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1. Introduction

A ring R is said to satisfy ndight a.c.clf.g.] P
if R satisfies the ascending chain condition on (finitely
generated) projective right ideals; adght d.c.e.lf.g. 1P 1is

defined similarily.

In section two we show that if R satisfies right
d.c.c.P and if U is a two-sided ideal which is also a mini-
ma) projective right ideal, then either U% = 0 or U? =
U(2.3). If R 4s commutative and U 1is finitely generated,
than U2 = U and is generated by an idempotent element (2.5}
We also show that if R satisfies right a.c.c.P or right
d.c.c.P then every projective right ideal is countably gener-
ated (2.9). The polynomial {also power series) ring in in-

finitely many variables over a field are examples of non-Noe-

therian rings satisfyine right a.c.c.P.

The symbols EP are used to denote encugh projecti-

ves, every nonzero right ideal contains a nonzero projective



right ideal; and MEP denotes the condition that every nonze-
ro right ideal contains a nonzero finitely generated projecti-

ve right ideal.
2. Structure of Minimal Projective I[deals

If R is a commutative ring satisfyin d.c.c.P then
R  has minimal projective ideals. The next theorem describes
how these ideals are related to the other projective ideals.

We use the following known result.

2.1 Lemma. Llet R and S be nings, Let P be a
projective R-quuﬁa and £et Q be an (R,S)- bimodufe that
44 profective as an  S-modufe., Then P ®R Q <4 a profective
SI—moduf.l-:. |

Proof. See, for example, Faith [3, 11.15, p.430] .=

2.2 Theorem. Suppese Q 4£s a two-sdided ideal 4in a
xing R and (s a minimal profective alght {deal. Then given
any projective night ideal P of R, edithenr PQ =0 or
g Sp.

Proof. Since P and § are projective right ideals
and ¢ is an ({R,R)-bimodule, P & Q 1is projective. Sin-
ce P is projective and Q s &n ideal of R, P & Q = PQ
C

so PQ is also projective. But PQ =P and PQ = q. Since

it

0 s a minimal projective right ideal either PQ 0 or



2.3 Corollary. T4 P 448 a minimal profective night

ideal which is8 also a two-sided idealf, fLthen eithexn pZ - p

on P2 =0.m

2.3-A Remark. Note that both of the possibilities men

tioned in 2.3 actually occur. For example, Tet R = (E g)

be the ring of 2 x 2 lower triangular matrices over a field

F. t is well known that R is semihereditary. The ideal
P =1F g) satisfies pe = 0. However, if R 1is commutative
and P s finitely generated, then P2 =P (2.5).

2.4 Remark. G. Michler [8] has shown that if P2 =

P in a left perfect ring R, then P = ReR where e i5 an

idempotent in R and is central modulo the radical J.

2.5 Lemma. In a commutative ning R a mindimum projec
tive fideal P s idempotent. 1§ P s also pinitely genex
ated, then P (s geneaated by an idempotent elfement.

Proof. Since P 1is a projective module, the dual ba-
sis lemma guarantees that there exists a set of elements

14

{pyts P in P, and a set of homomorphisms {fq} with f_

in HomeP,R) such that fﬂ(P ) = 0 for almost all a«, and

[a 4
C

X = Epafa(x) far each x in P. Since P — R, a commutati-

ve ring, we see that x = Efa(pax} for each x in P. Thus

'P2 = 0 1implies P = 0. Since P ¥ 0, we see by 2.3 that

pZ - p.

If P s finitely generated, theorem 76, page 50
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of Kaplansky [8] says that P contains an idempotent ele-
ment. Since P is a minimum projective, the idempotent ele

ment must generate P.®

2.6 Theorem. 14§ R s a commufative semiprime nding
with EP 1that satisfies d.c.c.P, thean R 4s a direct sum
of a findite number of fiefda.

Proof. Since R satisfies d.c.c.P, R has minimal
projective idéa]s. Say 11 is a minimal projective ideal.
Then I1 is simple since R has £EP, and hence 11 is ge-

nerated by an idempotent - By Jacobson [6, Proposition

T, p.65], 1, 1is a field. Let Rl = {1 - e.JR. Then R

1 1
has EP and satisfies d.c.¢.P. Thus R, = 0 or contains a

1
minimal projective 12 where I2 is a field agenerated by an
idenpoient €, Then R, = (I-el-eZ]R = 0 or contains a mi-
nimal projective I3 which is generated by an idempotent.
Since R has- d.c.c.P, R contains no infinite direct sum of
projective ideals so the above process must terminate after a

finite number of steps. Hence R =EeIn, a finite sum, whe-

re each In is a field.m

2.7 Corollary. 14 R s a commufative Neethernian ae
miphime ning that satisfies d.c.c.P, then R {4 a dinect
sum of a finite numben of fiefds.

Proof. Since R - is Noetherian, minimal projective
ideals are finitely generated and hence geﬁerated by an idempo

tent. Thus minimal projectives are summands of the ring. The



remainder of the proof is the same as the proof of 2.6.m=

We can alsoc say something about the projective right
ideals in a ring satisfying right a2.c.c.P. WMe first state a

theorem due to Kaplansky (6].

2.8 Theorem. Everny profective module i3 a dinecit sum

of countably genenated modules.®

2.9 Lemma. 15' R satisfies night a.c.c.P ox right
d.c.c.P  then every projective night L{deal (& countfably genex
ated. 1

Proof. By ¥aplansky's thecrem, each projective (right
ideal} is 2 direct sum of countably generated projectives. If
R satisfies right a.c.c.P or right d.c.c.P the number of
independent summands of a projective right ideal is finite.
Thus each projective right ideal is & sum of a finite number
of countably generated modules and hence is countably genera-

ted.m

3. Inheritance Properties of Chain Conditions on Projectives
3.1 Theorem. lef R be any adng. 1§ Mg satisgfces
the descending chadin condition opn [{finifely generated] projec
Zive submodufes then each homomorphic image of M also satds
fies this econddition.
Proof. Let f: M ——N be an R-epimorphism of right

R-modules and let P,2P,2P.0... be a sequence of projective
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submopduies of N. Then f_l(Pl)———+ Pl — 0 splits so
P1C+f_1(P1)§-M. Thus P, satisfies the descending chain condi-
tion on {finitely generated) projective submodules. Hence the
re exists an n  such that Pn = pn+k for k = 1,2,3,.... It

follows that N satisfies d.c.c. on (finitely generated)

projective submodules.=

We use the following theovems of H. Bass [11 and
J.E. Bjork 121 several times in the proof of the following

result and in the next section.

3.2 Theorem {Bass). Let R be a ning, J  {ts nadi
cal. Then the fofPowing are equivalent:
1} R 43 Eeéz_paaﬁagt; L.e., eveny Left R-module has
¢ projecZive cover.*
2) 3 s Zeft T-nilpotent and R/JI i+ semisdimple.
3) A direct Limit of projective Left R-modufes is
profective.
4} R satisfies the descending chain condition on
prineipat night ideaks.
5} R has no infinite sets of onthogonal idempotents,
ard eveny norzeno right R-module has nonzero so-

cle.w

3.3 Theorem {Bjork). A ning R 45 Left perfect if and
onty {f R satdisfies the descending chain condition on §inite
Ly genenated night (deals.m

* Projective cover is the dual of injective hull.



3.4 Theorem. T4 R is a rdight penfect ning and MR
satisfies a.c.c.{f.g)P then each homomonphic Limage of M
alre satisfies Lhis condifion.

Proof. Ltet f: M —N be an R-epimorphism and suppo-
se that P, C P, C Py C... is an ascending chain of projecti
ve submodules of MN. Let P = UPi. Then P is flat. By
Eass [1], P is projective. Thus f-l(P} — P — 0
splits and P embeds in f (P} C M. Hence P satisfies
a.c.c.{f.g.)P and the above sequence of projective modules

must terminate after a finite number of steps. It fallows

that N satisfies a.c.c.{f.g.)P. .=

4. Study of Some Particular Classes of Rings under the

Assumption of Chain Conditions on Projective Ideals.

We can characterize semiprime right semihereditary
rings which satisfy right d.c.c.f.g.P. More generally, a
ring in which principal right ideals are projective is a

night P.P.  Aadng.

4.1 Lemma. Let PR be a semiprime night P.P. ning.
Then R satisfies night d.c.c.f.g.P  if and only if R 4
semisimple. |

Proof. Since R is right P.P., each principal right
ideal is projective. Thus right d.c.c.f.g. P implies the des
cending chain condition on principal right ideals. 8y Bass'

theorem, R/J, J = radical R, is semisimple and J . 1is left
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T-nilpotent. If J ¥ 0, there exists a minimal right ideal

I CJ. Now either 12 = 0 or there is an e in I, e=#*40,

and 92 = e. Sipnce J is Teft vanishing, J <contains no

nonzero idempotents. Thus J = (. Hence R is semisimple.
. The converse implication is clear since semisimple

rings are Artinian.®

4.2 Corollary. T4 R s a regular ring sailsfying
night d.c.c.f.g.P Zhen R 435 semisimple.

Proof. Regular rings are semiprime right FP.P. (in
fact, semihereditary) and thus by 4.1 are semisimple if they

satisfy right d.c.c.f.q.P.m

.Definit{on. A ring R 1is said to satisfy f[a.c.c.)®
if it contains no infinite set of independent right ideals.
The a.c.c. on right annulets ¢f R is abbreviated
(a.c.c.)l. If a ring satisfies both (a.c.c.}® and

(a.c.c.)l, then the ring is said to be night Golfdie.

We say a right R-module M is undiform if X,¥Y non-
zerp submodules of M implies XNY+#0. A ring is {night)

undigorm if RR is uniform.

To prove our next theorem we need the fallowing

theorems of A.W. Goidie {24,5}.



4.3 Theorem., A ning R {4 semipiaime ndight Goldie 4§

and onfy £f Lfs quoiient ning Q(R) 45 semisimple.m

4.4 Lemma. A uniform semipadime right Gofdie nding R
i4 a rndlght Ore domain.™
Note that in this case, as with all domains, right

a.c.c.f.g.P implies a.c.c. on principal right ideals.

4.5 Theorem. I§ R (& a ning satisfyding night
d.c.c.f.qg.P, then R {4 a xdight Ore ning and R = Q(R}.
Proof. If a is a regular element in R, but not in-

vertible, then a"R properly contains an+1R

for n = 1,2,
3,.... But a regular implies a"lR~R s projective for each
n, contradicting d.c.c.f.g.P. Thus each regular element in

R is right invertible. Hence R = Q{R).m

4.6 Theorem. Lef R be a semipndime night Golddie
aing., Then R safdisfdies night d.c.c.f.g.P £f and only «f
R s semisimple.

Prof. 1f R satisfies d.c.c.f.g.P then R = Q(R)
by 4.5. Thus by 4.3, R 1is semisimple.

The converse is clear.®

A domain satisfying the right Ore condition is a

right Goldie damain. The converse of this follows immediate-

ly from the following two lemmas proven by A.W. Goldie [4,5].

4.7 Lemma. I§ R satdisfies {a.c.c.}® Lhen eveay



nornzere hight Lideaf of R contadins a uadiform right ideal,
Proof. Let I be a nonzero right ideel. If I is not

uniform, then I contains nonzero Il, JI with Ilf1J1 = 0.

If ll is not uniform there exists nonzero IZ’ J2 contained
n

1 2"
JICJIeJZCJ1§JZBJ3C“'. Since R satisfies (a.c.c.) e, the

th

in 1 with [ 2 ="0. Continue this process to obtain
above sequence must terminate. If 7t terminates at the n

step, Irl is uniform.m

4.8 Lemma. Let R be a aing with uniform night ideal
U. T4 U has a nonzero efemeni which {4 nof a Left divdison
6§ O then R 48 a aight unifornm aing.

Proof. Let I, J be right ideals such that 1INd=20,
and let wu in U be an element with W' = 0. Then ulnud=0,

Hence 1 =0 or J = 0.m

4.9-Lemma. 1§ R £& a ndght (M)EP adng datis fying
ndght a.c.c.(f.g.)P, <then R  satisfies [(a.c.c.)e.

Proof. Let {Ai}ie I be a collection of nonzero in-
dependent right ideals in R. Then each Ai contains a nonze-
ro projective right ideal P,. The sum iélpi is direct.’
Hence by a.c.c.P, I is a finite set. Thus each collaction
of independent right ideals in R is finite; i.e., R satis-
fies (a.c.c.)e.

The same proof works for MEP rings satisfying right

a.c.c.f.qg.p.=

4.10 Theorem. I{ R 448 a domain safdisfyding
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a.c.c.f.g.P, zthen R & an One domain,
Proof. By Goldie, it suffices to show that R satis-
fies (a.c.c.)®. But since domains are MEP rings, domains

satisfying right a.c.c.f.g.P also satisfy (a.c.c.)e.®

4.11 Lemma. Ang night nonsingufar ning saiisfying
(a.c.c.)® also satisfies (a_c,c_)l.

Proof. See, for example, Faith (2, 9.12.2,p.396] .=

4.12 Corollary. 1§ R .is a right nonsingular ning
with EP and safisfying night a.c.c.P, then R L8 right
Gotldie.

Proof. By 4.9, R satisfies (a.c.c.)® and hence

also satisfies (a.c.c.)l.l

4,13 Lemma. Let R be a night semiheneditany ring.
I. 4§ R satisfdies night a.c.c.f.g.?P zthen R
i4 night Noetherdian,
2. T§ R satisfies aight d.c.c.f.g.P then R
{3 Legi penfect. .
Prof. Since all finitely generated right ideals are
projective, 1. follows since right a.c.c.f.g.P s equivalent
te a.c.c, on finitely generated right ideals and ?. follaows

from Bass' .theorem.,®m

For completeness, we next prove a couple of known



lemmas giving conditions on rings which assure us the ring
will satisfy a.c.c.P, The first lemma says much more, it

5ays the ring is Noetherian.

4.14 Lemma. I{ R satisgies {a.c.c.)® and a.c.c.
on essential night (deafs, then R 44 night Noetherdan.

Proof. Let A be an essential right ideal of R. Su

Ppose A is generated by {xi] Then by {a.c.c.)® there

igl.

is a finite subset X of {Xi} with T =X ®xiR an essential
X-& X

submodule of A. Then T is essential in R and T<T

cT,C .,

1=-"2

Nhére Tr =T + le + sz + ...+ xrR. This is a sequence of

essential submodules of R and must terminate, say at Tk'
Then A is generated by {xl,xz...,xk]ux.

ny vight ideal of R, ei

=r
1)

H E
1 (=3

ot

How 3if I s

7]

essential or there exists I1 #+0 - with 1 ﬂll = 0. Then

either @ I1 is essential or there exists 12 with

(1 mIl} 012 = 0. This process must terminate after a finite
number of steps since R satisfies {a.c.c.)® . Thus for
some n, I®1.®& [, 0 . .8 ] is essential and hence finitely

1 2 n
generated. But I is a summand of a finitely generated right

ideal and hence is finitely agenerated. Thus R is right Noe-

therjan.m

4.15 Lemma. If R 4{s a semiprime nighit Goldie ring,

then each essential profective right ideal is §initely genena-

fed.
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Proof. Let P be an essential projective right ideal,
1f {xi} is any generating set for P then by the dual basis
lemma there exists a family {fi} of elements in P* =
Homg (P,R)} such that for each p in P, p=2Z xifi(p) with

fi(p) = 0 for almost all i,

Since R is semiprime right Goldie, the right quo-
tient ring of R, Q{R} = Q, is also the injective hull of R.
Hence each f in P* <c¢an be extended to f' 1in HomR{Q,Q).
But them f'(x) = gx where g = f'{1) in Q.

P 3s assential so there exists & regular element X
in P MNow' x =Zx f.{x) = Zx;q;x, with g;x =0 for
almost all i. Hence aimost all q; = 0 sop almost all fi =0,
say fn = ¢ for n>N. It tollows that P 1is finitely gener-
ated by XysXos-o oo Xy

4.16 Corollary. 1§ R is semipaime night Geldie with
EP  then each projective night ideal i{s finilely genenrated.

Proof. 1f R has EP then each projective right
jdeal is a summand of an essential projective and hence is

finitely generated.

5. Examples
Right Moetherian rings clearly satisfy right a.c.c.P.

The following example shows that right a.c.c.P rings

need not be Noetherian.
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5.1. Example.

The ring R=F {(xl,xz,...,xn..J)=n§aF({xl,...,xnn
of formal power series in infinitely many commuting variables
over a field F 1is a local ring, so projective ideals are
free, hence principal {since R is a commutative domain). It
suffices to show that R has a.c.c. on principal ideals.

But this holds in any UFD (See, for example, Kaplansky
{8, Theorem 179, p.1321).m

Also the ring R = FIxI,xz,...] satisfies a.c.c. P
since projective ideals are principal and R satisfies

ga.c.c. on principal ideals.

Left perfect rings satisfy right d.c.c.f.g. P since
they satisfy d.c.c. on all finitely generated right ideals
(See [2]}. The next example shows that the converse is not

necessarilty true.

5.2 Example. Let S = X{ xl,xz,x3ﬁ be the ring of
formal power series in three indeterminates over a commutati-

ve field K, let 1 + x3} and define

(xiXZ’ X1X3s XpX3s X
R to be S/I. Then R s Tocal so projective ideals are
free. Hence the only projective idezls in R are R and 0.
Thus R satisfies a.c.c.P and d.c.c. P. However R s
noet perfect since (xl) Q(XE} g(xi) 2... is & nonterminating

sequence of principal ideals in R.®

tet R be a2 ring with a right quotient ring Q. If
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® is an ideal in R, define P Ll = {q in Q1 GPCR}. We

1 -1

say that P is invertible if PP " = P P = R. Let P deno-

te the collection of all invertible ideals in R.

5.3 Theorem. T4 R asatisfies a.c.c.P, zhen.each in-
vertible ideal may be wnitten as a pioducit of maximal inverntd-
ble ideals.

Proof. Let A be an dinvertible ideal. If A is maxi-
mal, we are done. If not, then A is contained in a maximal
invertible ideal B. Then ACB YA = C. C s an invertible
ideal since [A'lB}C - algg"la = R, 1f C is maximel, we are
done since A = BC is a product of maximal invertible ideals.
If not, continue. By a.c.c. P the process must terminate

and we have A as a product of maximal invertible ideals.®

§.4 Corollary. I§ R 4{s a commutafive domain with
a.c.c.f.g. P ther each projective ideafl 4 a product of maxi-
mal profecidve Ldeals.

Proof. In a commutative domain, the invertible ideals are

the finitely generated projective ideals.m
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