Pub. Mat. UAB
Vol. 26 No 3 bes. 1982

PROFINITE CHER CEASES FOR
 GROUP REPRESENTATIONS
 Guido Mislin

Introduction

Let $\rho: G \rightarrow G L_{n}{ }^{(1}$ be a complex representation of the discrete group G. If one wishes to study ρ from an algebraic topologist's point of view, one forms the induced map $B \rho: B G \rightarrow B G I_{n}{ }^{\mathbb{C}}$ of classifying spaces, which gives rise to an n-dimensional complex vector bundle $\xi(\rho)$ over $B G=$ $K(G, 1)$. The Chern classes of this vector bundle $\xi(\rho)$,

$$
c_{j}(\rho) \in H^{2 j}(G ; Z),
$$

are called the Cher classes of ρ. These cohomology classes may be used to obtain. information on $H *(G ; \mathbb{Z})$, or to study the representation ρ itself. For instance, if ρ factors through $G L_{n} \mathbb{R}$, the associated complex vector bundle over $B G$ will be invariant under complex conjugation, and by a well known property of Cher classes this implies that $c_{j}(\rho)=$ $(-1)^{j} c_{j}(0)$, that is, $2 c_{j}(0)=0$ for j odd. More generally, there is an obvious action of field automorphisms of \mathbb{C}
on the vector bundles of the form $\xi(\rho)$, and it is our objective to study the behavior of Chern classes under this action. Using Sullivan's computation of the "Galois action" on H* (BGL $\left.{ }_{n} \mathbb{C} ; \mathbb{Z} / \mathrm{mZ}\right)$ (cf. [10]) we will be able to understand this action on the Chern classes reduced modulo m . A different approach is described in Grothendieck's paper [6], using p-adic Chern classes defined in an algebraic geometry setting (see also Soule [9]); results on ordinary Chern classes follow then by means of the comparison theorem, relating the etale homotopy type of a complex variety with its ordinary homotopy type and its profinite completion. If one is interested in results concerning finite groups, then a more direct approach is possible by identifying the Galois action on the representation ring with certain Adams operations (see [5]).

For our approach, it turns out to be natural to work with profinite Chern classes

$$
\hat{\mathrm{C}}_{\mathrm{j}}(\rho) \in \mathrm{H}^{2 \mathrm{j}}(\mathrm{G} ; \hat{\mathbb{Z}})
$$

They are defined as the images of the ordinary Chern classes $c_{j}(\rho)$ under the map induced by the coefficient homomorphism $\mathbb{Z}+\hat{\mathbb{Z}}, \hat{\mathbb{Z}}=\lim \mathbb{Z} / n \mathbb{Z}$ the ring of profinite integers. For $\sigma \in \operatorname{GaI}(\mathbb{C} / \mathbb{Q})$ a field automorphism of \mathbb{C} and $\rho: G \rightarrow G L_{n} \mathbb{C}$ a representation, one defines ρ^{σ} by $\sigma_{*} \circ \rho$, where $\sigma_{*}: G L_{n}{ }^{\mathbb{C}} \rightarrow G L_{n} \mathbb{C}$ is obtained by applying σ to the entries of a matrix. We show first that $c_{j}(\rho)$ depends only on X_{ρ},
the character of ρ. Therefore, $c_{j}(\rho)=c_{j}\left(\rho^{\sigma}\right)$ if σ fixes the values of X_{ρ}. On the other hand, we show that $c_{j}\left(\rho^{\sigma}\right)=\hat{8}^{j} c_{j}(\rho)$, where \hat{o} is a unit in $\hat{\mathbb{Z}}$ which is determined by the action of σ on the roots of unity in \mathbb{C}. Our main theorem then results from an analysis of these relations. It involves certain numbers $\overline{\mathrm{E}_{\mathrm{K}}}(\mathrm{j})$ which are defined for a number field K and which were introduced in [5]:

$$
\overline{E_{K}}(j)=\max \left\{m \mid j \equiv 0 \quad \bmod \exp \left(\operatorname{Gal}\left(K\left(\xi_{m}\right) / K\right)\right)\right\}
$$

where ξ_{m} denotes a primitive m-th root of unjty, and $\exp \left(\operatorname{Gal}\left(\mathrm{K}\left(\xi_{\mathrm{m}}\right) / \mathrm{K}\right)\right)$ is the exponent of the Galois group of $K\left(\xi_{m}\right)$ over K.

Main Theorem. Let $\rho: G \rightarrow G L_{n} \mathbb{A}$ be a representation with character X_{ρ}. Suppose $K \subset \mathbb{C}$ is a number field such that $x_{p}(g) \in K$ for all $g \in G$. Then the following holds:
A) $\bar{E}_{K}(j) \hat{c}_{j}(\rho)=0 \in H^{2 j}(G ; \hat{Z})$ for all $j>0$.
B) The bounds $\overrightarrow{E_{K}}(j)$ on the orders of $\hat{c}_{j}(p)$ are best possible in the obvious sense.

Remarks. The numbers $\bar{E}_{\mathrm{K}}(\mathrm{j})$ can be described in a very explicit way in terms of invariants attached to K (cf. [5]). For instance, if j is even and $K=\mathbb{Q}$, one has

$$
\overline{E_{\mathbb{Q}}}(j)=\operatorname{den}\left(B_{j} / 2 j\right)
$$

with $\mathbf{B}_{2}=1 / 6, \mathrm{~B}_{4}=1 / 30$ etc. the Bernoulli numbers. Note also that the numbers $\overline{E_{K}}(j)$ agree with Grothendieck's bounds [6] and they are also equal to the numbers $w_{j}(K)$ defined in Cassou-Noguès' paper [3], (see also [7]).

1. Representations and traces

A representation $\rho: G \rightarrow G L_{n} \mathbb{C}$ defines a G-action on \mathbb{C}^{n}. We write $V=V(\rho)$ for the corresponding $\mathbb{C}[G]$-module. As usual, we define the complex representation ring $R(G)$ to be the ring additively generated by isomorphism classes of finite dimensional $\mathbb{C}[G]$ modules, with relations of the form $[W]=[V]+[W / V] \in R(G)$ for every short exact sequence $\mathrm{V} \rightarrow \boldsymbol{W} \rightarrow W / \mathrm{V}$ of finite-dimensional $\mathbb{C}[\mathrm{G}]$-modules; $[\mathrm{V}]$ denotes the image of V in $R(G)$. The multiplication in $R(G)$ is defined using the tensor product over \mathbb{C} of $\mathbb{C}[G]-m o d u-$ les. If $V=V(\rho)$ and if we choose a composition series $v_{1} \subset v_{2} \subset \ldots \subset v_{n}=V$, we see that $[V]=\Sigma\left[v_{j} / V_{j-1}\right] \in R(G)$ with $V_{j} / V_{j-l} \cong V\left(\rho_{j}\right), p_{j}$ an irreducible representation; this means that from the point of view of $R(G)$, every representation is semi-simple. The Jordan-Holder Theorem states that the irreducible representations ρ_{j} are uniquely determined by ρ (up to equivalence and order). Thus $R(G)$ has an additive basis consisting of the elements of the form $\left[\mathrm{V}_{\alpha}\right]$, V_{α} a simple $\mathbb{C}[G]$-module of finite dimension.

The character X_{ρ} of ρ is the function $G \rightarrow \mathbb{C}$ defined by $x_{\rho}(g)=\operatorname{trace}(\rho(g)), g \in G$. Of course, x_{ρ} depends on $V(\rho)$ only, and we sometimes write $X_{V(\rho)}$ for X_{ρ}. If $V \rightarrow W \rightarrow W / V$ is a short exact sequence of finite dimensional $\mathbb{C}[G]$-modules, then $x_{W}=x_{V}+x_{W / V}$. Therefore $\rho \mapsto X_{\rho}$ gives rise to an additive homomorphism

$$
x: R(G) \longrightarrow \mathbb{a}^{G}
$$

$$
[v] \longmapsto x_{v}
$$

into the ring \mathbb{C}^{G} of \mathbb{C}-valued functions on G. Since $X_{V \otimes W}=X_{V} \cdot X_{W}, X$ actually defines a homomorphism of rings. The image $X(R(G))$ is denoted by $R_{\chi}(G)$ and we call it the character ring of G.

Theorem 1. The map $x: R(G) \rightarrow R_{X}(G)$ is an isomorphism of rings.

Proof. Let $\rho_{1}, \rho_{2}: G+\mathrm{GL}_{\mathrm{n}} \mathbb{C}$ be two completely reducible representations. Then $x_{\rho_{1}}=x_{\rho_{2}}$ implies $V\left(\rho_{1}\right) \cong V\left(\rho_{2}\right)$ as $\mathbb{C}[\mathrm{G}]$-modules: this is a consequence of the double centralizer Theorem, cf. Bourbaki [2; chapitre VIII, § 12, Prop. 3]. If $x \in R(G)$ is an arbitrary element, we can write x in the form $x=\Sigma\left[v_{i}\right]-\Sigma\left[w_{j}\right]$ with v_{i} and w_{j} simple $\mathbb{C}[G]-$ modules for all i and j. Suppose now that $X(x)=0$. Then $\Sigma x\left(\left[\mathrm{~V}_{\mathrm{i}}\right]\right)=\Sigma \chi\left(\left[\mathrm{w}_{\mathrm{j}}\right]\right)$ and therefore $\oplus \mathrm{v}_{\mathrm{i}} \cong \oplus \mathrm{w}_{\mathrm{j}}$ because the representations $\oplus \mathrm{v}_{1}$ and $\oplus \mathrm{W}_{j}$ are semi-simple. We infer $\mathrm{x}=\Sigma\left[\mathrm{V}_{\mathrm{i}}\right]-\Sigma\left[\mathrm{w}_{\mathrm{j}}\right]=0$ and thus X is injective.

Since X is surjective by definition, the assertion of the theorem follows.
2. Galois action

Let σ E Gal ($\mathbb{C} / Q)$ be an automorphism of \mathbb{C}. By applying σ to the entries of a matrix, one obtains an induced group automorphism $\sigma_{*}: G L_{n} \mathbb{C} \rightarrow G L_{n}^{\mathbb{C}}$. If $\rho: G \rightarrow G L_{n}^{\mathbb{C}}$ is a representation, we write ρ^{σ} for the composite representation $\sigma_{*} \circ \rho$. As usual, we denote the group of automorphisms of \mathbb{C} over $k \subset \mathbb{C}$ by $\operatorname{Gal}(\mathbb{C} / K)$.

Theorem 2. Let $\rho: G \rightarrow G L_{n} \mathbb{C}$ be a representation and let Q (x ${ }_{\rho}$) denote the subfield of \mathbb{C} generated by the traces of the matrices $\rho(g), g \in G$. If $\sigma \in \operatorname{Gal}\left(\mathbb{C} / \Phi\left(x_{0}\right)\right)$ then

$$
[\mathrm{V}(\rho)]=\left[\mathrm{V}\left(\rho^{\sigma}\right)\right] \mathrm{E}(\mathrm{G})
$$

Proof. Note that for σ an automorphism of \mathbb{C} over $Q\left(x_{\rho}\right)$, $X_{\rho} \sigma(g)=\sigma\left(x_{\rho}(g)\right)=x_{\rho}(g)$ for all $g \in G$. Therefore, $X([V(\rho)])=X\left(\left[V\left(\rho^{\sigma}\right)\right]\right.$ and we infer from Theorem 1 that $[\mathrm{V}(\rho)]=\left[\mathrm{V}\left(\rho^{\sigma}\right)\right]$.

Remark. If $\rho: G \rightarrow G L_{n} \mathbb{C}$ is a representation of a finite group G, then it is well known that the representations ρ and ρ^{σ} are actually equivalent for every $\sigma \in \operatorname{Gal}\left(\mathbb{C} / \mathbb{Q}\left(x_{\rho}\right)\right)$.

For an infinite group, this need not be so. For example, if $\rho: \mathbb{Z} \rightarrow \mathrm{GL}_{4} \mathbb{C}$ is given by

$$
1 \longmapsto\left(\begin{array}{ll|l}
i & 1 & 0 \\
0 & i & \\
\hline 0 & -i & 0 \\
0 & -i
\end{array}\right)
$$

then $Q\left(X_{\rho}\right)=Q$ and, taking σ to be complex conjugation, one easily checks that $V(\rho) \neq V\left(\rho^{\sigma}\right)$ although $x_{\rho}=x_{\rho}{ }^{\sigma}$.

Let $\quad K<\mathbb{C}$ be a number field and let $\mu(\mathbb{C})$ denote the group of roots of unity in \mathbb{C}. The following numbers $\mathrm{w}_{\mathrm{j}}(\mathrm{K})$ have been considered by Souls in [9]:

$$
w_{j}(K)=\operatorname{card}\left\{x \in \mu(\mathbb{C}) \mid \sigma^{j} x=x \text { for all } \sigma \in G a l(\mathbb{C} / K)\right\}
$$

We want to show that $w_{j}(K)=\bar{E}_{K}(j), \bar{E}_{K}(j)$ being defined as in the introduction (see also [5]). Let $\mu_{\mathrm{m}} \subset \mu(\mathbb{C})$ denote the group of moth roots of unity. Then $\mu_{m} \subset K\left(\xi_{m}\right)$ where ξ_{m} denotes a primitive root of unity in \mathbb{C}. The obvious map

$$
\operatorname{Gal}(\mathbb{C} / \mathrm{K}) \longrightarrow \text { Aus } \mu_{\mathrm{m}}
$$

factors through the surjective restriction map $G a l(\mathbb{C} / K) \longrightarrow$ $\operatorname{Gal}\left(K\left(\xi_{\mathrm{m}}\right) / K\right)$. Since $\operatorname{Gal}\left(K\left(\xi_{\mathrm{m}}\right) / K\right)$ acts faithfully on μ_{m}. the assertion
${ }^{n} \sigma^{j} \mathrm{x}=\mathrm{x}$ for all $\mathrm{x} \in \mu_{\mathrm{m}}$ and all $\sigma \in \operatorname{Gal}(\mathbb{C} / K)$ "
is therefore equivalent to the assertion

$$
j \equiv 0 \bmod \exp \left(\operatorname{Gal}\left(K\left(\xi_{m}\right) / K\right)\right)
$$

where $\exp \left(\operatorname{Gal}\left(K\left(\xi_{\mathrm{m}}\right) / K\right)\right)$ denotes the exponent of the group Gal $\left(K\left(\xi_{m}\right) / K\right)$. Using the fact that all finite subgroups of $\mu(\mathbb{C})$ are cyclic we infer that $w_{j}(K)$ agrees with

$$
\overline{E_{K}}(j)=\max \left\{\mathrm{m} \mid j \equiv 0 \bmod \exp \left(\operatorname{Gal}\left(\mathrm{~K}\left(\xi_{\mathrm{m}}\right) / K\right)\right)\right\}
$$

for every number field K and every $j>0$.

Corollary l. Let $K \subset \mathbb{C}$ be a number field. Then the torsion subgroup of the multiplicative group K^{*} is cyclic of order $\bar{E}_{K}(I)$.

Proof. The torsion subgroup of K^{*} is $\mu(\mathbb{C}) \cap K$. Its order is obviously equal to the largest number m such that $\mu_{m} \subset K$, which is the same as $\bar{E}_{K}(1)$ or $w_{1}(K)$.

3. Chern classes

We write $c(\rho)=\Sigma c_{j}(\rho) \in H^{*}(G ; \mathbb{Z})$ for the total Chern class of a representation $\rho: G \rightarrow G L_{n} \mathbb{C}$. Clearly, c(ρ) depends on $V=V(\rho)$ only, and we sometimes write $c(V)$ for $c(\rho)$. Let $V \rightarrow W \rightarrow W / V$ be a short exact sequence of finitedimensional $\mathbb{C}[G]$-modules. Then $c(W)=c(V) \cdot c(W / V)$ since every short exact sequence of vector bundles over a CW -complex is spijt. Taking Chern classes thus defines a map

$$
\begin{aligned}
c: & R(G) \longrightarrow H^{\star}(G ; Z) \\
& {[V] \longmapsto c([V]):=c(V) }
\end{aligned}
$$

which is a homomorphism of the underlying abelian group of $R(G)$ into the multiplicative group of units of the graded ring $H^{*}(G ; Z)$.

Theorem 3. Let $\rho_{1} \rho_{2}: G \rightarrow G L_{n} \mathbb{C}$ be two representations with $x_{\rho_{1}}=x_{\rho_{2}}$. Then

$$
c\left(\rho_{1}\right)=c\left(\rho_{2}\right) \in H^{*}(G ; \mathbb{Z})
$$

Proof. By Theorem $1, x_{p_{1}}=x_{\rho_{2}}$ implies that. $\left[\mathrm{V}\left(\rho_{1}\right)\right]=\left[\mathrm{V}\left(\rho_{2}\right)\right]$. Therefore $\mathrm{c}\left(\rho_{1}\right)=\mathrm{c}\left(\left[\mathrm{V}\left(\rho_{1}\right)\right]\right)=$ $c\left(\left[V\left(\rho_{2}\right)\right]\right)=c\left(\rho_{2}\right)$.

The first Chern class of a representation $\rho: G \rightarrow G L_{n} \mathbb{C}$ can be described in a very explicit way, Let det $: G L_{n} \mathbb{C} \rightarrow \mathbb{C}^{*}=G L_{1} \mathbb{C}$ denote the determinant map. Then det ρ is a one-dimensional representation and, by a wellknown property of vector bundles,

$$
c_{1}(\rho)=c_{1}(\operatorname{det} \rho) \in H^{2}(G ; Z)
$$

Consider the coefficient sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{C} \xrightarrow{\text { exp }} \mathbb{C}^{*} \longrightarrow 0
$$

with exp the exponential map. From the associated exact cohomology sequence we obtain a boundary map

$$
H^{1}\left(G ; \mathbb{C}^{*}\right) \longrightarrow H^{2}(G ; \mathbb{Z})
$$

and by composing with the canonical isomorphisms

$$
\operatorname{Hom}\left(G, \mathbb{C}^{\star}\right) \cong \operatorname{Hom}\left(H_{j}(G), \mathbb{C}^{*}\right) \cong H^{1}\left(G ; \mathbb{C}^{\star}\right)
$$

we get a natural homomorphism

$$
\delta: \operatorname{Hom}\left(G, \mathbb{C}^{\star}\right) \longrightarrow H^{2}(G ; Z)
$$

It is well known that $\delta(\operatorname{det} \rho)=c_{1}(\rho)$.
If we think of $H^{2}(G ; \mathbb{Z})$ as the group of equivalence classes of central extensions of G by \mathbb{Z}, the element $c_{1}(\rho)$ can be represented by

$$
E(\rho): \mathbb{Z} \longrightarrow X(\rho) \longrightarrow \mathrm{G},
$$

which is the extension induced via $\operatorname{det} p: G \longrightarrow \mathbb{I}^{*}$ from the extension $\mathbb{Z} \longrightarrow \mathbb{C} \xrightarrow{\exp } \mathbb{C}^{*}$. Note that $E(\rho)$ is split if det ρ factors through a free abelian group (this is clear since $E(\rho)$ is induced from an abelian extension).

Corollary 2. Let $\rho: G \rightarrow G L_{n} \mathbb{C}$ be a representation such that det $p: G \rightarrow \mathbb{C}^{*}$ factors through a free abelian group. Then $c_{1}(\rho)=0$.

We will apply this Corollary to the canonical represen-
tation ${ }^{l_{n}}: G L_{n} K \rightarrow G L_{n} \mathbb{C}$ for $K \subset \mathbb{C}$ a number field. In this case, the torsion subgroup $T\left(K^{*}\right) \subset K^{*}$ is cyclic of order $\overline{\mathrm{E}_{\mathrm{K}}}(1)$ (see Corollary 1) and $\mathrm{K}^{*} / \mathrm{T}\left(\mathrm{K}^{*}\right)$ is a free abelian group (it maps into the free abelian group generated by the prime ideals of $O(K)$, where $\sigma(K)$ is the ring of integers of K, and the kernel of this map is free abelian).

Corollary 3. Let $\rho: G \rightarrow G L_{n} \mathbb{C}$ be a representation with det $\rho(g) \in K$ for all g, where K is a number field. Then $\overline{E_{K}}(1) c_{1}(\rho)=0$.

Proof. We have only to note that $\overline{E_{K}}(1) \cdot \operatorname{det}(\rho): G+K$ * factors through a free abelian subgroup of K^{*} (isomorphic to $\left.K^{*} / T\left(K^{*}\right)\right)$.

Corollary 4. Let $K \subset \mathbb{C}$ be a number field and let
${ }^{1} n: G L_{n} K \rightarrow G L_{n} \mathbb{C}$ denote the canonical representation. Then

$$
c_{1}\left(l_{n}\right) \in H^{2}\left(G L_{n} K ; Z\right)
$$

has order $\overline{E_{K}}(1)$ for all $n \geqslant 1$.

Proof. We know that $\bar{E}_{\mathrm{K}}(1) \mathrm{c}_{1}\left(\mathrm{l}_{\mathrm{n}}\right)=0$ from Corollary 3. On the other hand, using the restriction map induced via the obvious inclusions

$$
\mu(C) \cap K \longrightarrow K^{*}=G L_{1}(K) \rightarrow G L_{n} K
$$

an easy computation shows that

$$
\operatorname{res}\left(c_{1}\left(1_{n}\right)\right) \in H^{2}(\mu(\mathbb{C}) \cap K ; \mathbb{Z}) \cong \mathbb{Z} / \overline{E_{K}}(1) \mathbb{Z}
$$

is a generator. Therefore, $c_{1}\left(i_{n}\right)$ has order precisely $\overline{E_{K}}(1)$.
4. Proof of the Main Theorem

Let $\hat{Z}=\lim \mathbb{Z} / m \mathbb{Z}$ denote the ring of profinite integers. It is well known that for an arbitrary cw-complex X the canonical map

$$
\mathrm{H}^{*}(\mathrm{X} ; \hat{\mathbb{Z}}) \longrightarrow \lim _{\leftarrow} \mathrm{H}^{*}(\mathrm{X} ; \mathbb{Z} / \mathrm{m} \mathbb{Z})
$$

is an isomorphism (this may be seen using the natural compact topology on the groups $H^{j}(X ; Z Z / m Z)$ cf. Sullivan [10]). Therefore, the kernel of the canonical map

$$
\mathrm{H}^{*}(\mathrm{X} ; \mathbb{Z}) \longrightarrow \mathrm{H}^{*}(\mathrm{X} ; \hat{\mathbb{Z}})
$$

consists of all elements $x \in H^{*}(X ; \mathbb{Z})$ which are infinitely divisible (x is called infinitely divisible, if for all natural numbers n, there exists a $Y(n)$ such that $x=n y(n)$). We write $\hat{c}_{j}(\rho) \in H^{2 j}(G ; \hat{Z})$ for the image of $c_{j}(\rho)$; note that $\hat{c}_{j}(\rho)$ and $c_{j}(\rho)$ have the same orders In case $H^{2 j}(G ; \mathbb{Z})$ does not contain any infinitely divisible elements.

A group G is called geometrically finite if the classifying space $K(G, 1)$ is of the homotopy type of a finite complex
(this is equivalent to saying that G is finitely presentable and of type $F F$ in the sense of serre [8]) . The $\hat{\mathbb{Z}}$-cohomology of an arbitrary group may be detected by maps from geometrically finite groups as follows.

Theorem 4. Let G be an arbitrary group. Then there exists a family $\left\{f_{\alpha}: G_{\alpha} ; G\right\}$ with each group G_{α} geometrically finite, such that

$$
\left\{f_{\alpha}^{*}\right\}: H^{*}(G ; \hat{\mathbb{Z}}) \longrightarrow \pi H^{*}\left(\mathrm{G}_{\alpha} ; \hat{\mathbb{Z}}\right)
$$

is injective.

Proof. Let $X=K(G, I)=U X_{\alpha}$ with each X_{α} a finite and connected CW-complex. Choose acyclic maps $g_{\alpha}: K\left(G_{\alpha}, 1\right) \rightarrow X_{\alpha}$ with G_{α} geometrically finite (the construction of such maps g_{α} may be found in Baumslag-Dyer-Heller [1]). Define $£_{\alpha}: G_{\alpha} \rightarrow G$ to be the map of fundamental groups induced from $K\left(G_{\alpha}, 1\right) \rightarrow X_{\alpha} \rightarrow X$. Using the compactness of the groups $H^{j}\left(X_{\alpha} ; \hat{\mathbb{Z}}\right)$ one may prove that the canonical map $H^{*}(X, \hat{Z}) \rightarrow \lim H^{*}\left(X_{\alpha} ; \hat{Z}\right)$ is an isomorphism (cf. Sullivan $[10])$. The natural map $\left.H^{*}(X ; \hat{\mathbb{Z}}) \longrightarrow \operatorname{mi}^{*}\right)\left(X_{\alpha} ; \hat{\mathbb{Z}}\right)$ is thus injective, and the assertion of the theorem follows since $g_{\alpha}: H^{*}\left(X_{\alpha} ; \mathbb{Z}\right) \rightarrow H^{*}\left(G_{\alpha}, \mathbb{Z}\right)$ is an isomorphism for every α.

We will consider $\hat{\mathbb{Z}}=\lim \mathbb{Z} / \mathrm{mZ}$ in the following way as a Gal(C/Q)-module. Let $\sigma \in \operatorname{Gal}(\mathbb{C} / \mathbb{Q})$. If σ acts on μ_{m} (the m-th roots of unity) by the k-power map then we define
$\sigma(m): \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ to be multiplication by k. We put $\hat{\sigma}=\lim \sigma(\mathrm{m}): \hat{\mathbb{Z}} \rightarrow \hat{\mathbb{Z}} ;$ note that $\hat{\sigma} \in \hat{\mathbb{Z}}^{*}$ is the element whose reduction mod m is $\sigma(m)=\widetilde{k} \in(\mathbb{Z} / m)^{*}$. The map $\sigma \nleftarrow \hat{\sigma}$ defines the desired action of $\operatorname{Gal}(\mathbb{C} / \mathbb{Q})$ on $\hat{\mathbb{Z}}$. The induced map on $H^{j}(; \hat{\mathbb{Z}})$ will be denoted by σ too, for it is also multiplication by $\hat{\sigma} \in \hat{\mathbb{Z}}^{*}$.

The group Gal(\$/Q) acts on the etale homotopy type of a complex variety which is defined over Q . This action may be used to define an induced action on the profinite completion of the classical homotopy type of the variety. By a limit argument, one obtakns an action $\psi^{\sigma}:(B G L C) \longrightarrow(B G L C)^{\wedge}$ for $\sigma \in \operatorname{Gal}(\mathbb{C} / Q)$. The notation ψ^{σ} is chosen in view of the following proposition, which is due to Sullivan $[10]$.

Proposition 1. Let $\sigma \in G a l(\mathbb{C} / \mathbb{D})$ and
$\psi^{\sigma}:(B G L \mathbb{C})^{\wedge} \longrightarrow(B G L C)^{\wedge}$ the induced map via etale homotopy theory. Then

$$
\begin{aligned}
& \qquad\left(\psi^{\sigma}\right)^{*}=\hat{\sigma}^{j}: H^{2 j}\left((\mathrm{BGLC})^{\wedge} ; \hat{\mathbb{Z}}\right) \rightarrow \mathrm{H}^{2 j}\left((\text { BGLC })^{\wedge} ; \hat{\mathbb{Z}}\right) \\
& \text { Using this proposition, we obtain the following, } \\
& \text { Theorem 5. Given a representation } \rho: G \rightarrow \mathrm{GL}_{\mathrm{n}} \mathbb{A} \text { and } \\
& \sigma \in \operatorname{Gal}(\mathbb{C} / \mathbb{Q}) \text {. Then, for } j \geqslant 1
\end{aligned}
$$

$$
\hat{c}_{j}\left(\rho^{\sigma}\right)=\hat{\sigma}^{j} \hat{c}_{j}(\rho) \in H^{2 j}(G ; \hat{\mathbb{Z}})
$$

Proof. We consider first the case of a geometrically finite G . Using techniques of tale homotopy (see for instance De-ligne-Sullivan [4]) it follows that the map

$$
\mathrm{K}(\mathrm{G}, 1)^{\wedge}-(\mathrm{B} \rho)^{\wedge} \rightarrow\left(\mathrm{BGL}_{n} \mathbb{C}\right)^{\wedge} \xrightarrow{\operatorname{can}}(\mathrm{BGLC})^{\wedge} \psi^{\sigma}(\mathrm{BGL} \mathbb{C})^{\wedge}
$$

is homotopic to

$$
K(G, I)^{\wedge} \xrightarrow{\left(B_{p}\right)^{\wedge}}\left(B_{\mathrm{n}} \mathrm{C}^{\wedge} \hat{} \xrightarrow{\operatorname{can}}(\mathrm{BGLC})^{\wedge}\right.
$$

In view of Proposition 1 this implies that $\hat{c}_{j}\left(\rho^{\sigma}\right)=\hat{\sigma}^{j} \hat{c}_{j}(\rho) \in H^{2 j}(G ; \hat{Z})$. If G is an arbitrary group, we apply Theorem, 4 to reduce to the case of a geometrically finite group.

Theorem 6. Let $\rho: G+G E_{n}{ }^{\mathbb{C}}$ be a representation with $Q\left(x_{\rho}\right) \subset K \subset \mathbb{C}, K$ a number field. Then, for all $j>0$,

$$
\overline{E_{K}}(j) \hat{c}_{j}(\rho)=0 \in H^{2 j}(G ; \hat{Z})
$$

Proof. Let $x=\hat{c}_{j}(\rho)$. The reduction $\bmod m$ of x, $\operatorname{red}_{m}(x)$, generates a cyclic subgroup of $H^{2 j}(G ; \mathbb{Z} / m \mathbb{Z})$ on which $\sigma \in \operatorname{Gal}(\mathbb{C} / \mathbb{Q})$ acts by $\operatorname{red}_{\mathrm{m}}(\mathrm{x}) \longmapsto \operatorname{red}_{\mathrm{m}} \mathrm{c}_{\mathrm{j}}\left(\rho^{\sigma}\right)=$ $\sigma(m)^{j} \operatorname{red}_{m}(x)$. If we choose σ to be an automorphism over K, we infer from Theorem 3 that $\hat{c}_{j}(\rho)=\hat{c}_{j}\left(\rho^{\sigma}\right)$ and thus $\sigma(m)^{j} \operatorname{red}_{m}(x)=\operatorname{red}_{m}(x)$. The order of the element red (x) therefore divides $\overline{E_{K}}(j)=\operatorname{cardiz} \in \mu(\mathbb{C}) / \sigma^{j}=z \quad$ for all $0 \in \operatorname{Gal}(\mathbb{G} / \mathrm{K})\}$. Hence $\bar{E}_{\mathrm{K}}(j) \operatorname{red}_{\mathrm{m}}(\mathrm{x})=0$ for all m and, since $H^{2 j}(G ; \hat{\mathbb{Z}})=\lim H^{2 j}(G ; \mathbb{Z} / H Z)$, we infer that $\overrightarrow{E_{K}}(j) x=0$.

This completes the proof of part A) of the Main Theorem. It remains to show that the bounds $\bar{E}_{\mathrm{K}}(\mathrm{j})$ are best possible. This can be seen using the calculations performed in [5]. We recall (Theorem 4.12 of [5]) that $\overline{E_{K}}(j)$ is the best possible bound for the order of the chern classes c_{j} of K-representations of finite groups, with the single exception when j is even and k formally real; in this latter case the best possible such bound is $\frac{1}{2} \bar{E}_{K}(j)$. It suffices therefore to prove the following.

Theorem 7. Let k be a formally real number field and $j>0$ even. Then there exists a finite 2 -group G and a representation $\rho: G \rightarrow G L(\mathbb{C})$ with $Q\left(X_{0}\right) \subset K$ and

$$
\frac{1}{2} \overline{E_{X}}(j) c_{j}(\rho) \neq 0
$$

Proof. The construction of such a ρ can be performed in essentially the same way as the construction of ρ in the course of the proof of Proposition 4.11 (b) of [5]. One thus obtains a representation of a generalized quaternion group with $Q\left(X_{0}\right)<K$ and with Schur index equal to two with respect to $Q\left(x_{\rho}\right)$, such that $\frac{1}{2} \bar{E}_{K}(j) c_{j}(\rho) \neq 0$.

Remark. If $\rho: G \rightarrow \mathrm{GL}_{\mathrm{n}} \mathrm{C}$ is a semi-simple representation and $K \supset \mathscr{Q}\left(x_{\rho}\right)$ a subfield of \mathbb{C}, then there is a finite extension L of K in \mathbb{C} such that ρ is equivalent to a representation defined over L. This interesting observa-
tion was communicated to me by P. Menal. We plan to use this fact in a later paper to show that for a very general p the actual Chern classes $c_{j}(\rho)$ (rather than $\hat{c}_{j}(\rho)$) are of finite order bounded by $\bar{E}_{K}(j)$, if K is a number field containing $Q\left(x_{p}\right)$.

This expository paper is based on lectures delivered at the Universitat Autonoma de Barcelona. The final form of the results will be pubiished in a joint paper with B. Eckmann.
[1] G. Baumslag, E. Dyer and A. Heller: The topology of discrete groups. J. Pure Appl. Algebra 16 (1980) 1, 1-47
[2] N. Bourbaki, Algèbre; Hermann, Paris, 1958
[3] P. Cassou-Noguès: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques; Inventiones math. 51 (1979), 29-59
[4] P. Deligne and D. Sullivan: Fibrés vectoriels complexes a groupe structural discret. C.R. Acad. Sc. Paris, t. 281, Série A, (1975) 1081-1083
[5] B. Eckmann and G. Mislin: Chern classes of group representations over a number field. Compositio Mathematica 44 (1981), 41-65
[6] A. Grothendieck: Classes de Chern et représentations linéaires des groupes discrets. Dans: Dix exposés sur la cohomologie des schemas. Amsterdam: North-Holland 1968
[7] G. Mislin: Classes caractêristiques pour les représentations des groupes discrets; Séminaire DubreilMalliavin, Paris 1981
(To appear in: Lecture Notes in Math., SpringerVerlag)
[8] J.-P. Serre: Cohomologie des groupes discrets. Annals of Math. Studies 70 (1971), 77-169
[9] C. Soulé: Classes de torsion dañs la cohomologie des groups arithmétiques. C.R. Acad. Sc. Paris, t. 284, Sêrie A (1977), 1009-1011
[10] D. Sullivan: Genetics of homotopy theory and the Adams conjecture. Annals of Math. 100 (1974), 1-79

