{n}(f)$ are homomorphisms.
3. PRIMARY OPERATIONS. STABLE OPERATIONS

An elementary primary operation of type m, n in the cohomology theory E^{\star} is an element $[\alpha] E\left[E_{-m}, E_{n}\right], \alpha: E_{m} \rightarrow \underline{E}_{n}$. It defines a primary operation $\phi=\left\langle K_{0}=E_{m}=E, K_{1}=E_{n}, r=1, h=\alpha\right\rangle$ which is obviously the left composition with a. The set of all primary operations of type m, n is the set $\left[E_{m}, E_{n}\right]$. As an operation a iss a function $E^{m}(X) \rightarrow E^{n}(X)$.

A stable elementary primary operation of degree k is a sequence $a=\left\{a_{n} \in\left[E_{n}, E_{n+k}\right]\right\}_{n=0}^{\infty}$ (for $k<0$ we consider $E_{t}=$ point for $t<0$). These are related by the following (homotopy) comutative diagram:

In this case $a_{n}: E^{n}(X) \rightarrow E^{n+k}(X)$ are homomorphisms.
The set of stable cohomology operations in the theory E^{*} forms a graded ring: One can add any two operations of the same degree as [$\underline{E}_{n}, E_{n+k}$] is an abelian group. The product $\alpha^{\prime \prime} \cdot \alpha^{\prime}$ is given by: ($\left.\alpha^{\prime \prime} \cdot \alpha^{\prime}\right)_{n}=a_{n+k}^{\prime \prime} \quad a_{n}^{\prime}$ if α^{\prime} is of degree k. The degree of $\alpha^{\prime \prime} \cdot \alpha^{\prime}$ is the sum of the degrees of α^{\prime} and $\alpha^{\prime \prime}$. These definitions are consistent with the defining relations of a stabie operation (D2).

Example: The Steenrod Algebra, Let $E_{n}=K(Z / p Z, n)$ - the Eilenberg MacLane spaces, p-a prime, (E_{\star} is then called the Eilenberg MacLane spectrum $\underline{K}(Z / p Z))$. The ring of elementary stable cohomology operations is called the Steenrod algebra $a(p)$. For $p=2 a(2)$ is generated by operations $S q^{i}$ of degree $i \quad\left(S q^{\circ}=7\right)$ subject to relations known as the Adem relations. Reference: [Steenrod-Epstein].

A non elementary primary cohomolony operation in E^{\star} is a map $a: E(0) \rightarrow E(1)$ where $E(i)=\prod_{j=1}^{s} E_{n_{j}}^{(i)} i=0,1$. One can easily see how to define a non elementary stable primary operation. Such an operation is given by a matrix whose entries ($\alpha_{i j}$) are elementary stable operations with the property: degree $a_{i_{j}, j}$ - degree $a_{i_{2}, j}$ is independent of j.

4. SECONDARY OPERATIONS ASSOCIATED WITH A RELATION

Fix the cohomology theory E^{*}. By $E(i)$ we always denote a product of terms $\prod_{j=1}^{S_{i}} E_{k_{j}}^{(i)}$. ($E(i, j)$ will denote other types of spaces as will be seen in the sequel).

Given (non elementary and not necessarily stable) operations $a_{0}: E(0) \rightarrow E(1), \alpha_{1}: E(1) \rightarrow E(2)$. A relation among primary operations is a relation of the type $\alpha_{1} \circ \alpha_{0} \varepsilon_{0}$. (*-the constant map). (If α_{i} are stable, and therefore given by martices, this relation describes ordinary relations in the ring of stable operations).

The relation $\alpha_{1} \alpha_{0} \alpha^{*}$ induces a commutative diagram:
(D3)

where $E(i, i+1)$ is the homotopy fiber of $\alpha_{i}, i=0,1, j_{1}$ is the inclusion of the fiber of $r_{1} . \alpha_{0,1}$ exists since $\alpha_{1} \circ \alpha_{0} \sim_{*} . \alpha_{0,1,2}$ is induced by $\alpha_{0,1} \alpha_{0,1}$ and $\alpha_{0,1,2}$ are uniquely determined by the choice of the homotopy $E(0) \times I \rightarrow E(2), * \sim \alpha_{1} \circ \alpha_{0}$. The operation $\Phi=\langle E(0), E(0,1), \Omega E(2)$, $r_{0}, \alpha_{0,1,2}>$ is called a secondary operation associated with the relation $\alpha_{1} \cdot a_{0}{ }^{*}$.

The above operation Φ depends on the choice of $\alpha_{0,1}$, or as remarked, on the choice of the homotopy $* \sim \alpha_{1} \circ \alpha_{0}$. The difference between choices of such homotopies is oiven by a map $w: E(0) \rightarrow \Omega E(2)$. The difference between the two maps $a_{0,1,2}^{\prime}$ and $a_{0,1,2}^{\prime \prime}$ induced by the two choices of homotopies is then given by $\alpha_{0,1,2}^{\prime \prime}-a_{0,1,2}^{\prime}=w 。 r_{0}$.

Given a space X and a cohomology class $x \in[X, E(0)]$. $\langle x$ is actually a "vector" of cohomology classes $x_{n_{j}}{ }^{(0)} E E^{n} j(x)$). x is in the domain of Φ (for any Φ, induced by any null homotopy $* \sim \alpha_{1} \circ \alpha_{0}$) if and only if $\alpha_{0} x=0$. The value $\Phi(x)$ is then $\left[\alpha_{0,1,2} \quad{ }^{2} \quad \underset{\sim}{n}\right]$ where $\dot{x}: x \rightarrow \varepsilon(0,1)$ is a "lifting" of $x: X \rightarrow E(0), r_{0} \circ \hat{x} \sim x$. If $\phi^{\prime}, \Phi^{\prime \prime}$ correspond to two different homotopies $* \sim{ }^{\sim}{ }^{\alpha} 0_{0}$ whose difference, as above, is $w: E(0) \rightarrow \Omega E(2)$ then $\left[\alpha_{0,1,2}^{\prime \prime} \circ \hat{x}\right]-\left[a_{0,1,2}^{\prime} \circ \hat{x}\right]=\left[\begin{array}{lll}w & r_{0} & \circ \\ \alpha_{0}\end{array}\right]=[w \circ x]$. Hence, $\Phi^{\prime \prime}(x)$ is obtained by translating $\Phi^{\prime}(x)$ by w o x where $w \in\left[E_{0}, \Omega E(2)\right]$ is a primary operation. This could be formulated as follows:

A relation $\alpha_{1} \alpha_{0} \sim$ * among primary operations induces secondary operations $\{\$\}$. Any two such operations differ by a primary operation.

Let $\alpha_{0}: E(0) \rightarrow E(1), \alpha_{1}: E(1) \rightarrow E(2), \alpha_{2}: E(2) \rightarrow E(3)$ be prinary operations and suppose $\alpha_{1} \circ \alpha_{0}{ }^{*}, \alpha_{2} \circ \alpha_{7} \sim$. Again, $E(i)$ are products $\prod_{j=1}^{S_{j}} E_{n_{j}}^{(i)}$. Extend diagram (D3) to obtain:
(D4)

$E(i, i+i)$ - the homotopy fiber of a_{i}, j_{i} - the inclusion of the fibre. $a_{0,1}, \alpha_{1,2}, \alpha_{1,2,3}, \alpha_{0,1,2}$ exist as $a_{1} \circ \alpha_{0}{ }^{*} *_{1} \alpha_{2} \circ \alpha_{1}$. They are uniquely determined by choices of homotopies $* \sim a_{1} \circ \alpha_{0}, * \sim \alpha_{2} \circ a_{1}$.

The class $\left[\alpha_{1,2,3} \circ \alpha_{0, l}\right] \in[E(0), \Omega E(3)]$ is a primary operation. Two different choices of the homotopy $* \sim \alpha_{1} \circ \alpha_{0}$ will yield two maps $a_{0,1}^{\prime}$, $\alpha_{0,1}^{\prime \prime}$. These maps are related by $\left[\alpha_{1,2,3} \circ \alpha_{0,1}^{\prime \prime}\right]-\left[\alpha_{1,2,3} \circ \alpha_{0,1}^{\prime}\right]=\left[\Omega a_{2} \circ w_{0}\right]$, where $w_{0} \in[E(0), \Omega E(2)]$ measures the difference between the two choices of homotopies $* \sim \alpha_{1} \circ a_{0}$. (Note that the difference $\alpha_{1,2,3} \circ \alpha_{0,1}^{\prime \prime}-a_{1,2,3} \circ a_{0,1}^{\prime}$ is independent of the choice of the homotopy $* \approx \alpha_{2} \circ \alpha_{1}$ and its induced map $\alpha_{1,2,3}$.)

Similarly, two distinct choices of the homotopies $* \sim \alpha_{2} \circ \alpha_{1}$ (with a difference measured by a map $w_{1}: E(1) \rightarrow \Omega E(3)$) yield two maps $\alpha_{1,2,3} \alpha_{1,2,3}^{\prime \prime} E(1,2)+\Omega E(3)$ related by $\left[\alpha_{1,2,3}^{\prime}\right]-\left[\alpha_{1,2,3}^{\prime}\right]=\left[w_{1} \circ r_{1}\right]$. It follows that $\left[\alpha_{1,2,3}^{\prime \prime} \circ \alpha_{0,1}^{\prime \prime}\right]-\left[\alpha_{1,2,3}^{\prime} \circ \alpha_{0,1}^{\prime}\right]=\left[n \alpha_{2} \circ w_{0}\right]+\left[w_{1} \circ r_{1}\right]$ and the coset of $\left[\alpha_{1,2,3} \circ \alpha_{0,1}\right]$ in

$$
[E(0), \Omega E(3)] /\left(\Omega \alpha_{2}\right)_{*}[E(0), \Omega E(2)]+r_{1}^{*}[E(1), \Omega E(3)]
$$

is independent of any choices of homotopies, is denoted by $\left\langle a_{0}, a_{1}, a_{2}\right\rangle$ and is called the Massey product or Tod bracket of α_{0}, a_{1}, a_{2}.

Note that $0 \in\left\langle\alpha_{0}, \alpha_{1}, \alpha_{2}\right\rangle$ if and only if one can choose $\alpha_{0,1}$ and $\alpha_{1,2,3}$ so that $\alpha_{1,2,3} \circ \alpha_{0,1} \sim$.

Example: Reexamine the Steenrod algebra $A(2)$ generated by Sq^{i} of degree i. By the Aden relations $S q^{i}$ for $i \neq 2^{j}$ could be described as a sum
 $\mathrm{Sq}^{2^{j}}$. However, the main result of [Adams] is that $\mathrm{Sq}^{2^{j}}$ for $\mathrm{j}>3$ could be decomposed in terms of Massey products. More precisely: There exist primary operations:

$$
\begin{aligned}
& \alpha_{0}: E(0) \rightarrow E(1), E(0)=K(Z / 2 Z, N), N \geq 2^{j} \\
& \alpha_{1}: E(1) \rightarrow E(2), \quad \alpha_{2}: E(2) \rightarrow E(3)=K\left(Z / 2 Z, N+2^{j}+1\right) \\
& E(1), E(2) \text { have the properties: } \\
& \pi_{i}(E(1)) \neq 0 \text { only if } N<i \leq 2^{j-1} . \\
& \pi_{i}(E(2)) \neq 0 \text { only if } N+1<i \leq N+2^{j} . \\
& \pi_{i}(E(j)) \text { are } Z / 2 Z \text { vector spaces } \\
& \alpha_{1} \circ \alpha_{0} \sim *, \alpha_{2} \circ \alpha_{1} \sim * \text { and } \operatorname{Sq}^{2^{j}} \in<\alpha_{0}, \alpha_{1}, \alpha_{2}>.
\end{aligned}
$$

This implies the following:
There is no space X so that:
$H^{i}(X, Z / 2 Z) \neq 0$ only if $i=0, N, N+2^{j}, j>3$, $H^{N}(X, Z / 2 Z)=Z / 2 Z=H^{N+2^{j}}(X, Z / 2 Z)$ and $S^{2^{j}} X_{N} \neq 0$, where $x_{N} \in H^{N}(X, Z / 2 Z)$ is the generator. Indeed, suppose such a space X exists. One obtains the following extension of (D4):

 $\left[\alpha_{1,2,3} \circ \alpha_{0,1}\right]=5 q$. As $H^{i}(X, Z / 2 Z)=0$ for $N<i<N+2^{j}$ by simple obstruction theory $[X, E(1)]=0$ and $[X, \Omega E(2)]=0$ and therefore $[x, E(0,1)]=0, \alpha_{0,1} \circ x_{n}{ }^{*}, S_{q}^{2 j} x_{N}=\left[\alpha_{1,2,3}^{j} \circ \alpha_{0,1} \circ x_{N}\right]=0$. A contradiction.

Now suppose $\alpha_{0}, \alpha_{1}, \alpha_{2}$ are given, $\alpha_{1} \circ \alpha_{0}{ }^{*}, \alpha_{2} \circ \alpha_{1}{ }^{*}$ and suppose $0 \in\left\langle a_{0}, a_{1}, a_{2}>\right.$. One can extend (04) to obtain:

$E(0,1,2)$ - the homotopy fiber of $\alpha_{0,1,2}$. If $\alpha_{0,1}, \alpha_{1,2,3}$ are chosen so that $\alpha_{1,2,3} \circ \alpha_{0,1} \sim$ * $\Omega \alpha_{2} \circ a_{0,1,2} \sim_{1,2,3} \circ \alpha_{0,1} \sim$ * and $\alpha_{0,1,2}$ lifts to the homotopy fiber of $\Omega \alpha_{2}, \alpha_{0,1,3}: E(0,1) \rightarrow \Omega E(2,3)$, this map induces a map $\alpha_{0,1,2,3}: E(0,1,2)+\Omega^{2} E(3)$.

The operation $\phi^{\prime}=<E(0), E(0,1,2), \Omega^{2} E(3), r_{0} \circ r_{0,1}, \infty_{0,1,2,3^{\prime}}$ is called a third order operation associated with the relation $0 \in<\alpha_{0}, \alpha_{1}, \alpha_{2}>$.

One can proceed inductively to define a k-fold Massey product $<\alpha_{0}, \alpha_{1}, \ldots a_{k}>$. α_{i}-primary. This is defined whenever $\left.<\alpha_{0}, a_{1}, \ldots \alpha_{k-1}\right\rangle$ is defined and contains 0 and $a_{k} \circ \alpha_{k-1} \approx *$. If $0 \in<\alpha_{0}, \alpha_{1} \ldots a_{k}>$ one can define a $k+1$ order cohomolagy operation.

6. COHOMOLOGY OPERATIONS AND H-SPACES

We shall demonstrate how one uses the theory of cohomology operations to study the cohomology of H -spaces.

If X is any space, (assume connected for simplicity) then $H^{\star}(x, z / 2 Z)$ is a ring (more precisely, an algebra over $\left.Z / 2 Z\right) . x \in H *(x, z / 2 Z)$ is said to be indecomposable if x^{\prime} cannot be written as $x=\sum_{i}^{\Sigma} x_{i}^{\prime} \cdot x_{i}^{\prime \prime}$ where $x_{i}^{\prime}, x_{i}^{\prime \prime}$ are of positive dimensions.

Suppose X is an H-space. $X \in H^{m}(X, Z / 2 Z)$ is called a primitive element if x is represented by an H-map $X \rightarrow K(Z / 2 Z, m)$. We shall prove the following:

Theorem: Let X be a connected H-space. Suppose $H^{\star}(X, Z / 2 Z)$ is an exterior algebra on generators of diṃ $1(\bmod 4)$, i.e.: $H^{*}(X, Z / 2 Z)$ is a free cormutative graded algebra with generators of dimension $4 k_{i}+1, i=1,2 \ldots$ Then if $x \in H^{4 k+1}(x, z / 2 z)$ is a primitive element (hence $x: X \rightarrow K(Z / 2 Z, 4 n+1)$ is an H-map) then $S q x \neq 0$. (and is again primitive). Consequently:
(i) X cannot be finite dimensional.
(ii) Consider the Pontrjagin ring $H_{\star}(x, z / 2 z)$ of x. (I.e.: This is the ring structure $H_{\star}(X, Z / 2 Z) \otimes H_{\star}(X, Z / 2 Z) \rightarrow H_{\star}(X, Z / 2 Z)$ induced by the multiplication $u: X \times X+X)$.

If. $H_{\star}(X, Z / 2 Z)$ is an associative algebra then $H^{*}(\Omega X, Z / 2 Z)$ is a polynomial algebra.on generators of dimensions a $0(\bmod 4)$.

Given an H-space X satisfying the hypothesis of the theorem.
Then:
a) $H^{*}(X, Z)$ is 2-torsion free.
(the proof uses the Bockstein spectral sequence on the Hopf algebra $\left.H^{\star}(X, Z / 2 Z)\right)$. Consequently, $\left.S q^{1} H^{*}(X, Z / 2 Z)=0\right)$.
b) A primitive element x in $H^{*}(X, Z / 2 Z)$ is not decomposable. Consequently, all primitive elements of $H^{*}(x, z / 27)$ are of dimension e $1 \bmod 4$.
c) If $H_{\star}(X, Z / 2 Z)$ is an associative algebra $H^{*}(X, Z / 2 Z)$ is then primitively generated, i.e.: One can choose the primitives of $H^{\star}(X, Z / 2 Z)$ as free algebra generators.

The conclusions (i) and (ii) follow from the theorem as follows:
i) $S^{4 n}: H^{4 n+1}(X, Z / 2 Z) \rightarrow H^{8 n+1}(X, Z / 2 Z)$ is injective on primitives. If $H^{*}(X, Z / 2 Z)$ is not trivial there exists a non zero class $x \in H^{4 n+1}(X, Z / 2 Z)$ of lowest positive dimension. This class has to be primitive. The set $\left\{x, S q^{4 n} x, S q^{8 n} S q^{4 n} x, \ldots\left(s q^{2^{t} n} S q^{2 t-1} \ldots S q^{4 n} x\right) \ldots\right\}$ is an infinite set of non zero cohomology classes of increasing dimensions.
ii). Here one uses spectral sequences to compute $H^{\star}(\Omega X, Z . / 2 Z)$, e.g.: The Eilenberg Moore spectral sequence. One can see that $H^{i}(\Omega X, Z / 2 Z)=0$ if i $\neq 0 \bmod 4$ and that $S q^{4 n} y=y^{2} \neq 0$ for any primitive element in $H^{4 n}(\Omega x, z / 2 Z)$. This implies (ii).

To prove the theorem we need the following properties of the Steenrod algebra (see [Steenrod-Epstine]):

Non Stability: $\quad S q^{i} x=\left\{\begin{array}{ll}x^{2} & \text { if } x \in H^{i}(x, z / 2 Z) \\ 0 & \text { if } x \in H^{j}(x, z / 2 Z), j>i\end{array}\right.$.
Preservation of al gebra filtrations. (Follows from the Cartan formula): Let $F^{r_{H}{ }^{*}}(X, Z / 2 Z)$ be the ideal of $H^{*}(X, Z / 2 Z)$ generated by r fold products $x_{1} \cdot x_{2} \ldots \cdot x_{r}$ of elements x_{i} of positive dimensions. Then $F^{r} H^{\star}(x, z / 2 z)$ are $A(2)$ invariant, i.e.: if $a \in A(2), x \in F^{r} H^{*}(x, z / 2 Z)$ then $\alpha x \in F^{r} H^{\star}(x, z / 2 z)$. A(2) preserve primitive elements: If X is an H-space and $x \in H^{*}(X, Z / 2 Z)$ is primitive then αx is primitive for any $\alpha \in A(2)$.

Consider the following Adem relation in $\mathrm{A}(2)$:
(R) $S q^{2} s q^{4 n}+s q^{4 n+1} s q^{1}=s q^{4 n+2}$
(R) defines a secondary operation as follows:

Let
$E(0)=K(z / 2 Z, 4 n+1), E(1)=K(z / 2 Z, 4 n+2) \times K(2 / 22,8 n+1)$
$E(2)=x(2 / 22,8 n+3)$.
$\alpha_{0}: E(0)+E(1)$ is given by

$a_{1}: \varepsilon(1) \rightarrow E(2)$ is given by
$\alpha_{1}=S q^{4 n+1} \circ p_{1}+s q^{2} \circ p_{2}$ where + is the addition induced by the loop multiplication on $[, E(2)]$.
(R) implies $\left[\alpha_{1} \circ \alpha_{0}\right]=S q^{4 n+1} S q^{1}+S q^{2} S q^{4 n}=S q^{4 n+2}=0 \quad$ (the latter vanishes by the non stability condition $\mathrm{Sq}^{4 \mathrm{n}+2}\left[\mathrm{l}_{\mathrm{E}(0)}\right]=0$ as
${ }^{1} E(0): E(0) \rightarrow E(0)$ is an element of $\left.H^{4 n+1}(E(0), Z / 2 Z)\right)$.
We shall investigate the value of a secondary operation ϕ associated with $* \sim \alpha_{1}=\alpha_{0}$ on a primitive class $x \in H^{4 n+1}(x, z / 2 z)$ in the domain of Ф. (We shall conclude that there is no such class and therefore $\mathrm{sq}^{4 n} \times \neq 0$ for any primitive element of dimension $4 n+1$.)

H deviations: Let $X, \dot{\mu}, Y, \mu^{\prime}$ be H-space.
Given a map $f: X \rightarrow Y$ there exists a map $D_{f}: X \wedge X \rightarrow Y$ called the H -deviation of f with the following properties. (Compare with [Zabrodsky] ${ }_{4}$, Chapter 1 where D_{f} is denoted by $\left.H D\left(f, \mu, \mu^{\prime}\right)\right)$:
i) The two maps $x, x \rightarrow y$ given by $x, y \rightarrow f(x \cdot y)$ and
$x, y \rightarrow D_{f}(x, y) \cdot[f(x) \cdot f(y)]$ are homotopic (here ()$\cdot()$
denotes both products μ and μ^{\prime}) or in a functional notation:
$f \circ \mu \sim \mu_{0}^{\prime}\left\{D_{f_{i}} \wedge \times\left[\mu_{0}(f, f)\right]\right\} \geqslant \Delta_{X_{x} X}$ where $\Delta_{x, x}(x, y)=(x, y, x, y)$ is the diagonal map and $\wedge: X \times X \rightarrow X \wedge X$ - the projection.
ii) f is an H-map if and only if $D_{f} \imath *$.
iii) Let $x_{0} \times x_{1}$ be H-spaces and $x_{2}-a$ loop space. Given maps $f_{0}: x_{0} \rightarrow x_{1}, f_{1}: x_{1} \rightarrow x_{2}$. Suppose $D_{f_{1}}\left(D_{f_{0}} \wedge 1\right): x_{0} \wedge x_{0} \wedge x_{1}-X_{2}$ is null homotopic. Then $\left[D_{f_{1}}{ }^{\circ} f_{0}\right]=\left[D_{f_{1}}{ }^{0}\left(f_{0} \wedge f_{0}\right)\right]+\left[f_{10} D_{f}\right]$. In particular: If f_{1} is an H-map $D_{f_{1}}{ }^{\circ} f_{0} \sim f_{1} \circ D_{f_{0}}$ and if f_{0} is an H-map $D_{f_{1}}{ }^{\circ} f_{o} \approx D_{f_{1}} \circ\left(f_{0} \wedge f_{0}\right)$.

Now consider again the operation Φ associated with (R) and the following conmutative diagrams:

(D7)

$8 a_{0}$ is given by $p_{1}=8 a_{0}=S q^{1}: K(Z / 2 Z, 4 n+2) \rightarrow K(Z / 2 Z, 4 n+3)$,
$p_{2} \circ B a_{0}=S q^{4 n}: K(Z / 2 Z, 4 n+2) \rightarrow K(Z / 2 Z, 8 n+2)$.
$B \alpha_{1}=S q^{4 n+1} p_{1}^{1}+S q^{2} 。 p_{2}$, hence $\Omega B a_{0} \approx \alpha_{0}, \Omega B \alpha_{1} \sim a_{1} . \hat{E}-$ the homotopy fiber of $S q^{4 n+2}, 8 E(1,2)$ - the homotopy fiber of $B \alpha_{1}$, $\Omega B E(1,2)=E(1,2)$ as in the (04) diagram defining Φ. Loop the above diagram and observe that $\Omega \bar{E} \propto K(Z / 2 Z, 4 n+1) \times K(Z / 2 Z, 8 n+2)$ and therefore $\hat{r}=\Omega B \hat{r}: \Omega \hat{\varepsilon} \rightarrow K(Z / 2 Z, 4 n+7)$ admits a left inverse $x: K(Z / 2 Z, 4 n+1) \rightarrow \Omega \hat{E}$, $\hat{r} \circ \hat{x} \sim 1$. One can see that the choices of such inverses (also called cross sections) are in 1-1 correspondence with liftings $a_{0,1}: E(0)=X(Z / 2 Z, 4 n+1)+E(1,2)$ of diagram $D 4$ for $\$$. Thus, looping (D7) one obtains:
(D8)

If \hat{X} (any choice!) is an H-map one can use some obstruction theory to show that then \hat{x} is indeed a loop map. Hence, $\hat{\mathrm{Br}}$ admits a cross section $B \hat{X}, \overrightarrow{B r} \circ 8 \hat{x} \sim{ }^{1}{ }_{B E}(0)$. This will imply that $S q^{4 n+2}: K(2 / 2 Z, 4 n+2) \rightarrow$ $K(Z / 22,8 n+4)$ is null homotopic which is false. It follows that x is not an H-map and $D_{X}: E(0) \wedge E(0) \rightarrow \Omega \hat{E}$ is not null homotopic. Now, $[E(0) \wedge E(0)=K(Z / 2 Z, 4 n+i) \wedge K(Z / 2 Z, 4 n+1), \Omega \hat{E} \approx K(Z / 2 Z, 4 r i+1) \times K(Z / 2 Z, 8 n+2)]$ $\approx H^{4 n+1}(K(Z / 2 Z, 4 n+1) \wedge K(Z / 2 Z, 4 n+1), Z / 2 Z)+$ $K^{8 n+2}(K(Z / 2 Z, 4 n+1) \wedge K(Z / 2 Z, 4 n+1), Z / 2 Z)$.

The first summand is zero $(E(0) \wedge E(0)$ is $8 n+1$ connected) the second equals $Z / 2 Z$. Hence, the only non trivial map in $[E(0) \wedge E(0), \Omega \hat{E}]$ is given by $K(Z / 2 Z, 4 n+1) \wedge K(Z / 2 Z, 4 n+1) \xrightarrow{W_{0}} K(Z / 2 Z, 8 n+2) \xrightarrow{\hat{j}} \Omega \dot{E}$ and $0_{\hat{X}}=\hat{j}, W_{0}$ $\left(w_{0}\right.$ is also denoted by ${ }^{1} 4 n+1 \times{ }^{2}{ }^{2} 4 n+1$). By the properties of H -deviations $\left[\right.$ property (ifi)] $\left[\begin{array}{lll}0_{0, i}\end{array}\right]=\left[\begin{array}{llll}\Omega & \alpha & \circ & D_{\hat{X}}\end{array}\right]=\left[\begin{array}{llll}\Omega & \alpha & \circ & \hat{j}\end{array} \mathrm{w}_{0}\right]=\left[\begin{array}{lll}j_{1} & \circ & w_{0}\end{array}\right]$.
And again, this is true for any choice of $\infty_{0,1}$.
Now consider the (D4) diagram for Φ and fts evaluation on a primitive class $x \in H^{4 n+1}(x, z / 2 Z), x \in \operatorname{ker} S q^{4 n},\left(x \in \operatorname{ker} S q{ }^{1}\right.$ by remark a)).
(D9)

$s q^{4 n} x=0, S q^{\prime} x=0$ implies $a_{0}, x \sim *$ and \tilde{x} exists. Now, $x, r_{0}, r_{1}, j_{0}, j_{1}$ are H -maps hence:
$0=\left[D_{x}\right]=\left[D_{r_{0} \circ x}{ }^{\circ}\right]=\left[r_{0} \circ D_{x}\right]$, hence,
$D_{x}: X \rightarrow E_{0,1}$ lifts to a map $w: X \wedge X \rightarrow \Omega E(1), D_{x} \sim j_{0}$ ow.
$\left[j_{1} \circ D_{\alpha_{0,1,2}}\right]=\left[D_{j}{ }_{0} \alpha_{0,1,2}\right]=\left[D_{\alpha_{0,1}}\left(r_{0} \wedge r_{0}\right)\right]=\left[j_{1} \circ w_{0} \circ\left(r_{0} \wedge r_{0}\right]\right.$.
Now, $E(0) \wedge E(0)$ is $8 n+1$ connected, $\Lambda_{i}(\Omega E(1))=0$ for $i=8 n$,
hence $[E(0) \wedge E(0), \Omega E(1)]=0$ and consequently
$j_{1 *}:[E(0) \wedge E(0), \Omega E(2)] \rightarrow[E(0) \wedge E(0), E(1,2)]$ is infective and

$$
D_{\alpha_{0,1,2}} \sim w_{0} \circ\left(r_{0} \wedge r_{0}\right)
$$

Now, $D_{\alpha_{0,1,2}} \circ\left(D_{\tilde{x}} \wedge 1\right) \sim w_{0} \circ\left(r_{0} \wedge r_{0}\right)_{0}\left(D_{\hat{x}} \wedge 1\right)=$
$w_{0} \circ\left(r_{0} \circ D_{\tilde{x}} \wedge r_{0}\right) \approx *$ as $r_{0} \circ D_{\tilde{x}} \sim D_{x} \sim *$. Hence the conditions in property (iii) of H-deviation hold and
$\left[0_{\alpha_{0,1,2}} \tilde{x}\right]=\left[\dot{\alpha}_{0,1,2} \circ \alpha_{\tilde{x}}\right]+\left[0_{\alpha_{0,1,2}} \circ(\tilde{x} \wedge \tilde{x})\right]=\left[\alpha_{0,1,2} \circ j_{0} w\right]+$
$+\left[w_{0} \circ\left(r_{0} \wedge r_{0}\right) \circ(\hat{x} \wedge \hat{x})\right]=\left[\Omega \alpha_{1} \circ w\right]+\left[w_{0} \circ(x \wedge x)\right]$.
$\left[w_{0}\right]={ }^{1} 4 n+1{ }^{1} 4 n+1,\left[w_{0} \circ(x \wedge x)\right]=x(3) x \in H^{*}(x \wedge x, z / 2 z)$.
Now, the image of $x \otimes x$ in $H^{*}(X \times X, Z / 2 Z)$ is of algebra filtration 2 (and not of filtration = 2) as $x \otimes x=(x \otimes 1)+(1 \otimes x)$, and x is indecomposable.

On the other hand, consider $w \in[x \wedge X, \Omega E(1)] \approx$ $H^{4 n+1}(x \wedge x, Z / 2 Z)+H^{8 n}(x \wedge x, Z / 2 Z)$. For dimension reasons the image of w in $[x \times X, \Omega E(1)]$ must have algebra filtration at least 4: The image of $H^{*}(X \wedge X, Z / 2 Z) \rightarrow H^{*}(X \times X, Z / 2 Z)$ has filtration ≥ 2. As all generators in
$H^{*}(X \times X, Z / 2 Z)$ are of congruency $=1(\bmod 4)$ elements of dimension $\equiv 0$ $\bmod 4$ have filtration ≥ 4. Elements of dimension $=1 \bmod 4$ and of filtration >1 must have filtration ≥ 5.

As the Steenrod algebra preserve filtration (and $H^{*}(X \wedge X, Z / 2 Z)$) $+H^{*}(X \times X, Z / 2 Z)$ is injective [nc, $\left.0 W\right]$ has filtration ≥ 4 and consequently $\left.\left[D_{\alpha_{0,1,2}} \circ \tilde{x}^{\prime}\right] \times \theta \times \bmod F^{4} H^{*}(X \times X, z / 22)\right)$. In particular,
 $\alpha_{0,1} 0 \&(x)$. Moreover, one can use hop algebra properties of $H^{*}(X, Z / 2 Z)$ and the above evaluation of $B_{a_{0,1,2}} \circ \tilde{x}$ to conclude that the elements in $\Phi(x)$ are all generators. This is impossible for $\Phi(x) \subset H^{8 n+2}(x, z / 27)$ and there are no algebra generators in these dimensions.

The conclusion is therefore that there are no primitive elements in $H^{*}(X, Z / 2 Z)$ in the domain of ϕ. As $S q^{l} x=0$ for every $x \in H^{*}(X, Z / 2 Z)$ $S q^{4 n} x \neq 0$ for every primitive element x in $H^{4 n+1}(x, z / 2 Z)$.

Remark: There are H-spaces with this type of cohomology: If Sp is the simplectic group then $S p \approx \Omega^{2} x$. Both X and the universal covering space of $\Omega^{2} S p$ are H-spaces with cohomology of the type described in the theorem.

7. H-SPACES AND COHOMOLOGY OPERATIONS

We shall show here how the theory of cohomology operations uses H-space theory.

Consider the Aden relation
$\left(R_{1}\right) \quad S q^{2} S q^{2}+S q^{7} S q^{2} S q^{1}=0$
R_{1} induces a secondary operation ${ }^{9}$, described by the (D4) type diagram as follows:

α_{0} is given by $p_{1} \circ a_{0}=S q^{2}, p_{2} \circ a_{0}=S q^{2} S q^{1}$
α_{1} is given by $\left[\alpha_{1}\right]=\left[s q^{2} \cdot p_{1}\right]+\left[s q^{1} \circ p_{2}\right]$
$a_{1} \circ a_{0} \approx *$ by $\left(R_{1}\right)$.
Consider the composition $S q_{0}^{4 n}$ as in the last chapter
$K(Z, 4 n+1) \xrightarrow{\rho} K(Z / 2 Z, 4 n+1) \xrightarrow{\circ} \xrightarrow{4 n} K(Z / 2 Z, 8 n+1)$
where ρ is induced by the reduction $Z \rightarrow Z / 2 Z$.
$S q_{0}^{4 n}$ is in the domain of $\$_{1}$ (for $N=8 n+1$). Indeed, by (R) of the previous chapter

$$
\begin{aligned}
{\left[p_{1} \circ a_{0} \circ S q_{0}^{4 n}\right] } & =\left[p_{1} \circ \alpha_{0} \circ \cdot S q^{4 n} \circ \rho\right]=\left[S q^{2} \circ S q^{4 n} \circ \rho\right]= \\
& =\left[S q^{4 n+2} \circ p+S q^{4 n+1} \circ S q^{1} \circ p\right]
\end{aligned}
$$

Now, $S q^{4 n+2}[\rho]=0$ as p is of dimension $4 n+1$ (using the non stability condition of the steenrod algebra). $\left[S q^{1} \circ \rho\right]=0$ as $H^{4 n+2}(K(Z, 4 n+1), M)=0$ for any coefficients module M.

Consequentiy, $\left[p_{\rho_{0} \alpha_{0}} S q_{0}^{4 n}\right]=0,\left[p_{2} \circ \alpha_{0} \circ S q_{0}^{4 n}\right]=\left[S Q^{2} S q^{1}{ }_{0} S q^{4 n}{ }_{o \nu}\right]$.
Using Adem relations one has $S q^{2} S q^{1} S q^{4 n}=S q^{4 n+2} S q^{1}$ and as $S q^{1}[\rho]=0$, $\left[p_{2} \circ \alpha_{0}, S q^{4 n}\right]=0$ and $\left[S q_{0}^{4 n}\right] \in \operatorname{Ker} a_{0}$.

We shalt evaluate $\Phi_{1}\left[s q_{0}^{4 n}\right]$:
(D11)
$\hat{j}_{0}, \hat{r}_{0}, \hat{x}_{0}, \Omega \hat{E}_{0}$ are analonous to $\hat{j}, \hat{r}, \hat{x}, \Omega \hat{E}$ in (D8) and share similar properties. All spaces and maps except for \hat{x}_{0} and ε_{0} are loop spaces and loop maps.

As in the previous chapter:
$D_{a_{0}}=\left[\Omega Q_{i}^{(0)}{ }_{0} D_{\hat{x}_{0}}\right]=\left[\Omega \hat{i}^{(0)}{ }_{\circ j} j_{0} \circ \hat{W}_{0}\right]=\left[j_{0}, j^{j}, \hat{W}_{0}\right]$ where $\hat{w}_{0}=\rho(\dot{\phi} \rho \in[K(z, 4 n+1) \wedge K(z, 4 n+1), K(z / 2 z, 8 n+2)]$.

As $\alpha_{0,1,2}$ is an H-map $D_{a_{0,1,2}{ }^{\circ \alpha_{0}}}=\left[0_{0,1,2}\right] \circ D_{a_{0}}=$
 - $K(z / 22,8 n+4))$.

Using the Cartan formula (ISteenrod Epstein]) one obtains for any bifting $\hat{\alpha}_{0}$ of $\mathrm{Sq}_{0}{ }^{4 n}$:
$D_{\alpha_{0,1,2}{ }^{v \hat{a}_{0}}}=S q^{2} \hat{w}_{0}=S q^{2}(\rho 8 \rho)=S q^{2} \rho \otimes \rho+\rho \otimes S^{2}{ }^{2} \rho \quad\left(S Q^{1} \rho=0\right)$.
$u: K(z, 4 n+1) \cdot K(Z / 2 z ; 8 n+4)$ is being given algebraically by $[u]=[\rho] \cdot s q^{2}[\rho]$ (or "geometricaliy" by the composition

$$
\begin{aligned}
& K(Z, 4 n+1) \xrightarrow{\Delta} K(z, 4 n+1) \times K(z, 4 n+1) \xrightarrow{\rho \times \rho} K(z / 2 Z, 4 n+1) \times K(z / 2 Z, 4 n+1) \\
& \xrightarrow{S q^{2} \times 1} K(z / 2 Z, 4 n+3) \times K(z / 2 Z, 4 n+1) \xrightarrow{\wedge} K(z / 2 z, 4 n+3) \wedge K(z / 2 Z, 4 n+1)
\end{aligned}
$$

$\left.\xrightarrow{\otimes} K\left(Z / 2 Z, 8 n+3^{\prime}\right)\right]$ where \otimes represents the senerator of $H^{8 n+3}(K(z / 2 Z, 4 n+3) \wedge K(z / 2 Z, 4 n+1), z / 2 z=z / 2 Z)$. Then $D_{u}=S q^{2}{ }_{p}(\hat{X}) \rho+\rho \otimes \mathrm{Sq}^{2}{ }_{\rho}$ (D_{u} of a cohomology ciass u of an H-space X is the reduced coproduct in the Hopf algebra $\left.H^{*}(x, z / 2 z)\right)$.
it follows easily that if $v=\left[\alpha_{0}, 1,2^{\circ \hat{a}_{0}}\right] \in \Phi_{1}\left(S q_{0}^{4 n}\right)$ is any element $v-u$ is primitive. Now, one can show that $\hat{\alpha}_{o}$ can be chosen so that $v=u$ and $[\rho] \cdot S q^{2}[\rho] \in \phi_{1}\left(S q_{0}^{4 n}\right)$.
(Outline of proof: $\left.\begin{array}{c}\text { loopine } \\ (017)\end{array}\right)$ twice one obtains $\Omega^{2}\left(S q_{0}^{4 n}\right) \approx$ * and $\Omega^{2} \varepsilon_{0} \sim \Omega^{2} j_{0^{\circ}} z$ for some $z: K(z / 2 z, 4 n-1) \rightarrow \Omega^{3} \varepsilon(1)=K(z / 2 z, 8 n) \times K(z / 2 z, 8 n+1)$. z muṣt be an H-map as $\Omega^{2}{\hat{a_{0}}}^{\sim} \Omega^{2} j_{0^{\circ}} z$ is an H-map, $0=\left[\Omega^{2} j_{0}\right] 。 \theta_{z}$, and as $\left[K(z / 2 z, 4 n-1) \wedge K(z / 2 z, 4 n-1), \Omega^{3} E(0)=K(z / 2 z, 8 n-2)\right]=0 \quad\left(\Omega^{2} j_{0}\right)_{*}$ on $\left[K(Z / 2 Z, 4 n-1) \wedge K(Z / 2 Z, 4 n-1), \Omega^{3} E(1)\right]$ is injective, $D_{z}=0$. Any H-map between Eflenberg MacLane spaces is an r-loop map for any r and $z a \Omega^{2} \hat{z}$ for some
$\hat{z}: X(Z / 2 Z, 4 n+I) \rightarrow \Omega E(1)$. Use \hat{z} to change the homotopy
$* \sim a_{0} \circ 5 a_{0}^{4 n}$ and then, for the new a_{0} one has $\Omega^{2}\left[\alpha_{0,1,2}{ }^{\circ} \hat{a}_{0}\right]=0$, * $\sim \Omega^{2} v \approx \Omega^{2}(v-u)$ (as $\Omega^{2} u \approx *$, since $\Omega^{2} \wedge \imath *$ in the "nemetric" definition of u). But one can see that $\left.\Omega^{2}: H^{8 n+4}(K / Z, 4 n+1), z / 2 Z\right) \cdot H^{8 n+2}(K(Z, 4 n-1), z / 2 Z)$ is injective on primitives (EilenbergMoore spectral sequence) and $u \approx v$).

Consequently:
$q_{p}\left(S q_{0}^{4 n}\right)=[\rho] \circ S q^{2}[o]+i m S q^{2}+i m S q^{1}$.
Corollary I: Let $x \in H^{4 n+1}(X, Z)$ be any class, X - any space. If $S q_{0}^{4 n} x=S q^{4 n} p x=0$ then $p x \cdot S q^{2} p x=S q^{2} y_{1}+S q^{1} y_{2}$ for some $y_{1} \in H^{8 n+2}(x, z / 2 z)$, $y_{2} \in K^{8 n+3}(x, z / 2 Z)$.

Proof of I: Consider the following

$\hat{\alpha}_{0}, \alpha_{0,1,2}$ as in D_{11}, α_{0} chosen so that $\alpha_{0,1,2}{ }^{\alpha_{0}}=[p] S q^{2}[p]$. As $S q_{0}^{4 n} x=0 \quad \varepsilon_{0} 0 x=j_{0} \circ y$ for some $y: x \rightarrow \Omega E(1) \approx K(Z / 2 Z, 8 n+2) \times K(Z / 2 Z, 8 n+3)$. Put $y_{i}=\rho_{i} y$ and then $\rho x \cdot S q^{2} \rho x=\left[\alpha_{0,1,2}{ }^{\circ} \alpha_{0} \circ x\right]=\left[\Omega \alpha_{1}{ }^{\circ} y\right]=S q^{2} y_{1}+S q^{1} y_{2}$. Corollary II: There is no space X with $H^{\star}(X, Z / 2 Z)$ being the exterior algebra on x and $\operatorname{Sq}^{2} x$, dim $x=4 n+1$. (I.e. x satisfies: $H^{i}(x, z / 27) \neq 0$ oniy if $i=0,4 n+1,4 n+3,8 n+4$, and in these dimensions $H^{i}(X, Z / 2 Z) \approx Z / 2 Z$ with non zero elements $1, x, S q^{2} x$ and $x \cdot S q^{2} x$ for $i=0,4 n+1,4 n+3$ and $8 n+4$ respectively)

Proof of Corollary II: In such a space $S q_{0}^{4 n} x=0 \quad\left(\right.$ as $\left.H^{8 n+1}(x, Z / 2 Z)=0\right)$ but $0 \neq x \circ S q^{2} x=S q^{2} y_{1}+S q^{1} y_{2}$ is impossible for there are no elements in the dimensions of y_{1} and y_{2}.

Corollary 1II: ([Hilton-Whitehead]), (4.11) P.435). If $\quad, \in \pi_{4 n+1}\left(\mathrm{~S}^{4 n+1}\right)=2$ is a generator and $0 \neq \pi \in \pi_{4 n+2}\left(s^{4 n+1}\right)=2 / 22(n>0)$ then $<1, n>\neq 0$ where < > is the Whitehead product.

Proof of Corollary III. If $\langle 1, n\rangle=0$ one can form a space X which is a $s^{4 n+1}$ fibration over $s^{4 n+3}$ with n as the first attaching map, i.e.: $x \approx s^{4 n+1} \cup e^{4 n+3} \cup e^{8 n+4}, x / s^{4 n+1} \approx s^{4 n+3} \vee s^{8 n+4}$ and $s^{4 n+1}$ is the homotopy fiber of $x \rightarrow x / s^{4 n+3} \nrightarrow s^{4 n+3} \vee s^{8 n+4} \rightarrow s^{4 n+3}$. But such a space will have the cohomology of the space described in Corollary II.

8. CONCLUDING REMARKS

This is by no means the end of the road for the two theories and their partnership. A work in progress ([Harper-Zabrodsky]) attempts to generalize all that was said in chapter 7 for odd primes - p. Here one requires p-th order operations which naturally are far harder to define and evaluate.

References

J.F. Adams: On the non existence of elements of Hopf invariant one. Ann. of Math 72 (1960), 20-104.
W. Browder: 1) Torsion in H-spaces. Ann. of Math 74 (1961), 24-51.
2) On differential Hopf alaebras. Trans. Amer. Math. Soc. 107 (1963), 153-176.
3) Homology rings of groups. Amer. J. of Math. 90 (1968), 318-333.
J. Harper, A. Zabrodsky: Work in progress.
P.J. Kilton, J.H.C. Whitehead: Note on Whitehead product. Ann. of Math (2) 58 (1953), 429-442.
J. Hubbuck: 1) On homotopy commutative H-spaces, Topology 8 (1969), 119-126.
2) Generailized conomolony operatioris and h-spăces of low rank. Trans. Amer. Math Soc. 141 (1969), 335-360.
3) Pontrjagin rings I. Proceedings of the Royal Society of Edinburgh (to appear).
R. Kane: 1) The module of indecomposables for finite H -spaces. Trans. Amer. Math. Soc. 222 (1976), 303-318.
2) The BP homology of H-spaces. Trans. Amer. Math Soc. 241 (1978), 99-120.
3) The cohomology of finite H -spaces as $\mathrm{U}(\mathrm{M})$ algebras 1 . Math. Proc. Camb. Phil. Soc. 89 (1981), 473-490.
J. Lin: $\quad 1)$ Torsion in H-spaces I, II, Ann. of Math. 103 (1976), 457-487, 107 (1978), 4i-88.
2) Two torsion and the loop space conjecture. Ann. of Math (to appear).
3) Two torsion in the cohomology of finite H -spaces (to appear).
R. Mosher, M. Tangora: Cohomolony operations and appications in homotopy theory. Harper \& Row (1968):
N. Steenrod, D. Epstein: Cohomolony operations. Ann. of Math. Studies 50 (1962).
A. Zabrodsky: 1) Implications in the cohomology of H-spaces Ill. J. of Math. 14 (1970), 363-375.
2) Secondary operations in the module of indecomposables. Proc. Adv. Study Inst. on Algebraic Topology. Aarhus (1970).
3) Some relations in the mod 3 cohomology of H -spaces. Israel J. of Math. 33 (1979), 59-72.
4) Hopf spaces. North Holland Math Studies 22 (1976).

The hebrew University of Jerusalem Israel

