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POLYNOMIAL AND RELATED ALGEBRAS AS COHOMOLOGY RINGS

(REPORT ON RECENT PROGRESS)

Let p be a prime and

Larry Smith

§ 1 . Rings of Invariants as Algebras over the Steenrod

Algebra

P* = pIx1, . . .,xn!

a polynomial algebra over2Z/p . A question of basic

importance is to decide if P* can occur as the2Z/p

cohomology of a topological space .

Of course a necessáry condition for P* to be a coho-

mology ring is that it be an unstable algebra over

the Steenrod algebra (for p í 2 the generators xj

all have even degree, so the Bockstein is identically

zero and onlyV*, the algebra of Steenrod reduced

powers is relevant) . By assuming this extra structure

we can then try to either construct a space X with

P* - H*(X; a/p), or try to use higher order cohomology
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operations, and or, operations in extraordinary cohomo-

logy to prove no such space X can exist . Hindsight

now shows that in fact another approach, using ideas

from Galois theory, and invariant theory, provides a

complete answer to the realization problem for non-

modular polynomial algebras Ole say that

is non-modular if

This hindsight suggests a natural division of the

realization problem ; namelv . first construct a class

of examples of unstable polynomial algebras over the

mod p Steenrod algebra, and then worry about which

of .these can occur as cohomology rings . One elegant

way of constructing unstable algebras over the

Steenrod algebra is provided by invariant theory,

and was exploited to good advantage by Clark'and

Ewing [6] . We start with

G

p

P*,r P[x1 , . . . ,xnl

deg xi jí 0 mod 2p : i = 1,. . . .,n .)

a finite group

G -+ GL(n ; ZZ/p)

	

a faithfull representation .

Let V := Vp e¿ 7 7Z/p

	

be the representation space
n



for p and form

Pkv =

and Ov = 0

P(V) = P[V*]

the graded polynomial algebra on the dual vectjr

space V* of V, where the grading results from the

requirement :

deg v = 2 . b v E V .

The action of G can be extended to P(V) in the obvious

way and so we can form the ring of invariants

H* := P(V) G = {f E P(V)Igf = f d g E G} .

(The study of rings of invariants wasin fact an im-

portant local industry in Uttingen around the turn

of the century, so it is only natural that I should

spend a certain apprenticeship in this area .)

The Steenrod algebra acts on P(V) in a unique way

compatable with the Cartan formula and the unstability

condition, namely, via the condition

v

	

k = 0

vp : k = 1

0 otherwise

:p í42



or

v : k = 0

Sqkv=

	

v2 : k=2

	

p=2

0

	

,

	

otherwise (in particular Ov=Sq 1v=0)

Moreover since G is actiog by linear transformations

on V and raising to the pth power is linear in

characteristic p, it follows that the action of G

commutes with the action of the Steenrod algebra,

and hence H* = P(V)G inherits from P(V) the structure

of an unstable algebra over the Steenrod algebra .

Example -i-

	

D#(n) _= P(Y)GL(V)

This algebra was originally studied by Dickson who

showed

D*(n) =' P[Y1, . . .,yn]

deg yi

	

= 2(pn - pn-i )

	

1, . . .,n

Later on we will see that D*(n), which we refer to

as the Dickson algebra, plays a crucial role in the

classification of unstable polynomial algebras over

the Steenrod algebra . For now let me just mention

that the' action of the Steenrod algebra on D*(n) is



completely determined by the formulae [17] :

pj
P yk

with an analogous formula for p=2, and the fact that

the Pp
J

generate

Example 2 (Steenrod-Wilkerson) :

The polynomial algebra in question is A* := P[x4,x2p+2]

where

j-k = n-1

j = n-1 )

	

p > 2

otherwise

is the crucial formula . In [18] Steenrod verified by

tedious calculation that A* admits an unstable

	

*-

algebra structure . (N . B . When p = 3 A*= H*(BSp(2) ; 7Z/3) .)

In [20] Wilkerson observed that

where

2

is the subgroup generated by (N. B .

	

2lp := p-adic

integers)

A =

A* - P(V) G : dim ZZ/pV

G " GL(n ; 2Zp )



-1 , 0
B =

e+e -1 ,

	

1

p+1

e + e -1 E 7Lp) and the action of G on V is via mod p

reduction from 7Lp . (The group G comes from the Shepard

and Todd list [11] .)

2rr i
where e = exp{-1 (N . B . one needs to check that

Our primary interest in introducing this construction

is however to construct a large class of unstable

polynomial algebras over the Steenrod algefira .

Polynomial rings of invariants, however in characteristic

zero= were long known to arise from the canonical

representation of the Wevl group of a compact con_nected

Lie group on the universal covering space of a maximal

torus . These representations are generated by real

reflections . In [11] Shepard and Todd introduced a

complex analog of reflections, classified all the finite

groups that admit complex reflection representations

and showed by explicit calculation that the resulting

rings of invariants were polynomial algebras (over T!)

Ewing and Clark exploited the work of Shepard and Todd

by carrying the Shepard and Todd classification kicking

and screaming down to characteristic p . To be more

'specific one introduces a characteristic free definition

of complex reflections, namely "



Definition : An automorphism

is called a ps_eudó reflF, ection if 1-p has rank one .

The motivation for this is clear. If you are going to

have a reflection across a complex hyperplane, .then

the orthogonal complement of the hyperplane is a

complex line = real 2-plane, so we can also make a

"funny house mirror" by also rotating the image in

the orthogonal complement of the mirror .

One then proves [4] [5] .

Theorem (Chevalley-Bourbaki) : Let p : G-> GL(V) be

a finite dimensional representation of the finite

group G which is generated by pseudo reflections .

If IGI Y 0 mod p, where p is the characteristic of

the ground field, then

where : if

then

p : V - V

p(V) G ='

	

p[x19 . . .,xn]

deg xi	=

	

2di

	

i

	

= 1, . . .,n,

IGI .= - d1 . . . dn



Thus in the non-modular situation one can construct
lots of example of unstable polynomial algebras over the
Steenrod algebra . By utelizing their mod p reduction of
Shepard and Todd, Clark and Ewing can provide the following

complete list of irreduciable examples

where m > 1 and m = qr.

Number1

1

Rank

n

I Order

(n + 1)!

Type

[4,6, . . .,2(n + l)]

Primes

pl(n+1)!

2ak n q,m"_'n! [2m,4m, . . . -, 2(n 1)m, 2qn] p;n!,p=1 mod in
2b 2 2m [4,2m] m>2,p-=1modm
3 1 m [2m) p=_lmodm
4 2 24 [8,12] p-1mod3
5 2 72 [12,24] p-1mod3
6 2 48 [8,24] p-1mod12
7 2 144 [24,24] p-1mod12
8 2 96 [16,24] p-1mod4
9 2 192 116,48] p=_ 1mod9

10 2 288 [24,48] p=_1mod12
11 2 576 [48,481 p-1mod24
12 2 48 112,161 p-1,3mod8, p :P 3
13 2 96 [16,241 p=1mod8
14 2 144 [12,48] p-1,19mod24
15 2 288 (24,481 p-1mod24
16 2 600 [40,60] p-1mod5
17 2 1200 [40,120] p=1mod20
18 2 1800 [60,120] p-1mod15
19 . 2 3600 [120,120] p-1mod60

2 360 [24,601 p =_ 1, 4 mod 15
21 2 720 [24,1201 p - 1, 49 mod60
22 2 240 124,40] p=_1,9mod20
23 3 120 (4,12,201 p-1,4mod5
24 3 336 [8,12,281 p - 1,2,4mod7
25 648 [12,18,241 p=-- 1mod3
26 3 1296 [12,24,36] p-=lmod3
27 3 2160 [12,24,60] p-1,4mod15
28 4 1152 [4,12,16,241 p 2or3
29 4 7680 (8,16,24,40) p-lmod4, po5
30 4 14,400 [4,24,40,601 p=1,4mod5
31 4 64 " 6! [16,24,40,481 p_lmod4, p-_5
32 4 2166! [24,36,48,60] p=_1mod3
33 5 72 . 6! [8,12,20,24,36] p-1mod3
34 6 1089! [12,24,36,48,60,84) p-lmod3, p#7
35 6 72 .6! [4,10,12,16,18,24] p#2,3, or5
36 7 8 .9! [4,12,16,20,24,28,361 p ,-2,3,5, or 7
37 8 19210! 14,16,24,28,36,40,48,601 p¢ 2,3,5, or 7



If one drops the non-modular restriction, viz . DGI ¢ 0,

then simple examples,e .g .

E
P[Q1, . . .,an] = p(V) n

dim V = n,

	

En symmetric group

show that there are rings of invariants that are poly-

nomial . In fact in the strictly modular case, namely

when G is a p-group, there is a characterization of

the groups and representations [10] for which P(V) G

is polynomial . For example one has long known :

Example 3:

	

Let

UP(V) =

be the subgroup of upper triangular matrices . Then

P(V)UP( V )

	

=

	

P[z1 ,- ,zn]

deg r . . = 2i(p ;.n)

For example when n = 2 we fiad

E GL(V)

P2
=

t2
- t2-1t1

169



and the Steenrod algebra action is determined by

Thus we see that invariant theory can provide us

with examples of "nice" algebras, in particular

polynomial algebras, that are unstable algebras

over the Steenrod algebra . We should now ask which

of these occur as cohomology rings .



§ 2 . Realizing Unstable Algebras over rC * as

Cohomology Rings

In the preceeding section we saw how invariant

theory provided a large class of unstable algebras

over the Steenrod algebra, in particular an extensive

class of non-modular unstable polynomial algebras

over the Steenrod algebra . (We say that a graded

7Z/p algebra A* is non-modular if (QA*)d = 0 Y d=_ 0 mod p,

where QA* := 7Z/p OA*IA* is the module of indecomposables .)

The basic construction of spaces realizing rings of

invariants as cohomology rings is due to Clark and

Ewing [6] building on work of Holzsager [9] and

Sullivan [19]

Theorem 1 :

	

Let p : G v GL(n ; 2Z/p) be a faithfull

representation of the group G . Assume (NMC) IGI id 0 mod p

(non-modularity condition) . Then there exists a space

X(p) such that

H*(X(p) ; ZZ/p) _ p(V)G

where

	

V := V

	

= O TZ/pp
n

is the representation space of p .



Sketch of Proof :

	

Let ZLp denote the p-adic integers .

Note that the representation p lifts to a representation

p : G _+ GL(n ; Zlp )

This is because the kernals of the successive reduction

maps

q

	

: GL(n ; Zi/pk)

	

--

	

GL(n ; ZL/Pk-1 )

	

:

	

k > 1

are all p-groups, so the obstruction to lifting a
2z/pk-1 representation of G over q to a ZL/pk re-

presentation all lie in

H1 (G ; ker q) = 0

because ker q is a p-group . Let

D'

	

=

	

-p =' 9 Tlp
n

be the representation space of p. The operation of
N

G on V induces by . functorality an operation of G

on the Eilenberg-MacLane space K(V,2), and WOLOG

we may suppose this action is free . Set

%(V;G) := K(V,2)/G ,

so that we have a regular covering



Now

n : K(V,2) ~ X(V ;G) .

K(V,2) ti [X (E P(-) ]^
n p

where [19]P denotes the p-adic completion . Thus

where

H*(K(V ;2)) =' H*([X T P(-) ] ) =' H*(X C P(-) )
n p n

=' P(V)

H*( ) := H*( ; a/p)

Moreover one easily sees that the action of G on

H2(K(V ;2)) induced by that on K(V;2) coincides with

the contragradient representation V* of p . Since

p + IGI

	

a transfer / spectral sequence argument shows

H*(X(V ;G))

	

=

	

P(V)G

as was to be shown . ['- ,

N.B .

	

Here, and throughout, H*( ) = H*( , 71/p ) denotes

cohomology with coefficients in the field of p elements

unless explicitely stated to the contrary .



Remark :

	

It is worthwhile noting that there is a

quite different construction of a space R(V';G) with

H*(%(V ;G)) =' P(V) G . The advantages gained with this

construction is that the resulting space 7(V;G) is

simply connected, and the construction is applicable

in a more general context . The construction runs as

follows . Begin as before with K(V;2) . Since K(V;2)

is a p-complete loop space it follows by a remark of

George Cooke [7] that the p-adic integers a
p

act on

K(V ;2) . Thus in .fact the p-adic group ring=p(G) acts

on K(7;2) . In ap(G) there is the idempotent

_, g
g E G

and moráover --ince p -¡ G

	

vn~ has

and

Im{e : P(V) b F

	

=

	

P(V)G .

Now given a p-complete loop space and en idempotent

one can apply the Eckmann-Hilton dual of en old

construction of George Cooke and myself [8] to

construct a space K(V ;2) e = : 7(V ;G) . Using the facts

that

n2(K(V ;2))

	

--~ H2(K(V ;2) ; a)

H*(K(V ; 2) ; a/p) = P(V)



one readily shows in this case that

H*(X(V ;G) ; ZZ/p) ='

	

Im1 e

	

: P(V) .̀J } = P(V)G

At the Workshop in Barcelong G . Mislin, A . Zabrodsky

and I constructed a proof of :

Prop . (MSZ) :

	

7(V;G) is the homotopy equivalent to

the Bousfield - Kan p-completion of X(V G) .

Proof :

	

By construction one has a diagram of solid

arrows

3E(V ;G) = lim{K(V"" ;2) --
e
> K(d;2) >. . .

"
-4

1 ~~

X(V ;G)

inducing the dotted map ep . Because 7(V,G) is p-complete

cp factors through the p-completion of X(V;G) . Moreover

since cp* is a 7Z/p homology isomorphism the.same is

true of the induced map

7C(V ;G) - [X(V,G)]

and the result follows . 0



In any case if we start with :

then H* := P(V) G is a polynomial algebra over the

Steenrod algebra to be found in the list compiled

by Clark and Ewing and moreover there is a space X

such that H*(X ;7Z/p) = H* .

Let me summarize the preceeding discussion in the

following result :

Theorem 2 (Clark-Ewing) :

	

Let p : G --> GL(n ;71/p)

be generated by pseudo reflections and assume

(NMC)

	

p + IGI

Then

p : G y GL(n ; 7Z/p)

Algebraic Part :

	

There is a representation GvGL(n ;C)

of G as a complex pseudo reflection group, such that

the polynomial algebras

P(O
e)G

	

P(© 2Z/P)
G

n

	

n

have the same type .



Topological Part :

	

There exista a space X(V ;G)

such that H*(X(V ;G)) = P(V) G ; V = O 7Z/p the represen-
n

tation space of p .

Remarks :

(1)

	

The existence of a complex "lifting" of a

given mod p representation can be explained as follows .

We have already seen that (NMC) allows us to construct

a p-adic lifting G < GL(n ;7lp ) . But G being a finite

group means that this representation is already defined

in a finite extension of Q (simply adjoin enough roots

of unity), and hence over 0 .

(2)

	

In addition Clark and Ewing determine the character

fields (N .B . Since they prove that the Schur index is

always 1 it doesn't matter which definition of "character

field" one is using) of the complex hyperplane groups

in the Shepard-Todd list . Thus starting from a complex

hyperplane group one can read off over which finite

fields 7Z/p it admita (pseudo reflection) representations .

Along with the question of realizing P(V) G as a cohomo-

logy ring, we should also look at the homotopy classi-

fication of mapa between such spaces . The construction

offered by Clark and Elaing delivers a rather explicit

space X(V ;G) and one can prove : (see [14])



(2) the Steenrod algebra action on A* lifts to an

unstable action on P[xi, . . .,xn], and

(3) P[y1, . . .,yn] is closed under this lifted action .

Then there exists a topological space A such that

H*(A ; ZZ/p) _ A*

The construction of Clark and Ewing provides many

examples of spaces whose a/p cohomology is a poly-

nomial algebra . Por an odd prime p another very natural

question to study is that of realizing symmetric

algebras i.e ., free commutative algebras as cohomology

rings . Armed with a good realization theorem for

symmetric algebras, and a corresponding classification

of maps, one could try to mimic with these spaces as

building blocks the upside down Postnikov tower

(Sullivan's minimal model construction) to get more

complete information about "Im{H* : Top - Un Al

The minute one starts to talk about symmetric algebras,

the Bockstein behaviour becomes important . Even in the

simpelest case viz

and

P[x] ® E[Y]

	

:

	

B Y ~ 0

P[u] 0 E[v]

	

8 : u = 0



Pron . 3 :

	

With the notations preceeding

where

[X(V',G'),X(V11,G")] = Morpf((V',GT),(V",G"))

cP : VI - Vil
MOrpf((V',G'),(V",G")) :_

	

(CPri)

	

1 : Gl -- f,"
and

CP(g'v , )= $(g')CP(v')
V g'

	

E G',

	

v'

	

E V'

This classification of maps comes in handy when one

trys .to use the spaces X(X ;G) as "building blocks" to

construct spaces realizing other interesting unstable

algebras over the Steenrod algebra as cohomology rings .

Here [12] for example is a sample result in this direction.

(This result has also been obtained independently by

Howard Hiller .)

Prop. 4 : Let

A* = P[x1, . . .,xn]/(Y11 . . .,yn)

be a graded complete intersection, that is an unstable

algebra over the Steenrod algebra . Assume that :
n

	

n
(1)

	

(_T deg xi )(7F deg Yi) í G(p) ;
i=1 i=1



the two examples behave very differently, as Aguadé

has shown . As a sample of his results one has [3] .

Pro-p . 5 : (J . Aguadé)

	

Suppose p en odd prime, and

is an unstable algebra over the Steenrod algebra .

Let 2d = : deg x then dip-1 and all such S* occur as

cohomology rings .

Sketch of Proof :

	

To see that dlp-1 we write (3y = xr .

There is the Adam relation

so applying this to y gives

where Pdry = 0 by unstability . But this says P1 acts

nontrivially on S* do dIp-1 .

To construct the examples where Py = x Aguadé proceeds

as follows . Let C E 7l/px = 2Z/p-1 be a generator, and

S* = E[y] 0 P[x]

P1. =dr-1 = ( dr - 1 )

	

Pdr + Pdr,

p1 p Pdr-1 y =

	

(dr - 1)P Pdry

	

+

	

PdrPy

= 0 + pdr (xr ) = xpr



set §

	

:= ep_1/d . Then e induces an action of 7Z/d on

K%Z/p ;1) = B 7Z/p . Let Y

	

:= K(E/p ;1) /g be the orbit

space . One then has (where deg u = 1)

H* (Y ; 2Z/p) = H*(BTl/p) 1	=

	

(E[u] ® P[Pu])1

-

	

E(u(p u) d-1 )

	

0

	

P(([3u) d)

as required .

Recalling how the construction of Clark and Ewing

is the many variable generalization of the one variable

construction of Holzsager [9] and Sullivan [19] one

is tempted to try to proceed analogously starting

with Aguadé's construction to prove :

Prop . 6 : Suppose

S* -

	

E(y1 , . . . . yn ) 0 P(Py1, . . .,pyn)

is an unstable algebra oven the Steenrod algebra where

n
(NMC)

	

71 - deg Pyi i 0(p) .
i=1

Then there exists a space Y such that H*(Y ;7Z/p) 2 S* .



The idea of the construction would be to start with

p

	

: GyGL(n ; 2Z/p) . Let V := ® a/p be the representation
n

space of p . The action of G on V induces a free action

on BV = K(V;1) so we can form the orbit space

Y := BV/G r B(G xp V) . As in Proposition (1), if

p + IGI

	

one obtains

H*(Y ; a/p) _ H*(BV ; a/p) G N [E(V) 0 P(PV) ]G

However it is almost never the case that

[E(V) ® P(PVf N E(Y) 0 P(PY)

where P(HY) N P(8V)G, (see for example, [4 ; Ex]) even

in the nicest uses . Cor example, pick an enoi-ous

prime p . Let E l act on V := ®a/p via the adjoint
n

representation . Then one sees the obvious map

is-simply not even monic . To

v1 , . . . .vn for V and recall

But

cp

	

: E(a1, . . .,an) 0 P(Pa1,".,wn) -.

	

P(V) G

P(a1, . . .,an)

0 E E(V)

see this choose a basas

v1 + . . . + vñ =

v2 + . . . + vñ =



so p(a19 . . .Pan) E ker cp . Thus a proof of Prop_ 6 must

próceed alóng other lines . The proof in [13] runs'more

or less as follows:

Begin as before wíth G < GL(V) . Let

*k
: X(V ;G) - X(V ;G)

be the map induced by the morphism (recall Prop . 3)

Xk

	

:

	

(V,G)

	

_

	

(V,G)I ak(v) = kv, Xkg
= g .

Form the fiber square (A := diagonal map)

Yk X

(1,*k)
X, X x X

X :_ (V,G)

defining Yk . Then for k = p+1 one finds

where

H*(Yp+ 11 a/P) = E(Y) 0 P(PY)

P(PY) = POV)G .

So for all the examples of rings of invariants, and

related rings, which we have shown to occur as cohomo-

logy rings have satisfied the non modularity condition .



We have however, at least as algebra over the Steenrod

algebra, the other ` extreme case of P(V)
Up(V) , etc,

namely P(V) G where G is a p-group . The following

result settles the realization question for these

modular rings of invariants in the negative [15] .

Prop.

	

Let p be an odd prime and

	

G < GL(n ; 7L/p)

a p-group such that

is a polynomial algebra . Then R* cannot arise as the

7l/p cohomology of a space .

Thus a polynomial algebra

alwhere deg xi = 2p , i = 1, . . .,n, and at least one al

positive, that occurs as a ring of invariants can never

be the cohomology algebra of a space . Therefore we

cannot separate the realization question into a non-

modular theory, but must move from a non-modular theory

to a "mixed" theory . A prototype example here is the

Dickson algebra

184

R* := P(V)
G

; V = O Tl/p
n

P*

	

.= P(x1 , . . . .xn)

D*(n) := p(V)GL(V),j P[Y1, . . .,yn]

deg yi = 2pn - 2pn-i ;

	

i = 1, . . .,n .



One reason for singling out D*(n) for special study

is the following result proved jointly with Bob Switzer,

in en attempt to clarify the work of Adams and Wilkerson

to be discussed in the next section .

Prop . 8 (joint with R .M . Switzer) :

	

Let H* E UnId/V *

( := Unstable Integral Domein over the Steenrod algebra.)

ANASC hat H* ti P(V) G for some G < GL(V), where deg v = 2

d v E V, is that H* be a finite algebraic extension in

UnId/,R* of D*(n) .

Finally the realization question for D*(n) is settled

by [17]

Prop.

	

(joint with R.M . Switzer) :

	

ANASC that D*(n)

occur as a cohomology algebra is :

or

n=2 and p<3.

N .B .

	

For n = 1 the example are due to Holszager and

Sullivan . For n = 2 they are all classical, viz.,

(CP(W), BSU(3) when p = 2

The case P(V) GL(2 ;ZZ/3) has recently been realizad

by A . Zabrodsky [23] .



§ 4 . Classification ; the Theorem of Adams arad Wilkerson

So for we have seen how invariant theory can help us

to construct nice examples of algebras H* E UnAl/-P*,

which in turra can often be realized as cohomology rings .

Invariant theory can also be used to classify objects

in H* E UnAl/i5~* . Here is the most exciting result ora

the realization problem for polynomial algebras since

J.F . Adams settled the one variable case mod 2 .

Theorem 10 : (J .F . Adams arad C .W . Wilkerson) : Let

H* u P[x1 , . . . ,xn] E UnAl/ fin* arad suppose

where

2dj

	

:=

	

deg xj	j

	

=

	

1, . . .,n

	

.

Then there exists a G

	

p > GL(n ;71/p) of order d1 . . .dn

generated by pseudo reflections such that H* ni P(V) G

where V := ©7Z/p is the representation space of p .
n

(Thus H* is in the Clark-Ewing list)

Corv 11 "

(a)

	

ANASC

	

that a polynomial algebra over 7Z/p

186

H* =

	

p[x1 ,�,xn] ; deg xi = 2di ; i = 1, . . .,n



be the 7L/p cohomology ring of a space is that H* admit

en unstable action of the mod p Steenrod algebra .

(b)

	

If

	

-

	

H* w P[x1 , . . . .xn ] E UnAl/9*

deg xi j 0 (2p) ,	i = 1, . . .,n

occurs as a cohomology ring then it occurs as the

cohomology of a Clárk-hlwing space .

Recently Bob Switzer and I have found that by rearranging

the ideas of Adams and Wilkerson one can achieve a much

shorter proof of their main theorem than that given in

their Annals paper [2] . Let me try to sketch this new

arrangement . As in [2 ] we will base our proof on the

theory ofalgebraic extensions-Galois theory in the category

UnId/B * =

	

{I* E UnAl/19*II* is a graded integral domaini

Here then is a breif sketch of some of the main ideas .

Definition :

	

An injective morphism q) : A*-+ B* in

UnIdPA *

	

is called an algebráic extension if every

element of B* is a root of a polynomial equation with

coefficients in A* .

N .B .

	

A bit of care must be taken with the grading here.

If b E B2d is a root of a polynomial p(X)'E A*[X],

where X has degree 2dt then we call b :



The following result shows that UnId/Y'# contains

algebraically closed objects [22]

AlgebraicClosure Theorem (Serre-Wilkerson) ".

	

If

P*-- P[t1, . . .,tn] is en unstable polynomial algebra

over 0 * on 2 dimensional generators than P* is

algebraically closed in UnId/G) * .

Wilkerson [21] also showed how to extend the action of

119 * from an A* E UnId/9 * to its graded field of

fractions F(A*), viz, if

188

se arableP-_----

integrál

etc .

Pg . A*

p(X) can be chosen separable

a p(X) can be chosen with lead

coefficient 1

p

is the giant reduced power and a/b E F(A#), then

P (a)
p1 (b) _

	

E F(A* )[[g]]
g

This makes sense as a power series in g because

P(b) = 1 + higher terms .
5

A#[[g ]] ( p1 (a) =

	

Y:
pk(a)gk

k=o

N .B . :	The graded field of fractions is graded over ZZ,

iee.contains elements of negative degrees. This we agree

to allow, but it means we loose the unstability con-



condition, which because of

x=Pox=0 : degx<0

implies unstable rp* algebras are non-negatively graded .

Wilkerson further proves :

Separable Fxtension Lemma (Wilkerson) :

	

Let K* be a

graded field over'9 * and let L* > K*

	

be a separable

field extension . Then there exists a unique extension

to L* of the 6) * algebra structure on K* .

The entire theory devolves in a crucial manner around

derivations . In particular the primitive elements

ti

	

2pi-2

	

P 1

	

.= P1
P E

	

= ,li+1P

	

._ [Pp P ]

which act as derivations, together with the special

derivation P0o defined by

PAO (a)
(deg a) - a

	

p :1 2

(2 deg a)

	

p = 2

play an important role . Several Lemmas of Adams and

Wilkerson concerning these derivations can be summarized

as follows [2 ; § 5] :



A-Theorem (Adams-Wilkerson) :

	

Suppose H* E UnId/G* has

finite transcendence degree over 7l/p . Then there exists

an integer n > 0 with the following property :

A .

(p)

	

any n-distinct derivations P 1~, . . .,P in are linearly

independent over H* and any n+1 derivations are linearly

dependent .

Thus there exists elements ho, . . . .hn E H*, all non-zero,

such that

hoP o + . . .+ hnPAn = 0

vanishes identically on H* .

Finally the following classical result is usefull in

establishing the algebraic independence of elements .

a-Lemma :

	

Suppose A*--, B* is an inclusion of graded

algebras over ZL/p and 0l,..-pan : A* - B* are deri

vations . If a l , . . .,an E A* satisfy

det(a iaj ) í 0

then al, . . .,an are algebraically independent .



Proof of the Main Theorem (joint with R.M . Switzer) :

	

Let

n
¿(X) := h0X + hi xp + . . .+ hnXp E H*[X]

be the magic polynomial, i.e .

a

	

:= h0PA0
+ . . .+ hnpán

is the derivation of the p-Theorem (magic differential) .

Regard A(X) as a polynomial over F(H*) := field of fractions

of H* and form E* > F(H*) the splitting field of p(X)

over F(H*) . Since

¿(X) = ho Y 0 .
X=o

o(X) is separable and thus E* > F(H*) is a separable

extension . By the separable extension lemma there is a

unique B * algebra structure on E* extending the given

structure on F(H*) . Let

V

	

:=

	

Iv E

	

El im v)

	

= 0} .

Because ¿(X) is additive, V is a vector space . In fact

V is n-dimensional, consisting of precisely the pn roots

of ¿(X) . Thus

A (X)

	

=

	

hn	77(X-v)
v E V



We collect some facts about V [2; § 51 .

(1)

	

If

	

t1 , . . . . tn	isa 7l/p basis for V then t 1 , ...,tn

are algebraically independent .

(2)

	

The elements of V are unstable, so

(3)

	

the action of IP *

	

on

	

P*

	

commutes with the action

of GL(n ; IFp ), so

P* := P[t1, . . .ptn] E UnId/f> *

D*(n)

	

:= P*
GL(n ;If

p
)
< P* < E*

are inclusions in UnId/19*

(4)

	

every x E P* is integral over H* .

Let A* be the algebra obtained from H* by adjoining

t1, . . . ,tn . Theh A* E UnId/iq * and we have the inclusions

H* < A* > P* > D*(n) .

Suppose that we knew that A* > D*(n) were an algebraic

extension. Then A* > P* is algebraic . But by the algebraic

closure theorem P* is algebraically closed and hence

A* = P* whence H* < A* = P* is a separable algebraic

extension. Consider the Galois group G := Gal(E* > F(H*)) .



Clearly G < GL(n ;IFp ) because the elements of G define

linear transformations of V and an automorphism of E*

fixing F(H*) is uniquely determined by its action on V .

Now we claim

H* P*G = IFP
[t1# . . .,tniG

To see this note the inclusion H* < P*G is clear . On the

other hand because E* > F(H*) is a Galois extension

every x E P*G lies in F(H*) . Furthermore x is integrál

over H* by (4) above . H* is however a polynomial algebra,

hence integrally closed, and thus x E H*, i .e . P*G < H*

so Fr follows .

Hence our problem reduces to showing

A*

	

>

	

D*(n)

is an algebraic extension . In fact we show that it is an

integral extension by an argument lifted from Adams and

Wilkerson [2] . First of all recal1 D*(n) _ IFp[y,, . . .lyn] .
Let (y1, . . .,yn) denote the ideal of A* generated by

y1' . . .,yn .

	

If we can show that A*/(y1, . . . . yn ) is finite

dimensional as a vector space overIFp , then in fact an

easy argument via induction over the grading, shows that

every element of A* is integral over D*(n) . To see that



A*/(y1, . . . . yn) is finite dimensional overIFp we proceed

as follows . Let z E A2d with d q( 0 mod p . Then [2 ; 2.3]

there is an element b E -9 * such that

Now the derivation

is

Pen(bz)

	

=
zpn

ynPeo + yn-1P l+ . . .+ y1Pen-1 + pen

and hence vanishes on E* and therefore certainly on .

A* < E* . Thus we have

zpn = Pen (bz) = -ynPen(bz)-

	

y1Pen-l (bz) E (y1, ...,yn)

By construction A* is a finitely generatedEp algebra,

with generators al , . . . y am

	

whose degrees are relatively

prime to p . By the preceeding calculation the natural

map

is surjective . But

IFp[al, . . .,am] y

(ap ., . . . .am)

IFp[al, . . . . am]/(ap

	

, . . .,

	

am)

is visably finite dimensional .
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A*
/(yl, . . .,yn)
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