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This note shows how to use the technique of blowing up submanifolds

to give easier proofs of some theorems concerning fixed point sets of toral

actions on smooth manifolds .

None of the results given here is new . The main theorem (theorem 3)

as well as the applications (8), (9) and (10) are well known . Nevertheless

I believe proofs presented in this note are not the usual ones .

(1) Let us begin by describing the equivariant blowing up of invariant subma-

nifo1ds .

Let G be a compact Lie group acting smoothly on a smooth manifold

M and let B be a G-stable closed smooth submanifold of M.

Consider the induced action of G on the tangent bundle TM of M. It

is given by

a .v = (dTa )x (v)

	

x E M, a E G, v E Tx(M)

where T X (M) denotes the tangent space of M at x and Ta is the diffeomorphism

of M defined by Ta (x) = a .x .

The above action of G on TM restricts to actions of G on TM IB and

TB, since B is G-invariant . Thus we have an induced action of G on the normal



bundle, v :E n+ B, of B in M .

Let P(v) :P(E) -> B be the projective bundle associated to v(its fi-

bre over x E B is the projective space associated to the quotient TX(M)/TX(B))

The bundle P(v)'inherits an obvioús action from the action of G on v .

We also consider the canonical line bundle, É

	

P(E), on P(E) (its

fibre over z E P(E) consists of al] vectors of z) .

The above actions of G on P(E) and E induce an action of G on E such

that the map a :E - E, given by a(z,v) =v, is G-equivariant .

Observe that a is surjective and restricts to a diffeomorphism

É-P(E) ~O' E-B (we identity the base B to its image under the zero cross-sec-

tion) .

U of B in M together with a G-equivariant diffeomorphism ! E-P U such that
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It is not difficult to construct a G-invariant open neighbourhood

restricts to the identity on B . Set a = sp oa :E } U C M . Thus a :E-P(E) ,

i U-B is a G-equivariant diffeomorphism .

Let M be the space obtained by attaching É to M-B via the map

E-P(E) á. M-B (i .e . Ñ is obtained from the disjoint union of É and M-B by

identifying the points of É-P(E) to their images on M-B under o ) . Endow

M with the obvious smooth structure for which the inclusions É

	

M,

M-B J+ M are diffeomorphisms onto their images . It is clear that the actions

of G on É and M-B induce an action of G on M .

Define

	

a- :M -, M by

	

Q(i(x)) = o(x) if x E E and

	

á(j(x)) = x if

x E M-B .

Thé map Q is G-equivariant and surjective . Furthermore á:M-P(E)

M-B is a G-equivariant diffeomorphism .

Observe that M is obtained from M by bowing up B onto a G-invariant

hypersurface P(E) . In particular a point of B has been blown up on to a real

projective space .



In case B is a single point, M is simply the connected sum of M and

a real projective space .

	

.

Blowinp up the fixed póint setof a proup action .

It is easily leen that the connected componente of the fixed point

set, FG(M), of the action of G on M are closed smooth submanifolds of M .

Blowing up in turn each of them we obtain a smooth manifold M, acted on by

G, together with a G-equivarinat surjective smooth map & :M - M .

(2) Lemma .
0

Let G be the connected component of the unit in G and suppose that
0

G/G has an odd number of elements . Then the action of G on M has no fixed

point .

Proof :

Clearly M -9- 1 (FG (M)) does not have fixed points since it is G-equi-

variantly diffeomorphic to M-FG(M) . Therefore it is enough to show that

Q-1 (FG (M)) does not have fixed points .

Let B be one of the connected componente of FG (M) and let v :E - u-> B

denote its normal bundle . Endow v with a G-invariant Riemannian metric and

assume that an element z E P(E) exits such that a .z = z for all a E G . Fix

a vector v of norm 1 belonging to z . We must have a .v = E(a) .v where

E :G ~ {1,-1} is a group homomorphism, constant on each connected componente

of G .
0

Define E:G/G - {1,-1} by e(á) = E(a) (a denoting the clase of a

in G/G) . Set c-1 (1) = {al , . . .,ar} and E-1 (-1) = {Bl, . . .,bs} . We know that

-1
(-1) ~ 0 because if not one had a .v = v for all a E C and, if we identify

E to a G-invariant tubular neighbourhood of B in M, this would yield a con-

tradiction, since B is a connected component of FG(M) .

Therefore E-1 (-1)

	

=

	

{a1B1 , . . . ,ar b 1 }

	

=

	

{B1' . . .,BS} .

	

Hence r = s

	

and
0

G/G has an even number of elements contradicting the hypothesis of the lemma .
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(3) Theorem .

Let G be a torus acting smoothly on a compact smooth manifold M.

Then the Euler-Poincaré characteristic, x(FG(M)), of the fixed point set

of the action of G on M coincides with the Euler Poincaré characteristic,

x(M)', of M .

Proof :

Let B1 , . . . ,Br be the connected components of FG (M) with normal

bundles vi :Ei

	

n i-

	

Bi	(i=1, . . .,r)

	

and

	

let wi :E i

	

+ U i	(i= 1, . . .,r)

	

be G-

equivariant diffeomorphisms where U i is a G-invariant open neighbourhood
r

of B . in M . Set U =

	

u U . .
i=1

yield

The corresponding Mayer-Vietoris sequences of the open sets

{M-FG (M), U} of M and the open sets {M-á-1(FG(M)) = M-FG(M)-c 1 (u) of M

(4) x(M) + x(U-FG (M)) = x(U) + x(M-FG(M))

(5) x(M) + x(U-FG (M)) = x(°-1 (U)) + x(M-FG(M))

where x denotes the Euler-Poincaré characteristic and Q :M ->- M is obtained,

as explained before, by bowing up in turn each of the B i .

	

Hence Gis G-equi-

variant and the action of G on M does not have fixed points .

Choose next an element h of the Lie algebra of G such that expth is

dense in G and let Zh be its corresponding fundamental vector field in M .

Explicitly Zh is given by Zh (x) = (dAx ) e (h) where Ax :G 1 M is given by

Ax (a) = a .x and e is the unit element of G .

.The véctor field Zh has no zeros since the action of G on M has no

fixed point . Therefore x(M) = 0 because of Hopf theorem (see corollary 3,

page 399 of [11) .
r

On the other hand x(á-1 (U)) = E x(P(Ej )) and since the action of
i=1

G on P(E j ) has no fixed point the same argument as before yield x(P(E j )) = 0

(i = 1, . ,r) .
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Therefore (5) can be written as follows

(6)

	

x(U-FG (M)) = X(M-FG(M)) .

Finally we deduce from (4) and (6), using also the obvious fact

that X(U) = X(FG(M)),

(7)

	

X(M) = X(FG(M)) .

We show now some applications of theorem (3) .

(8) Proposition .

Let T be a maximal torus of a compact connected Lie group G . Then

X(G/T) is the number of elements of N(T)/T where N(T) is the normalizer of

T in G .

Proof :

The fixed point set of the obvious left action of T in G/T, is given

by FT (G/T) = {xT i x E N(T)} . Therefore FT (G/T) has the same number of ele-

ments as N(T)/T . The proof in now finished by applying (3) .

(9) Corolláry .

Any two maximal tori of a compact connected Lie group are conjugate .

Proof :

Let T,T' be maximal tori of a compact connected Lie group G and con-

sider the left action of T' on G/T given by t' .xT = (t' .x) .T(t' E T' x E G) .

We know from proposition (8) and theorem (3) that X(FT,(G/T)) =

number of elements of N(T)/T . In particular FT' (G/T)

	

0 . Therefore there

exists x E G such that t'xT = xT for all t' E T' . Thus x-1T'x = T .

(10) Theorem .

Let K be a closed connected subgroup of a compact connected Lie

group G . Then X(G/K) = 0 if rank K < rank G and )«G/K)= nG/n K if rank K= rank

G (nG is the number.of elements of N(T)/T for T being a maximal

	

torus of G

and n K is the corresponding number for K) .
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Proof :

a) Suppose first that rank K c rank G and let T be a maximal

	

torus of G .

	

The

left action of T on G/K has no fixed points because if txK = xK for all t E T

then x-1Tx C K which is imposible since rank K c rank G . We use then theorem

(3) to conclude that x(G/K)= 0 .

b) Assume now that rank'K = rank G and let T be a maximal torus of K and

hence of G . We have FT (G/K)

	

= {xK1 x-1Tx C K} .

	

But x-1Tx is a maximal

	

torus

in K, if x-1Tx c K . Thus by corollary (9)

	

there exists k E K such that

x-1Tx = k-1Tk . Therefore xk-1 E NG (T) (normalizar of T in G) . Hence

xK = xk -1 .kK = xk-1 K with xk-1 E NG (T) . Therefore

FT(G/K) = {yKly E NG (T)} =
.
NG(T)ANC (T) n K) = NG (T)/NK(T) =

NG (T)/T

NK T /T"

B i b l i og-r~p~Y_

Therefore x(FT(G/K)) = nG/nK and we finish now the proof_by using (3) .
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gy . Vol .I . Academic Press .


