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There have been many attempts to define determinants

on non-commutative rings (cf .e .g .[13] and. the references quo-

ted there), of which perhaps the most successful is the defini

tion of Dieudonné [10], leading for any skew field K and

any n > 1 (except when n=2 and K=F 2 ) to an isomorphism

(1)

	

GLn(K) ab

	

-	K *ab .

Suppose now that K is obtained from a ring R by in

verting certain matrices over R, forming a set E . The way

in which the elements of K are obtained from R and E was

described in Ch .7 of [3], and we may ask whether GL n (K) ab

can be described directly in terms of R and E . Since (1)

is an isomorphism for all n, we can limit ourselves to a sin

gle value of n, or we may simply take the limit GL(K)=1im GL n(K) .

Our aim here is to describe the Whitehead group K 1 (K)~

GL(K)ab in terms of E ; this can be done under fairly general

conditions, though for more precise results we need to take R

to be a fir and K its universal field of fractions . In parti



cular, by taking R to be a free associative algebra we ob-

tain an explicit expression for determinante over a free field

(Th .5 .2) .

To state the resulte, let f :R -> K be a homomor-

phism of any rings and suppose that every element of K can be

obtained from the entries of the formal inverses of the matri

ces from a set E , which is multiplicative (as defined below,

cf . aleo [3], p .249), then it is not hard to show that f in-

duces an epimorphism of abelian groups

(2)

	

f* : Eab -> K1(K),

where

	

Eab

	

is

	

the

	

universal

	

abelian

	

group

	

of

	

E

	

(Th .2 .2

	

and

Cor .) . In general there is no reason for f* to be injective,

but when K is the universal field of fractions of a Sylvester

domain R and E the set of al] full matrices over R, then

(2) is an isomorphism . This is proved (for the slightly larger

clase of pseudo-Sylvester domains) in Th .3 .1 by constructing

an inverse ma)pping to f* . For a somewhat different treatment

of the

	

same probl em see

	

[121

	

and al so [61 .

For Sylvester domains it is difficult to say more be-

cause little is known about factorization in such rings . But

when we have a fir R , or .more generally a fully atomic semi

fir (i .e . one in which every full matrix can be expressed as a

product of atoms) then a more precise statement is possible .

In R define a pn,íme as a class of stably associated atoms and

the d.ív.í,&wc group D(R) as the free abelian group on al] the

primes, and let U be the universal field of fractions of R ,



then we prove in Th .4 .4 that

K 1 (U)°-
U*ab- D(R) x [GL(R)/GL(R)nGL(U)'] .

In particular, when

	

R = k < X >

	

is a free algebra, this be-

comes

U*ab = D (R) x k*

(cf . Th .5 .2 .) . These results have also been obtained by G .Ré-

vész [12] by a different method .

Our second main result is concerned with localization

of firs . Let R be a fully atomic semifir and E a multipli-

cative set of matrices such that R. is again a semifir, then

R,, is also fully atomic and the divisor group of R.. is iso-

morphic to D~(R), the subgroup of D(R) generated by the

primes which survive in R,, (Th .6 .3) .

I am indebted to G .M . Bergman for his extensive com-

ments on an earlier version, and to G . Révész for several help-

ful remarks .

1 . Notation and general background

Let R be any ring ; we write m Rn for the set of al]

m x n matrices over R and also put MR for M R 1 and R n

for 1 R n . The chanacteníatíc of an m x n matrix is defined

as n - m . If a matrix is expressed in block form (P), we

often write this as

	

P, T( Q)

	

to save space ;here T indicates

that the blocks P, Q are to be written as a column, but are

not themselves transposed . Similarly for more than two blocks .



The dtiagonal sum of two matrices A, B is defined as

A + B = (A B) . The set of all invertible n x n matrices

over R is denoted by GL n (R) and we embed GL n (R) in

GL n+1 (R)

	

by

	

the

	

rule

	

A

	

1-=

	

A

	

+

	

1 .

	

Further

	

we

	

put

	

GL(R)

	

_

lim

	

GLn (R) .

	

As usual, a matrix is said to be elementary if it

differs from the unit matrix in at most one off-diagonal en-

try ; the group generated by all elementary n x n matrices is

written E n (R) and as before we put E(R) = lim`En(R) .

For any A Em Rn , the least integer r such that

A = PQ, where P EMR r , Q E r R n is called the tinneh hank and

-a matrix is said to be jul'l if it is square, say n x n and

of inner rank n . In general, if A is full, it need not be

the case that A + 1 is full ; if A + I is full for any unit

matrix I, A is called stably bul'l and the set of al] stably

full n x n matrices over R is written F n (R) ; we embed

F n (R) in F n + 1 (R) as for GL(R) and write

F(R) = lim F n (R) . Sometimes we shall need a generalization

This limit always exists and is an integer or - -, but if

In is full for all n, the inner rank is actually non-negati

ve (cf . [81) . 'We note that an n x n matrix is stably full

precisely when it has stable rank n .

Two matrices A, B are said to be abeoctiated if

A = PBQ for some invertible matrices P,Q . If P, Q can be

taken in E n (R), we call A and B E-assoctiated . If A + I

is (E-) associated to B + 1 (where the unit matrices need

of the inner rank . The zxabl'e nank of a matrix A is defined

as lim {rk(A + I n ) - n}, where rk denotes the inner rank .



not be of the same size), then we say that A and B are

etably (E-) associated . Two stably associated matrices are

not necessarily of the same size, but they have the same cha-

racteristic, provided that R is a ring with invariant basis

number (i .e . all invertible matrices are square) .

By a bíel'd we understand a not necessarily commutati-

ve division ring ;sometimes we use the prefix 'skew' for em-

phasis . If G is any group, its derived group is denoted by

G'

	

and

	

we

	

write

	

G ab

	

=

	

G/G'

	

for

	

the

	

abelianization

	

of

	

G .

For a field K we write K* for the group of its non-zero

elements

	

and

	

by

	

abuse

	

of

	

notation

	

we

	

simply write

	

Kab

	

for

K* ab .

	

If

	

R'

	

is

	

any

	

ring,

	

an

	

R-6tield

	

is

	

a

	

field

	

K

	

with

	

a

homomorphism R

	

' K ; if K is generated, as a field, by

the image of R, we speak of an epic R-field .

An m x n

	

matrix over a field K, of rank r, is

said to have l'ebt nullítu m-r and níght nul'l'íxy n-r . These

nullities are only defined over a field, but if A is a ma

trix over R and K is any R-field,we can consider the nu-

llities of A over K ;they are simply the nullities of the

image of A in K .

We shall not repeat the definitions of fir and semifir

(cf . [31, Ch . 1 or [41, Ch . 4) . We merely recall that every

semifir R has a universal field of fractions U, obtained by

formally invertine all full matrices over R (cf . [31, p .

282 f .) . More generally, if R is any ring and E a set of

square matrices over R, then a map f : R = S is called

a E-ínvehtting eptimonphíbm if f is a homomorphism mapping



each matrix of E to an invertible matrix over S and S

consists of the entries of inverses of the matrices

	

Af , AE E .

It is easily seen that this is in fact an epimorphism in the

category of rings . In what follows, E will generally be mul

ttipl'ticatíve,

	

i .e .

	

1 E r

	

and

	

if

	

A,

	

B E=-S,

	

then

	

( A

	

B)

	

E E

for all C of appropriate size . For any ring R and set E

of full matrices over R, the localízatíon Rz: of R by E

is defined as the ring obtained from R by formally inverting

all the matrices in E . Then in any E-inverting epimorphism

f : R

	

' S, S is clearly a homomorphic image of RE . Suppo

se now that s is multiplicative ;then each element of S may

be obtained as the last component u n of the solution of a ma

trix equation

(1)

	

Af u = 0, A = (Ao,A1, . . .,An) E n Rn+1 ,

where (A l . . . .,An ) E E and u = (1,u1, . . .,un)T .

	

If

	

p = u n ,

	

we

say that (1) is an S-admissible system for p and call

(Ao,A1, . . .,An-1)

	

the numenazon,

	

(A 1 � . .,An )

	

the denomtinaton

of p (cf . [5], § 4) . It is often convenient to put

(Al$ . . .,An-1) = A* and A n = A.), then the numerator will be

(A 0 ,A * ) and the denominator (A* , A.) .

2 . The calculation of K 1 for a localization

It is a well known fact that for any ring R, E(R) =

GL(R)'

	

(cf . [1], V .1 .5, p .223), so that GL(R) ab = GL(R)/E(R) ;

by definition this is the Whitehead group K 1 (R) . If we

have a skew field K, then for any non-singular matrix A over



K there exists a E K* such that

A --_ a (mod E (K)),

and here a is determined mod K*' . The residue class

of a in K ab is called the I)íeudonné detenmínant of

written det A . We note that by (1),

for any skew field K .

Suppose now that R, S are any rings, E is a multi

plicative set of matrices over R and f :R ' S is E-inver

ting epimorphism . Our object is to express K 1 (S) in terms

of R and E . In order to do this we need to express matri-

ces over S as solutions of systems of equations over R

(as was done in (1) of § 1 for elem.ents) .

Proposition 2 .1 Let R, S be any nínga, E a mu.ltíplíeatí-

ve eet o6 ma.tníeee

	

oven

	

R,

	

and let

	

f :R --=

	

S

	

be a

	

E-ínven

t.íng epímonphísm .

	

Gíven any

	

P E m S n ,

	

there exíbts an ínxegen

r '> 0

	

and matníces

(A o ,AA

	

) Er+mRn+r+m ,

	

u

	

=

	

(u

	

u*,u,)
T E n+r+m

S n(3)

	

A =

	

,*, ~

	

o ,

whene zhe numbena ob eolumne oj Ao,A*,A. and 2ífzewíbe the

numbenh oj nows oj uo,u*,u,o ane n,r,m, nespeetívely, eueh

xhat

(A * ,A� ) CE,

a ab

A,



one non-zero entry, since the general case may be obtained

by adding such matrices . By row and column transformations

we can reduce everything to the case P = (p o), p E S . Let

A f u = 0

is a system for P, as required .

and

(5)

	

u o = I, u . = P .

Moneoven, u ís the uníque element o5 n+r+mS n satís1yíng

(4), (5) hon the gíven matníx A .

We shall cal] A an S-admíssíble system for P .

Proof . The uniqueness of u follows from (4), (5), since any

matrix in E is invertible over S .

To prove the main assertion we note that if it holds

for two matrices P', P" E m S n , then it also holds for

P = P' + P" . Indeed, if P', P" are determined by systems

Al f u' = 0,

	

A" fu" = 0,

	

analogous to

	

A

	

above, then (as in

the case of elements, cf . [3], p .250), P is given by the

system

A¿ A* A,~ 0 0 Íf
(I,u*,P',u*,P)T = 0 .

A"

	

0

	

-A"

	

A" A" 1o

	

00 * 00

Hence it suffices to prove the result for matrices with only

0

be an S-admissible system for p, then

Ao 0 A * A. 0 f 1 0

~ 0 1 n-10 0 0 0 1 m-1 u * 0 =

p 0

0 0



The equation (4) may again be written in a form of

Cramer's rule (131, p .251 and [51, § 4)

lde shall again cal] (A* , A.) the denominator of the system

A,

	

but

	

define

	

the

	

numeratoA as

	

(A* ,

	

-A0 ) .

	

This

	

is

	

right

associated to the numerator as defined in [51 (and recalled

in § 1), so the change has no effect on the considerations of

[51 except notationally . From (6) we see that P is stably

associated over S to its numerator, in particular it has sa-

me characterristic, and it is invertible if the numerator is

invertible over S, i .e . if the system can be chosen so as

to have a numerator in E . Moreover, when S is a field, the

left and right nullities of P over S agree with those of

its numerator .

Let R, S be any rings, E a multiplicative set of

full matrices over R and f :R

	

' S a E-inverting epimor-

phism . Since E is multiplicative, its matrices are even sta

bly full and we may embed E in

	

F(R) by the rule

A F-> A +I ; this allows us to regard E as a submonoid of

F(R), with the multiplicativn AB . Now consider the universal

abelian group Eab of E ; this is defined asan abelian group

,ab with a homomorphism E

	

' sab which is universal for

all homomorphisms of E

	

into abelian groups . To describe

,ab

	

explicitly,

	

let

	

us

	

denote

	

by

	

[A1

	

or

	

[Al E

	

when confu-

sion is possible, the class of A E E under stable E-associa-



tion over RE . Since E(RE ) = GL(RE )', we may regard [A]

as the residue class of A (mod GL(RE )') . We define a bina-

ry operation 'on the set G of all these calsses by putting

This is well-defined, since replacing A or B by a stable

E-associate replaces A - + B by a stable E-associate . It is

clear that the multiplication is associative, with neutral

[1], and it is commutative by Whitehead's lemma ([1],p .226) .

Moreover, the mapping A ~- [A]

	

is a homomorphism, because

AB is stably E-associated to A + B . Thus G is essentia-

lly E made commutative, and so Eab is the universal

group

	

of

	

the monoid

	

G .

	

The

	

elements

	

of

	

Eab

	

are

	

of

	

the

form

	

[ Al

	

-

	

[DI ,

	

where

	

A,

	

B E E,

	

wi th

	

[ A]

	

-

	

[ B]

	

=

	

[ A']

[B']

	

i f and

	

only

	

i f

	

[A +

	

B'

	

+

	

C]

	

=

	

[A'

	

+

	

B

	

+

	

C]

	

for

	

some

C E E .

Now the matrices of E

	

are al] inverted over S,

	

so

we have a map from E to GL(S) induced by f :R - S . Let

us write

	

[A] S

	

for the class of

	

A

	

(mod E(S)),

	

just as

[A] E

	

is the class of

	

A

	

(mod E(RE )) .

	

Since

	

[Al S + [B] S =
[A + B] S

	

in

	

K 1 (S),' this map

	

f

	

gives rise to a homomor-

phism

obtained

	

by mapping

	

[Al
71

	

to

	

[Al S*

	

We

	

claim

	

that

	

f*

	

is

surjective . For let P E GL(S) and take an S-admissible sys

tem Au = 0 for P (as in Prop .2 .1), then (6) holds ; hence

[Al + [B] = [A + B] .

f* :

	

Eab -->

	

K 1	(S),



on passing to K I (S) we find

[ (A*' A.)] . S

	

+

	

[ P] S

	

=

	

[ (A* , -A0 )] S .

This

	

shows

	

[P] S

	

to

	

be

	

the

	

image

	

of

	

[(A* ,-A o )]Z

	

-

	

[ (A*,A,o)]E

and so f* is surjective . Thus we have

Theorem 2 .2 . Le .t R, S be any xínge, E a mu.2típl.ícatíve

,set o6 6u11 matxíeea oven R and f :R - A a E-ínvexxíng

epímoxph.Lbm .

	

Denote by

	

Eab

	

the unívexeal abelían gxoup 6ox

E, then there íb a natuxal epímoxphíam

(7)

	

f* : E ab =

	

K1(S),

whexe A, BEE have the eame ímage undex f* í6 and only í6

there exíet.a

	

C E E

	

euch that

	

A + C

	

.ía

	

stabby

	

E-aeaoeíated

to

	

B + C

	

ovex

	

S .

In case S = K is a field, we have the isomorphism

(2) by the Dieudonné determinant, hence we obtain the

Corollary .

	

Le-t R be a xíng, E a multíplíeatíve_eet o6

6ull matxícea ovex R and K an epíc R-4íeld auch that the

natuxa.2 map R - K íe E-ínvextíng, then there .Le an

epímonphíbm Eab -. Kab .

3 . The case of pseudo-Sylvester domains
*

In general there is no reason for the map f

	

in

Th .2 .2 to be injective, because f need not be so (and even
*

the injectivity of f will not guarantee that of f ), but we
*

now turn to a case where f

	

is an isomorphism . We saw that

the universal field of fractions of a semifir R may be des-



cribed

	

as

	

the

	

localization

	

RF ,

	

where

	

F

	

=

	

F(R)

	

is

	

the

	

set

of al] full matrices over R (of course over a semifir every

full matrix is stably full) . The rings R such that R F is

a field, - - necessarily the universal field of fractions of R -

have been studied under the name Sy1ve,6tet domaín by Dicks and

Sontag [91 . Thus Sylvester domains form a class including se-

mifirs ; an example of a Sylvester domain not a semifir , is gi-

ven by the free Z-algebra on a non-empty set X :Z < X > .

Still more generally, we may define a pseudo-Sylvestet domain

as a ring R with a universal field of fractions U obtained

by inverting al] stably full matrices, cf .[81 . This seems to

be the widest class to which the method used here is applica-

ble .

Let R be a pseudo-Sylvester domain and U = R F its

universal field of fractions ; we claim that the induced map

f*:F(R) ab -- KI(U) = GL(U)ab

is an isomorphism . We shall prove this (following a sugges-

tion of Bergman) by constructing an inverse for f . Thus let

P E GL n (U) and takea U-admissible system Au = 0 for P, as

in Prop .2 .1 . In detail we have

(A0,A*,A�)(1n,u*,P)T = 0 .

Since P is invertible over U, so is its numerator (A*,-A0),

hence the latter is stably fuli over R . We define a map 60 :

GL(U)

	

' F(R) ab by the rule

PSo .

	

=

	

[ (A * ,-Ao)] F - [ (A * ,A,,)1 F ,



where F = F(R) . To prove that S o is well-defined, we take

another system for P, say Bv = 0, then we have to show

that in F(R) ab ,

Now consider the relation

[ (A * ,-A o )] F - [ (A * ,A~)] F = [ (B*,-B O )] F - [,(B* ,B� )1 F , i .e .

(2)

	

[ (A*,-A o )] F

	

+

	

[ (B * ,B~)] F

	

=

	

[ (B* ,-B o )] F

	

+

	

[ (A* ,A� )l F .

f

(In,u*,v*,P)T = 0 .
B.

We shall need to know the rank of the left-hand matrix over

U ; this is the stable rank over R and may well be less than

the inner rank, but if we can form its diagonal sum with a su-

fficiently large unit matrix, the two ranks will be equal .

This can be done by modifying A* or B * as follows . Since

Au = 0 is a U-admissible system for P, so is

A o A* 0 A. f

0 0 I 0

Moreover, if we modify A* in this way, the values of

[(A*,-Ao)1F and [(A*,-Ao)1F remain unchanged . We may thus

assume A, B modified in such a way th. a t the left-hand ma-

trix in (3) is stabilized, i .e . its stable rank is just

its (inner) rank . Let the number of columns in A * , B * be r,

s respectively, then the left-hand matrix in (3) is square

of order r + s + 2n ; by (3) it has right mullity at least



n over U, hence its inner rank over R (or also the stable

rank) is at most r + s + n . Thus we can write it in the form

(4)

	

Ao

	

A *	0

	

A

	

P

B 0 B * B~l -
(p0,pl,p~~,p~)

0

	

Q

where P E r+n R r+s+n , Q E s+n Rr+s+n and Do ,D',D' D <,o have

n,r,s,n columns respectively . From (4) we obtain the follo-

wing factorizations :

~

	

D

	

-Do	D '-

	

0

	

~

(0

	

-B

	

B *	B~~- ( Q

	

B~1

	

0

	

0

	

0

	

Io

	

n

(6)

	

A*	-A 0

	

0

	

-A.)

	

P

	

Oj~ D'

	

-D*0

	

V

	

-D.

~ 0

	

-Bo

	

n

If we apply

	

[ l F

	

to both sides and bear in min'd the evident

re1ation

A

	

C)

	

-

	

~ A

	

0

0 B

	

D BF F

we find that the right-hand sides of (5), (6) are equal,

while the left hand-side of (5) gives just the left hand si-

de of (4) . The left-hand side of k6) will similarly give

the right-hand side of (4) if we can interchange the second

and fourth column blocks and change the sign of the latter .

Now any two columns, x and y say, can be interchanged with

the sign of one of them changed, by elementary column opera-



tions :

(x, Y) -

	

(x,x

	

+ y)

	

'

	

( - Y, x +y) -

	

(-Y,x)-

Hence

	

we

	

can

	

in

	

(6)

	

exchánge

	

the

	

columns

	

of

	

(-A0

	

-B0)
T

against

	

those

	

of

	

(-A.,O) T

	

one

	

by one

	

and

	

change

	

the

	

signs

	

of

the latter . In this way we obtain the right-hand side of (4);

this then shows that (4) holds and it proves that S o is

well-defined . Since F(R) ab is abelian, we can factor S o

via GL(U) ab and so obtain S :GL(U) ab = F(R) ab , defined by

From the definition it is clear that

[P]8u = p60

P]P] Uf

	

=

	

{[ (A*,-A0 )] F

	

-

	

[ (A* ,A~)] F } f

	

=

	

[ P] U,

using an admissible system A for P . Next, if P E F(R),

then by taking the admissible system

(-P,I)( I) = 0,
P

*
we see that

	

[P] F
S = [P] 8 = [P] F - [ I] F = [P]F'

	

Thus

	

f*,

	

S

are mutually inverse, and this proves incidentally that S is

a homomorphism . Hence we have proved

Theorem 3 .1 . Le .t

	

R be a pheudo-Sylve.aten domaín, F = F(R)

the set o5 all stably bull matní,ee.a oven R and U = R F .Lte

uníve,t,sal? ~.Lel'd og 4naetíon~s, then

Kl(U) - Uab _ F(R)ab-

In particular this provides a means of calculating de-

145



terminants of matrices over pseudo-Sylvester domains :

Corollary . Let R be a pseudo-Sy.Cveetet domaín and U íth

unívenba.C (íeld oj bnae.tíona, then bot any ztab1y 6u.Cl matníx

A oven R we have

whene f

	

íz the map (1) índueed by f :R - U and set íh

talzen oven U .

For over U, A is stably E-associated to a E U,

such

	

that

	

aab

	

=

	

set

	

A .

	

Hence

	

[Al f

	

=

	

aab

	

=

	

set

	

A .

For Sylvester domains Th .3 .1 has also been obtained

by G .Révész [121, by another method, based on the above Co-

rollary (for the case of firs there is yet another proof in

[61 ) .

4 . The divisor group of a fully atomic semifir

In

	

order

	

to

	

investigate

	

the

	

structure

	

of

	

Uab

	

more

fully we need to assume the existence of complete factoriza-

tions in our ring R . We recall that a square matrix A is

calles an atom if it is a non-unit and cannot be written as'a

product of two (square) non-unit matrices ; it is clear from

this that an atom is necessarily full .

	

A ring is said to be

bully a.íomíe if every full matrix can be written as a product

of a finite number of atoms, or is a unit . In particular,

every element not zero or a unit then has a complete factori-

zation into atoms .

Let R be a semifir and U its universal field of



fractions . By a Z-val'ue on R we shall understand a homomor-

phism v :GL(U) -> Z such that v(A) > 0 for all A E F(R) .

To give an example, let us assume that R is a fully

atomic semifir and recall from (3],p .201 the unique factori-

zation property : Every full matri . x over R is either a unit

or has a factorization into atoms which is unique up to stable

association and the order of the factors . Now let P be an

atom and for any A E F(R) define v(A) = r if in any comple

te factorization of A the number of atomic factors stably

associated to P is just r . By unique factorization this is

well-defined and we obtain a Z-value on R by putting

v(f A] .F
- [B] F)

= v(A) - v(B) .

This is called the 6ímp.fe Z-value associated with the

atom P .

Proposition 4 .1 .

	

Let R be a bull'y atomíc semílín and let v

be any Z-valle on R . Then (i) v(P)=0 bot PEGL(R), and

(ii) v(A)=v(A') wheneven A, A' ate 6tabl?y aaeoeíated .

Proof .

	

(i)

	

Let

	

P E GL(R),

	

then

	

v(P) > 0,

	

v(P-1 ) > 0,

	

but

v(P) + v(P -1 ) = v(I) = 0, hence v(P) = 0 . (ii) Let A, A'

be stably associated, say

(A + I)U = V(A' + I),

	

U,V E GL(R) ;

since v(U) = v(V) = 0, we have v(A) = v(A') as claimed .

Let us define a ptíme of R as a class of stably asso

ciated atomic matrices . With each prime p i there is associa-

ted a simple Z-value v i . More generally, picic an integer



n i > 0 for each prime p i , then w = En i v i is a Z-value,

for

	

it

	

is

	

defined

	

on

	

each

	

full

	

matrix

	

A :

	

w(A)

	

= En i v i (A),

where the sum on the right is finite because v i (A) = 0 for

almost all i . We observe that every Z-value arises in this

way ; for if w is a Z-value on R, let P i be an atom in

the class p i and put n i = w(P i ), then w and En i v i ha-

ve the same value on each atom and hence on al] of F(R)ab,

Theorem 4 .2 .

be the s ímple

Fon, any lam.í .Cy

Z-value, and eonven.bely, every Z-value on R íz o6 th.í~s

6onm .

We remark that with every full matrix

associated a Z-value wA which is simple if

is

	

an

	

atom,

	

viz .

	

wA	= En i v i ,

	

where

	

the

	

v i

ple Z-values and n i = vi(A) .

We can also use Z-values to

semifirs :

Proposition 4 .3 .

	

Lex R be a sem.í6.íA, then

m,íe .í6 and on1y .í6 Zhene .íe a Z-value w on

w(A) = 0 pnee.íeelN ¡ohen A .íó a un.ít .

Proof . If R is a fully atomic semifir and v i

ple Z-values corresponding to the different primes of R,

then w = Ev i has the desired property . Conversely, when w

exists, take any factorization A E F(R) and factorize it

into non-units in any way :

This proves

Let R be a 6ully atom.íe zem.í6.ín and let (vi)

Z-valuea eon .n.ezpond.íng to the pn.ímeb 01 R .

(n i )

	

o6

	

non-negat.íve .íntegena,

	

In i v i

	

íh

	

a

A there is

and only if A

are al] the sim-

characterize fully atomic

R .íz 6ully ato

R such that

are the sim-



(2)

	

A = P 1 - .P r .

Since w(P i ) > 1 by hypothesis, we have w(A) = Ew(Pi) > r,

and this provides a bound on the number of factors in (2) .

By taking a factorization with maximal r we obtain a comple-

te factorization of A . This completes the proof .

Now take a fully atomic semifir

	

R

	

and let

	

pi
(i E I)

be the family of all primes . For each p i we have a homomor

phism :

	

v i :

	

F(R) ab

	

-=

	

Z,

	

and

	

combining

	

al]

	

these

	

maps,

	

we

	

ha

ve a homomorphism

and hence, by Th .3 .1,

F(R)ab ,. ZI .

But

	

each

	

full

	

matrix

	

maps

	

to

	

0

	

in

	

almost

	

al]

	

factors

	

of

	

Z I ,

hence the image lies in the weak direct power Z( I ) . Let us

write D = D(R) for the free abelian group on the p i (wri-

tten additively) . then we have a homomorphism X : F(R) ab ->D

K 1 (U) - D(R) .

From its construction the map X is surjective, hence so is

(3) .

	

We claim that its kernel is GL(R)/(GL(R) n E(U)) .

	

For

any A E GL(R) satisfies v i (A) = 0 for al] i, hence A E

ker

	

X * .

	

Conversely,

	

i f

	

([ A]

	

- [ B] )x * = 0,

	

then

	

~

	

= B~ ,

hence A, B have the same atomic factors, up to order and

stable association .

	

Let

	

A = P 1 - P r	be a complete factori-

zation and let B be the product (in some order) of Q 1 , . . .,

Qr , where Qi i. s stably associated to P i . Replacing A, B

by A + I, B + I for suitably large I, we may assume Q i to



be associated to P i , say P i = U ¡ Q ¡ V i , where U i , V i EGL(R) .

Then except for the order of the factors we can write

A =

	

Q 1 . . .Q r U 1 . . .U rV 1 . . .V r = BF, where

	

FEGL(R) .

	

Hence

	

A = BF

(mod GL(U)')

	

and so

	

[Al - [B] _ [ F]EGL(R) .GL(U)' . It follows

that ker X = GL(R) .GL(U)'/GL(U) - GL(R)/GL(R) n GL(U)' . He

re we may replace GL(U)' by E(U) ; moreover, since D is

free abelian,X is split by D over its kernel and we ob-

tain

Theorem 4 .4 . Ley R be a bul.2y a.tamíe eemí,Iín w.ízh unívenha2

6íeld ob gnae.tíanó U and d.wíean gnaup D(R), then

(4)

	

K 1 (U)

	

=

	

Uab

	

-

	

D

	

x
J
[GL(R)/(GL(R)

	

n

	

E(U))] .

The divisor group D inherits a partial ordering from R, by

writing ir> 0

	

whenever

	

n

	

is positive on

	

R . However, the or

dering on D is not enough to define R within U, as is

shown by the fact that the determinant of a matrix over R is

usually a proper fraction (¡ .e . has no representative in R) .

It is also of interest to compare Z-values with valva

tions (cf . [11]) . Clearly a Z-value v will be a valuation

if and only if

Let

	

A

	

=

	

(A0 ,

	

A* ,

	

A.)

	

be

	

an

	

admissible

	

matrix

	

for

	

p,

	

then

	

an

admissible matrix for p-1 is (Ao+A.,A*,A.), so the condi-

tion (5) becomes, after a slight rearrangement,

( 6)

	

v(Ao + Aw,A * ) > min {v(Ao ,A* ),

	

v(A,', A* )} .



We recall that when two matrices differ in only one column,

say the first :

	

A = (A1, . . .,An), B = (B 1 ,A2 ,- ,A n ),

	

then the

matrix obtained by adding the first columns and leaving the

other columns unchanged is called the detenmínantal sum and is

written

A .v

	

B

	

=

	

(A 1+

	

B 1 ,A 2 - .- A n ) .

With t.his notation we see that v is a valuation if and only

if

(7)

	

v(A v B) > min {v(A),v(B)},

whenever the determinantal sum is defined (cf . [111) . In gene

ral this

	

condition need not hold,

	

e .g .

	

in

	

k <x,y'>

	

consi-

der the simple Z-value v associated with x . We have

v(xy) = v(yx) = 1, but v(xy - yx)-= 0 . Nevertheless there

is a valuation on the universal field of fractions U asso-

ciated with x ; to obtain it we write U as a skew function

field K(x ;a), where K is the universal field of fractions

of

	

k <y ¡ ¡ i E Z>

	

and

	

a

	

is the shift automorphism

y i I

	

' Y¡ +i (thus

	

yi

	

is realized as

	

x-iyx i ) .

	

0n

	

K(x ;a)

the order in x is the required valuation . In terms of Z-va

lues this valuation is obtained as the sum of certain simple

Z-values, but this is not a very efficient way of constructing

this valuation .

5 . The case of free algebras

To illustrate Th .4 .4 we shall consider the case of



free algebras, where it is possible to compute the second fac-

tor on the right of (4) of §4 . We first prove a lemma .

Lemma

	

5 . 1 .

	

Let

	

k

	

be a commuta.tíve bíeld and

	

U = k -~ X'~

	

the

unívenaal 6íe.Cd 01 btaetíona

	

ob

	

the

	

linee k-algebra

	

k<X > ,

xhen

	

E(U) nGL 1 (k)

	

=

	

1 .

Proof .

	

Let

	

A=a+ lEE(U),

	

where

	

a E-= k ; we have to show that

a =1 .

	

Write A as a product of elementary matrices over U and

let P be the diagonal sum of al] the denominators of the

entries occurring in these matrices . Our plan will be to find

a k-field K such that we can specialize X to values in K so

that P remains invertible and A maps to I . For each n not

divisible by X, the characteristic of k, we adjoin a

primitive nth root of 1, con say, to k and define

(1)

	

K(n) = k(x,y I yx = wn xy) .

It is easily seen that K(n) is then a skew field, in fact a

division algebra of index n . Let K be an ultraproduct of

the K(n) with a non-principal ultrafilter, and denote by

x', y', w' the elements of K whose componente are all x,

y, wn	respectively,

	

then

	

y'x'

	

= w'x'y'

	

and

	

w' n $ 1

	

for

all n . It follows that K is infinite-dimensional over its

centre . We now apply the specialization lemma from [41,

p .141 . Clearly the'centre of K, C say, is infinite and

k <~X:~ is embedded in

	

KC ,`X'~ so we can specialize

	

X

	

to va-

lues in K so that P remains invertible . It follows that

for al] but finitely many n not divisible by x we have a

specialization from X to K(n) making P invertible . In

each of these fields K(n) the reduced norm maps each matrix



in E(U) to I, hence a n = 1 for all but finitely many n

not divisible by X . This still leaves infinitely many values

of n and so is impossible unless a = 1 .

For the free algebra

	

k <X> = R,

	

every invertible ma

trix is a product of elementary and diagonal matrices, i .e .

GL(R) = E(R) .k

	

(by Prop .2 .7 .2 of [3],p .95), hence

GL(R)nE(U) = E(R) .k'nE(U) = E(R) (k nE(U)) = E(R), by the le �

mma . Therefore GL(R)/GL(R)nE(U) = E(R) .k /E(R) - k /k nE(R)

k , and so we find

Theorem

	

5 .2 .

	

Le.t

	

R = k <X>

	

be xhe {,Lee

	

k-alpebna on a set

X

	

and

	

U

	

=

	

k K X ",~

	

ítb

	

6íe.Cd u Ó

	

lrnactía nb

	

and

	

D(R)

	

ító

	

díví-

,son gnoup,. .tNen

U ab - D(R) xk *

This solves Exercise 7 .6 .10 of [3] . In many cases it is

true that

	

E(U)nGL(R) = E(R),

	

as in the case of

	

k <X> ,

	

but

by no means always . _For a study of the general case we refer

to Révész [121

At the other extreme, let K be a skew field in which

every non-zero element is a commutator (cf .[6]), let C be

its centre and consider the free

	

K-ring

	

K C <X>

	

and its un¡

versal field of fractions

	

U = K C -irX :~ .

	

The ring

	

R

	

has a

weak algorithm (cf . [3], p .78), hence GL(R) = GL1(R) .E(R),

and so GL(R)/GL(R)nE(U) = GL(R) .E(U)/E(U) = GL1(R) .E(U)/E(U) .

Now G1 1 (R) = K *nE(U), hence the second factor on thé right of

(4) in § 4 is trivial and so

KC <_ X~
ab _ D,



where D is free abelian of countable rank (or of rank IXI

if this is larger) .

6 . Localization

Let R be a semifir and E any set of square matri-

ces over R ; it is natural to .ask under what conditions the lo

calization R is again a semifir . This has been answered in
E

171, where it is shown that R E is a semifir if and only if

E

	

i s

	

6acxon. complete,

	

i . e .

	

whenever

	

ABEYE,

	

then

	

there

exists a matrix C over RE such that (B,C) is invertible

over R E. We shall show that0 when R is fully atomic, then

so is R E and our aim will be to study the relation between

the divisor groups of R and R E in that case .

An atom A in R and also the associated simple

Z-value is called E-ínnelevant - if A becomes a unit in R~.

and E-nelevant otherwise .

Theorem 6 .1 . Let R be a jullu atomíc semí6íx and le.t E

be a 6acxon complete het og mattíce~s oven R, then R E íó

aga,Ln a ~ull(! atomíc zemílín, and eveny atom oven R eíthen

becomes a unít on nema.Ln~s an atom oven R E .

Proof . We begin by proving the last part . Let A be an atom

over

	

R

	

and

	

suppose

	

that

	

over

	

RE	we

	

nave

	

A

	

=

	

B 1 B2 ,

	

where

the B i are non-units . Then by Cramer's rule, U i (B i + I)V i =

C i	(i

	

=

	

1,2),

	

where

	

C i	is

	

a

	

matrix

	

over

	

R

	

and

	

U i ,

	

V iE

Hence



Let v be the simple Z-value defined by A, take complete

factorizations of C i , C 2 over R and let w 1 , w 2 be the

Z-values corresponding to C 1 , C 2 but counting only E-rele-

vant atoms . Them by

	

(1), v = w 1 + w 2 .

	

But

	

w i (C i ) : l and so

2

	

s

	

w 1 (C 1 )

	

+

	

w 2 (C 2 )

	

=

	

v(A)

	

=

	

1

a contradiction, an'd this shows that A is an atom or a unit

over RE .

Now let P be any full matrix over RE and write

(2)

	

U(P + I)V = A,

where AEF(R), U, VEGL(RE ) . We can write A as a product of

r atoms say, over R ; each will be either an atom or a unit

over RE , hence P can be written as a product of at most r

atoms over RE and this shows RE to be fully atomic .

The fact that RE is fully atomic may also be proved

as follows : Denote by w the sum of all E-relevant simple

Z-values on R, then w is a Z-value on RE and w(A) = 0

for AEF(RE ) only if A is invertible (by Cramer's rule),

hence the criterion of Prop .4 .3 is satisfied .

By Prop .6 .1 we can define the divisor groups of both

R and RE ; to describe the mapping between them we need

Proposition 6 .2 . Let R be a jul'fq atomíe eemíbít and E

a jaeton complete het oj mattíceh oven R, ao that RE

agaín jully atomíe . Then (i) any two atomz oven R that

ate not stably aasocíated oven R ate not etably azsocíated

0 k)et

	

R£ ,

	

unle,sn

	

bo .th.

	

beeome un.ttó,

	

(i i )

	

evety mattíx

	

P



ovex RE íe Atably aseoeíated to the ímage o6 a matxíx P'

ovex R, and íÓ P ís an atoro, then 4o ís P' .

Proof . (i) Let A, A' be atoms over R, not stably associa-

ted, and suppose that A is E-relevant . Let v be the sim-

ple Z-value corresponding to A, then v is a Z-value on

RE . and v(A) = 1, v(A') = 0,. hence A, A' cannot be stably

associated over RE . (ii) Let P be a matrix over RE , then

we again have an equation (2), hence P is stably associated

to AEF(R) . Now suppose that P is an atom and denote by w

the sum of al] E-relevant simple Z-values on R, then w is

a Z-value on RE . Since P is an atom, we have 1 = w(P) =

w(A) ; this means that in a complete factorization of A over

R there is only one factor, P' say, which is E-relevant,

and clearly P is stably associated over RE to P' . This

completes the proof .

Let

	

A

	

be an atoro over

	

R

	

and denote by

	

[A] R

	

the

corresponding prime of R ; if A is E-relevant, it remains an

atom over RE and so defines a prime [AJ E there . It is

clear that stably associated atoms over R remain stably asso

ciated over

	

RE ,

	

hence the correspondence

	

[A] R I-[A]~,

defines a homomorphism

Let DE(R) be the subgroup of D(R) generated by the :-rele

vant primes ; we claim that DE(R) - D(RE ) . For the restric-

tion of X to DE(R) is injective by Prop .6 .2 (i) and sur-

jective by (ii) . Thus we have proved

X :D(R) -

	

D( RE ) .



Theorem 6 .3 . Let R be a jully atomíc semí~íA, E a bac-

.ton complete set o 6 mattíceh and denote . b y DE (R) the bub-

gtoup oá D(R) genetated bel-the E-televant ptimes oj R .

Then the embeddíng R

	

' RE índuees an ízomotphíem

DE(R) - D(RE) .

Moteovet, íl X :D(R) --> D(RE) ,Lá, .the .Lndueed homomotphí4m,

then

D(R) = DE (R) x ker a ;

hete ket X ís the subgAou .o o{, D(R) genetated by the

E-¿ttelevant ptímeó .

We conclude by discussing an example, suggested by A .H .

Schofield .

	

Consider the free algebra

	

k <X> ; we first exami-

ne the form of atoms stably associated to the generators .

Proposition

	

6.4 .

	

Let

	

xEX,

	

zhen ovet

	

k <X> ,

	

any

	

n x n

ma-ttíx stably ahhocíated zo x tih addocíated -to x,+ In-1 . In

pattíeulat, any element axab1y aehocíated to x ha4 the fjotm

Xx (XEk ) .

Proof . Let A' be an n x n matrix stably associated to

x, then (by Prop .2 .2, (5]), there is a comaximal relation

(3)

	

xb ' = bA',

where

	

b, b~ ER n .

	

By the weak algorithm in

	

R = k < X >

	

we

can reduce b to e l = (1,0, . . .,0) ; then (3) becomes

xb
j

=
ali,

hence A' = (x + I)A" and here A" must be a

unit, by unique factorization . This proves the first part ;

now the rest is clear since any associate of x has the form



Xx, TEk

We now assume X to be infinite and partition it into

two parts X', X" of which X" is again infinite . Let

E = E (X')

	

be the set of al l

	

ful l

	

matrices over k <K>

	

which

are totally coprime to X', i .e . which have no factor stably

associated to an element of X' . We claim that E is factor

complete .

	

Let

	

C E s,

	

and

	

suppose

	

that

	

C

	

=

	

AB,

	

where

	

AEn R N ,

BE N R n (n ~<N) .

	

Given that

	

C

	

is totally coprime to

	

X',

	

we

have to find

	

DE N-n RN such that

	

(A,D) T

	

is full and totally

coprime to X' . We shall take the entries of D to be dis-

tinct elements of X" not occurring in A or B ; this is po

ssible because X" is infinite . Since C is full, A has

rank n, so we can choose n columns of A forming a full

matrix, say the first n, then (A,D0)T will be full if we

choose D o = (0,I) . This can always be done by specializing

the

	

choice

	

of

	

D

	

made

	

earlier,

	

so

	

it

	

follows

	

that

	

(A,D) T

	

is

full .

	

It

	

remains

	

to

	

show

	

that

	

(A,D) T

	

is

	

totally

	

coprime

	

to

X! Suppose that

A

D)
PTQ, T = x + IN-I, XEX' .

We partition P in accordance with the left-hand side of (4),

i .e . we put P = (P I ,P 2 ) T , so that A = P I TQ, D = P 2 TQ . Wri

te P 2 = (P21P2) , where p 2 is the first column, Further,

write

	

X o = X\{x}, xó = X'nxo ,

	

S o = k < X o > Y(X , ) ,

	

then

	

S

	

is
o

a localization of S o k k[x], again a fir, and over the latter

ring we again have a factorization (4) . Consider the homomor

phism

	

f 1-f

	

óbtained

	

by putting

	

x

	

=

	

0 .

	

This

	

does

	

not



affect D, so D = D = (0,12)I. But this means that DE N -n RN

has inner rank at most N-n-1, which is clearly false . Hen-

ce

	

no

	

equation

	

(4)

	

can

	

exist

	

and

	

(A,D) T

	

is

	

totally

	

copri-

me to X' . This shows E(X') to be factor complete and it

proves

Theorem

	

6.5 .

	

Let

	

k <X>

	

be -the Itee a.2gebn.a on an ínSíní-

.te zet X, .lex X' be a 6ubeet o,( X wíth an ínAíníte eom-

nlement ín X, and denote be E = E(X') -the eet o~ all MI

mathíeee

	

oven.

	

k < X >

	

, total.Cy eonAíme to

	

X' ,

	

then the loca~

lízatíon

	

k<X> E

	

íó a 6íh .

For when E is factor complete, t.he localization,is

a

	

semi fi r

	

by

	

[71 ;

	

i t

	

i s

	

heredi tary

	

by

	

[21,

	

and

	

hence

	

a

	

fi r.

We now partition X into X', X", where both X'

and X" are infinite . Our aim will be to prove that in this

case

	

k<X>E(X,)

	

is simple .

	

Let us write

	

R = k <X> ,

S = RE	and take

	

c E S,

	

c (Ék .

	

Choose x EX'

	

such that

	

x

does not occur in c, then we claim that cx - xc is a unit

in S . Once this is proved, it will follow that c cannot

lie in any two-sided ideal =PO of S, and si,nce c was

any element of S not in k, it follows that S is simple .

Let X o be the subset of X involved in c and let

Eo be the set of matrices in E with entries involving on-

ly

	

Xo ,

	

and

	

put

	

S o	=

	

RE	,

	

then

	

S

	

is

	

a

	

localization

	

of
0

So , and the latter is a fir .

an atom, then

Consider cx - xc in S o ; if this is not a unit or

(5)

	

cx - xc = ab,

	

a,bES 0 ,

	

a,b non-units .



Let us write a = a(x), b = b(x) to indicate the dependence

on

	

x ;

	

we

	

note

	

that

	

f(x)

	

I-f(0)

	

is

	

a

	

homomorphism

	

from

So (to the corresponding algebra with x replaced by 0,

again a fir), hence by (5), a(0)b(0) = 0, so a(0) = 0 or

b(0) = 0, say the former . If t is a commuting indetermina

te, then by (5),

(6)

	

a(tx)b(tx) = t(cx -xc) = ta(x)b(x) .

Clearly a,b are polynomials in t, and

	

a(0) = 0, so by

(6) a,b are homogeneous of degrees 1, 0 respectively in

t, in particular, b(x) = b(0) is independent of x . So we

have

(7)

	

cx - xc = a(x) .b .

By hypothesis b is a non-unit in S o , say it has a factor

stably associated to

	

x l E X', and

	

x 1 *x

	

by what has been

proved . Then on the right of (7) al] terms have x to the

left of the right-most factor x i and likewise in xc, whe-

reas in cx, x occurs on the right . Thus the terms in cx

must cancel, i .e . cx = 0, which is not the case . Hence b

is a unit, and this shows that cx - xc is an atom . Suppose

that it is stably associated to an element of X' . Now S o

may be written as T k k[x], where T is a localization of

the free algebra in the elements =P-x . Let U be the field

of fractions of T and form U k k(x) ; this is a localiza-

tion of S o in which al] the elements of X' occurring are

invertible, hence cx - xc must be a unit in U * k(x), but



that is clearly not so, hence cx - xc is totally coprime to

X', and it is therefore a unit in S . This then shows S to

be simple .

Next we show that S is an Ore domain, and hence

principal .

	

Take

	

p,q E S, p,q :94-0

	

and without loss of genera-

lity p,q have no common left factor (apart from units) . Ta

ke

	

xl,x2
E X'

	

not occurring in

	

p,q

	

and form

	

c = px 1 - qx2 .

Let Xo = X\{x 1 ,x 2 }, Ro = k<X 0 > S o = ROE(X), where
0

Xo = X' n X o ,

	

then

	

c

	

i s an atom i n

	

Sokk <xl ,x2 > ,

	

for

	

i f

not, consider an equation

c = ab .

We

	

have

	

b

	

=

	

b1 x 1	+

	

b 2 x 2 ,

	

hence

	

p

	

=

	

abl ,

	

q

	

=

	

-ab2'

	

hence

a is a unit, by the choice of p,q . This then shows c to

be an atom .

	

If

	

c

	

is stably associated to

	

x E X',

	

then in

Vo * k(x 1 ) * k(x2)1 where V o is the universal field of

fractions for S o , c will be a unít . But it is clearly not

a unit, hence it must be totally coprime to -X' and so is a

unit in S . Now we have px 1 C -1 - gx 2c -1 = 1, hence

p(x 1 c -1 p - 1) = q(x 2 c -1 p) is a common right multiple .

Thus R~(X,) is a simple PID whenever X' is an

infinite subset of X with infinite complement . Suppose now

that Xo is a finite subset of X ; let X' be any subset

of X containing X o and having an infinite complement in

X, then it is clear that RI(X ) is a localization of
0

RE (X,)

	

and the latter has been shown to be a simple

	

PID .

Any localization is again a simple PID, so we have



Theorem

	

6 .6 .

	

Lex

	

R =k< X >

	

be the linee al'gebna on an tin6ti-

níte b et

	

X,

	

and let

	

Xo	bea

	

sub,6 ex o 6

	

X

	

wíth an ínjíníze

complement .

	

Denote by

	

E =E (X o ) the hez o 6 all 6ull matníceb

total?ly copníme to

	

Xo ,

	

then

	

RE	íb a símple pnínc.Lpal ideal

domaín .

In particular, taking . X o to consist of a single

element, we obtain a simple PID with a single atom, but not

a local ring .
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