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A ring R is said to satisfy ntight a .c .c(6 .g .) p

if R sati~fies the ascending chain condition on (finitely

generated) projective right ideals ; ntight d .c .c .(J .g .)P is

defined similarily .

In section two we show that if R satisfies right

d .c .c .P and if U is a two-sided ideal which is also a mini-

mal projective right ideal, then either U 2 = 0 or U 2 =

U(2 .3) . If R is commutative and U is finitely generated,

then U 2 = U and is generated by an idempotent element (2 .5) .

We also show that if R satisfies right a .c .c .P or right

d .c .c .P then every projective right ideal is countably gener-

ated

	

(2 .9) . The polynomial (also power series) ring in in-

finitely many variables over a field are examples of non-Noe-

therian rings satisfying right a .c .c .P .

The symbols EP are used to denote enough pnojectti-

vee,mevery nonzero right ideal contains a nonzero projective



right ideal ; and MEP denotes the condition that every nonze-

ro right ideal contains a nonzerb finitely generated projecti-

ve right ideal .

2 . Structure of Minimal Projective Ideals

If R is a commutative ring satisfyin d .c .c .P then

R has minimal projective ideals . The next theorem describes

how these ideals are related to the other projective ideals .

We use the following known result .

2 .1 Lemma . Le-t R and S be n.íngs, le.t P be a

projectíve R-module and let Q be an (R,S)- bímodule that

íe projectíve ab an

	

S-module . Then P ®p Q íz a projectíve

S-module .

Proof . See, for example, Faith [3, 11 .15, p .4301 . "

2 .2 Theorem . Suppode Q íz a two-,síded .ideal ín a

n.íng R and íe a m.Lnímal pnojeetíve níght ideal . Then gíven

any pnojeetíve n.íght ideal P o6 R, eíthen PQ = 0 or

Q c P .

Proof . Since P and Q are projective right ideals

and Q is an (R,R)-bimodule, P Q Q is projective . Sin-

ce P is projective and Q is an ideal of R, P ® Q = PQ

so PQ is also projective . But PQ c P and PQ

	

Q . Since

Q is a minimal projective right ideal either PQ � 0 or

Q = PQ
l P . .



2 .3 Corollary . 1A P .í.6 a mtinímal projectíve níght

.ideal'_ whtich .(.6 al'~so a -two-bíded ídeal, then eíthen P2 = P

on P2 = 0 . "

2 .3-A Remark . Note that both of the possibilities men

tioned in 2 .3 actually occur . For example, let R = ¡F 0
lF )F

be the ring of 2 x 2 lower triangular matrices over a field

F . It is well known that R is semihereditary . The ideal

P = (o 0) satisfies P 2 = 0 . However, if R is commutative

and P is finitely generated, then P 2 = P (2 .5) .

2 .4 Remark . G . Michler [8) has shown that if P 2 =

P in a left perfect ring R, then P = ReR where e is an

idempotent in R and is central modulo the radical J .

2 .5 Lemma . In a commutatíve níng R a mínimum pnojec

tíve .ideal'_ P .C6 ídempoxenx . Ib P ís a16o bíníte1y gene&

ated, then p ti6 generated by an ídempotent el'ement .

Proof . Since P is a projective module, the dual ba-

sis lemma guarantees that there exists a set of elements

{pa}, pa in P, and a set of homomorphisms {fa } with fa

in Hom R (P,R) such that fa (Pa ) = 0 for almost al] a, and

x = Epa fa (x)

	

for each

	

x

	

in P .

	

Since P C R,

	

a commutati-

ve ring, we see that x = Efa (pa x) for each x in P . Thus

P 2 = 0 implies P = 0 .

	

Since P 0 0, we see by 2 .3 that

P 2 = P .

If P is fínitel .y generated, theorem 76, page 50



of Kaplansky [81 says that P contains an idempotent ele-

ment . Since P is a minimum projective, the idempotent ele

ment must generate P .a

2 .6 Theorem . 14 R ís a commutattive eemípntime nting

wíth EP that satís6íe,6 d .c .c .P,

	

then R íe a dtineet eum

oj a btintite numben oj b¡eld3 .

Proof . Since R satisfies d .c .c .P, R has minimal

projective

	

ideals .

	

Say

	

1 1

	

is

	

a minimal

	

projective

	

ideal .

Then

	

1 1

	

is

	

simple Since

	

R

	

has

	

EP,

	

and

	

hence

	

1 1

	

is

	

ge-

nerated by an idempotent e l . By Jacobson [6, Proposition

1,

	

p.65],

	

1 1

	

is a field .

	

Let

	

R 1	=

	

(1

	

- e l )R .

	

Then

	

R 1

has EP and satisfies d .c .c .P . Thus R 1 = 0 or contains a

minimal

	

projective

	

1 2

	

where

	

1 2

	

is

	

a

	

field

	

generated

	

by

	

an

idéfiiputent

	

e 2 .

	

Then

	

R 2	=

	

(1-e1-e2 )R

	

=

	

0

	

or

	

contains

	

a

	

mi

nimal

	

projective

	

1 3

	

which

	

is

	

generated

	

by

	

an

	

idempotent .

Since R has d .c .c .P, R contains no infinite direct sum of

projective ideals so the above process must terminate after a

finite

	

number

	

of

	

steps .

	

Hence

	

R

	

=E®I n ,

	

a

	

finite

	

sum,

	

whe-

re each I n is a field .a

2 .7 Corollary . 16 R ís a commutattive Noetherian

mípntime nting zhat sattih6íee d .c .c .P, then R ti6 a díneet

bum 06 a 6tintite numben ob bíeId3 .

Proof . Since R is Noetherian, minimal projective

ideals are finitely generated and hence generated by an idempo

tent . Thus minimal projectives are summands of the ring . The



remainder of the proof is the same as the proof of 2 .6 . "

We can also say something about the projective right

ideals in a ring satisfying right a .c .c .P . We first state a

theorem due to Kaplansky [6] .

2 .8 Theorem . Eveny pnojeettive module le a dtinect eum

o6 countably generated modulee . "

2 .9 Lemma . 16 R eatteltee ntght a .c .c .P ora ntight

d .c .c .P then eveny pnojeettive ntight Ideal te countably genera

ated .

Proof . By Kaplansky's theorem, each projective (right

ideal) is a direct sum of countably generated projectives . If

R satisfies right a .c .c .P or right d .c .c .P the number of

independent summands of a projective right ideal is finite .

Thus each projective right ideal is a sum of a finite number

of countably generated modules arad hence. i s countably genera-

ted .

3 . Inheritance Properties of Chaira Conditions ora Projectives

3 .1 Theorem . Let R be any ntng . 11 M R satte6íes

the deeeendtng chatin condtittion ora (6tintitely generated) pnojee

ttive 6ubmodules then each homomonphtc tmage o6 M aleo satte

6teb thte condttton .

Proof .

	

Let

	

f :

	

M -N

	

be

	

ara

	

R-epimorphism of

	

right

R-modules arad let P 1DP 2DP 3D. . . be a sequence of projective
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submodules of N . Then f-1(P1)---> P 1 = 0 splits so

P 1 C->f -1 (P 1 ) C M .

	

Thus P 1 satisfies the descending chain condi-

tion on (finitely generated) projective submodules . Hence the

re exists an n such that P n = P n+k for k = 1,2,3, . . .- It

follows that N satisfies d .c .c . on (finitely generated)

projective submodules .a

We use the following theorems of H . Bass [11 and

J .E . Bjórk [21 severa] times in the proof of the following

result and in the next section .

3 .2 Theorem (Bass) . Let R be a n,ing,

	

J í-tz nad.i
cal . Then the 6ollowíng ane egu.ivalent :

1)

	

R

	

íz le6t pen6ect; .L . e . ,

	

eveny lelt R-module haz

a pnoject.ive coven .

2) . J .iz lelt T-n.ilpotent and R/J .iz zemíz .imple .

3)

	

A

	

díneet l.im.it o 6

	

pnoj eet.ive le6t R-modulez

	

.iz

pno j ect.Cve .

4) R zatíz6íez zhe dezcend.ing ehaín eondít.ion on

'

	

pn.inc.ipal níght .idealz .

5) R haz no .injín.ite zeta o6 onthogonal .idempoten-tz,

and eveny nonzeno níghz R-module haz nonzeto zo-

cle .a

3 .3 Theorem (Bjórk) . A níng R .iz le6t pen6ect .i6 and

only .i6 R zatíz6íez the dezcend.ing ehaín eond.it.ion on 6 .in.ite

ly generated níght ídealz .a

* Projective cover is the dual of injective hull .



3 .4 Theorem . 16 R tie a níght penjecz nf.n g and M R

sazíe6íee a .c .c .(f .g)P then each homomonphtic timage o6 M

afeo eatíelíes .thís condítíon .

Proof . Let f : M ->N be an R-epimorphism and suppo-

se that P 1 C P 2 C P 3 C . . . is an ascending chain of projecti

ve submodules of N . Let P = UP i . Then P is flat . By

Bass [11, P is projective . Thus f -1 (P) - P --> 0

splits and P embeds in f -1 (P) C M . Hence P satisfies

a .c .c .(f .g .)P and the above sequence of projective modules

must terminate after a finite number of steps . It follows

that N satisfies a .c .c .(f .g .)P . "

4 . Study of Some Particular Classes of Rings under the

Assumption of Chain Conditions on Projective Ideals .

We can characterize semiprime right semihereditary

rings which satisfy . right d .c .c .f .g .P . More generally, a

ring in which principal right ideals are projective is a

níght

	

P .P .

	

níng .

4 .1 Lemma .

	

Let R be a eemtipn.íme nf.ght P .P . níng .

Then R &atíslíe6 níght d .c .c .f .g .P

	

í6 and onfy í6 R íe

eemíeímpfe .

Proof . Since R is right P .P ., each principal right

ideal is projective . Thus right d .c .c .f .g . P implies the des

cending chain condition on principal right ideals . By Bass'

theorem, R/J, J = radical R, is semisimple and J, is left



T-nilpotent . If J :A 0,

	

there exists a minimal right ideal

I C J .

	

Now either 12 = 0 or there is an e in I, e : 0,

and e2 = e . Since J is left vanishing, J contains no

nonzero idempotents . Thus J = 0 . Hence R is semisimple .

The converse implication is clear Since semisimple

rings are Artinian . "

4 .2 Corollary . 16 R íz a negulan

ntight d .c .c .f .g .P then R ti3 aemí4timple .

Proof . Regular rings are semiprime

fact, semihereditary) and thus by 4 .1 are

satisfy right d .c .c .f .g .P . "

nting satíz6yíng

right F .P . (in

semisimple if they

üefinition . A ring R is said to satisfy (a .c .c . .)®

if it contains no infinite set of independent right ideals .

The a .c .c . on right annulets of R is abbreviated

(a .c .c)1 .

	

If a ring satisfies both (a .c .c .) ®

	

and

(a .c .c .)l , then the ring is said to be níght Goldíe .

We say a right R-module M is uní6onm if X,Y non-

zero

	

submodules

	

of

	

M

	

implies

	

X n Y :A 0 .

	

A

	

ring

	

is

	

(níght)

untilonm if R R is uniform .

To prove our next theorem we need the following

theorems of A .W . Goldie [4,51 .



4 .3 Theorem . A n.íng R .íe sem.ípn.íme n.íght Gold.íe

and on1y ,íb .ítb quot.íent n.íng Q(R) tib semí.6ímp.Le .a

4 .4 Lemma . A un.íbonm sem,ípn.íme n.íght Gold.íe n.íng R

.íe a n.íght Une doma.ín . "

Note that in this case, as with al] domains, right

a .c .c .f .g .P implies a .c .c . on principal right ideals .

4 .5 Theorem . 16 R .íá a n.íng sat.íebyíng n.íght

d .c .c .f .g .P, then R .ís a n,íght Une n.íng and R = Q(R) .

Proof . If a is a regular element in R, but not in-

vertible, then a n R properly contains a n+1 R for n = 1,2,

3, . . . .

	

But a regular implies

	

anR - R

	

is projective for each

n, contradicting d .c .c .f .g .P . Thus each regular element in

R is right invertible . Hence R = Q(R) .@

4 .6 Theorem . Let R be a 6em.ípn.íme n.ígh .t Go .Ld .íe

n.íng . Then

	

R satís6íes n.íghx d .c .c .f .g .P .íb and onky .íb

R

	

.í6

	

sem.íb ímple .

Prof . If R satisfies d .c .c .f .g .P then R = Q(R)

by 4 .5 . Thus by 4 .3, R is semisimple .

The converse is clear .n

A domain satisfying the right Ore condition is a

right Goldie domain . The converse of this follows immediate-

ly from the following two lemmas proven by A .W . Goldie [4,51 .

4 .7 Lemma .

	

11

	

R

	

satíes .íes

	

(a . c .c .) 9

	

xhen eveny



nonzeno níghx tideal o6 R eonzatinb a unti6onm níght tideal .

Proof . Let I be a nonzero right ideal . If I is not

uniform,

	

then

	

I

	

contains

	

nonzero

	

I 1 ,

	

1 1

	

with

	

1 1
ni 1

	

=

	

0 .

If

	

1 1

	

is

	

not

	

uniform

	

there

	

exists

	

nonzero

	

I 2 ,

	

12

	

contained

in

	

1 1

	

with

	

1 2 ni 2

	

=

	

0 .

	

Continue

	

this

	

process

	

to

	

obtain

1 1 ci 1si 2 CJ 1®J~ej 3c***'	Since R satisfies (a .c .c .) e, the

above sequence must terminate . If it terminates at the nth

step, I n is uniform . "

4 .8 Lemma . Let R be a nting wtith unti6onm htight tideal

U . 16 U hah a nonzeno el'ement whtieh ti3 not a le6x dtivíeon

o6

	

0 then R íz a %íght uní6onm nting .

Proof .

	

Let

	

I,

	

J

	

be right ideals such that

	

Ini =0,

and let u in U be an element with ul = 0 . Then ulnui=0 .

Hence I = 0 or J = 0 . "

4 .9 Lemma . I6 R tie a ntight (M)EP níng 6atízlyíng

níghx a .c .c .(f .g .)P, then R aaxtie6íes (a .c .c .)® .

Proof .

	

Let

	

(Ai}iE I

	

be a collection of nonzero in-

dependent right ideals in R . Then each A i contains a nonze

ro

	

projective

	

right

	

ideal

	

P i .

	

The

	

sum

	

E

	

P i

	

is

	

direct .'
icI

Hence by a .c .c .P, I is a finite set . Thus each collection

of independent right ideals in R is finite ; i .e ., R satis-

fies (a .c .c .)®.

The same proof works. for MEP rings satisfying right

a .c .c .f .g .P .o

18

4 .10 Theorem . 16 R tie a domatin satís6yínq



a .c .c .f .g .P, then R .íe an One doma.ín .

Proof . By Goldie, it suffices to show that R satis-

fies (a .c .c .)s . But since dómains are MEP rings, domains

satisfying right a .c .c .f .g .P also satisfy (a .c .c .)®. "

(a .c .c

4 .11 Lemma . Any n.íght none .íngulani níng eat.íb6y.íng

®

	

alóo

	

bat.íb6íee

	

(a .c .c .
)1 .

Proof . See, for example, Faith f2, 9 .12 .2,p .3961 . "

4 .12 Corol l ary .

	

16

	

R

	

¿e a n.íght nonb .íngulan. n.íng

w.íth EP and sat¿e6yíng n,.íght a .c .c .P, then R .íe n..íght

Go .Cd .íe .

Proof . By 4 .9, R satisfies (a .c .c .)® and hence

also

	

satisfies

	

(a .c .c .)1

	

E

4 .13 Lemma . Lex R be a n.íght aem.íhened.ítany n.íng .

1 . í6 R bat.í .s6.íe4 n.íght a .c .c .f .g .P then R

íe n.íghz Noethen.ían .

2 . 16 R 6atí66.íe4 n.íght d .c .c .f .g .P then R

íe le6t pen6eet .

Prof . Since all finitely generated right ideals are

projective, 1 . follows Since right a .c .c .f .g .P is equivalent

to a .c .c . on finitely generated right ideals and 2 . follows

from Bass',theorem .n

For completeness, we next prove a couple of known



lemmas giving conditions on rings which assure us the ring

will satisfy

	

a .c .c .P . The first lemma says much more, it

says the ring is Noetherian .

4 .14 Lemma . 11 R satísáíez (a .c .c .)® and a .c .c .

con e~ssent.íal n.íght .ídeals, then R .ís n,íght Noethen.ían .

Proof . Let A be an essential right ideal of R . Su

ppose A is generated by
{xi}iEI .

Then by (a .c .c .)® there

is a finite su *bset

	

X

	

of

	

{x .}

	

with

	

T =E ®x .R

	

an essential
x i E X

	

i

submodule of A . Then T is essential in R and TCT CT C � ,

Where T r = T + x 1 R + x 2 R + . . . + x r R . This is a sequence of

essential

	

submodules

	

of

	

R

	

and

	

must

	

terminate,

	

say

	

at

	

Tk .

Then

	

A

	

is

	

generated

	

by

	

{x l ,x 2 . .- x k }ux .

1vw

	

if

	

i

	

i5

	

ariy

	

l ig- iit

	

id~al

	

of

	

R,

	

t2-

	

I

	

i5

essential or there exists

	

I 1 00 - with

	

I n I 1 = 0 .

	

Then

either

	

I® 1 1

	

is essential

	

or

	

there exists

	

1 2	with

(I ®I 1 ) n I 2 = 0 .

	

This process must terminate after a finite

number of steps since R satisfies (a .c .c .)® . Thus for

some n, I® I 1 ® I 2 ® . . .® I n is essential and hence finitely

generated . But I is a summand of a finitely generated right

ideal and hence is finitely generated . Thus R is right Noe-

therian .

4 .15 Lemma . 11 R .íe a sem.íptíme iíght Gold.íe n .íng,

then each ee .e ent.íal pho j ect.íve n.íght .ídeal íb

	

b .ínítely genexa-

ted .



Proof . Let P be an essential projective right ideal .

If {x i } is any generating set for P then by the dual basis

lemma there exists a family {f i } of elements in P* =

Hom R (P,R)

	

such that for each

	

p

	

in

	

P, p = E x i f i (p)

	

with

f i (p) = 0 for almost all i .

Since R is semiprime right Goldie, the right quo-

tient ring of R, Q(R) = Q,

	

is also the injective hull of R .

Hence each f in P* can be extended to f' in HomR (Q,Q) .

But then f'(x) = qx where q = f'(1) in 0 .

P is essential so there exists a regular element x

in

	

P .

	

Now' x =E x i f i (x) = E x i g i x,

	

with

	

q i x = 0

	

for

almost all

	

i .

	

Hence almost all

	

q i = 0

	

so almost all

	

f i = 0,

say

	

fn = 0

	

for

	

n> N .

	

It follows that

	

P

	

is finitely gener-

ated by x 1 ,x 29 . . .,x N .

4 .16 Corollary . 11 R tie aemtipntime ntight Goldtie wtith

EP then each projecttive níghx tideal tió jíntitely generated .

Proof . If R has EP then each projective right

ideal is a summand of an essential projective and hence is

finitely generated .

5 . Examples

Right Noetherian rings clearly satisfy right a .c .c .P .

The following example shows that right a .c .c .P rings

need not be Noetherian .



5 .1 . Example .

The ring R=F ((x1,x2, . . .,xn . . .))=núlF((xl, . . .,xn))

of formal power series in infinitely many commuting variables

over . a field F is a local ring, so projective ideals are

free, hence principal (since R is a commutative domain) . It

suffices to show that R has a .c .c . on principal ideals .

But this holds in any UFD

	

(See, for example, Kaplansky

[8, Theorem 179, p .1321) . "

Also the ring R = F[xl,x2, . . .1 satisfies a .c .c . P

since projective ideals are principal and R satisfies

a .c .c . on principal ideals .

Left perfect rings satisfy right d .c .c .f .g . P since

they satisfy d .c .c . on all finitely generated right ideals

(See [21) . The next example shows that the converse is not

necessarily true .

5 .2 Example .

	

Let S = K(( x l ,x 2 ,x 3 ))

	

be the ring of

formal power series in three indeterminates over a commutati

ve

	

field

	

K,

	

let

	

I

	

=

	

(x l x 2 ,

	

x l x 3 ,

	

x2x 3 ,

	

x 2	+

	

x 3 )

	

and

	

define

R to be S/I . Then R is local so projective ideals are

free . Hence the only projective ideals in R are R and 0 .

Thus R satisfies a .c .c .P and d .c .c . P . Howeve r R is

not

	

perfect

	

since

	

(x l ) D(x 2 ) D(x 3 ) D . . .

	

is

	

a

	

nonterminating

sequence of principal ideals in R . "

Let R be a ring with a right quotient ring Q . If



P

	

is an ideal in

	

R,

	

define

	

P -1 = {q

	

in

	

Q I

	

qPc R} .

	

We

say that P is invertible if PP-1 = P -1 P = R . Let P deno-

te the collection of al] invertible ideals in R .

5 .3 Theorem . 11 R 3atís6íee a .c .c .P, then each ín-

ventíbl'_e ideal may be wnízten a3 a pnoduet o6 maximal tinvenxí-

bl'_e ídeal.6 .

Proof . Let A be an invertible ideal . If, A is maxi-

mal ., we are done . If not, then A is contained in a maximal

invertible ideal B . Then AcB -l A = C . C is an invertible

ideal since (A -1 B)C = A -1 BB -1 A = R . If C is maximal, we are

done since A = BC is a product of maximal invertible ideals .

If not, continue . By a .c .c . P the process must terminate

and we have A as a product of maximal invértible ide.als .a

5 .4 Corollary . 16 R tic a commutatíve domaín wíth

a .c .c .f .g . P then each pnojecttive ideal tih a pnoduet o6 maxti-

mal pno Jeetíve ídealb .

Proof . In a commutative domain, the invertible ideals are

the finitely generated projective ideals . "
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