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Introduction

PROFINITE CHERN CLASSES FOR
GROUP REPRESENTATIONS

Guido Mislin

Let p : G -> GLnC be a complex representation of the

discrete group G . If one wishes to study p from an alge-

braic topologist's point of view, one forms the induced map

Bp : BG -> BGLnC, of classifying spaces, which gives rise to

an n-dimensional complex vector bundle j(p) over BG =

K(G,1)

	

. The Chern classes of this vector bundle

	

U p)

	

,

c
j (P)

	

e

	

H2j (G ; a)

	

,

are called the Chern classes of p . These cohomology classes

may be used to obtain .information on H*(G ;a) , or to study

the representation p itself . For instance, if p factors

through

	

GLP , the associated complex vector bundle over

	

BG

will be invariant under complex conjugation, and by a well

known property of Chern classes this implies that c j (P) =

(-1) i c j (p) , that is, 2c (p) = 0 for j odd . More general-

ly, there is an obvious action of field automorphisms of C



on the vector bundles of the form ~(p) , and it is our ob-

jective to study the behavior of Chern classes under this ac-

tion . Using Sullivan's computation of the "Galois action" on

H* (BGLnC ;ZZ /m2Z)

	

(cf .

	

[10]) we will be able to understand

this action on the Chern classes reduced modulo m . A dif-

ferent approach is described in Grothendieck's paper [6],

using p-adic Chern classes defined in an algebraic geometry

setting (see also Soulé [9]) ; results on ordinary Chern clas-

ses follow then by means of the comparison theorem, relating

the etale homotopy type of a complex variety with its ordina-

ry homotopy type and its profinite completion . If one is in-

terested in results concerning finite groups, then a more

direct approach is possible by identifying the Galois action

on the representation ring with certain Adams operations

(see [5J) .

For our approach, it turns out to be natural to work

with profinite Chern classes

ĉ j (P)

	

e

	

H2i (G ; a)

They are defined as the images of the ordinary Chern classes

c j (p) under the map induced by the coefficient homomorphism

Z; -> zz , 2Z = lim Z; /nZ; the ring of profinite integers . For
f

a e Gal(C/C) a field automorphism of C and p : G - GLnC

a representation, one defines

	

pa

	

by

	

a* o p

	

'where

a * : GLnC -> GLnC is obtained by applying a to the entries

of a matrix . We show first that c j (p) depends only on X p 1



the character of p . Therefore, cj (P) = c j (p o ) if a

fixes the values of X p . On the other hand, we show that
Q

)

	

=

	

0
J

cj (p

	

cj (p)

	

, where

	

an

	

is a unit in

	

~n

	

which is de-

termined by the action of o on the roots of unity in T .

Our main theorem then results from an analysis of these re-

lations . It involves certain numbers EK(j) which are de-

fined for a number field K and which were introduced in

EK (j) = max{mlj - 0 mod exp(Gal(K(~m)/K))}

where Cm denotes a primitive

	

m-th root of unity, and

exp(Gal(K(~m)/K)) is the exponent of the Galois group of

K(~m) over K .

Main Theorem . Let p : G -> GLnC be a representation with

character Xp . Suppose K C T

	

is a number field such that

X p (g) e K for all g s G . Then the following holds :

A)

	

EK (j) c j (P) = 0 e H2j (G ;ZZ )

	

for all

	

j > 0 .

B) The bounds EK(j) on the orders of cj (p) are best

possible in the obvious sense .

Remarks . The numbers EK (j) can be described in a very ex-

plicit way in terms of invariants attached to K (cf . [5]) .

For instance, if j is even and K = Q , one has

E~(j) = den(Bj/ 2j)



with B2 = 1/6 , B4 = 1/30 etc . the Bernoulli numbers . Note

also that the numbers EK(j) agree with Grothendieck's

bounds [6] and they are also equal to the numbers w j (K) de-

fined in Cassou-Nogués' paper [3] , (see also [7] )

1 . Representations and traces

A representation p : G -+ GLnX defines a G-action on

Cn . We write V = V(p) for the corresponding T[G]-module .

As usual, we define the complex representation ring R(G) to

be the ring additively generated by isomorphism cl~Lsses of

finite dimensional T[G]-modules, with relations of the form

[W] = [V] + [W/V] E R(G) for every short exact sequence
, lr,

	

T rG1 - odul e
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tes the image of V in R(G) . The multiplication in R(G)

is defined using the tensor product over T of T[G]-modu-

les . If V = V(p) and if we choose a composition series

V 1 C V2 C . . . C Vn = V , we see that

	

[V] = E [Vj /Vj-1] s R(G)

with V /V

	

= V(P .

	

j) , p

	

an irreducible representation ;
j j -1

	

J
this means that from the point of view of R(G) , every re-

presentation is semi-simple . The Jordan-HSlder Theorem states

that the irreducible representations Pj are uniquely deter-

mined by P (up to equivalence and order) . Thus R(G) has an

additive basis consisting of the elements of the form [Va],

a simple T[G]-module of finite dimension .



The character X p of p is the function G + T de-

fined by

	

X
P
(g)

	

= trace(p(g))

	

,

	

g e

	

G

	

.

	

Of course,

	

X
P

	

de-

pends on V(p) only, and we sometimes write
XV(P)

for Xp

If V -> W -> W/V is a short exact sequence of finite dimen-

sional Q[G]-modules, then Xw = XV +
XW/V . Therefore

P¡-> X p gives rise to an additive homomorphism

into the ring TG of T-valued functions on G . Since

xv ©w =

	

xv ' xw

	

,

	

x

The image X(R(G)) is denoted by Rx (G) and we call it the

character ring of G .

Theorem 1 .

	

The map

	

X

	

:

	

R(G)

	

-> R
X
(G)

	

is an isomorphism of

rings .

X

	

:

	

R(G) --~ (rG

actually defines a homomorphism of rings .

Proof . Let p l ,P2 : G - GLnX be two completely reducible

representations . Then Xp = X p	implies V(pl ) = V(P 2 ) as
1 2

T[G] - modules : this is a consequence of the double central-

izer Theorem,cf . Bourbaki [2; chapitre VIII, § 12, Prop . 3] .

If x e R(G)

	

is an arbitrary element, we can write x in

the form x = E [Vi] - E [Wj]

	

with V,i and Wj	simpleC[G]-

modules for all i and j . Suppose now that X(x) = 0 .

Then

	

EX([Vi]) = EX([Wj])

	

and therefore © Vi - 9 W j	be-

cause the representations

	

© vi and p Wj are semi-simple .

We infer x = E[vi] - ENj] = 0

	

and thus

	

X is injective .



Since X is surjective by definition, the assertion of the

theorem follows .

2 . Galois action

Let a e Gal(T/Q) be an automorphism of 0 . By apply-

ing a to the entries of a.matrix, one obtains an induced

group automorphism a * : GLnT -~ GLnT . If p : G - GLnT is

a representation, we write pa for the composite representa-

tion a * o p . As usual, we denote the group of automorphisms

of T over K C T by Gal(T/K) .

Theorem 2 . Let p : G -> GLnT be a representation and let

denote thc "bf'eld of T generated by the treces of

the matrices p(g) , g e G . If a e Gal(T/Q(Xp )) then

[V(P)] = [V(P a )] e R(G)

Proof . Note that for a an automorphism of T over 92(Xp ) ,

X pa (g) = a(Xp (g)) = X p (g) for all g e G . Therefore,

X([V(p)]) = X([V(p (y )]

	

and we infer from Theorem 1 that

[V (P)]

	

=

	

[V (Pa )]

Remark . If p : G - GLnT is a representation of a finite

group G , then it is well known that the representations p

and

	

pa	areactually equivalent for every

	

a s Gal(T/4 (Xp ))

	

.



For an infinite group, this need not be so . For example, if

p

	

:

	

a -GL4Q

	

is given by

then Q(X p ) = C and, taking a to be complex conjugation,

one easily checks that V(p) 1 V(pa ) although X
P
= X a .

P

Let

	

K C T be a number field and let

	

u(T)

	

denote

the group of roots of unity in 0 . The following numbers

wj (K) have been considered by Soulé in [9] :

wj (K) = card{x e U(T)la i x = x for all a e Gal(T/K)}

We want to show that wj (K) = !K (j) , E K (j)' being defined as

in the introduction (see also [5]) . Let um C U(Q)

	

denote

the group of

	

m-th roots of unity . Then

	

pm C K(Im)

	

where

im denotes a primitive root of unity in T . The obvious map

Gal (T/K)---> Aut um

factors through the surjective restriction map

	

Gal(0/K) --a

Gal(K(Im)/K) . Since Gal(K(Cm)/K) acts faithfully on um ,

the assertion

is therefore equivalent to the assertion

" a i x = x for all x e um and all a e Gal(T/K) "



" j - 0 mod exp(Gal(K(Im)/K)) "

where exp(Gal(K(Cm)/K)) denotes the exponent of the group

Gal(K(Im)/K) . Using the fact that all finite subgroups of

u(C) are cyclic we infer that wj (K) agrees with

EK (j) = max{mjj = 0 mod exp(Gal(K(Em)/K))}

for every number field K and every j > 0 .

Corollary 1 .

	

Let K C C be a number , field . Then the tor-

sion subgroup of the multiplicative group K* is cyclic of

order

	

EK(1)

	

.

Proof . The torsion subgroup of K* is p(C) n K . Its or-

de_r i_s obviously equal to the largest number m such that

um C

	

K

	

, which is the same as

	

EK(1)

	

or

	

w1 (K)

	

.

3 . Chern classes

We write

	

c(p) = E c .(p) e H * (G ;2Z)

	

for the total Chern
7

class of a representation p : G + GLnT . Clearly, c(p) de-

pends on V = V(p) only, and we sometimes write c(V) for

c (p)

	

. Let

	

V - W -> W/V

	

be a short exact sequence of finite

dimensional

	

C[G] -modules . Then

	

c (W)

	

= c (V) " c (W/V)

	

since

every short exact sequence of vector bundles over a CW-com-

plex is split . Taking Chern classes thus defines a map



c

	

:

	

R(G) -- H* (G ; 2Z)

v] ~---->

	

c([v])

	

:= c (v)

which is a homomorphism of the underlying abelian group of

R(G) into the multiplicative group of units of the graded

ring H*(G;ZZ)

Theorem 3 . Let pl,p2 : G -+ GLnT be two representations

with Xp = X p . Then
1 2

c (P1)

	

= c (P2)

	

e H* (G ;ZZ)

Proof . By Theorem l, X

	

= x

	

implies that
p l p 2

[V(P1 )] = [V(p2 )] . Therefore c(pl ) = c([V(p l )]) _

c ([V (P 2 )])

	

= C (P 2 )

The first Chern class of a representation p : G -" GLnT

can be described in a very explicit way . Let

det : GLnT - T* = GL 1 T denote the determinant map . Then

det P is a one-dimensional representation and, by a well-

known property of vector bundles,

c 1 (P)

	

=

	

cl (det

	

P)

	

s

	

H2 (G ; ?Z)

Consider the coefficient sequence

0

	

> %

	

1 Q exp, T* -- :1 0



with exp the exponential map . From the associated exact

cohomology sequence we obtain a boundary map

and by composing with the canonical isomorphisms

we get a natural homomorphism

It is well known that

	

d(det P) = c 1 (P)

	

.

If we think of H2 (G ;ZZ) as the group of equivalence classes

of central extensions of

	

G

	

by

	

Z;

	

,

	

the element

	

c1 (P)

can be represented b_y

which is the extension induced via

	

det p : G --~ C*

	

from

the extension ZJD C ex~ C* . Note that E(p) is split

if det p factors through a free abelian group (this is

clear since E(p) is induced from an abelian extension) .

Corollary 2 . Let p : G - GLnC be a representation such

that det p : G -~ C* factors through a free abelian group .

Then

	

c1 (P)

	

=

	

0

	

.

H1 (G ;C*) -o H2 (G ;ZZ)

Hom(G,C*) = Hom(H1(G),(E*) = H1(G ;C*)

d : Hom(G,C*) -> H2(G;2Z)

E (P)

	

:

	

Z;- X(P) -'--> > G

We will apply this Corollary to the canonical represen-



tation

	

in : GLnK -> GLnC

	

for K C C

	

a number field . In this

case, the torsion subgroup T(K*) C K* is cyclic of order

EK(1) (see Corollary 1) and K*/T(K*) is a free abelian

group (it maps into the free abelian group generated by

the prime ideals of 6(K) , where U(K) is the ring of inte-

gers of K , and the kernel of this map is free abelian) .

Corollary 3 . Let p : G -> GLnC be a representation with

det p(g) e K for all g , where K is a number field .

Then

	

EK(1)

	

c1(p)

	

= 0

Proof . We have only to note that EK (1) " det(p) : G -" K*

factors through a free abelian subgroup of K* (isomorphic

to K*/T(K*))

Corollary_ 4 .

	

Let

	

K C C

	

be a number field and let

ln : GLnK -> GLnC denote the canonical representation . Then

vious inclusions

c 1 (t n)

	

e H2 (GLnK;ZZ)

has order EK (1) for all n a 1 .

Proof . We know that EK(1) cl (t n) = 0

	

from Corollary 3 . On

the other hand, using the restriction map induced via the ob-

U (C) (1 K ' --*

	

K*

	

= GL1 (K)

	

- GLnK

an easy computation shows that



is a generator . Therefore,

	

c1 (1n)

	

has order precisely

res (c l (i n ))

	

e H2 (u (T) n K,ZZ)= ZZ/EK (1) zz

4 . Proof of the Main Theorem

Let ZZ= lim ZZ/mZZ denote the ring of profinite inte-
f

gers . It is well known that for an arbitrary CW-complex X

the canonical map

elements .

120

nH* (X¡ Z;)

	

lim H* (X ;ZZ/mZ3)
t

is an isomorphism (this may be seen using the natural com-

pact topology on the groups H j (X ;Z;/m7L) cf . Sullivan [lo]) .

Therefore, the Kernel of the canonical map

H* (X ; 2Z) --3 H* (X ; Z,)

consists of all elements x e H*(X ;ZZ) which are infinitely

divisible (x is called infinitely divisible, if for all

natural numbers n there exists a y(n) such that

x = ny(n) ) . We write cj (p) e H 2j (G ;ZZ)

	

for the image of

c j (p)

	

; note that

	

c j (p)

	

and

	

cj (p)

	

have the same orders

in case H2J (G ;ZZ) does not contain any infinitely divisible

A group G is called geometrically finite if the classifying

space K(G,1) is of the homotopy type of a finite complex



(this is equivalent to saying that G is finitely pre-

sentable and of type FF in the sense of Serre [8]) . The

ZZ -cohomology of an arbitrary group may be detected by maps

from geometrically finite groups as follows .

Theorem 4 . Let G be an arbitrary group . Then there exists

a family {f a : Ga -> G} with each group Ga geometrically

finite, such that

is injective .

ga

n

	

n
{f*a }

	

: H* (G ;ZZ) .

	

' ti H* (Ga ;ZZ)

Proof .

	

Let X = K(G,1) = V Xa with each Xa a finite and

connected CW-complex . Choose acyclic maps g a : K(Ga,l) - Xa

with Ga geometrically finite (the construction of such maps

may be found in Baumslag-Dyer-Heller [1]) . Define

fa : G(x - G

	

to be the map of fundamental groups induced from

K(Ga ,1) -> Xa -~ X . Using the compactness of the groups

H i (Xa ;2Z)

	

one may prove that the canonical map

H* (X, ZZ )

	

- lim H* (X
a

; ZZ)

	

is an isomorphism

	

(cf.

	

Sullivan
F

	

,~

	

n
[10]) .

	

The natural map

	

H* (X ; 2Z)

	

TI H* (Xa ; 2Z)

	

is thus in-

jective, and the assertion of the theorem follows since

ga

	

:

	

H* (Xa;ZZ)

	

-> H*(Ga,2Z)

	

is an isomorphism for every

	

a .

We will consider Z;= lim ZZ/m2Z in the following way
F

as a Gal(C/Q)-module . Let a s Gal(C/(D) . If a acts on um

(the m-th roots of unity) by the k-power map then we define



6 (m)

	

: ZZ/mT -~ 2z/mj,

	

to be multiplication by

	

k . We put

a = lim o (m)

	

:

	

2z

	

-~ ZZ ;

	

note

	

that

	

cr

	

e

	

2z *

	

is

	

the element
E

whose reduction

	

mod m

	

is

	

a(m)

	

= k e

	

(zz/m)* . The map

a - a

	

defines the desired action of

	

Gal(T/Q)

	

on

	

ZZ . The

induced map on Hi ( ;ZZ)

	

will be denoted by Q too, for it

is also multiplication by á e ẑ * .

The group Gal(Q/Q) acts on the etale homotopy type of

a complex variety which is defined over Q . This action may

be used to define an induced action on the profinite comple-

tion of the classical homotopy type of the variety . By a

limit argument, one obtains an action

~Q

	

:

	

(BGLT) -~

	

(BGL(r)"	for

	

a' e Gal(T/Q)

	

. The notation

Q is chosen in view of the following proposition, which

is due to Sull,van

Proposition 1 . Let a e Gal(T/Q) and

a : (BGLT)^ - (BGL(E)^	theinduced map via etale homotopy

theory . Then

Theorem 5 . Given a representation p : G -> GLna and

o e Gal(T/Q) . Then, for j >. 1

(~a) *

	

=

	

l7

	

:

	

H2J ( (BGLT5^ ;Z-Z)

	

-

	

H2J ( (BGLT)^ ;a.)

Using this proposition, we obtain the following .

cj (P a )

	

=

	

6~

	

c¿
j (P)

	

s

	

H2J (G ;Z^Z)



Proof . We consider first the case of a geometrically finite

G . Using techniques of etale homotopy (see for instance De-

ligne-Sullivan [4]) it follows that the map

n (Bp)A

	

can >

	

^

	

a

	

nK(G,1) ---------

	

(BGLnT)

	

(BGLT) ---~---~ (BGLT)

is homotopic to

K(G,1)^--(Bp ) > (BGLnT) can

	

(BGL(C)^

In view of Proposition 1 this implies that
n

c j (P, ) = ^a

	

cj (p) e H23 (G ;ZZ) . If

	

G

	

is an arbitrary group,

we apply Theorem,4 to reduce to the case of a geometrically

finite group .

Theorem 6 . Let p : G -> GLne be a representation with

Q(X p ) C K C T ,

	

K

	

a number field . Then, for all

	

j > 0 ,

EK (j) c
j (P) = 0 e H2J (G;ZZ)

Proof . Let x = cj (p) . The reduction mod m of x ,

redm(x)

	

, generates a cyclic subgroup of

	

H2J .(G ;2Z/mZZ)

	

on

which

	

o e Gal(T/4)

	

acts by

	

redm (x) í

	

i,	redm cj (P, )

	

=

Q(m)j redm(x) . If we choose

	

a

	

to be an automorphism over

K , we infer from Theorem 3 that cj (P) = cj (po ) and thus

a(m)j redm(x) = redm (x) . The order of the element

	

redM(x)

therefore divides EK(j) = card{z s p(T)jo -'z = z for all

a s Gal(T/K)}

	

.

	

Hence

	

K(j)

	

redm(x)

	

= 0

	

for all

	

m

	

and,

since

	

H2J (G ;ZZ) = lim H2~ (G ;ZZ/m2Z) , we infer that

	

EK(j)x = 0



This completes the proof of part A) of the Main Theorem .

It remains to show that the bounds EK (j) are best possible .

This can be seen using the calculations performed in [5_] . We

recall (Theorem 4 .12 of [5]) that EK (j) is the best pos-

sible bound for the order of the Chern classes

	

c
J
.

	

of

	

K-re-

presentations of finite groups, with the single exception

when j is even and K formally real ; in this latter case

the best possible such bound is 2 EK (j) . It suffices there-

fore to prove the following .

Theorem 7 .

	

Let K be a formally real number field and

	

j > 0

even . Then there exists a finite 2-group G and a represen-

tation

	

p : G } GL(T)

	

with Q(Xp ) C K and

EK (j) c
j (P) + 0

Proof . The construction of such a p can be performed in

essentially the same way as the construction of p in the

course of the proof of Proposition 4 .11 (b) of [5] . One thus

obtains a representation of a generalized quaternion group

with Q(X p ) C K and with Schur index equal to two with re-

spect to Q(Xp ) , such that 2 EK (j) c j (P) + 0 .

Remark . If p : G } GLnC is a semi-simple representation

and

	

K D Q(XP
)

	

a subfield of

	

C

	

,

	

then there is a finite ex-

tension L of K in T such that p is equivalent to a

representation defined over L . This interesting observa-

124



tion was communicated to me by P . Menal . We plan to use this

fact in a later paper to show that for a very general p the

actual Chern classes c j (P)

	

(rather than 1j (p)) are of

finite order bounded by EK (j) , if K is a number field

containing Q(XP ) .

This expository paper is based on lectures delivered at

the Universitat Autónoma de Barcelona . The final form of the

results will be published in a joint paper with B . Eckmann .
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