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H-SPACES OF SELF-EQUIVALENCES OF FIBRATIONS

Renzo A. Piccinini

Let Glp) be the space of all equivariamt automoarphisms of a principal G-
bundle p : E - B. topologlzed as a subspace ol MI(E.E). the space o! maps
from £ to ltseit.Compositlon of auvtomorphisms gives Gi(p) a group structure and
Indeed. G(p) |s a topological group. The iopologlcal group Gip} has been used
quite frequently In connectlon with certain problems of Theoretical Physlcs: for
example, it appears in the Feynman approach to Quantum Mechanics as the group
of all gauge wansformations of a smooth principal G-bundle p. with G a Le
group. In these problems, It is necessary on several occasions 1o know more
about the space Glp) or about cerlain of s homoilopy groups (see (8D, Ciearly,
il p ts a ftrivial G-bundle over & space B. then Gfi} is homecmorphic to theg
space M (B.G). In general. I f€Q{p) and x€E£. because G acts effectively and
transitively on llbres there is a unigue g&EG such that '.!m=gx. This glves rise to
a homeomorphism 8 trom G{p) to the space MC (.G} of all maps » from E to
G. such that olgx}=gokig | lor all g €6 and all x€E. in practice. a difficult
space to ceal with. Note that H G is abetian. 8 : Gipi® M(B.G) [6l. Thls Is a
peatter resull but. o course, It is too limited. A more general result was obtained
by D.H.Gottlleb In 1972 [5): If BG is Ihe classilying space for G, k:8 ~ BG s
the classifying map tor the principal G-bundie p @ E - B and MB.BG k) Is the

path~component of M (B .BG) cantaining k. than
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Proposition 1-Q{p) - IV (B .BG (k) («w = weaak homotopy equivalence).

As for other iypes of (ibratlons., probably the first result along the lines of
Proposition | was also obtained by Gottlisb [4]. To describe it. we must recall the
following classificatlon thsorem.due to A.Dold:"let e @) be the set of all flbre-
homotopy equivalence classes of Hurewlcz f{lbrallons over a path-connected CW-
complex 8 and with fibres of the homolopy lype of a flxed space F: then, thers
Is a CW-complex B8_ such that the functors EF anad { .8_) of CW Into Sei are
naturally equivalent® {(here [X.Y} represents the sel of ail homotopy classes of
maps from X Into ¥ ! see [3L Corollary 16.9).

Propositlon 2-if p : E - B Is a Hurewicz libration with fibre F, B Is &

path-connected CW-complex end k . 8 - Bw is the classifying map, the

space G(p) of all seif-fibre homotopy equivalences of p Is sugh that

I'I'O(G(p)) e HO(QM B.8_ k).

The purpose ol -this nole Is to report results of ‘a joint work with P.Booth.
P.Heath and C.Morgan. concerning the study - in & wunilied fashion - of the’
homotopy type and cartain homotopy groups of the space G(p). whera p is an

object of an arblirary category of HNbrations over CW-complexgs, Proofs will be
glven ealsgwhera.

The maln examples of categories ol tibralions wé have In mind are the iol-
lowing (note that all fibratlons considered have a path-connected CW-complex as a-
base space).

0} Dold flbratlons with flbres of the homotopy wpe of a tixed space F {(we dellne

a Dold fibration as a flbratlon satistylng the Weak Covaring Homotopy Pro-
perty [2]):

() Hurewicz fibrations with fibres of the homolopy type of a flxed space F;
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(M princlpal G-bundles. G a topological pgroup:

(vl smooth principal G-bundles, G a Lie group:

IV] vector bundles with tibres isomorphle to a flxed vector space V.

[Vli fibre bundles with flbre F, corresponding to a glven effective action ol a
compact topeloglcat group G

[vll) principal H-fibratlons with fibres of the homotopy typea of a strictly assoclative
H-space with strict identity (see (}]. Ex.3}.

All these categorles have In common the fact that each has a Universal Oblect

€_.p, .81 from which one deduces a Ctassification Theorem of Dold’s type;

turthermore. In each one of these examples. (E_.p_.8_ ) also satisties another

type of universalily which we shafl describe later on and which plays a crucial

role in our conslderaillons.

In order 1o unlfy these ideas we bepgln by taking & calegory F with a dis-
tingulshed oblect £ and a falthful underlying space ftunctor F - K. whers K Is the
convenient category of k—spaces, that is to say, K [s the image of Top under the
functor k : Top — Top - called the k-ificetion {unctor -~ obtalned as a lelt
Kan-extension of the Imbedding C - Top over ltself, where C ls the catagory of
all compact HausdorM spaces.lt is also assumed that for any lwo objects X.YEF,
F(X.Y} is non empty . We then define an F-space as a triple (E.p.B) such that
8 is a CW-complex, E€K , p!E - B Is & map in K and finally. for evely b€

= ') € F. An F-map U

B. E A gV:(E.p,B) ~ (E',p',B') is given by two maps

b 1
fl:E.- £’ !O:B = B’ such that p‘!]=!°p and tha restriction of r1 to any

Hbre E, is & morphtsm of F.. 1 8 = 8° and 10=IB. an F-map (t].lBJ Is sald

b
to be an F-map over B. An F-homotopy is an F-map (H.h such that
pH=hgX)l. I A = 8 and h is the projection map. we have tha notion of F-
hometopy over B. An F-map g:X —~ E over 8 Is an F -homotopy equivaience il

thare exists an F-map g':E - X over B such that gg'and g'gare. F-homotopic
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over B 10 the respective identity maps. We now once more restrict the category F

by requiring that every morphlsm of F Is an F-homotopy equivalence over a point.

Wa ares now- prepared to define Jormally what we Iniend for a category of

{ibrations  relalively lo a category F.

Definltlon -A category of f(fbratrons s a non-empty, full subcalegory A aof the

category ol F-spaces and F-maps such ihat

1] F.ecXeA ., where X is a singieton space and ¢ Is the constant map.

(21 i EpBIEAAECW and 1:A ~ 8 Is a map. the puflback (rx(E). p'.A)EA :
(3] A is clesed undar F-isomorphlsms over a fixed base space;

[4] W (E,p,B) €A, there is a numerable open covering ((U) of B such that, for

every U e (W) pip < U s F-homotopy equlvalant 10 priUxF - U,

As  examples of calegories of tibrations we quote the catggorles il] to (v
described earlier; we limlt ourseives to deflne the category F in each case. For
the e_v_amp-}es numbered {I] and [I. F Is the calegory of ail spaces of the same
homotopy type as F and all homolopy equivaiences between these spaces. For [
and [IVl. F is the category whose oblects are right G-spaces Y such that, for all
yeY, the function )'—:G- - ¥ deflned by ;(g)=yg Is a homeomorphism; its mor-
phisms are G-maps. For IVl. F consists of all vactor spaces isomorphlc 1o V and
all ‘lIsomarphisms belween such wvector spaces. For [VI), we first assume that G
acts elfectively on the left of F then.- we detine F by taking for Hs objects alt
pairs (X ¥} such that X Is a left G-space and ¥:F = X is a homeomorphism of

tett G-spaces; the set of morphlsms from .y to &X'.¥") is glven by

Fc(x,rj.tx'.n:trqr" 1g€G)
with the obvious operation of composition. Finally, for [V, F Is simllar to that of

[thy <[1).Example 3).

We contlnue as in [1] by defining. tor iwo arbltrary F-spaces X.g.A) and
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Y.r.8) , the functional space

X¥XY = U F(xX_ .Y, )}
€A &b
pre8

and the function
qgXr XXy -~ ﬁ\xB.quar(r:xIl - YbJ = {a.b).

The topology of XKY is given as toliows.Let ¥' = vu(el be the k-ification of the
tepoiogy defined by regquiring that € s closed in ¥t either C=Y' or it ¢ Is
closed In Y. Now deflne the function | X%y -I MU(.Y+) by j{tXx)= filx) )f xe
Xa..f :Xa - Yb and {{/}ux)==  otherwise, W(X.Y+} ts endowad with the compact
opan topology). Then we gilve X%Y the k-lification ot the Initlal topeoiogy with respect
o f and g¥r. In general. XY .g¥r AXB} Is not an F-space: however, the fallow-
ing hoids.

Theoram 1-if (X,q A} (Y.r,B} €A then, qlr  XX%Y -~ AX8 {s a Dold flbration.

As we heve mentloned belore. each one of the categorles described In the
oxamples [i} to VIl has a (resluniversal object (.Em.pm.ﬂw).[t alse happens that in
these examples. the Dold fibration (FRE_.c¥p_ .XxB_) has a weakly contractible
total space (i.e.. for evary non-negative integer n. rrn(FlEthJ: in this case, we
say that {Em.pm.BQ) is Weakly Contractible Universai. Ws wish ta observe. at this
point. that it a category of flbrations has & weakly contractible universal oblect.
then such oblect is aise frae universal; however fne converse Is not necessarily

truea ({1]. Theorem 3.2 and Example 4).

For & given object (E.p.B) of the category of fibrations A Ist G{p) be the
space of ali F-homotopy aqulvaleﬁces ot p Into itselt ovar 8. topologlzed as a
subspace of M(E£,E); nolice that the compasition of F-maps of p intc p over B
gives te Q(p)} a continuous product under which Gip) bescomes an asscclative H-

space with a strict two—sided unit defined by the identlty morphism of p Into itself
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~ over 8.
Theorem 2-LatA be & category of librations with & wegkly contractible object
(E_.p,-E, and jet (E.p.B} be an arblirary eiement of A suppose that

k:8 = 8 is & classifying map tor (E,p,B). Then, there exists an H-map
6:NM@E.8 k) - Gp)

which is a weak homolopy equivalence.

Observe that the Dolg fibratlon FRE, -~ B8, has tihre FRF and so, if F&F
has the homotopy lype of & CW-complex. FU#E_ Is contractible: this, in turn. wlil
Impty that the H-map 8 of Thecrem 2 Is & homotepy equivaience. This s pre-

cisely the slwation of Example [IV], since GXG Is homeomotphic 10 G.

From now on. we shall assume tor tachnical reasons that (E.p.8) Is an
object of the category of flbrations A which satisties a strenghtensd “verston of
axiom [4) in the definition ot a category of fbratlons, implylng that H (X.q.A} ang
{¥.r,8) are ‘objects of A then, XAY.g¥#r AXB) is a Hurewicz fibratlon. turthermore,
we suppose that A has a weakly contractible universal object (E_.p_.B ). This is
the case of examples [} and (V). Let F be the tibre of (E.p.B) over & point Xe
B8 and define G]Qo) lo be the subspace of Gip) of all F-homotopy equivalences
ot p over lself over B which extend the Identity map IF:F - F, Ths space
G‘l{p) has proved itsedf very uselul in cerlain problems of Mathematical Physlcs.,
where (E.,p.B)} Is &n object of the category (V] (see [8. ‘We wish to observe
the! the relation Dbelwesn G‘go) and @3} 1s desper than Just the relation

‘subspace-space®. in tact,

Theorem S-There is & Hurewicz fibration G@) ~ FUF with fibre Q') over

s

A result similar to Theorem 2 holds ot a‘(m: in what follows Mn(B,Bw:k)

denotes the space ot all based maps trom & 1o 8 .
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Thaorem 4-There s an H-map
8:0M B.B_k) ~ Glfp)

which s a weak homotopy equivalence (or & strong homotopy equivelence If

FXE_ Is contractible}.

Next. consider the Hurewicz fibration FAE_ - 8 (with tibre FXF over
b=k(ep_ and its long homotopy sequence

s {UFXEE Y ~08 ~FEF-FXE_ -8 !
because FEE_ Is weakly contractible,
6:08,_ -~ FAF

Is & weak homotopy equivalence (strong homolopy equivalence if FEE_ is centrac—
tible). This tact Is uséd to prova the lollowing.

Theorem 5— Suppose that gi path-components of M8 .Bm) (resp.M,. 8 .Bm))

have the same homotopy lype. Then

Gp) ~ M (B FXF} (rssp.GI{p} i M, B .FXFY

(strong homotopy equivalence Il FXE_ is contractible;; furthermore, these

weak ({strong} equivalences preserve the H-s5pace stuctures.

in connection 1o the previous theorem the reader shoutd recall that If 8 s
an H-cogroup (e.g..B Is & suspension space) then the hypothesis of Theorem 5
hold for M WB.B ) and if 8, Is an H-group <e.g..§m = 8Y.B0O .BSp) then thesa

hypethests hold for both M(B.8_) and M (B.8_).
Theorem &6—if FAF is {n-1}-gonnected n positive} and

dim8 = m<2n. then tor 0 <}/ <2n-m

rr;.(a(pn o n:.(M 8, FEF:ch

1 .
nAG ) w M, B FRFiC)
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where ¢ : B - F¥XF Is the constant map lo ]F'
We complete these notes with & tew computations. It {E.p.8B) Is & smooth
principal Sp(l)-bundle and B is & manltold of dimension m € 5. since

Sp(l) & Ss ang Sp{)XSp () = Sp(l), theorem & shows that If 0 € § < &m,
!:rf(G(p)) " rr;.{M(B.Spﬂ))

and
T«'j{G](p)) & 7ML (B.5p ).

If p Is a smooth principal G-bundle over & sph&re Sn. n >0, then

ale) & M, "6
and thus the homotopy groups ot G‘(p) are totally determined by the homotopy
groups of G, sfnée. tor every 20, “:'{G](p)}eﬂf-m{e)‘ If p is a smooth princi-
pai U-bundle over & manilold 8, then Glp)r=M(E.U} and G’(p)-M‘{B.U}; I In

particular, 8=s" ang n>0. then

0.Hf [=aven.n=sven 2 At f=even ,n=odd

¥
r:;.(G f,o))err“nw)l! or
2 it j=odd .n=even 0./} j=odd .n=odd

On the other hand, Theorem 2.2 of {7] shows that M(Sn.U)EUXM’(Sﬂ,U) and so.

Q. it i=even .n=aven Z .H}=even .n=0dd
n (Qpne or

2 &2 . j=0dd.n=even Z i }=0dd.n=0dd

i

Finally, we recall from the Milnor construction of unlversal bundies that- sach
countable. connected CW-complex X can be viewed as the base space of a
universsl G-bundle (G is constructed from X): let us take X to be S° and ot
k:s* < s* be a gegres Kk tunction and tet (,.p,.5") be the corresponding

principal G-bundle, Then,
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7,0 ©, ) = 7, (M s sTune mgiM st st unez

according to (7).Lemma 3.10). Since G]“”“Mx 4

Gen,shezez, .

PN
7,6 En=ug ? -

Independentiv of k.

24141 9252

(57.G) Ut tollows that
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