Pub. Mat. UAB N° 22 Nov. 1980 Actes VII JMHL

INTERPOLACION POR RECURRENCIA: UNA FORMULA GENERAL

M. Gasca, A.López Carmona

Dpto. de Ecuaciones Funcionales Universidad de Granada

ABSTRACT.

We give a formula to construct the solution of the interpolation problem with n+m linear forms as data from the solutions of s simpler interpolation problems, extending the results of G.Mühlbach [2], [3].

As particular cases of this formula we obtain a Newton, Lagrange and Aitken-Neville formulas for one or several variables. We give an example of interpolation in any six points of \mathbb{R}^2 by using polynomials of degree two.

Definiciones y notaciones.

Sea W un espacio vectorial de funciones de una o varias variables, con valores en un cuerpo K conmutativo y de característica cero. Sean m, $n \in \mathbb{N}$ y $_{n+m} = \{L_i, i=1,2,...,n+m\}$ un conjunto de n+m formas lineales sobre W. Sea $\{f_1,f_2,...f_{n+m}\}$ un conjunto de elementos de W linealmente independientes, tales que

(1)
$$\det \begin{pmatrix} f_1, f_2, \dots, f_{n+m} \\ f_{n+m} \end{pmatrix} = \det(L_i(f_j)) \neq 0, i, j = 1, 2, \dots, n+m$$

y sea V el espacio vectorial que engendran $V = \langle f_1, \dots, f_{n+m} \rangle$.

Notemos por

(2)
$$pf \begin{bmatrix} f_1, f_2, \dots, f_{n+m} \\ f_{n+m} \end{bmatrix}$$

a la función de V que es solución única del problema

(3)
$$L_{\underline{i}}(pf \begin{bmatrix} f_1, \dots, f_{n+m} \\ f_{n+m} \end{bmatrix}) = L_{\underline{i}}(f) \quad i = 1, 2, \dots, n+m$$

para una cierta función f en el espacio W, la llamaremos función interpoladora de f respecto al conjunto de datos de interpolación \mathbf{f}_{n+m} .

Notaremos por

$$pf \begin{bmatrix} f_1, \dots, f_{n+m} \\ f_{n+m} \end{bmatrix} (x)$$

al valor de dicha función en un punto x cualquiera del conjunto de definición de las funciones de W.

Sean $\mathfrak{t}_{n,i}$, $i=1,2,\ldots,s$, $1\leq s\leq m+1$, s subconjuntos de n elementos cada uno de \mathfrak{t}_{n+m} . Supondremos que

(4)
$$\det\begin{pmatrix} f_1,\dots,f_n \\ f_{n,i} \end{pmatrix} \neq 0 \qquad i=1,2,\dots,s.$$
 Por otra parte, pf
$$\begin{bmatrix} f_1,\dots,f_n \\ f_{n,i} \end{bmatrix} \text{ denotará la función perteneciente a } \langle f_1,\dots,f_n \rangle \text{ que resuelve el siguiente problema de interpolación}$$

(5)
$$L_{j}(pf \begin{bmatrix} f_{1}, \dots, f_{n} \\ f_{n,i} \end{bmatrix}) = L_{j}(f), \quad L_{j} \in f_{n,i}$$

Por último, notaremos por

$$\mathbf{a}_{k} = \begin{bmatrix} \mathbf{f}_{1}, \dots, \mathbf{f}_{n+m} \\ \mathbf{f}_{n+m} \end{bmatrix} \mathbf{k} = 1, 2, \dots, n+m$$

al coeficiente de f_k en la función (2) que llamaremos k-ésima diferencia dividida de f respecto del problema (3).

Teorema 1.

Para todo x del conjunto de definición de las funciones de W tal que

se verifica i

(7)
$$\operatorname{pf}\begin{bmatrix}f_{1}, \dots, f_{n+m} \\ f_{n+m}\end{bmatrix}(x) = \sum_{i=1}^{s} \lambda_{i}(x) \operatorname{pf}\begin{bmatrix}f_{1}, \dots, f_{n} \\ f_{n,i}\end{bmatrix}(x) + \sum_{i=1}^{s} \sum_{k=n+s}^{n+m} \lambda_{i}(x) \cdot a_{k} \cdot (f_{k}(x) - \operatorname{pf}_{k}\begin{bmatrix}f_{1}, \dots, f_{n} \\ f_{n,i}\end{bmatrix}(x))$$

siendo $\lambda_{i}(x)$, i=1,2,...,s la única solución del sistema

(8)
$$\begin{cases} s \\ \sum_{i=1}^{n} \lambda_{i}(x) = 1 \\ s \\ \sum_{i=1}^{n} \lambda_{i}(x) pf_{j} \\ f_{n,i} \end{cases} f_{1}, \dots, f_{n}$$

$$\begin{cases} s \\ \sum_{i=1}^{n} \lambda_{i}(x) pf_{j} \\ f_{n,i} \end{cases} f_{n,i}$$

$$(x) = f_{j}(x), \quad j=n+1, \dots, n+s-1$$

Consecuencias.

i) Para s=m+1, se obtiene la fórmula de Aitken-Neville generalizada de [2],

(9)
$$\operatorname{pf}\begin{bmatrix} f_{1}, \dots, f_{n+m} \\ f_{n+m} \end{bmatrix} (x) = \sum_{i=1}^{m+1} \lambda_{i}(x) \operatorname{pf}\begin{bmatrix} f_{1}, \dots, f_{n} \\ f_{n,i} \end{bmatrix} (x)$$

ii) Para s=1, se obtiene la fórmula de Newton generalizada dada en [3],

(10)
$$\operatorname{pf}\begin{bmatrix} f_{1}, \dots, f_{n+m} \\ f_{n+m} \end{bmatrix} (x) = \operatorname{pf}\begin{bmatrix} f_{1}, \dots, f_{n} \\ f_{n,i} \end{bmatrix} (x) + \frac{n+m}{k=n+1} a_{k} \cdot (f_{k}(x) - \operatorname{pf}_{k} \begin{bmatrix} f_{1}, \dots, f_{n} \\ f_{n,i} \end{bmatrix} (x))$$

- iii) Si s=m+1, n=1, se obtiene una fórmula de Lagrange.
- 2. Interpolación en seis puntos de \mathbb{R}^2 mediante polinomios de grado dos.

Se considera el problema de interpolación

(11)
$$f(P_i) = p(P_i), i = 1, 2, ..., 6, p \in P_2$$

donde los P, son puntos cualesquiera de R².

Es evidente que

$$\det\begin{pmatrix} 1, x, \dots, y^2 \\ p_1, \dots, p_6 \end{pmatrix}$$

es nulo si y sólo si los puntos P_i están en una cónica. Por tanto el problema no tiene solución o no la tiene única salvo en los casos siguientes:

- 1) Si tres puntos están en una recta r_0 , dos en otra r_1 y el último no está ni en r_0 ni en r_1 , (11) se resuelve por el método de [1].
- 2) Si no hay tres puntos alineados entre los P_1 , sino que se encuentran dos a dos en rectas r_0 , r_1 y r_2 entonces por el procedimiento de [i] es imposible tener como espacio de interpolación a P_2 . No obstante, si se puede aplicar dicho método para hallar la solución de los problemas

(13)
$$f(P_i) = p(P_i), \quad i = 1,2,3,4,5$$

(14)
$$f(P_i) = p'(P_i), \quad i = 1,2,3,4,6$$

en un subespacio P P_2 , de dimensión cinco cuya base $\{g_1, \ldots, g_5\}$ se obtiene por el procedimiento dado en $\{1\}$.

Con las soluciones de (13) y (14) y tomando como $g_6 \times^2$ o bien y^2 , dependiendo como se hayan elegido g_1, \dots, g_5 , estamos en las condiciones del teorema 1 con n=5, m=1, s=2, por tanto tendremos

$$\operatorname{pf} \begin{bmatrix} g_1, \dots, g_6 \\ f_6 \end{bmatrix} (x) = \lambda_1(x) \operatorname{pf} \begin{bmatrix} g_1, \dots, g_5 \\ f_5, 1 \end{bmatrix} (x) + \lambda_2(x) \operatorname{pf} \begin{bmatrix} g_1, \dots, g_5 \\ f_5, 2 \end{bmatrix} (x)$$

con $\lambda_1(x)$ y $\lambda_2(x)$ solución del sistema (8).

BIBLIOGRAFIA

- 1. GASCA,M. & MAEZTU,J.I.: "On Lagrange and Hermite interpolation in \mathbb{R}^{k_n} . Remitido a Num.Math.(1980)
- 2. MUHLBACH,G.: "The general Neville-Aitken-algorithm and some applications". Num.Math.31, (1978)
- 3. MUHLBACH,G.: "The general recurrence relation for divided differences and the general Newton-interpolation algorithm with applications to trigonometric interpolation". Num.Math. (1979)